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Abstract

This thesis presents an inertial navigation system (INS) that leverages the global posi-

tioning system (GPS) and a sparse road network database to cooperatively localize ground

vehicles within close proximity to one another. The algorithm that constitutes the core

contribution is named MACIN, an acronym for map aided cooperative inertial navigation.

Increasing demand for driver assistance features in consumer ground vehicles has spurred

demand for ubiquitous high-accuracy absolute positioning. Accuracy at the lane level (under

1 meter) is required to execute complex operations such as maneuver planning. At the same

time, standard automotive sensors such as cameras, inertial measurement units (IMUs), and

GPS receivers do not provide this accuracy. Furthermore, common navigation techniques for

fusing these sensor measurements, such as loose GPS/INS coupling in an extended Kalman

filter (EKF), produce position performance that is consistently on the order of several meters

in benign conditions.

MACIN comprises several improvements upon the loosely coupled GPS/INS EKF ap-

proach to acheive sub-meter accuracy and accurate lane determination. It uses sparse lane

geometry information and lane sensing capability to apply position constraints along the

earth tangent plane. The states of neighboring vehicles are estimated concurrently, and dif-

ferential GPS is used to relate their states to one another. Lastly, Rao-Blackwellized particle

filtering (RBPF) is used to estimate position with particles, while all other variables within

the state are estimated with standard linearized filtering.

The success of these improvements is measured by reduction of positional error along

the earth tangent plane. MACIN’s performance is compared to that of a loosely coupled GP-

S/INS EKF in both highway and suburban conditions. This thesis shows that the proposed

novel filter consistently reduces error from 1-3 meters to the submeter level.
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Chapter 1

Introduction

The idea of automating personal vehicles so they could drive themselves has been around

almost as long as the automobile itself. Engineering efforts to accomplish this began as early

as 1926 [1], and work to that end has proceeded ever since. The modern approach to ground

vehicular autonomy requires ubiquitous location services at the sub-meter level, and while

the first part is satisfied, work still remains for the second.

Anyone with a smartphone can know their location within 100m, but sub-meter accuracy

still requires an expert to create a custom solution with custom infrastructure. Generally, this

entails equipping a vehicle with costly laser ranging sensors, and comparing their readings to

a sophisticated map. The creation and maintenance of said map is a technical and logistical

feat unto itself.

At the same time, the technology requisite to bring ubiquitous accuracy to sub-meter

levels already exists without these labor- and capital-intensive special techniques. Anyone on

earth with line of sight to the sky can use some form of Global Navigation Satellite System

(“GNSS”), be it GPS (GNSS operated by the United States), GLONASS (the Russian

counterpart), or some other constellation. Much of the earth’s roadways have already been

mapped (albeit sparsely) and are available for free use as part of the Open Street Map

project [2]. And lastly, means of transmitting and receiving data between two vehicles

electronically are available to just about anyone. Many vehicles come pre-equipped with

cellular modems which enable vehicle-to-infrastructure (V2I) communication, and dedicated

short range communications (DSRC) technology [3] has enabled a standardized method of

direct vehicle-to-vehicle communication. This thesis contends that intelligent application of

those 3 things can make ubiquitous sub-meter localization possible for ground vehicles.
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A common approach for attempting high-accuracy localization is to use Extended Kalman

Filtering (EKF) to combine measurements from a GNSS receiver and an inertial measure-

ment unit (IMU), thus creating an inertial navigation system (INS). This baseline strategy

is discussed in Section 3.5.2. The goal of this thesis is to improve upon the loosely cou-

pled GNSS/INS EKF approach in two ways: allow multiple vehicles to work cooperatively to

improve their individual absolute positioning performance, and further refine the PVA esti-

mates using a sparse a priori map. The resultant approach is referred to as Map Aided

Cooperative Inertial Navigation, or MACIN. In order to further define the problem

space prior to attempting a solution, the following problem criteria are put in place to guide

design:

• Assume that a high-accuracy, lane level map exists for any road upon which a vehicle

will drive. Many such databases exist today, both public and proprietary, with varying

levels of information. For the sake of maximizing applicability, the information in this

map should be as sparse as possible.

• Assume some system exists that is capable of determining whether or not the host

vehicle is within the marked boundaries of a lane (i.e., whether or not the vehicle

is not drifting between neighboring lanes is known). Many commercial off-the-shelf

computer vision systems exist which are capable of this, and Lane Departure Warning

(LDW) is a standard feature in many consumer vehicles on the road today.

• Full 6 degree of freedom (“DoF”) pose estimation is required, as well as 3D veloc-

ity estimates. Pose is defined here as 3 dimensional position in conjunction with 3

dimensional orientation.

• No physical infrastructure is available to aid in positioning, so solutions such as real

time kinematic (RTK) GNSS with a base-station are not available. Physical infras-

tructure outside of a host vehicle is a common barrier to scalability and accessibility.
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• The algorithm should be able to run in real-time on a modern computing system to

supply PVA estimates to an online system. As such, post-processing techniques are

disallowed.

• Only commercially available sensors should be employed.

Following these assumptions, MACIN comprises the following enhancements upon the base-

line filter:

1. Rao-Blackwellize the position portions of the state vectors of all vehicles to allow non-

Gaussian distributions.

2. Couple location estimation with the map as a hard position constraint by assigning

zero probability to any position that is not on the mapped roadway.

3. Enable cooperative localization using high-accuracy estimates of the relative position

vectors (RPVs) between adjacent vehicles in the update step. These RPVs are gen-

erated with dynamic base real time kinematic (DRTK) GPS, which is discussed in

Section 5.5.

The baseline filter commonly experiences position errors between 1 and 2 meters, as

shown in Chapter 6. For roads with lane widths as small as 2.7 meters [4], this means that it

is not sufficiently accurate to for lane determination. Figure 1.1 below depicts this position

uncertainty as a red ellipse, spanning lane boundaries. The application of steps 1 and 2

above are intended to reduce position error in the direction perpendicular to the roadway,

as show below in Figure 1.2. And lastly, use of high-accuracy DRTK relative positioning

in Step 3 above, is expected to further reduce errors so that they are consistently below 1

meter, accurate enough for lane determination. This final step is shown in Figure 1.3 below.

These hypotheses are tested and proven to be accurate in this thesis.

MACIN combines several subfields within the localization and navigation discipline.

This thesis is divided into several chapters, all focusing on a particular subfield. Each begins

3



Figure 1.1: Typical position errors for the baseline filter, shown as red ellipses, reach well
over standard lane widths.

Figure 1.2: Application of map constraints will reduce position error lateral to the roadway.

with existing research for the relevant field, explaining approaches at a general level and

giving greater detail where relevant. They then conclude with the specific strategy employed

by MACIN, such that readers may replicate results on their own. Chapter 2 reviews the

basics of inertial sensors, and gives the IMU error model used herein. Chapter 3 reviews

estimation strategies for inertial navigation and presents MACIN’s filtering approach, known

as a Rao-Blackwellized Particle Filter (RBPF). Chapter 4 reviews existing approaches for

leveraging map information for navigation, and gives the MACIN approach for using sparse

maps as probabilistic constraints. Chapter 5 reviews approaches for multi-vehicle cooperative

navigation, and shows how differential GPS is used to this end in MACIN. Chapter 6 presents

the core work of this thesis as a unified algorithm, with pseudocode that will allow the reader

to implement MACIN and replicate the results presented later in Appendix A. This chapter
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Figure 1.3: Use of DRTK as a final improvement will constrain MACIN’s position errors
such that they are consistently less than 1 meter.

also covers the implementation of MACIN in a software package and examines real-world

data collection scenarios which prove the effectiveness of MACIN. Chapter 7 summarizes

the work and empirical findings, and it also gives future extensions. Appendix A contains

tabulated data from field testing described in Chapter 6.
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Chapter 2

Inertial Measurement Units

Inertial measurement units are perhaps the most common navigation sensor for most

ground vehicles. The most common general purpose configuration comprises 6 indivual

sensors: 3 accelerometers mounted in orthogonal Cartesian axes, and 3 gyroscopes that are

mounted in axes coincident with the aforementioned accelerometers. This allows full 6 degree

of freedom (DoF) pose estimation. The term “pose” refers to both position and orientation.

Six DoF refers to the ability to observe both position and orientation in all 3 Cartesian axes.

In order to do this, the IMU measurements must be integrated over time, and a method for

doing this is detailed in Section 3.5.2.

Other configurations include sensors in extra axes to over-observe pose [5], or possibly

fewer sensors. A configuration common in automotive applications is to include 1 accelerom-

eter in the vehicle’s longitudinal axis and 1 gyroscope in the vehicle’s vertical axis. A sec-

ondary accelerometer parallel to the vehicle’s lateral axis is sometimes used as well. Using

this reduced sensor set along with a dimensionally reduced vehicle model is one of several

popular definitions of the phrase “dead reckoning”. Another, more broad, usage of the term

refers to any strategy that uses mathematical integration over time to compute pose without

absolute correction.

An IMU typically provides measurements in one of two ways: continuous and discrete.

Discrete sensor measurements report a change from one epoch to the next in the first integral

of the quantity that they truly measure with respect to time. That is, discrete accelerometers

report change in velocity and discrete gyroscopes report change in attitude. Han et al. [6]

examines characterization of errors in discrete IMUs, as the process differs from that of

continuous sensors. Discrete measurement sensors have the drawback of requiring that no
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measurements be missed. Continuous sensors report the value that they are measuring

directly. Thus the sampling rate is extremely flexible, and may even be varied while running,

if needed, to accommodate changing system dynamics or computational concerns. This thesis

will focus on continuous sampling sensors, and all formulation is done in the continuous time

domain.

2.1 Error Models

All inertial sensors have errors, and time integration causes their effect to be exponen-

tially magnified. The fundamental problem of inertial navigation is to infer these IMU errors

and remove them such that the resultant errors in position, velocity, and attitude are as low

as possible. A detailed analysis of error growth over time in position, velocity, and attitude

is provided in [7].

The error sources for inertial sensors are well investigated in the literature. In order to

infer their contribution to the sensor’s output at any instant in time, they must be modeled.

When selecting a model to use, the necessary complexity is dependent upon the required

accuracy and quality of the sensor. In general, the most commonly modeled sources of error

which are present in both gyroscope and accelerometer measurements are:

• Additive noise: ην .

• Markovian walking bias: b

• Output scaling: k

• Constant (turn on) bias: c

• Sensor misalignment: m

7



2.1.1 Additive Noise

Additive noise is typically modeled as having zero mean with a Gaussian probability

density function (PDF): ην ∼ N (0, σν), where σν is the standard deviation. The simplest and

least accurate model includes only this term, where measurement errors are then formulated

as:

ω̃BB/I = ωBB/I + ηg,ν (2.1a)

ãBB/I = aBB/I + ηa,ν (2.1b)

The measurements received from the IMU are ω̃BB/I , ã
B
B/I denoting that they represent the

angular velocity and linear acceleration, respectively, of the IMU body (B) relative to the

inertial frame (I), and are expressed in the IMU body frame. They are functions of the true

values, ωBB/I and aBB/I . Note that the portion of the acceleration measurement attributable

to gravity is not separated from true acceleration here, but is dealt with later on during

estimation (3.60). For strapdown sensors (most typical), each axis represents a measurement

from a separate piece of hardware, so the covariance matrix is diagonal to show that the

errors are not correlated across axes:

E[ηg,νη
T
g,ν ] = σ2

g,νI3x3 (2.2a)

E[ηa,νη
T
a,ν ] = σ2

a,νI3x3 (2.2b)

2.1.2 Markov Bias

The error model used by Groves [8] also includes a first order Markovian bias:

ω̃BB/I = ωBB/I + bg + ηg,ν (2.3a)

ãBB/I = aBB/I + ba + ηa,ν (2.3b)
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The Markov process has a time evolution with its own white noise process:

ḃg =
−1

τg
bg + ηg,u (2.4a)

ḃa =
−1

τa
ba + ηa,u (2.4b)

ηg,u ∼ N (0, σg,u) (2.4c)

ηa,u ∼ N (0, σa,u) (2.4d)

The vectors ηg,u and ηa,u are additive zero-mean Gaussian noise processes as well, which

are assumed to have no correlation. As such, they are characterized by diagonal covariance

matrices as shown in Equations (2.5):

E[ηg,uη
T
g,u] = σ2

g,uI3x3 (2.5a)

E[ηa,uη
T
a,u] = σ2

a,uI3x3 (2.5b)

The rows of the column vectors bg , ba correspond to axes of the IMU. Some choose to

ignore the terms containing the time constants τg and τa, despite the ease with which they

may be characterized (as discussed in Section 2.2). The bias then becomes a random walk

process instead of a Markov process.

Once the sensor’s time constant is identified, one must give special attention to how it

will affect estimator behavior during aiding sensor outages when the bias cannot be directly

inferred. A small time constant will cause the bias estimate to converge to zero as time

approaches infinity in open loop operation. Neglecting the time constant (removing the

term) or using a model with a large value will result in bias estimates that are static or very

slow moving during outages of aiding information. Regardless of sensor grade, a properly

characterized time constant will produce behavior that is closest to optimal.
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2.1.3 Scaling

The error model used by Crassidis [9] builds on this by including output scaling on the

measurements:

ω̃BB/I = (I3x3 +Kg) ω
B
B/I + bg + ηg,ν (2.6a)

ãBB/I = (I3x3 +Ka) aBB/I + ba + ηa,ν (2.6b)

The scaling factor matrices are simply a reshaping of the respective vectors, where Kg =

kgI3x3 , Ka = kaI3x3 and the rows of the columns vectors kg , ka correspond to axes

of the IMU. Output scaling errors are most typically the result of the sensor’s operating

temperature. The effects of temperature are primarily mechanical in nature, due to expansion

or contraction of the sensor body or housing. Most IMUs are calibrated such that output

error is minimized at an operating point around 25C. Modelling output scaling is beneficial

for automotive applications where the IMU is mounted near a vehicle’s engine, transmission,

or some other hot environment. Flenniken [10, 11] performs an in-depth analysis of the

contribution scaling has to overall errors.

2.1.4 Constant Error

Many IMUs have a constant offset in each measurement, sometimes referred to as “turn-

on bias”. The authors of [7,10,12] include this in their formulations. The measurement model

when including this bias becomes:

ω̃BB/I = (I3x3 +Kg) ω
B
B/I + bg + cg + ηg,ν (2.7a)

ãBB/I = (I3x3 +Ka) aBB/I + ba + ca + ηa,ν (2.7b)

Extra care must be given when modeling uncertainty of the turn-on bias. If noise is

added to the constant term, it becomes a random walk process. [13] The Markov bias term
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also begins to approach the behavior of a random walk process as its time constant grows

very large, so these two must be considered together.

2.1.5 Misalignment

Lastly, a strapdown IMU typically attempts to mount each of the three accelerometers

and gyroscopes orthogonally, such that they are rotated 90 degrees from one another. Me-

chanical shortcomings may cause mismounting (non-orthogonality) errors to become non-

negligible. When this is the case the raw readings must be rotated, so the measurement

equation becomes:

ω̃BB/I = (I3x3 +Kg +Mg) ω
B
B/I + bg + cg + ηg,ν (2.8a)

ãBB/I = (I3x3 +Ka +Ma) aBB/I + ba + ca + ηa,ν (2.8b)

M =


0 mxy mxz

myx 0 myz

mzx mzy 0

 (2.8c)

The value I + K + M is a complete rotation matrix, but it is not a direction cosine ma-

trix (DCM). A DCM maintains orthogonality as a special case, wheras the purpose of this

quantity is to rotate the individual axes relative to one another. The diagonals of this ma-

trix correspond to the alignment of each axis relative to its “ideal” orientation, while the

addition of off-diagonals in the misalignment matrix M allows the skew of each axis relative

to the others the be represented and corrected. Many authors will analytically compute

the values of each scalar m trigonometrically, so that a more intuitive Euler representation

can be used [14, 15]. However, this step is unnecessary and can be omitted for simplicity

with the values of M estimated directly. Since misalignment refers to a permanent hardware

configuration, it need only be estimated once, and can thereafter be treated as constant.
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Special care must be given to ensure the misalignment is observable in a given system, which

is why it is omitted from the MACIN prototype.

2.1.6 Other Error Sources

The above sections outlined the most commonly modeled error sources. As one pursues

higher and higher accuracy, modeling and removing errors sources becomes progressively

more difficult. Some of these include nonlinearity, g-Sensitivity, coning and sculling, and

thermal stress.

