
Path Following and Obstacle Avoidance for Autonomous Ground Vehicles Using
Nonlinear Model Predictive Control

by

Robert Brothers

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 2, 2020

Keywords: model, predictive, control, avoidance

Copyright 2020 by Robert Brothers

Approved by

David Bevly, Chair, Professor of Mechanical Engineering
George Flowers, Professor of Mechanical Engineering

John Hung, Professor of Electrical and Computer Engineering

Abstract

This thesis presents a nonlinear model predictive controller (NMPC) for path following

and obstacle avoidance in automated driving systems. Automated safety control systems have

been increasingly effective at reducing the number of traffic fatalities in the United States.

Many of the commercially available safety systems are still only classified as SAE level 1 and

level 2 autonomy features. To progress towards SAE level 3 and level 4 automated driving sys-

tems, obstacle avoidance control must be added to the vehicle’s dynamic driving task, removing

human drivers from the control loop. Many current level 2 automated driving systems, such as

Auburn University’s heavy truck platooning system, could progress towards full autonomy by

incorporating obstacle avoidance control into their existing control architectures. The NMPC

control module developed in this work is designed to take advantage of an automated vehicle’s

existing software stack to provide enhanced path tracking and obstacle avoidance maneuvering.

Two simple vehicle models, a kinematic model and a dynamic bicycle model, are de-

veloped identified and implemented in a flexible NMPC software library which is feasible for

real-time control of an autonomous vehicle. In a series of simulation and real-time experiments,

a detailed tuning procedure and performance evaluation for both NMPC implementations are

given. The kinematic model implementation is also shown to work as a replacement controller

in Auburn University’s existing software architecture for long distance, non-line-of-sight fol-

lowing of a manually driven leader vehicle. Obstacle avoidance is added to each controller

implementation through a set of hard constraints. The feasibility of this constraint method is

demonstrated with two simulated obstacle avoidance scenarios. Future improvements to both

the obstacle avoidance method and path tracking accuracy are discussed.

ii

Acknowledgments

First, I have to thank my family for loving, supporting, and encouraging me through my

graduate education. Without my parents, Robert and Polly, I never would have made it to this

point in my life. I attribute my love for learning and my work ethic to them. Special thanks

must also be given to my wonderful girlfriend, Ashley. She has been patient and supportive

throughout all the ups and downs of my graduate work.

I also have to thank Dr. Bevly for giving me this opportunity to work on interesting

and fullfilling projects during my graduate education. He originally inspired me during my

undergraduate studies to continue learning about the control of dynamic systems and to push

my skills as a mechanical engineer. I have learned so much from him and Dr. Scott Martin

during my three years in the GAVLab. I hope to get a chance to work with both of them again

and to see them again out on the slopes in Utah.

There are so many other fellow GAVLab members that I have to thank. This thesis cer-

tainly would not have been possible without the mentorship and prior work that Dan Pierce

and Grant Apperson provided. Thank you both for your generosity, guidance, and friendship.

Thanks must also be given to Tanner Ray and Stephen Geiger for always keeping things light-

hearted and fun in our office, even during some of our second-shift work hours. Special thanks

to my friend and office-mate Patrick Smith for always being available to bounce ideas off of.

He has provided immeasurable ammounts of help towards finishing this thesis. Thank you to

all my other past and present office-mates: Troupe Tabb, Luke Kamrath, Dan Kamrath, Nate

Kamrath, Houston Cleveland, and Jake Ward. I really enjoyed celebrating festivus with you all

every Thursday, because one airing of grievances on December 23rd is just not enough.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Abbreviations . xiii

1 Introduction . 1

1.1 Background and Motivation . 1

1.2 Prior Research . 4

1.3 Contributions . 10

1.4 Thesis Outline . 10

2 Ground Vehicle Modeling and Simulation . 12

2.1 Vehicle Coordinate Frames . 12

2.2 Kinematic Modeling . 14

2.3 Yaw Dynamic Modeling . 20

2.4 Simulator Modeling . 21

3 Model Predictive Control . 26

3.1 The Receding Horizon Control Principle . 26

3.2 Optimization Problem Setup . 28

3.3 Path Following and Obstacle Avoidance MPC 34

3.4 MPC Implementation . 39

iv

4 Automated Vehicle System Overview: Auxiliary MPC Interfaces 45

4.1 DRTK/TDCP Path Following . 45

4.2 Current System Hardware and Software Architecture 48

4.3 Obstacle Detection and Tracking . 51

5 Simulation and Experimentation . 54

5.1 Experimental Vehicle Setup . 54

5.2 NMPC Performance Evaluation . 57

5.2.1 Experiment Procedures . 57

5.2.2 Horizon Sensitivity and Tuning . 60

5.2.3 Performance Metrics . 75

5.3 Obstacle Avoidance Application . 80

5.3.1 Simulation Procedures . 81

5.3.2 Obstacle Avoidance Results . 83

5.4 Non-line-of-sight Path Following Application 95

5.4.1 Experiment Procedures . 95

5.4.2 Non-line-of-sight following results . 97

6 Conclusions and Future Work . 100

6.1 Conclusions . 100

6.2 Future Work . 101

References . 103

Appendices . 113

A MKZ System Identification . 114

B MPC With IPOPT: An Example Sparsity Encoding Problem 125

v

C NMPC Horizon Tuning Procedure and Results . 140

vi

List of Figures

1.1 Lives Saved from Driving Safety Technology 1960 to 2012 1

1.2 Path Planning Stack . 5

1.3 MPC Path Planning Hierarchy Control Architecture 8

1.4 MPC Trajectory Control Architecture . 9

2.1 Vehicle-fixed Coordinate System . 13

2.2 Earth-fixed Coordinate Systems . 14

2.3 4 Wheel Vehicle in Planar Motion . 15

2.4 Bicycle Model in Steady-state Turning . 17

2.5 Bicycle Model Free-body Diagram . 19

2.6 Tire Force Curve for Pacejka’s Magic Tire Model 20

2.7 Real Drive-by-wire Lincoln MKZ (left) and Simulated Drive-by-wire Lincoln
MKZ (right) . 23

2.8 Gazebo MKZ Model Kinematic Chain . 24

2.9 Gazebo MKZ Model Kinematic Chain with Suspension Elements 25

3.1 Vehicle With State x(0) and a Number of Way-points xdesi in the State-space . 37

3.2 Circle-to-circle Collision Distance . 38

3.3 NMPC Software Library UML Class Diagram 44

4.1 . 46

4.2 High Precision Change in Position Between Measurement Epochs from TDCP . 47

4.3 Virtual Leader Following Using DRTK/TDCP Measurements 48

4.4 Auburn’s Current Hardware Suite for CACC Truck Platooning 49

vii

4.5 Subset of Auburn’s Current Software Architecture for CACC Truck Platooning
that Relates to Way-point Path Generation . 50

4.6 New Software Architecture Including MPC for Obstacle Avoidance and Way-
point Following . 53

5.1 Gazebo MKZ Drive-by-wire Software Interface 55

5.2 Real MKZ Drive-by-wire Software Interface 55

5.3 MKZ Drive-by-wire Software Interface: Real-time Controller Testing 56

5.4 MKZ Base-line Hardware Setup . 57

5.5 Reference Paths for Performance Evaluation and Tuning Experimental Procedures 58

5.6 Gazebo Simulation Two-lane Road . 58

5.7 Gazebo Plugin Published Path Visualized in RVIZ 59

5.8 NCAT Skid Pad Area . 59

5.9 Skid Pad Reference Paths (1 cm Resolution) Created From RTK GPS 60

5.10 Kinematic Model NMPC Controller Horizon Tuning Results 62

5.11 Bicycle Model NMPC Controller Horizon Tuning Results 63

5.12 Kinematic Model NMPC Controlled Single Lane Change in Gazebo With Hori-
zon Tuning (N = 60, T = 0.75s) . 64

5.13 Kinematic Model NMPC Controlled Single Lane Change in Real-time With
Horizon Tuning (N = 60, T = 0.75s) . 65

5.14 Bicycle Model NMPC Controlled Single Lane Change in Gazebo With Horizon
Tuning (N = 100, T = 0.03s) . 66

5.15 Bicycle Model NMPC Controlled Single Lane Change in Real-time With Hori-
zon Tuning (N = 100, T = 0.03s) . 67

5.16 Kinematic Model NMPC Steering Control Output with Various Input Weights . 69

5.17 Kinematic Model NMPC Velocity Control Output with Various Input Weights . 70

5.18 Kinematic Model NMPC Path Variation due to Steering Input Weights 70

5.19 Kinematic Model NMPC Path Variation due to Velocity Input Weights 71

5.20 20 m/s Step Steer – Bicycle Model NMPC Velocity Control Output with Vari-
ous Input Weights . 72

viii

5.21 20 m/s Step Steer – Bicycle Model NMPC Steering Control Output with Vari-
ous Input Weights . 72

5.22 10 m/s Step Steer – Bicycle Model NMPC Steering Control Output with Vari-
ous Input Weights . 73

5.23 10 m/s Step Steer – Bicycle Model NMPC Velocity Control Output with Vari-
ous Input Weights . 74

5.24 Bicycle Model NMPC Path Variation due to Steering Input Weight 74

5.25 Bicycle Model NMPC Path Variation due to Velocity Input Weights 74

5.26 Step Lane Change Maneuver Lateral Path Error Mean and Standard Deviation
with Increasing Path Speed . 76

5.27 Single Lane Change Maneuver Lateral Path Error Mean and Standard Deviation
with Increasing Path Speed . 77

5.28 Double Lane Change Maneuver Lateral Path Error Mean and Standard Devia-
tion with Increasing Path Speed . 77

5.29 Step Lane Change Maneuver Velocity Control Error Mean and Standard Devi-
ation with Increasing Path Speed . 78

5.30 Single Lane Change Maneuver Velocity Control Error Mean and Standard De-
viation with Increasing Path Speed . 79

5.31 Double Lane Change Maneuver Velocity Control Error Mean and Standard De-
viation with Increasing Path Speed . 79

5.32 RVIZ Visualization of an Empty Simulation World for Single Target Tracking
and Obstacle Avoidance Control . 81

5.33 RVIZ Visualization of the Published Path and Obstacle Position (left) and the
Gazebo Simulation World with a Walking Pedestrian Model Acting as an Ob-
stacle (right) . 82

5.34 Single Target Avoidance Test: Target Placed Directly Ahead of the Vehicle and
No Obstacle in the Path . 83

5.35 Single Target Avoidance Test: Target Placed Offset From the Vehicle’s Initial
Heading and No Obstacle in the Path . 84

5.36 Single Target Avoidance Test: Target Placed Directly Ahead of the Vehicle with
an Obstacle in the Path . 85

5.37 Kinematic Model NMPC Pedestrian Obstacle Avoidance at 1 m/s 85

5.38 Kinematic Model NMPC Pedestrian Obstacle Avoidance at 5 m/s 86

ix

5.39 Kinematic Model NMPC Pedestrian Obstacle Avoidance at 10 m/s 86

5.40 Bicycle Model NMPC Pedestrian Obstacle Avoidance at 1 m/s 87

5.41 Bicycle Model NMPC Pedestrian Obstacle Avoidance at 5 m/s 88

5.42 Bicycle Model NMPC Pedestrian Obstacle Avoidance at 10 m/s 88

5.43 Prediction Horizon and Avoidance Constraint Lagrange Multipliers at Select
Instants of the 10 m/s Pedestrian Avoidance Test Using the Kinematic Model
NMPC . 89

5.44 Prediction Horizon and Avoidance Constraint Lagrange Multipliers at Select
Instants of the 10 m/s Pedestrian Avoidance Test Using the Bicycle Model
NMPC . 90

5.45 Kinematic Model NMPC Pedestrian Obstacle Avoidance at 5 m/s with Path
Pre-processing . 92

5.46 Kinematic Model NMPC Pedestrian Obstacle Avoidance at 10 m/s with Path
Pre-processing . 92

5.47 Bicycle Model NMPC Pedestrian Obstacle Avoidance at 5 m/s with Path Pre-
processing . 93

5.48 Bicycle Model NMPC Pedestrian Obstacle Avoidance at 10m/swith Path Pre-
processing . 94

5.49 MKZ Test Vehicle Setup as an Autonomous Follower to the Manually Driven
Kia Optima Leader Vehicle . 96

5.50 Kia Optima Leader Vehicle Hardware Setup 96

5.51 Kinematic Model NMPC Following a Circular Path Generated from DRTK/TDCP 97

5.52 Kinematic Model NMPC Non-line-of-sight Following a Leader Vehicle 98

5.53 Sample Control Iterations During Non-line-of-sight Following 99

A.1 Gazebo Simulation Constant Radius (50 m) Test Set-up 117

A.2 MKZ Constant Radius (25 m) Test Track Path 117

A.3 Gazebo MKZ Constant Radius Test Results and Fit of Understeer Gradient . . . 118

A.4 MKZ Test Vehicle Constant Radius Test Results and Fit of Understeer Gradient 118

A.5 Gazebo MKZ Step Steer Test Model Comparison: 1 m/s 119

A.6 Gazebo MKZ Step Steer Test Model Comparison: 5 m/s 119

x

A.7 Gazebo MKZ Step Steer Test Model Comparison: 10 m/s 120

A.8 MKZ Vehicle Step Steer Test Model Comparison: 1 m/s 120

A.9 MKZ Vehicle Step Steer Test Model Comparison: 5 m/s 121

A.10 MKZ Vehicle Step Steer Test Model Comparison: 10 m/s 121

A.11 Bicycle Model Frequency Response for Real MKZ Vehicle 122

A.12 MKZ Model Comparisons: Step Steer Response at Various Speeds 124

B.1 GAVLab ATRV Differential Drive Robot . 126

B.2 NMPC Software Library UML Class Diagram 132

C.1 Kinematic Model NMPC Horizon Tuning Map: 1 m/s 141

C.2 Kinematic Model NMPC Horizon Tuning Map: 5 m/s 142

C.3 Kinematic Model NMPC Horizon Tuning Map: 10 m/s 142

C.4 Kinematic Model NMPC Horizon Tuning Map: 15 m/s 143

C.5 Kinematic Model NMPC Horizon Tuning Map: 20 m/s 143

C.6 Bicycle Model NMPC Horizon Tuning Map: 1 m/s 144

C.7 Bicycle Model NMPC Horizon Tuning Map: 5 m/s 144

C.8 Bicycle Model NMPC Horizon Tuning Map: 10 m/s 145

C.9 Bicycle Model NMPC Horizon Tuning Map: 15 m/s 145

C.10 Bicycle Model NMPC Horizon Tuning Map: 20 m/s 145

xi

List of Tables

2.1 MKZ Modeling Properties . 23

5.1 2-D Grid of Horizon Tuning Parameters for the Kinematic Model NMPC Im-
plementation . 61

5.2 2-D Grid of Horizon Tuning Parameters for the Bicycle Model NMPC Imple-
mentation . 61

5.3 NMPC Controller Implementations Final Tuning Parameters 75

A.1 MKZ Modeling Properties . 121

A.2 MKZ Bicycle Model Bandwidths at Varying Forward Speeds 121

B.1 Sparsity Encoding for the Jacobian of the Constraint Equations 130

B.2 Sparsity Encoding for the Hessian of the Lagrangian 131

C.1 2-D Grid of Horizon Tuning Parameters for the Kinematic Model NMPC Im-
plementation . 140

C.2 2-D Grid of Horizon Tuning Parameters for the Bicycle Model NMPC Imple-
mentation . 140

C.3 Kinematic Model NMPC Optimal Horizon Tuning Parameters 141

C.4 Bicycle Model NMPC Optimal Horizon Tuning Parameters 146

xii

List of Abbreviations

ABS Anti-lock Braking System

ACC Adaptive Cruise Control

ADS Automated Driving System

API Application Programmer Interface

CACC Cooperative Adaptive Cruise Control

CAN Controller Area Network

CC Cruise Control

DARPA Defense Advanced Research Projects Agency

DDT Dynamic Driving Task

DRTK Dynamic base Real Time Kinematic

DSRC Dedicated Short Range Communication

ECEF Earth-Centered, Earth-Fixed

ECU Electronic Control Unit

ENU East-North-Up

ESC Electronic Stability Control

FMVSS Federal Motor Vehicle Safety Standards

GNSS/INS Global Navigation Satellite System/Inertial Navigation System

GPS Global Positioning System

xiii

IMU Inertial Measurement Unit

IP Interior-point

KKT Karush-Kuhn-Tucker Conditions

LiDAR Light Detection and Ranging

LQR Linear Quadratic Regulator

LTV Linear Time Varying

MDP Markov Descision Process

MIMO Multiple-input Multiple-output

MPC Model Predictive Control

NHTSA National Highway Traffic Safety Administration

NMPC Nonlinear Model Predictive Control

ODD Operational Design Domain

ODE Open Dynamics Engine

OEDR Object and Event Detection and Response

OO Object-oriented

OSRF The Open Source Robotics Foundation

PID Proportional Integral Derivative

RADAR RAdio Detection And Ranging

RK4 Runge-Kutta 4th Order

ROS Robot Operating System

RRT Rapidly Exploring Random Tree

xiv

RTK Real Time Kinematic

SAE Society of Automotive Engineers

SIL Software in the Loop

SQP Sequential Quadratic Programming

TDCP Time Differenced Carrier Phase

xv

Chapter 1

Introduction

1.1 Background and Motivation

Many of the advances in automobile technology have been in the areas of safety and

efficiency. Auto manufacturers put thousands of hours into testing safety critical software and

hardware to improve the overall safety rating of a new vehicle. The National Highway Traffic

Safety Administration (NHTSA) estimates that 613,501 lives were saved between 1960 to 2012

through the use of new safety technologies [1]. The steady increase in lives saved from 1988

1960 1970 1980 1990 2000 2010
Year

0

5000

10000

15000

20000

25000

30000

35000

Li
ve

s
sa

ve
d

Lives Saved from Driving Safety
Technology 1960-2012

Figure 1.1: Lives Saved from Driving Safety Technology 1960 to 2012

to 2007, seen in Figure 1.1, is attributed to laws and Federal Motor Vehicle Safety Standards

(FMVSS) that mandate the use of proven safety features in all new vehicles. Features such

as the anti-lock braking system (ABS), electronic stability control (ESC), and traction control

are all examples of early vehicle automation systems that contributed to the growth in lives

saved. Electronic stability control, for example, reduced the number of single vehicle crashes

by 36% and fatal vehicle rollovers by 70% from 1997 to 2004 [2]. Even with all these safety

1

improvements, NHTSA’s National Center for Statistics and Analysis still reported that 37,133

people lost their lives in traffic-related accidents in 2017 [3]. More advanced ground vehicle

autonomy is one proposed solution for driving this number to zero.

Some commercial vehicles sold today come with driving automation system features, but

true vehicle autonomy, or an automated driving system (ADS) as defined by the Society of

Automotive Engineers (SAE), is still on the horizon. To effectively communicate about ADS,

the SAE Standard J3016 [4] defines six levels of autonomy. An international group of leading

automotive manufacturers in the Automated Vehicle Research Consortium concluded that the

SAE Standard J3016 aligned most closely with their understanding of ADS. Other automotive

standards organizations around the world, such as the International Association of Automotive

Associations and the German Automotive Manufacturers Association, are also conforming to

the SAE taxonomy [5]. Before classifying the levels of autonomy, SAE defines the Dynamic

Driving Task (DDT) and the sub-tasks that must be completed by a human and/or a machine to

successfully operate a vehicle. The DDT sub-tasks are listed below.

1. Lateral vehicle motion control

2. Longitudinal vehicle motion control

3. Monitoring the driving environment via object and event detection, recognition, classifi-

cation, and response preparation with maneuver planning

In sub-tasks 1 and 2 and throughout the rest of this work, lateral control will refer to control of

the vehicle motion via the steering wheel and longitudinal control will refer to control of the

vehicle through the accelerator and brake. The third sub-task is often referred to as object and

event detection and response (OEDR). Vehicle autonomy features also may be constrained by

the operational design domain (ODD). An ODD defines the set of conditions under which an

ADS can be effectively operated. With these definitions, the J3016 levels of autonomy can be

summarized as follows:

Level 0: No sustained lateral or longitudinal control from the machine driver. The human

driver participates in all sub-tasks of the DDT.

2

Level 1: Sustained machine driver control of either lateral or longitudinal motion, with the

machine performing some part of the OEDR sub-task and the human driver performing

the rest of the control and monitoring.

Level 2: Sustained machine driver control of both lateral and longitudinal motion. The human

driver performs continuous supervision of the machine (sharing the OEDR sub-task),

ready to retake control at any time.

Level 3: Machine driver performs all of the DDT sub-tasks and alerts the human driver to

retake control when a failure occurs or the vehicle exits the ODD.

Level 4: Machine driver performs all of the DDT sub-tasks when in the ODD and can safely

control the vehicle to a minimized risk state if a failure occurs or the vehicle exits the

ODD.

Level 5: Machine driver can perform all of the DDT sub-tasks in any environment (i.e. no

bounds on the ODD).

Previously mentioned active safety systems such as ESC and ABS, as well as driver com-

fort systems such as conventional cruise control (CC), would be considered level 0 technologies

by SAE. However, new level-1 ADS features such as adaptive cruise control (ACC) and lane

centering are now becoming available to consumers. Like classic cruise control, an ACC sys-

tem allows the driver to set a desired speed, but it can also modify speed when it senses other

slower-moving vehicles ahead in order to maintain a safe following distance; in other words,

the vehicle can sustain longitudinal control on its own. This is an example of level 1 autonomy

because while the machine exercises full longitudinal control, there is human/machine cooper-

ation in the OEDR sub-task. Similarly, lane-centering is a level 1 feature, in which the machine

driver exercises full lateral control while the human and machine share the OEDR sub-task by

monitoring the roadway for hazards and lane boundaries respectively. The combination of these

two systems would result in a level 2 driving automation system, in which both longitudinal and

lateral control are achieved through the machine driver, and the human driver must be ready to

3

regain control immediately when a hazard is detected. Several fatal incidents from on-road test-

ing of level 2 technologies [6, 7] raise an important question: are human and machine drivers

capable of continuous cooperation? In both crashes, the lack of reaction from the driver was

a factor. Statistics researchers in Australia evaluated public autonomous vehicle failure data

from multiple companies and found a strong correlation between the number of miles driven

autonomously and the time required for a human driver to react to a failure situation. Their

results indicate that as human drivers become more comfortable with an autonomous system,

they are more likely to neglect parts of their full supervisory role [8]. This insight motivates

the need for level 3 ADS that completely removes human perception from the control loop.

The technological jump from a level 2 to level 3 ADS requires significant improvements

in the machine driver’s perception and planning capabilities. This thesis will focus primarily

on the response aspect of the OEDR sub-task as it relates to local trajectory planning. In par-

ticular, it will address the goal of a system that can autonomously handling obstacle avoidance

scenarios as part of the continuous lateral and longitudinal control of the vehicle. Because per-

ception subsystems are outside the scope of this work, the algorithms developed will assume

the presence of sufficient obstacle and hazard detection.

1.2 Prior Research

Obstacle avoidance in an automated driving system is typically handled in the layers of

a motion planning stack. A motion planning stack is a group of algorithms, or layers, each

working on a specific sub-problem of the overall motion planning objective. Each layer, from

bottom to top, works at an increasing level of abstraction from the actual vehicle. Surveys of

motion planning literature generally agree on four layers of the motion planning stack [9, 10].

At the bottom layer, feedback controllers combine the reference path and sensor information to

produce commands for vehicle actuators that will execute the motion plan. The reference path

comes from the local motion planner (one layer above), that considers the local environment,

including any obstacles and closely spaced way-points. Another level up is the behavioral layer,

which decides the style of driving (e.g., highway driving vs. parking-lot driving) or switches

the ODD based on the given location and high-level navigation objectives. Many examples

4

Behavioral Layer

Route Planning
Layer

Local Motion
Planning Layer

Feedback Control
Layer

Ex: Street map route to ultimate
destination

Ex: Currently traveling on a highway,
cruise at speed limit and stay in lane
boundaries

Ex: Slow moving traffic ahead, plan
a lane change maneuver

Ex: Correct error in reference path
with steering control action

Figure 1.2: Path Planning Stack

of behavior planners are implemented with finite state machines [11, 12]. At the top layer is

a route planner that does long distance way-point planning, sometimes at continental scales

[13, 14]. This modular architecture, shown in Figure 1.2, allows algorithms with different

strengths to work together to accomplish the entire DDT, though it is important to consider how

the layers cooperate with each other. This thesis will consider only the local motion planning

and feedback control layers and the tightly coupled interface between them.

A wide variety of techniques have been developed over the past few decades to solve

the problem of local path planning with both static and dynamic obstacles. This problem is

sometimes referred to as the Mover’s Problem or the Piano Mover’s Problem and is considered

P-space hard, meaning the computational complexity in higher dimensional problem spaces in-

creases exponentially to determine the optimal solution within a certain desired accuracy [15].

Graph-based methods, which relied on graph-based optimization algorithms such as Dijkstra’s

algorithm [16] and A* [17], were the first viable methods to gain popularity in the robotics

community [18]. Despite the popularity of these methods, their computational complexity

made real-time implementations difficult. To solve this problem, artificial potential fields were

5

introduced [19]. However, these algorithms suffered from becoming trapped in local minima

of the configurations space. This issue was solved with harmonic potential fields [20], but in

the meantime much of the community had moved to probabilistic and sampling-based methods

because of their simplicity and relative ease of implementation. Sampling-based path planners

apply random sampling to the configuration space and use heuristics to drive the sampling to-

wards the optimal path. Probabilistic road maps [21] and rapidly exploring random trees [22]

(RRT) present a way to combine the vehicle or robot kinematic constraints with graph-based

collision checking and avoid the local minima problem; however initial implementations were

too slow for true real-time applications. RRT has emerged as one of the state-of-the-art algo-

rithms for local path planning in obstacle-dense environments because of improvements such

as the use of A* and other graph optimization techniques. Some real-time implementations

of RRT have been achieved by modifying the iterative replanning behavior of the algorithm

[23, 24]. For a full review of incremental sampling-based algorithms, see [25].

Model predictive control (MPC) is another state-of-the-art technique that is being applied

to the local path planning problem. MPC takes current feedback information about the state of

the system to be controlled and predicts the future state trajectory over a short time window by

applying a sequence of suggested control inputs to a dynamic model of the system. The output

of the model prediction is optimized to meet some control objective by iteratively adjusting

the sequence of control inputs. The first control input in the sequence is then applied to the

system and the process is repeated so the controller can react quickly to external disturbances.

Model predictive control first emerged in the late 1970s [26] and applications in large indus-

trial processes emerged in the 1980s. Some of these large systems, such as chemical and food

processing, took advantage of MPC’s ability to handle multiple-input multiple-output (MIMO)

systems and apply constraints on the state and control variables directly. MPC requires signifi-

cantly higher computational burden than a classical control scheme like a proportional integral

derivative (PID) controller, but the early industrial applications were for slow moving systems

where the extra computation time was insignificant compared to the system bandwidth [27, 28].

Applications of MPC using linear system models with linear and convex constraints are typ-

ically more computationally efficient than nonlinear system models with linear/nonlinear and

6

convex/non-convex constraint sets. However, recent advances in computer hardware and nu-

merical optimization make it possible to do nonlinear model predictive control (NMPC) in

fast-moving systems today. An overview of the generalized formulation of NMPC and many

of the supporting theorems proving its stability and robustness can be found in [29].

Applications of MPC for vehicle stability and steering control began appearing in the early

2000s. One of the earliest examples is a traction control system that utilized an efficient lookup

table of offline-optimized solutions based on a discretized solution space [30]. NMPC was

explored for trajectory tracking through active steering control as early as 2005; however the

implementation was only tested in simulation and was not yet feasible for a real-time applica-

tion. Some sub-optimal modifications for a possible online application are discussed in [31].

This work by Borrelli et al. was extended in 2007 with real-time applications of NMPC and

linear time varying (LTV) MPC [32]. Other researchers improved the steering control capa-

bilities of linear MPC by formulating the yaw stability objective and dynamic vehicle model

constraints as a convex optimization problem, which was easily real-time capable at 100 Hz

[33]. This implementation used lateral acceleration bound constraints to model the saturation

limits of the tires; however it was later shown that the tire nonlinearity could be abstracted

away from the MPC problem with an affine force-input model that preserved convexity for the

optimization problem, while the controller still continued to output steering commands based

on a more accurate vehicle model [34].

