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Abstract

One of the recent developments of interest in neuroscience is the detailed study into

resting state data. This data allows us to examine the way our brains behave in an awake

state with no tasks presented. When coupled with non-imaging data, resting state data can

greatly assist in the classification of disorders and speed patients along the road to recovery.

The method of classification examined in this thesis is normative modeling through Scalable

Multi-Task Gaussian Process Regression (S-MTGPR). Two distinct and unrelated datasets

are used - a large dataset (n=172) and a small dataset (n=27) - to prove the effectiveness of

S-MTGPR is unrelated to sample size. In this thesis we examine how normative models are

built and how they classify subjects based on neurological activity.
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Chapter 1

Introduction

1.1 MRI & BOLD Signal

Magnetic Resonance Imaging (MRI) is a method of producing three dimensional anatom-

ical images. It is non-invasive and does not use ionizing radiation. It creates incredibly clear

images of non-bony parts and soft tissue, making it more ideal than computed tomography

(CT) or x-rays when it comes to imaging the brain, spinal cord, nerves, muscles, ligaments,

and tendons [23].

Figure 1.1: Photo of the 7T MRI Scanner used by Auburn University

1



The brain is composed of two different types of matter - grey and white. Grey matter

contains cell bodies, dendrites, and axon terminals of neurons, meaning it ultimately con-

tains all the synapses in the brain. White matter is composed of axons which connect the

grey matter in the brain. MRI can differentiate between grey and white matter, making it

a highly viable option for medical diagnosis or therapy. It’s only downside is the cost and

length of time required for a scan session.

Figure 1.2: Grey & White Matter. This image is reproduced from Neuroscience News &
Research

MRIs work by using powerful magnets to create a magnetic field that forces protons in

the body to align with the created field. A radiofrequency current is emitted and pushed

through the patient, which stimulates the protons and forces them to spin out of equilibrium

[23, 5]. This strains against the magnetic field and sensors within the MRI are able to detect

energy released from the protons as they struggle to realign with the magnetic field. The

length of time it takes for a proton to realign is dependent on its environment and chemical

nature, allowing physicians to distinguish between types of tissues in the body [23].

There are several variables of interest in MRI scans, but the variable this thesis focuses on

is the blood oxygen-level dependent (BOLD) signal. The BOLD signal is strongly correlated
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with neural activity contributing to the local field potential (LFP) [15]. This demonstrates

the concept that as activity in the brain increases, so does the consumption of oxygen. For

the purposes of this thesis, the BOLD signal is used to identify neural activity.

There are several ways to manually structure brain architecture in order to examine

where the extracted BOLD signal originates. This thesis will focus on the use of Regions

of Interest (ROI) to determine connectivity. Specifically, we will examine how these regions

interact with one another. This is known as ROI-to-ROI connectivity. The segmentation of

ROIs is dependent on the atlas used. The analysis in this thesis uses the AAL atlas, which

segments the brain into 120 ROIs [28].

One of the primary issues with MRIs is the necessity for patients to remain still during

scans. Any movement during a scan can blur images, create artifacts, and distort or warp

the extracted time series. This can especially be a problem in children or patients that are

afflicted with an ailment that prevents them from keeping still for an extended period of

time [5]. There is current research into creating machines designed for these patients.

A method of combating these abnormalities in scans is preprocessing. There are mul-

tiple steps involved in preprocessing, usually involving mathematical transformations of the

data [2]. The end result is a collection of scans that are equally formatted and plotted. Pre-

processing is necessary in statistical analysis because it standardizes the data and provides

meaning for coordinates and groupings.

1.2 Geneva-Combat & ABIDE

There are two datasets used in this thesis. The first is the Geneva-Combat data. All

patients within this dataset have been diagnosed with some form of mild traumatic brain

injury (mTBI) caused by combat related injuries. However, four of the patients have also

been diagnosed with post traumatic stress disorder (PTSD) in addition to their mTBI. This

results in a control group of n=23 and treatment of n=4. The non-imaging response focuses

on the King-Devick (KD) score recorded for each patient.
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KD scores are obtained through a 2 minute visual test in which subjects are required

to state numbers as they observe them in mildly complex patterns that are written on

cards or projected on an interactive screen [18]. The times required to complete each card

are recorded in seconds using a stopwatch. The sum of the three test card time scores

constitutes the summary score for the entire test, the KD time score. While these scores can

be standardized, they were left as raw scores for this project.

The Hippocampus (HIP) and the Amygdala (AMYG) are the two ROIs of most im-

portance in this analysis. HIP is the ROI most commonly associated with learning and

memory, and AMYG is commonly associated with fear and aggression. When either of these

is damaged through a traumatic event, their interaction grows [9]. This is especially true if

the traumatic event was emotional [17, 9]. The Prefrontal Cortex is commonly associated

with the processing and retaining of information. When HIP and AMYG are highly active,

the Prefrontal Cortex is likely to increase in activity as well [17, 9, ?]. These three regions

are the areas of focus when examining PTSD.

