
Map Coverage for Mobile Robot Implemented with Reinforcement Learning

by

Xue Xia

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 8, 2020

Keywords: environmental complexity, CCPP, reinforcement learning, PPO, GAIL curiosity

Copyright 2020 by Xue Xia

Approved by

Thaddeus Roppel, Chair, Associate Professor of Electrical and Computer Engineering
John Y. Hung, Professor of Electrical and Computer Engineering

Shiwen Mao, Ginn Professor of Electrical and Computer Engineering
Xiaowen Gong, Assistant Professor of Electrical and Computer Engineering

Abstract

This dissertation introduces a measure of navigation complexity for complete coverage

path planning (CCPP). It also introduces a novel approach to CCPP using reinforcement

learning (RL) to enable a mobile robot to cover an area, subject to constraints on time and

environmental complexity. Target applications are those with many repeated obstacles and

hard time constraints, such as cleaning an airline cabin during the gate time between flights.

For navigation complexity measurement, the challenge is to consider various environ-

mental factors together to measure the difficulty of navigating through the bounded space

under consideration. For two-dimensional coverage problems, a low-complexity environment

could be pictured as an area bounded by a rectangle or circle containing no obstacles, while

a high complexity environment might be represented as a region bounded by a complex

contour and filled with many randomly placed obstacles of random shapes and sizes.

The size of environments and the numbers of corners on maps are commonly taken

into consideration. However, the size of robots to conduct CCPP navigation, the number of

obstacles and the location of obstacles on maps are factors that cannot be ignored.

To address the aforementioned challenge, I propose a method consistent with the Shan-

non Entropy Formula. Four environmental factors are considered as inputs in our navigation

complexity measurement. These four inputs include the spatial area to be covered, robot

size, number of obstacles, and obstacle locations.

ii

The experimental results show that our approach enables the computation of navigation

complexity in in a variety of environments, and that the results are intuitively consistent

with human observation. This approach provides a comprehensive complexity measurement

as a reference for CCPP performance analysis.

For map coverage using RL, the framework trains the robot in a simulated environment

to move to uncovered areas and to avoid frequent collisions using rewards. Additionally, it

encourages the robot to complete map coverage missions efficiently and quickly.

I select the Machine-Learning Agent provided by Unity3D to build a fragment (sample

cell) of an airline cabin environment in which to train the robot. I implement Proximal Policy

Optimization as the main training network, and added curiosity functions (i.e., intrinsic

rewards) to encourage the robot to explore uncovered areas during training. I use Generative

Adversarial Imitation Learning to guide the training policy’s convergence close to the expert

data.

Experimental results show that the optimal policy enables complete map coverage in

complicated environments. I provide demonstrations comparing random motion methods to

reinforcement learning networks to show differences in map coverage, trajectory length, and

time-cost.

iii

Acknowledgments

This work is supported in part by the US NSF under Grant ECCS-1923163, and through

the RFID Lab and the Wireless Engineering Research and Education Center (WEREC) at

Auburn University, Auburn, AL, USA.