The ability to form constraints on the feasible states of a system through MPC makes it

a very popular control strategy for obstacle avoidance. Control designers have incorporated

these safety constraints in many different forms to ensure that the controlled trajectory does not

include any vehicle state where a collision is possible. Many implementations use the MPC

to accomplish the local motion planning task by using a simple vehicle model to generate a

collision-free trajectory that can be passed to a lower-level, trajectory-tracking controller that is

designed from a much higher fidelity vehicle model. This hierarchical control scheme is shown

in Figure 1.3. An early example of this architecture is given in [35], where a simple kinematic

vehicle model is used to plan the safe trajectory and the longitudinal and lateral control are

individually handled by PID and linear quadratic regulator (LQR) type controllers respectively.

7

MPC Path
Planner

Lower
Level

Controller
Vehicle

Sensors

Estimator

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻
𝑾𝑾𝑾𝑾𝑾𝑾
− 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶
�

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

+ -

Figure 1.3: MPC Path Planning Hierarchy Control Architecture

In another heirarchical path-planning MPC, Yoon et al. use observations of the parallax ef-

fect from obstacles to generate the avoidance constraints, which is shown to be effective for

both static and dynamic obstacles [36, 37]. Yet another hierarchical implementation uses a

low-fidelity vehicle model for trajectory generation and a robust invariant set technique for ac-

curately tracking the reference trajectory under disturbances (including model error from the

trajectory generation). This work by Gao et al. uses a distance-based constraint for collision

avoidance, and represents the obstacles as ellipses in free space [38]. The trajectory generation

MPC, even using low order models, can still be computationally inefficient. Bevan et al. were

some of the first researchers to apply convex optimization to the obstacle avoidance case, al-

though only bound constraints on the longitudinal and lateral directions of the vehicle could be

applied and their approach required three optimization passes [39]. These hierarchical schemes

provide partial coupling between the trajectory generation and feedback control layers of the

motion planning stack; other forms of MPC can be used to effectively combine the two layers.

When MPC is formulated such that it completes the driving objective and directly out-

puts the control signals without an intermediate trajectory generation it can be thought of as

comprising both the local motion planning and feedback control layers. An example of this ar-

chitecture is given in Figure 1.4, where the control signals are the steering, throttle, and brakes

and the driving objective is to take the vehicle through some set of way-points while avoiding

obstacles. The convex optimization approach to vehicle stability control, found in [34], was

extended in [40] and [41] to include obstacle avoidance constraints. These real-time capable

8

MPC
Trajectory
Controller

Vehicle

Sensors

Estimator

𝑾𝑾𝑾𝑾𝑾𝑾
− 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪
𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬
𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

Figure 1.4: MPC Trajectory Control Architecture

implementations demonstrate a trade-off between avoidance and stability at the vehicle’s han-

dling limits, which can be exploited for use in highly dynamic situations. Other researchers

have used non-gradient-based optimization schemes such as pattern search optimization [42]

and particle swarm optimization [43] with soft constraints on both avoidance and target seek-

ing. While these methods are often intuitive, the computational complexity quickly exceeds

that of an established gradient-based method. Some recent work [44, 45] evaluates MPC con-

trol structures that switch between a target tracking and obstacle avoidance mode. Proportional

navigation was used in cooperation with a NMPC in avoidance mode of one implementation

and could handle both static and dynamic obstacles. Another more recent implementation ran

two efficient MPC controllers concurrently and chose the best control solution based on the

desired trade-off of path tracking and obstacle avoidance [46]. These MPC control schemes lay

the ground work for the implementation of a level 3 capable automated driving system.

One of the primary applications pushing innovation in automated driving is platooning,

or autonomous following, of heavy duty vehicles. Platooning has generated a lot of interest

for military applications, specifically with the U.S. Army’s leader- follower program [47]. The

commercial sector also has significant interest in this technology because of the possible fuel

saving benefits associated with the close following distances that cooperative adaptive cruise

control (CACC) vehicles can achieve [48, 49]. Many of the research and commercial systems

currently available are capable of level 2 autonomy, while only a few systems claim level 3

capabilities [50]. MPC-based obstacle avoidance has been proposed in a number of works, but

all of them have focused on testing only in simulation [44, 51, 52]. In this thesis, some of the

9

technologies that are currently used in a level 2 platooning system will be incorporated into an

MPC controller that is capable of both following and obstacle avoidance, in progress towards a

level 3 automated driving system.

1.3 Contributions

Nonlinear model predictive control is not a new solution to obstacle avoidance control.

Similarly, there exists applications of level-3 and level-4 vehicle platooning. In this work,

an application of NMPC for obstacle avoidance and path-following is tailored to an existing

platooning software framework as an extension to its current level-2 capability. Specifically,

the work presented in this thesis makes the following contributions:

• A NMPC library for quickly developing real-time control applications

• An application of NMPC for obstacle avoidance and trajectory tracking in platooning

and non-platooning scenarios

• A NMPC controller tuning procedure and path tracking performance analysis

• Software-in-the-loop and vehicle testing of the proposed NMPC algorithm

1.4 Thesis Outline

This thesis has five remaining chapters. Chapter 2 details the vehicle modeling used in

this thesis. It begins with simple kinematic vehicle modeling, advances to linear and nonlinear

dynamic vehicle modeling, and ends with a discussion of the simulation modeling used for

preliminary testing of control algorithms. Chapter 3 discusses the nonlinear model predictive

control algorithms developed for this thesis, including reference inputs, model discretization,

and the formulation of the cost function and constraints. Chapter 4 gives an overview of Auburn

University’s existing software stack for level-2 path following in automated truck platoons and

discusses how an NMPC software module fits into this stack. Chapter 4 also presents a brief

overview of obstacle detection and tracking methods found in the literature, and how software

10

modules for these algorithms can be incorperated into the system or simulated to test the con-

troller in an obstacle avoidance scenario. Chapter 5 presents simulated and experimental test

results for the proposed NMPC controller. Chapter 6 concludes with ideas for future improve-

ment of the NMPC algorithm’s performance.

11

Chapter 2

Ground Vehicle Modeling and Simulation

Mathematical models of a vehicle’s motion are essential to the design and simulation of a

model predictive controller. These models come in varying degrees of complexity. There is an

important trade-off between model complexity and computational efficiency that must be made

in both the design and testing of an MPC. MPC designers typically use simpler models that can

make the optimization routine computationally efficient and still describe the driving objective.

On the other hand, simulation testing of an MPC design typically sacrifices computational

efficiency to more accurately model the vehicle’s dynamic response to both control inputs and

disturbances. This chapter will introduce the vehicle modeling necessary for the proposed

NMPC controller, starting with the common coordinate frames used to develop all of the vehicle

models. Simple kinematic vehicle models will be presented, followed by a common low-order

dynamic model. Finally, the advanced simulation modeling used as a software in the loop (SIL)

testing framework will be discussed.

2.1 Vehicle Coordinate Frames

Many different coordinate systems are used to describe vehicle motion. All axis-systems

in a particular coordinate system are considered right-handed such that two of the three axes,

î and ĵ in an arbitrary frame, are perpendicular and form a plane while the third axis, k̂, is

orthogonal to that plane.

k̂ = î× ĵ (2.1)

The vehicle models used in this thesis are developed using two primary coordinate systems: a

vehicle-fixed system and an Earth-fixed system.

The vehicle-fixed coordinate system, {xv, yv, zv}, is a moving reference frame that is at-

tached to the vehicle as shown in Figure 2.1. The origin of this system is commonly placed at

12

𝒙𝒙𝒗𝒗 𝒚𝒚𝒗𝒗

𝒛𝒛𝒗𝒗

Figure 2.1: Vehicle-fixed Coordinate System
Figure adapted from [53]

the vehicle’s center of gravity (CG) or at the center of the front or rear axle. In this work the

vehicle-fixed origin is assumed to be at the vehicle CG unless otherwise specified. The axes in

Figure 2.1 are defined in accordance with the z-up system defined in SAE Standard J670 [54],

which defines xv pointing out the front of the vehicle (the longitudinal axis), yv pointing out the

left side of the vehicle (the lateral axis), and zv pointing out the roof of the vehicle. This con-

vention is used in place of the traditional z-down system that is typically used in aeronautical

navigation and control applications, because it aligns with the convention adopted by the mo-

bile robotics community [55]. The vehicle kinematics are developed in the vehicle-fixed frame

and the vehicle’s linear/angular velocities and accelerations are most often expressed in this

frame. Vehicle position information is often expressed in the vehicle-fixed frame for the pur-

poses of low-level throttle, steering and braking control. Position vectors in the vehicle-fixed

frame are relative to a position in the earth-fixed frame, which is often used as the common

frame to describe high-level control objectives.

An inertial reference frame is necessary for defining relative velocities and accelerations

in a vehicle’s kinematic modeling. The WGS84 XYZ coordinate system, an earth-centered,

earth-fixed (ECEF) system, is the de facto standard inertial frame for navigation systems that

rely on the Global Positioning System (GPS) [56]. WGS84 XYZ coordinates are very useful for

describing motion over very long ranges; however, ground vehicle motion is more intuitively

described in an intermediate fixed frame that is defined with a reference position on the surface

of the Earth. The east-north-up (ENU) convention, depicted in Figure 2.2, is standard in the

13

Figure 2.2: Earth-fixed Coordinate Systems[57]

mobile robotics community [58]. This convention is used because a zero translation and rota-

tion offset aligns exactly with the vehicle-fixed frame defined in Figure 2.1 if the vehicle origin

is at the ENU origin. Although the ENU frame is not technically an inertial reference frame,

the rotation of the Earth about its own axis is neglected in typical vehicle dynamics modeling.

With the Earth-fixed and vehicle-fixed coordinate systems defined, the vehicle kinematics can

be formulated.

2.2 Kinematic Modeling

Ground vehicles are complex multi-body systems that can be represented with high degree-

of-freedom dynamic models, but many control designers use simplified low order models that

can still represent the vehicle’s kinematic constraints and dynamic response to a certain level

of accuracy. For lateral control of the vehicle, it is common to assume planar motion. The sim-

plest planar motion models also do not consider weight transfer of the vehicle thus neglecting

the pitch and roll dynamics. Figure 2.3 shows a typical 4-wheeled (non-articulated) vehicle

traveling in the east–north plane at a velocity ~v. The vehicle’s yaw angle, or heading, is the

angle ψ between the positive east axis and the longitudinal axis of the vehicle. The yaw-rate

is the rotation rate around the vehicle’s vertical axis and the time derivative of the vehicle yaw

14

E

N

𝜓𝜓

𝜓̇𝜓

𝜹𝜹𝒍𝒍

𝜹𝜹𝒓𝒓
𝒗𝒗

𝒗𝒗𝒙𝒙
𝒗𝒗𝒚𝒚 𝜷𝜷

Figure 2.3: 4 Wheel Vehicle in Planar Motion

angle. The angle β, known as the side-slip angle, is described in terms of the vehicle-fixed

frame velocity components.

β = arctan(
vy
vx

) (2.2)

The vehicle’s direction of travel in the east–north plane is defined by the course angle, given in

Equation (2.3).

ν = ψ + β (2.3)

The vehicle in Figure 2.3 is considered front-steering with the left tire steer angle δl and right

tire steer angle δr.

The vehicle’s position dynamics can be described with a simple rotation of the vehicle-

fixed velocity into the earth-fixed frame. The component velocity form is shown below in

Equations (2.4–2.5).

Ė = vx cos(ψ)− vy sin(ψ) (2.4)

Ṅ = vx sin(ψ) + vy cos(ψ) (2.5)

15

The equivalent vehicle course form is shown below in Equations (2.6–2.7).

Ė = |~v| cos(ν) (2.6)

Ṅ = |~v| sin(ν) (2.7)

If the vehicle velocity and yaw-rate are independently controllable, the planar motion model

given in Equation (2.8) may be suitable.

d

dt


E

N

ψ

 =


|~v| cos(ν)

|~v| sin(ν)

ψ̇

 (2.8)

This model is common for high-level motion control of differential-drive robots; however, it al-

lows for a non-zero yaw-rate command even when |~v| = 0, which does not accurately represent

the kinematic constraints of a front-steering vehicle.

The diagram in Figure 2.3 is commonly simplified into a single track model, also known

as the bicycle model, for developing a planar dynamic vehicle model. Through collapsing the

width of the vehicle, the steering is simplified to a single input, δ. The lateral velocities at

the front and rear axles remain unaffected by this assumption and the imaginary center tire

retains Ackermann steering geometry if it is the cotangent average of the true left and right tire

steer angles [59]. Figure 2.4 shows the bicycle model in a steady-state turn around a circle of

constant radius, R. The lengths a and b in Figure 2.4 are the distance from the front axle to the

CG and the distance from the CG to the rear axle respectively. These distances sum to the total

wheel base length of the vehicle.

L = a+ b (2.9)

16

E

N

δ

𝜓̇𝜓

𝑣⃗𝑣

𝐿𝐿

δ𝛽𝛽

𝑅𝑅

𝑏𝑏
𝑎𝑎

Figure 2.4: Bicycle Model in Steady-state Turning

Analysis of this steady-state turning scenario results in a modified version of the model in

Equation (2.8), which is often referred to as the kinematic bicycle model. Note that at steady-

state, the yaw-rate is a function of the velocity and the turning radius.

ψ̇ =
|~v|
R

(2.10)

The vehicle side-slip angle is also related to the turning radius.

sin(β) =
b

R
(2.11)

The turning radius can be eliminated from Equation (2.10) by substituting in Equation (2.11).

ψ̇ =
|~v| sin(β)

b
(2.12)

Through the turning geometry, the side-slip angle can be put in terms of the steering angle

input.

β = arctan

(
b tan(δ)

L

)
(2.13)

17

Equation (2.13) can be substituted into Equation (2.12) resulting in a relationship between the

steady-state yaw-rate output and the steering input that is proportional to the magnitude of the

vehicle’s velocity.

ψ̇ =
|~v| sin

(
arctan

(
b tan(δ)
L

))
b

(2.14)

If the steering angle is assumed to remain within the small angle approximation, which is a rea-

sonable assumption for highway driving scenarios, then the nonlinear trigonometric functions

can be removed from Equation (2.14).

ψ̇ =
|~v|
L
δ (2.15)

The full planar kinematic bicycle model is given in Equation (2.16).

d

dt


E

N

ψ

 =


|~v| cos(ν)

|~v| sin(ν)
|~v| sin(arctan(b tan(δ)L))

b

 (2.16)

The steady-state model given Equation (2.16) breaks down under steering transients and

can be inaccurate even at steady-state for high velocities if the vehicle has significant understeer.

For an evaluation of these discrepancies, see Appendix A. In order to develop equations of

motion for the bicycle model, equations for the tire side-slip angles and acceleration at the CG

are needed. The tire side-slip angles, αf and αr for the front and rear respectively, are shown

in Figure 2.5. The slip angle at the tire is simply the angle formed by the velocity components

in the body frame, less any steer angle. The front and rear tire slip angles are given in Equation

(2.17) and Equation (2.18), respectively.

αf = arctan

(
vy + aψ̇

vx

)
− δ (2.17)

αr = arctan

(
vy − bψ̇
vx

)
(2.18)

18

N

E

δ

𝜓̇𝜓

𝜓𝜓

𝛼𝛼𝑟𝑟

𝛼𝛼𝑓𝑓

𝑣⃗𝑣 𝛽𝛽
𝑣𝑣𝑥𝑥

𝑣𝑣𝑦𝑦
𝐹𝐹𝑦𝑦𝑦𝑦

𝐹𝐹𝑦𝑦𝑦𝑦

Figure 2.5: Bicycle Model Free-body Diagram

The operating range of tire slip-angles is generally within the small angle approximation, there-

fore Equation (2.17) and Equation (2.18) can be simplified to the following approximations.

αf =

(
vy + aψ̇

vx

)
− δ (2.19)

αr =

(
vy − bψ̇
vx

)
(2.20)

The acceleration at the CG is found by differentiating the velocity vector at the CG.

~a = ~̇v + ~v × ~ω (2.21)

The general rotation-rate vector is ~ω = ψ̇, assuming no rolling or pitching. The resulting

acceleration components in the vehicle-fixed frame are given in Equations (2.22–2.24).

ax = v̇x + vyψ̇ (2.22)

ay = v̇y − vxψ̇ (2.23)

19

az = 0 (2.24)

2.3 Yaw Dynamic Modeling

The planar yaw dynamic bicycle model is the basis for linear analysis and control of

the vehicle’s lateral transients. Given the free-body diagram in Figure 2.5 and assuming no

longitudinal tire forces, the sum of forces in the vehicle’s lateral direction is given in Equation

(2.25) and the sum of moments about the vehicle-fixed z-axis is given in Equation (2.26).

m(v̇y − vxψ̇) = Fyf cos(δ) + Fyr (2.25)

Izzψ̈ = aFyf cos(δ)− bFyr (2.26)

The vehicle’s total mass is denoted by m in Equation (2.25) and Izz is the principle mass

moment of inertia about the vehicle-fixed z-axis in Equation (2.26). The lateral tire forces are

a nonlinear function of tire slip-angles. There are many complex nonlinear tire models such as

Pacejka’s magic tire model that capture the peak tire force and saturation effect at the limits of

handling [60]. An example tire force curve for various different tire loading conditions (and

assuming no tire-inclination or longitudinal slip) is given in Figure 2.6. In the typical operating

Figure 2.6: Tire Force Curve for Pacejka’s Magic Tire Model

20

range of tire slip-angles the tire force relationship can be approximated as linear.

Fyf = −Cαfαf (2.27)

Fyr = −Cαrαr (2.28)

In Equations (2.27–2.28) the Cα term is known as the tire stiffness coefficient. This coefficient

is the slope in the linear region of the tire force curves in Figure 2.6. The linear equations

of motion are expressed in Equations (2.29–2.30) by combining Equations (2.27–2.28) with

Equations (2.17–2.18) and substituting the result into Equations (2.25–2.26).

v̇y =
−
(
Cαf + Cαr

)
mvx

vy +
−
(
aCαf − bCαr

)
−mv2x

mvx
ψ̇ +

Cαf
m

δ (2.29)

ψ̈ =
−
(
aCαf − bCαr

)
Izzvx

vy +
−
(
a2Cαf + b2Cαr

)
Izzvx

ψ̇ +
aCαf
Izz

δ (2.30)

Note that this model is only linear and time-invariant if the small steering angle approximation

is valid (cos(δ) ≈ 1) and the vehicle is not accelerating longitudinally (Fx = 0 and vx is

constant). The dynamic bicycle model has significantly more parameters to identify than the

kinematic bicycle model. The tire stiffness coefficients can be particularly hard to estimate;

however, when correct model parameters are used, the dynamic bicycle model is much more

accurate than the kinematic bicycle model. More information on the system identification

methods used in this thesis and a comparison of the kinematic and dynamic bicycle models are

given in Appendix A.

2.4 Simulator Modeling

Over the past decade, a large number of simulators have been developed to provide robotics

engineers a SIL interface to accelerate development and testing of real-time software compo-

nents. The power of SIL development is the ability to transfer the exact software component

being developed in a safe, virtual sandbox to the target platform for field testing. In this work,

21

the Gazebo simulator [61] from the Open Source Robotics Foundation (OSRF) is the SIL plat-

form of choice. OSRF also maintains the Robot Operating System (ROS) libraries [62] and

provides tight ROS integration for Gazebo users. If a simulated Gazebo vehicle provides the

same ROS interface as the real vehicle then any component that adheres to that interface is

agnostic to its test platform. Gazebo provides realistic multi-body physics simulation by using

the Open Dynamics Engine (ODE) [63]. Robots of any form-factor can be composed from

generic ODE link and joint types, but Gazebo also gives users the option to customize almost

any aspect of a simulation component through a piece of plugin code that is dynamically loaded

into the simulation at run-time. All of these features are utilized in SIL testing of the algorithms

developed in this thesis, but it is important to understand the simulation model structure and its

limitations.

Gazebo gives users the ability to create links in a model from primitive shapes, like boxes,

cylinders, and spheres, or more complex shapes from custom tessellated mesh files. Each link

in a model must define its inertial properties and can optionally define visual and collision prop-

erties. Model links are chained together with joints that limit the model’s degrees of freedom

and provide a way to control and measure the state of the links they are attached to. Gazebo

does not require that a model have a single kinematic chain of links or restrict the user from

defining closed kinematic chains (i.e., a child link may have multiple parents). Vehicle model

definitions typically contain a single tree-link kinematic chain that is a simplification of a real

vehicle’s chassis.

The primary vehicle platform used in this thesis is a 2017 Lincoln MKZ with full drive-

by-wire capability. The real MKZ and its Gazebo companion, shown in Figure 2.7, provide the

same ROS application programming interface (API) for interacting with the drive-by-wire kit.

The Gazebo MKZ model is implemented with the minimum set of components that result in a 4-

wheel Ackermann-steering vehicle that accurately represents the vehicle’s geometry and gross

weight distribution. Important model parameters for both the Gazebo MKZ model and MKZ

test vehicle are summarized in Table 2.1. The simulated model’s simple structure contains 12

degrees of freedom. Most of the vehicle’s mass and inertia terms are represented by a single

box style link, the chassis link. All the joints are a revolute type joints that only allows rotation

22

Figure 2.7: Real Drive-by-wire Lincoln MKZ (left) and Simulated Drive-by-wire Lincoln
MKZ (right)

Table 2.1: MKZ Modeling Properties

property Gazebo MKZ Real MKZ
a(m) 1.428 1.257
b(m) 1.423 1.593
L(m) 2.850 2.850

track width (m) 1.594 1.594
mass (Kg) 1542 1857
Izz(Kg ·m2) 1000 4292
Cαf (N/rad) 31240 120000
Cαr(N/rad) 31240 184600

23

about a single axis. The joints between the chassis and the steering links provide realistic limits

on total steer angle and a method for steering control. All four wheels are connected through

revolute joints that allow continuous rotation. The default kinematic chain for the Gazebo MKZ

is shown in Figure 2.8. Note that there are no suspension elements in this kinematic chain that

would allow for significant pitching or rolling of the vehicle body frame relative to the ground

plane; in other words Gazebo restricts the pitch and roll of this model. All joints in Gazebo

do have some compliance, as the physics engine will slightly relax constraints to produce a

numerically stable simulation of the motion of the overall system, but this compliance is not

easily tuned.

World

Chassis Link
(Main mass)

Wheel Link
Front Left

Steer Link
Front Right

Wheel Link
Front Right

Wheel Link
Rear Left

Wheel Link
Rear Right

Revolute Joint
(Continuous)

Revolute Joint
(Continuous)

Revolute Joint
(Continuous)

Revolute Joint
(Continuous)

Revolute Joint Revolute Joint

Steer Link
Front Left

“Front Axle” “Rear Axle”

Figure 2.8: Gazebo MKZ Model Kinematic Chain

If modeling the vehicle’s suspension is critical to the simulation performance of the ap-

plication under test, this limitation must be addressed through an adjustment to the kinematic

chain shown in Figure 2.8. An intermediate suspension link must be added between the chassis

and each wheel or steering link/wheel subsystem that is connected through a prismatic joint.

This prismatic joint constrains the suspension link’s motion to move linearly along a single

axis. The joint’s dynamics can be modified to emulate the proper suspension spring and damp-

ing rates. The 16 DOF modified kinematic chain with the additional suspension elements is

shown in Figure 2.9. This modified suspension model allows the vehicle to realistically trans-

fer weight over individual tires during cornering and braking scenarios. For advanced tire

24

World

Chassis Link
(Main mass)

Shock Link
Front Left

Wheel Link
Front Left

Steer Link
Front Right

Wheel Link
Front Right

Wheel Link
Rear Left

Wheel Link
Rear Right

Revolute Joint
(Continuous)

Revolute Joint
(Continuous)

Revolute Joint
(Continuous)

Revolute Joint
(Continuous)

Revolute Joint Revolute Joint

Prismatic Joint

Steer Link
Front Left

Prismatic
Joint

Shock Link
Front Right

Shock Link
Front Left

Shock Link
Front Right

Prismatic
Joint

Prismatic Joint

“Front Axle” “Rear Axle”

Figure 2.9: Gazebo MKZ Model Kinematic Chain with Suspension Elements

models such as the Pacejka tire model shown in Figure 2.6 the change in normal force on a

tire (induced by road changes or weight transfer) is a direct input to the model that affects the

maximum amount of force the tire is capable of generating. Gazebo does not provide any ex-

plicit tire models by default, but the force generated from the wheel/ground collision works on

a similar principle [63].

Ultimately, the simpler simulation model structure, given in Figure 2.8, was chosen for

simulation testing of the proposed MPC algorithms because it provides model fidelity that is

adequate to verify the software implementations. SIL frameworks other than Gazebo should be

evaluated in the future if higher simulation fidelity is desired. Some prior research has shown

that Gazebo can adequately simulate a vehicle’s yaw dynamics, but other simulators that were

developed specifically for ground vehicles can provide better model fidelity [64]. The two

models presented in this chapter are even further simplifications of the multi-body physics

model that Gazebo provides however, so testing and comparing the MPC implementations

using these simple planar yaw models in Gazebo and on the real vehicle provides an indication

of the controllers’ robustness to model inaccuracies.

25

Chapter 3

Model Predictive Control

Model predictive control is a growing sub-field of optimal control that has many different

implementations. This chapter will begin by outlining a general MPC algorithm and introduc-

ing the nomenclature used to describe the elements of MPC developed for this thesis. The

following sections will develop the control objective and constraints that are specific to the

path following and obstacle avoidance problem domain. The chapter will conclude with some

specifics on the software used to realize the proposed MPC implementations.

3.1 The Receding Horizon Control Principle

Receding horizon control is sometimes used in the literature as an alternate name for MPC.

The receding horizon refers to the fact that the control objective is not optimized with an infinite

time horizon like the analytical solution of LQR for linear state-feedback control, but rather on

a finite time horizon, H . This type of control makes use of a dynamic model of the system

to simulate the system behavior on the receding horizon as the value of the control input is

optimized. Equation (3.1) refers to a generic dynamic model that is a function of the system

state x ∈ Rn, control input u ∈ Rm, and time t.

ẋ = f(t, x, u) (3.1)

Generally, the model is simulated on a discrete time step, T , with a number of simulation steps,

N . Equation (3.2) defines the time horizon, H , given a number of simulation steps that are

uniformly spaced in time, and accounts for the current state, x(t).

H = T (N − 1) (3.2)

26

The optimization routine iteratively seeks the optimal set of control inputs, u∗(t) = (u∗(t),

u∗(t+T), . . ., u∗(t+H−T)), such that the simulated state trajectory, x = (x(t), x(t+ T), . . . , x(t+H)),

results in the optimal trajectory x∗(t). The set of optimized control inputs, u∗(t), is an approx-

imate value of the control law at the current state. Because MPC does not seek to find the

definition of the control law for all states, the control must be re-planned as new observations

of the states become available. No model is perfect and the actual system will not respond

exactly as the forward simulation predicts at each iteration of the MPC controller. To minimize

the effect of model error and take into account any new measurements of the state, only the

first control value of the optimized set of inputs, u∗(t), is actually applied to the system on

each iteration of the MPC controller. This is the crux of the receding horizon control principle.

The general MPC algorithm, following the receding horizon control principle, is summarized

below in Algorithm 1. Although the MPC algorithm is naturally expressed in a discrete man-

ner, before presenting it, the next sections will first set up the optimization problem using the

generic continuous model given in Equation (3.1). The model discretization is an important

step in transforming the MPC expression of the optimal control problem into the generic form

that an optimization routine can handle. An explanation of the discretization method used in

this thesis will precede the discussion of the proposed implementations for automated vehicle

path following and obstacle avoidance.

Algorithm 1: Basic MPC Algorithm
Choose number of prediction steps, N ;
Choose model time-step, T ;
Discretize model with state, x, and input, u, by time-step, T , over N steps;
while control running do

Get the current state, x(t);
find the optimal set of inputs, u∗ = (u∗(t), ..., u∗(t+H − T)), that gives the
optimal state trajectory, x∗;

apply first control sample, u∗(tk);
end

27

3.2 Optimization Problem Setup

As previously mentioned, MPC is in essence solving a numerical optimization problem.

All optimization problems seek to minimize or maximize some objective function. An un-

constrained optimization problem with the objective function φ(z) to be minimized is given

in Equation (3.3), where z is the variable to be optimized, otherwise known as the decision

variable.

min
z

φ(z) (3.3)

Choosing the objective function to appropriately model the desired outcome is very important in

order to receive a feasible solution from the optimization routine. Many optimization problems

start with a cost function that is convex, because convex optimization problems are in general

much easier to solve than non-convex problems. Convexity is also a desirable property because

any local minimum solution to the optimization problem is also the global minimum solution,

which is not guaranteed to be true of a local solution to a non-convex problem. For the definition

of convexity and a full review of convex optimization methods, see the text from Boyd and

Vandenberghe [65].