Figure 1.3: HIP, AMYG, and Prefrontal Cortex. This image was reproduced from from the
Lumen Learning Group
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All patients were scanned with a 7T at the MRI Facility in Auburn University. They

were instructed to relax, keep their eyes open, and keep their head as still as possible through-

out the duration of the scan. The subjects all provided informed consent and the scanning

procedure was performed in accordance with the guidelines and the approval of the Institu-

tional Review Board at Auburn University.

There are two methodologies underlying subject scans - resting state and task based.

In resting state scans, subjects are to remain awake and alert, but are given nothing specific

to focus on, recall, or do for the duration of the scan. These scans examine the activity of

the brain in its natural state [34]. In task based scans, subjects are given a list of tasks to

complete during the scans (i.e. tapping fingers, recalling events, examining images, etc) and

the scans examine the activity of the brain in response to these tasks. The scans used in the

Geneva-Combat dataset are considered to be resting state scans.

With a sample size of n=27, the Geneva-Combat dataset brings a risk of its results

being anecdotal. To verify the methodology used and the results obtained, a second dataset

is introduced that has no relation to Geneva-Combat - the Autism Brain Imaging Database

Exchange (ABIDE).

The ABIDE dataset contains 1112 subjects and is measured across 17 international

sites. For this thesis, 1 imaging site is used. All data comes from the NYU Langone Medical

Center and contains 172 subjects. Of these subjects, 89 individuals have been diagnosed with

Autism Spectrum Disorder (ASD) and there are 83 control patients. The subjects range in

age from 7 to 64 years. This dataset was publicly released in 2011 after being successfully

anonymized. The ABIDE dataset is part of the 1000 Functional Connectomes Project [13],

and further information can be found on the NITRC website. There is a large collection of

non-imaging data for this dataset, but this thesis will only focus on the binary response of

control (0) vs. ASD (1). Further, this thesis uses the pre-processed data provided by The

Preprocessed Connectomes Project [12]. The results from this dataset will be compared to
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the subject’s Autism Diagnostic Observation Schedule (ADOS) total score to examine the

link between severity of outliers and associated severity of the ADOS score.

The ADOS is a standardized diagnostic test that measures a subject’s interaction with

certain objects or scenarios. It accounts for the developmental level and age of the subject,

and can be modified to observe a large range of participants [4]. The ADOS is composed

of four modules. A subject is scored at each module from zero to three - zero indicating

non-abnormal behavior and three indication abnormal behavior.

This dataset is focused on the Temporal Lobe, which is a collection of 10 ROIs: HIP, the

Parahippocampus (PHIP), AMYG, Fusiform Gyrus (FUSI), Heschl Gyrus (HES), Superior

Temporal Gyrus (T1), Superior Temporal Pole (T1P), Middle Temporal Gyrus (T2), Middle

Temporal Pole (T2P), and Inferior Temporal Gyrus (T3). The Temporal Lobe is commonly

associated with ASD because it is responsible for the bulk of social cognition, empathy, and

receptive language. The deficits of which are the typical symptoms used to diagnose ASD

in subjects [4, 13, 30, 32, 33, 26].

Figure 1.4: Frontal Lobe. This image was reproduced from the Queensland Health Organi-
zation
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Subjects are scanned in resting state, meaning they are fully awake when the scan is

performed and instructed to lie still and think of nothing. They are given no tasks and

should not be attempting to remember events.

1.3 Preprocessing

After duplicating the data and saving it as a secondary dataset so as to avoid alteration

of the raw data, the data is put through a pre-processing pipeline. For both functional and

structural data, there are five collective steps taken in preprocessing. The Geneva-Combat

dataset and the ABIDE dataset went through identical pipelines, as further described.

The first step is realignment and unwarping. This is also known as subject motion

estimation and correction. Using SPM12, all scans are co-registered and re-sampled to a

reference image using b-spline interpolation. B-spline interpolation is created through linear

combinations of the original non-parametric function produced in the scan. The parameter

B is in reference to the total number of parameters needed to accurately estimate the original

function, and varies by subject [2, 29].

Figure 1.5: Graphical Representation of B-Spline. This image was reproduced from Wojciech
Mula
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The step of realignment and unwarping is performed to an attempt to correct potential

distortion that is created through movement of the subject. The interaction between the

distortion and the head movement is estimated through the derivatives of the deformation

field [2]. Additionally, functional data is re-sampled along the phase-encoded direction in

order to correct deformations caused by field distortions within the scanner. The realignment

step also involves centering the data to (0,0,0) coordinates through translation. This is an

important step because all connectivity measures will reference the same area of the brain

within each patient.

The second step is slice-timing correction. fMRI data is sequential in nature, and

creates a slight temporal misalignment between each slice. In this step, functional data

is time-shifted and re-sampled using sinc-interpolation to match the time in the middle of

each scan [2]. Sinc-interpolation is a method of obtaining a sequence of numbers from the

fMRI scans, and converting them into a continuous-time bandlimited function [27]. This is

a method of interpolating the signals between scans, thus allowing the scans to be viewed in

a continuous fashion.