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . vii

List of Tables . x

1 Introduction . 1

2 Related Work . 5

2.1 Map Coverage Standards . 5

2.2 CCPP approaches . 6

2.2.1 Random Motion . 6

2.2.2 Decomposition . 7

2.2.3 SLAM based CCPP . 8

2.2.4 Machine Learning . 9

3 Software Introduction . 12

3.1 Robot Operating System . 12

3.2 Unity3D . 13

3.3 Tensorflow . 15

3.4 Matlab . 16

4 Theory . 17

4.1 Environmental Complexity Measurement . 17

4.1.1 Shannon Entropy . 17

4.1.2 Environmental Complexity Measurement 18

4.1.3 The Process of Environmental Complexity Measurement 21

4.2 Reinforcement Learning . 23

v

4.2.1 Cabin Environment Analysis . 23

4.2.2 Reinforcement Learning Selection from CCPP 25

4.2.3 Reinforcement Learning . 27

4.2.4 Policy Gradient . 28

4.2.5 Generalized Advantage Estimator . 30

4.2.6 Proximal Policy Optimization . 31

4.2.7 Generative Adversarial Imitation Learning 33

4.2.8 Curiosity-Driven Exploration . 36

4.3 Simulation Design . 39

4.3.1 Environmental Setting . 39

4.3.2 Simulation Setting . 42

4.3.3 Rewards Design . 48

4.3.4 Imitation Demo Recording . 51

5 Experimental Results . 55

5.1 Environmental Complexity Measurement . 55

5.1.1 Experimental results . 58

5.2 CCPP for Cabin Area using Reinforcement Learning 61

5.2.1 Training Parameter Setting . 61

5.2.2 Scalar Analysis using TensorBoard 64

5.2.3 Comparison between Reinforcement Learning and Random Motion

Approaches . 65

5.2.4 Demo in Changed Environments . 73

6 Conclusion . 81

Bibliography . 83

vi

List of Figures

3.1 Unity3D editor . 14

3.2 ML-Agent structure . 14

4.1 Shannon entropy vs. event probability . 18

4.2 Adjacent Cells . 20

4.3 Simulated Normalized Maps (a) 5 obstacles are set at the edge of the map. (b)

5 obstacles are set randomly on map. 23

4.4 Cabin Area in Simulation . 24

4.5 Decomposition cleaning area . 27

4.6 Clip Function Optimization . 32

4.7 The flow chart of GAIL using PPO . 36

4.8 The flow chart of ICM . 37

4.9 Cabin area simulation map . 40

4.10 Two layers of the simulation environments . 42

vii

4.11 Training cells built by Unity3D . 43

4.12 Difference of training and testing plane coordinate range 46

4.13 Training plane with medium coordinate range 47

4.14 Narrow and Expanded testing plane coordinate range 47

4.15 The flow chart of map coverage process . 49

4.16 Cleaning cell demo . 52

4.17 Cleaning cell demo . 53

5.1 Robot Platform . 56

5.2 Mock Mall . 56

5.3 Meeting Area . 57

5.4 RFID Office . 57

5.5 Mock mall maps . 59

5.6 RFID lab maps . 60

5.7 Meeting area maps . 60

5.8 Training statistics for clean cell using Tensorflow 66

5.9 Training statistics for track Cell cell using Tensorflow 67

viii

5.10 Cleaning robot trajectories in simulation . 69

5.11 Map coverage and trajectories for one episode 71

5.12 Cleaning robot trajectories in simulation . 72

5.13 Demos in Shape Changing Environment . 76

5.14 Demos in Expand Environment . 79

5.15 Demos in Expand Environment . 80

ix

List of Tables

4.1 Environmental Complexity of Matrix A and Matrix B 22

4.2 Environmental Complexity for the Cabin Map in Simulation 24

4.3 Training inputs . 48

4.4 Rewards for cleaning training . 49

4.5 Rewards for tracking training . 50

5.1 Environmental Complexity for Real-World Maps 59

5.2 Training hyperparameters using PPO . 63

5.3 Training hyperparameters using curiosity and GAIL 63

x

Chapter 1

Introduction

Complete coverage path planning (CCPP) is widely needed in various applications, such

as geophysical surveying, and agriculture [1]. In recent years, CCPP is also used by a robot

vacuum cleaner to clean floors. CCPP has three challenges for algorithm design. The first

challenge is to guide a robot to traverse all empty areas within given boundaries (e.g. walls

of a room). Algorithms are required to enable a robot to cover all areas. In addition, CCPP

algorithms need to generate a path that excludes obstacle locations to prevent collisions.

When a robot moves to the vicinity of obstacles, the robot needs to turn around to avoid

collisions. However, when a robot turns around, its speed slows down. Hence, the rapid

heading changing during map cleaning leads to time cost increasing. Third, CCPP algorithms

are designed to optimize the total distance of the cleaning trajectory. Shortening the total

distance improves the efficiency of complete coverage path planning.

Two aspects are considered to measure the performance of CCPP algorithms. The first

is the coverage ratio Equation 1.1. Coverage ratio is the percentage of covered area to the full

area of a given region. A CCPP algorithm is required to enable a robot to gain high coverage

ratio. The second aspect is to measure the efficiency of CCPP algorithms. If the optimal

trajectory is known for a given region, trajectory efficiency is the ratio of the experimental to

the optimal trajectory distance Equation 1.2. However, the optimal trajectory is unknown in

many cases. Then the efficiency is the value of the trajectory distance of one CCPP algorithm

1

to the trajectory distance of other CCPP algorithms that are used for comparison.