An MPC regulator may be set up with exactly the same convex and quadratic objective

function as the LQR formulation. This objective function, sometimes referred to as a cost

function because finding the minimum cost is desirable, is given in Equation (3.4).

φ(x, u) =

∫ t=∞

t=0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (3.4)

In Equation (3.4), the positive semi-definite matrix Q penalizes the distances of the states from

the origin, and the positive semi-definite matrix R penalizes the control energy applied to the

system. For an MPC, this form of the cost function must be adjusted from the infinite time

interval [0,∞) to the finite time interval [0, H]. This modification, including a terminal cost, or

the cost-to-go that approximates the remaining cost at infinite time, is given in Equation (3.5).

φ(x, u) =

∫ t=H

t=0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt+ Vf (x(H)) (3.5)

28

In this form of the cost function, the decision variable is some combination of the continuous

variables u and x, leading to an infinite dimension problem that is not feasible to solve with

numerical optimization. Equation (3.6) converts the continuous time addition of cost to the

discrete summation of individual stage costs over the prediction horizon.

φ(x, u) ≈
k=N−1∑
k=0

T
[
xT (k)Qx(k) + uT (k)Ru(k)

]
+ Vf (x(N)) (3.6)

The discrete time index k is given in Equation (3.7) and hereafter will be used for discrete

formulations in place of the continuous time variable t.

t = 0, T, ..., H, ∀k = 0, 1, ..., N (3.7)

Also note that all the models used for this thesis are time invariant and the time t = 0 describes

the current time and the start of the prediction horizon as it is given in Equation (3.7).

The cost function given in Equation (3.6) covers the MPC regulator case. In the MPC

reference tracking case, this equation is modified to penalize the squared error from the desired

state trajectory, xdes, as shown in Equation (3.8).

φ(x, u) ≈
k=N−1∑
k=0

T
[
(x(k)− xdes(k))TQ(x(k)− xdes(k)) + uT (k)Ru(k)

]
+ Vf (x(N)) (3.8)

This reference tracking form of the cost function is the method used in this thesis to accomplish

way-point following control. The reference trajectory xdes can be made a single target way-

point if it is the only feasible point along the prediction horizon. If there are multiple feasible

way-points within the prediction horizon, they may be included in a changing set of desired

states, xdes = (xdes(0), ..., xdes(N)). Even with this selection of the cost or objective function,

the model prediction must be included as a part of the optimization routine.

One of the great features of numerical optimization is the ability to include constraints

on the feasible solution space. MPC takes advantage of this feature by imposing the model

dynamics as a set of constraints on the optimal control problem. Combining the continuous

29

objective function in Equation (3.5) with an initial condition constraint and the prediction con-

straint using the model in Equation (3.1) results in the continuous optimal control problem

given in Equation (3.9).

min
x,u

∫ t=H

t=0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt+ Vf (x(H))

s.t.

x(t) = x(t),

ẋ = f(t, x, u).

(3.9)

The initial condition does not immediately appear useful, but is necessary in order to include

state feedback information in the MPC. The left-hand side x(t) is the representation of the

model’s initial condition in terms of the decision variable, while the right-hand side x(t) is

the actual value obtained from measuring and/or estimating the system state. Similarly, the

implementation of the model constraint equations is not immediately apparent in their contin-

uous form. The first step toward a practical application of these prediction constraints is to

reformulate Equation (3.9) into its discrete form, given in Equation (3.10).

min
x,u

k=N−1∑
k=0

T
[
xT (k)Qx(k) + uT (k)Ru(k)

]
+ Vf (x(N))

s.t.

x(0) = x(0),

x(k + 1) = F (t(k), x(k), u(k)) ∀k = 0, 1, ..., N − 1.

(3.10)

The mapping F (t, x, u) depends on the method of discretization, which will be discussed in

detail later for nonlinear system models. If the system is linear and time invariant, this mapping

can be obtained from a number of well-known discretization methods including the zero-order-

hold method and Tustin’s method. Also, if the system is linear and time invariant, convexity of

the optimization problem is preserved. However, nonlinear system models generally result in

loss of convexity in the constraint equations and thus add additional complexity to solving the

optimization problem online.

30

MPC designers are not limited to the constraints given in Equation (3.10). The most

common additional constraints place bounds on the feasible system states and feasible control

actions. If the feasible set of system states is represented by X and the feasible control action

set by U, Equation (3.10) can be rewritten as Equation (3.11).

min
x,u

k=N−1∑
k=0

T
[
xT (k)Qx(k) + uT (k)Ru(k)

]
+ Vf (x(N))

s.t.

x(0) = x(0),

x(k + 1) = F (t(k), x(k), u(k)) ∀k = 0, 1, ..., N − 1,

x(k) ∈ X ∀k = 0, 1, ..., N,

u(k) ∈ U ∀k = 0, 1, ..., N − 1.

(3.11)

The bound set U is especially useful for incorporating the effect of control saturation due to

actuator limits into the prediction horizon. Likewise, if there is a practical reason for limiting

the desired states to the bounded set X (e.g., keeping a robot’s position within the bounds of a

room), a successful optimization iteration guarantees that the model will respect these limits.

Other common constraint types include linear matrix inequality constraints such as in Equation

(3.12) and Equation (3.13), or general linear/nonlinear inequality and equality constraints as in

Equation (3.14) and Equation (3.15) respectively.

Ax ≥ b (3.12)

Cu ≥ d (3.13)

g(x, u) ≥ 0 (3.14)

h(x, u) = 0 (3.15)

Additional constraints must be added with careful consideration of the desired optimization

solver. Linear constraints are generally acceptable when using a convex optimization solver,

31

such as CVX [66]. Nonlinear constraints in the form of Equations (3.14–3.15) require the use

of a solver that can handle nonlinear/non-convex optimization problems. Because this thesis

focuses on the use of nonlinear model predictive constraints, additional nonlinear constraints

do not add much more complexity from the optimization solver’s perspective. Whatever solver

is selected, the next step in the optimization problem setup is choosing the form of the decision

variable as well as the method of discretization for the model prediction constraints such that

the problem definition can be transformed from the form given in Equation (3.11) to a form the

solver can understand.

The class methods used in this thesis to solve the optimal control problem are known as

direct methods. Direct solver methods can be summarized as “first discretize, then optimize”

as opposed to an indirect method which can be summarized as “first optimize, then discretize”

[67]. The particular variant presented in this thesis is known as the direct multiple-shooting

method. In multiple-shooting, the model prediction equality constraints are approximated using

a numerical integration technique. The simplest numerical integration technique to demonstrate

is Euler’s method, shown in Equation (3.16).

x(k + 1) = F (t(k), x(k), u(k)) ≈ x(k) + Tf(t(k), x(k), u(k)) (3.16)

This method uses only a single finite difference to approximate the mapping F (t(k), x(k), u(k)

seen in Equations (3.10–3.11). The accuracy of Euler integration relies on a sufficiently small

discretization time step, T . To increase the model prediction accuracy, typically a higher order

Runge-Kutta integration method is employed. In this thesis, the model prediction constraints

32

are implemented using the popular Runge-Kutta 4th order (RK4) approximation unless other-

wise noted. The RK4 algorithm is summarized in Equation (3.17).

K1 = Tf (t(k), x(k), u(k)) (3.17a)

K2 = Tf

(
t(k) +

T

2
, x(k) +

K1

2
, u(k)

)
(3.17b)

K3 = Tf

(
t(k) +

T

2
, x(k) +

K2

2
, u(k)

)
(3.17c)

K4 = Tf (t(k) + T, x(k) +K3, u(k)) (3.17d)

x(k + 1) = F (t(k), x(k), u(k)) ≈ x(k) +
1

6
(K1 + 2K2 + 2K3 +K4) (3.17e)

Note that a constant input, u(k), is assumed in each step of Equation (3.17). Euler’s method,

Runge-Kutta, and a variety of more complex techniques, such as the polynomial fitting collo-

cation methods, are discussed in detail in [67].

To implement the selected numerical integration technique, the multiple-shooting method

also defines the mapping of the MPC problem variables to the optimization problem decision

variable, x,u → z. In this mapping, both the discretized state, x(k), and discretized control,

u(k), for the entire control horizon are included in the optimization variable, shown in Equation

(3.18).

z = (x(0), x(1), ..., x(N), u(0), u(1), ..., u(N − 1))T (3.18)

The inclusion of the state trajectory in the optimization variable makes the dimension of the

problem large compared to other mappings that only include the control variables; however, it

results in many simple equality constraints that can be solved easily for long prediction horizon

lengths. This larger optimization variable dimension is shown in Equation (3.19).

z ∈ Rn·(N+1)+m·N (3.19)

The optimal control problem in Equation (3.11) can now be restated in terms of the general

decision variable, z, as in the unconstrained optimization problem given in Equation (3.3).

33

This reformulated constrained optimization problem is given below in Equation (3.20).

min
z

φ(z)

s.t.

ci(z) = 0 i ∈ E ,

ci(z) ≥ 0 i ∈ I.

(3.20)

The constraints, ci(z), are now expressed in terms of the generic decision variable z and divided

into the set E of equality constraints and set I of inequality constraints. Letting z(xk) and z(uk)

denote the indexing of the optimization variable in Equation (3.18) for the state x(k) and input

u(k) respectively, the model prediction constraints in the set E are defined in Equation (3.21).

z(x0)− x(0) = 0

z(xk+1)− F (t(k), z(xk), z(uk)) = 0 ∀k = 0, 1, ..., N − 1

(3.21)

The remainder of the constraints in the sets E and I from Equation (3.20) must also be trans-

lated from the constraints given in Equations (3.11–3.15).

3.3 Path Following and Obstacle Avoidance MPC

The major goal of this thesis is to develop and test applications of MPC for trajectory

following integrated with obstacle avoidance. The models given in Chapter 2 will be restated

(in order of increasing complexity) such that their commonalities can be exploited to create

a similar reference trajectory and obstacle avoidance constraint set for each different model

implementation. The simplest model to implement is the planar kinematic bicycle model, first

given in Equation (2.16) and shown again in Equation (3.22).

d

dt


E

N

ψ

 =


|~v| cos(ν)

|~v| sin(ν)
|~v| sin(arctan(b tan(δ)L))

b

 (3.22)

34

This model only requires the identification of the vehicle’s wheel-base length, L, and the lon-

gitudinal weight split for the parameter b; however, the downside of the kinematic model for

MPC is that the steady-state handling assumption does not hold for control applications that

require a dynamic steering response, such as a quick evasive maneuver. To more accurately

capture the vehicle’s lateral transients, the more complex dynamic bicycle model presented in

Equations (2.29–2.30) is combined with the vehicle’s planar motion model to yield the planar

dynamic model given in Equation (3.23).

d

dt



E

N

ψ

vy

ψ̇


=



vx cos(ψ)− vy sin(ψ)

vx sin(ψ) + vy cos(ψ)

ψ̇

−(Cαf+Cαr)
mvx

vy +
−(aCαf−bCαr)−mv2x

mvx
ψ̇ +

Cαf
m
δ

−(aCαf−bCαr)
Izzvx

vy +
−(a2Cαf+b2Cαr)

Izzvx
ψ̇ +

aCαf
Izz

δ


(3.23)

This higher order model gives a more feasible steering trajectory compared to the model in

Equation (3.22). On the other hand, the dynamic model has many more complex terms to

identify. The tire stiffness values, Cαf and Cαr , can be particularly hard to identify correctly

because of the true non-linear behavior of the tires shown previously in Figure 2.6. The dy-

namic model also requires a much lower discretization time-step, T , when compared to the

kinematic model. Also note that the vehicle’s longitudinal speed, vx, appears in the denomina-

tor of the coefficients of the states vy and ψ̇. Therefore, at low speeds, these terms can create

numerical instability in the model; see Equation (3.23). All of these model differences must

be considered along with the controller’s other design requirements, including the intended

operational environment, to effectively use them in an MPC application, but it is the models’

similarities that make it possible to create a common trajectory tracking and obstacle avoidance

interface.

The models given in Equations (3.22–3.23) both output a two-dimensional position and

orientation in the fixed east–north plane. The common planar motion states, xp ∈ R3, are given

in Equation (3.24).

xp = (E,N, ψ)T (3.24)

35

If the desired state trajectory, xdes, is formulated in terms of just the states of xp, then the same

reference trajectory form can be used with either the model in Equation (3.22) or Equation

(3.23). Likewise, if known obstacle information can be expressed in terms of the states in xp

then either model can accommodate the same obstacle avoidance constraints. Also note that

both models have inputs of the vehicle’s speed in some form and the vehicle’s front steer angle,

such that the common input vector, u ∈ R2, is defined in Equation (3.25).

u = (v, δ)T (3.25)

The models in Equations (3.22–3.23) can define the same bound constraints in the set U for the

steering angle based on the physical limits of steering, δmax.

{u ∈ U | − δmax ≤ δ ≤ δmax} (3.26)

However, the bound constraints set up for velocity, given in Equation (3.27), have a less clear

definition.

{u ∈ U | vmin ≤ v ≤ vmax} (3.27)

While it is possible to set the lower bound as vmin = 0 in the kinematic model in Equation

(3.22), it may be desirable to change both the upper and lower bounds dynamically based on the

maximum acceleration/deceleration allowed over the prediction horizon. When using the dy-

namic model in Equation (3.23), the lower bound, vmin, can guarantee that the model prediction

will remain numerically feasible at low speed (a good rule-of-thumb for this is vmin = 1 mph).

In a hybrid control approach, activating the lower velocity bound could even be used to trigger

a switch to a controller that is designed only to brake to a smooth stop.

To accomplish trajectory following, the desired trajectory is incorporated into an MPC

objective function in the form of Equation (3.8). Consider a vehicle with the current state x(0)

and a number of discrete way-points, xdesi , in the east–north plane as shown in Figure 3.1 These

discrete way-points can come from a number of sources, including sampling of a map-based

path, the projection of a pre-planned trajectory, or even a leader vehicle’s previous state. As

36

E

N

𝑥𝑥𝑑𝑑𝑑𝑑𝑠𝑠1

𝑥𝑥𝑑𝑑𝑑𝑑𝑠𝑠3
𝑥𝑥𝑑𝑑𝑑𝑑𝑠𝑠2

𝑥𝑥𝑑𝑑𝑑𝑑𝑠𝑠4

𝑥𝑥(0)

Figure 3.1: Vehicle With State x(0) and a Number of Way-points xdesi in the State-space

previously mentioned, this discrete trajectory is usually defined in terms of the states in xp and

can be used for both models in Equations (3.22–3.23). For the kinematic model in Equation

(3.22), any desired state xdes = (Xdes, Ydes, ψdes)
T defines the reference for the entire state-

space. For the dynamic model in Equation (3.23), any cost due to error in the lateral dynamic

states can be ignored by setting the diagonals of the state weighting matrix Q associated with

vy and ψ̇ to zero. If the way-points are spaced closely, the curvature of the discrete path could

also be used to generate the references ψ̇des and vydes to augment each reference point. In

addition to the definition of all the desired trajectory way-points, some consideration must be

given to their spacing along the prediction horizon of each control iteration. If only the first

way-point, xdes1 , in Figure 3.1 is considered reachable, then it should be held constant over

the entire prediction horizon. Conversely, if all way-points, xdes1 through xdes4 , are reachable

within a single prediction horizon, they should be included as a varying reference with a spacing

that corresponds to the frequency at which the way-points were generated. Conditioning the

reference to best accomplish the trajectory-following objective depends heavily on the method

in which the trajectory is generated and provided to the MPC. The methods used to generate

trajectories for the applications in this work will be discussed further in the next two chapters.

Although obstacle avoidance is certainly an objective for application of MPC in this thesis,

it is not modeled in the objective function. Obstacle avoidance is handled via a set of inequality

constraints that can guarantee that the states of a feasible solution are not in collision with a

known obstacle. Additional to the guarantees provided by using hard constraints, this method

37

was selected because it is a simple way to incorporate collision checking to every way-point

along the horizon. To relate an obstacle to the vehicle states, known obstacle positions are

expressed in the fixed east–north reference frame as the coordinate pair (Xobst, Yobst). The type

of collision constraint used in this thesis is a circle-to-circle collision constraint, which checks

that the distance between the vehicle and any known obstacle must be greater than the estimated

radius of the obstacle, robst, and a safety radius around the vehicle, rsafe. The collision distance

and avoidance radii are shown in Figure 3.2. A set of inequality constraints for avoiding a

N

E

𝑟"#$%

𝑟$&'(

Figure 3.2: Circle-to-circle Collision Distance

single obstacle over the entire prediction horizon is given in Equation (3.28).

√
(Xobst −X(k))2 + (Yobst − Y (k))2 ≥ (robst + rsafe) ∀k = 0, 1, ..., N (3.28)

The constraints in Equation (3.28) are easily expressed in the general form of inequality con-

straints in the set I from Equation (3.20).

√
(Xobst −X(k))2 + (Yobst − Y (k))2 − (robst + rsafe) ≥ 0 ∀k = 0, 1, ..., N (3.29)

One of the major advantages of the circle-to-circle avoidance constraint is its simplicity. Each

collision constraint reduces to a single dimension so many constraints can be added without

exceeding the feasible problem size. The drawback of this simple representation of collision is

38

that a circular safety boundary around the vehicle may be overly conservative. Given the pro-

totype nature of the implementations presented in this thesis, both simplicity and conservatism

were prioritized.

3.4 MPC Implementation

In the previous sections, the general form of the optimal control problem has been formu-

lated and the control objective and constraints for trajectory following and obstacle avoidance

have been presented, but no consideration has been given to how the optimization will be solved

in an online control application. A majority of the state-of-the-art optimization techniques that

make MPC real-time feasible are gradient based. A gradient-based method uses derivatives of

the optimization objective to iterate towards the minimizing solution. Quadratic objectives like

those present in Equations (3.4–3.11) are taken advantage of by a whole class of gradient-based

methods known as quadratic programming. In this section, the first and second order optimality

conditions will be presented to explain the requirements of the modern quadratic programming

software routines used extensively in nonlinear optimization software. The software packages

used for formulating and solving the optimization problem for the proposed MPC implemen-

tations will also be presented. The section will then conclude with an overview of the software

abstraction layer created to encapsulate the different MPC implementations such that they can

be easily be swapped in and out of the larger autonomy system.

In constrained optimization, it is not sufficient to evaluate only the change in the objec-

tive function when looking for a local minimizer/maximizer. To include information about the

constraint equations, a Lagrange function is constructed for the optimization problem. The La-

grangian of the optimization problem in Equation (3.20) with the vector of Lagrange multipliers

λ is defined in Equation (3.30).

L(z, λ) = φ(z)−
∑
i∈E∪I

λici(z) (3.30)

For any point (z∗, λ∗) to be considered optimal, a set of first-order and second-order necessary

conditions must be met. The first order Karush-Kuhn-Tucker (KKT) conditions [68] are defined

39

below in Equation (3.31).

∇zL(z∗, λ∗) = 0 (3.31a)

ci(z
∗) = 0 ∀i ∈ E (3.31b)

ci(z
∗) ≥ 0 ∀i ∈ I (3.31c)

λ∗i ≥ 0 ∀i ∈ I (3.31d)

λ∗i ci(z
∗) = 0 ∀i ∈ E ∪ I (3.31e)

Equations (3.31a–3.31c) simply state that the Lagrangian is not changing at the optimal point

(i.e., it is a stationary point) and that the constraint equations are satisfied. Equations (3.31d–

3.31e) state that all Lagrange multipliers associated with active constraints must be greater

than or equal to zero so that Equation (3.31a) may be satisfied even if the gradient of the object,

∇zφ(z), is non-zero. In general, a point that satisfies Equation (3.31) may be a local minimizer

or local maximizer. The second-order optimality condition defined in Equation (3.32) is used

to determine if a KKT point is in a convex region of the feasible solution set, and is therefore a

local minimizer.

wT∇2
zzL(z∗, λ∗)w ≥ 0 (3.32)

The direction w in Equation (3.32) is any direction that either increases the first-order approx-

imation to the objective function or keeps it the same (i.e. wTf(x∗) ≥ 0). To state Equation

(3.32) in a different way, the Hessian of the Lagrangian,∇2
zzL(z∗, λ∗), must be a positive semi-

definite matrix at the stationary KKT point to be a local minimizer. These optimality conditions

provide a stopping condition for iterative search schemes.

There are many different algorithms for constrained nonlinear optimization that all iterate

on a quadratic approximation to the Lagrange function in Equation (3.30) by solving some

40

variant of the following quadratic programming sub-problem.

min
d

1

2
dT∇2

zzL(zk, λk)d+∇φ(zk)Td

s.t.

∇ci(zk)Td+ ci(zk) = 0 i ∈ E

∇ci(zk)Td+ ci(zk) ≥ 0 i ∈ I

(3.33)

The solution to Equation (3.33) yields a new search direction, d, that is used to update the

current iterative guess at the optimal solution of the original optimization problem, zk, as shown

in Equation (3.34).

zk+1 = zk + d (3.34)

The iterative scheme is repeated until the optimality conditions in Equation (3.31–3.32) are

met to within a prescribed tolerance. For a comprehensive description of constrained nonlinear

optimization algorithms, see [69]. Optimization software packages provide users with many

different choices of the algorithm used in the solver. For MPC designers, it is important to

understand that the definition of the optimization problem’s Lagrangian and its derivatives are

required by most every optimization package, regardless of how the underlying algorithmic

details are changed.

The solver software used to implement the MPC designs in this thesis is IPOPT, an open-

source nonlinear optimization library written in C++. IPOPT uses an interior-point (IP) method

that is well suited to large-scale nonlinear problems. A basic interior-point formulation of the

constrained optimization problem in Equation (3.20) is given in Equation (3.35).

min
z,s

φ(z)− µ
∑
i∈I

ln(si)

s.t.

ci(z) = 0 i ∈ E

ci(z)− si = 0 i ∈ I

(3.35)

41

The interior-point formulation’s primary difference from other well-known techniques like Se-

quential Quadratic Programming (SQP) is that all inequality constraints are turned into equality

constraints with the introduction of slack variables, si, and a logarithmic barrier term is added

to the objective function such that any constraint violation forces the objective function value

toward infinity. These features ensure that the optimal solution remains in the bounds created by

the logarithmic barrier, such that as the barrier parameter goes to zero, µ→ 0, the solution con-

verges on the solution of the original problem in Equation (3.20). For more detail on IPOPT’s

implementation of interior-point optimization, see [70]. IPOPT also scales well for very large

problems (as MPCs with large prediction horizons become) because the representations of the

objective function, gradient of the Lagrangian, and Hessian of the Lagrangian provided by the

user are encoded with their sparsity structures. IPOPT takes advantage of sparse matrix math

libraries to avoid unnecessary computations (i.e., the necessity of multiplying and accumulat-

ing with zero) and memory overhead associated with the sparse matrices that are typical of

large optimization problems. While this sparsity encoding has run-time speed advantages, it

also presents an interesting challenge for the design of a general MPC software framework.

In a customizable software framework for MPC, it is desirable to be able to change com-

ponents and re-use components between different control designs. Any change to an MPC’s

problem structure, such as an increase to the prediction horizon length or the addition of a con-

straint set, can completely alter the dimension and sparsity structure of the vectors and matrices

that must be provided to IPOPT. An example of how the sparsity structure changes drastically

with an increase to the prediction horizon is presented in Appendix B. To solve this prob-

lem, many software approaches for algorithmic differentiation have been created. Any such

approach could be provided as an abstraction to solvers like IPOPT. In this thesis, CasADi was

chosen as the algorithmic differentiation library upon which to build the NMPC framework

[71]. CasADi provides the ability to model the objective function and constraints symbolically

so that complex functions, gradients, Hessians, and all of their associated sparsity structures

can be generated at run-time. CasADi also directly provides an interface to IPOPT and other

optimization solvers to prototype implementations easier. In order to implement many different

42

variations of MPC in this thesis, a custom software abstraction from CasADi was written to fa-

cilitate the process of reusing components and integrating them into the test vehicle’s software

suite.

The NMPC software developed in this thesis was built with modular components from a

custom library written in C++. The library was written in an object-oriented (OO) fashion to

achieve modularity while abstracting the more general CasADi framework. A simple UML

class diagram for the major library components is given in Figure 3.3. This diagram is given

in full resolution with a code example in Appendix B. General NMPC constructs, such as a

model, cost function, or optimizer, have common and well-defined interfaces, shown in blue

in Figure 3.3. The library contains some specific implementations of these interfaces, such

as the Euler and RK4 integrator types. Some of the other concrete components, shown in

orange in Figure 3.3, allow users to instantiate and use them directly without having to create

a custom or inherited type. For example, almost any kind of constraint can be constructed

through creating a CasadiSXConstraint type. An implementation of the optimizer interface

aggregates all the required components and uses them to set up the optimal control problem

and abstract the actual IPOPT solver interface. A user may choose to create one or many

optimizer implementations and include them in a wrapper object, shown in green in Figure 3.3,

that serves as an adapter to communicate with other systems and as a controller that executes

the optimizer methods. In this thesis, the wrapper object contains the ROS communication

primitives that receive current state information and update control parameters from other nodes

in the autonomy system. This wrapper object also sends out, or publishes, the optimized control

output to actuator interfaces. This collection of modular NMPC components facilitated creating

the different controllers tested in this thesis.

43

GV_NMPC CLASS DIAGRAM Robert Brothers | December 16, 2019

ModelInterface

+ XDot(state, input):derivativeState
+ GetNumStates():int
+ GetNumInputs() :int

CasadiSXModel

- state:casadiSX
- input:casadiSX
- xDot:casadiSX

+ XDot(state, input):derivativeState
+ SetXDot(function):bool

+ GetNumStates():int
+ GetNumInputs() :int

IntegratorInterface

+ Simulate(model, initialState,
input):stateTrajectory

+ GetTimeStep():double
+SetTimeStep(dt):bool

+GetScheme():integrationScheme

CasadiSXIntegratorInterface

+ Simulate(model, initialState,
input):stateTrajectory

+ GetTimeStep():double
+SetTimeStep(dt):bool

+GetScheme():integrationScheme

CasadiSXEulerIntegrator

- timeStep:double

+ Simulate(model, initialState,
input):stateTrajectory

+ GetTimeStep():double
+SetTimeStep(dt):bool

+GetScheme():integrationScheme

CasadiSXCostFunctionInterface

+ AddCost(state, input, param)
+ ResetCost()

+ GetCost():costValue
+SetStateWeight(wState)
+SetInputWeight(wInput)

CasadiSXQuadraticCostFunction

- cost:costValue = 0.0
- wState
- wInput

+ AddCost(state, input, param)
+ ResetCost()

+ GetCost():costValue
+SetStateWeight(wState)
+SetInputWeight(wInput)

CasadiSXSimulator

- model:CasadiSXModel
- integrator:CasadiSXIntegratorInterface

+ CasadiSXSimulator(model, integrator)
+ SimulateInputs(initialCondition,

controlHorizon):simulatedTrajectory
+MakePredictionHorizon(numPredictions):

casadiSX
+MakeControlHorizon(numPredictions):

casadiSX

CasadiSXConstraint

- constraintEq:casadiSX
- lowBound:casadiDM = 0.0

- upperBound:casadiDM = 0.0

+ CasadiSXCosntraint(constraintEq)
+ Get():casadiSX

+ Set(constraintEq)
+ SetLowBound(lowBound):bool

+SetUpperBound(upperBound):bool

OptimizerInterface

+ OptimizeInput(initialState,
inputGuess):optimizedInput

CasadiSXMultiShootingOptimizer

- simulator:CasadiSXSimulator
- costFunction:

CasadiSXCostFunctionInterface
- constraints: CasadiSXConstraint

+ CasadiSXMultiShootingOptimizer(
simulator, costFunction, numPredictions)

+ OptimizeInput(initialState,
inputGuess): optimizedInput
+ AddConstraint(constraint)
+ AddParameter(parameter)
+ SetParameterValue(value)

+ SetReference(value)

CasadiSXRK4Integrator

- timeStep:double

+ Simulate(model, initialState,
input):stateTrajectory

+ GetTimeStep():double
+SetTimeStep(dt):bool

+GetScheme():integrationScheme

ControllerWrapper

- optimizer: OptimizerInterface

+ WrapperMethods()

1

1

1

1

1...

1 ...

Figure 3.3: NMPC Software Library UML Class Diagram

44

Chapter 4

Automated Vehicle System Overview: Auxiliary MPC Interfaces

To fit MPC into the greater path planning system for a level-3 autonomous vehicle, the

inputs to the MPC module must be evaluated. In both the common architectures for MPC path

planning and obstacle avoidance control, shown in Figures 1.3–1.4, some form of way-point

reference position and obstacle position information need to be fed to the MPC controller. This

chapter will present Auburn University’s current system for non-line-of-sight (long-distance)

following and autonomous vehicle platooning applications and its modification to provide a

way-point reference similar to the one previously shown in Figure 3.1. The current system

hardware and software architecture as it relates to path following and way-point generation will

also be discussed. Although this thesis does not focus on the obstacle detection and tracking

technologies that provide the obstacle position feedback, a short survey of the current tech-

niques and the necessary additional hardware will be given.