Increasingly, the pursuit for lower drift will require the navigation engineer to consider

the physics behind each gyroscope and accelerometer. Furthermore, the mounting of the IMU

unit will likely contribute unit-specific errors, particularly in the absence of shock mounting

or vibration dampening. For instance, any aiding sensors whose mounting pose relative to

the coordinate frame of the IMU likely undergoes stresses which violate the fixed extrinsic

assumption. Calibration of these smaller values is outside the scope of this thesis and left to

future research.

2.2 Error Source Characterization

This thesis will utilize the error model of Equations (2.6). Determining the statistical

properties of the error sources is a relatively straightforward matter and is referred to as

“intrinsic calibration”. Specifically, Allan deviation and autocorrelation analyses are used

to estimate the variance of white noise processes (ηg,ν , ηa,ν , ηg,u, ηa,u) and the Markov time

constants (τg, τa). This thesis follows the strategies laid forth by [10, 16], which are briefly

summarized here.

To characterize the sensor both the gyroscope and the accelerometer each have three

quantities that must be estimated, all [3x1] vectors:

1. The standard deviation of white measurement noise, σν
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2. The standard deviation of the Markov bias noise, σu

3. The Markov time constant, τ

This makes for a total of 12 scalar values, individually enumerated later in Equation (3.54).

A long static data set is collected, during which time the sensor is not moving. A

recommendation commonly found throughout literature is that 2 hours is a minimum length

of time required. For this thesis, a 2 hour data set and a 36 hour data set were used, the

shorter for algorithm development and the longer for characterization.

After data recording is finished, the Allan deviation and autocorrelation of those sensor

measurements is then computed. The Allan deviation value at the time window point ∆t =

1.0 is then σν . The time and value at which the autocorrelation function decays to a fraction

1/e of its original value then corresponds to τ and σu, respectively. Flenniken describes this

procedure in greater detail in the appendices of [10].

In areas where earthquakes are common, one should ensure that no seismic events

occur during this recording, lest they introduce error into the data. The United States

Geological Survey catalogs known seismic events and they can be readily searched for this

purpose [17]. Other common sources of contamination from unexpected movement include

passing vehicles, construction, and human foot traffic. Furthermore, one must be sure that

the sensor reaches a steady state temperature very close to its operating environment so that

nominal temperature effects will be characterized. The best way to do this is to power on

sensor and leave it running for several hours prior to recording data, to allow internal heat

generation effects to reach equilibrium. Leaving the sensor in its target vehicle mounting

configuration, if possible, will allow the data recording temperature to be the same as the

operating temperature.
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Chapter 3

Estimation Strategies for Inertial Navigation

The IMU is a relative navigation sensor, rather than an absolute navigation sensor,

meaning that the measurements cannot provide pose in a global earth frame. Rather, stan-

dalone IMUs can only provide change in pose over time with respect to an initial pose. In

order to use inertial readings to navigate in a global frame, an absolute positioning sensor

or algorithm is required. This chapter will present strategies for general fusion of IMU data

with absolute positioning data, disregarding the positioning data source. Following that,

Section 3.5 will discuss the specific sensing solution used for the remainder of the work.

3.1 System Modeling

In light of the errors described in Section 2.1, some strategy must be employed to

discern the true values underlying the raw measurements. For a model that includes only

additive noise, a least squares approach may be used in some cases, but its usefulness is very

limited. More complex models necessitate online calibration to estimate and remove error

sources. Here, “online” means that the error terms are estimated concurrently with the pose

in real time. Specifically, there is some vector of states xk which should be estimated at

a given time epoch k using information from sensor measurements at the same epoch yk.

Given the basic goal of navigation, one must assume that the three-dimensional quantities

position, orientation, and velocity will comprise some subset of variables within the state.

Additionally, the state vector evolves over time according to its own value as well as some

system input uk and some input (process) noise ηk. This is part of the time evolution model

f . The measurement at the same time yk is assumed to be a function of the state as well as
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some other noise source ε:

ẋ = f (x,u, η) (3.1)

y = h (x, ε) (3.2)

Bayesian techniques are commonly used to estimate the state xk as a function of mea-

surements y0:k. They fundamentally rely upon Bayes’ rule:

p(xk|y0:k) =
p(yk|xk) p(xk|y0:k−1)

p(yk|y0:k−1)
(3.3)

The function p(xk|y0:k) is referred to as the “posterior”, and is the PDF of the state after the

latest measurement has been assimilated. This is the function that must be estimated. It

also accounts for all previous measurements y0:k by the very nature of recursive estimation.

The function p(xk|y0:k−1) is referred to as the “prior” and is the state PDF after propagation

using the model f and PDF of process noise ηk. The prior does not consider the latest mea-

surement yk. The function p(yk|xk) is referred to as the “proposal” distribution and is the

expected distribution of the measurement based only on the prior distribution. The proposal

is calculable using the measurement model h and knowledge of the PDF of measurement

noise εk. The denominator simply comprises a normalizing function since the analytical sum

of any PDF must be equal to 1:

p(yk|y0:k−1) =

∫
p(yk|xk) p(xk|y0:k−1) dxk (3.4)

Further discussion of Bayes’ rule can be found in [18].

3.2 Extended Kalman Filter

The basic Kalman filter (KF) assumes that the system f is linear time-invariant (LTI),

an assumption which is rarely valid or applicable in real-world scenarios. As such, the EKF is
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often used instead, since it accounts for nonlinear time-varying systems. An excellent intro-

duction to both the KF and EKF is provided by [19], which is summarized here. The EKF

simplifies recursive estimation of the posterior using Bayes’ rule by making four assumptions:

1. The process and measurement noises are normally distributed: ηk ∼ N (0, Q(tk))

2. The process and measurement noises are independent of one another.

3. Neither the process noise nor measurement noise is serially correlated (i.e., unrelated

to themselves over time).

4. The posterior distribution is Gaussian, and thus the prior is Gaussian as well.

Thus, the system estimate PDF can be completely defined by its first and second moments:

a mean state x and state covariance P . The process and measurement noises can be char-

acterized by covariance matrices:

ηk ∼ N (0, Qk) (3.5)

εk ∼ N (0, Rk) (3.6)

The core mechanism of this is defining a way to linearize the system at any point:

ẋ = Ax +Buu +Bηη (3.7)

y = Hx + ε (3.8)

A =
∂f

∂x
(3.9)

Bu =
∂f

∂u
(3.10)

Bη =
∂f

∂η
(3.11)

H =
∂h

∂x
(3.12)

Ṗ = AP + PAT +BηQB
T
η (3.13)
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Here, A is often referred to as the dynamic matrix, and describes how the system evolves

as a function of itself. Bu is the input sensitivity matrix and desribes the effect of the input

vector u on the state. Bη is the noise sensitivity matrix and desribes the effect of the process

noise vector η on the state. H is the measurement sensitivity matrix and describes how

the state and measurement vector are related to one another. The time derivative of the

state covariance matrix Ṗ has an evolution that is described above using the matrix Ricatti

equation.

In practice, the EKF is operated at discrete time epochs. There are two approaches

to formulating the EKF in order to account for this: deriving the system in the continuous

domain then discretizing it, and formulating the system in the discrete domain from the

start. Formulating in the continuous domain is sometimes more intuitive for the designer,

and allows easily implementing the system with filters other than the EKF, since most filters

make use of a formulation of the continuous time derivative vector f at some point.

The system’s time evolution from epoch tk−1 to epoch tk can be discretized so that the

system formulation becomes:

x−k = Φk−1x
+
k−1 +Bu,k−1uk−1 (3.14)

P−k = Φk−1P
+
k−1ΦT

k−1 +Qd,k−1 (3.15)

where the Φ and Qd matrices are derived at every epoch from the system dynamic Jacobians

using the following step from [9] as shown in Equations 3.19:
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J∗ =

 −A BηQB
T
η

0 AT

 (3.16)

J = eJ
∗∆t =

J11 J12

0 J22

 (3.17)

Φ = JT22 (3.18)

Qd = ΦJ12 (3.19)

Formulating in the discrete domain requires calculating Φ directly, and circumvents the

need for the potentially costly discretization at every estimation epoch. On the other hand,

it disallows some measure of extensibility to other filters, since Φ is rarely used outside of

EKF applications. Since this thesis compares two approaches, and Φ isn’t applicable to both

of them, a continuous formulation is used.

The measurement sensitivity matrix H does not require discretization, so the Kalman

update step is simply:

Sk = HkPkH
T
k +Rk (3.20)

Kk = PkH
T
k S
−1
k (3.21)

x+
k = x−k +KKzk (3.22)

zk = yk −Hkx
−
k (3.23)

P+
k = P−k −KkHkPk (3.24)

where z is the measurement innovation, K is the Kalman gain matrix, and S is the innovation

covariance.

For highly nonlinear systems, or systems whose dynamics are much faster than the EKF

update rate, using the nonlinear equations wherever possible will yield better results. The
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prior is obtained by directly integrating the dynamic model and the matrix Ricatti equation

x−k+1 =

∫ tk+1

tk

f
(
x+
k ,uk, η = 0

)
dt (3.25)

P−k+1 =

∫ tk+1

tk

[
AkP

+
k + P+

k A
T
k +Bη,kQkB

T
η,k

]
dt (3.26)

Numerically, Euler integration may be sufficient for the state propagation. However, as

detailed in [20], this will not preserve positive definiteness when integrating Ṗ . Using mid-

point integration, as presented by [21], presents a good compromise between accuracy and

numerical efficiency. This approach is referred to as Taylor-Heun integration for the state

derivative f , and Gauss-Legendre integration for the state covariance derivative. Note that

the introduction of a new matrix inverse necessitates useage of a matrix decomposition in

order to prevent compute times from increasing unnecessarily, particularly for large state

dimensions.

3.3 Particle Filter

The EKF makes several assumptions about the target system to allow “approximately”

optimal state estimation to be performed by linearizing the system dynamics at every epoch

in time to compute a single solution for that epoch. In practice, these assumptions are not

often completely met. There is another class of Bayesian filters that circumvent the highly

restrictive assumptions of the Kalman filter by multiple hypothesis testing. These filters

determine the PDF of the state by sampling it at various places to approximate the shape

and characteristics of the state’s PDF, rather than creating a mathematical formulation of the

PDF and characterizing it by its moments. These sample points are variously referred to as

“sigma points” or “particles”, depending upon the filter in which they are used. Determining

how to sample the PDF is one of the key distinguishing features between these filters. Popular

multiple hypothesis methods include the unscented Kalman filter (UKF), ensemble Kalman

filter (EnKF), filter banks, and particle filter (PF).
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The UKF provides better calculation of the state error covariance P by deterministically

creating a state-dependent number of sigma points and calculating the covariance of this

minimally sufficent set. This prevents having to freely integrate the derivative Ṗ from the

Riccati equation and has been shown to be more accurate while retaining computational

efficiency in many implementations. For more on the UKF, see [22].

The EnKF is typically used in data assimilation problems where state and/or mea-

surement vectors are extremely large and highly nonlinear, such as climatology. The key

advantage is that an EnKF requires fewer samples relative to the number of estimated state

variables than other filters. It samples the state PDF stochastically, propagating each mem-

ber of the ensemble in time, but performs measurement updates in a batch. Unlike the UKF,

the EnKF does not track the state mean and covariance estimates, as it is unnecessary. As

such when mean and covariance information are desired, they must be computed as an ex-

tra step, but in general the EnKF is often more computationally efficient than the UKF as

state vector lengths increase. Additional resources for implementing EnKFs may be found

in [23–25].

Kalman filter banks seem similar to the EnKF on a superficial level, but perform separate

measurement updates on all particles, treating each sample of the PDF as a completely

separate filter. This works because they are typically used to estimate discrete states (one

possible state per filter) or estimate the likelihood of different dynamic models (one model

per filter). Each entry still gets a separate propagation and measurement update using

the same data, but what differentiates them is the model [26]. The filter bank approach

is not limited only to Kalman or pure-Kalman techniques. The Rao-Blackwellized Particle

Filter (RBPF), which is discussed next in Section 3.4, can be used in a bank approach [27].

Estimating discrete states and maintaining multiple concurrent models is highly relevant to

map matching, and will be covered in detail in Chapter 4.
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The particle filter (PF) can be considered the most “pure” form of multiple hypothesis

Bayesian estimation, as no restrictions are placed on the state or measurement PDFs. Aru-

lampalam [18] is most heavily cited in the literature as an excellent introduction to particle

filtering. The PF relies on random sampling to add noise to each particle, which is a full state

vector on its own. It is then assumed that as the number of particles approaches infinity, the

accuracy of randomly sampling the noise PDF will approach 100%. As such, this is referred

to as a “Monte-Carlo” method. In order to produce a single “answer” from a PF at time tk,

one must combine all the particles by averaging them with a different weight wi assigned to

each particle i according to the proposal distribution.

xk =

Np∑
i=1

wi,kxi,k (3.27)

wi,k = wi,k−1 p(yk|xi,k) p(xi,k|xi,k−1) (3.28)

Here, Np is the number of particles used. Afterward, a normalization step is required to

ensure the particle weights sum to 1.0:

wi,k =
wi,k∑Np

i=1wi,k
(3.29)

Updating the particle weights (not the estimate) forms the measurement update step, and

computing x afterward is how a posterior estimate is produced.

As time goes on, repeatedly adding noise to all of the particles will cause the vast

majority of them to be nowhere near the solution. This is referred to as the degeneracy

problem, and can be quantified by computing the number of effective particles Neff as a

function of the number of actual particles and their respective weights:

Neff =
1∑Np

i=1w
2
i

(3.30)
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The procedure for mitigating degeneracy is known as “resampling”, wherein particles

with low weight are replaced with copies of particles that have higher weight. The copies

subsequently diverge from one another after having sampled noise added. This ensures

that the effective number of particles stays high, and only needs to be performed when the

ratio Neff/Np drops below a certain value which is generally system-specific. There are

several different variations of resampling, and Douc [28] does a good job of comparing the

more common methods. This thesis employs the most common algorithm as used by [18],

“systematic resampling”, which is given below in Algorithm 1. Figure 3.1 graphically depicts

how systematic resampling selects which particles are to be removed and which particles are

to be cloned using a scenario where the proposal and prior distributions are significantly

exaggerated.

Algorithm 1 Systematic Resampling from Arulampalam [18].

1: c1 ← 0 . Initialize CDF
2: for i ∈ 2, ..., Np do . Construct CDF
3: ci ← ci−1 + wi

4: i← 1
5: u1 ← U [0, N−1

p ] . Pick random start point
6: for j ∈ 1, ..., Np do
7: uj ← u1 + (j − 1)/Ns

8: while uj > ci do
9: i = i+ 1

10: xj ← xi . Resample particle i
11: wj ← N−1

p . Reset weight

3.4 Rao-Blackwellized Particle Filter

The principle drawback of particle filtering is that the requisite number of particles to

estimate a given state vector may cause the filter to be prohibitively slow when implemented

on a real world computing system. Often-repeated conventional wisdom in the estimation

fields is that one should use 10N particles, where N is the state dimension 1. Larger state

1This research was unable to locate the originating source of the hypothesis that 10Np is the ideal number
of particles. It is used without explanation or citation in many publications. [29]
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Figure 3.1: Example of systematic resampling, with exaggerated model differences

vectors require higher numbers of particles and using too few will result in performance

degradation or divergence. As such, reducing state vector size is of critical importance

for computational practicality. A more detailed investigation of the number of particles

required to meet various performance goals is found in [30], which sets forth an approach for

dynamically varying the number of particles used. Kotecha et al. [31] examines the effect of

the number of particles used on performance.

The Rao-Blackwellized (or marginalized) particle filter addresses this issue by operating

on the premise that only a subset of the state vector needs to be estimated with multiple

hypothesis techniques. The remaining state variables, then, can be estimated using a typ-

ical extended Kalman filter. This thesis follows the notation and formulation set forth by

Gustafsson [32], Schon [33], and Ryan [12].