Coverage Ratio =
Covered Area

Whole Region Area
(1.1)

Trajectory Efficiency =
Trajectory distance of tested approach

Optimal trajectory distance
(1.2)

Simulation environments and real-world environments are built up to conduct testing for

CCPP approaches. In order to analyze the performance of CCPP approaches, environmental

map conditions are taken into consideration [2]. CCPP approaches perform differently on

maps with various complexity levels. Previously, the size of testing environments is com-

monly measured. Area size decides the optimal trajectory length for robots to complete

map coverage. Turns or corners are used to measure the complexity of maps. Robots need

to avoid serious collisions when facing turns or corners. Hence, turns on maps will cause

robots to slow down and turn around. A map with more turns will lead to high time costs for

robots to complete map coverage. Map size and number of turns are taken into consideration

for different CCPP approach performances. However, more environmental factors exist to

influence the complexity of environments.

In this paper, a novel method is presented to measure the complexity of environments.

The Shannon Entropy formula is considered. Robot size, obstacle number, and locations

are taken into consideration to measure environmental complexity. Occupied maps are im-

plemented in our method, and map regions are divided into grids or cells [3]. For each cell

2

of empty space on maps, the complexity is computed with its adjacent cells as inputs. Our

method generates the complexity value using the Shannon Entropy formula.

In recent years, robot applications have been widely used to clean consumers’ homes. To

complete cleaning tasks, various algorithms are designed for CCPP in house and apartment

environments. In this paper, we focus on solutions of CCPP in specific environments with

many, similarly-shaped obstacles, such as industry factories, workshops, and airline cabins.

In contrast to consumer applications, the time available for a robot to complete full coverage

is limited.

The random motion algorithm is a low-cost, easily implementable method that enables

autonomous robot navigation during consumer-orientation tasks, but fails to complete com-

mercial or industrial missions within a limited time frame. For example, robots using the

random motion algorithm tend to spend a large amount of their motion exploring in corners.

As for robots using external sensors (i.e., Light Detection And Ranging (LIDAR) sensors or

cameras), their ability to cover an area is based on a Simultaneous Localization And Map-

ping (SLAM) function. Environmental features are obtained through LIDAR, and maps are

generated by SLAM. However, whenever environmental conditions change, the robot must

rebuild a map of the surrounding environmental features before performing navigation. Be-

cause SLAM functions do not make good use of old versions of maps or pseudo-maps, it

would be impractical to attempt to distinguish and match numerous similar features in a

given area. Thus, robots enabled with SLAM functions are not suitable for our project.

In this work we select Reinforcement Learning (RL) methods to control ground robots

in highly repetitive environments. We divide each environment into multiple sample cells

according to pseudo-maps, e.g. airplane seat maps. We conduct the RL training process in a

3

single sample cell, and, thus, the problem of distinguishing repeated environmental features

is avoided. The main purpose of the RL network design is to enable a robot to complete

CCPP navigation, and this method provides positive and negative rewards during a robot’s

training to facilitate ”learning” and optimize the training results.

Several challenges arise, however, while designing the RL training structure to enable

CCPP navigation in the target environment. The robot expects to have a high coverage

ratio using previously trained networks for navigation, to maintain a short total trajectory

length with minimal repeated steps, and to complete missions quickly. Additionally, com-

plicated target environments with many obstacles make robot movement difficult. Carefully

selected hyper-parameters of the RL networks enable the robot’s training to overcome these

challenges.

The main contributions of this dissertation are as follows:

1. Compute navigation complexity using environmental factors, which include area size,

robot size, obstacle number, and obstacle locations.

2. Provide a complexity measurement as reference for CCPP performance analysis.

3. Provide an optimal policy RL network that enables the autonomous and efficient nav-

igation of robots that perform complete map coverage in complicated environments.

4

Chapter 2

Related Work

2.1 Map Coverage Standards

According to [4, 2], there exist four main types of CCPP, including random motion

approaches, template-based approaches, decomposition area approaches, and reinforcement

learning approaches. Despite various algorithms and equipment implemented to robots,

the exact environmental conditions have an influence on CCPP performance. From 1997,

De Carvalho divided various environmental conditions into several templates and designed

the robot to perform corresponding motions in [5]. Luo focused on generating CCPP path

around obstacles, specifically corners or turns on maps [6]. Yang designed a CCPP algorithm

that the robot was able to achieve collision-free performance around corners on maps [7].

Choi developed a path planning algorithm with obtaining information of adjacent cells [8].

Janchiv and the team conducted CCPP demonstrations using robot vacuum cleaners [9, 10].

The number of turns in trajectories were recorded for experimental analysis.