The third step is outlier identification. The majority of BOLD signals of interest occur

within a range of 5 standard deviations of the mean BOLD signal. Anything outside of

that range is typically denoted as an outlier due to head adjustment or signal noise [2]. A

bounding box of 140x180x115 mm is created, and any timepoint registering outside of the

bounding box is identified as an outlier and subsequently removed.

The fourth step is segmentation and normalization. Both functional and structural

data are put into standard Montreal Neurological Institute (MNI) space. MNI space is the

standard template used to map brains and was created through averaging 152 normal MRI

scans and matching 9 parameters [28]. After the data is normalized, the scans are segmented

into grey matter, white matter, and CSF tissue classes. This is done through a procedure

in SPM12 that iteratively classifies tissue and estimates the posterior tissue probability map

(TPM) from intensity values of the reference image [2].
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Figure 1.6: Graphical Represenation of Sinc-Interpolation. This image was reproduced from
Julius O. Smith III

There is a fifth additional step taken for the functional data, in which the BOLD time-

series is smoothed using spatial convolution with a gaussian kernel of 8mm. This is done to

reduce variance across subjects, and increase the ratio of BOLD signal-to-noise [2].

All five of these steps are performed to both datasets, resulting in cleaned data that is

ready for analysis. These are necessary because it assures that data meets the assumptions

necessary for analysis - the time course comes from a single location, the data is uniformly

spaced in time, and the data is spatially smooth.

1.4 Normative Modeling

After the datasets have been cleaned they are used to create a normative model. Norma-

tive modeling is ideal here, because fMRI data is inherently heterogeneous [33]. Normative

models allow for the identification of deviations from a typical pattern, which in turns allows

for a deeper understanding of neuroanatomical development at an individual level, rather
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Figure 1.7: Preprocessing Steps. This image was reproduced from Alfonso Nieto-Castanon

than a group level. While normative modeling is similar in approach to the statistical learn-

ing technique of clustering, it is inherently different because it works to identify outliers -

not clusters - which in turn identifies abnormalities in scans.

There are several ways to create a normative model, but the one used in this thesis

is Scalable Multi-Task Gaussian Process Regression (S-MTGPR). S-MTGPR is used as op-

posed to other methods (ie Multi-task Kronecker Gaussian Process Regression) because of

the reduced computational complexity. fMRI data typically has high dimensionality, and

steps must be taken to reduce this dimensionality or the analysis will run into several prob-

lems.

1.5 Thesis Organization

A prevalent issue facing diagnosis of disorders and abnormalities in fMRI scans is the

heterogeneity of samples. To advance the field of neuroscience, doctors and psychologists

need to be able to scan a subject, compare the results to a large sample size of similar scans

from other subjects, and quickly determine outliers in order to properly diagnose subjects.
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Because of growing concern for computational complexity and length of time dedicated

to diagnosis, the concept of identification of disorders within heterogeneous groups is the

primary topic of this thesis. The first chapter is dedicated to generically introducing MRI and

fMRI concepts, and briefly discussing the need for normative modeling. The datasets used

in this thesis are also described in this chapter. In the second chapter, normative modeling is

discussed in detail through the use of theorems and a discussion on how normative modeling

is applied. In this chapter, both datasets undergo normative modeling and the outputs are

examined in detail. Chapter three focuses on interpretation of the outputs and a discussion

of possible concerns.
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Chapter 2

Normative Modeling

2.1 Introduction to Normative Modeling

One of the primary reasons normative modeling is gaining traction in the field of neu-

roscience is because of its ability to produce reliable and reproducible results. Current

methods, mainly clustering, are highly unreliable because they do not address the issue of

heterogeneity and high dimensionality in the data [33]. In the medical field, conditions and

diseases are typically diagnosed pathologically or clinically, meaning subjects are diagnosed

based on their observed symptoms. However, many conditions have overlapping symptoms.

When differentiating between two similar conditions, relying on symptoms to determine di-

agnosis is unwise. Both ASD and PTSD are disorders that share symptoms with many other

diagnoses, which commonly creates a highly heterogeneous sample group.

S-MTGPR does not require separable clusters, but rather examines the outliers of the

created normal model to identify possible disorders within subjects. This addresses the issue

of heterogeneity in fMRI scans.

Normative modeling employs Gaussian process regression (GPR) to classify neuroimag-

ing data on the basis of clinical and behavioral covariates (i.e independent variables). GPR

provides measures of uncertainty and measures of variance through its creation of predictive

confidence. This allows GPR models to capture multiple behaviors of subjects through fairly

routine parameterization. It also allows for Bayesian inference. GPR previously could only

produce one output. If more than one output was needed, it would require the technique of

mulit-kriging. Boyle et al. proposed the idea of single-task GPR (STGPR) in 2004 by prov-

ing that outputs could be expressed through a convolutional process between a smoothing

kernel and a latent function [8]. The kernel can be selected by the researcher, and the latent
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function - in the case of neuroscience - can be modeled as the covariance function using the

independent variables and the BOLD signal as inputs.