4.1 DRTK/TDCP Path Following

The current non-line-of-sight or long-distance following system developed at Auburn Uni-

versity allows a manually or autonomously driven leader vehicle to communicate with an au-

tonomous follower vehicle to replicate the leader’s path, with centimeter-level precision, at dis-

tances greater than most conventional line-of-sight following systems (>200 m) are capable of

handling. This system is highly dependent on the Dynamic base Real Time Kinematic (DRTK)

and Time Differenced Carrier Phase (TDCP) differential GPS techniques. Both techniques rely

on the highly precise but ambiguous carrier phase measurements from the GPS receiver but

only provide relative position information rather than a global ECEF position. The relative

position information derived from both methods is combined to provide a way-point reference

for the follower vehicle that has a much higher accuracy than traditional GPS way-points that

function like a “bread-crumb” trail dropped by the leader vehicle.

45

DRTK is an extension of Real Time Kinematic (RTK) differential GPS technique. In RTK,

a static GPS base station with a well-known global position shares code and carrier phase mea-

surements with a nearby mobile receiver (<20 km), typically through wireless communication.

The code and carrier measurements from each respective receiver are differenced to cancel

common mode errors and the differential measurements are used to estimate a relative position

vector from the base station to the mobile receiver, accurate to the centimeter-millimeter level.

This relative position vector can be added to the known base station position to create a high-

accuracy global position for the mobile receiver. In DRTK, the base receiver is also mobile and

therefore only the relative position between the two receivers is known, but it does not rely on

stationary infrastructure. The relative position outputs from RTK and DRTK are depicted in

Figure 4.1.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

(a) RTK Relative Positioning With a Stationary
Receiver

𝑟𝑟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(b) DRTK Relative Positioning With a Mobile
Receiver

Figure 4.1

The TDCP algorithm is a differential GPS technique that can be implemented with a single

receiver. The GPS carrier phase measurements from a single receiver are differenced between

successive measurements epochs, from tk−1 to tk, to cancel common mode errors, including

the satellite clock error and atmospheric interference, and also to cancel the integer ambiguity

(number of whole cycles of the carrier wave between the satellite and receiver). The resulting

differenced measurement can be used to estimate a high-precision change in receiver position

between measurement epochs, depicted in Figure 4.2. This method assumes that the mea-

surements are closely spaced in time, such that the errors in the successive measurements are

highly correlated. For an in-depth description of both the DRTK and TDCP algorithms, see

46

𝑞𝑞𝑘𝑘−1,𝑘𝑘

𝑠𝑠𝑘𝑘−1
𝑗𝑗 𝑠𝑠𝑘𝑘

𝑗𝑗

Figure 4.2: High Precision Change in Position Between Measurement Epochs from TDCP

[72, 73, 74].

To combine both the TDCP and DRTK updates into a useful control reference for pla-

tooning, the follower vehicle keeps a short history of its own position changes from TDCP and

relative positions to the leader from DRTK. This time history can be used to reconstruct a new

relative position vector from the follower vehicle to the position of the leader vehicle at a pre-

vious moment in time, tk−n, which is significantly closer to the current vehicle position. When

following this “virtual leader” position, the follower vehicle does not cut corners in the leader’s

path like it would if it was following based only on the current relative position to the leader.

The relative position to the virtual leader, ~rk−n,k, is derived in Equation (4.1) from subtracting a

previous DRTK relative position vector, ~dk−n, from all the previous TDCP updates, ~qk−n,k−n+1

to ~qk−1,k.

~rk−n,k = ~dk−n −
k∑

j=k−n

~qj−1,j (4.1)

The “virtual leader” calculation can be visualized in Figure 4.3. Virtual leader following has

been used previously with a simple PD controller for lateral path following control of a single

vehicle [72, 73, 74] and with an advanced control design for lateral string stability in a platoon

of laterally controlled vehicles [75]. These techniques are currently being used in a class 8

heavy truck platooning application that is level 2 capable [49]. In this thesis, the virtual leader

method will be used to recursively reconstruct a path of way-points to the leader vehicle. This

varying reference for the proposed MPC controller will include multiple way-points into the

47

𝑑𝑑𝑘𝑘−2

𝑞⃗𝑞𝑘𝑘−1,𝑘𝑘

𝑞⃗𝑞𝑘𝑘−2,𝑘𝑘−1

𝑟𝑟𝑘𝑘−2,𝑘𝑘

Figure 4.3: Virtual Leader Following Using DRTK/TDCP Measurements
Figure adapted from [75]

prediction horizon, giving the MPC the ability to anticipate dynamic maneuvers conducted by

the leader vehicle.

4.2 Current System Hardware and Software Architecture

A minimal hardware suite is currently used in Auburn’s truck platooning applications to

accomplish the previously mentioned DRTK/TDCP path following and other platooning con-

trol objectives. A diagram of the hardware components and its connections is given below in

Figure 4.4. All connections are centered around the rugged Linux PC that provides a platform

for running the custom software. One of the primary connections to the PC is the Controller

Area Network (CAN) bus. The CAN bus, originally developed by Robert Bosch GmbH, is

a low-level communication protocol that is widely used in the automotive industry as a way

of communicating between individual electronic control units (ECUs) in a vehicle [76]. The

CAN bus connection allows low-level control of actuators like the throttle/engine, brakes, and

steering, and provides measurements from stock sensors on the vehicle. The GPS unit is a dual

frequency (L1 and L2) receiver that provides raw pseudorange and carrier phase measurements

48

CAN BUS

GPS

RADAR

DSRC

CAN
Ethernet
Serial

IMU

Figure 4.4: Auburn’s Current Hardware Suite for CACC Truck Platooning

(at rates of 1, 2, 5, and 10 Hz) used in the DRTK and TDCP algorithms. A dedicated short

range communication (DSRC) radio, operating in the 5.9 GHz band, is used to communicate

the raw GPS measurements from a leader vehicle for DRTK. These sensors form the basis for

doing differential GPS navigation, but the system includes other measurements for increased

performance and additional features. The inertial measurement unit (IMU) provides accelera-

tions and rotation rates at a very high update rate (100–800 Hz) and can be fused with GPS for

a standalone navigation solution. Fusing the IMU with TDCP provides a higher information

update rate for the output path. The RADAR sensor is used in the platooning application pri-

marily for a higher update rate measurement of the range to the leader vehicle for more precise

longitudinal control, but it can also be used to detect neighboring vehicles and obstacles. For an

in-depth discussion of the design methodology for this system for Cooperative Adaptive Cruise

Control (CACC) truck platooning, see [77].

All software modules in the current system are written such that they could work together

with any other module, and this is accomplished with the previously mentioned middle-ware

framework ROS. Each piece of the system is written as a standalone process, or ROS node, that

can communicate with other processes, or nodes. ROS nodes typically communicate over ROS

49

topics with standardized messages in a publisher–subscriber fashion. Any node may publish

data to a topic and any node that is listening to that topic will receive the data in a callback

for processing. This distributed software framework has many advantages for complex system

designs. It enforces standardized communication between nodes and allows each node to be

modular and specific to its allocated task as well as interchangeable with other nodes that have

the same input/output interface. The ROS software architecture that will be described below is

only a piece of a complete truck platooning system. It will be briefly outlined in terms of its

relation to the way-point path generation and hardware described above.

A given ROS node in the automated driving system can be classified generally as either a

hardware driver, estimator/processing algorithm, or controller node. The hardware drivers and

estimator nodes from the current truck platooning system are shown in Figure 4.5. The pro-

posed MPC controller will be added as the primary controller node for the system in this thesis.

Each node in the diagram is represented as an oval and is named according to its function. The

GPS_NODE

IMU_NODE

DSRC_NODE

RADAR_
NODE

TDCP_
NODE

DRTK_
NODE

GPS_INS_
NODE

TDCP_INS_
NODE

PATH_
NODE

CAN_NODE

?

/pose

/path

/lead_gps_meas

/gps_meas

/imu

/drtk_rpv

/tdcp_odom
/tdcp_ins_odom

/radar

key
ROS node
ROS topic
Software boundary
Hardware connect

CAN
BUS

Figure 4.5: Subset of Auburn’s Current Software Architecture for CACC Truck Platooning
that Relates to Way-point Path Generation

ROS topics (streams of data communication) are represented by the arrows connecting each

node. The hardware drivers (e.g., gps node and dsrc node) are grouped in the left of Figure

50

4.5. Their primary function is to implement the communication protocol specified by the sen-

sor and output the sensor data in a standard ROS message format that other nodes can consume.

The estimation and data processing algorithm nodes are shown in the right of Figure 4.5. The

desired way-point data that will provide input to the MPC node comes from a high-level path

generation algorithm in the path node, which in turn relies on the drtk node and tdcp ins node

estimation processes, which in turn rely on the sensor data from the gps node, imu node, and

dsrc node. Notice that the RADAR hardware driver is connected to an unknown node. In the

current system, it is connected to yet another estimator process, but it could be connected to

an obstacle detection and tracking node. In fact, an obstacle detection and tracking node could

take a variety of sensor inputs, which will be discussed in the next section.

4.3 Obstacle Detection and Tracking

Detecting and tracking obstacles for automated driving applications is a large field of on-

going research; however, significant advancements have been made in the past couple decades

due to the decreasing cost of “vision” sensor technology and the increase in available comput-

ing power for mobile platforms. The three primary sensors used in automated driving applica-

tions are RAdio Detection And Ranging (RADAR), Light Detection And Ranging (LiDAR),

and cameras [78, 79]. Automotive RADARs typically have a small field of view but a long

maximum range (>100 m) and are robust in varying weather conditions. To take advantage of

these strengths, researchers have tailored model-based filtering techniques [80] and new signal

processing techniques [81] to ACC applications. ACC technology has matured to the point

that many modern, commercially-available vehicles come equipped with one or more RADAR

units. LiDAR, a light-based ranging sensor that is similar to RADAR, offers less range but a

much larger field of view (up to full 360◦ horizontal resolution with multiple vertical channels).

The Defense Advanced Research Projects Agency’s (DARPA) Grand and Urban Challenges,

held in 2005 and 2007 respectively, pushed LiDAR’s popularity in autonomous vehicle research

to the forefront with the new obstacle detection and navigation algorithms it enabled. The win-

ner of the 2007 Urban Challenge, the BOSS vehicle, used a fusion of multiple LiDAR units and

a RADAR unit for its novel obstacle detection and tracking algorithm [82]. Since the DARPA

51

Challenges, many other researchers have proposed improved LiDAR-only algorithms for both

obstacle detection [83] and tracking [84]. Camera-based obstacle detection and tracking algo-

rithms can generally be divided into two categories: monocular and stereo camera processing.

Monocular approaches rely on frame-to-frame differences to estimate a pixel’s or group of pix-

els’ motion. In one example, surrounding vehicles are extracted as rectangular features and a

Kalman Filter is updated with the frame-to-frame differences to track each feature [85]. Stereo

camera setups can measure the depth of an object in the frame from the disparity between the

two synchronized images. An example stereo camera system used the disparity image to up-

date a Kalman Filter that tracked in-scene objects and computed the “free” or navigable space

ahead of a vehicle [86]. Any of these three perception-based sensors can be used to produce a

meaningful estimate of obstacle positions in an automated driving system, but the robustness

of the system may be increased by combining the measurements of several sensors.

Many state-of-the-art obstacle detection and tracking methods combine individual sen-

sor processing techniques with a multi-modal sensor fusion algorithm that is robust to noise

and takes advantage of the measurement characteristics of each sensor. In 2016, Asvadi et al.

presented an algorithm that accomplished detection, tracking, and prediction (for a single time

epoch in the future) of an object’s location in world coordinates by fusing RGB camera images,

LiDAR measurements, and the vehicle’s global navigation satellite system/intertial navigation

system (GNSS/INS) navigation solution in a Kalman tracking filter [87]. A more recent al-

gorithm has the ability to fuse many different configurations of LiDAR units and cameras to

detect and track in-scene objects. This algorithm relies on a Markov Decision Process (MDP),

a form of machine learning, to manage the individual vehicle trackers [88]. Both of these

state-of-the-art algorithms have been tested with the KITTI data-set such that they can be com-

pared against other solutions. The KITTI data-set is a collection of data-sets, which include

LiDAR, camera, GPS, IMU, and RTK-corrected positions, and are publicly available for vision

researchers [89, 90]. The KITTI authors also provide standard comparison metrics and a leader

board for published results. The competitive nature of this direct algorithm comparison has

inspired researchers to produce faster and more robust algorithms. Many of these algorithms

are open-sourced for other researchers to validate [91].

52

Most of these obstacle detection and tracking algorithms could be implemented as a single

ROS node (excluding any additional hardware drivers for additional measurement devices) in

the system architecture shown in Figure 4.5. If the output of this obstacle detection and tracking

node is assumed to be an obstacle position or set of obstacle positions, then that output could

also be provided by a “mock” node. In other words, obstacle positions, in the same form as

the output of a real obstacle detection and tracking algorithm, could be simulated in real-time

for testing the proposed MPC implementations. A new system architecture with the MPC ROS

node and the obstacle simulation node is shown in Figure 4.6. This obstacle simulation method

GPS_NODE

IMU_NODE

DSRC_NODE

RADAR_
NODE

TDCP_
NODE

DRTK_
NODE

GPS_INS_
NODE

TDCP_INS_
NODE

PATH_
NODE

CAN_NODE

OBSTACLE_
SIM_NOD

/pose

/path

/lead_gps_meas

/gps_meas

/imu

/drtk_rpv

/tdcp_odom
/tdcp_ins_odom

key
ROS node
ROS topic
Software boundary
Hardware connect

CAN
BUS

MPC_
NODE/obstacles

/steering

/throttle_brake

Figure 4.6: New Software Architecture Including MPC for Obstacle Avoidance and
Way-point Following

has a couple advantages in testing the obstacle avoidance control features of the proposed MPC.

First, it provides obstacle positions without uncertainty for a repeatable test scenario. It is also

significantly safer to run in real-time as there are no actual objects the vehicle could collide with

in the case of a control system failure. Figure 4.6 shows all the required inputs and outputs for

the MPC controller to be implemented and tested. The next chapter presents all the simulated

and real-time testing scenarios for this new system architecture.

53

Chapter 5

Simulation and Experimentation

This chapter presents results from Software-in-the-loop (SIL) and real-time testing of the

proposed NMPC software module, implemented with the previously presented library archi-

tecture. Tuning and performance characteristics for two different NMPC implementations will

be presented with a set of short simulation and real-world tests. The relevant impacts of im-

portant tuning parameters will be discussed. Obstacle avoidance feature testing is presented

with the results of two experiments conducted in simulation. Advantages and improvements to

the current avoidance constraint method will be discussed. Finally, a practical path following

application, resulting from integrating the NMPC module into an existing automated vehicle

software stack, will be presented.

5.1 Experimental Vehicle Setup

As previously mentioned in Chapter 2, the two primary test platforms for this thesis are a

2017 Lincoln MKZ with a drive-by-wire interface and a Gazebo simulation model of this ve-

hicle. This section will explains the common vehicle setup used in all experiments on both the

real and simulated vehicles. Any differences from this base-line vehicle setup for a particular

experiment will be discussed in the procedure for that experiment.

The drive-by-wire ROS software interface is nearly identical for both the real and simu-

lated vehicle. Graphs of the ROS nodes that make up this drive-by-wire interface for the Gazebo

simulation model and for the real vehicle are shown in Figure 5.1 and Figure 5.2, respectively.

The /vehicle/dbw node in both vehicles provides transmitted and received CAN bus messages.

The received CAN messages include data from on-board vehicle sensors such as GPS, IMU,

and wheel-encoder data as well as actuator feedback such as steering position/velocity and

pedal positions. The transmitted CAN messages include actuator commands to directly con-

trol the steering, throttle, and braking actuators. The /vehicle/ulc node in both vehicles is

54

Figure 5.1: Gazebo MKZ Drive-by-wire Software Interface

Figure 5.2: Real MKZ Drive-by-wire Software Interface

55

a low-level controller interface that handles steering, throttle, and braking commands and al-

lows users to command either a desired vehicle yaw-rate or speed, or both simultaneously.

The NMPC controllers in this thesis provide the direct steer angle command but utilize the

/vehicle/ulc node’s speed controller by providing only the desired velocity command output.

The Gazebo vehicle has the ability to provide a true position and velocity measurement with

a high update rate (100 Hz) on the /vehicle/ground truth odom topic, published directly from

the Gazebo simulator. Simulation runs use these truth measurements as a source of vehicle

position and velocity feedback. The same format of feedback is obtained on the real vehicle as

the output of an additional estimator ROS node that takes input from a basic sensor suite. The

additional ROS nodes used for real-time operation, including the sensor drivers, vehicle state

estimator, and a reference path generator, are shown in Figure 5.3.

Figure 5.3: MKZ Drive-by-wire Software Interface: Real-time Controller Testing

The base-line hardware setup for the MKZ is similar to the hardware suite used for

Auburn’s CACC truck platooning system, previously shown in Figure 4.4. Most of the ad-

ditional (non-stock) hardware components are located near the vehicle’s Linux PC in the trunk,

as shown in Figure 5.4. The Memsense 3020 IMU and Novatel GPS receiver with single an-

tenna setup are shown. Although it is not shown in Figure 5.4 the PC is directly connected to

an embedded CAN bus adapter module that communicates with the vehicle CAN bus and other

56

IMU

GPS and
GPS Antenna

Mobile Linux PC

Figure 5.4: MKZ Base-line Hardware Setup

modules in the drive-by-wire kit. A Cohda wireless DSRC radio can be seen in the figure, but

is unconnected for single vehicle tests.

5.2 NMPC Performance Evaluation

The performance of each variant of the NMPC is characterized with a small number of

case-studies using simulation and real-world experiments. This section will define each of these

experimental procedures, explain the tuning procedure and performance evaluation, and present

results from the tuned controllers. To conclude this section, the final tuning parameters for each

controller will be presented. Prediction horizon length, prediction time step, and control effort

weights will be used in subsequent sections to demonstrate applications of the model predictive

controller implementations.

5.2.1 Experiment Procedures

Three experimental procedures were used to quantify and compare the performance of

each NMPC implementation. The first is a step change in lateral position by a single lane’s

57

width in the reference path the controller is tracking. The second procedure is a more gradual

single lane change, where the reference position changes laterally by a single lane’s width over

10 meters of travel in the vehicle’s longitudinal direction. The final performance evaluation

is an ISO-standard double lane change procedure that is often used to quantify a vehicle’s

transient handling abilities. Each of these procedures are run at multiple desired longitudinal

speeds as it was previously shown in Chapter 2 that the vehicle’s lateral dynamics vary with

longitudinal speed. The reference paths for each procedure are shown in Figure 5.5.

0 5
X Position (m)

-4

-2

0

2

4

Y
 P

os
iti

on
 (

m
)

(a) Step Lane Change

0 10 20
X Position (m)

-4

-2

0

2

4

Y
 P

os
iti

on
 (

m
)

(b) Single Lane Change

0 50
X Position (m)

-4

-2

0

2

4

Y
 P

os
iti

on
 (

m
)

(c) Double Lane Change

Figure 5.5: Reference Paths for Performance Evaluation and Tuning Experimental Procedures

Each of these experiments were run with the Gazebo simulation vehicle in the same test

environment, a Gazebo world with a single 5 km long, two-lane road. This environment is

shown in Figure 5.6, where the road in this environment is aligned with the Gazebo world’s

globally fixed X-axis. A custom Gazebo plugin was created for these simulations to generate

Figure 5.6: Gazebo Simulation Two-lane Road

the reference paths shown in Figure 5.5. The Gazebo published paths are shown in the ROS

visualization tool RVIZ in Figure 5.7. Before a desired trajectory is published, the plugin

58

(a) Step Lane Change (b) Single Lane Change (c) Double Lane Change

Figure 5.7: Gazebo Plugin Published Path Visualized in RVIZ

handles ramping the vehicle up to the desired speed for the test. A similar principal was used to

create a ROS node to publish the reference paths for the real-time MKZ vehicle experiments;

however, the online ROS node could not rely on the assumption that the real road lies along a

globally fixed axis.

The real-time test environment for these maneuvers was at the NCAT test track in an area

known as the “skid pad”, which is a small, unstructured area of pavement. The skid pad area

is shown below in Figure 5.8. Unlike the simulation environment, this test area does not have

Figure 5.8: NCAT Skid Pad Area

5 Kilometers of open space to get the vehicle safely up to speed and execute a maneuver. The

maximum testing speed that could be achieved by most maneuvers was 10 m/s due to the

limited space. To generate repeatable reference paths in this small test area, it was mapped

59

with highly accurate RTK GPS data. One centimeter resolution reference paths were created

from this map such that each maneuver would start in approximately the middle of the skid

pad area. An aerial view of these reference paths on the skid pad is shown in Figure 5.9. The

(a) Step Lane Change (b) Single Lane Change (c) Double Lane Change

Figure 5.9: Skid Pad Reference Paths (1 cm Resolution) Created From RTK GPS

reference path generation ROS node, used to publish the reference paths in Figure 5.9 in real-

time, was set up such that the path was translated to the vehicle’s estimated position at the

beginning of each test, correcting for any translation errors in the vehicle’s position estimation.

The reference path generation node also commanded the vehicle to a stopping position at the

end of the desired reference path.

5.2.2 Horizon Sensitivity and Tuning

The NMPC’s time horizon, H , has a large impact on lateral control performance. The

important tuning parameters that make up the time horizon are N , the number of prediction

steps, and T , the prediction time step, as shown previously in Equation (3.2). The full horizon

tuning procedure and results from simulation are shown in Appendix C. A short summary of

the results are presented in this section.

In this thesis, the single lane change maneuver was chosen to perform the horizon tuning

procedure because it represents “normal” driving behavior; however any maneuver or a com-

bination of maneuvers could be used to generate more data for tuning. 2-D grids of tuning

parameters are shown in Table 5.1 and Table 5.2 for the kinematic model NMPC and bicycle

model NMPC, respectively. The grid discretizations were picked from a range based around

initial hand-tuned parameters that kept the vehicle stable through the maneuver. Each grid of

60

tests was run at varying desired speeds of 1, 5, 10, 15, and 20 m/s. The standard deviation on

Table 5.1: 2-D Grid of Horizon Tuning Parameters for the Kinematic Model NMPC
Implementation

Number of Predictions (N) Prediction Time Steps (T)
20 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s
40 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s
60 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s
80 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s

100 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s

Table 5.2: 2-D Grid of Horizon Tuning Parameters for the Bicycle Model NMPC
Implementation

Number of Predictions (N) Prediction Time Steps (T)
75 0.01 s 0.02 s 0.03 s 0.04 s
100 0.01 s 0.02 s 0.03 s 0.04 s
125 0.01 s 0.02 s 0.03 s 0.04 s
150 0.01 s 0.02 s 0.03 s 0.04 s

the lateral path error is used as the performance metric for each of the horizon grid points. A

3-D surface plot of the standard deviation on the lateral path error as a function of number of

predictions and the prediction time step is used to visualize and compare tuning parameters for

different desired path speeds. The low-, medium-, and high-speed (1, 10, and 20 m/s respec-

tively) results of the tuning procedure for the kinematic model NMPC controller are shown in

Figure 5.10 and for the bicycle model NMPC in Figure 5.11.

The tuning procedure reveals that the kinematic model based NMPC controller performs

best in simulation with the combination that results in a long horizon time, H . Although the

optimal combination across all parameters was determined to be (N = 100, T = 0.75s), the al-

ternate parameters (N = 60, T = 0.75s) were selected as a compromise to reduce the run-time

computation of each control iteration. Although increasing the number of predictions quickly

results in a longer horizon time, the performance gain diminishes and the run-time computa-

tional costs increase. The bicycle model based NMPC controller requires a significantly smaller

prediction time step compared to the kinematic model NMPC. This smaller prediction time step

is required to achieve accurate predictions of the lateral handling transients included in the more

detailed dynamic bicycle model. While the horizon tuning results for this implementation show

61

(a) 1 m/s (b) 10 m/s

(c) 20 m/s

Figure 5.10: Kinematic Model NMPC Controller Horizon Tuning Results

62

(a) 1 m/s (b) 10 m/s

(c) 20 m/s

Figure 5.11: Bicycle Model NMPC Controller Horizon Tuning Results

63

that some of the best performance came from runs using the smallest prediction time step, the

performance was only slightly degraded and more consistent across all speeds with a slightly

higher prediction time step and reasonable number of predictions. The horizon tuning selected

for the bicycle model NMPC is (N = 100, T = 0.03s). Note that the total horizon times for the

selected tuning parameters of each implementation vary widely: the kinematic model NMPC

horizon time is H = 45s while the bicycle model NMPC horizon time is H = 3s. This differ-

ence may affect the suitability of one implementation over the other depending on the desired

application. For example, the kinematic model NMPC has a significant advantage in planning

paths around far away detected obstacles in an avoidance scenario, while a well tuned bicycle

model implementation has the advantage of tracking more aggressive short-term paths.

The paths of the kinematic model NMPC with (N = 60, T = 0.75s) at 1, 5, and 10 m/s

are shown in Figure 5.12. Similarly, the paths of the kinematic model NMPC run with the same

tuning parameters in real-time (i.e. on the real MKZ vehicle) are shown in Figure 5.13. The

0 10 20 30 40 50 60 70 80 90

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

1mps Lane Change in Gazebo:
Kinematic NMPC

target path
true path

(a) 1 m/s

150 200 250 300 350

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Y
 (

m
)

5mps Lane Change in Gazebo:
Kinematic NMPC

target path
true path

(b) 5 m/s

450 500 550 600 650 700

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

10mps Lane Change in Gazebo:
Kinematic NMPC

target path
true path

(c) 10 m/s

Figure 5.12: Kinematic Model NMPC Controlled Single Lane Change in Gazebo With
Horizon Tuning (N = 60, T = 0.75s)

64

-20 0 20 40 60 80 100 120 140

X (m)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
 (

m
)

1mps Lane Change:
Kinematic NMPC

target path
true path

(a) 1 m/s

-20 0 20 40 60 80 100 120 140 160

X (m)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Y
 (

m
)

5mps Lane Change:
Kinematic NMPC

target path
true path

(b) 5 m/s

-20 0 20 40 60 80 100 120 140

X (m)

5

6

7

8

9

Y
 (

m
)

10mps Lane Change:
Kinematic NMPC

target path
true path

(c) 10 m/s

Figure 5.13: Kinematic Model NMPC Controlled Single Lane Change in Real-time With
Horizon Tuning (N = 60, T = 0.75s)

65

path-tracking behavior predicted in the Gazebo simulation is very similar to the real-time re-

sults shown in Figure 5.13. Both the simulation and real-time results show the NMPC’s ability

to anticipate the change in the reference path’s lateral position. This anticipation causes the

NMPC controller to begin steering towards the final lateral position offset before a classical

controller, which acts only on current and previous errors, would. Note the only major discrep-

ancy between the simulation and real-time path tracking: in each test case shown in Figure 5.13

the controller corrects for an initial orientation offset from the path, while the simulation tests

in Figure 5.12 starts each run aligned with the path.

The paths of the dynamic bicycle model NMPC implementation with the horizon tuning

(N = 100, T = 0.03s) simulated at 1, 5, and 10 m/s are shown in 5.14. The corresponding

paths from real-time testing of the same NMPC implementation are shown in Figure 5.15.