In previous works, the environmental complexity of mazes were discussed. Anthony fo-

cused on the patterns of mazes to study the topology [11]. Nalder introduced the Continuum

theory [12]. Then McClendon calculated the complexity of mazes based on the Continuum

5

Theory [13]. In our paper, we measure the complexity of general environments, which in-

clude mazes and more. We applied the Shannon Entropy to our measurement with area size,

robot size, obstacle size and obstacle locations as input factors.

2.2 CCPP approaches

In CCPP progress, a robot is about to move to next location at each step. The selection

of the next location determines the performance of CCPP algorithm approaches. CCPP

approaches are classified into various types according to map representation. Some CCPP

approaches rely on grid maps to cover the map. Map regions can be divided into grids or

cells [3]. Clear grids stand for empty space and occupied grids stand for obstacle locations.

The approaches perform map coverage with a provided map or building a map using SLAM

function. Some other CCPP approaches conduct map coverage without map data.

2.2.1 Random Motion

Y. Liu presented the random motion approach in which a robot enabled to complete

coverage with random heading changes [14].The robot moves forwards until collision occurs,

then turns its heading with a random degree and continues moving forwards. Hasan selected

bumper sensors for the low cost to obtain physical parameters, such as collision force, collision

angle, and collision frequency for cleaning robots [15]. Based on the original random motion

algorithms, Taylor made improvements that enabled the robot to estimate the size of given

area based on the collision frequency [16]. Hence, the improved algorithm increased the

region coverage of the cleaning robot implemented with random motion.

6

2.2.2 Decomposition

Trapezoidal decomposition relies on the vertices of polygonal obstacles to divide the

given region into sub-areas [17]. In each sub area, a zigzag path is generated to cover the

whole area. Each sub-area is represented as a node and all the nodes are connected to

construct a topology graph. The robot moves to adjacent nodes based on the topology

graph. Oksanen merged small sub-areas of the trapezoidal decomposition to improve the

generated path [18]. Choset developed the boustrophedon cellular decomposition to split

a given region into a set of sub-areas and enables the robot to complete map coverage

in each sub-area [19]. Both trapezoidal decomposition and boustrophedon decomposition

have similar sub-area splitting and sub-area coverage processes. Trapezoidal decomposition

uses vertices of obstacles to divide sub-areas, while boustrophedon decomposition only uses

the critical points of obstacles. Boustrophedon decomposition is unable to perform map

coverage in an environment with non-polygonal obstacles. Milnor presented the basic theory

of Morse decomposition [20]. Then Canny presented Morse decomposition by using the

critical points of obstacle edges [21]. Later, various Morse functions were selected to divide

cells into various shapes. H. Choset developed Morse decomposition with boustrophedon

[22] while Acar generated spiral pattern cells based on Morse decomposition [23]. Hence,

decomposition approaches build a clear structure for the CCPP problem with topological

nodes and subareas.

7

2.2.3 SLAM based CCPP

SLAM based approaches generate maps of the workspace [24]. Then they generate a

trajectory (e.g. zig-zag) to cover the whole region. In [5], template coverage models are

applied for different conditions, which include wall following and corners. CCPP algorithms

are widely used on a 2D plane, however, in some cases CCPP is applied to 3D spaces [25].

Unmanned aerial vehicles (UAV) achieved developments in recent years and are widely used

in 3D spaces [26, 27]. However, challenges still exist due to the complicated 3D motions and

the complexity of 3D space [28, 29]. In this paper, we focus on ground robots as our selected

platform for 2D plane navigation.

Montemerlo developed FastSLAM algorithm [30] and Bailey presented the extended

Kalman filter SLAM (EKF-SLAM) [31]. The selection of external sensors influences the

reliability of the generated map. External sensors, such as LIDAR, stereo and RGB cameras,

or sonar sensors, are used to obtain information about the surroundings and various tags or

patterns, such as image icons and RFID tags, can be applied to SLAM demonstrations as

landmarks to guide robot navigation and localization [32, 33, 34, 35, 36, 37, 38, 39].Many

low-cost LIDAR sensors work on 2D plane to obtain obstacle distance and angles with high

accuracy [40]. Kohlbrecher presented LIDAR based SLAM in indoor environments [41].

Taking advantage of the stable performance of LIDAR under changing scene illumination,

James performed LIDAR based SLAM in forests [42]. Cameras are widely used for Visual

SLAM functions. Paz performed visual SLAM using stereo cameras [43]. Microsoft put

Kinect into the market as one type of low-cost RGB-D camera. Equipped with the affordable

8

Kinect, RGB-SLAM was presented by Newcombe [44]. After the stereo camera and RGB-

D camera were selected to perform Visual SLAM, LSD-SLAM using a monocular camera

was presented [45]. Then state-of-art Visual SLAM algorithms, such as RTAB and ORB-

SLAM were developed [46, 47]. Also, in order to take advantage of the two types of sensors,

LIDAR and a RDG-D camera were both equipped on a robot to perform SLAM function

and generate maps [48].