In 2008, Bonilla et al. introduced the idea of extending STGPR to multi-task GPR

(MTGPR) through coupling together sets of latent functions with a shared Gaussian pro-

cess prior distribution to produce a correlation between outputs. They proposed a method

of taking the cross-covariance matrix into the Kronecker product of the sample and task co-

variance matrices, thus making it possible to model across-sample and across-task variance

[7].

This was a large step forward for the field of neuroscience analysis, but the computational

complexity of MTGPR still posed as a problem. When using N samples and T tasks,

MTGPR has a time and space complexity of O(N3T 3) and O(N2T 2) respectively. While

this may seem manageable under most datasets, it quickly can overwhelm computational

power when dealing with fMRI data - typically N is larger than 104 while T is larger than

105 [16, 21]. Several efforts have been made to reduce computation time throughout this

GPR. Their experiments range from the use of principal component analysis (PCA) to reduce

the sample and task covariance matrix, to variational inducing kernals (VIK) which reduces

time complexity to O(NTM2) through the use of inducing functions rather than inducing

outputs. However, all of these methods examined made very few improvements on the order

of T .

Marquand et al. proposed a solution to this by using a combination of low-rank approxi-

mations of the task covariance matrix through algebraic properties of the Kronecker product.

This is known as the scalable MTGPR (S-MTGPR). Using a publicly available fMRI dataset,

they proved that S-MTGPR has a much lower computational time than STGPR and also

has higher sensitivity than STGPR [16].
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2.2 Methodology

2.2.1 Notation - RRC

Boldface capital R is the BOLD timeseries within each ROI. Lowercase r is the matrix

of correlation coefficients. Boldface captial Z is the ROI-to-ROI Connectivity matrix (RRC)

of Fisher-transformed correlation coefficients.

2.2.2 ROI-to-ROI Connectivity

The measurement of connectivity obtained from the subjects is on an ROI-to-ROI level,

meaning it uses all voxels located in a region to summarize the activity of said region. This

is used because we are more interested in looking at the entire network of connections within

the brain. The primary measurement used to assess connectivity is the Fisher-Transformed

Bivariate Correlation Coefficient between pairs of ROI BOLD timeseries signals. Every com-

bination of pairs is measured, and thus produces the RRC. Each element in the matrix is

calculated:

Theorem 2.1

r(i, j) =

∫
Ri(t)Rj(t)dt

(
∫
R2
i (t)dt

∫
R2
j (t)dt)

1
2

2.2.3 Notation - S-MTGPR

Boldface capital letters, A are used to denote matrices. Bold face italic capital letters,

A, are used to denote scalar numbers. The vertical vector that results from collapsing

columns of a matrix A ∈ RN×T with vec(A) ∈ RNT . The Kronecker and element-wise

matrix products are denoted as ⊗ and �, respectively.
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2.2.4 Scalable Multi-Task Gaussian Process Regression

Let X ∈ RN×F be the input matrix with N samples and F covariates. Let Y ∈ RN×T

represent the response variable matrix with N samples and T voxels. The multi-task Kro-

necker Gaussian process model (MT-Kronprod) is defined as:

Theorem 2.2

p(Y | 0,D⊗R + σ2I)

where D ∈ RT×T and R ∈ RN×N are respectively the voxel and sample covariance matrices.

Because of the high computational complexity of matrix diagonalization operations, a low-

rank approximation of D is used.

Let φ : Y→ Z be an orthogonal linear transformation that transforms Y to a reduced

latent space Z ∈ RN×P , where P <T, and Z = φ(Y) = YB. Here, columns of B ∈ RT×P

represent a set of P orthogonal basis functions. Assuming a zero-mean matrix normal dis-

tribution for Z, by factorizing its rows and columns:

Theorem 2.3

p(Z | C,R) = MN(0,C⊗R) =
exp(−1

2
Tr[C−1BTYTR−1YB])√

(2π)NP | C |P | R |N

where C ∈ rP×P and R∈ rN×N are columns and row covariance matrices of Z. Using the

trace invariance property under cyclic permutations, the noise-free multivariate normal dis-

tribution of Y can be approximated:

Theorem 2.4

p(Y | D,R) ≈ p(Y | C,B,R) =
exp(−1

2
Tr[BC−1BTYTR−1Y])√

(2π)NT | BCBT |T | R |N
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where D is approximated by BCBT . The S-MTGPR is then derived by marginalizing over

noisy samples:

Theorem 2.5

p(Y | D,R,σ2) ≈ p(Y | C,B,R,σ2) = N(Y | 0, BCBT ⊗R + σ2I)

Further, to obtain the mean and variance of the predictive distribution of the population,

standard GPR framework is used:

Theorem 2.6

vec(M∗) = (R∗URYUT
CCBT)

and

Theorem 2.7

V∗ = (D⊗R∗∗)− (BCUC ⊗R∗UR)K−1(UT
CCBT ⊗UT

RR
∗T )

in which C = UCSCUT
C and R = URSRUT

R are the eigenvalue decompositions of the

covariance matrices. Because B is assumed to be orthogonal, it is also assumed that B is

invertible and positive definite.