0 10 20 30 40 50 60 70 80 90

X (m)

-2

-1

0

1

2

3

4

Y
 (

m
)

1mps Lane Change in Gazebo:
Bicycle Model NMPC

target path
true path

(a) 1 m/s

0 20 40 60 80 100

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

5mps Lane Change in Gazebo:
Bicycle Model NMPC

target path
true path

(b) 5 m/s

0 50 100 150 200 250

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

10mps Lane Change in Gazebo:
Bicycle Model NMPC

target path
true path

(c) 10 m/s

Figure 5.14: Bicycle Model NMPC Controlled Single Lane Change in Gazebo With Horizon
Tuning (N = 100, T = 0.03s)

Again, the real-time tests show similar results to the Gazebo simulations. In the lowest speed

66

-60 -40 -20 0 20 40 60 80 100 120

X (m)

44

45

46

47

48

49

50

Y
 (

m
)

1mps Lane Change:
Bicycle Model NMPC

target path
true path

(a) 1 m/s

-20 0 20 40 60 80 100 120 140 160

X (m)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Y
 (

m
)

5mps Lane Change:
Bicycle Model NMPC

target path
true path

(b) 5 m/s

-20 0 20 40 60 80 100 120 140

X (m)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Y
 (

m
)

10mps Lane Change:
Bicycle Model NMPC

target path
true path

(c) 10 m/s

Figure 5.15: Bicycle Model NMPC Controlled Single Lane Change in Real-time With
Horizon Tuning (N = 100, T = 0.03s)

67

runs for both the simulated and real MKZ vehicle, the bicycle model NMPC overshoots the de-

sired path significantly. This overshoot is likely not present in the kinematic model implemen-

tation because of its much larger prediction time step. The bicycle model NMPC cannot “see”

beyond the maneuver on its prediction horizon until the vehicle is almost half way through the

lane change portion of the path, unlike the kinematic model NMPC, which receives way-points

throughout the maneuver well before it begins to turn. During the higher-speed runs in Fig-

ure 5.14b–5.14c and Figure 5.15b–5.15c the controller can “see” through the entire maneuver

before reaching the actual lane change. Much like the kinematic model NMPC, the controller

anticipates the maneuver and begins to turn before reaching the actual reference change when

operating at these higher speeds.

Fine tuning the NMPC’s control output is achieved through modifications to the state

and input weighting matrices in the cost function. Tuning these weighting matrices, given in

Equation (3.8), is similar to tuning an LQR controller. Exact values on the diagonals of the

state weight, Q, and control weight, R, are less important than the ratio of the values between

the different matrices and between the individual diagonals. Take the state weighting matrix

used in this thesis, given in Equation (5.1), as an example.

Q =


1.0 ∅

1.0

∅ 0.1

 (5.1)

This matrix gives equal weighting to errors in the position statesX and Y , and errors in the yaw

state, ψ, are 1/10 as important as errors in either position state. If the following input weighting

matrix is used in the NMPC, large inputs in velocity and steer angle will be penalized with equal

and 100 times the importance, respectively, given to errors in the position states.

R =

1.0 0.0

0.0 100.0

 (5.2)

68

In this thesis the input weighting matrix was tuned to achieve smoother control output and

balance tracking performance and robustness.

A series of simulation experiments were conducted to gain an intuition for the impacts of

tuning the input weighting matrix. The step steer maneuver test, shown in Figure 5.5a, was

conducted at 20 m/s in Gazebo. This maneuver was chosen because it is the most difficult

in terms of keeping the vehicle within its stability limits. Individual test runs varied one of

the input weight diagonals (either the steering input weight or velocity input weight) while

the other was held at 1.0. The results of these experiments show that the controller using the

kinematic model is far more sensitive to changes in the velocity input weight.

The control signal outputs over each run are shown in Figure 5.16 and Figure 5.17 for

desired steering and velocity, respectively. Figure 5.16 presents steering commands from four

different orders of magnitude tuning values. These command histories do not vary appreciably,

0 20 40 60 80 100

Time (s)

-700

-600

-500

-400

-300

-200

-100

0

100

S
te

er
in

g
W

he
el

 A
ng

le
 (

de
g)

Steering Cmd vs. Time

R = 1000

R = 100

R = 10

R = 1

Figure 5.16: Kinematic Model NMPC Steering Control Output with Various Input Weights

except for the Rδ = 1 case where the maximum steer angle is commanded and quickly cor-

rected as the vehicle is accelerating from rest. However, Figure 5.17 shows the tuning on the

velocity input has a large effect on the amplitude of a noisy command output. This noisy output

is primarily due to the lack of a longitudinal dynamic model in the current control implemen-

tations. The current architecture, presented in Figure 5.3, passes this desired velocity output

to a lower level controller that acts as a filter for the actual longitudinal actuator commands.

While the velocity command output noise is undesirable, a higher velocity tuning value also

69

0 20 40 60 80 100 120

Time (s)

0

5

10

15

20

25

V
el

oc
ity

 (
m

/s
)

Velocity Cmd vs. Time

R
vx

 = 0.01

R
vx

 = 0.1

R
vx

 = 1

R
vx

 = 10

R
vx

 = 100

Figure 5.17: Kinematic Model NMPC Velocity Control Output with Various Input Weights

drastically affects the controller’s tracking performance. The effects of changing both tuning

parameters on the path tracking performance is shown in Figure 5.18 and 5.19. Again, the

1150 1200 1250 1300 1350 1400 1450

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

Steering Weight Tuning: Path Variation

R = 1000

R = 100

R = 10

R = 1

Figure 5.18: Kinematic Model NMPC Path Variation due to Steering Input Weights

steering tuning parameter has little to no effect on the variation of the controlled path. The

velocity tuning parameter changes the path tracking drastically over the 5 orders of magnitude

shown in Figure 5.19. In the most drastic case, Rvx = 0.01, the optimizer failed to converge

on a correct solution at the beginning of the test and appears to be “stuck in” or converged to

a local minima solution that is offset from the desired path. In general, increasing the tuning

value decreases the controller’s settle time. In the applications shown in this thesis, achieving

better path tracking is worth the trade-off for a noisier velocity command output signal since

70

500 1000 1500 2000

X (m)

-4

-3

-2

-1

0

1

2

Y
 (

m
)

Velocity Weight Tuning: Path Variation

R
vx

 = 100

R
vx

 = 10

R
vx

 = 1

R
vx

 = 0.1

R
vx

 = 0.01

Figure 5.19: Kinematic Model NMPC Path Variation due to Velocity Input Weights

it is not directly connected to physical actuators and passes through multiple lower levels of

software filtering.

The results of the input weight tuning procedure for the bicycle model NMPC implemen-

tation are similar to the kinematic model NMPC. The weighting on the velocity input has a

large effect on the tracking performance and stability of the controlled vehicle. The velocity

command over time for various tunings during the 20m/s step steer maneuver is shown in Fig-

ure 5.20. At the extremely low tuning value Rvx = 0.01 command velocity quickly saturates

and bounces between the limits set on the velocity input, but this output does not destabilize

the vehicle. The highest input tuning value shown, Rvx = 10, does cause the vehicle to go

unstable when it reaches the speed of the desired maneuver. There does, therefore, appear to be

an optimum velocity tuning between these extremes at around Rvx = 1. Unlike the kinematic

model NMPC, the bicycle model implementation is also sensitive to the input steering weight.

The steering command over time for various tunings during the 20 m/s step steer maneuver

is shown in Figure 5.21. None of the tunings shown in Figure 5.21 destabilize the vehicle;

however, when initially hand-tuning the controller to get the initial set of weights to test with,

there was a minimum weight that stabilized the vehicle through the maneuver. This minimum

weight appeared to change with the velocity (and therefore, the model) that the controller is

operating on. The tuning procedure for the bicycle model NMPC was also run at 10 m/s with

the same maneuver to demonstrate the change in range of appropriate tuning values for the

71

0 10 20 30 40 50 60

Time (s)

0

5

10

15

20

25

V
el

oc
ity

 (
m

/s
)

Velocity Cmd vs. Time

R
vx

 = 0.01

R
vx

 = 0.1

R
vx

 = 1

R
vx

 = 10

Figure 5.20: 20 m/s Step Steer – Bicycle Model NMPC Velocity Control Output with Various
Input Weights

0 10 20 30 40 50 60

Time (s)

-150

-100

-50

0

50

100

150

S
te

er
in

g
W

he
el

 A
ng

le
 (

de
g)

Steering Cmd vs. Time

R = 500

R = 1000

R = 1500

R = 2000

R = 2500

Figure 5.21: 20 m/s Step Steer – Bicycle Model NMPC Steering Control Output with Various
Input Weights

72

steering input weight. The steering and velocity command outputs over time for this 10 m/s

scenario are shown in Figure 5.22 and 5.23 respectively. Figure 5.23 shows generally the same

0 5 10 15 20 25 30 35

Time (s)

-600

-400

-200

0

200

400

600

S
te

er
in

g
W

he
el

 A
ng

le
 (

de
g)

Steering Cmd vs. Time

R = 10

R = 50

R = 100

R = 200

R = 500

Figure 5.22: 10 m/s Step Steer – Bicycle Model NMPC Steering Control Output with Various
Input Weights

trend for the velocity tuning parameter as Figure 5.20. However, Figure 5.22 shows a much

different range of steering weight input values compared to the 20 m/s case. While the lowest

feasible steering input weight in the 20 m/s case was given at Rδ = 500, in the 10 m/s case

the lowest feasible input weight is given at Rδ = 100. An additional simulation with a weight

below the stability threshold, Rδ = 10, is also shown in Figure 5.22.

The effects of changing the steering input weight on the vehicle’s trajectory at both 10 and

20 m/s is shown in Figure 5.24. Similarly, the effects of changing the velocity input weight on

the vehicle’s trajectory at both 10 and 20 m/s is shown in Figure 5.25. A reasonable tuning

for the bicycle model NMPC implementation might be selecting the minimum steering input

weight at the maximum expected operating velocity for the vehicle. However, this tuning is

overly conservative for lower-speed operations, compromising on path tracking performance.

For the best possible path tracking performance from this implementation, a variable or sched-

uled steering input weight should be selected based on the vehicle’s current velocity.

73

0 5 10 15 20 25 30 35

Time (s)

0

5

10

15

20

25

V
el

oc
ity

 (
m

/s
)

Velocity Cmd vs. Time

R
vx

 = 0.01

R
vx

 = 0.1

R
vx

 = 1

R
vx

 = 10

Figure 5.23: 10 m/s Step Steer – Bicycle Model NMPC Velocity Control Output with Various
Input Weights

0 50 100 150 200 250

X (m)

-8

-6

-4

-2

0

2

4

6

8

10

12

Y
 (

m
)

Steering Weight Tuning: Path Variation

R = 10

R = 50

R = 100

R = 200

R = 500

(a) 10 m/s

0 100 200 300 400 500 600 700

X (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y
 (

m
)

Steering Weight Tuning: Path Variation

R = 500

R = 1000

R = 1500

R = 2000

R = 2500

(b) 20 m/s

Figure 5.24: Bicycle Model NMPC Path Variation due to Steering Input Weight

0 50 100 150 200 250

X (m)

-10

-5

0

5

Y
 (

m
)

Velocity Weight Tuning: Path Variation

R
vx

 = 0.01

R
vx

 = 0.1

R
vx

 = 1

R
vx

 = 10

(a) 10 m/s

0 100 200 300 400 500 600 700 800

X (m)

-20

-15

-10

-5

0

5

10

15

Y
 (

m
)

Velocity Weight Tuning: Path Variation

R
vx

 = 0.01

R
vx

 = 0.1

R
vx

 = 1

R
vx

 = 10

(b) 20 m/s

Figure 5.25: Bicycle Model NMPC Path Variation due to Velocity Input Weights

74

The final tuning parameters for both NMPC controller implementations are given in Ta-

ble 5.3. It should be noted that the analysis presented in this section and the horizon tuning

procedure in Appendix C can be performed iteratively to further optimize control performance;

however only a single tuning iteration was performed for this thesis as it gave acceptable results

to prove feasibility in the presented applications.

Table 5.3: NMPC Controller Implementations Final Tuning Parameters

Kinematic Model NMPC Bicycle Model NMPC
N 60 100
T 0.75 s 0.03 s
H 45 s 3 s
QX 1.0 1.0
QY 1.0 1.0
Qψ 0.1 0.1
Rvx 0.5 0.8–1.0
Rδ 10 50–500

5.2.3 Performance Metrics

The performance of each maneuver is evaluated by analyzing how well the vehicle controls

to the path laterally and longitudinally. For each run, a single test maneuver was executed at a

desired speed and the lateral path error is calculated. The mean and standard deviation of the

path error is plotted as a function of the desired vehicle speed to characterize the performance

of the controller over the expected operating range of speeds. Similarly, for each run, the error

in the controlled velocity is calculated. The mean and standard deviation of the velocity error

is also plotted as a function of the desired vehicle speed. The control errors at each speed are

expected to be zero mean with low standard deviation for good control performance.

Tests with both the simulation and the real MKZ vehicle were conducted from 1 to 10m/s

in 1 m/s increments for each maneuver in Figure 5.5. Additional tests were run in simulation

at higher speeds of 15 and 20 m/s. While it was not possible to run real-time experiments

on the MKZ vehicle for these test cases, these simulation data points show the general trend

of the error results at higher speeds. The lateral path error results for the step lane change,

single lane change and double lane change maneuvers are shown in Figure 5.26, Figure 5.27,

75

and Figure 5.28 respectively. All three error figures contain a dashed black line through zero

0 2 4 6 8 10 12 14 16 18 20

Target Run Speed

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

or
 (

m
)

Step Lane Change:
NMPC Lateral Control Errors

Gazebo Kinematic Model
MKZ Kinematic Model
Gazebo Bicycle Model
MKZ Bicycle Model

Figure 5.26: Step Lane Change Maneuver Lateral Path Error Mean and Standard Deviation
with Increasing Path Speed

error and straight black lines at ±1.835m; these represent the lane center-line and outer lane

boundaries (for a single lane), respectively. The kinematic model and bicycle model NMPC

implementations follow the path with approximately zero mean error across all maneuvers.

The simulations of the kinematic model NMPC show a convergence to a small (±0.2–0.25m)

path error standard deviation with increasing speed, while the real-time results for the same

implementation show a consistent error standard deviation (excluding a few outlier tests) with

a slight increase at the higher speeds across all maneuvers. These results suggest that the

performance in real-time would only slightly degrade at higher speeds. Real-time results for

the bicycle model NMPC are equivalent or slightly better than the real-time performance of the

kinematic model NMPC. This implementation is also expected to have consistent path tracking

in the higher speed range.

The desired speed of each test run is set as a constant (implemented by correctly spacing

the reference path way-points). Therefore, the velocity error is calculated by subtracting the

vehicle’s recorded planar velocity from the constant desired velocity for each run. Because

each test starts from rest, a velocity ramp-up period is included in the beginning of each test.

These ramp-up periods are excluded in the velocity error calculation so as to not offset the

76

0 2 4 6 8 10 12 14 16 18 20

Target Run Speed

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

or
 (

m
)

Single Lane Change:
NMPC Lateral Control Errors

Gazebo Kinematic Model
MKZ Kinematic Model
Gazebo Bicycle Model
MKZ Bicycle Model

Figure 5.27: Single Lane Change Maneuver Lateral Path Error Mean and Standard Deviation
with Increasing Path Speed

0 2 4 6 8 10 12 14 16 18 20

Target Run Speed

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

E
rr

or
 (

m
)

Double Lane Change:
NMPC Lateral Control Errors

Gazebo Kinematic Model
MKZ Kinematic Model
Gazebo Bicycle Model
MKZ Bicycle Model

Figure 5.28: Double Lane Change Maneuver Lateral Path Error Mean and Standard Deviation
with Increasing Path Speed

77

control error means for the region of interest in each test. The velocity control error mean and

standard deviation results for each of the same tests discussed above are given in Figures 5.29–

5.31. The simulated kinematic model NMPC again shows approximately zero mean error with

0 2 4 6 8 10 12 14 16 18 20

Target Run Speed

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
E

rr
or

 (
m

/s
)

Step Lane Change:
NMPC Velocity Control Errors

Gazebo Kinematic Model
MKZ Kinematic Model
Gazebo Bicycle Model
MKZ Bicycle Model

Figure 5.29: Step Lane Change Maneuver Velocity Control Error Mean and Standard
Deviation with Increasing Path Speed

a standard deviation of ±0.35m/s in the worst case. The real-time kinematic model NMPC

appears to develop significant error at steady-state that is contributing to the increase in mean

velocity error with desired speed. Both the simulated and real-time kinematic model NMPC

error standard deviations appear to grow with desired speed, but remain within a tolerance

of ±0.5m/s that would be acceptable for many applications. The bicycle model NMPC’s

velocity tracking performance degrades with increasing run speed much more quickly than the

kinematic model implementation.

Interestingly, there is a large discrepancy in the mean errors between the simulations and

real-time tests of the bicycle model NMPC. While the real-time tests show that the mean error

grows with run speed, the simulation results show a growth in oscillations around an approxi-

mately zero mean error. This result suggests that there are modeling errors in the simulation of

the lower-level velocity control. The real vehicle likely filters much more of the high-frequency

content from the longitudinal control signals than the simulation vehicle. The performance of

78

0 2 4 6 8 10 12 14 16 18 20

Target Run Speed

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
rr

or
 (

m
/s

)

Single Lane Change:
NMPC Velocity Control Errors

Gazebo Kinematic Model
MKZ Kinematic Model
Gazebo Bicycle Model
MKZ Bicycle Model

Figure 5.30: Single Lane Change Maneuver Velocity Control Error Mean and Standard
Deviation with Increasing Path Speed

0 2 4 6 8 10 12 14 16 18 20

Target Run Speed

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
rr

or
 (

m
/s

)

Double Lane Change:
NMPC Velocity Control Errors

Gazebo Kinematic Model
MKZ Kinematic Model
Gazebo Bicycle Model
MKZ Bicycle Model

Figure 5.31: Double Lane Change Maneuver Velocity Control Error Mean and Standard
Deviation with Increasing Path Speed

79

both implementations could possibly be improved by incorporating actuator models that in-

clude the delay from a throttle or brake petal input to the vehicle’s velocity output.

Both NMPC implementations achieve similar path tracking performance with very differ-

ent tunings. These differences have a couple important implications that should be taken into

account when applying the NMPC in a larger system. As previously mentioned, the bicycle

model implementation performs best when the tuning is optimized for each operating speed.

This makes the bicycle model implementation significantly harder to tune than the kinematic

model NMPC. A controller that is easier to tune and requires less detailed parameter identifica-

tion may be desirable for applications that are used in a wide variety of vehicles. The kinematic

model NMPC is also run with significantly longer prediction horizons and has less computa-

tional cost than the bicycle model NMPC. The update rates and fidelity of reference information

and measurements used to update the NMPC impact the suitability of one implementation over

the other. For example, the bicycle model implementation is well suited to applications with a

detailed, high-update-rate reference while the kinematic model implementation may be better

applied in a system that receives sparse, long-term reference information. These differences

will be taken into consideration for the applications explored in the following sections.

5.3 Obstacle Avoidance Application

One of the primary motivations for developing the presented NMPC implementations is

the ability to anticipate and produce evasive maneuvers when an obstacle enters the vehicle’s

path and to set a hard constraint on collision avoidance. This section presents results from

two simulation experiments that demonstrate the advantages and disadvantages of using the

position-based obstacle constraint given in Equation (3.29). In the first experiment, the con-

troller attempts to reach only a single position reference with a virtual obstacle is placed in its

path. Additional simulation results without the obstacle are shown to observe the normal be-

havior of the controller when tracking to a single reference point. The second experiment uses

the multiple way-point path references used in Section 5.2 and Section 5.4 to control around a

pedestrian obstacle that steps directly into the desired path.

80

5.3.1 Simulation Procedures

Both obstacle avoidance experiments were run in the Gazebo simulation environment for

a variety of reasons. The primary concern for all avoidance tests is safety. Until the controller’s

avoidance behavior is proven with perfect knowledge of obstacle positions, real-time experi-

mental testing is impractical. The simulation environment also allows for exact and repeatable

placement of a virtual obstacle. Because the tests in Section 5.2 show good correlation between

simulation and real-time controller performance, both obstacle avoidance simulations were de-

signed to understand the normal behavior of the controller when the avoidance constraints are

active and to explore any weaknesses in the proposed constraint method.

The simulation environment for the first experiment is a completely flat and empty world.

A single reference position and orientation, or target, can be arbitrarily selected for the con-

troller. A tool for placing a virtual obstacle into the simulation environment was created to

publish an arbitrary obstacle position for the controller to react to. An RVIZ visualization of

the empty simulation environment with and without an obstacle is shown in Figure 5.32. In the

(a) Obstacle Placed in Vehicle Path (b) No Obstacle in Path, Tracking to a Single Target

Figure 5.32: RVIZ Visualization of an Empty Simulation World for Single Target Tracking
and Obstacle Avoidance Control

simplest test, a single reference point was placed directly in front of the vehicle (with no obsta-

cle in the path) to verify that the controller takes the obvious straight line path to the target and

stops. A second test was conducted with a single reference point that was not directly ahead of

the vehicle and again no obstacle was placed in the path. This test shows the normal steering

behavior of the controller when tracking to a single reference position. The final test procedure

81

for this experiment places the reference position directly ahead of the vehicle and an obstacle

directly in the middle of the straight line path from the vehicle’s starting position to the desired

reference position. The control inputs and controlled vehicle positions from these tests will be

discussed in the next section.

The second experiment utilizes the straight road simulation environment shown in Figure

5.6. In these experiments a multiple way-point reference path is generated at a high rate (100

Hz) and published to the NMPC as the control reference. This path attempts to keep the vehicle

in the right lane and at a constant forward velocity. The path is not altered based on any obstacle

positions. A simulated pedestrian is then placed in the environment with the ability to walk

into and out of the road. The pedestrian begins each test by standing on the road shoulder

and eventually walks directly into the center of the right lane, intersecting with the vehicle’s

desired path. This pedestrian obstacle publishes its position as an obstacle via a Gazebo plugin,

simulating the feedback that could come from an obstacle tracking module in the system. The

simulation setup for this experiment is shown below in Figure 5.33. Tests were conducted with

Figure 5.33: RVIZ Visualization of the Published Path and Obstacle Position (left) and the
Gazebo Simulation World with a Walking Pedestrian Model Acting as an Obstacle (right)

both the kinematic and dynamic bicycle model-based NMPC implementations at 1, 5, and 10

m/s.

82

5.3.2 Obstacle Avoidance Results

For each test in the first experiment, the controlled vehicle trajectory and the control inputs

generated by the NMPC are plotted and evaluated. The results from the first simple test, a single

target placed directly ahead of the vehicle and no obstacle in the path, are shown in Figure 5.34.

The vehicle drives a straight line trajectory exactly as expected. Because there is only a single

0 10 20
X (m)

-5

0

5

10

15

20

25

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Goal Position

(a) Vehicle Trajectory

0 2 4 6 8 10
Time (s)

0

2

4

6

v
x
 C

om
m

an
d

(m
/s

) NMPC Velocity Command

0 2 4 6 8 10
Time (s)

0

2

4

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.34: Single Target Avoidance Test: Target Placed Directly Ahead of the Vehicle and
No Obstacle in the Path

reference point, the optimizer attempts to reach it as quickly as possible by linearly ramping

up the velocity command and then decelerating quickly as the vehicle reaches the target. The

vehicle slightly overshoots the desired position because the braking dynamics are not captured

in the simple kinematic controller model. The steering command for this test remains straight,

as expected, until the vehicle overshoots the target.

The results for the second test, a reference placed offset from the vehicle’s initial heading,

are shown in Figure 5.35. The desired velocity profile is similar to the previous test as it ramps

up towards its upper bound (set at 10 m/s in these tests) and decelerates hard to stop at the

target position. This test shows an unexpected low-frequency oscillation in the steering control

output as the vehicle commands a velocity greater than 5 m/s. Although the vehicle ultimately

reaches its target position, the steering profile generated from the controller is undesirable.

83

0 10 20 30
X (m)

-5

0

5

10

15

20

25

30

35

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Goal Position

(a) Vehicle Trajectory

0 5 10 15
Time (s)

0

5

10

v
x
 C

om
m

an
d

(m
/s

) NMPC Velocity Command

0 5 10 15
Time (s)

-5

0

5

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.35: Single Target Avoidance Test: Target Placed Offset From the Vehicle’s Initial
Heading and No Obstacle in the Path

The results of the final test in the first experiment, a single target placed directly ahead

of the vehicle with an obstacle placed directly in the center of the path, are shown in Figure

5.36. In this test the vehicle successfully generates a trajectory that avoids the obstacle and

only deviates slightly from the expected straight line path. The velocity and steering profile

are similar to the previous test. To achieve the same control performance shown in Section 5.2

while avoiding obstacles, the avoidance constraints must be tested with a multiple way-point

reference path.

In the second simulation experiment, the controlled vehicle trajectory and control inputs

from the NMPC controller are also plotted for each test. The results for the kinematic model at

1, 5, and 10 m/s are shown in Figure 5.37, Figure 5.38, and Figure 5.39 respectively. In each

test, the kinematic model NMPC fails to avoid the obstacle. In the low-speed test, with a desired

path speed of 1m/s, the vehicle reaches its target speed before reaching the obstacle and begins

to steer around the obstacle but stops directly in collision with it. In the 5 and 10 m/s tests,

the controller attempts to stop when it reaches the obstacle. Because the vehicle’s longitudinal

dynamics are not modeled in the controller, the vehicle does not stop immediately when the

commanded velocity is zero, and its momentum carries the vehicle through the collision with

84

0 10 20 30 40
X (m)

0

10

20

30

40

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Goal Position

(a) Vehicle Trajectory

0 5 10 15
Time (s)

0

5

10

v
x
 C

om
m

an
d

(m
/s

) NMPC Velocity Command

0 5 10 15
Time (s)

-5

0

5

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.36: Single Target Avoidance Test: Target Placed Directly Ahead of the Vehicle with
an Obstacle in the Path

0 50 100

X (m)

-10

-5

0

5

10

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 20 40 60 80 100
Time (s)

0

1

2

v
x
 c

om
m

an
d

(m
/s

)

NMPC Velocity Command

0 20 40 60 80 100
Time (s)

-60

-40

-20

0

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.37: Kinematic Model NMPC Pedestrian Obstacle Avoidance at 1 m/s

85

0 50 100
X (m)

-10

-5

0

5

10

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30
Time (s)

0

10

20

v
x
 c

om
m

an
d

(m
/s

)

NMPC Velocity Command

0 10 20 30
Time (s)

-100

0

100

200

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.38: Kinematic Model NMPC Pedestrian Obstacle Avoidance at 5 m/s

0 50 100

X (m)

-10

-5

0

5

10

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30
Time (s)

0

10

20

30

v
x
 c

om
m

an
d

(m
/s

)

NMPC Velocity Command

0 10 20 30
Time (s)

0

50

100

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.39: Kinematic Model NMPC Pedestrian Obstacle Avoidance at 10 m/s

86

the obstacle. The controller then ramps up the desired velocity again to catch up with the

desired path. Note that the obstacle model in the simulation environment did not have any

physical collision properties and therefore it did not impede or stop the vehicle in any way.

The results for the bicycle model NMPC implementation at 1, 5, and 10 m/s are shown

in Figure 5.40, Figure 5.41, and Figure 5.42 respectively. Similar to the kinematic model

0 50 100

X (m)

-10

-5

0

5

10

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 20 40 60 80 100
Time (s)

0

0.5

1

1.5

v
x
 c

om
m

an
d

(m
/s

) NMPC Velocity Command

0 20 40 60 80 100
Time (s)

-20

0

20

40

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.40: Bicycle Model NMPC Pedestrian Obstacle Avoidance at 1 m/s

NMPC implementation, the bicycle-model-based controller failed to avoid the obstacle in each

of these tests. The controller stops the vehicle in collision with the obstacle at low speed and

at higher speeds runs directly through the collision and continues back to the desired path. In

each test, when the vehicle is in collision with the obstacle, the optimizer in the controller

fails to converge and produces erratic steering commands. This behavior is easily seen in

Figure 5.40b after approximately 62 seconds. The higher-speed tests shown in Figure 5.41b

and Figure 5.42b demonstrate that the controller operates normally after the vehicle is clear of

the obstacle’s collision radius.

To further analyze this failure mode that is present in both NMPC implementations, the

prediction horizons before, during, and after the obstacle intersects with the desired reference

path must be evaluated. During the pedestrian avoidance simulations, there are short periods of

87

0 50 100
X (m)

-10

-5

0

5

10

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30 40
Time (s)

0

10

20

30

v
x
 c

om
m

an
d

(m
/s

)

NMPC Velocity Command

0 10 20 30 40
Time (s)

-1000

-500

0

500

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.41: Bicycle Model NMPC Pedestrian Obstacle Avoidance at 5 m/s

0 50 100
X (m)

-10

-5

0

5

10

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30
Time (s)

0

10

20

30

v
x
 c

om
m

an
d

(m
/s

)

NMPC Velocity Command

0 10 20 30
Time (s)

-500

0

500

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.42: Bicycle Model NMPC Pedestrian Obstacle Avoidance at 10 m/s

88

time in which the obstacle is moving into the controller’s reference path, and in some simula-

tions there is some time after the vehicle has passed the obstacle and can no longer see it on the

horizon. The positions of the prediction horizon and the Lagrange multipliers associated with

the collision constraints are plotted at multiple instants during these transition points to give

some indication of where the failure mode originates and how it can be detected. Select plots

for the 10 m/s test of the kinematic model NMPC implementation and the dynamic bicycle

model NMPC implementation are shown in Figure 5.43 and Figure 5.44, respectively.