2.2.4 Machine Learning

Machine learning is classified into three types: supervised learning, unsupervised learn-

ing, and RL (reinforcement learning) [49]. Supervised learning, such as behavior clone [50],

requires large amounts of sample data, and those samples are used to measure training per-

formance. Unsupervised learning methods are used for grouping clusters from sets of data

[51]. Previous machine learning methods, such as Genetic Algorithm and the Ant Colony

Optimization algorithm, were used to generate optimal CCPP routes [52, 53]. Alterna-

tively, deep learning has been used for various applications [54, 55, 56]. RL has been highly

developed in recent years, and we applied it for CCPP in this project.

In 2013, DeepMind presented an Atari playing model using Deep Q-learning Network

(DQN) training [57]. DQN only supports discrete outputs such as Atari control commands,

while more applications in practice require outputs with continuous values. In 2014, Deep-

Mind designed Deterministic Policy Gradient (DPG) algorithm based on Policy Gradient

(PG) for continuous action control [58, 59]. In 2015, Schulman of UC Berkeley presented

True Region Policy Optimization (TRPO) to limit the update degrees of policy [60]. Radford

designed Generative Adversarial networks (GAN) [61]. GAN enables competitive training

9

to improve the quality of data from a generator to pass the threshold of a discriminator

with neural networks. In 2016, DeepMind merged the concept of DQN with continuous

action control and named the algorithm Deep Deterministic Policy Gradient (DDPG) [62].

To reduce the time required for training, DeepMind developed asynchronous methods for

parallel learning agents. Additionally, they applied these methods on an actor-critic model

as Asynchronous Advantage Actor-Critic (A3C) to shorten the training time of the Atari

playing model significantly [63]. In the same year, Ho presented Generative Adversarial

Imitation Learning (GAIL) based on GAIL [64]. Reinforcement learning algorithms are im-

plemented to generator updating in GAIL. In 2017, Pathak designed intrinsic rewards for

training process [65]. The intrinsic rewards provides curiosity driven to the agent to en-

courage exploration motions. Schulman got inspiration from TRPO and presented Proximal

Policy Optimization (PPO) algorithm [66]. PPO simplified the equations of TRPO and

improved the performance. Microsoft performed the model Hybrid Reward Architecture

(HRA) by training parallel agents with separated reward values and functions to archive

the maximum score of Atari PacMan [67]. To move the training environment from the 2D

Atari game platform to a 3D real-world environment, Li Fei-Fei from Stanford University

performed target-driven robot navigation with visual sensors using A3C [68].AI2-THOR was

developed based on the Unity3D engine as the 3D environment emulator for visual AI simu-

lation. The target-driven model enabled navigation to new targets based on trained targets

and to navigate in a new scene while observing trained targets [69, 70]. In 2018, Unity3D

company developed a plugin named Machine Learning Agents (ML-Agents) [70]. ML-Agents

provides an environment for machine learning training. In the same year, Socially Aware

Collision Avoidance with Deep Reinforcement Learning (SA-CADRL) was developed as a

10

dynamic obstacle avoidance method and made to perform hardware experiments while the

robot navigated crowds of people [71].

11

Chapter 3

Software Introduction

Various types of software tools and platforms are used in this project for simulation

and analysis. Robot Operating System (ROS) and Matlab are applied to environmental

complexity measurement. ROS provides gmapping open-source codes and motion driver

open-source codes of Create 2 robot for 2D mapping. Matlab is used to compute pixel values

of generated maps to measure environmental complexity. In CCPP using reinforcement

learning part, Unity3D Editor is selected as the simulation platform for scene building.

Unity3D provides the interface Tensor ow to enable reinforcement training and testing.

Tensor ow generates networks as optimal results after training, and networks can be used

for performance testing. Matlab computes and plots figures with data recorded in testing.

3.1 Robot Operating System

Robot Operating System (ROS) is a popular platform for robot application design.