To produce predictive variance, it is necessary to calculate the marginal log likelihood.

This is seen as:

Theorem 2.8

L = −N× T

2
ln(2π)− 1

2
ln | K | −1

2
vec(UT

RYBUC)T vec(Y)
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There are three sets of parameters of interest in S-MTGPR. These are ΘC,ΘR, and Θσ2 ,

which are respectively, the reduced voxel covariance matrix, the input covariance matrix, and

the noise variance. The three main parameters, ΘC,ΘR, and Θσ2 are calculated through the

optimization of L. When calculated using the reduced matrices of the inputs, these three

parameters will be single vectors.

2.3 Normative Modeling & PTSD

There are a total of 27 subjects in the Geneva-Combat dataset. All of which have been

diagnosed with an mTBI, but 4 have additionally been diagnosed with PTSD. All of the

mTBIs of the subjects originated from combat, and were somehow related to their military

training. At the time of the diagnosis of mTBI, a KD sideline score was recorded for each

subject. The KD score of each subject is used as the primary covariate in the SMTGPR

model. These are listed below in accordance to each subject.

Subject KD Score Subject KD Score

1 43.00 15 32.72
2 42.75 16 52.44
3 56.66 17 44.85
4 41.97 18 51.40
5 36.56 19 40.63
6 58.20 20 41.93
7 64.86 21 41.93
8 52.37 22 41.93
9 52.06 23 41.93
10 44.69 24 41.93
11 44.49 25 41.93
12 40.56 26 38.91
13 37.91 27 38.72
14 51.91 - -

Table 2.1: Associated KD Scores

After pre-preprocessing the data, the subject’s scans are concatenated into a single

nifti file using SPM12 3D to 4D conversion. This single file is then put into Marquand’s
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normalization code, which builds the S-MTGPR model. The associated KD scores are

additionally entered into the model as covariates.

Typically, a standard anatomical volume, with an isotropic voxel resolution of 1mm

contains almost 17 million voxels, which are arranged in a 3D matrix of 256 x 256 x 256

voxels [22]. After the S-MTGPR model is built, a volume represents a summary of each

subject used in the input. An analysis of the volumes is used to identify outliers.

After experimentation with the model outputs, 4 k-folds had the lowest root mean-

squared error (RMSE) at 0.05954 and was subsequently selected. RMSE was used in this

calculation because it represents the absolute fit of the data and is simple to interpret.

The normative model is trained on the healthy subjects (n=23). These subjects create

the average neuronal activity and estimated standard deviations that is used in comparison

to the subjects with PTSD. The healthy subjects can be identified through their low ranking

KD scores. The subjects that have PTSD (n=3) can easily be identified by their high KD

scores. It is important to note that this is not always true but is rather a coincidence in our

data. They are patients 3, 6, 7, and 16. The areas of focus in the brain include the AMGY,

the HIPP, and the frontal lobe. These three areas have been proven to be heavily affected

by PTSD in previous research [9]. If any deviating behavior is expected to be found in these

subjects, it will likely be in these regions.

The S-MTGPR model creates several outputs, including a generalized mask of the nor-

mal functional neuronal activity for the sample. This activity is shown through the Fisher-

transformed bivariate correlation coefficient, and represents the average correlation within

the brain that can be found throughout the healthy subjects. This measure is pictured

through taking a single voxel, recording its correlation with every other voxel, then taking

the average. If this voxel has high neuronal activity, it is likely to have a high average. In

a resting state, there are typically multiple areas of activity. The areas highlighted in blue

show regions of the brain that are slightly more active than others. The majority of the brain

in this layout hovers around a correlation value of 0, with a few significant spikes that can
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be seen in blue. These spikes are not located in either the AMGY, HIPP or Frontal Lobe,

but rather are spread throughout the default activity network that is commonly referred to

as the standard for activity networks in resting state scans [10]. The numerical values that

make up this scan can be found in the appendix.

Figure 2.1: Estimated connectivity of a Healthy Subject (Geneva-Combat)

After the S-MTGPR model is created, one of the outputs is the Predicted Yhat Layout.

This parses through each input and estimates which subjects contain outliers and identifies

where the outliers are located. Each pane of the image shows a slice of the brain in axial

view, cutting through the middle of the brain. Each slice corresponds to a different subject,

showing what can be considered a summary image of each subject. Most subjects look rela-

tively similar, with three exceptions. These exceptions appear to have more activity in their

AMGY, HIPP, and Frontal Lobe. When compared to the mask of the normal functional

neuronal activity of the sample, it is clear that these three subjects vary significantly from

the created model, and give cause for further investigation.