The state vector xk is divided into a linear (Kalman) partition xlk and a nonlinear

(particle) partition xnk :

xk =

xlk
xnk

 (3.31)
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The transient dynamics of the system in the general case are:

xlk+1 = f lk(x
n
k) + Al(xnk)xlk +Gl(xnk)ηlk (3.32)

xnk+1 = fnk (xnk) + An(xnk)xlk +Gn(xnk)ηnk (3.33)

It is worth noting that several terms can often be neglected, and the trade-offs of doing

so are examined in [33]. The system is formulated in the discrete domain, so choices of

discretization and numerical integration strategies are very important. The process noise is

assumed to be zero mean Gaussian, just as in typical Kalman filtering:

ηk =

ηlk
ηnk

 ∼ N (0, Qk) (3.34)

The covariance matrix associated with the process noise is partitioned similarly to the state

vector:

Qk =

 Ql
k Qln

k

(Qln
k )T Qn

k

 (3.35)

The process noises for each partition are then

ηlk ∼ N (0, Ql
k) (3.36)

ηnk ∼ N (0, Qn
k) (3.37)

The cross-covariance matrix Qln
k relates the process noises on the linear and nonlinear par-

titions. The resulting measurement model is:

yk+1 = hk+1(xnk+1) + Ck(x
n
k+1)xlk+1 + εk+1 (3.38)

εk+1 ∼ N (0, Rk+1) (3.39)
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Additive measurement noise εk+1 is assumed zero mean Gaussian just as in typical Kalman

formulations.

The time update occurs in two steps, one for each partition. First, the particle states are

updated using Equation (3.33), then the linear portion of the particle states is subtracted:

zk = xnk+1 − fnk (3.40)

The state dynamics of each partition are affected by the cross-covariance between the process

noise on each partition. This is first accounted for by computing a new linear state dynamic

matrix and linear process noise covariance matrix:

Ālk = Alk −Gl
k

(
Qln
k

)T
(Gn

kQ
n
k)−1Ank (3.41)

Q̄l
k = Ql

k −
(
Qln
k

)T
(Qn

k)−1Qln
k (3.42)

It is worth noting that in cases where the process noise vectors affecting the two partitions

are uncorrelated, Qln = 0. As such, Ālk = Alk and Q̄l
k = Ql

k will be true in this case.

Following this, a modified Kalman time update is performed. The equivalent particle

state error covariance matrix is propagated forward, and a quantity similar to the typical

Kalman measurement gain is computed:

Nk = AnkPk (Ank)T +Gn
kQ

n
k (Gn

k)T (3.43)

Lk = ĀlkPk (Ank)T N−1
k (3.44)

The difference here is that discrepancies arising from interdependence within the nonlinear

and linear states must be weighted, rather than a measurement and a prior state. The linear

state and its error covariance estimate can now be propagated forward. Just as the Kalman

gain is multiplied by the measurement innovation in the EKF, here the gain L must be
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multiplied by a “propagation innovation” of sorts, zk − Ankxlk

xlk+1 = Ālkx
l
k +Gl

k

(
Qln
k

)T
(Gn

kQ
n
k)−1 zk + f lk + Lk

(
zk − Ankxlk

)
(3.45)

Pk+1 = ĀlkPk
(
Ālk
)T
Gl
kQ̄

l
k

(
Gl
k

)T − LkNkL
T
k (3.46)

After propagation, a measurement update is performed when one is available. This

follows the same order as the time update step (i.e., particle partition first, then the Kalman

partition). The particle weights are updated by evaluating the proposal density function at

the every point in Nn space that is represented by a particle. More precisely, every particle

xn,(i) is assigned a weight wi. Since the totality of particles is expected to represent its entire

probability space, the weights must necessarily sum to one. As such, a normalization step

must be performed:

wi =
wi∑Np

i=1wi
(3.47)

The measurement update for the linear partition is again very similar to EKF operation,

with the exception that there is now an extra quantity hk+1 in the measurement innovation:

Mk+1 = Ck+1Pk+1|kC
T
k+1 +Rk+1 (3.48)

Kk+1 = Pk+1|kC
T
k+1M

−1
k+1 (3.49)

xlk+1|k+1 = xlk+1|k +Kk+1

(
yk+1 − hk+1 − Ck+1x

l
k+1|k

)
(3.50)

Pk+1|k+1 = Pk+1|k −Kk+1Mk+1K
T
k+1 (3.51)

Here, Mk+1 is the innovation covariance and Kk+1 is the Kalman gain. The value hk+1

accounts for particle partition contributions to the measurement innovation, since it is a

function purely of the particle state, as shown in Equation (3.38). The measurement and
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prior nonlinear particle state vectors are assumed to have PDFs described below:

p (yk+1|X0:k, Y0:k+1) = N
(
hk+1 + Ck+1x

l
k+1|k , Mk+1

)
(3.52)

p
(
xnk+1|X0:k, Y0:k

)
= N

(
fnk|k + Ankx

n
k|k , Nk

)
(3.53)

3.5 GNSS/INS Coupling

GNSS is commonly used to augment an IMU, as their error behaviors are highly com-

plementary. IMUs are extremely robust to operating environments, and have low drift over

short time periods. However, the pose solution from an IMU alone will diverge over long

time periods. On the other hand, GNSS receivers are very stable over long time periods,

but are vulnerable to environmental factors like multipath and satellite occlusions that may

cause large “jumps” in the position solution from one epoch to the next. As such, coupling

the two sensors together yields excellent benefits. While many other sensing solutions exist

for the land vehicle navigation problem, this thesis focuses exclusively on GNSS/INS fusion.

Coupling strategies for GNSS/INS are covered here in the following section.

3.5.1 Overview of Existing Strategies

Loose coupling is the simplest form of GNSS/INS integration, whereby the position

and velocity solutions computed by the receiver are used directly as measurement updates,

typically in an EKF. The IMU is used as the time update. The loosely coupled formulation

is generally considered to be one of the integration strategies with the lowest fidelity, as

it naively breaks the Kalman filter assumptions. Namely, the measurements are serially

correlated since they come from the receiver’s internal filter and contain errors other than

additive white noise. As such, coupling strategies of increasing complexity generally provide

greater levels of accuracy, precision, and resilience to environmental errors. Nomenclatures

for these more complex coupling strategies often varies between authors.
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A close coupling still keeps the two sensors relatively separate, with the IMU driving

the time update and the GNSS receiver driving the measurement update. The on-board

solution from the GNSS receiver is ignored in favor of using its raw measurements to aid the

INS. Tight coupling strategies go a step further and use kinematic motion estimates from the

INS to aid the GNSS tracking loops. This is the point at which difference between various

GNSS constellations begin to have a significant impact on algorithmic structure. A more

detailed overview of various coupling strategies is provided by [34].

3.5.2 Loosely Coupled GNSS/INS Formulation

Reasoning

This section lays out the the most basic possible navigation filter with GNSS/INS cou-

pling, in order to establish a baseline for improvement attributable to MACIN. It will here-

after be referred to as the “baseline filter”. Later, this section will discuss cooperative

localization with multiple vehicles. GNSS/INS with multiple vehicles is treated here as an

extension of the single vehicle case, and as such this section will lay out the formulation for

a single vehicle with one IMU and one GNSS receiver/antenna.

The following is an itemized list of key design choices, with the reasoning for each:

• A loosely coupled GNSS/INS integration scheme is chosen, as it is the simplest and

most easily realizable formulation (one which can be improved upon later with higher

levels of integration).

• The GPS constellation is used exclusively for GNSS data in order to further limit

confounding factors.

• An EKF is used as it is generally regarded as the standard against which potential

improvements must be measured.

• The direct (or “total state”) estimation strategy is used instead of a typical indirect

(“error state”) filtering strategy. The drawback of this is that linearization is performed
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about larger, more nonlinear, and faster varying quantities. However, the direct ap-

proach is simpler to understand and implement, and it also provides a cleaner view of

the contribution provided by MACIN.

Formulation

The notation here most closely follows the work of Groves and Crassidis [8, 9], except

that an EKF is used to compute direct estimates of the state described in Eq (3.54) with no

error forumlation. The state to be estimated is composed of:

• qB/E = [qw, qx, qy, qz]
T , A quaternion describing a rotation from the ECEF frame into

the body frame. The IMU sensor frame is assumed to be coincident with the vehicle

body frame.

• rEB/E = [rx, ry, rz]
T , The 3D position vector from the ECEF frame origin to the body

frame origin, expressed in the ECEF frame.

• vEB/E = [vx, vy, vz]
T , The 3D vector describing the velocity of the body frame relative

to the ECEF frame, expressed in the ECEF frame.

• bg = [bg,x, bg,y, bg,z]
T , The gyroscope bias vector modeled as a first order Markov process

(see Equations (2.4)). This is expressed in the body (IMU) frame.

• ba = [ba,x, ba,y, ba,z]
T , The accelerometer bias vector modeled as a first order Markov

process (see Equations (2.4)). This is expressed in the body (IMU) frame.

• kg = [kg,x, kg,y, kg,z]
T , The gyroscope scale factor vector (see Equation (2.6a)). This is

expressed in the body (IMU) frame.

• ka = [ka,x, ka,y, ka,z]
T , The accelerometer scale factor vector (see Equation (2.6b)). This

is expressed in the body (IMU) frame.
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These variables are then assembled in the state vector in the following order:

x =
[
(qB/E)T , (rEB/E)T , (vEB/E)T , (bg)T , (ba)T , (kg)T , (ka)T

]T
(3.54)

Since the state vector contains a quaternion, the first four elements must be normalized

after each propagation and update step. Furthermore, the orientation of the IMU relative

to the ECEF frame is estimated. When the target IMU frame is aligned with the frame of

the host platform, no further transformations are needed to compute the vehicle position,

velocity, and attitude (PVA). In this case, that means placing the IMU at the coordinate

frame origin of the sprung mass (often either the center of mass or halfway between the

rear wheels) and aligning its x, y, and z axes with the vehicle forward, left, and down axes

respectively. This is common practice in automotive applications because it reduces the

complexity of both the measurement and propagation models.

The vector of process noises contains four [3x1] sub-vectors mentioned previously in

Chapter 2:

η =
[
(ηg,ν)

T , (ηa,ν)
T , (ηg,u)

T , (ηa,u)
T
]T

(3.55)

The process noise covariance matrix is then:

Q =



σ2
g,ν 0 0 0

0 σ2
a,ν 0 0

0 0 σ2
g,u 0

0 0 0 σ2
a,u


(3.56)

The direction cosine matrix (“DCM” or “rotation matrix”) CB/E describes a three

dimensional rotation from the ECEF frame to the Body frame of the IMU (or, equivalently,

the attitude of the body relative to the earth). It can be calculated using the attitude
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quaterion qB/E as follows:

CB/E =


q2
w + q2

x − q2
y − q2

z 2(qxqy + qzqw) 2(qxqz − qyqw)

2(qxqy − qzqw) q2
w − q2

x + q2
y − q2

z 2(qyqz + qxqw)

2(qxqz + qyqw) 2(qyqz − qxqw) q2
w − q2

x − q2
y + q2

z

 (3.57)

The accelerometer measurements, corrected according to Equation (2.6b), are rotated into

the ECEF frame:

aEB/I = CE/Ba
B
B/I (3.58)

This DCM can also then be used to rotate the earth’s angular velocity vector into the body

frame. That is used to determine the angular velocity of the body relative to ECEF from

the corrected gyroscope measurement from Equation (2.6a):

ωBB/E = ωBB/I − CB/EωEE/I (3.59)

The first time derivative of the hidden Markov state can then be calculated so that the

propagation model is defined as:

ẋ =



q̇B/E

ṙEB/E

v̇EB/E

ḃg

ḃa

k̇g

k̇a



=



1
2
Ξ(ωB

B/E)qB/E

vEB/E

aEB/I + gEB − 2ΩE
E/Iv

E
B/E

−1
τg
bg

−1
τa
ba

0

0



(3.60)

The skew symmetric matrix representing the angular velocity vector of the earth in ECEF

frame is a function of the rotation magnitude of earth with respect to the inertial frame
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ωE/I = 7.292115 e−5 rad/s, and is described by:

ΩE
E/I =


0 −ωE/I 0

ωE/I 0 0

0 0 0

 (3.61)

The mechanization matrix Ξ(w) for relating the time derivative of the quaternion to Carte-

sian angular velocity ω is:

Ξ =



0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0


(3.62)

The acceleration on the IMU due to gravity gEB is expressed in ECEF as:

gEB = γEB/I + ω2
E/II3x3

[
1
1
0

]
rEB/E (3.63)

γEB/I = − µ
r3

(
rEB/E + J2

3R2
0

2r2

(
I3x3

[
1
1
3

]
− zscalerEB/E

))
(3.64)

zscale = 5

(
rEB/E,z

)2

r2
(3.65)

r = ||rEB/E|| (3.66)

where R0 = 6378137 is the WGS84 equatorial radius in meters, µ = 3.986004418 e 14 is

the WGS84 earth gravitational constant, J2 = 1.082627 e−3 is the WGS84 earth second

gravitational constant.

A standalone GNSS receiver outputs measurements of the antenna’s kinematics. More

specifically, the GNSS receiver outputs the 3D position of the antenna relative to the ECEF

frame and expressed in the ECEF frame (rEA/E), and the 3D velocity of the antenna relative

to the ECEF frame and expressed in the ECEF frame (vEA/E) As such, the frame of the
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antenna must be related to the vehicle body frame. The transformation from the vehicle

body frame into the GNSS antenna frame, for the purposes of the present work, is completely

parameterized by the 3D position vector from the vehicle body to the antenna, expressed in

the body frame (rBA/B). This is referred to as the “lever arm”, and no orientation information

is required.

y =

rEA/E
vEA/E

 =

 rEB/E + rEA/B

vEB/E + CE/B

[
ωBB/E × rBA/B

]
 (3.67)

Calculation of rBA/B may be done either as part of a separate calibration process, which

produces static constant calibration values, or online in an autocalibration approach where

the value of rBA/B is placed into the filter’s state vector and varies over time. Static values

were used for the lever arm in this thesis.

3.5.3 MACIN State Formulation

The core dilemma motivating this thesis is that the true PDF of position on a road

network is both mutli-modal and discontinuous (discussed in the next chapter). As such, it

cannot be adequately modeled with a mean and standard deviation alone. Therefore position

is chosen for the particle partition. The state vector formulated in Equation (3.54) is then

re-arranged following the RBPF partition scheme:

x =

xl
xn

 =



qB/E

vEB/E

bg

ba

kg

ka

rEB/E



(3.68)
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Note that all remaining state variables stay inside of the linear (Kalman) partition. In

the literature, it is fairly common to see the attitude vector chosen for the nonlinear partition

when authors implement an RBPF for the inertial navigation problem. As Vernaza, et al.

note [35], not only are all 3D attitude representations nonlinear, they are all nonlinear within

nonlinear spaces. However, the navigation problem becomes linear when attitude is no longer

a consideration. In other words, if the body frame was modeled as a point mass rather than

a Cartesian coordinate frame, then strapdown inertial navigation would be a linear problem.

It is for this reason that Gustafsson, et al., ignore the attitude component in [32] for their

investigation of particle filter applications to both navigation and tracking problems for

various platforms. If this were the case, a traditional Kalman filter would suffice as well.

So it is easy to see that since the nonlinearities arise from the attitude partition, moving

attitude–and not position–into the nonlinear partition makes sense.

For the purposes of this thesis, MACIN leaves attitude in the linear partition of the

RBPF and estimates the 3 position states variables in the particle partition. This is similar

to the approach Ryan took in [12], where the two earth-tangent position dimensions are Rao-

Blackwellized because they are measured by ranging beacons. There are multiple reasons

MACIN does this. Investigating the effects of imposing a map-based constraint on the

position PDF is a core focus, and MACIN has nothing new to offer the attitude PDF which

further departs from the Gaussian assumption. Additionally, the well-known computational

burden of particle filtering makes minimizing the size of the nonlinear partition a priority, and

the addition of attitude alongside position would require increasing the number of particles

from 103 to 106. Lastly, no 3D attitude truthing system was available to concurrently run on

multiple participant vehicles. As such, no validation would be possible to quantify the effect

of Rao-Blackwellizing the attitude. For these reasons, only the 3 position state variables are

moved to the particle partition.
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Chapter 4

Map Usage in Navigation, Tracking, and Localization

Use of map or survey data to refine navigation solutions varies in both the type of road

information which is used, as well as how the information gets used. For this thesis, only a

priori map techniques are considered, and online mapping or simultaneous localization and

mapping (SLAM) strategies are neglected.