As explained in [72], ROS is more like a communication structure that enables multiple

hardwares or machines work through network. ROS supports various program languages that

includes C++, Python, Octave, and LISP. The two main common used languages on ROS

are C++, Python. A large amount of tools are provided to run ROS components. Hence,

developers from all over the world are able to provide libraries and packages to support robot

12

functions. Re-usable packages that include SLAM and navigation and motions drivers can

be found on ROS. As a open-source platform, ROS is free and mainly runs on Linux.

3.2 Unity3D

Unity3D is a commercial game engine and typically used as a tool for game develop-

ment. The screenshot of the Unity3D Editor is shown in Figure 3.1. In 2018, the Unity3D

company developed a Machine Learning Toolkit named ML-Agent With Unity3D platform

[73]. Unity3D provides various simulation sensor functions, such as Raycast, a circle of rays

used for LIDAR sensor simulation. Additionally, Unity3D supports image renders and cam-

era objects that can be used for Kinect or stereo-camera simulation. In Unity3D, agents or

characters and environmental models are all named ”game objects”. Based on the size and

shape of objects, simulated physical interactions are supported by Unity3D using Rigidbody

functions. Nvidia PhysX is a built-in component as a physical engine in Unity3D. Unity3D

also provides other third-party plugin physical engines, such as Bullet and Mujoco. Lan-

guage C# is used for script programming, and various scripts are added to game objects

to construct simulation environments. Scripts can send commands to agents and describe

complicated interactions to build custom simulation environments. Additionally, Unity3D

provides recorder functions using C# scripts to record demos as expert trajectories for imita-

tion learning. In our project, a single agent is set for simulation. However, Unity3D enables

multiple agents in an environment for training and testing.

Based on Unity3D environments, ML-Agent provides a SDK to build custom agents

and environements for reinforcement learning and interfaces to communicate with Python

packages that are outside Unity3D Editor. The SDK inludes three componets that are

13

Figure 3.1: Unity3D editor

Figure 3.2: ML-Agent structure

14

agent, brain and academy, and the structure of ML-Agent is shown in Figure 3.2. The agent

component is for the agent in simulation environment. Agent scripts send observations that

can be vectors or images as inputs for training and receive motion commands as training

outputs. When the agent has some specific behaviors to get rewards, agent scripts add reward

to networks. Every agent is linked with a brain. As shown in Figure 3.2, multiple agents can

be linked to the same brain and agents that are linked with different brains can be trained

in the same environment. The agent and the linked brain have the same number of inputs

and outputs. The brain component contains policy and makes decisions for agent actions.

After training, Tensor ow generates optimal network files and the network files are sent to

brains for testing. The academy component controls environmental settings. Simulation

speed or framerate are also set by the academy component. Tensor ow provides open-source

reinforcement learning packages outside the Unity3D environment with Python. Variables

and parameters inside Unity3D are sent through interfaces to Tensor ow. Interfaces connect

the Unity3D environment in C# with Tensorflow in Python.

3.3 Tensorflow

Tensorflow is an open source library developed by Google Brain [22]. Machine learn-

ing algorithms are built in Tensor ow and are widely implemented by various applications.

Tensorflow provides the TensorBoard function that stores statistical data and plots scalar

figures for the training process.

15

3.4 Matlab

Matlab provides functions for data analysis and figure plotting and takes advantages of

large scale matrix computing [74]. Matlab is user friendly and easy for coding. In addition,

Matlab provides interfaces that enable C/C++ codes to be used in the Matlab environment

and Matlab code to be used in the C/C++ environment. A large number of 3rd party

plugins are implemented in Simulink. Hence, researchers from science and engineering fields

select Matlab for model-based design and software simulation.

16

Chapter 4

Theory

4.1 Environmental Complexity Measurement

4.1.1 Shannon Entropy

Shannon Entropy is a fundamental concept of information theory [75]. As explained in

[76], information records various events or data and can be described with variables. In other

words, variables carry information through data transmission. The word entropy is used for

measuring the amount of information. During information transmission, some events are

predictable while others tend to be difficult to guess if they will occur or not. When the

event is difficult to guess, the amount of information is high. Hence, the events that are hard

to predict contain a large amounts of information and the entropy is high.

Equation 4.1, known as the Shannon Entropy Equation, expresses the amount of un-

certainty in information. The parameter b is the logarithm base, and usually b is set to 2.