Average correlation values are calculated for each volume to be more precise in analysis,

in addition to their standard deviations. As seen in the table below, the averages of subjects
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Figure 2.2: Predicted Yhat Layout (Geneva-Combat)

3, 6, and 7 are significantly higher than the others and have slightly higher standard devia-

tions as well. Subject 16 struggles to stand out from the controls.

The hyperparameters, ΘC,ΘR, and Θσ2 , are shown below. As a reminder, ΘC is the

reduced voxel covariance matrix, ΘR is the input covariance matrix, and Θσ2 is the noise

variance. Each hyperparameter represents the eigenvalue decomposition of their respective

matrix, and can be interpreted as the magnitude and direction of the data.
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Volume Mean SD Volume Mean SD

1 0.1365 0.2547 15 0.1384 0.2603
2 0.1362 0.2539 16 0.1341 0.2525
3 0.1550 0.2954 17 0.1365 0.2557
4 0.1353 0.2552 18 0.1348 0.2533
5 0.1263 0.2382 19 0.1362 0.2549
6 0.1573 0.3009 20 0.1358 0.2541
7 0.1667 0.3257 21 0.1359 0.2541
8 0.1296 0.2442 22 0.1368 0.2573
9 0.1297 0.2443 23 0.1368 0.2573
10 0.1330 0.2483 24 0.1368 0.2573
11 0.1330 0.2484 25 0.1368 0.2573
12 0.1343 0.2505 26 0.1368 0.2577
13 0.1354 0.2528 27 0.1368 0.2578
14 0.1298 0.2443 - - -

Table 2.2: Activity Volume Means & Standard Deviations

Hyperparameter Estimation

ΘC -5.38E-04
ΘR 0.1718
Θσ2 -1.9152

Table 2.3: Hyperparameter Estimates (Geneva-Combat)

The application of the normative model in identifying heterogeneous disorders can be

seen through examining the estimated mean connectivity value of the sample in comparison

to individual values. The S-MTGPR model calculated a mean of 0.138 and an estimated

standard deviation of 0.124. Under the assumption of a normal distribution, the empirical

rule states that 68% of data should fall within one standard deviation, and 95% of data

should fall within two standard deviations. Under this assumption, approximately 82% of

data should fall within 1.5 standard deviations of the calculated mean. Using the empirical

rule as a basis, outliers will be flagged as such if they fall outside 1.5 standard deviations in

either direction. Healthy subjects should fall within the range (0.125, 0.152). The connec-

tivity average is plotted against the calculated change in centroid location, as this location

21



should remain fairly constant among subjects and focuses attention on the difference in cor-

relation values.

Figure 2.3: Associated Scatterplot of Volume Activity by Centroid

There are three subjects that register beyond the 1.5 standard deviation mark of 0.152.

When comparing this plot to the numerical values, it is clear that the three values marked

as outliers are subjects 3, 6, and 7. These subjects have been diagnosed with PTSD, and

additionally have high KD scores. However, subject 16 - who has a diagnosis of PTSD - is

not flagged by this marker. This results in a sensitivity rating of 75% and a specificity rating

of 95.7%. Both the sensitivity rating and the specificity rating are fairly high. This method-

ology shows fairly positive results and gives hope that this methodology is reliable. However,

this dataset is very small and unbalanced. As such, the ABIDE dataset is examined.

2.4 Normative Modeling & ASD

The dataset used in this portion is a subset of the ABIDE dataset. It only consists of

scans originating from NYU. This set contains 172 subjects. Of these 172, 89 subjects have

been diagnosed with ASD and 83 are considered control subjects. The process to create the

SMTGPR model follows the same methodology as previously discussed. All subjects were

preprocessed using the same pipeline, then concatenated into one nifti file. This file was then

22



used as an input in Marquand’s normalization code, which performs the transformations and

calculations previous discussed. The new hyperparameters have been estimated as follows:

Hyperparameter Estimation

ΘC -8.29E-04
ΘR -0.8003
Θσ2 -9.1990

Table 2.4: Hyperparameter Estimates (ABIDE)

The estimated correlation throughout the brain is calculated through the S-MTGPR

model, and projected on an anatomical MNI T1 image.

Figure 2.4: Estimated connectivity of a Healthy Subject (ABIDE)

Possible subject outliers are shown in their summary scans, in which ROIs that are more

active than designated in the S-MTGPR model are shown in red. These areas are primarily
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focused in the region that is considered to be the temporal lobe. This is in accordance with

the theory that subjects diagnosed with ASD have a deficit in processing within this lobe

[4, 13, 30, 32, 33, 26].

Figure 2.5: Predicted Yhat Layout (ABIDE)

After estimation, 10 k-folds resulted in the lowest RMSE for the model at 12.1292. The

estimated mean connectivity value for the created S-MTGPR model is 22.9549 for this set.