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
o

rt
h

in
g

 (
m

)

East-North Plane Positions

t = 5.73 s
Vehicle Position

Predictioned Trajectory

Obstacle Position

0 5 10 15 20 25 30 35 40 45

Prediction Horizon Time (s)

-10

-5

0

5

10

M
u

lt
ip

lie
r

v
a

lu
e

Avoidance Constraint Lagrange Multipliers

(a)

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
o

rt
h

in
g

 (
m

)

East-North Plane Positions

t = 13.27 s
Vehicle Position

Predictioned Trajectory

Obstacle Position

0 5 10 15 20 25 30 35 40 45

Prediction Horizon Time (s)

-10

-5

0

5

10

M
u

lt
ip

lie
r

v
a

lu
e

Avoidance Constraint Lagrange Multipliers

(b)

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
or

th
in

g
(m

)

East-North Plane Positions

t = 16.37 s
Vehicle Position
Predictioned Trajectory
Obstacle Position

0 5 10 15 20 25 30 35 40 45

Prediction Horizon Time (s)

-10

-5

0

5

10

M
ul

tip
lie

r
va

lu
e

Avoidance Constraint Lagrange Multipliers

(c)

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
or

th
in

g
(m

)

East-North Plane Positions

t = 25.50 s
Vehicle Position
Predictioned Trajectory
Obstacle Position

0 5 10 15 20 25 30 35 40 45

Prediction Horizon Time (s)

-10

-5

0

5

10

M
ul

tip
lie

r
va

lu
e

Avoidance Constraint Lagrange Multipliers

(d)

Figure 5.43: Prediction Horizon and Avoidance Constraint Lagrange Multipliers at Select
Instants of the 10 m/s Pedestrian Avoidance Test Using the Kinematic Model NMPC

Interestingly, the prediction horizon in Figure 5.43a shows the expected evasive maneuver

as the obstacle is moving into the desired path. There is also a spike in the constraint Lagrange

multiplier values between 5 and 10 seconds on the prediction horizon. A similar spike in the

89

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
o

rt
h

in
g

 (
m

)

East-North Plane Positions

t = 8.73 s
Vehicle Position

Predictioned Trajectory

Obstacle Position

0 0.5 1 1.5 2 2.5 3

Prediction Horizon Time (s)

-10

-5

0

5

10

M
u

lt
ip

lie
r

v
a

lu
e

Avoidance Constraint Lagrange Multipliers

(a)

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
o

rt
h

in
g

 (
m

)

East-North Plane Positions

t = 12.10 s
Vehicle Position

Predictioned Trajectory

Obstacle Position

0 0.5 1 1.5 2 2.5 3

Prediction Horizon Time (s)

-10

-5

0

5

10
M

u
lt
ip

lie
r

v
a

lu
e

Avoidance Constraint Lagrange Multipliers

(b)

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
or

th
in

g
(m

)

East-North Plane Positions

t = 14.20 s
Vehicle Position
Predictioned Trajectory
Obstacle Position

0 0.5 1 1.5 2 2.5 3

Prediction Horizon Time (s)

-10

-5

0

5

10

M
ul

tip
lie

r
va

lu
e

Avoidance Constraint Lagrange Multipliers

(c)

0 20 40 60 80 100 120 140 160 180 200

Easting (m)

-5

0

5

N
or

th
in

g
(m

)

East-North Plane Positions

t = 19.87 s
Vehicle Position
Predictioned Trajectory
Obstacle Position

0 0.5 1 1.5 2 2.5 3

Prediction Horizon Time (s)

-10

-5

0

5

10

M
ul

tip
lie

r
va

lu
e

Avoidance Constraint Lagrange Multipliers

(d)

Figure 5.44: Prediction Horizon and Avoidance Constraint Lagrange Multipliers at Select
Instants of the 10 m/s Pedestrian Avoidance Test Using the Bicycle Model NMPC

90

Lagrange multiplier values is shown in Figure 5.43b, much closer to T = 0 on the horizon

as the vehicle’s CG is almost in collision with the obstacle. After the vehicle has cleared the

obstacle, the Lagrange multiplier values return to approximately zero. This detectable spike

in Lagrange multiplier value along the horizon gives a strong indication of where along the

prediction horizon the collision avoidance constraint is active.

The Lagrange multiplier values show similar behavior in the test of the bicycle model

NMPC implementation. Figure 5.44b and Figure 5.44c show a significant spike in the multi-

plier values as the closely spaced predictions collide with the obstacle. Because the prediction

horizon length for this controller implementation is tuned to be significantly shorter (3 s), the

controller cannot “see” the obstacle until it is directly in the desired path. An evasive maneu-

ver trajectory is never generated on the prediction horizon, but the failure mode appears to be

the same in both controller implementations: reference states that directly violate the collision

constraint cause the optimizer to generate an invalid solution.

There are a couple of possible solutions to correct the failure of this proposed collision

constraint method in a way-point reference path-following scenario. The simplest solution

is to pre-process the reference path before each control iteration. This pre-processing step

would check each reference way-point in the path for a collision constraint violation and move

problem way-points to the constraint boundary before each call to the optimization routine in

the controller. This solution method would require an algorithm for where to move problem

way-points along the boundary.

To demonstrate this simple solution method and any possible side-effects, path pre-processing

was added to the NMPC controller. Any way-point that was found to be in collision with a

known obstacle position was simply moved to the constraint boundary by projecting the way-

point both ahead and behind the obstacle along the distance vector to the obstacle position and

selecting the modified way-point that is closest to the original path. The same pedestrian avoid-

ance scenarios were re-run in simulation with both the kinematic and bicycle model NMPC

implementations at 5 m/s and 10 m/s. The results from the two simulations with the kine-

matic model implementation are shown in Figure 5.45 and Figure 5.46. Similarly, the results

91

0 50 100 150 200
X (m)

-50

0

50

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30
Time (s)

0

5

10

15

v
x
 c

om
m

an
d

(m
/s

) NMPC Velocity Command

0 10 20 30
Time (s)

-200

0

200

400

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.45: Kinematic Model NMPC Pedestrian Obstacle Avoidance at 5 m/s with Path
Pre-processing

0 50 100 150 200
X (m)

-50

0

50

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30
Time (s)

0

10

20

v
x
 c

om
m

an
d

(m
/s

) NMPC Velocity Command

0 10 20 30
Time (s)

-200

0

200

400

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.46: Kinematic Model NMPC Pedestrian Obstacle Avoidance at 10 m/s with Path
Pre-processing

92

from the two simulations with the bicycle model implementation are shown in Figure 5.47 and

Figure 5.48.

0 50 100 150 200
X (m)

-50

0

50

Y
 (

m
)

NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30 40
Time (s)

0

10

20

30

v
x
 c

om
m

an
d

(m
/s

) NMPC Velocity Command

0 10 20 30 40
Time (s)

-1000

0

1000

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.47: Bicycle Model NMPC Pedestrian Obstacle Avoidance at 5 m/s with Path
Pre-processing

Note that there is a major trade-off between the path-tracking robustness and avoidance

that is made when this pre-processing modification is added. Even in the lower speed 5 m/s

simulations, the trajectory that is generated deviates significantly from the original path (mul-

tiple road lanes). The control actions generated when the obstacle comes into view is much

more aggressive than during the normal path tracking operation in all cases. In the 10m/s case

with the bicycle model NMPC implementation, the erratic steering output hits its limits and

ultimately results in unstable behavior. These results suggest that additional solutions should

be explored to better understand and handle the avoidance control mode.

A second solution might be to use the Lagrange multiplier values as feedback to indicate

to the controller which states along the prediction horizon are potentially in collision. This

feedback information could be used to de-weight the reference path errors in the NMPC’s cost

function at these collision points on the horizon. This solution would allow the optimizer to

generate a continuous trajectory around the remaining valid way-points in the reference path.

There are other possible solution methods that extend beyond the capabilities of the current

constraint implementation.

93

0 50 100 150 200
X (m)

-50

0

50
Y

 (
m

)
NMPC Controlled Path

Starting Position
Trajectory
Obstacle Position

(a) Vehicle Trajectory

0 10 20 30 40
Time (s)

0

10

20

30

v
x
 c

om
m

an
d

(m
/s

) NMPC Velocity Command

0 10 20 30 40
Time (s)

-1000

0

1000

 c
om

m
an

d
(d

eg
)

NMPC Steering Command

(b) NMPC Controller Output

Figure 5.48: Bicycle Model NMPC Pedestrian Obstacle Avoidance at 10 m/s with Path
Pre-processing

Changing the form of the avoidance constraint equations may be necessary to get the

best path tracking performance during obstacle avoidance. Note that the current avoidance

constraints are discrete in nature. Although each point along the horizon is constrained to be

outside the collision radius, there is no guarantee that the continuous trajectory between two

successive collision free predictions does not cross the collision boundary. This is especially

apparent in the un-modified pedestrian avoidance simulation case with the kinematic model

NMPC implementation. In Figure 5.43b the second and third predicted positions are just ahead

of the obstacle and then directly behind it, respectfully. The straight-line trajectory between

those two points goes directly through the collision with the obstacle. Using the current state

prediction models, there may be a constraint equation that can describe and prevent collision

between the circular obstacle boundary and the line segment of two sequential predictions.

These solutions and others need to be verified extensively in simulation before this obstacle

avoidance method can be applied to a way-point reference following application.

94

5.4 Non-line-of-sight Path Following Application

As previously mentioned, a possible application of the NMPC controller is in Auburn

University’s platooning system that is capable of doing non-line-of-sight path following. The

following sections will discuss the experimental test setup that was modified from the original

heavy truck platforms to the available passenger vehicle test platforms. The experiments for

real-time testing of the controller in the following scenarios will be described. Finally, the

results of these experiments will be shown to prove the feasibility of NMPC control for use in

platooning or following applications.

5.4.1 Experiment Procedures

Two experiments were performed to test the controller. The first experiment was a simple

circular maneuver in which a leader vehicle drove a wide circle around the NCAT skid pad area

and the controlled vehicle followed approximately 20 seconds behind. In the second experiment

the leader vehicle drove a more complex looped route that turned into and out of the NCAT

skid pad area via a small access road. In the second experiment, the leader vehicle got much

further ahead of the controlled follower vehicle and lost line-of-sight through the turns onto the

access road. Both of these experiments were run only in real-time with the MKZ test vehicle.

The current Gazebo simulation environment is not capable of simulating the DRTK/TDCP

algorithms that are used to create the reference path for the follower.

In both experiment procedures, the MKZ test vehicle acted as the follower that was run-

ning the NMPC. Another passenger vehicle was used as the manually driven leader vehicle.

Both vehicles in a leader–follower configuration are shown below in Figure 5.49. DSRC radio

antennas and GPS antennas can be seen atop both test vehicles. The leader vehicle contained

only a mobile computer, GPS receiver, and DSRC radio as shown in Figure 5.50. The MKZ

follower vehicle did not require any hardware beyond what was shown previously in Figure

5.4.

Only the kinematic model NMPC was used in these experiments. This choice was pri-

marily due to the low frequency of path updates (2 Hz) from the lead vehicle, which matched

95

Figure 5.49: MKZ Test Vehicle Setup as an Autonomous Follower to the Manually Driven Kia
Optima Leader Vehicle

Figure 5.50: Kia Optima Leader Vehicle Hardware Setup

96

an acceptable prediction time step for the kinematic model NMPC. The number of path points

published from the path generation software module could also vary at any given path update.

While the NMPC software module is set up to handle paths of varying sizes, the bicycle model

NMPC implementation is not robust enough to handle a sporadic and undersampled path. To

use the bicycle model implementation, the path would need to be upsampled or resampled;

however, the kinematic model implementation is robust enough to be used without any pre-

processing of the path.

5.4.2 Non-line-of-sight following results

Results from the first experiment, following the leader vehicle driving in a circular path,

are shown below in Figure 5.51. The solid path line in Figure 5.51 is the GPS/INS position

-80 -60 -40 -20 0 20 40 60 80

Easting (m)

-80

-60

-40

-20

0

20

40

60

80

N
or

th
in

g
(m

)

Figure 5.51: Kinematic Model NMPC Following a Circular Path Generated from
DRTK/TDCP

solution for the follower vehicle. The leader vehicle’s positions from DRTK are represented as

green stars. The vehicle successfully follows the leader’s path for approximately 3 laps before

control was manually overridden by the driver. During this test the following vehicle did not

ever lose sight of the leader.

97

The first experiment did not exercise the non-line-of-sight feature of the DRTK/TDCP path

generation method. To test it, the second experiment was designed to include a significantly

longer following distance. The results of following this longer looped path are shown below in

Figure 5.52. In this path, the leader vehicle began by making a large sweeping turn around the

-80 -60 -40 -20 0 20 40 60 80

Easting (m)

-80

-60

-40

-20

0

20

40

60

80

N
or

th
in

g
(m

)

Figure 5.52: Kinematic Model NMPC Non-line-of-sight Following a Leader Vehicle

NCAT skid pad area. The leader proceeded straight down to a right turn onto a small access

road, traveled straight down this road, and made another right turn back up towards the skid pad

area. During this portion of the path the follower vehicle completely lost sight of the leader.

The controller successfully followed the path during each part of this experiment; however, a

few interesting parts of the path should be highlighted.

Select instants in time during the non-line-of-sight path following are shown in Figure

5.53. During the sweeping turn, the model predictions match almost exactly with the reference

path, resulting in good path tracking. After a sharper turn, the vehicle’s true position overshot

the predicted trajectory and had to correct back to the desired path. This overshoot is likely due

to the model inaccuracies of the low-fidelity kinematic model used in the controller. During

both right turns, onto and off of the access road, the controller cuts corners in the path. This

problem may have been less apparent if this sharp turn had contained more way-points in the

controller’s prediction horizon, because the NMPC’s cost function would be dominated by the

98

path errors in the turn. Possible solutions to these edge cases and other general improvement

suggestions will be discussed further in the following chapter.

-80 -60 -40 -20 0 20 40 60 80

Easting (m)

-80

-60

-40

-20

0

20

40

60

80

N
or

th
in

g
(m

)

t = 17.73 s

Current Position
Desired Path
NMPC Predictions

(a)

-80 -60 -40 -20 0 20 40 60 80

Easting (m)

-80

-60

-40

-20

0

20

40

60

80

N
or

th
in

g
(m

)

t = 39.73 s

Current Position
Desired Path
NMPC Predictions

(b)

-80 -60 -40 -20 0 20 40 60 80

Easting (m)

-80

-60

-40

-20

0

20

40

60

80

N
or

th
in

g
(m

)

t = 122.83 s

Current Position
Desired Path
NMPC Predictions

(c)

-80 -60 -40 -20 0 20 40 60 80

Easting (m)

-80

-60

-40

-20

0

20

40

60

80

N
or

th
in

g
(m

)

t = 135.90 s

Current Position
Desired Path
NMPC Predictions

(d)

Figure 5.53: Sample Control Iterations During Non-line-of-sight Following

99

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The safety of automated driving systems is paramount to their progression from generally

capable SAE level 2 systems to fully featured level 3 and level 4 systems that do not require

a human in the control loop. This thesis has presented an NMPC approach to add obstacle

avoidance capabilities to a current SAE level 2 automated driving system and future automated

ground vehicles. The model predictive control algorithm, including the formulation of the cost

function, constraints, and underlying optimization algorithms, were detailed in this thesis. A

flexible NMPC software library was developed and proven to be feasible for real-time control

of an autonomous vehicle platform. Two simple vehicle models, a kinematic model and a

dynamic bicycle model, were developed, identified, and implemented in NMPC controllers for

a drive-by-wire capable Lincoln MKZ. These controllers were demonstrated with a series of

simulation and real-time experiments.

Both controller implementations were shown to be capable of tracking a path of way-

points when the path is used as the control reference. A set of highly accurate global position-

based paths with 1 cm resolution were used to tune and test each controller’s performance in

autonomous following applications. The detailed tuning procedure revealed that the tuning

of the prediction horizon parameters is equally important to the stability of the controller as

the tuning of the control effort weights in the cost function. When using a static tuning, the

control performance varies with the vehicle’s desired speed; however, tuning values for each

controller implementation were found and proven to work at speeds from 1 to 20 m/s. The

tuned kinematic model-based NMPC implementation was also used in Auburn’s non-line-of-

sight following system to successfully duplicate a leader vehicle’s path autonomously. This

100

application proved that the NMPC controller can be integrated into an existing level 2 platoon-

ing software stack to replace the original lateral controller module.

Obstacle avoidance was integrated into the controller through a set of hard constraints.

Simulation testing proved these constraints work when the controller drove to a target position

that was not in collision with an obstacle. The obstacle constraints failed in the reference

path following tests when one or multiple of the reference path way-points were in collision

with the obstacle. One proposed solution to this problem is to pre-filter the path for collisions

between reference positions and obstacle positions. A second proposed solution is an adaptive

weighting scheme that de-weights the tracking errors in the cost function for only the states on

the horizon that are in collision with the obstacle. These improvements must be incorperated

into the controller before it can be tested with the added complexity and uncertainty of a real-

time obstacle detection and tracking system.

6.2 Future Work

In addition to the proposed improvements in the obstacle avoidance control, there are

many other aspects of the controller that can be improved for faster, higher performance, and

more robust control. These improvements begin with continued improvements to the soft-

ware implementation. Currently, the controller uses CasADi’s interal interface to the IPOPT

solver. This internal interface evaluates the optimization equations with their symbolic math

representations. These function evaluations are far slower than evaluating the problem defini-

tion Jacobians and Hessians once, generating C/C++ function code for the function evaluations

the optimization library requires, and compiling these C/C++ representations. CasADi offers

code generation tools to create these compiled functions for almost all of its solver interfaces.

These code generation tools should be explored to increase the computational efficiency of the

controller, allowing longer prediction horizons and faster control loops.

Control performance, especially the longitudinal control performance, can be improved

by including dynamic models of the vehicle’s actuators. For the longitudinal control, the model

from throttle and brake pedal inputs to velocity output could significantly reduce overshoot and

control chatter. Similarly, the delay from steering command to actual steering output could

101

be modeled and included in the controller for a more accurate prediction of the lateral motion

of the vehicle over the horizon. Many other more complex models could also be explored,

including articulated tractor-trailer models for control of large trucks.

Many other weigthing schemes and forms of the optimization cost function should also be

explored. One popular addition to the cost function is a term that penalizes changes in control

input over the horizon. This is similar to adding derivative control in a classical PID controller.

This additional term adds another tuning matrix that can be used to further tune the control

performance. Although the current NMPC has quite a few tuning parameters, they could all be

adjusted to different values along the horizon or adjusted online based on the desired maneuver

on the horizon. A self-tuning or adaptive tuning controller could possibly be accomplished

through including machine learning into the NMPC.

102

References

[1] C. J. Kahane, “Lives saved by vehicle safety technologies and associated federal motor

vehicle safety standards, 1960 to 2012 – passenger cars and LTVs,” Report No. DOT HS

812 069, 2015.

[2] J. N. Dang, “Statistical analysis of the effectiveness of electronic stability control (ESC)

systems,” Report No. DOT HS 810 794, July 2007.

[3] National Center for Statistics and Analysis, “Speeding: 2017 data (Traffic Safety Facts.

DOT HS 812 687),” tech. rep., National Highway Traffic Safety Administration, Wash-

ington, DC, May 2019.

[4] SAE International Surface Vehicle Recommended Practice, “Taxonomy and definitions

for terms related to driving automation systems for on-road motor vehicles,” SAE Stan-

dard J3016, Rev. Jun. 2018.

[5] Crash Avoidance Metrics Partnership on behalf of the Automated Vehicle Research Con-

sortium, “Automated vehicle research for enhanced safety final report,” tech. rep., Na-

tional Highway Traffic Safety Administration, Mar. 2016.

[6] Office of Highway Safety, “Preliminary report highway: HWY18MH010,” tech. rep.,

National Transportation Safety Board, 490 L’Enfant Plaza East, S.W. Washington, DC

20594, Mar. 2018.

[7] Tesla, Inc., “A tragic loss.” https://www.tesla.com/blog/tragic-loss,

June 2016. Accessed: 2019-10-08.

[8] V. V. Dixit, S. Chand, and D. J. Nair, “Autonomous vehicles: Disengagements, accidents

and reaction times,” PLOS ONE, vol. 11, pp. 1–14, 12 2016.

103

[9] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning

and control techniques for self-driving urban vehicles,” IEEE Transactions on Intelligent

Vehicles, vol. 1, 04 2016.

[10] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion planning meth-

ods for autonomous on-road driving: State-of-the-art and future research directions,”

Transportation Research Part C: Emerging Technologies, vol. 60, pp. 416 – 442, 2015.

[11] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,

M. Halpenny, G. Hoffmann, et al., “Stanley: The robot that won the DARPA grand chal-

lenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[12] T. Gindele, D. Jagszent, B. Pitzer, and R. Dillmann, “Design of the planner of team An-

nieWAY’s autonomous vehicle used in the DARPA urban challenge 2007,” in 2008 IEEE

Intelligent Vehicles Symposium, pp. 1131–1136, June 2008.

[13] R. Geisberger, P. Sanders, D. Schultes, and C. Vetter, “Exact routing in large road net-

works using contraction hierarchies,” Transportation Science, vol. 46, pp. 388–404, Aug.

2012.

[14] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner,

and R. F. Werneck, “Route planning in transportation networks,” in Algorithm engineer-

ing, pp. 19–80, Springer, 2016.

[15] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in 20th Annual

Symposium on Foundations of Computer Science (sfcs 1979), pp. 421–427, Oct 1979.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-

matik, vol. 1, pp. 269–271, Dec 1959.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination

of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,

pp. 100–107, July 1968.

104

[18] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free paths among

polyhedral obstacles,” Communications of the ACM, vol. 22, pp. 560–570, Oct. 1979.

[19] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Pro-

ceedings. 1985 IEEE International Conference on Robotics and Automation, vol. 2,

pp. 500–505, March 1985.

[20] R. Daily, Stream Function Path Planning and Control for Unmanned Ground Vehicles.

phdthesis, Auburn University, Aug. 2008.

[21] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for

path planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics

and Automation, vol. 12, pp. 566–580, Aug 1996.

[22] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” tech.

rep., Iowa State University, 1998.

[23] J. Bruce and M. Veloso, “Real-time randomized path planning for robot navigation,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2383–

2388 vol.3, Sep. 2002.

[24] K. Naderi, J. Rajamäki, and P. Hämäläinen, “RT-RRT*: A real-time path planning algo-

rithm based on RRT*,” in Proceedings of the 8th ACM SIGGRAPH Conference on Motion

in Games, MIG ’15, (New York, NY, USA), pp. 113–118, ACM, 2015.

[25] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms for optimal motion

planning,” arXiv preprint arXiv:1005.0416, 2010.

[26] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic control: appli-

cations to industrial processes,” Automatica, vol. 14, pp. 413–428, sep 1978.

[27] E. F. Camacho and C. Bordons, Model Predictive Control. Springer-Verlag GmbH, sec-

ond ed., 2007.

105

[28] L. Wang, Model Predictive Control System Design and Implementation Using MATLAB.

Advances in Industrial Control, Springer-Verlag GmbH, 2009.

[29] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms.

Communcations and Control Engineering, Springer International Publishing, second ed.,

2017.

[30] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat, “A hybrid approach to trac-

tion control,” in Hybrid Systems: Computation and Control (M. D. Di Benedetto and

A. Sangiovanni-Vincentelli, eds.), (Berlin, Heidelberg), pp. 162–174, Springer Berlin

Heidelberg, 2001.

[31] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat, “MPC–based approach

to active steering for autonomous vehicle systems,” International Journal of Vehicle Au-

tonomous Systems, vol. 3, pp. 265–291, 01 2005.

[32] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering

control for autonomous vehicle systems,” IEEE Transactions on Control Systems Tech-

nology, vol. 15, pp. 566–580, May 2007.

[33] C. E. Beal and J. C. Gerdes, “Enhancing Vehicle Stability Through Model Predictive Con-

trol,” vol. ASME 2009 Dynamic Systems and Control Conference, Volume 1 of Dynamic

Systems and Control Conference, pp. 197–204, 10 2009.

[34] C. E. Beal and J. C. Gerdes, “Model predictive control for vehicle stabilization at the limits

of handling,” IEEE Transactions on Control Systems Technology, vol. 21, pp. 1258–1269,

July 2013.

[35] J. M. Park, D. W. Kim, Y. Yoon, and K. S. Yi, “Obstacle avoidance of autonomous ve-

hicles based on model predictive control,” Proceedings of The Institution of Mechani-

cal Engineers Part D-journal of Automobile Engineering, vol. 223, pp. 1499–1516, Dec.

2009.

106

[36] Y. Yoon, T. Choe, Y. Park, and H. J. Kim, “Obstacle avoidance for wheeled robots in un-

known environments using model predictive control,” IFAC Proceedings Volumes, vol. 41,

no. 2, pp. 6792 – 6797, 2008. 17th IFAC World Congress.

[37] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-predictive active steering

and obstacle avoidance for autonomous ground vehicles,” Control Engineering Practice,

vol. 17, no. 7, pp. 741 – 750, 2009.

[38] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust nonlinear predictive

control approach to semiautonomous ground vehicles,” Vehicle System Dynamics, vol. 52,

no. 6, pp. 802–823, 2014.

[39] G. P. Bevan, H. Gollee, and J. O’Reilly, “Trajectory generation for road vehicle obstacle

avoidance using convex optimization,” Proceedings of the Institution of Mechanical En-

gineers, Part D: Journal of Automobile Engineering, vol. 224, no. 4, pp. 455–473, 2010.

[40] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Safe driving envelopes for shared control of

ground vehicles,” IFAC Proceedings Volumes, vol. 46, no. 21, pp. 831 – 836, 2013. 7th

IFAC Symposium on Advances in Automotive Control.

[41] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Prioritizing collision avoidance and

vehicle stabilization for autonomous vehicles,” in 2015 IEEE Intelligent Vehicles Sympo-

sium (IV), pp. 1134–1139, June 2015.

[42] A. Eick, “A nonlinear model predictive control algorithm for an unmanned ground vehicle

on variable terrain,” Master’s thesis, Auburn University, 2016.

[43] V. Stamenov, S. Geiger, D. Bevly, and C. Balas, “Robust vehicle stability based on non-

linear model predictive control and environmental characterization,” in Proceedings of

the NDIA Ground Vehicle Systems Engineering and Technology Symposium, vol. Au-

tonomous Ground Systems (AGS) Technical Session, (Novi, Michigan), Aug. 2017.

[44] R. P. Shaw and D. M. Bevly, “Proportional navigation and model predictive control of

an unmanned autonomous ground vehicle for obstacle avoidance,” in Proceedings of the

107

ASME 2018 Dynamic Systems and Control Conference, vol. DSCC2018, ASME, Oct.

2018.

[45] R. Shaw, “Obstacle avoidance of an unmanned ground vehicle using a combined approach

of model predictive control and proportional navigation,” mathesis, Auburn University,

Dec. 2018.

[46] J. P. Alsterda, M. Brown, and J. C. Gerdes, “Contingency model predictive control for

automated vehicles,” 2019 American Control Conference (ACC), pp. 717–722, 2019.

[47] C. Lee, “Autonomous convoy tech moves toward official program.” https:

//www.nationaldefensemagazine.org/articles/2019/2/22/

autonomous-convoy-tech-moves-toward-official-program, Feb.

2019. Accessed: 29 Oct. 2019.

[48] R. Bishop, D. Bevly, L. Humphreys, S. Boyd, and D. Murray, “Evaluation and testing of

driver-assistive truck platooning: Phase 2 final results,” Transportation Research Record:

Journal of the Transportation Research Board, vol. 2615, pp. 11–18, 01 2017.

[49] P. Smith and D. Bevly, “Analysis of on-road highway testing for a two truck cooperative

adaptive cruise control (CACC) platoon,” SAE Technical Paper, 2019.

[50] P. Slowik and B. Sharpe, “Automation in the long haul: challenges and opportuniteis

of autonomous heavy-duty trucking in the United States,” tech. rep., The International

Council on Clean Transportation, Mar. 2018.

[51] M. Graf Plessen, D. Bernardini, H. Esen, and A. Bemporad, “Spatial-based predictive

control and geometric corridor planning for adaptive cruise control coupled with obstacle

avoidance,” IEEE Transactions on Control Systems Technology, vol. 26, pp. 38–50, Jan

2018.

[52] W. D. Herrera and N. Lidander, “Lateral control of heavy duty vehicles in platooning us-

ing model predictive control,” mathesis, Chalmers University of Technology, Gothenburg,

Sweden, 2016.