For each piece of data {di = 1, 2, . . . , n}, pi represents the probability that the event i will

occur. In Bernoulli process, n = 2. When the event is certain to happen, the uncertainty

of information is none, so pi = 1, H(X) = 0. When the event is certain not to happen, the

uncertainty of information is none, so pi = 0, H(X) = 0. In the two cases, the events are

predictable and the uncertainty of information does not exist. When the event is uncertain

17

Event probability, p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
tr
o
p
y,

H
(X

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Shannon entropy vs. event probability

to occur, pi is not equal to 1 or 0, the uncertainty of information grows and entropy value in-

creases. When the event is about to occur randomly, the uncertainty of information reaches

the maximum value. When pi = 1− pi = 0.5, H(X) = 1. When n = 2, the relation between

pi and H(X) is shown in diagram Figure 4.1.

H(X) = −
n∑
i=1

pi logb(pi) (4.1)

4.1.2 Environmental Complexity Measurement

When a robot performs complete coverage in practical environments, different standards

exist to measure mission completion. In order to analyze the CCPP performance in complex

environments, a measure of complexity is required. In our project, the information is known.

Hence, the Shannon Entropy is used to measure the diversity of environmental information.

18

Shannon Entropy is proposed herein to measure environmental complexity. Grids or

cell maps are widely used to represent environments. Clear grids mean empty area which

is safe for robots to move around. Occupied grids are the locations of obstacles and walls.

Robots are required to move away from occupied areas to avoid collisions. The adjacent area

is divided into 8 cells during robot navigation, as shown in Figure 4.2. The red cell at the

center of Figure 4.2 represents the location of the robot. The 8 white cells are the adjacent

area based on the robot location. The number of obstacles determine the difficulty of robot

navigation. If obstacles are present in all 8 adjacent cells, the robot is unable to generate a

path to move out. Hence, the complexity of environments is defined as 0 for cases in which

there is no path to move. In another case, if no obstacles exist in the adjacent cells, the

robot can move in any direction without collision. Therefore the complexity of an empty

surrounding environment is defined as 0 as well. In other cases, empty space and obstacles

both exist in 8 adjacent cells. The robot is required to move carefully to avoid potential

collisions, so the complexity of the environment has evidently increased. So the obstacle

distribution in the adjacent area decides the environmental condition with the robot current

location. The Shannon Entropy will use the diversity of obstacle location to measure the

environmental complexity.

In order to provide a normalizing scale for the calculation of environment complexity,

the size of map cells or grids is chosen to be the same as the size of the robots. In addition,

the size and locations of the obstacles in an environment is normalized by the size of the

robots. Four factors, which include robot size, environment size, obstacle size, and obstacle

locations, are taken into account for calculating. To calculate the exact value of environment

19

Figure 4.2: Adjacent Cells

complexity, the numbers of empty cells and occupied cells are divided by 8 because, there

are 8 grids or cells in an adjacent area.

pempty =
Number of empty cells

8
(4.2)

poccupied =
Number of occupied cells

8
(4.3)

.

Hadjacent cell = −pempty ∗ log2(pempty)− poccupied ∗ log2(poccupied) (4.4)

The variable pempty represents the percentage of empty cells to all the 8 adjacent cells

in Equation 4.2 and poccupied represents the percentage of occupied cells to all the 8 adjacent

cells in Equation 4.3. The sum of pempty and poccupied of the same adjacent cells equals to 1.

Hence, the complexity value of adjacent area is computed as Equation 4.4.

20

4.1.3 The Process of Environmental Complexity Measurement

The left and right figures in Figure 4.3 simulate maps with the same robot size, same

area size, same obstacle number, but different obstacle locations. The robot size is assumed

as the same size of map cells. The total number of cells are 25 on both Figure 4.3.(a) and

Figure 4.3.(b). In the Figure 4.3.(a) all obstacles located at the edge of the map. In the

Figure 4.3.(b) the obstacles located randomly on the whole map.

The maps of Figure 4.3.(a) and Figure 4.3.(b) are abstracted to MatrixA and MatrixB

in Equation 4.5 and Equation 4.6. In addition, the complexity value to each free space cell is

computed using Equation 4.4 with its 8 adjacent cells. The results are shown in Equation 4.7

and Equation 4.8. Both maps have the same size, so that the same type of robots focus on

the same size of CCPP missions. The complexity value which are the sum of all elements in

MatrixAdjacent A and MatrixAdjacent B are shown in Table 4.1. According to Table 4.1, the

complexity value of MatrixB is significantly higher than MatrixA, which means that the

environmental condition for MatrixB is more complicated than MatrixA.