The estimated standard deviation for this model is 0.1162. If using 1.5 standard deviations as
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the acceptable cut off limit, healthy subjects should fall within the range (22.8387, 23.0711).

Figure 2.6: Associated Scatterplot of Volume Activity by Centroid

The full table of reported volume activity means per subject can be found in Appendix

B. 138 subjects were flagged in this group as deviating significantly from the normative

model and showing potential for ASD. Of these 138, 72 subjects were correctly diagnosed

with ASD and 17 subjects were overlooked. The ABIDE set has a sensitivity rate of 87%

and a specificity rate of 78%.
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Chapter 3

Conclusion

3.1 Sensitivity & Specificity

Sensitivity and specificity are used here instead of an overall model accuracy because

it’s important to look at both sides of the picture. Sensitivity gives us the true positive,

while specificity gives us the true negative. Rather than looking at the blanket ”accuracy”

of the model, we must examine four different aspects: the percentage of subjects correctly

diagnosed with a disorder, the percentage of subjects incorrectly diagnosed with a disorder,

the percentage of subjects correctly marked as control, and the percentage of subjects incor-

rectly marked as control. This can all be summarized through the sensitivity and specificity

rates, which is why these are employed in analysis of the S-MTGPR model. These values

are calculated across the entire dataset.

- Sensitivity Specificity

PTSD 75% 95.7%
ABIDE 87% 78%

Table 3.1: Sensitivity & Specificity Ratings

These ratings are fairly high and show that S-MTGPR is a useful tool in aiding the

diagnosis of heterogeneous disorders. While this has already been proven in reference to

cortical thickness in ASD detection [33], this thesis has proved that S-MTGPR can be

used in novelty detection of heterogeneous disorders when the BOLD signal is the primary

measurement.

In each dataset, the non-imaging data correlated directly to the results. Individuals that

deviate further from the mean in their non-imaging data (KD score and ADOS total) were
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outliers in the S-MTGPR model, and ranged in the severity of their deviations in accordance

with their non-imaging data. Using the ADOS total as the covariate in the S-MTGPR model

was considered, but there was a large lack of data available - especially in the non-ASD group.

3.2 Interpretation

Normative modeling is not meant to be the ”final say” in diagnosing subjects with

disorders. It is merely meant to be a tool that can assist physicians in heterogeneous cases.

The primary goal of this research was to determine if normative modeling methodology

can distinguish highly heterogeneous disorders within a group. Two datasets were tested

- ABIDE and Combat. Through the use of S-MTGPR, a normative model was created

for both datasets. MSE was examined in the selection of K-folds, and the smallest MSE

was selected and used to determine the number of folds. S-MTGPR also produced biased

hyperparameters, and mapped the expected fischer bivariate correlation within the brain for

an average patient within the sample group.

The average patient in the Combat dataset was relatively healthy and did not have a

diagnosis of PTSD. Therefore, if a subject registered as an outlier, they could be inferred

as having PTSD. This was proven true numerically through the examination of deviation

scores and mapping of the individual patient scans in comparison to the normative model.

The subjects in the ABIDE dataset were roughly split 50/50 of controls and treatment.

As such, if a subject registered as an outlier, they would be perceived as having ASD. This

was also proven true numerically through the examination of deviation scores and mapping

of the individual patient scans in comparison to the normative model.

If a sufficiently large data bank could be created and maintained, it is likely that dis-

orders and diseases - even highly heterogeneous - could be identified through the use of

normative modeling. It is relatively inexpensive and quick to calculate, and does not require

treatment groups or subject correlation, making it highly ideal for universal identification.
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Normative modeling provides fast and inexpensive results, but more importantly, the

results are easy to understand and interpret. Though physicians and psychologists study

statistics, it is important to remember they are not statisticians or data scientists. As such,

using methodology that is straight forward and builds off basic principles of statistics should

be used for interdisciplinary work.

3.3 Issues & Concerns

As cross-validation is used in model fitting, the dangers of overfitting needs to be ac-

knowledged. While the neuroscience community as a whole largely disregards this issue, it

is of prime concern in the statistical community. Additionally, the combat dataset is rather

small and the model is selected through the minimization of MSE through k-fold testing.

This affects the hyperparameters chosen, and introduces bias into the model in addition to

possible overfitting.

It is very likely that the combat dataset is over-fitted, with a training size of 85% and

a testing size of 15%. However, because similar results were obtained with a larger dataset

using a 50% split, it should be considered that over-fitting is not a primary concern with

this methodology.
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Subject Mean Control/ASD ADOS