4.1 Map/Road Representations

Basic strategies for representing road survey information can be consolidated into 4

categories:

1. Line Graph: A series of locations corresponding to road or lane centers, with con-

nectivity information relating points to one another to represent driveable routes.

2. Nonlinear Curves: A bank of nonlinear equations describing road surfaces, possibly

including lane markings, lane centers, or road centers.

3. High-Density (HD) Databases: LiDAR data that has been aligned to a local

navigation frame. A post-processing procedure to abstract some of the features may

or may not be performed.

4. Visual Map: A collection of camera images that have been projected into some

local mapping frame with various post-processing techniques to allow localization using

visual features.

HD map matching is relatively new, and has become ubiquitous in the field of au-

tonomous vehicles, where GPS availability is often limited at best. Rather than taking GPS
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survey points or aligning a series of arcs to aerial imagery, a LiDAR- and/or camera-enabled

vehicle is driven along the target road network. The key distinction here is that this form

of map building and matching need not necessarily be global. That is, localization alone is

sometimes sufficient, particularly in the robotics field. However, when the survey vehicle(s)

are equipped with some absolute positioning solution, though, global navigation based solely

on the map is of course possible. During the survey procedure, sensor data is transformed

into the vehicle body frame using mounting calibration, and then transformed into the map

frame using the vehicle’s localization solution. Often post-processing is performed to extract

visual semantics or feature abstractions which are used to aid in the map matching process.

Once an HD map is built, localization typically involves estimating a translation and

rotation to align perceived LiDAR pointclouds and/or camera images with the map. The

transformation required for this alignment is then the pose of the vehicle within the map

frame. It is worth noting that HD maps features often contain road contour and routing

graph information similar to more primitive maps, which allows leveraging the techniques

for those data types as well. Line graph and nonlinear curve methods are discussed further

in Section 4.3. For the purposes of this thesis, LiDAR and visual maps are not considered.

4.2 On-Road Determination

Inferring whether a vehicle is actually traveling on the mapped road network is a difficult

problem. An errant position estimate may show the vehicle 10 meters removed from the road

laterally when it is actually traveling well within lane boundaries. Alternatively, the same

position estimate may be perfectly correct, and the ego vehicle truly is 10 meters away from

the road in question, and traveling on some unmapped portion of roadway. Determining

which of these is the case is of utmost importance before the map can be used to refine any

navigation solution. A common solution is to assume that the host vehicle is traveling on

the nearest roadway until the uncorrected position estimate exceeds some type of confidence

region, either probabilistic or heuristic, and thereafter to classify it as “off-roadway” [36].
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Many methods simply make the assumption that the vehicle is indeed confined to known

lanes.

Increasing availability of computer vision and perception in automotive applications has

made this task considerably easier to observe directly. Finding lane markings, asphalt, or

other road features within the view of either a LiDAR device or camera allows probabilistic

determination of whether a vehicle platform is traveling on some roadway. The question

then becomes, “on which roadway is the vehicle traveling?” The uncertainty of whether a

host vehicle is traveling outside of the road network is neglected here after, and it is always

assumed to be traveling in one of the mapped lanes. Given this assumption, the use of maps

as constraints becomes the core focus.

A natural weakness is immediately obvious in that intersections do not have lane bound-

aries in the traditional sense, and that a vehicle traveling inside of an intersection is not

inside of any one lane. In autonomous platforms, which must be controlled through the

intersection, a trajectory is often already mapped from each possible starting lane through

the intersection into each possible ending lane. The solution cannot be constrained while

traversing the intersection with this approach, but the lane may be continuously tracked

such that once back on the nominal roadway, the correct lane is already known and need

not be re-determined before constraints can once again be applied. The drawback is that

the shape of lane connector curves must be heavily scrutinized to ensure they are realistic.

An easier approach is to simply ignore the period of time and allow the uncertainty to grow

through the intersection and then re-converge afterward [37]. Since the time and distance

spent in intersections is typically quite small, the drift is low. This is what MACIN does, as

discussed later in Section 4.5.

The remainder of this chapter will examine two architectures for map usage in naviga-

tion, tracking, and localization:

• “Map Matching”, in which map information is used to modify an existing solution.

This is discussed in Section 4.3 and depicted as a simplified flow chart in Figure 4.1.
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Figure 4.1: Flow chart depicting the general operation of open loop map matching algorithms

• “Map Aiding”, in which map information is integrated into the navigation filter prior

to the navigation solution. This is discussed in Section 4.4

4.3 Map Matching

The simplest method of incorporating map information is by placing a map module

downstream from the navigation algorithm in an “open loop” configuration as depicted in

Figure 4.1. This is referred to as “map matching” and may be performed either on- or off-line.

Once sensor information has been fused, the resultant position/velocity/attitude estimate

is then projected onto a known roadway. The principle problem is then to determine the

correct portion of the map (road) on which the vehicle is traveling.

4.3.1 Line Graph Map Matching

Early work on map matching was primarily geometric in nature, and focused on using

line graphs (nonlinear curves were used later as well). These geometric methods can be

divided into three categories:

1. Point-to-Point : Every position solution is matched to a survey point.

2. Point-to-Curve: Every position is matched to a line between neighboring survey points

(or “link”).

3. Curve-to-Curve: A history of prior positions estimates is matched to possible successive

positions which all lie on known roads
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The nature of graphs enables leveraging topological (connectivity) information to significant

benefit, and this is a key distinguishing factor between the above 3 categories. For example,

consider the case of an urban area in which the roads take a grid shape. From a purely

intuitive standpoint, it is nonsensical to say that a vehicle “jumps” between parallel, uncon-

nected roads between any two adjacent time epochs. However, a naive algorithm can easily

compute this as a solution if it does not consider that no connection between the parallel

roads exists. As such, the existence of possible routes between successive map matches is

often considered in order to eliminate implausible solutions. This also has the potential to

greatly reduce processing time. The drawback is that one wrong match could potentially

eliminate the possibility of future correct matches. Curve-to-curve algorithms necessitate

using this information, whereas point-to-point and point-to-curve algorithms may or may

not ignore the topology. A brief review of the literature relevant to geometric line graph

methods is presented below.

A great body of work on creating open-loop geometric map-matching methods has been

built by Quddus, et al [38–43]. In [38] they perform an extensive literature survey and

present a new method for link selection which heavily relies on matching vehicle heading to

the direction of the roadway. This adds robustness to large position errors during intersection

navigation. In [39] they build on this by including confidence weighting for link selection

using position uncertainty ellipses. Then, in [40] they present an integrity analysis with

specific consideration for the roles multiple candidate lanes play in matching error. An in-

depth survey of limitations of the field was presented in [41] with attention to the need for

confidence indicators when used in intelligent transportation systems. They expand their

work to use the map topology more heavily in [42] so that complex features such as parallel

roadways and turn restrictions imposed by traffic law could be considered. And lastly, in [43]

they retroactively match historical paths to optimize the matched trajectory using classical

path-planning techniques, and show its effectiveness with sparse data from low-frequency

GNSS.
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A comparison of 4 graph-based methods was performed by White et al., [44]: 3 point-

to-curve algorithms and 1 curve-to-curve algorithm. The first and simplest is point-to-

curve matching wherein the position estimate is “snapped” to the closest graph edge using

minimum distance alone. The second builds on this by considering that the vehicle heading

must be close to that of the matched roadway. The third expands further by leveraging

topological information to narrow the set of candidate nodes and edges by only considering

neighbors from previous matches. The fourth, a curve-to-curve algorithm, is the batch

processing adaptation of the previous method with a tree search over the history of the

navigation solutions. None of the algorithms presented are probabilistic in nature. The

author comes to the conclusion that the second approach performs most reliably.

A good way of preventing correct roadways from being discarded in curve-to-curve

matching is by performing shape comparisons alone, typically through the use of curve

distance metrics. A very common metric for comparing two curves is the Fréchet distance.

Alt et al. [45] provide mathematical proof of a generalized planar map matching strategy for

curves composed of series of 2D positions using this metric and give the following illustrative

definition:

Suppose a person is walking a dog, the person is walking on the one curve and the

dog on the other, and the person is holding the dog at a leash. Both are allowed

to control their speeds but they are not allowed to go backwards. Then the

Fréchet distance of the curves is the minimal length of a leash that is necessary

for both to walk the curves from beginning to end.

This metric is tolerant to small irregularities, but is still sensitive to constant offsets (such as

a curve formed from GNSS-only position estimates) as well as drift (such as a curve formed

from a dead-reckoning system). A simpler curve-to-curve algorithm is the one used by

White [44] (discussed previously), and simply takes each point from the curves and projects

it onto the other curve (using a point-to-curve technique) in sequence. However, White’s

approach is more sensitive to outliers.
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Davidson et al. [46, 47] use point-to-curve matching atop a particle filter which fuses

GNSS with dead-reckoning from a reduced-axis IMU. Their link selection strategy of picking

the link by orthogonally projecting the prior estimate onto candidate links and selecting the

one whose projection is shortest is very common. This strategy is one of several steps in

MACIN’s map fusion approach, which will be detailed in Section 4.5.

Also relevant to this thesis is the work of Chu et al. [48], who employ a loosely coupled

GPS/INS filter with IMU bias and scale factor correction. They use the trajectory of the

INS over time in a curve-to-curve map matching strategy, with the addition of an extra

dimension for yaw angle in the matching algorithm. They lose accuracy, though, by only

matching points to roadway segments instead of considering positions in the coordinate frame

of the roadway.

4.3.2 Nonlinear Curve Map Matching

The most popular types of nonlinear roadway representations are:

1. Clothoids and/or clothoidal splines: These are used heavily in computer vision

roadway detection algorithms. Clothoids (also called “Euler spirals”) very closely ap-

proximate the underlying design procedure used to build roads in the first place [49,50].

2. Polynomial splines: Generally this is the best method of extending a line graph

beyond the piecewise linear assumption, and typically sees use as an “add-on” feature.

Cubic splines are the most popular [51,52].

3. Arc splines: Splines made of circular segments are very easily scaled and translated

to represent lane markings and adjacent lanes which are parallel to a particular lane

center [53,54].

One key advantage of representing roadways as a series of nonlinear arcs is that camera

information is more naturally integrated into the map matching algorithm. The contour of
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the road surface or lane markings can be fitted to a curve in the camera or vehicle frame,

then matched to existing contours using a distance and orientation minimization.

In [51], Pink and Hummel use GPS as the sole measurement source in an EKF. They

then estimate 2D pose by modeling velocity and yaw rate as random walk processes for the

time update. They utilize a topological line graph approach and a hidden Markov model

to determine the probability of being on each possible link within an area of interest, with

particular focus on robustness to intersection traversal. The authors then use “shape points”

to interpolate the vehicle position between graph nodes using cubic splines. A technique

for handling U-turn maneuvers is also presented. The nonlinear curve matching step then

becomes a sort of add-on to the the underlying approach which uses probabilistic point-to-

curve matching.

4.4 Map Aiding

When a map database is used within the navigation algorithm to refine or fuse sensor

information, the task is more complex. The level of coupling can be thought of as “closed

loop”, to borrow a term from classical controls, and will be referred to herein as “map

aiding”.

One of the earliest usages of map databases was in the Ground Moving Target Indicator

(GMTI) approach, which was used primarily for military applications in tracking ground

vehicle movements using ground-based RADAR installations and generally worked with ac-

curacies on the order of meters to tens of meters. The GMTI approach generally neglects

vertical information and assumes that map information is available in the form of a line

graph [55–62]. If one is able to determine with complete certainty the link of the line graph

on which a target vehicle is traveling, then the vehicle motion could be modeled as occurring

in the frame of the roadway, that is, either lateral or longitudinal to the roadway. With the

goal of determining a likely link, multiple potential links are considered at once, and motion

along each is modeled in the same EKF state vector. In this way, each link of the line graph
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is a separate motion model, and the technique of maintaining multiple hypotheses simulta-

neously (with each hypothesis following a different model) in order to pick one that is most

likely is referred to as the Multiple Model (“MM”) approach. The RADAR measurement

forms the measurement update for each model’s substate, and either velocity or acceleration

become relegated to representation via process noise, depending on the author. All that

is left is picking the most likely link/model. The general case where a discrete state (also

“mode”, or Markov chain) sets the dynamical model for a continuous state is also known as

a jump-Markov system, which is examined thoroughly by [63].

When one considers that each link is connected to at least one other link, and that

with enough time a moving vehicle will transition from one to another, modeling transitions

between links probabilistically is a natural next step. The probability density function for a

given state becomes dependent upon the transition probability function of the discrete mode

state. Using topological information to aid in probabilistic selection of the correct model is

referred to as an Interacting Multiple Model approach (“IMM”) approach. Bar Shalom et

al. worked on the IMM approach extensively [64,65].

For a single target, maintaining a fixed set of possible models like IMM does is no

longer necessary with the use of topological connectivity information. To illustrate, if a

vehicle is located at one end of a map, then maintaining hypotheses on the other end of the

map is a waste of resources. The solution is to dynamically add and remove models from

consideration as the vehicle progresses, using the topology to intelligently decide at any time

which models to consider. This is referred to as the “Variable Structure Interacting Multiple

Model” (VS-IMM) approach, and as the name implies, the consequence is that one must

implement a dynamically varying state vector. Kirubarajan et al., introduced the VS-IMM

in [61] and estimated planar position and velocity in the state vector, with acceleration as

process noise.

Arulampalam et al., in [56], took the basic VS-IMM further by employing a particle filter

instead of an EKF. Perhaps most importantly, they demonstrated a probabilistic method of
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determining whether a vehicle was traveling on or off the road network. Other approaches to

GMTI typically stem from [56,61]. For instance, Payne and Marrs [55] subsequently extended

Arulampalam’s work by using a novel Unscented Particle filter for the VS-IMM solution

instead of a standard particle filter. Particlesr were used to represent uncertainty about

the correct model (map section), while a traditional UKF is used to estimate 2D position

and velocity with noise modeled along the coordinate system of the roadway. Jabbour [66]

takes the VS-IMM approach, but uses on-board GNSS and dead reckoning for propagation

instead of external RADAR. They contribute an excellent analysis of the assumption that

the position probability density function is two dimensional Gaussian within the coordinate

system of the roadway, along with a novel method of assigning probabilities to each candidate

link.

Outside GMTI, probabilistic approaches to closely coupling map constraints with iner-

tial navigation vary widely. Hall [36] compares two multiple hypothesis filters, a grid filter

and a particle filter, for fusing wheel encoders, GPS, and a single gyroscope orientated along

the vertical body axis. The author notes that when used in map constraint systems, par-

ticle filters are abnormally vulnerable to clustering. Clustering is a phenomenon wherein

the particle population collapses to a very small portion of the state space. Map constraints

exacerbate this because when a population collapses to the wrong location, subsequent turns

are deemed impossible by the map, and particle weights all approach zero. Proper tuning of

process noise can prevent this, but grid-based filters, on the other hand, are naturally robust

to clustering because they always maintain a fixed search area.

Smaili et al. [67, 68] focus on fusing GPS measurements with wheel encoder odometry

using jump-Markov map representations. The addition of wheel encoder information allows

them to add heading to the state vector, since differencing left and right encoder readings

produces a rotational measurement when combined with vehicle geometry. It also allows for

continuous estimation, even during GNSS outages, since propagation of odometry may be

performed along the roadway to curtail drift.
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Fouque et al. [37] use the map as a heading pseudomeasurement inside an EKF which

relies primarily on dead reckoning with closely coupled aiding from GNSS. They present a

sophisticated measurement noise computation model as well as an innovative method of using

both linear and angular distance in the same cost function to compute map link likelihoods.

An interesting facet of this work is the possibility of performing map error detection.

Ray [29] uses a particle filtering map constraint model very similar to that in MACIN,

but for indoor pedestrian navigation applications. The state variables contained within this

particle filter are simply two-dimensional pose: north and east position as well as heading.

Whenever a particle violates a map constraint, in this case by crossing an impassable barrier

such as a wall, it is assigned zero weight and resampled. The strength of this is that it achieves

the desired performance by only applying the binary constraint, and does not impose any

false information on the proposal distribution. An example of imposing false information

is how GMTI assumes all vehicles travel exactly along the line of the roadway. MACIN

incorporates Ray’s approach to applying map constraints, as it naturally integrates into the

RBPF. Furthermore, it implicitly captures mutli-modality in the position PDF, whereas

IMM requires explicit handling of mutli-modality, which is explained in detail in the next

section.