108

[53] “Racing car automobile race.” https://free-images.com/display/racing_

car_automobile_race.html, 2017. [Online] Accessed: 5 Nov. 2019.

[54] SAE International Surface Vehicle Recommended Practice, “Vehicle dynamics terminol-

ogy,” SAE Standard J670, Rev. Jan. 2008.

[55] T. Foote and M. Purvis, “REP 103 – Standard Units of Measure and Coordinate Conven-

tions.” https://www.ros.org/reps/rep-0103.html, Dec. 2014. Accessed: 5

Nov. 2019.

[56] P. Misra and P. Enge, Global positioning system: signals, measurements, and perfor-

mance. Lincoln, MA 01733: Ganga-Jamuna Press, revised 2nd ed. ed., 2011. pp. 102-

138.

[57] R. T. Austin, “Earth tangential plane.” https://en.wikipedia.org/wiki/

File:EarthTangentialPlane.png, May 2007. [Online] Accessed: 11 Nov.

2019.

[58] W. Meeussen, “REP 105 – Coordinate Frames for Mobile Platforms.” https://www.

ros.org/reps/rep-0103.html, Oct. 2010. Accessed: 5 Nov. 2019.

[59] R. N. Jazar, Vehicle Dynamics: Theory and Application. New York, NY: Springer, 2009.

[60] H. B. Pacejka, Tyre and Vehicle Dynamics. Oxford, UK: Butterworth-Heinemann, 2nd ed.,

2006.

[61] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source multi-

robot simulator,” in 2004 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, pp. 2149–2154 vol.3, Sep. 2004.

[62] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng, “ROS: an open-source robot operating system,” in ICRA Workshop on Open Source

Software, 2009.

109

[63] R. Smith, “Open dynamics engine ODE. multibody dynamics simulation software.”

http://www.ode.org, 2019. [Online] Accessed: 15 Nov. 2019.

[64] R. Brothers and D. Bevly, “A comparison of vehicle handling fidelity between the Gazebo

and ANVEL simulators,” in Proceedings of the Ground Vehicle Systems Engineering and

Technology Symposium (GVSETS), (Novi, MI), NDIA, Aug. 2019.

[65] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press, 2009.

[66] CVX Research, Inc., “CVX: Matlab software for disciplined convex programming, ver-

sion 2.0.” http://cvxr.com/cvx, Aug. 2012.

[67] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model predictive control: theory, compu-

tation, and design. Nob Hill Publishing, second ed., Feb. 2019.

[68] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of the Sec-

ond Berkeley Symposium on Mathematical Statistics and Probability, (Berkeley, Calif.),

pp. 481–492, University of California Press, 1951.

[69] J. Nocedal and S. J. Wright, Numerical Optimization. Springer-Verlag GmbH, 2006.

[70] A. Wächter, “Short tutorial: Getting started with ipopt in 90 minutes,” in Combinatorial

Scientific Computing, vol. 09061, Combinatorial Scientific Computing, 2009.

[71] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A soft-

ware framework for nonlinear optimization and optimal control,” Mathematical Program-

ming Computation, In Press, 2018.

[72] W. E. Travis, Path duplication using GPS carrier based relative position for automated

ground vehicle convoys. phdthesis, Auburn University, May 2010.

[73] W. Travis, S. M. Martin, D. W. Hodo, and D. M. Bevly, “Non-line-of-sight automated

vehicle following using a dynamic base RTK system,” NAVIGATION, Journal of the In-

stitute of Navigation, vol. 58, no. 3, pp. 241–255, 2011.

110

[74] S. M. Martin, “Closely coupled GPS/INS relative positioning for automated vehicle con-

voys,” mathesis, Auburn University, May 2011.

[75] S. A. Geiger, “Laterally string stable control at large following distances using DRTK and

TDCP,” mathesis, Auburn University, Aug. 2018.

[76] K. H. Johansson, M. Törngren, and L. Nielsen, “Vehicle applications of controller area

network,” in Handbook of Networked and Embedded Control Systems, 2005.

[77] W. G. Apperson, “Design and evaluation of cooperative adaptive cruise control system

for heavy freight vehicles,” Master’s thesis, Auburn University, Dec. 2019.

[78] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: a review,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 28, pp. 694–711, May 2006.

[79] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A survey of vision-

based vehicle detection, tracking, and behavior analysis,” IEEE Transactions on Intelli-

gent Transportation Systems, vol. 14, pp. 1773–1795, Dec 2013.

[80] R. Mobus and U. Kolbe, “Multi-target multi-object tracking, sensor fusion of radar and

infrared,” in IEEE Intelligent Vehicles Symposium, 2004, pp. 732–737, June 2004.

[81] X. Mao, D. Inoue, S. Kato, and M. Kagami, “Amplitude-modulated laser radar for range

and speed measurement in car applications,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 13, pp. 408–413, March 2012.

[82] M. Darms, P. Rybski, C. Baker, and C. Urmson, “Obstacle detection and tracking for

the urban challenge,” Intelligent Transportation Systems, IEEE Transactions on, vol. 10,

pp. 475 – 485, 10 2009.

[83] I. Bogoslavskyi and C. Stachniss, “Efficient online segmentation for sparse 3d laser

scans,” PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science,

vol. 85, pp. 41–52, Feb 2017.

111

[84] T. Miyasaka, Y. Ohama, and Y. Ninomiya, “Ego-motion estimation and moving ob-

ject tracking using multi-layer LIDAR,” in 2009 IEEE Intelligent Vehicles Symposium,

pp. 151–156, June 2009.

[85] J. Arrospide, L. Salgado, M. Nieto, and F. Jaureguizar, “On-board robust vehicle detec-

tion and tracking using adaptive quality evaluation,” in 2008 15th IEEE International

Conference on Image Processing, pp. 2008–2011, Oct 2008.

[86] H. Badino, U. Franke, and R. Mester, “Free space computation using stochastic occupancy

grids and dynamic programming,” 03 2012.

[87] A. Asvadi, P. Girão, P. Peixoto, and U. Nunes, “3D object tracking using RGB and LIDAR

data,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems

(ITSC), pp. 1255–1260, Nov 2016.

[88] A. Rangesh and M. Trivedi, “No blind spots: full-surround multi-object tracking for au-

tonomous vehicles using cameras & LiDARs,” IEEE Transactions on Intelligent Vehicles,

vol. PP, 02 2018.

[89] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? The KITTI

vision benchmark suite,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 3354–3361, June 2012.

[90] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: the KITTI dataset,”

The International Journal of Robotics Research, vol. 32, pp. 1231–1237, Aug. 2013.

[91] “Papers with code: 3D object detection.” https://paperswithcode.com/task/

3d-object-detection, 2020. [Online] Accessed: 13 Jan. 2020.

[92] T. D. Gillespie, Fundamentals of Vehicle Dynamics. 1992.

[93] Y. Kawajir, C. Laird, S. Vigerske, and A. Wächter, “Introduction to IPOPT: a tutorial

for downloading, installing, and using IPOPT.” https://coin-or.github.io/

Ipopt/, 2015. accessed: 5 April 2020.

112

Appendices

113

Appendix A

MKZ System Identification

Identifying parameters for vehicle dynamic modeling is made challenging by the model’s

dependence on vehicle speed and the non-linear relationships between tire slip and tire force

generation. The bicycle model significantly simplifies the number of parameters to identify.

Most physical parameters in the bicycle model (mass, inertia, weight split) can be measured

or approximated with measurements of the stationary vehicle. The linear tire stiffness param-

eters, however, must be extracted from an analysis of dynamic driving data. Many techniques

have been developed to extract dynamic modeling information from evaluation of the vehicle’s

steady-state response. The dynamic bicycle model’s steady-state behavior is studied through

the DC gain of its transfer functions. The bicycle model equations of motion, given in Equa-

tions (2.25–2.26), can be expressed in the form of the linear transfer functions in Equations

(A.1–A.2).

vy(s)

δ(s)
=

Cαf
mvx

s+
C2Cαf−aC1Cαf−amCαf v

2
x

Izzmv2x

s2 + IzzC0+mC2

Izzmvx
s+

C0C2−C2
1−C1mv2x

Izzmv2x

(A.1)

ψ̇(s)

δ(s)
=

aCαf
Izz

s+
aCαfC0−C1Cαf

Izzmvx

s2 + IzzC0+mC2

Izzmvx
s+

C0C2−C2
1−C1mv2x

Izzmv2x

(A.2)

The simplification terms C0, C1, and C2 are given in Equations (A.3–A.5).

C0 = Cαf + Cαr (A.3)

C0 = aCαf − bCαr (A.4)

C0 = a2Cαf + b2Cαr (A.5)

Equation (A.1) can also be put in terms of the side-slip dynamic, as shown in Equation (A.6).

The side-slip formulation will be used for the remainder of the system identification analysis

114

since the steady-state side-slip can be obtained from a minimal set of GPS heading and course

measurements (see Equation (2.3)).

β(s)

δ(s)
=

Cαf
mvx

s+
C2Cαf−aC1Cαf−amCαf v

2
x

Izzmv2x

s2 + IzzC0+mC2

Izzmvx
s+

C0C2−C2
1−C1mv2x

Izzmv2x

(A.6)

The DC gain relationships for Equation (A.6) and Equation (A.2) are given in Equation (A.7)

and Equation (A.8) respectively.

β(s = 0)

δ(s = 0)
=

C2Cαf−aC1Cαf−amCαf v
2
x

Izzmv2x
C0C2−C2

1−C1mv2x
Izzmv2x

(A.7)

ψ̇(s = 0)

δ(s = 0)
=

aCαfC0−C1Cαf
Izzmvx

C0C2−C2
1−C1mv2x

Izzmv2x

(A.8)

While these two equations can be used to back out the tire stiffness values (assuming the ve-

locity, mass, inertia and DC gain values are known), a simple closed form solution is realized

by using an additional steady-state handling relationship.

Vehicle handling is commonly characterized using only the steady-state steering response.

Gillespie claims that the understeer gradient is the most common measure for open-loop han-

dling [92]. The understeer gradient, Kus, is a constant that relates the amount of steering input

required to hold a steady-state turn give the vehicle’s lateral acceleration at the CG, ay. This

relationship is given in Equation (A.9)

δ =
L

R
+Kus · ay (A.9)

In the equation above, L is the vehicle wheel-base length and R is the turning radius. The

understeer gradient can also be put in terms of the linear tire stiffness values, as shown in

Equation (A.10)

Kus =
mb

LCαf
− ma

LCαr
(A.10)

115

Equation (A.10) can be re-arranged to solve for the combined tire stiffness term in Equation

(A.4), shown in Equation (A.11).

C1 = −
CαfCαrLKus

m
(A.11)

Equation (A.7) and Equation (A.8) can be significantly simplified by substituting Equation

(A.11). These simplifications are shown in Equation (A.12) and Equation (A.13) respectively.

β(s = 0)

δ(s = 0)
=

b− mav2x
LCαr

L+Kusv2x
(A.12)

ψ̇(s = 0)

δ(s = 0)
=

vx
L+Kusv2x

(A.13)

The rear tire stiffness value can be found directly, as shown in Equation (A.14), by substituting

Equation (A.13) into Equation (A.12) and Equation (A.10) can be rearranged to solve for the

front tire stiffness, given in Equation (A.15).

Cαr =
mavxψ̇(s = 0)

L
(
b
vx
ψ̇(s = 0)− β(s = 0)

) (A.14)

Cαf =
mb

ma
Cαr

+ LKus

(A.15)

Equations (A.14–A.15) can be solved assuming the DC gains and the understeer gradient are

known. In comparison to directly measuring tire stiffness values, measuring and obtaining

accurate estimates of these parameters is easy.

Four common test procedures can be performed to estimate the understeer gradient for

steady-state parameter identification. Any two of the three independent variables (δ, ay, R)

in Equation (A.9) can be varied while the other is held constant. The constant radius test,

the procedure used in this work, holds the turning radius, R, constant along a circular track.

The vehicle speed is slowly incremented such that the steady-state steering angle is developed

at each step up in speed. The constant radius test was performed both in simulation and on

the MKZ test vehicle. The Gazebo simulation constant radius test was conducted with a 50

116

meter radius track. The simulation test was manually steered with a steering joystick while a

ROS node handled slowly increasing the velocity and holding it constant for an entire lap. The

Gazebo simulation test track and driving set-up is shown in Figure A.1. The constant radius

(a) Gazebo 50 m Radius Test Track
(b) Gazebo Manual Driving Set-up

Figure A.1: Gazebo Simulation Constant Radius (50 m) Test Set-up

tests performed with the MKZ test vehicle were conducted at the NCAT test facility using a

25 meter radius track. The vehicle was manually driven (both steering and velocity) by slowly

increasing speed each lap around the track and maintaining radial position until the vehicle

reached its lateral grip limits. The test path recorded from GPS is shown in Figure A.2

-30 -20 -10 0 10 20 30 40

Northing (m)

-10

0

10

20

30

40

50

E
as

tin
g

(m
)

MKZ Constant Radius Test Path

Figure A.2: MKZ Constant Radius (25 m) Test Track Path

A simple linear least squares estimation technique is used with the understeer model in

Equation (A.9) to fit the understeer gradient to the constant radius test data. The understeer

117

gradient estimate, K̂us, from least squares is shown in Equation (A.16).

K̂us =
(
HTH

)−1
HTy (A.16)

The measurement in Equation (A.16) is y = δ − L
R

and the model is simply H = ay, where ay

is assumed to be the vehicle’s centripetal acceleration at steady state, given in Equation (A.17)

ay =
|~v|2

R
(A.17)

The results of the Gazebo constant radius test and the fit of the understeer gradient for the sim-

ulated MKZ vehicle are shown in Figure A.3. Similarly, the results of the MKZ test vehicle’s

constant radius tests and the fit of its understeer gradient are shown in Figure A.4. Inter-

0 2 4 6 8 10 12

Lateral Accel (m/s 2)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

S
te

er
 A

ng
le

 (
ra

d)

Gazebo MKZ Constant Radius Test

K
us

 = 0.028116 Deg/g

Data
Estimated Understeer Fit

Figure A.3: Gazebo MKZ Constant Radius Test Results and Fit of Understeer Gradient

1 2 3 4 5 6 7 8 9 10

Lateral Acceleration (m/s 2)

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

S
te

er
 A

ng
le

 (
ra

d)

MKZ Constant Radius Understeer Estimation

K
us

 = 2.1408 Deg/g

Data
K

US
 Estimate Fit

Figure A.4: MKZ Test Vehicle Constant Radius Test Results and Fit of Understeer Gradient

estingly, the simulated MKZ vehicle exhibits neutral steer (Kus ≈ 0) behavior, allowing the

118

vehicle to maintain grip at lateral accelerations > 1g; however, the real MKZ vehicle has an

understeer gradient that is within the typical range for a normal sedan, Kus = 2.1408deg
g

. The

MKZ test vehicle also hit its grip limits at < 1g. This discrepancy results in a difference in tire

stiffness values (both magnitude and split) between the simulated and real MKZ vehicles.

After determining the understeer gradient values, steady state yaw rates and side slips for

both the simulated and real MKZ were collected with a series of step steer input tests. In the

Gazebo simulation each test used a longitudinal controller to maintain a desired speed. After

reaching and settling on the desired speed, a constant steering angle was commanded. With

velocity data collected at the simulation vehicle’s CG, the tire stiffness values were calculated

for each run. The final set of tire stiffness values is the result of an average across all test

speeds. Yaw rates and side-slip truth data from the simulation vehicle and a simulation with the

extracted bicycle model are shown in Figure A.5, Figure A.6, and Figure A.7 at low, medium,

and high speed respectively. Similarly, the model predicted yaw rate and side-slip for the MKZ

12 14 16 18 20 22 24 26 28 30

Time (s)

0

0.01

0.02

0.03

0.04

Y
aw

 R
at

e
(r

ad
/s

)

1mps Step Steer
Gazebo Model
Bicycle Model

12 14 16 18 20 22 24 26 28 30

Time (s)

0

0.02

0.04

0.06

S
id

e
S

lip
 (

ra
d) Gazebo Model

Bicycle Model

Figure A.5: Gazebo MKZ Step Steer Test Model Comparison: 1 m/s

16 18 20 22 24 26 28 30

Time (s)

0

0.05

0.1

0.15

0.2

Y
aw

 R
at

e
(r

ad
/s

)

5mps Step Steer
Gazebo Model
Bicycle Model

16 18 20 22 24 26 28 30

Time (s)

0

0.02

0.04

0.06

S
id

e
S

lip
 (

ra
d) Gazebo Model

Bicycle Model

Figure A.6: Gazebo MKZ Step Steer Test Model Comparison: 5 m/s

119

120 121 122 123 124 125 126 127

Time (s)

0

0.1

0.2

0.3

0.4

Y
aw

 R
at

e
(r

ad
/s

)

10mps Step Steer
Gazebo Model
Bicycle Model

120 121 122 123 124 125 126 127

Time (s)

0

0.02

0.04

0.06

S
id

e
S

lip
 (

ra
d) Gazebo Model

Bicycle Model

Figure A.7: Gazebo MKZ Step Steer Test Model Comparison: 10 m/s

test vehicle are plotted over the estimated yaw-rate and side slip data from the experimental

step steer procedures in Figure A.8, Figure A.9, and Figure A.10 for low, medium, and high

speed respectively. The tire stiffness values and other important model parameters of both the

1.58430236 1.584302365 1.58430237 1.584302375 1.58430238

Time (s) 10 9

0

0.01

0.02

0.03

0.04

Y
aw

-r
at

e
(r

ad
/s

)

Yaw Rate 1 mps

1.58430236 1.584302365 1.58430237 1.584302375 1.58430238

Time (s) 10 9

0

0.02

0.04

0.06

S
id

e
S

lip
 (

ra
d)

Side Slip 1 mps

Figure A.8: MKZ Vehicle Step Steer Test Model Comparison: 1 m/s

simulated MKZ and MKZ test vehicle are summarized in Table 2.1 and below in Table A.1.

The open-loop bandwidth of the identified dynamic bicycle model changes with increasing

forward velocity, but remains low by some standards. In fact, the lateral handling bandwidth

tends to decrease at increasing speeds. To show this, the frequency response of the real MKZ’s

identified model is plotted on a bode diagram in Figure A.11 at multiple speeds. The bandwidth,

in this case the system’s cutoff frequency, is also given for each model with its given forward

speed, vx, in Table A.2. This low open-loop bandwidth can explain why using the bicycle model

with a model predictive controller might not provide as much of an advantage as expected over

the kinematic model for trajectory tracking.

120

1.58430316 1.584303162 1.584303164 1.584303166

Time (s) 10 9

0

0.05

0.1

0.15

0.2

Y
aw

-r
at

e
(r

ad
/s

)

Yaw Rate 5 mps

1.58430316 1.584303162 1.584303164 1.584303166

Time (s) 10 9

0

0.02

0.04

0.06

S
id

e
S

lip
 (

ra
d)

Side Slip 5 mps

Figure A.9: MKZ Vehicle Step Steer Test Model Comparison: 5 m/s

He

1.584303621 1.584303622 1.584303623 1.584303624 1.584303625

Time (s) 10 9

0

0.1

0.2

0.3

Y
aw

-r
at

e
(r

ad
/s

)

Yaw Rate 10 mps

1.584303621 1.584303622 1.584303623 1.584303624 1.584303625

Time (s) 10 9

0

0.01

0.02

0.03

0.04

S
id

e
S

lip
 (

ra
d)

Side Slip 10 mps

Figure A.10: MKZ Vehicle Step Steer Test Model Comparison: 10 m/s

Table A.1: MKZ Modeling Properties

property Gazebo MKZ Real MKZ
a(m) 1.428 1.257
b(m) 1.423 1.593
L(m) 2.850 2.850

track width (m) 1.594 1.594
mass (Kg) 1542 1857
Izz(Kg ·m2) 1000 4292
Cαf (N/rad) 31240 120000
Cαr(N/rad) 31240 184600

Table A.2: MKZ Bicycle Model Bandwidths at Varying Forward Speeds

Speed (m/s) Bandwidth (Hz)
5 3.71

10 2.56
15 1.84
20 1.51

121

-30

-20

-10

0

10

20

M
ag

ni
tu

de
 (

dB
)

10 -1 10 0 10 1 10 2 10 3
-90

-45

0

P
ha

se
 (

de
g)

5 m/s
10 m/s
15 m/s
20 m/s

Bode Diagram

Frequency (rad/s)

Figure A.11: Bicycle Model Frequency Response for Real MKZ Vehicle

122

To compare the kinematic and bicycle models, the bicycle model’s DC and transient re-

sponse are plotted with the kinematic model’s response for various speeds. All models are

simulated with a step-steer input of δ = 0.1 rad (≈ 90◦ at the hand wheel) at 5, 10, 15, and 20

m/s and the results are shown in Figure A.12. Notice that the kinematic model, given in Equa-

tion (2.14), has a similar steady-state response to the bicycle model at low speeds, but diverges

at higher speeds. This discrepancy is the presence of the handling property understeer. Notice

also that the simplified version of the kinematic model, given in Equation (2.15), is very similar

in form to the simplified version of the bicycle model’s yaw-rate DC gain, given in Equation

(A.13). The difference is the addition of the understeer term, Kusv
2
x, to the denominator of the

equation derived from the dynamic bicycle model. In future NMPC implementations it may

be desirable to develop a controller based on this yaw-rate DC gain relationship to replace the

current kinematic model. This would require only identifying the vehicle’s understeer gradient

and may provide a good balance of the benefits of control with each model.

123

0 2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y
aw

 R
at

e
(r

ad
/s

)

5 m/s

Bicycle Model
S.S. Gain
Kinematic Model

0 2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y
aw

 R
at

e
(r

ad
/s

)

10 m/s

0 2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y
aw

 R
at

e
(r

ad
/s

)

15 m/s

0 2 4 6

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y
aw

 R
at

e
(r

ad
/s

)

20 m/s

Figure A.12: MKZ Model Comparisons: Step Steer Response at Various Speeds

124

Appendix B

MPC With IPOPT: An Example Sparsity Encoding Problem

The IPOPT optimization solver software utilizes sparse matrix representations of the op-

timization problem’s constraint gradients and the Hessian of the Lagrangian to reduce the re-

quired memory and run-time computational cost of each optimization iteration. This appendix

will demonstrate the requirements of implementing a simple optimal control problem in IPOPT

with an example system that is very similar to the kinematic bicycle model presented in chapter

2. The computed Jacobian and Hessian matrices for this problem will be presented with their

sparsity structures. For brevity, only a single multi-shooting model prediction constraint set

will be considered.

Differential drive robots can be controlled with a very simple model that uses a desired

yaw-rate and linear velocity as the model inputs. Similar to the kinematic bicycle model, these

desired velocity commands can be passed to lower level controllers that are tuned for the robot’s

actuator interfaces. An applicable robot platform for this kind of differential drive controller is

the GAVLab’s ATRV robot, shown in Figure B.1. The simplest model of this vehicle for use in

a model predictive controller is given in Equation (B.1).

d

dt


X

Y

ψ

 =


|~v| cos(ψ)

|~v| sin(ψ)

ψ̇

 (B.1)

The system state, x, and control input u are given in Equations (B.2–B.3).

x =


X

Y

ψ

 (B.2)

125

Figure B.1: GAVLab ATRV Differential Drive Robot

u =

|~v|
ψ̇

 (B.3)

The position states, X and Y , define a plane in a generic fixed coordinate system. The heading

angle, ψ, is defined as the vehicle’s positive rotation from the X axis. The robot’s linear

velocity, |~v|, and yaw-rate, ψ̇, are considered independently controllable through some lower-

level control interface.

The optimal control problem formulation given in Equation (3.11) will be used with only

a single prediction step, N = 1; however, it must be put in the generic form of equation 3.20.

The generic optimization variable, z, is given in Equation (B.4) in terms of each state.

z =
[
X(0), Y (0), ψ(0), X(1), Y (1), ψ(1), |~v|(0), ψ̇(0)

]T
(B.4)

126

The cost function, φ(z), is expanded in terms of Equation (B.4) and given in Equation (B.5).

φ(z) = QXX(0)2 +QY Y (0)2 +Qψψ(0)
2 +QXX(1)2+

QY Y (1)2 +Qψψ(1)
2 +R|~v||~v|(0) +Rψ̇ψ̇(0)

(B.5)

The initial condition constraints are defined in Equations (B.6a–B.6c).

X(0)−X(0)meas = 0 (B.6a)

Y (0)− Y (0)meas = 0 (B.6b)

ψ(0)− ψ(0)meas = 0 (B.6c)

The measured states in Equation (B.6), X(0)meas, Y (0)meas, and ψ(0)meas, are the most recent

measurements of the robot state and are considered constant parameters in each optimization

iteration. The model prediction constraints are given in Equation (B.7) using Euler’s method to

propogate the states over the prediction time step, T .

X(1)− (X(0) + |~v|(0) cos(ψ(0))T) (B.7a)

Y (1)− (Y (0) + |~v|(0) sin(ψ(0))T) (B.7b)

ψ(1)−
(
ψ(0) + ψ̇(0)T

)
(B.7c)

These equations will be used to define and derive the requirements for the IPOPT optimization

interface.

IPOPT requires the following individual function evaluations in a generic optimizer inter-

face:

• The objective function, φ(z)

• The gradient of the objective function,∇φ(z)

• Constraint equations, ci(z) = 0 ∀i = 1, ...,m

• Jacobian of the constraint equations,∇c(z)

127

• The Hessian of the Lagrangian,∇2φ(z) +
∑i=m

i=1 λi∇2ci(z)

The objective function and constraint equations have already been defined in Equations (B.5–

B.7), but the remaining functions evaluations still must be derived. The gradient of the objective

function is given below in Equation (B.8).

∇φ(z) = [2QXX(0), 2QY Y (0), 2Qψψ(0), 2QXX(1),

2QY Y (1), 2Qψψ(1), 2R|~v||~v|(0), 2Rψ̇ψ̇(0)]
T (B.8)

Notice that this function returns only an n × 1 dense matrix, where n is the size of the opti-

mization variable; it is therefore not returned with a sparsity encoding. The Jacobian of the

constraint equations and the Hessian of the Lagrangian are given in Equation (B.9) and Equa-

tion (B.10) respectively.

∇c(z) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

−1 0 |~v|(0) sin(ψ(0))T 1 0 0 − cos(ψ(0))T 0

0 −1 −|~v|(0) cos(ψ(0))T 0 1 0 − sin(ψ(0))T 0

0 0 −1 0 0 1 0 −T


(B.9)

128

∇2φ(z) +
i=m∑
i=1

λi∇2ci(z) =



2QX

2QY ∅

2Qψ

2QX

2QY

∅ 2Qψ

2R|~v|

2Rψ̇



+

λ4



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 |~v|(0) cos(ψ(0))T 0 0 0 sin(ψ(0))T 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 sin(ψ(0))T 0 0 0 0 0

0 0 0 0 0 0 0 0



+

λ5



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 |~v|(0) sin(ψ(0))T 0 0 0 − cos(ψ(0))T 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 − cos(ψ(0))T 0 0 0 0 0

0 0 0 0 0 0 0 0


(B.10)

The matrix for the Jacobian of the constraints is very sparse with only 14 non-zero elements

and the Hessian of the Lagrangian is even sparser with only 10 non-zero elements. The spar-

sity, which can be thought of as the ratio of zero elements to non-zero elements, grows with

additional prediction constraints and generally grows with the addition of many other kinds of

129

practical constraints. Operations in IPOPT with these large, sparse matrices can benefit from

the compression and speed gained by using sparse matrix math libraries.

The function evaluations for the Jacobian of the constraint equations and the Hessian of

the Lagrangian return 3 arrays, each the size of number of non-zero elements in the respective

matrix. The first array contains only the values of the non-zero elements. The matrix position

of the non-zero element value is recorded at the corresponding index of the other two arrays, the

row and column position arrays. This encoding scheme is known as the triplet format for sparse

matrices. More information on this encoding scheme and other example optimization problems

can be found in the IPOPT documentation [93]. The sparsity encoding for the matrices given

in Equation (B.9) and Equation (B.10) are displayed in Table B.1 and Table B.2 respectively.