1 22.7955 1 13
2 22.7955 1 11
3 22.7955 1 14
4 22.7955 1 10
5 22.7955 1 6
6 22.7955 1 7
7 22.7955 1 6
8 22.7955 1 8
9 22.7955 1 10
10 22.7955 1 15
11 22.7955 1 18
12 22.7955 1 7
13 22.7955 1 10
14 22.7955 1 6
15 22.7955 1 10
16 22.7955 1 11
17 22.7955 1 10
18 22.7955 1 13
19 22.6347 1 12
20 22.6347 1 17
21 22.6347 1 13
22 22.6347 1 7
23 22.6347 1 7
24 22.6347 1 7
25 22.6347 1 14
26 22.6347 1 8
27 22.6347 1 9
28 22.6347 1 12
29 22.6347 1 9
30 22.6347 1 10
31 22.6347 1 15
32 22.6347 1 13
33 22.6347 1 14
34 22.6347 1 17
35 22.6347 1 21
36 22.6347 1 22
37 22.6893 1 7
38 22.6893 1 14
39 22.6893 1 8
40 22.6893 1 15

Table A.1: Subject, Volume Activity Mean, Group, & ADOS (ABIDE Subjects 1-40)

34



Subject Mean Control/ASD ADOS

41 22.6893 1 5
42 22.6893 1 15
43 22.6893 1 19
44 22.6893 1 11
45 22.6893 1 12
46 22.6893 1 8
47 22.6893 1 10
48 22.6893 1 19
49 22.6893 1 10
50 22.6893 1 7
51 22.6893 1 7
52 22.6893 1 12
53 22.6893 1 9
54 22.2886 1 7
55 22.2886 1 10
56 22.2886 1 5
57 22.2886 1 10
58 22.2886 1 8
59 22.2886 1 11
60 22.2886 1 13
61 22.2886 1 8
62 22.2886 1 8
63 23.2305 0 8
64 22.2886 1 16
65 22.2886 1 15
66 22.2886 1 17
67 22.2886 1 5
68 22.2886 1 10
69 22.2886 1 18
70 22.2886 1 12
71 22.96 1 13
72 22.96 1 10
73 22.96 1 18
74 22.96 1 8
75 22.96 1 10
76 22.96 1 -
77 22.96 1 -
78 22.96 1 -
79 22.96 1 -

Table A.2: Subject, Volume Activity Mean, Group, & ADOS (ABIDE Subjects 41-79)
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Subject Mean Control/ASD ADOS

80 22.96 1 -
81 22.96 1 -
82 22.96 1 -
83 22.96 1 -
84 22.96 1 -
85 22.96 1 -
86 22.96 1 -
87 22.96 1 -
88 22.6732 1 -
89 22.6732 1 -
90 22.6732 1 -
91 23.3702 0 -
92 23.3702 0 -
93 23.3702 0 -
94 23.3702 0 -
95 23.3702 0 -
96 23.3702 0 -
97 23.3702 0 -
98 23.3702 0 -
99 23.3702 0 -
100 23.3702 0 -
101 23.3702 0 -
102 23.3702 0 -
103 23.3702 0 -
104 23.3702 0 -
105 23.4877 0 -
106 23.4877 0 -
107 23.4877 0 -
108 23.4877 0 -
109 23.4877 0 -
110 23.4877 0 -
111 23.4877 0 -
112 23.4877 0 -
113 23.4877 0 -
114 23.4877 0 -
115 23.4877 0 -
116 23.4877 0 -
117 23.4877 0 -
118 23.4877 0 -

Table A.3: Subject, Volume Activity Mean, Group, & ADOS (ABIDE Subjects 80-118)
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Subject Mean Control/ASD ADOS

119 23.4877 0 -
120 23.4877 0 -
121 23.4877 0 -
122 23.1956 0 -
123 23.1956 0 -
124 23.1956 0 -
125 23.1956 0 -
126 23.1956 0 -
127 23.1956 0 -
128 23.1956 0 -
129 23.1956 0 -
130 23.1956 0 -
131 23.1956 0 -
132 23.1956 0 -
133 23.1956 0 -
134 23.1956 0 -
135 23.1956 0 -
136 23.1956 0 -
137 23.1956 0 -
138 23.1956 0 -
139 22.9733 0 -
140 22.9733 0 -
141 22.9733 0 -
142 22.9733 0 -
143 22.9733 0 -
144 22.9733 0 -
145 22.9733 0 -
146 22.9733 0 -
147 22.9733 0 -
148 22.9733 0 -
149 22.9733 0 -
150 22.9733 0 -
151 22.9733 0 -
152 22.9733 0 -
153 22.9733 0 -
154 22.9733 0 -
155 22.9733 0 -
156 23.2502 0 -
157 23.2502 0 -
158 23.2502 0 -
159 23.2502 0 -
160 23.2502 0 -

Table A.4: Subject, Volume Activity Mean, Group, & ADOS (ABIDE Subjects 119-160)
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Subject Mean Control/ASD ADOS

161 23.2502 0 -
162 23.2502 0 -
163 23.2502 0 -
164 23.2502 0 -
165 23.2502 0 -
166 23.2502 0 -
167 23.2502 0 -
168 23.2502 0 -
169 23.2502 0 -
170 23.2502 0 -
171 23.2502 0 -
172 23.2502 0 -

Table A.5: Subject, Volume Activity Mean, Group, & ADOS (ABIDE Subjects 161-172)
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