4.5 Map Usage in MACIN

One of the requirements specified at the outset of this thesis was that MACIN must use

the sparsest possible lane-level map. Here, “sparse” refers to using as little information as

possible about each lane. This is done to maximize the number of use cases. Requiring spe-

cialized information narrows the number of potential applications and the possible coverage

areas, and decreases the likelihood that pre-existing maps can be used.

The most widely available data generally takes the form of a collection of points which

lie on lane divider markings, or perhaps lane centers. These points may be used to construct

line strings. Whether the data represents lane dividers or lane centers is not particularly
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important, since one may be used to construct the other. The only caveat is that lane

center information must be accompanied by lane width at each point, whereas lane width

can be computed directly from the distance between lane dividers. For this thesis the road-

way is represented using lane center points and width measurements. Once a map is built

accordingly, MACIN’s approach to using map data is as follows:

• For each position particle, find the nearest map link.

• Assume the particle represents a hypothesis that the vehicle is travelling on the nearest

link.

• If the particle lies in a position such that the vehicle would not be inside the link’s lane

boundaries, set the particle weight to zero.

4.5.1 Per-particle Lane Determination

One of the assumptions made earlier was that the system already has some way of

knowing whether it is within lane boundaries. It is important to note the system is not

required to know which lane it is in, only that it is completely inside of one of them and

not straddling a lane boundary. The easiest method to accomplish this is by using computer

vision to identify lane lines and then determine whether or not the vehicle is straddling them.

It is worth noting that once such a system identifies the lane boundaries in the camera frame

it is relatively straightforward to transform that observation into the ego vehicle body frame.

One could then use this relative position measurement as a particle update. Ryan does this

with fixed ranging beacons in [12]. However, building and leveraging the computer vision or

LiDAR technology to produce such a relative distance measurement is outside the scope of

this thesis.

With this high-level in-lane determination in place, a hard constraint on position can

now be imposed in the two dimensions of the earth-tangent plane. This will take the form of

a test to determine whether a given candidate position adheres to the map constraint. First,
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Figure 4.2: Perpendicular projection illustration for cases where the query point R̄ lies within
the link (left) and outside of the link (right).

a straightforward point-to-line map matching technique is employed to select the nearest

connected pair of nodes (which form a “link”). The nearest link is that which minimizes the

perpendicular projection distance dproj, illustrated in Figure 4.2 and formulated in Equations

(4.1). Making a correct choice of the nearest link is simply a matter of finding the value

of dproj for all links within a reasonable search radius, and picking the link with the lowest

associated value of dproj. This thesis used a 15.0 meter search radius.

dproj =
∥∥P̄ − R̄∥∥ (4.1a)

P̄ = Ā+ αC̄ (4.1b)

α =

(
R̄− Ā

)
· C̄

γ
(4.1c)

γ = C̄ · C̄ (4.1d)

C̄ = B̄ − Ā (4.1e)

Topological constraints can be added by simply omitting links which are not connected

to the previously matched link. MACIN does this on a per-particle basis. When selecting

links to consider for a single particle, any link is rejected if it is not adjacent to the link that

was assigned to the same particle in the previous estimation epoch.
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For many links on a given map, the perpendicular projection may lay outside the link’s

defining nodes Ā and B̄, as seen in Figure 4.2. This only occurs on links for which another

link’s projection is smaller, meaning that the projection point can be “snapped” to the

nearest node, since it is the closest projected point that lies on the node. For any case where

this happens, another link will have a projection within Ā and B̄, and produces a smaller

dproj. The snapping algorithm is given in Algorithm 2.

Algorithm 2 Perpendicular projection out of bounds handling.

1: procedure Check Bounds
2: β ←

(
P̄ − Ā

)
· C̄

3: if β < 0 then
4: P̄ ← Ā
5: if β > γ then
6: P̄ ← B̄

The candidate position adheres to the map constraint so long as the projection distance

is less than or equal to the selected link’s on-network distance, dONN = (dlane−dveh)/2. The

on-network distance is a function of the host vehicle width (dveh) and the lane width (dlane),

which is assigned on a per-link basis to deal with natural variations in lane width as codified

later in Algorithm 6. An overhead view of the region of non-zero probability (“on-network

region”) is depicted in Figure 4.3.

Working off of this information alone, there would be no positional information in the

vehicle’s longitudinal direction and the vehicle’s lateral position would have a probability

density function with uniform values between two points that are fixed to the road surface.

The two fixed points would be symmetric about the lane’s center line (or longitudinal axis)

and their distance would be a function of the lane width and the vehicle width. The remaining

region of non-zero probability is illustrated in Figure 4.4.

To illustrate further, a representative particle cloud is shown in Figure 4.5, with particles

that violate the constrain shown in red, and particles that satisfy the constraint shown in

blue. Those that violate the constraint have their respective weights set to zero and are
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Figure 4.3: Strategy for determining whether a vehicle is within the boundaries of a given
lane

Figure 4.4: Probability areas for a vehicle position within lane
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Figure 4.5: Depiction of position particles with those that violate the map constraint in red,
and those that satisfy the map constrain shown in blue.

resampled on the next filter iteration, whereas no action is taken for the particles that

satisfy the constraint.

The map aiding strategy used by MACIN may be consolidated to: the probability for any

state whose position violates a lane boundary constraint is zero. MACIN makes no attempt

to impose artificial probability distributions onto any state space, and does not update

non-zero probability state hypotheses with false information. This means that common

practices such as using the roadway’s direction as a heading measurement or providing a

psuedomeasurement placing the vehicle in the center of the lane are disallowed. These

techniques would add constant errors in the nominal case, where a driver simply stays closer

to one side of the lane than another. In the case of stop-and-go driving at low speed,

heading may differ greatly from the roadway direction even when the vehicle stays within

lane boundaries.

As such, the map update step of MACIN imposes a multimodal uniform distribution

atop the position PDF, which would otherwise be a Gaussian distribution (as this is an

operating assumption of the EKF). An illustration of this overlay is provided in Figure 4.6.

To handle the case of intersections, links are placed to connect the adjoining roadways,

but all lane widths are assigned to be infinite, so erroneous constraints are not applied.

This approach was discussed in the beginning of Chapter 4. As each vehicle traverses the

intersection, its performance degrades due to the lack of constraining information.
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Figure 4.6: Typical shapes of unimodal Gaussian and uniform densities overlaid.

4.5.2 Final Lane Determination

Since the map update removes all particles that do not lie within lane boundaries, each

remaining particle corresponds to a single lane. Since the particle cloud is a representative

sampling of the position PDF, all possible lanes are represented by at least one particle,

and some lanes are represented by multiple particles. Lanes with no particles lying in them

have zero probability of being the correct lane. Since each particle has an importance weight

attached, the weights of each particle in a given lane can be summed and the resultant value

will be the probability that the ego vehicle is driving in that lane. The lane with the highest

probability is then the estimated ego lane, and the sum of the probabilities of all candidate

lanes is, of course, one. After selecting a lane, the particle population should be constrained

only to particles which lie in that lane when computing a value for xnk+1 in Equation 3.40.

Otherwise, a mean solution would often end up lying between lanes and defeating the purpose

of map constraints.

This is illustrated in Figure 4.7. Some particles (shown in red) may satisfy map con-

straints for the incorrect lane. However, the final position solution is only computed over

particles whose lane receives the highest summed weight (shown in blue). The other particles

(in read) are excluded from the output solution, but they are maintained within the overal

particle population in order to maintain multiple concurrent lane hypotheses.

Defined above is a method of probabilistically determining the lane the ego vehicle lies

in, a method which naturally arises from the choice to model map information as a pure
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Figure 4.7: Selecting particles that only lie in the chosen lane.

constraint at the particle level. This intrinsically produces not only a instantaneous solution

that lies in the correct lane, but a solution which historically has always been in the correct

lane due to the recursive nature of the filter. No explicit step needs to be taken to optimize a

buffer of previous poses, as each particle already represents a time evolution where all errant

positions violating map constraints have been eliminated. One key caveat is that when

any of the particles lie on an intersection lane (one whose width is infinite), the solution is

undefined.

4.5.3 Discussion

It is worth noting that only two of the six degrees of vehicle freedom are constrained

under this map aiding. In the literature, yaw is commonly constrained alongside the two

earth tangent dimensions. However, this requires either imposing an artificial probability

function, or using another sensor to create an orientation measurement. It is common to

assume that all vehicles face the direction of the roadway, and set the standard deviations of

the heading pseudomeasurement using some heuristic [43, 68]. If this approach is not used,

some external sensing system that produces estimates of the heading of the roadway relative

to the ego vehicle would be required in order to constrain yaw with the mapping. Since

none of the assumed sensing capabilities include this, and artificial probability functions are

forbidden, map constraining of the yaw direction is not used.
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For roll, pitch, and vertical position, it is very tempting to constrain the vehicle’s pose

in these dimensions so that the vehicle is forced to always lie on the roadway (or some offset

from it) and be oriented parallel to the roadway. When this is done, the motion of the

vehicle is always along a sparsely modeled manifold in 3 dimensional space, similar to an

ant traveling the length of a ribbon. In the nominal case, this would theoretically allow

for massive reduction of errors. However, it would also require producing a dynamic model

for suspension motion between the sprung and unsprung masses in order to compute offsets

between the roadway and the sensor frame. The technique of “clamping” the vehicle to the

roadway is not used here in order to avoid dependence on a vehicle dynamic model.

Lastly, it is important for the reader to understand that this thesis presumes the avail-

ability of perfect map information and neglects mapping errors. This is made possible since

all map survey points were collected using a real time kinematic (RTK) GPS survey sta-

tion, which has errors on the centimeter level, one order of magnitude smaller than the

performance of MACIN. In practice, if one were to generate map data using some estima-

tion technique with errors on the same order of magnitude as the filter that used the map

data, this uncertainty must be accounted for. Furthermore, if survey points were spaced too

far apart, the piecewise linear model would introduce more errors by failing to adequately

approximate the lane geometry. This thesis leaves consideration of such mapping errors to

future work.
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Chapter 5

Cooperative Navigation Techniques

5.1 Introduction

Generally speaking, cooperative navigation involves using measurements or information

from one or more secondary vehicles to aid the navigation solution for the ego vehicle. In

order for information sharing to improve positioning accuracy, there must be some way to

express the location of one participating vehicle in terms of the location of another, such

that they become probabilistically linked. The most common method of doing this uses

directly cooperative measurements, where two vehicles that are sharing information directly

observe each other and share these measurements. Consider as an example the case where

the positions of two vehicles, i and j, are being estimated independently in a single standard

EKF. The state vector and covariance matrix would be:

x =

xi
xj

 (5.1)

P =

Pi 0

0 Pj

 (5.2)

The states and covariances evolve independently. When vehicle j receives a measurement

yj = h(xj), it only improves the information about state xj, and only covariance Pj is

decreased, such that P+
i = P−i . That is, the posterior value of Pi is equivalent to the prior

value of Pi, meaning no new information is gained.
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Now consider the use of a relative measurement of the form yij = h(xi, xj). Since the

measurement is a function of both states, the posterior covariance would then be:

 Pi Pij

P T
ij Pj

 (5.3)

where Pij 6= 0. Now, when the measurement yj for vehicle j is applied, the covariance Pi

for vehicle i is decreased as well, because the two vehicles are statistically “tethered”. This

principle scales as more vehicles participate in the cooperative localization network.

To mentally conceptualize cooperative localization as a physical system, Patwari et

al. [69] offer a fitting illustration which depicts the entire network as a mass-spring system

from classical mechanics. Each participating vehicle may be thought of as a mass, and each

cooperative relationship (inter-vehicle ranging, for instance) between two vehicles may be

thought of as a spring with an unknown equilibrium point which is connected between the

two masses. Each spring’s coefficient of force is comparable to the relative measurement

confidence, and infrastructure waypoints such as base stations or road side units may be

thought of as masses that have been fixed in place and are immovable. The entire system

then has a natural settling point, where all the masses reach steady states which are a function

of their connection to neighboring masses. While this is a rather simplistic illustration (for

instance, it does not account for participant dynamics), it serves a useful purpose in showing

how each vehicle state becomes inextricably linked to the swarm state.

5.2 Architectures

Broadly speaking, cooperative system architectures can be divided into two categories,

differentiated by the location where navigation estimation is performed. When a single es-

timation algorithm takes responsibility for computation and uses two-way communication

to exchange measurements and estimates with each particpant, the architecture is “cen-

tralized”. A common use for this is air traffic control. When each participant performs
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computations onboard and receives measurements directly from its peers without a master

actor, this is a decentralized architecture. Research into systems for consumer mass market

automobiles often uses decentralized architectures.

One critical drawback of decentralized approaches is the “double counting problem”,

in which Bayesian independence assumptions are violated when each filter uses other filter

states as measurements. Mokhtarzadeh [70] shows that a numerical optimization known

as Covariance Intersection can be applied to remove unknown correlation between state

and measurement. This technique is often used to convert a centralized system into a

decentralized system. As such, whether or not a cooperative localization system is centralized

becomes more a concern of implementation than of filter design. Mu et al. [71] and Soatti et

al. [72] show examples of how one can go about creating equivalent versions of cooperative

estimation systems using either centralized or decentralized techniques.

The decentralized approach allows each vehicle to dynamically add and remove cooper-

ative relationships as participant vehicles gain and lose the ability to communicate directly

with one another. Loss of communication is typically a result of limits of the range of vehicle-

to-vehicle (V2V) technology such as dedicated short range communications (DSRC). When

participating vehicles dynamically add and remove cooperate relationships with one another,

this is referred to as a Vehicular Ad-hoc Network (VANET), and is generally offered as a

practical way to implement cooperative localization using direct V2V instead of a centralized

communication structure such as cell modems. With a VANET, any one participant may

only occasionally be cooperating with another vehicle, and several disparate networks may

exist simultaneously. Research into VANETs is abundant and the topic is well-covered, but

it is of only tangential relevance to the work of this thesis. For further reading, see [73, 74]
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5.3 Existing Approaches

A thorough survey of sensing techniques used in cooperative localization is presented by

de Ponte Müller in [75]. This section will briefly discuss a few individual techniques which

are relevant.

Soatti et al. [72] introduce a new class of cooperative approaches termed to be “implic-

itly” cooperative, in that no direct vehicle-to-vehicle (V2V) measurement (such as relative

ranging) is used. Instead, all participant vehicles are assumed to observe a set of common

features using perception sensors (such as cameras or RADAR). It is by having each vehicle

observe the same feature that relative information is inferred, but never directly produced.

The implicit technique does not necessarily require a priori mapping of observable features,

either, as the formulation accounts for feature location uncertainty by adding it to the es-

timation state. As such, simultaneous mapping is possible, though it is not treated as a

traditional SLAM algorithm. They present the implicit technique in both centralized and

decentralized forms.

Wang et al. [76], closely couple GPS, IMU and Ultra-Wide Band (UWB) radio ranging

measurements in a Kalman filter with classical gain scheduling. They communicate ego

positions and ranges to common infrastructure points using DSRC radios. UWB ranging

and Doppler measurements between each participant vehicle and an infrastructural UWB

are treated as pseudolite measurements, so that integration into a more traditional closely

coupled GPS/INS is relatively seamless. It is worth noting that they do not use the UWB

radio’s ability to perform inter-vehicle ranging (demonstrated by [77]), which represents a

missed opportunity for increased accuracy. Furthermore, no attention is given to the double

counting problem.

Perhaps the most relevant work is that of Rohani et al. [78–81], which focuses on using

GNSS positioning signals to perform cooperative map matching. The work begins in [78], by

assuming the existence of a ranging sensor and using scalar distance as an input to a novel

probabilistic framework which produces an independent position estimate. The position
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is then used as a pseudomeasurement to a standard Kalman filter. This serves only as a

starting point, as it is not particularly relevant to the problem at hand (since it requires a

ranging sensor), and rarely achieves sub-meter accuracies.

Then, in [79], they begin using differential GPS instead of a separate ranging sensor.

However, the differential step is performed only to get pseudorange corrections which can

then be sent to other vehicles to aid in standard single-vehicle positioning. No carrier-phase

information is considered, which limits the accuracy considerably, but it still forms the basis

of a cooperative system. For multiple copies of pseudoranges from multiple vehicles, they

use simple least squares to produce the value of the pseudorange that they use.