Assuming 8 byte double precision floating point numbers are used in each element of these

Table B.1: Sparsity Encoding for the Jacobian of the Constraint Equations

Row Array Column Array Non-zero Value Array
row[0] = 0 col[0] = 0 value[0] = 1
row[1] = 1 col[1] = 1 value[1] = 1
row[2] = 2 col[2] = 2 value[2] = 1
row[3] = 3 col[3] = 0 value[3] = -1
row[4] = 3 col[4] = 2 value[4] = |~v|(0) sin(ψ(0))T
row[5] = 3 col[5] = 3 value[5] = 1
row[6] = 3 col[6] = 6 value[6] = − cos(ψ(0))T
row[7] = 4 col[7] = 1 value[7] = -1
row[8] = 4 col[8] = 2 value[8] = −|~v|(0) cos(ψ(0))T
row[9] = 4 col[9] = 4 value[9] = 1
row[10] = 4 col[10] = 6 value[10] = − sin(ψ(0))T
row[11] = 5 col[11] = 2 value[11] = -1
row[12] = 5 col[12] = 5 value[12] = 1
row[13] = 5 col[13] = 7 value[13] = -T

matrices and 4 byte integer values are used in the matrix position arrays, the sparsity encoded

Jacobian matrix uses a total of 224 bytes where the dense matrix representation requires 384

bytes, yielding a memory savings of 42%. The sparse Hessian representation given in Table B.2

requires only 160 bytes where its dense matrix counterpart would use 512 bytes, a 69% memory

savings. The run-time computational savings from using the sparse matrix representations is

even greater than the memory savings, and these advantages scale favorably with the size of

the optimization problem. These computational efficiencies make IPOPT an attractive solver

130

Table B.2: Sparsity Encoding for the Hessian of the Lagrangian

Row Array Column Array Non-zero Value Array
row[0] = 0 col[0] = 0 value[0] = 2QX

row[1] = 1 col[1] = 1 value[1] = 2QY

row[2] = 2 col[2] = 1 value[2] = 2Qψ + |~v|(0)T (sin(ψ(0)) + cos(ψ(0)))
row[3] = 2 col[3] = 6 value[3] = T (sin(ψ(0))− cos(ψ(0)))
row[4] = 3 col[4] = 3 value[4] = 2QX

row[5] = 4 col[5] = 4 value[5] = 2QY

row[6] = 5 col[6] = 5 value[6] = 2Qψ

row[7] = 6 col[7] = 2 value[7] = T (sin(ψ(0))− cos(ψ(0)))
row[8] = 6 col[8] = 6 value[8] = 2R|~v|
row[9] = 7 col[9] = 7 value[9] = 2Rψ̇

to use in a real-time model predictive control application, but the implementation is difficult to

generalize to any system.

When developing a general library for flexible MPC controllers, using a symbolic math

framework with automatic differentiation that can handle creating these Jacobian and Hessian

matrix representations is the only tractable solution. Any change to the prediction horizon

length, a cost function term, or any constraint equation can drastically alter these sparsity struc-

tures. Unless the exact structure of the controller is settled upon for a deeply embedded ap-

plication, programming these sparsity encodings manually is impractical. These realizations

motivate the use of the symbolic math framework CasADi in the NMPC software library pre-

sented in this work.

The custom software abstraction layer created for this thesis was originally presented in

Chapter 3. The UML class diagram for this library of higher level NMPC components was

previously presented in Figure 3.3, but it is shown again in Figure B.2 with higher resolution.

131

G
V

_N
M

P
C

 C
L

A
S

S
 D

IA
G

R
A

M
R

obert B
rothers | D

ecem
ber 16, 2019

M
o

d
elIn

terface

+
 X

D
ot(state, input):derivativeS

tate
+

 G
etN

um
S

tates():int
+

 G
etN

um
Inputs() :int

C
asadiS

X
M

odel

- state:casadiS
X

- input:casadiS
X

- xD
ot:casadiS

X

+
 X

D
ot(state, input):derivativeS

tate
+

 S
etX

D
ot(function):bool

+
 G

etN
um

S
tates():int

+
 G

etN
um

Inputs() :int

In
teg

rato
rIn

terface

+
 S

im
ulate(m

odel, initialS
tate,

input):stateTrajectory
+

 G
etTim

eS
tep():double

+
S

etTim
eS

tep(dt):bool
+

G
etS

chem
e():integrationS

chem
e

C
asad

iS
X

In
teg

rato
rIn

terface

+
 S

im
ulate(m

odel, initialS
tate,

input):stateTrajectory
+

 G
etTim

eS
tep():double

+
S

etTim
eS

tep(dt):bool
+

G
etS

chem
e():integrationS

chem
e

C
asadiS

X
E

ulerIntegrator

- tim
eS

tep:double

+
 S

im
ulate(m

odel, initialS
tate,

input):stateTrajectory
+

 G
etTim

eS
tep():double

+
S

etTim
eS

tep(dt):bool
+

G
etS

chem
e():integrationS

chem
e

C
asad

iS
X

C
o

stF
u

n
ctio

n
In

terface

+
 A

ddC
ost(state, input, param

)
+

 R
esetC

ost()
+

 G
etC

ost():costV
alue

+
S

etS
tateW

eight(w
S

tate)
+

S
etInputW

eight(w
Input)

C
asadiS

X
Q

uadraticC
ostF

unction

- cost:costV
alue =

 0.0
- w

S
tate

- w
Input

+
 A

ddC
ost(state, input, param

)
+

 R
esetC

ost()
+

 G
etC

ost():costV
alue

+
S

etS
tateW

eight(w
S

tate)
+

S
etInputW

eight(w
Input)

C
asadiS

X
S

im
ulator

- m
odel:C

asadiS
X

M
odel

- integrator:C
asadiS

X
IntegratorInterface

+
 C

asadiS
X

S
im

ulator(m
odel, integrator)

+
 S

im
ulateInputs(initialC

ondition,
controlH

orizon):sim
ulatedTrajectory

+
M

akeP
redictionH

orizon(num
P

redictions):
casadiS

X
+

M
akeC

ontrolH
orizon(num

P
redictions):

casadiS
X

C
asadiS

X
C

onstraint

- constraintE
q:casadiS

X
- low

B
ound:casadiD

M
 =

 0.0
- upperB

ound:casadiD
M

 =
 0.0

+
 C

asadiS
X

C
osntraint(constraintE

q)
+

 G
et():casadiS

X
+

 S
et(constraintE

q)
+

 S
etLow

B
ound(low

B
ound):bool

+
S

etU
pperB

ound(upperB
ound):bool

O
p

tim
izerIn

terface

+
 O

ptim
izeInput(initialS

tate,
inputG

uess):optim
izedInput

C
asadiS

X
M

ultiS
hootingO

ptim
izer

- sim
ulator:C

asadiS
X

S
im

ulator
- costF

unction:
C

asadiS
X

C
ostF

unctionInterface
- constraints: C

asadiS
X

C
onstraint

+
 C

asadiS
X

M
ultiS

hootingO
ptim

izer(
sim

ulator, costF
unction, num

P
redictions)

+
 O

ptim
izeInput(initialS

tate,
inputG

uess): optim
izedInput

+
 A

ddC
onstraint(constraint)

+
 A

ddP
aram

eter(param
eter)

+
 S

etP
aram

eterV
alue(value)

+
 S

etR
eference(value)

C
asadiS

X
R

K
4Integrator

- tim
eS

tep:double

+
 S

im
ulate(m

odel, initialS
tate,

input):stateTrajectory
+

 G
etTim

eS
tep():double

+
S

etTim
eS

tep(dt):bool
+

G
etS

chem
e():integrationS

chem
e

C
ontrollerW

rapper

- optim
izer: O

ptim
izerInterface

+
 W

rapperM
ethods()

11

111...

1 ...

Figure B.2: NMPC Software Library UML Class Diagram
132

To further the example given in this appendix, a CasadiSXMultiShootingOptimizer class

will be extended to create an NMPC controller for the differential-drive robot in the following

code example. In the current version of the library (version 2.1.0 as of this writing), there is a

script that creates the required files for a new controller class that inherits from the CasadiSX-

MultiShootingOptimizer class and fills in most of the boiler-plate code that is not model spe-

cific. The C++ code required to implement the model specific setup for this example controller

class, ExampleDiffDriveController, is shown in the listing below.

boo l E x a m p l e D i f f D r i v e C o n t r o l l e r : : Se tup ()

{

/∗ Model s e t u p ∗ /

/ / model s t a t e s

c a s a d i : : SX x = c a s a d i : : SX : : sym (” x ”) ;

c a s a d i : : SX y = c a s a d i : : SX : : sym (” y ”) ;

c a s a d i : : SX p s i = c a s a d i : : SX : : sym (” p s i ”) ;

/ / model i n p u t s

c a s a d i : : SX v = c a s a d i : : SX : : sym (” v ”) ;

c a s a d i : : SX p s i D o t = c a s a d i : : SX : : sym (” p s i D o t ”) ;

/ / s y m b o l i c model

c a s a d i : : SX xDot = c a s a d i : : SX (3 , 1) ;

xDot (0 , 0) = v∗ cos (p s i) ;

xDot (1 , 0) = v∗ s i n (p s i) ;

xDot (2 , 0) = p s i D o t ;

mode lP t r −>Se tup (v e r t c a t (x , y , p s i) , v e r t c a t (v , p s i D o t) , xDot) ;

/∗ Se tup a d d i t i o n a l p a r a m e t e r s (t h i s−>AddParam ()) ∗ /

c a s a d i : : SX x0 = c a s a d i : : SX : : sym (” x0 ” , GetNumStates () , 1) ;

AddParam (” i n i t i a l C o n d i t i o n ” , x0) ;

c a s a d i : : SX r e f = c a s a d i : : SX : : sym (” r e f ” , G e t P r e d i c t i o n H o r i z o n S i z e () , 1) ;

AddParam (” r e f ” , r e f) ;

/∗ Se tup c o n t r o l and p r e d i c i t o n h o r i z o n v a r i a b l e s ∗ /

C r e a t e H o r i z o n s () ;

133

/∗ S e t s t a t e and i n p u t w e i g h t s ∗ /

S e t S t a t e W e i g h t (o p t s . s t a t e W e i g h t) ;

S e t I n p u t W e i g h t (o p t s . i n p u t W e i g h t) ;

/∗ Add up c o s t w i th c o s t F u n P t r ∗ /

c o s t F u n P t r −>R e s e t C o s t () ;

/ / Add up c o s t o f i n i t i a l c o n d i t i o n

c o s t F u n P t r −>AddCost (p r e d i c t i o n H o r i z o n (c a s a d i : : S l i c e (0 , GetNumStates ()) , 0) ,

c a s a d i : : SX : : z e r o s (GetNumInputs () , 1) , r e f (c a s a d i : : S l i c e (0 , GetNumStates ()) , 0)) ;

/ / Add up c o s t ove r t h e p r e d i c t i o n h o r i z o n

f o r (a u t o i =0 ; i < Ge tNu mPr ed i c t i ons () ; ++ i)

{

c o n s t a u t o &s t a t e = p r e d i c t i o n H o r i z o n (c a s a d i : : S l i c e ((i +1)∗GetNumStates () ,

(i +2)∗GetNumStates ()) , 0) ;

c o n s t a u t o &i n p u t = c o n t r o l H o r i z o n (c a s a d i : : S l i c e (i ∗GetNumInputs () ,

(i +1)∗GetNumInputs ()) , 0) ;

c o n s t a u t o &t a r g e t = r e f (c a s a d i : : S l i c e ((i +1)∗GetNumStates () ,

(i +2)∗GetNumStates ()) , 0) ;

/ / Check f o r t e r m i n a l c o s t s e t u p

i f (i == (Ge tNu mPr ed i c t i on s () −1))

{

c o s t F u n P t r −>S e t S t a t e W e i g h t (o p t s . t e r m i n a l C o s t W e i g h t ∗

s t d : : d y n a m i c p o i n t e r c a s t <C a s a d i S X Q u a d r a t i c C o s t F u n c t i o n>

(c o s t F u n P t r)−>G e t S t a t e W e i g h t ()

) ;

}

c o s t F u n P t r −>AddCost (s t a t e , i n p u t , t a r g e t) ;

}

/∗ Se tup c o n s t r a i n t s ∗ /

/ / Model p r e d i c t i o n c o n s t r a i n t

c a s a d i : : SX p r e d i c t i o n V e c = s i m u l a t o r P t r −>Simula t e Inpu t sMS (p r e d i c t i o n H o r i z o n ,

c o n t r o l H o r i z o n) ;

p r e d i c t i o n V e c (c a s a d i : : S l i c e (0 , GetNumStates ()) , 0) = x0 ;

C a s a d i S X C o n s t r a i n t m u l t i S h o o t i n g C o n s t r a i n t (p r e d i c t i o n H o r i z o n − p r e d i c t i o n V e c) ;

134

/∗ C o n c a t e n a t e c o n s t r a i n t s ∗ /

c o n s t r a i n t s ={m u l t i S h o o t i n g C o n s t r a i n t /∗ , . . . And any o t h e r c o n s t r a i n t s c r e a t e d ∗ / } ;

/∗ Se tup NLP ∗ /

c a s a d i : : SXDict n l p S t r u c t u r e {{ ” x ” , v e r t c a t (p r e d i c t i o n H o r i z o n , c o n t r o l H o r i z o n)} ,

{” p ” , pa rams } , {” f ” , c o s t F u n P t r −>GetCos t () } , {” g ” , c o n s t r a i n t s . Get () } } ;

c a s a d i : : D i c t n l p O p t s ;

n l p O p t s [” i p o p t . p r i n t l e v e l ”] = 0 ;

n l p O p t s [” p r i n t t i m e ”] = 0 ;

n l p O p t s [” i p o p t . a c c e p t a b l e t o l ”] = 1e−8;

n l p O p t s [” i p o p t . m a x i t e r ”] = 2000 ;

n l p O p t s [” i p o p t . c o n s t r v i o l t o l ”] = 1e−6;

n l p O p t s [” i p o p t . a c c e p t a b l e o b j c h a n g e t o l ”] = 1e−6;

n l p O p t s [” i p o p t . f i x e d v a r i a b l e t r e a t m e n t ”] = ” r e l a x b o u n d s ” ;

t r y

{

opt imFun = c a s a d i : : n l p s o l (” s o l v e r ” , ” i p o p t ” , n l p S t r u c t u r e , n l p O p t s) ;

}

c a t c h (c o n s t s t d : : e x c e p t i o n &e)

{

i s O p t i m i z e r S e t u p = f a l s e ;

s t d : : s t r i n g s t r e a m s s ;

s s << ” C a s a d i S X M u l t i S h o o t i n g O p t i m i z e r : : Se tup () th rew and e x c e p t i o n when t r y i n g t o

c r e a t e t h e o p t i m i z a t i o n f u n c t i o n : ” << e . what () ;

th row GvNmpcException (s s . s t r ()) ;

}

/∗ Se tup o p t i m i z e r a rgument map ∗ /

C r e a t e D e f a u l t B o u n d s () ;

/∗ Make s u r e o p t i m i z e r i s marked as s e t u p ∗ /

i s O p t i m i z e r S e t u p = t r u e ;

r e t u r n i s O p t i m i z e r S e t u p ;

}

135

The Setup method is the only method the user has to implement in this example to have

a fully working NMPC controller that can be interacted with in a wrapper object (typically a

ROS node) using the CasadiSXMultiShootingOptimizer APIs. The method begins by setting

up the model equations using the CasADi symbolic math primitive types. The code block

below creates individual symbolics for the model states, inputs, and equations of motion. These

symbolic variables are passed to the controller’s encapsulated CasadiSXModel.

/∗ Model s e t u p ∗ /

/ / model s t a t e s

c a s a d i : : SX x = c a s a d i : : SX : : sym (” x ”) ;

c a s a d i : : SX y = c a s a d i : : SX : : sym (” y ”) ;

c a s a d i : : SX p s i = c a s a d i : : SX : : sym (” p s i ”) ;

/ / model i n p u t s

c a s a d i : : SX v = c a s a d i : : SX : : sym (” v ”) ;

c a s a d i : : SX p s i D o t = c a s a d i : : SX : : sym (” p s i D o t ”) ;

/ / s y m b o l i c model

c a s a d i : : SX xDot = c a s a d i : : SX (3 , 1) ;

xDot (0 , 0) = v∗ cos (p s i) ;

xDot (1 , 0) = v∗ s i n (p s i) ;

xDot (2 , 0) = p s i D o t ;

mode lP t r −>Se tup (v e r t c a t (x , y , p s i) , v e r t c a t (v , p s i D o t) , xDot) ;

The next portion of the setup method creates some additional parameters that will be used

in the process of each control iteration. The two parameters created in this example are the

model’s initial condition and the control reference. The initial condition parameter is used

update the controller and start all the predictions with the most recent state feedback. The

control reference parameter can be updated at any time to give the controller a trajectory to

follow. Both parameters can be modified at run-time through the CasadiSXMultiShootingOpti-

mizer::SetParamValue API.

/∗ Se tup a d d i t i o n a l p a r a m e t e r s (t h i s−>AddParam ()) ∗ /

c a s a d i : : SX x0 = c a s a d i : : SX : : sym (” x0 ” , GetNumStates () , 1) ;

AddParam (” i n i t i a l C o n d i t i o n ” , x0) ;

c a s a d i : : SX r e f = c a s a d i : : SX : : sym (” r e f ” , G e t P r e d i c t i o n H o r i z o n S i z e () , 1) ;

136

AddParam (” r e f ” , r e f) ;

The next step of the controller setup is to create the prediction and control horizon vari-

ables and initialize the weighting matrices used in the cost function.

/∗ Se tup c o n t r o l and p r e d i c i t o n h o r i z o n v a r i a b l e s ∗ /

C r e a t e H o r i z o n s () ;

/∗ S e t s t a t e and i n p u t w e i g h t s ∗ /

S e t S t a t e W e i g h t (o p t s . s t a t e W e i g h t) ;

S e t I n p u t W e i g h t (o p t s . i n p u t W e i g h t) ;

Because the horizons variables have been setup, the symbolic representation of the cost

function can be constructed. This is achieved by iterating through each prediction on the hori-

zon and using the encapsulated CasadiSXCostFunction object to add up each discrete cost.

In the last iteration of the loop, a terminal cost is multiplied with the final cost value on the

horizon.

/∗ Add up c o s t w i th c o s t F u n P t r ∗ /

c o s t F u n P t r −>R e s e t C o s t () ;

/ / Add up c o s t o f i n i t i a l c o n d i t i o n

c o s t F u n P t r −>AddCost (p r e d i c t i o n H o r i z o n (c a s a d i : : S l i c e (0 , GetNumStates ()) , 0) ,

c a s a d i : : SX : : z e r o s (GetNumInputs () , 1) , r e f (c a s a d i : : S l i c e (0 , GetNumStates ()) , 0)) ;

/ / Add up c o s t ove r t h e p r e d i c t i o n h o r i z o n

f o r (a u t o i =0 ; i < Ge tNu mPr ed i c t i ons () ; ++ i)

{

c o n s t a u t o &s t a t e = p r e d i c t i o n H o r i z o n (c a s a d i : : S l i c e ((i +1)∗GetNumStates () ,

(i +2)∗GetNumStates ()) , 0) ;

c o n s t a u t o &i n p u t = c o n t r o l H o r i z o n (c a s a d i : : S l i c e (i ∗GetNumInputs () ,

(i +1)∗GetNumInputs ()) , 0) ;

c o n s t a u t o &t a r g e t = r e f (c a s a d i : : S l i c e ((i +1)∗GetNumStates () ,

(i +2)∗GetNumStates ()) , 0) ;

/ / Check f o r t e r m i n a l c o s t s e t u p

i f (i == (Ge tNu mPr ed i c t i on s () −1))

{

137

c o s t F u n P t r −>S e t S t a t e W e i g h t (o p t s . t e r m i n a l C o s t W e i g h t ∗

s t d : : d y n a m i c p o i n t e r c a s t <C a s a d i S X Q u a d r a t i c C o s t F u n c t i o n>

(c o s t F u n P t r)−>G e t S t a t e W e i g h t ()

) ;

}

c o s t F u n P t r −>AddCost (s t a t e , i n p u t , t a r g e t) ;

}

The constraint equations are constructed and aggregated in the following step of the setup

process. In this example, the only constraints to be implemented are the multi-shooting model-

prediction constraints.

/∗ Se tup c o n s t r a i n t s ∗ /

/ / Model p r e d i c t i o n c o n s t r a i n t

c a s a d i : : SX p r e d i c t i o n V e c = s i m u l a t o r P t r −>Simula t e Inpu t sMS (p r e d i c t i o n H o r i z o n ,

c o n t r o l H o r i z o n) ;

p r e d i c t i o n V e c (c a s a d i : : S l i c e (0 , GetNumStates ()) , 0) = x0 ;

C a s a d i S X C o n s t r a i n t m u l t i S h o o t i n g C o n s t r a i n t (p r e d i c t i o n H o r i z o n − p r e d i c t i o n V e c) ;

/∗ C o n c a t e n a t e c o n s t r a i n t s ∗ /

c o n s t r a i n t s ={m u l t i S h o o t i n g C o n s t r a i n t /∗ , . . . And any o t h e r c o n s t r a i n t s c r e a t e d ∗ / } ;

The final portion of the setup code required for the controller creates the handle to the

IPOPT optimizer with the now defined optimization problem. This block also checks for errors

in the solver setup process and sets some flags to ensure the setup process can be verified

externally.

/∗ Se tup NLP ∗ /

c a s a d i : : SXDict n l p S t r u c t u r e {{ ” x ” , v e r t c a t (p r e d i c t i o n H o r i z o n , c o n t r o l H o r i z o n)} ,

{” p ” , pa rams } , {” f ” , c o s t F u n P t r −>GetCos t () } , {” g ” , c o n s t r a i n t s . Get () } } ;

c a s a d i : : D i c t n l p O p t s ;

n l p O p t s [” i p o p t . p r i n t l e v e l ”] = 0 ;

n l p O p t s [” p r i n t t i m e ”] = 0 ;

n l p O p t s [” i p o p t . a c c e p t a b l e t o l ”] = 1e−8;

n l p O p t s [” i p o p t . m a x i t e r ”] = 2000 ;

138

n l p O p t s [” i p o p t . c o n s t r v i o l t o l ”] = 1e−6;

n l p O p t s [” i p o p t . a c c e p t a b l e o b j c h a n g e t o l ”] = 1e−6;

n l p O p t s [” i p o p t . f i x e d v a r i a b l e t r e a t m e n t ”] = ” r e l a x b o u n d s ” ;

t r y

{

opt imFun = c a s a d i : : n l p s o l (” s o l v e r ” , ” i p o p t ” , n l p S t r u c t u r e , n l p O p t s) ;

}

c a t c h (c o n s t s t d : : e x c e p t i o n &e)

{

i s O p t i m i z e r S e t u p = f a l s e ;

s t d : : s t r i n g s t r e a m s s ;

s s << ” C a s a d i S X M u l t i S h o o t i n g O p t i m i z e r : : Se tup () th rew and e x c e p t i o n when t r y i n g t o

c r e a t e t h e o p t i m i z a t i o n f u n c t i o n : ” << e . what () ;

th row GvNmpcException (s s . s t r ()) ;

}

/∗ Se tup o p t i m i z e r a rgument map ∗ /

C r e a t e D e f a u l t B o u n d s () ;

/∗ Make s u r e o p t i m i z e r i s marked as s e t u p ∗ /

i s O p t i m i z e r S e t u p = t r u e ;

r e t u r n i s O p t i m i z e r S e t u p ;

As previously mentioned, this completed controller can now be incorporated into a larger

system. The controller can be constructed with different tunings (prediction horizon length

and cost function tunings) without having to recompile or rework this code. The implemented

setup method is only required to be called once and then the controller can be run at each

iteration through the CasadiSXMultiShootingOptimizer::Optimize API or other similar public

interfaces. These are the significant advantages of the NMPC software library demonstrated in

this thesis.

139

Appendix C

NMPC Horizon Tuning Procedure and Results

Tuning for the NMPC Horizon begins with discretizing the number of predictions, pre-

diction time steps, and speeds to generate a matrix of required tests. The starting 2-D grid

of predictions vs. prediction time steps for the initial tuning of the kinematic model NMPC,

presented in this work, is given below in Table C.1 The 2-D grid used to tune the bicycle model

Table C.1: 2-D Grid of Horizon Tuning Parameters for the Kinematic Model NMPC
Implementation

Number of Predictions (N) Prediction Time Steps (T)
20 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s
40 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s
60 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s
80 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s

100 0.10 s 0.25 s 0.50 s 0.75 s 1.00 s

NMPC is given in Table C.2. Each combination (N, T) results in a test that is run with a desired

speed and desired reference path. A single test provides a lateral path error mean and standard

deviation measurement. If the controller remains stable and controls to the path during the test,

then the lateral path error mean result is relatively close to zero. If all test runs are zero mean,

the average lateral path error does not provide any sensitivity information for the horizon tuning

parameters. On the other hand, the standard deviation values for a well-tuned horizon will be

significantly lower than an ill-tuned horizon. Therefore, searching for the minimum in a map

of the lateral path error standard deviation results in the best candidate tuning parameters for a

Table C.2: 2-D Grid of Horizon Tuning Parameters for the Bicycle Model NMPC
Implementation

Number of Predictions (N) Prediction Time Steps (T)
75 0.01 s 0.02 s 0.03 s 0.04 s
100 0.01 s 0.02 s 0.03 s 0.04 s
125 0.01 s 0.02 s 0.03 s 0.04 s
150 0.01 s 0.02 s 0.03 s 0.04 s

140

Figure C.1: Kinematic Model NMPC Horizon Tuning Map: 1 m/s

specific path and desired speed. If multiple reference paths are used, their standard deviation

results may be combined on the tuning grid points.

The kinematic model NMPC implementation was tested in simulation using the single lane

change reference path shown in Figure 5.5b at 1, 5, 10, 15, and 20 m/s. The results at each

respective desired speed are shown in Figures C.1 – C.5 and the optimal horizon parameters

are summarized in Table C.3.

Table C.3: Kinematic Model NMPC Optimal Horizon Tuning Parameters

Speed Number of Predictions (N) Prediction Time Step (T)
1 m/s 100 1.00
5 m/s 100 0.75

10 m/s 100 1.00
15 m/s 100 0.75
20 m/s 100 0.5

Each sensitivity map for the Kinematic NMPC shows the optimal horizon tuning with a

downward red/green triangle over the corresponding (N, T) grid point. Not surprisingly, the

results favor a larger number of predictions, but somewhat against first intuition, they do not

favor short prediction time steps. Although the prediction fidelity degrades with larger predic-

tion time steps, a longer horizon, H , seems to have greater impact on the control performance.

It can also be seen in Figures C.1 – C.5 that the performance gain from increasing the number

141

Figure C.2: Kinematic Model NMPC Horizon Tuning Map: 5 m/s

Figure C.3: Kinematic Model NMPC Horizon Tuning Map: 10 m/s

142

Figure C.4: Kinematic Model NMPC Horizon Tuning Map: 15 m/s

Figure C.5: Kinematic Model NMPC Horizon Tuning Map: 20 m/s

143

of predictions is minimal after approximately 60 predictions at each test speed. Conversely, the

results show a very large performance gain when increasing the prediction time step. It must

be noted that the drastic flattening in the graphs of the 15 and 20 m/s cases when increasing

the time step from 0.1 s to 0.25 s was due to controller instability, further justifying the choice

of a larger prediction time step. Given the summarized results in Table C.3, the optimal choice

of horizon should be (N = 100, T = 0.75s). However, given the constrained testing area for

MKZ test vehicle, a suitable choice of parameters is (N = 60, T = 0.75s).

The bicycle model NMPC implementation was also tested in simulation using the single

lane change reference path at 1, 5, 10, 15, and 20 m/s. The results at each respective desired

speed are shown in Figures C.6 – C.10 and the optimal horizon parameters are summarized

in Table C.4. Each horizon tuning map for the bicycle model NMPC is plotted with a

Figure C.6: Bicycle Model NMPC Horizon Tuning Map: 1 m/s

Figure C.7: Bicycle Model NMPC Horizon Tuning Map: 5 m/s

144

Figure C.8: Bicycle Model NMPC Horizon Tuning Map: 10 m/s

Figure C.9: Bicycle Model NMPC Horizon Tuning Map: 15 m/s

Figure C.10: Bicycle Model NMPC Horizon Tuning Map: 20 m/s

145

Table C.4: Bicycle Model NMPC Optimal Horizon Tuning Parameters

Speed Number of Predictions (N) Prediction Time Step (T)
1 m/s 150 0.03
5 m/s 100 0.01

10 m/s 100 0.02
15 m/s 75 0.01
20 m/s 75 0.02

limited range of [0, 1]m on the standard deviation axis, so the results for different speeds can be

easily compared. If the path error standard deviation value for a run on the map is above 1m,

the controller was not able to stabilize the vehicle’s yaw through the maneuver. While each

optimum tuning point suggests that a low prediction time step gives the best performance, the

larger prediction time steps have more consistent performance at each horizon length. Given

that the consistent performance of the grid point (N = 100, T = 0.03) at each test speed, it

seems a reasonable tuning selection that has a favorable run-time computational cost (compared

to the other tuning grid points).

146