In [80,81] they use this relative positioning in conjunction with map aiding. This starts

by assuming all vehicles are on the roadway and treat the entire roadway (not individual

lanes) as constraints. They then use relative positioning from the same pseudorange-only

differential GPS to “translate” one vehicle’s road constraints to other participating vehicles,

so that for a group of vehicles which all observe the same satellites, they all use the entire

group’s map constraints. Their approach to applying map constraints is similar to MACIN’s,

in that they use a particle filter for position and eliminate any particle violating the con-

straints. MACIN, on the other hand, offers 3D estimates of both velocity and orientation as

well as position.

Like Rohani, Mahmoud et al. [74] use a GNSS-only approach operating at the pseudor-

ange level, but cooperative information is used to fill in gaps in satellite information due to

occlusion, rather than constrain the solution space. Once non-line-of-sight (NLOS) satellites

are detected (“hindered SVs” in their terminology), the measured pseudorange is discarded

and an artifical pseudorange is generated using satellite geometry and pseudorange measure-

ments from another vehicle. This method is highly sensitive to geometries of participant

vehicles relative to occluding objects, and the accuracy degrades as distance increases.

Alam et al. [82], use a unique approach tailored for vehicles in opposing traffic lanes to

share information over a short time window as they drive past one another. They rely on
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the doubling effect of opposing velocity vectors to create a more pronounced Doppler shift

in GNSS signals when differenced, noting that typically ground vehicles have dynamics so

slow that the Doppler shift is negligible. They model the behavior in the time domain as

an impulse response, thus underscoring the fleeting nature of the cooperative relationship in

this arrangement.

Obst et al. [83,84] model vehicle networks as multi-node graphs in which only adjacent

vehicles share information. They estimate position using a particle filter, but use wheel speed

and steering sensors to propagate with a piecewise constant yaw rate and velocity model.

For measurement update and cooperative information sharing, they utilize relative position

vectors from differential GPS between vehicles and present simulated results.

5.4 Timing

Cooperative approaches must by definition rely upon data that is transmitted over some

communication network. This will unavoidably introduce a time delay. For a given vehicle,

on-board sensor measurements should generally arrive within a few milliseconds after the

true time. If the time delay is well-known, this is not a problem. In the worst case, the

posterior estimate for time tk may simply be updated at time tk+1, after it has arrived,

but before the propagation step. For high-rate IMUs, a GPS measurement can simply be

“snapped” to the closest IMU epoch if the dynamics are sufficiently sedate. A ≥500 Hz IMU

in mass-market passenger vehicles generally matches these conditions, but at low speeds

IMU frequencies as low as 100Hz may suffice. However, cooperative navigation dicates that

information from off-board sensors and filters can be fused as well, which may be delayed by

up to several seconds due to transmission overhead.

This is referred to in the literature as an out of sequence measurement (OOSM) problem.

Dealing with the OOSM problem is out of scope for this thesis, and researching the techniques

to deal with it is left to the reader, with recommended starting points being [59, 85–87].
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This thesis relies on a simple post-processing method to remove time delays and synchronize

measurements, which is given later in Section 6.5.

5.5 MACIN Approach

MACIN uses direct vehicle-to-vehicle 3-dimensional Cartesian relative position vectors

(RPVs) for cooperation. This has a distinct advantage over indirect methods which require

shared observation of environmental objects, since the two vehicles can cooperatively localize

in a vacuum (i.e., with no supporting infrastructure or features). Cooperation does not

even require map constraints. For instance, this type of cooperation continues even while

traversing intersections, when map constraints are disabled. Each RPV is produced using

GPS-only dynamic base real time kinematic (DRTK) estimation from [88]. Observing all 3

positional axes has a clear advantage over 2 dimensional sensors such as RADAR (and many

LiDARs) which only produce a range and azimuth measurement. Producing estimates in

the exact same Cartesian coordinate system (ECEF) as the position estimation frame of the

INS allows direct measurement integration, versus something like high-resolution LiDAR,

which produces estimates in a spherical coordinate system that is fixed to the ego vehicle

body frame, and whose covariance must be transformed.

DRTK is different from RTK in that the first receiver is not statically affixed to a base

station position. However, both RTK and DRTK rely on the assumption that gross errors,

such as those arising from ionospheric and tropospheric disturbances, are shared among

GPS receivers within a few kilometers of one another. Differencing measurements from two

receivers removes these common-mode errors, resulting in high-precision relative positioning

and standard precision absolute positioning. De Ponte Muller [89] shows how differencing

the code-based pseudoranges produces superior results to differencing final position solutions

from the same two receivers. RTK and DRTK are based on a similar principle, but go a

step further and difference the carrier wave measurements, allowing even greater relative

accuracy.
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In order to obtain an absolute solution, RTK assumes that one of the receivers is affixed

to a base station whose position is extremely certain, with the obvious drawback being the

required infrastructure. This thesis uses RTK only for truth measurements, as requiring

physical infrastructure makes a solution significantly less scalable. While DRTK use only

contributes relative accuracy, it indirectly improves global accuracy when combined with

map constraints, as shown empirically by the results in Appendix A. This approach to

cooperation can be used anywhere across the globe where two or more vehicles are within

a few kilometers of one another. The obvious drawback is that DRTK is limited by line of

sight to satellite vehicles, whereas perception sensors are impervious to urban canyons or

other degraded sky conditions.

In order to reduce complexity in development of the core approach, a centralized co-

operative strategy is used in this thesis, so the results presented are for a single federated

RBPF. Once a centralized filter is shown to work, the same approach may be easily extended

in later work to a decentralized strategy using the covariance intersection method [70].

Since GPS receivers output measurements aligned to GPS time epochs, synchronizing

between the vehicles is very easy and all vehicles’ GNSS measurements in general (both SPS

position and velocity as well as the DRTK RPVs) already align with one another to within

nanosecond level precision [90]. It is possible for the time epoch for all vehicles’ individual

GNSS measurements to align with one another in time as well, so they can all be used in

theF same epoch. For a system with Nj participating vehicles, the full measurement vector

can be written as:

y =

yGNSS
yDRTK

 (5.4)

yGNSS =

[(
yGNSS1

)T
, . . . ,

(
yGNSSNj

)T]T
(5.5)

yDRTK =

[(
yDRTK1→2

)T
, . . . ,

(
yDRTK(Nj−1)→Nj

)T]T
(5.6)
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The DRTK measurement subvector yDRTK will have Nj(Nj − 1)/2 separate RPVs. The top

portion of the full measurement vector, yGNSS, contains measurements typically used for

loosely coupled filters: position and velocity of the antenna with respect to the ECEF frame,

and expressed in the ECEF frame. For vehicle j, the measurement vector is equivalent to

Eq (3.67) and is notated with the vehicle index as:

yGNSSj =

rEA/E,j
vEA/E,j

+ εGNSSj (5.7)

These GNSS measurements are simply obtained directly from the receiver’s internal navi-

gation processor along with the covariance of each vector, which is used to construct the

measurement covariance matrix:

RGNSS
j = E

[
(εGNSSj )(εGNSSj )T

]
'

RGNSS
r,j 0

0 RGNSS
v,j

 (5.8)

The second portion of the measurement vector contains RPVs for all possible vehicle

pairs within the cooperative network, as computed using the DRTK algorithm:

yDRTK1→2 = rEA/E,2 − rEA/E,1 (5.9)

While it is possible to derive an analytical method for computing the RPV covariance matrix,

this thesis found that the values were always very small (on the order of 100 µ m - 1 mm),

and resulted in filter overconfidence. Additionally, DRTK is known to have relative position

errors on the centimeter level. As such, the DRTK measurement covariance matrix is set

using constant tuning values which are defined in a local navigation frame, with a standard

deviation in the earth-tangent directions set to 2cm, and standard deviation is set to 4cm in
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the vertical direction:

RDRTK
j = CNED→ECEF


σ2
north 0 0

0 σ2
east 0

0 0 σ2
down

CT
NED→ECEF (5.10)

5.6 Summary

This chapter has discussed the field of cooperative navigation and how MACIN leverages

cooperative techniques to improve position accuracy. Basic architectural approaches for

estimator design were discussed in Section 5.2, as well as considerations thereof that are

germaine to this thesis. Section 5.3 gave the reader an overview of the current state of the

art within the field of cooperative navigation, and Section 5.5 discussed achieving cooperation

using DRTK relative positioning.

This concludes the discussion of background information to support the design decisions

that this thesis made. Chapter 3 discussed using an RBPF as an improvement upon the

EKF, Chapter 4 discussed the use of map information, and this chapter has discussed the

cooperative aspect. The next chapter will discuss how to unify these technologies into a

cohesive estimation framework and present experimental results that prove its efficacy.
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Chapter 6

MACIN Implementation & Results

The previous chapters have focused on individual pieces of the MACIN algorithm and

the reasoning behind them. This chapter gives all remaining information necessary for the

readers to implement MACIN for themselves and replicate findings. Section 6.1 discusses

setting the remaining tuning parameters that have not already been mentioned. Section 6.2

gives algorithmic pseudocode to aid in building necessary software Sections 6.3 through 6.5

cover data collection, post processing procedures, and map representations used for exper-

imental validation. This chapter concludes with Section 6.6, which presents experimental

findings.

In order to establish a benchmark for comparison, the most common and simple ap-

proach to GNSS/INS navigation was formulated and implemented as described in Chapter 3

This was a loosely coupled EKF with no cooperative or map-based aiding, as formalized in

Section 3.5.2. Use of the baseline filter allows isolating the benefits that MACIN provides.

6.1 Noise Terms

Selection and tuning of noise terms requires special attention, so this section lays out key

information for readers to understand in that regard. For the baseline filter, process noise

is unchanged from Equation (3.55). Since all the independent baseline filters are assembled

into a single augmented filter, this means the augmented process noise covariance matrix is

created by assembling all consituent process noise covariance matrices into a single matrix
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along the diagonal:

Q =



Q1 0 . . . 0

0 Q2 0
...

... 0
. . . 0

0 . . . 0 QNj


(6.1)

Here, each submatrix Qj for vehicle j is unchanged from Equation (3.56).

For MACIN, however, partitioning position as a particle state requires determining a

new, separate process noise ηn which creates a spreading effect on the particles. The most

obvious choice is to model position process noise as zero mean Gaussian and use the velocity

submatrix from the Kalman estimate covariance, as shown below.

ẋn = ṙEB/E = vEB/E + ηn (6.2)

ηn ∼ N (0, Qn) (6.3)

Qn = E
[
ηnη

T
n

]
' Pl | v (6.4)

For MACIN’s linear partition, the process noise covariance matrix is the same as for the

baseline filter, Ql = Q.

It is important to note that the noise formulation used for MACIN is suboptimal in five

ways, all regarding covariance (off-diagonal) terms that have been set to zero:

• The true covariance terms in RGNSS between position and velocity are not zero. This

is a general shortcoming of the loosely coupled formulation, which can be addressed

with tighter integration.

• The true value of RDRTK
j is not a diagonal matrix.

• The covariance terms in RDRTK between RPV pairs that share a common vehicle is

non-zero. For vehicle 1, 2, and 3, this would mean E
[
(εDRTK1→2 )(εDRTK2→3 )

]
6= 0. This

thesis only tests 2 vehicles, so this suboptimality never manifests itself.
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• The true values of the covariance terms relating yGNSS and yDRTK are non-zero, since

measurements are computed use the same set of satellite observations, meaning that

the measurements are correlated.

The covariance between the particle and Kalman partition process noises Qln is set to zero,

just as in Ryan’s work [12]. However, due to the choice of Qn in Equation (6.4), more work

is needed to verify that this is optimal, and the existing body of literature is silent on the

matter of selecting and/or deriving Qln. To compensate for over-confidence, though, the

particle process noise matrix may be scaled as a tuning parameter.

6.2 MACIN Algorithm

This section presents the algorithm in detail in the form of pseudocode so that the

reader may be fully equipped to implement MACIN on their own. The high-level MACIN

algorithm (Alg. 3) can be broken down into four steps:

1. Time update, or “propagation” (Alg. 4)

2. Particle update using GNSS measurements (Alg. 5)

3. Map constraint update (Alg. 6)

4. Kalman update (Alg. 7)

Of these, only Step 3 is different from the traditional RBPF procedure. Note that the map

constraint update and resampling may be applied at every propagation epoch, regardless of

the presence of a GNSS measurement. This feature curtails the position drift inherent in

open-loop integration of IMU data.

6.3 Test Scenarios

Map-aiding is most beneficial in situations where the route network is highly circuitous

and complex, causing the particle cloud to be reduced more significantly and quickly. As
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Algorithm 3 MACIN Top-Level Algorithm

1: Initialize:
xn, xl ← starting state

Pn, Pl ← starting covariance

Ql ← σg,ν , σa,ν , σg,u, σa,u . Set Kalman process noise
Qln ← 0
Nt ← # of time epochs

NX ← # of particles

wi ← 0, i = 1, ..., NX

2: for k ∈ [2, ..., Nt] do . Iterate over IMU samples
3: Time Update . Alg. 4
4: if GNSS measurement available at tk then
5: Run DRTK on available SVs
6: yGNSS ← Receiver position/velocity solution
7: yDRTK ← RPV pairs from DRTK
8: Particle Update . Alg. 5

9: Map Update . Alg. 6
10: Normalize weights w
11: Resample . Alg. 1
12: Normalize weights w
13: Kalman Update . Alg. 7

such, interstate driving is a scenario in which map-aiding is typically the least useful. GNSS

coverage generally already provides excellent quality with low occlusion rates (meaning that

map input is of minimal benefit), and uncertainty along the length of the lane cannot be

curtailed by geometric diversity in the routing network. This makes interstate-like conditions

ideal to find the true merit of MACIN. Data collection was performed at the National Center

for Asphalt Technology (NCAT) test track, which is a 1.7 mile oval with two lanes built to

U.S. standards for interstate highways. It is pictured in satellite imagery in Figure 6.1,

and the lane network representation of the NCAT test track is depicted in Figure 6.2. For

all scenarios, two vehicles were used with identical equipment. While introducing additional

vehicles to the cooperative swarm should yield increased performance, testing that hypothesis

was outside the scope of this thesis.

At the NCAT location, six scenarios were enacted, which are given in Table A.1 and

described here. Scenarios A, B, and C involve a large curve, whereas Scenarios D, E, and
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Algorithm 4 MACIN IMU Time Update

1: procedure Time Update
2: ∆t← tk − tk−1

3: Calculate fn(xn)
4: Calculate fl(xn, xl, ω̃k−1, ãk−1,∆t)
5: Calculate An(∆t)
6: Calculate Al(xl, ω̃k−1, ãk−1, τgτa,∆t)
7: Calculate Gn(∆t)
8: Calculate Gl(xl,∆t)
9: Qn ← velocity submatrices of Pl
10: η ← N (0, Qn) . Draw process noise set
11: for i ∈ [1, ..., NX ] do

12: x
(i)
n + =

∫ tk
tk−1

ẋndt . Propagate each particle

13: xn ← mean(x
(1,...,NX)
n )

14: Pn ← cov(x
(1,...,NX)
n )

15: Āl ← Al

16: Q̄l ← Ql

17: Calculate N using Equation (3.43)
18: Calculate L using Equation (3.44)
19: z ← xn − fn . Use propagated particle state for innovation
20: Propagate xl

21: for j ∈ [1, ..., Nv] do . iterate over vehicles
22: qj ← qj / ||qj|| . Normalize attitude quaternion

23: Normalize attitude quaternions q1 and q2

24: Propagate P l

F are straight the entire time. In Scenario A, both vehicles begin traveling in straight lines

parallel to one another, then enter opposite sides of a curve and pass each other in the middle

before traveling in straight parallel lines again. In Scenario B, the vehicles travel the same

course (straight, curve, straight), but travel side-by-side and adjacent lanes. Scenario C is a

slight modification of Scenario B, with the cars traveling single file in the same lane. Scenario

D is similar to A, in that both cars begin and end on opposite side of the track and travel

in opposing lanes, but instead of entering a curve they maintain a straight path the entire

time and pass each other in the middle. In Scenario E, they travel straight, side-by-side, in

adjacent lanes. In Scenario F, they travel straight, single file, in the same lane.

68



Algorithm 5 MACIN Particle Measurement Update

1: procedure Particle Update
2: Calculate C(xl, ω̃k, r

B
A/B)

3: Calculate M using Equation (3.48)
4: Calculate K using Equation (3.49)
5: for i ∈ [1, ..., NX ] do

6: Calculate h(i)(x
(i)
n , xl, ω̃k, r

B
B/A)

7: Calculate y(i) using Equation (3.38) . Particle measurement prediction
8: w(i) ← p

(
y(i) | y,M

)
. Evaluate particle on measurement PDF

Algorithm 6 MACIN Map Update

1: procedure Map Update
2: for i ∈ [1, ..., NX ] do . iterate over particles
3: for j ∈ [1, ..., Nv] do . iterate over vehicles

4: Pick lane that minimizes dproj for r
(i)
j . Closest lane to vehicle j

5: dONN ← dlane − dveh,j . See Figure 4.3
6: if dproj > dONN then
7: w(i) ← 0

Each of the NCAT scenarios is enumerated in Table A.1. Drive results for NCAT are

given later in Tables 6.2 and 6.3, and drives in which each vehicle was piloted at the very

edge of the lane boundary are denoted in the “Near Bound” column. Figures A.1 through

A.6 in Appendix A give graphical illustrations of vehicle motion for all NCAT drives.

A second environment in which map aiding becomes less useful is the center of intersec-

tions. Intersections have no defined lanes or visible lane boundaries, and nearly the entire

area is a plausible driving surface, so little can be inferred in the way of positional constraints.

Figure 6.1: Satellite image of the NCAT test track
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Algorithm 7 MACIN Kalman Measurement Update

1: procedure Kalman Update
2: Γ←most likely lane . Section 4.5.2
3: I ← [ ] . List of in-lane particles
4: for i ∈ [1, ..., NX ] do
5: if li = Γ then . Particle is in-lane
6: I ← i . Add particle to list

7: xn ← mean(x(i) for i ∈ I) . Particle state mean
8: Pn ← cov(x(i) for i ∈ I) . Particle state covariance
9: Calculate h(xn, xl, ω̃, r

B
A/B)

10: Pl −= KMKT . Linear covariance update
11: xl += K (y − h− Cxl) . Linear state update

Figure 6.2: NCAT test track lane network representation

This makes intersections ideal for stress-testing the MACIN algorithm. The intersection used

for testing is pictured in satellite imagery in Figure 6.3, and its representation as a lane net-

work graph is depicted in Figure 6.4. Two vehicles with identical equipment were used in

the intersection scenarios as well. Drive results for the intersection are given later in Tables

6.4 and 6.5.

For the intersection location, three scenarios were enacted, which are given in Table A.2

and described here. In Runs 1 and 2, vehicle 1 travels west to east, going straight through

the intersection without stopping. Vehicle 2 travels south to north, stopping before traveling

straight through the intersection. In Run 3, vehicle 1 travels west to south, turning right at

the intersection. Vehicle 2 travels south to west, turning left at the intersection. In Run 4,

vehicle 1 travels west to north, turning left at the intersection. Vehicle 2 travels south to
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Figure 6.3: Intersection used for data collection

Figure 6.4: Intersection lane network representation
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east, turning right at the intersection. Each of the intersection scenarios is enumerated in

Table A.2, and Figures A.7 through A.9 in Appendix A give graphical illustrations of vehicle

motion for all NCAT drives.

The map representations for both cases are stored using the OpenStreetMap format [91],

which is an extension of the XML markup language. For an example of representing lane

networks in the OSM XML format, see Appendix B. Truth data for absolute position was

obtained using real-time kinematic (RTK) GPS corrections from a fixed base station. RTK

provides positioning with errors at the centimeter level [92], which is an order of magnitude

more accurate than MACIN, which is providing accuracy on the order of decimeters. The

primary metric for MACIN’s performance will be root-mean-square error (RMSE) of the

position solution in the 2-dimensional earth-tangent plane. The RMSE value for an arbitrary

quantity is calculated by:

RMSE =

√√√√ 1

N

N∑
i=1

(xestimate − xtrue)2 (6.5)

This is appropriate given the primary goal of improving the lane-level position estimates to

sub-meter level.

6.4 Experimental Hardware

A single set of sensor hardware is used here to isolate the effects of MACIN on navigation

performance relative to a baseline EKF. Each vehicle is outfitted with a NovAtel OEMV GPS

receiver (Figure 6.5), and a Crossbow IMU440CA200 inertial measurement unit (Figure 6.6).

The fixed RTK base station that was used as a source of position truth also employed the

same NovAtel OEMV receiver. Removing differences in sensing equipment between the

two vehicles makes comparing the performance between them more meaningful. All sensor

measurements were collected over a universal serial bus (USB) connection to a Linux laptop,

and recorded using the Mission Oriented Operating Suite (MOOS) [93] as a middleware.
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Figure 6.5: NovAtel OEM-V Propak V3 GNSS receiver and antenna used for data collection

Figure 6.6: Crossbow 440-CA200 IMU used for data collection

6.5 Time Synchronization

All middleware solutions have inherent jitter, that is, time-varying lags in message

delivery and time stamping which are difficult to predict and correct between successive

epochs. The effect that jitter has on PVA estimation is largely dependent on the system

dynamics relative to the magnitude of the timing errors. For instance, in a system using

position updates, position accuracy becomes more sensitive to timing errors as velocity

increases. Accordingly, in a system using orientation updates, orientation accuracy becomes

more sensitive to timing errors as angular velocity increases.

The middleware and sensor interfaces used for data collection in this thesis were subject

to considerable timing errors, particularly in the first minutes of data collection. However,

GPS data is aligned to GPS time epochs to an accuracy of less than 100 ns for SPS [90],

and the GPS time is packaged into the measurement. For the purposes of this thesis, it

is assumed that GPS time stamps contain negligible errors. Each GPS measurement also

provides a middleware time stamp, expressed as seconds removed from the Unix time epoch
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and subject to timing error. Timing errors for the GPS receiver and IMU are modeled as:

t̃MW
g = tGPSg + δt+ cg + ηg (6.6)

t̃MW
i = tGPSi + δt+ ci + ηi (6.7)

where t̃MW
g and t̃MW

i are the middleware time stamps of the GNSS and IMU measurements,

respectively. tGPSg is the GNSS measurement’s true GPS time stamp (which is known), and

tGPSi is the IMU measurement’s true GPS time stamp (which is not known). δt is the true

offset between GPS time and Unix time, and is known since it can computed analytically.

cg and ci are constant offsets that exist primarily due to repeatable computation time for

processing each measurement. ηg and ηi are unknown and unmodeled additional errors.

In this thesis it is assumed that both the GNSS receiver and the IMU experience the

same constant time offset, and that the additive noise on each is zero mean with the same

standard deviation, as stated in Equations (6.8) below.

cg ≈ ci (6.8)

ηg ≈ ηi ∼ N (0, σt) (6.9)

t̃MW
g = tGPSg + ∆t+ ηg (6.10)

t̃MW
i = tGPSi + ∆t+ ηi (6.11)

∆t ≈ mean(̃tMW
g − tGPSg ) (6.12)

It is also assumed that the sampling period of the IMU remains constant. GNSS and IMU

measurements can be matched by estimating an constant offset from the GNSS measurements

alone.

For further work on network time delay analysis and compensation, see [94]. Since this

thesis deals with post-processing only, time stamping inaccuracies are the sole concern and

delivery delays are irrelevant. However, on an online system the PVA estimator is expected
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Table 6.1: RMS value of position error for one run with and without time synchronization.

Position RMSE 3D 2D
Without time synchronization 3.328 m 1.262 m

With time synchronization 1.607 m 1.073 m

to provide estimates for states at epochs that are very near to the current time. Under such

requirements, receiving measurements that correspond to estimation epochs far in the past

or which are out of sequence is problematic, and a new class of filters and methods exists

solely for dealing with this. Recommended reading includes [59,85–87,95–100].

In order to examine the effect of this time synchronization scheme, results before and

after its application must be compared. This is done below using a representative 5 minute

data set in benign GPS conditions, traveling 10-15 m/s. Standard single-vehicle loosely

coupled EKF estimates of position are compared to fixed-base RTK measurements, and the

results are tabulated in Table 6.1. In this case, “2D” indicates the RMS value for position

error magnitude in north and east earth-tangent directions, but not elevation.

6.6 MACIN Experimental Results

This section will show results from experimental data collected according to the proce-

dures described in the previous sections. Section 6.6.1 presents all of the results in aggregate,

with a high-level discussion. Section 6.6.2 will show best case behavior for MACIN, whereas

Section 6.6.3 will show worst case behavior. Section 6.6.4 looks at lane selection accuracies,

and finally, Section 6.6.5 will discuss MACIN’s behavior when aiding sources are removed.

6.6.1 Aggregated Results

All results for MACIN and the baseline are all consolidated into a single plot in Figure

6.7. For this figure, each point represents a separate drive for a single vehicle, with the

x-axis value being the earth tangent position RMSE of the baseline filter, and the y-axis

value being the earth tangent position RMSE of MACIN. A “parity” line with a slope of 1.0

75



indicates possible locations where the baseline filter and MACIN had equivalent performance.

Points above the line indicate test runs where the baseline had lower errors, whereas points

below the line represent drives where MACIN performed better than the baseline. One can

see that MACIN always performed better than the baseline, as expected. In all but two

outlying scenarios, the earth tangent position RMSE is below 1.0m, meaning that MACIN

yields nominally sub-meter accurate positioning for the scenarios that were tested.

Figure 6.7: Scatter plot of results for all data collection drives. The further a point is below
the white line, the better MACIN performed relative to the baseline.

Results for each individual drive at the NCAT test track are tabulated in Tables 6.2 and

6.3 for vehicles 1 and 2, respectively. For a description of each test run collected at NCAT,

see Section 6.3 and Table A.1. Results for each individual drive at the intersection location

are tabulated in Tables 6.4 and 6.5 for vehicles 1 and 2, respectively. For a description of

each data set collected at the intersection location, see Section 6.3 and Table A.2. Each

of the numberical results tables contains both the baseline and MACIN 2D position RMSE

values for each test run, along with the error reduction MACIN delivered.

Looking a bit further, Vehicle 2 has much less consistent performance compared to Ve-

hicle 1. Vehicle 1 had its IMU permanently mounted, whereas Vehicle 2 utilized a temporary

IMU mounting solution due to hardware availability constraints. This mounting resulted in
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Table 6.2: 2D Position RMSE for data collected at NCAT, Baseline vs MACIN, vehicle 1

Run # Run Type Near Bound Baseline MACIN Improvement
2 E Y 1.55 m 0.43 m 72.30 %
3 F N 1.49 m 0.52 m 65.00 %
4 D N 1.15 m 0.44 m 61.55 %
5 D Y 1.43 m 0.43 m 69.97 %
6 D N 1.10 m 0.41 m 63.30 %
7 A N 1.35 m 0.50 m 63.23 %
8 D Y 1.03 m 0.44 m 56.91 %
9 B N 1.44 m 0.58 m 60.05 %
10 C N 1.25 m 0.33 m 73.99 %
11 C Y 1.52 m 0.51 m 66.33 %
12 C N 1.49 m 0.75 m 50.11 %
13 A N 1.56 m 0.39 m 75.15 %

Table 6.3: 2D Position RMSE for data collected at NCAT, Baseline vs MACIN, vehicle 2

Run # Run Type Near Bound Baseline MACIN Improvement
2 E Y 1.96 m 0.68 m 65.44 %
3 F Y 1.29 m 0.58 m 55.36 %
4 D Y 0.86 m 0.76 m 11.29 %
5 D Y 0.77 m 0.36 m 53.05 %
6 D N 1.07 m 0.63 m 41.11 %
7 A Y 1.37 m 0.56 m 59.47 %
8 D Y 0.72 m 0.60 m 17.75 %
9 B N 1.21 m 0.50 m 58.74 %
10 C N 1.77 m 0.52 m 70.51 %
11 C N 2.19 m 0.51 m 76.84 %
12 C Y 1.26 m 0.71 m 44.00 %
13 A Y 2.12 m 0.38 m 82.11 %

Table 6.4: 2D Position RMSE for intersection data, Baseline vs MACIN, for vehicle 1

Run # Baseline MACIN Improvement
1 1.63 m 0.98 m 39.88 %
2 2.23 m 0.94 m 57.89 %
3 0.90 m 0.53 m 40.78 %
4 1.79 m 1.07 m 40.33 %
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Table 6.5: 2D Position RMSE for intersection data, Baseline vs MACIN, for vehicle 2

Run # Baseline MACIN Improvement
1 1.25 m 0.88 m 29.62 %
2 1.75 m 1.03 m 40.96 %
3 1.01 m 0.80 m 20.57 %
4 1.41 m 0.96 m 31.64 %

IMU vibration and variation in the lever arm rBA/B between the IMU frame and the GNSS

antenna. Since rBA/B was assumed to be rigid, this motion led to decreased performance and

the process noise terms were inflated to accommodate the unmodeled dynamics. Further-

more, the internal positioning engine in the GNSS receiver on vehicle 2 reported consistently

higher position uncertainties, as shown in Figure 6.8. Even with this handicap, MACIN

always outperformed the baseline. In fact, while these issues cause the baseline to see its

worst performances on vehicle 2 in runs 2, 3, 11, and 13, those very same test runs saw no

discernable change in MACIN’s nominal behavior on the same vehicle. This is an indication

that use of the techniques presented in this thesis allow a vehicle with degraded sensing to

maintain accurate navigation by relying on information from cooperating vehicles.

Figure 6.8: Position standard deviation reported by the GPS receiver internal positioning
engine for NCAT run 13, vehicle 1 versus vehicle 2.

One can also notice that in the intersection drives, MACIN saw a slight reduction in

performance. This is because those drives include non-negligible amounts of time during

which both vehicles were traveling without map constraints due to being within the bounds
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of an intersection. Since MACIN cannot make any reasonable probabilistic inference about

the vehicle’s position using the map when the vehicle is within an intersection, it briefly

shuts off map constraints as discussed in Chapter 4 For this reason MACIN performs closer

to the baseline during test runs which included an intersection. However, relative updates

are still turned on during these brief periods, and the vehicles still spend a majority of time

on regular roadway, so there is still a significant improvement.

6.6.2 MACIN Best Case Results

One instance of ideal behavior occurs during run number 13 of the NCAT data sets is

shown below in Figure 6.9. The ground truth (RTK) paths traversed by both test vehicles

during approximately the same time period are shown side by side, as well as the position

solutions for both baseline filter and MACIN. One can see that vehicle 1 was travelling near

the center of the right lane, and MACIN correctly placed the vehicle in that position. The

baseline filter estimate is impinging upon the adjacent lane or straddling the lane divider

the whole time. This is not unexpected, since the hard lane constraints would be expected

to bias results toward the center.

Vehicle 2 was driven close to the lane divider in order to stress test this hypothesis.

One can see that its true position was very near the adjacent lane, and yet MACIN defied

expectations and accurately captured this. The baseline filter, on the other hand, was biased

toward the lane center. This case can be considered an ideal outcome.

6.6.3 MACIN Worst Case Results

Run number 4 of the intersection data set contains a very challenging situation for

any navigation filter. Ground truth paths for both vehicles are shown side by side below

for this run in Figure 6.10, along with the paths estimated by the baseline and MACIN.

The speeds stay under 12 m/s throughout the drive since it occurs in a parking lot, and

in conjunction with the short duration, this prevents the vehicle dynamics from becoming
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Figure 6.9: Concurrent paths estimated by MACIN, the baseline, and RTK truth for both
vehicles during NCAT run 13.

excited enough for the IMU error terms to sufficiently converge to the proper values. When

error terms have not converged to the proper value, it causes the position to rapidly drift

away between Kalman updates, and then experience large changes when updates do occur.

This “sawtooth” behavior is clearly visible in the path of the baseline filter. MACIN also

suffers for the same reason, with a clear difference: large jumps in position occur within the

confines of the correct lane. This shows that even in poor conditions with incorrect IMU

error estimates, MACIN is able to bound the errors such that the position estimate is always

lane-level accurate.

6.6.4 Lane Selection Accuracy

All test drives stayed in one lane for the duration of each test. This allows the correct

lane to be determined in postprocessing at every single point in each drive, in order to

evaluating lane selection accuracy. In order to collect data with lane changes, some system

for annotating the exact time a test vehicle crossed over a lane boundary would be required,

and no such system was available for this thesis.
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Figure 6.10: Concurrent paths estimated by MACIN, the baseline, and RTK truth for both
vehicles during intersection run 4.

Every data set began with the test vehicles stopped, and this played an important role

in lane selection. Experimental results for lane selection accuracy were very poor during

this static period before the vehicles began moving. MACIN output an incorrect lane choice

at least once during initialization for 20 of the 32 instances (2 vehicles and 16 test drives).

Figure 6.11 below shows an example of this occuring for vehicle 2 during test drive number

3 at NCAT. The northernmost lane was incorrectly selected briefly prior to the moment the

vehicle first moved.

However, in all test drives, there was not a single instance of MACIN making an incorrect

lane selection after the initial static period ended. This means that MACIN was 100%

accurate in selecting the correct lane while the vehicles were in motion for the data collected

in this thesis. So not only are the overall RMS values of position error under the threshold

for lane-level accuracy, but the actual lane assignment is accurate after the vehicle begins

moving.

6.6.5 Performance with Aiding Partially Disabled

An area that requires further research is MACIN’s performance when its aiding sources

are removed. This thesis investigates the behavior in 2 cases: when either map constraints
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Figure 6.11: Example of MACIN selecting the wrong lane during initialization, prior to the
vehicle moving.

or DRTK relative positioning are individually disabled for the duration of the test drive. In

the case of no map aiding, performance degraded on a per-vehicle basis and in many cases

the filter failed due to sample impoverishment (all particle weights went to zero), whereas

with DRTK disabled MACIN was observed to experience sample impoverishment for all data

sets.

Map Aiding Disabled

Results for the NCAT drives in which MACIN did not experience sample impoverish-

ment with map aiding disabled and DRTK enabled are shown in Tables 6.6 and 6.7 for

vehicles 1 and 2, respectively. None of the intersection data sets were successful under these

conditions.

From this information, it is immediately apparent that vehicle 1 experienced degraded

performance, but still outperformed the baseline. On the other hand, the positioning for

vehicle 2 is even worse than the baseline. Two key differences between the two test vehicle

data sets contributed to this. First, the value of the linear partition process noise η from

Equation 3.55 was inflated for vehicle 2. As mentioned earlier, this was done in order to

account for modeling errors that arose from the hardware setup allowing the IMU to vibrate
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Table 6.6: 2D Position RMSE for data collected a NCAT, comparison of MACIN performance
with map constraints disabled, for vehicle 1.

Run # Run Type Baseline MACIN No Map MACIN
2 E 1.55 1.44 0.43
3 F 1.49 1.03 0.52
6 D 1.10 1.27 0.41
7 A 1.35 1.14 0.50
8 D 1.03 1.06 0.44
9 B 1.44 0.98 0.58
12 C 1.49 1.15 0.75
13 A 1.56 0.79 0.39

Table 6.7: 2D Position RMSE for data collected a NCAT, comparison of MACIN performance
with map constraints disabled, for vehicle 2.

Run # Run Type Baseline MACIN No Map MACIN
2 E 1.96 2.19 0.68
3 F 1.29 1.87 0.58
6 D 1.07 1.27 0.63
7 A 1.37 1.64 0.56
8 D 0.72 1.81 0.60
9 B 1.21 1.72 0.50
12 C 1.26 2.20 0.71
13 A 2.12 1.58 0.38

and the GNSS antenna lever arm to fluctuate. As a result of this increased linear partition

process noise, the linear partition covariance Pl was larger for vehicle 2 relative to vehicle 1.

Since Pl | v was selected for the particle process noise in Equation 6.4, the position for vehicle

2 spread at a much higher rate than that of vehicle 1. This can be seen in the standard

deviation computation over the position particles, shown in Figure 6.12. Without a map

constraint update every propagation epoch, though, the particles were only resampled at

the GNSS receiver measurement rate of 2 Hz, leaving a much longer period of time for the

particles to propagate open-loop, and thus having a much higher likelihood of diverging. The

second difference is in the performance of the vehicles’ respective GNSS receivers, as noted

earlier (see Figure 6.8). However, it is worth noting that despite the elevated GPS position

83



uncertainty in vehicle 2, the presence of DRTK allowed vehicle 2 to converge to the same

level of certainty as vehicle 1 at each update.

Figure 6.12: Standard deviation of MACIN position particles with map aiding completely
disabled for NCAT run 13.

The failure mechanism, then, is that particles become too spread out for any single

particle to evaluate to a non-zero weight, and the filter has no valid samples. The number of

effective particles Neff from Equation 3.30 is a direct measure of this sample impoverishment.

It is computed after the weight update, and before the resampling step. Even in one of

the best-performing cases with no map updates, NCAT run 13, there was significant sample

impoverishment. Figure 6.13 shows that Neff was at most 4% of the total number of particles

for this run. For reference, in [66] the authors indicate that Neff should not be allowed to go

lower than 67% of the total number particles before resampling. Some authors, however, do

allow this to drop as low as 10% [101]. Further research is required to adequately characterize

and address the problems that arise when map aiding is completely disabled.

DRTK Disabled

This phenomenon of sample impoverishment occurred in every data set when map aiding

was enabled, but DRTK was disabled. Each particle in MACIN is a concatenation of the

position samples for all participating vehicles. As such, each particle’s weight is a score
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Figure 6.13: Number of effective particles during NCAT run 13 with map aiding disabled.

of the combined likelihood of both vehicle position samples. However, when cooperative

aiding from a relative position vector is withheld, the two vehicle’s respective state variable

partitions evolve independently of one another. The only correlation between them is that

they use similar sets of satellites and the same map, but these correlations were neglected in

this thesis, so there is nothing to explicitly link them any longer. However, the weight update

of the particle partition still evaluates them as a single state, as if they were correlated.

As an example, consider a single particle that contains a high likelihood position sample

for vehicle 1, and a low likelihood position sample for vehicle 2. The process noise distri-

bution that was sampled in order to generate the two positions is effectively two separate

distributions, and yet the two particles will be evaluated as if they are linked. This means

that the high likelihood sample of the position PDF for vehicle 1 will recieve the same low

weight as the low likelihood sample of vehicle 2’s position PDF.

So without DRTK, the particles contain uncorrelated variables whose weights are evalu-

ated as if they were correlated. This is a clear issue, particularly when one vehicle experiences

degraded measurement quality, as was the case in the experimental data collection for this

thesis. Further research is required to adequately characterize and address the problems that

arise when DRTK is completely disabled.
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Chapter 7

Summary & Conclusions

The preceding chapters have comprehensively laid out a novel map aided cooperative

inertial navigation system which produces sub-meter performance. Chapter 2 explained

basics of IMUs, and the error model used in this thesis. Chapter 3 gave a basic background

on estimation as it relates to inertial navigation, and gave formulations for the baseline EKF

as well as the Rao-Blackwellized particle filter MACIN is built on. Chapter 4 discussed

the current state of map usage in navigation applications and detailed the map constraint

strategy used herein. Chapter 5 gave an overview of the burgeoning field of cooperative

navigation and the relative positioning technique that MACIN employs. Chapter 6 gave the

detailed MACIN algorithm for readers to replicate on their own, and discussed real world

data collection along with the results MACIN produced. Following are some key areas for

potential expansion of this work in the future:

• Implement MACIN for online operation in a real-time embedded computing system.

Timing concerns arise from the fact that GNSS data are typically experience delays on

the order of several milliseconds, which can be detrimental in high-dynamic driving.

Setting up a pulse-per-second (PPS) connection or some other system to ascertain the

true time to which a GNSS measurement corresponds is critical to real-time function-

ality. In addition to that, the algorithmic concerns with processing out of sequence

measurements must be considered (as discussed in Chapter 5).

• Implement MACIN in a decentralized architecture. This is theoretically simple, using

the covariance intersection method employed by [70]. The core difficulty in getting a

decentralized cooperative navigation filter is in the implementation (mostly software

framework) and timing (as discussed above).
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• Add close- or tight-coupling between GNSS and IMU measurements. This will im-

prove satellite tracking performance and allow more fine-grained fault detection and

exclusion.

• Closer map coupling: MACIN currently uses a binary pseudomeasureent of whether

each vehicle is inside or outside of lane boundaries. This information is assumed to

come from a camera- or LiDAR-based vision system. Two key improvements can be

made:

– Use detected lane lines as relative position measurements (similar to [102]), either

as projected onto the closest roadway, or using shape matching.

– Use visual landmarks from a semantic map as range measurements.

As was mentiond in Section 4.5.1, applying vertical constrains to match the physical

limitation that all ground vehicles must travel along the manifold of the roadway would

allow extremely tight restrictions. This would exceed the lower limit on accuracy in the

earth-tangent directions that arises from lane width minimums. In order to do this, accurate

computation of the IMU position relative to the road surface is required, and this must come

from a dynamic roll and pitch model that takes suspension dynamics into account. If one

were to apply vertical constraints in this manner, not only would positional accuracy be

greatly increased, but the attitude would likely be significantly more accurate as well. This

would of course necessitate an attitude truthing system to verify.

This thesis has presented a novel navigation filter for use in ground vehicles that require

lane-level positioning. MACIN’s approach of combining Rao-Blackwellized particle filtering,

map constraints, and DRTK relative positioning may be implemented by the reader with

the algorithms presented in this thesis. On current computing hardware, it is capable of

running in real time at 100 Hz, allowing use in applications where low latency is important.

Experimental data showed highly accurate lane selection capability and consistent submeter

positioning performance. This drastic reduction in errors is possible using only sensors and
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information that are currently available on commercial passenger ground vehicles. As such,

the objectives outlined in the introduction to this thesis have been accomplished.

88



Bibliography

[1] “’Phantom Auto’ will tour city”. The Milwaukee Sentinel, Dec. 8 1926.

[2] OpenStreetMap Contributors. OpenStreetMap. https://www.openstreetmap.org/

copyright. Accessed: 2019-10-01.

[3] Society of Automotive Engineers (SAE) V2X Core Technical Commit-
tee, 2016. Dedicated Short Range Communications (DSRC) Message Set Dictionary.
J2735.

[4] Federal Highway Administration, July 2007. Mitigation Strategies for Design
Exceptions. Table 3: Ranges for Lane Width.

[5] Jafari, M., and Roshanian, J., 2013. “Inertial Navigtion Accuracy Increasing Using
Redundant Sensors”. Journal of Science and Engineering, 1(1), pp. 55–66.

[6] Han, S., and Wang, J., 2011. “Quantization and Colored Noises Error Modeling for In-
ertial Sensors for GPS/INS Integration”. IEEE Sensors Journal, 11(6), jun, pp. 1493–
1503.

[7] Wall, J. H., 2007. “A Study of the Effects of Stochastic Inertial Sensor Errors in
Dead-Reckoning Navigation”. PhD thesis, Auburn University.

[8] Groves, P. D., 2013. Principles of GNSS, inertial, and multisensor integrated navigation
systems. Artech house.

[9] Crassidis, J., 2005. “Sigma-Point Kalman Filtering for Integrated GPS and Inertial
Navigation”. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
American Institute of Aeronautics and Astronautics, pp. 1–24.

[10] Flenniken, W. S., 2005. “Modeling Inertial Measurement Units and Anlyzing the Effect
of Their Errors in Navigation Applications”. PhD thesis, Auburn University.

[11] Flenniken IV, W. S., Wall, J. H., and Bevly, D. M., 2005. “Characterization of Var-
ious IMU Error Sources and the Effect on Navigation Performance”. Ion Gnss 2005,
pp. 967–978.

[12] Ryan, J., 2016. “Classification of Ego Platform Motion for Platform Independent Plug
and Play Navigation”. Doctoral dissertation, Auburn University.

[13] Engelberg, S., 2006. Random Signals and Noise. CRC Press.

89

https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright


[14] Wang, B., Ren, Q., Deng, Z., and Fu, M., 2015. “A Self-Calibration Method for
Nonorthogonal Angles Between Gimbals of Rotational Inertial Navigation System”.
IEEE Transactions on Industrial Electronics, 62(4), apr, pp. 2353–2362.

[15] Shin, E.-H., and El-Sheimy, N., 2002. “A new calibration method for strapdown inertial
navigation systems.”. Z. Vermess, 127(1), pp. 1–10.

[16] Wall, J. H., 2007. “A Study of the Effects of Stochastic Inertial Sensor Errors in
Dead-Reckoning Navigation”. PhD thesis, Auburn University.

[17] USGS Earthquake Map. https://earthquake.usgs.gov/earthquakes/map/. Ac-
cessed: 2019-12-28.

[18] Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T., 2002. “A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking”. IEEE Transactions on
Signal Processing, 50(2), feb, pp. 174–188.

[19] Welch, G., and Bishop, G., 2006. An Introduction to the Kalman Filter. Tech. rep.,
University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, jul.

[20] Dieci, L., and Eirola, T., 1994. “Positive definiteness in the numerical solution of
Riccati differential equations”. Numerische Mathematik, 67(3), apr, pp. 303–313.

[21] Mazzoni, T., 2007. “Computational Aspects of Continuous-Discrete Extended Kalman
-Filtering”. pp. 1–15.

[22] Wan, E. A., and van der Merve, R., 2000. “The Unscented Kalman Filter for Nonlinear
Estimation”. pp. 153–158.

[23] Mandel, J., 2009. “A Brief Tutorial on the Ensemble Kalman Filter”. SciencesNew
York, 2007(242), jan, p. 7.
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Appendix A

Supplemental Information for Experimental Data

Table A.1: Description of data collection scenarios at NCAT

Code Description Runs Collected
A Both vehicles going around curve in opposite direction,

pass each other in middle
7, 13

B Go around curve in the same direction, different lanes,
side by side

9

C Go around curve in same direction, same lane, single file 10, 11, 12
D Go down straight in opposite directions, different lanes,

pass each other in middle
4, 5, 6, 8

E Go down straight in same direction, different lanes, side
by side

2

F Go down straight in same direction, same lane, single file 3
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Figure A.1: Diagram of vehicle motion for NCAT run type A.

Figure A.2: Diagram of vehicle motion for NCAT run type B.

Figure A.3: Diagram of vehicle motion for NCAT run type C.
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Figure A.4: Diagram of vehicle motion for NCAT run type D.

Figure A.5: Diagram of vehicle motion for NCAT run type E.

Figure A.6: Diagram of vehicle motion for NCAT run type F.

Figure A.7: Diagram of vehicle motion for intersection runs 1 and 2.
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Figure A.8: Diagram of vehicle motion for intersection run 3.

Figure A.9: Diagram of vehicle motion for intersection run 4.

Table A.2: Description of data collection runs in intersection environment

Run # Description
1 Vehicle 1 travels west to east, traveling straight. Vehicle 2

travels south to north, stopping before traveling straight.
2 Vehicle 1 travels west to east, traveling straight. Vehicle 2

travels south to north, stopping before traveling straight.
3 Vehicle 1 travels west to south, turning right. Vehicle 2

travels south to west, turning left.
4 Vehicle 1 travels west to north, turning left. Vehicle 2

travels south to east, turning right.
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Appendix B

Example OpenStreetMap Network

Listing B.1: XML source code for an example lane network.

<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>

<osm version=’ 0 .6 ’>

<node id=’ 1 ’ l a t=’ 32.0000000 ’ lon=’ −85.0000000 ’>

<tag k=’ width ’ v=’ 3 .6 ’ />

</node>

<node id=’ 2 ’ l a t=’ 32.0000100 ’ lon=’ −85.0000000 ’>

<tag k=’ width ’ v=’ 3 .6 ’ />

</node>

<node id=’ 3 ’ l a t=’ 32.0000100 ’ lon=’ −85.0000100 ’>

<tag k=’ width ’ v=’ 3 .6 ’ />

</node>

<node id=’ 4 ’ l a t=’ 32.0000200 ’ lon=’ −85.0000000 ’>

<tag k=’ width ’ v=’ 3 .6 ’ />

</node>

<node id=’ 5 ’ l a t=’ 32.0000300 ’ lon=’ −85.0000100 ’>

<tag k=’ width ’ v=’ 3 .6 ’ />

</node>

<way id=’ 100 ’>

<nd r e f=’ 1 ’ />

<nd r e f=’ 2 ’ />

<nd r e f=’ 3 ’ />

</way>

<way id=’ 101 ’>

<nd r e f=’ 2 ’ />

<nd r e f=’ 4 ’ />

<nd r e f=’ 5 ’ />

</way>

</osm>
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Figure B.1: UTM frame depiction of the example lane network
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