MatrixA =

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(4.5)

21

Table 4.1: Environmental Complexity of Matrix A and Matrix B

Matrix A Matrix B
4.4859 11.1065

MatrixA =

1 0 0 0 1

0 0 0 0 0

0 1 0 1 0

0 0 0 0 1

0 0 0 0 0

(4.6)

MatrixAdjacent A =

0 0 0 0 0

0.8113 0.9544 0.9544 0.9544 0.8113

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(4.7)

MatrixAdjacent B =

0 0.5436 0 0.5436 0

0.8113 0.8113 0.8113 0.8113 0.8113

0.5436 0 0.8113 0 0.8113

0.5436 0.5436 0.8113 0.8113 0

0 0 0 0.5436 0.5436

(4.8)

22

（ ）（ ）

Figure 4.3: Simulated Normalized Maps (a) 5 obstacles are set at the edge of the map. (b)
5 obstacles are set randomly on map.

4.2 Reinforcement Learning

4.2.1 Cabin Environment Analysis

Unlike the environmental settings of houses or offices, the cabin area has a more specific

environmental condition. In the previous chapter, we analysis the factors to generate a

complicate environment and we define the concept of environmental complexity. Then we

applied the measurement to measure the environmental complexity of the cabin area.

In the previous chapter, the 2D map building was conducted in real-world. However,

the cabin environment for this project is built using Unity3D. The coordinates were recorded

in .txt files and Matlab was used to plot the cabin map. The Figure 4.4 is the figure of the

simulation cabin area. The blue area represents the obstacles and the white area is the free

space. The size of 4.4(a) is 708×108. The robot size in pixel units is 12×12. Then the cabin

map was normalized by the 12 × 12 cell and the normalized map is shown as 4.4(b). The

normalized map was used to compute the environmental complexity. 4.4(c) is the complexity

map. The sum of the environmental complexity is 257.8176. After divided by the normalized

23

(a) Matlab Cabin
Map

(b) Nor-
malized
Map

(c) Complexity
Map

Figure 4.4: Cabin Area in Simulation

map size 59× 9, the environmental complexity value of the simulating cabin area is 0.4855.

All the map parameters and values are stored in the Table 4.2.

The environmental complexity values show the a large difference of the environmental

conditions between the offices and the cabin area. As mentioned in the later parts, the 3

real-world maps gain complexity value no more than 0.3. The complexity value of the cabin

Table 4.2: Environmental Complexity for the Cabin Map in Simulation

Cabin Area in Simulation
Original Size 708x108

Normalized Size 59x9
Total sum 257.8176
Total sum/

Normalized Size
0.4855

24

area is much higher and the environmental condition of the cabin area is more complicate.

Hence, we need to select proper approaches to accomplish the map coverage mission of this

project.

4.2.2 Reinforcement Learning Selection from CCPP

Random motion approaches are low-cost and easily deployed in consumer applications.

When a robot uses random motion algorithms, it generates trajectories randomly to com-

pletely cover the map. To cover the whole area of the map, trajectories repeat patterns

several times. Hence, the cost in time for random motion algorithms to complete coverage

is high. Additionally, there are usually no external sensors mounted to these robots in order

to reduce cost to the consumer. However, when these robots are trapped in a corner or

small, crowded area, it is difficult for them to find a way out without obtaining additional

information about their surrounding environment. For consumers using robots in the home,

these two shortcomings are generally not regarded as problems.These robots often perform

tasks that are not time-critical to the consumer, so it is acceptable that a robot requires

several hours to complete its tasks. Additionally, furniture placement in most apartments

and houses does not usually create environments with a lot of corners that trap robots. How-

ever, when robots are used in other environments, such as warehouses and airline cabins,

these navigational shortcomings cannot be ignored. For this project, we focused on reducing

coverage time and we explored a suitable approach for obtaining complete map coverage.

SLAM-based approaches for autonomous robot navigation are generally superior to ran-

dom motion approaches. The improved performance relies on the quality of map building,

as a reliable map enables the robot to separate covered areas from uncovered areas within

25

a given environment and to complete map coverage with just a few repeating trajectories.

However, reliable maps require information about environmental features. For this project,

we used an airline cabin, which has many repeated features, as the target environment.

Repeated features contribute time-costs and produce unrecognizable information and dis-

turbances during map building and robot localization. Because time is limited to perform

the cleaning tasks, a robot needs to cover the map with a suitably high coverage ratio, but

possibly less than 100% coverage. For SLAM-based approaches, the robot covers all the

edges and corners of irregular obstacles in order to complete coverage as perfectly as possi-

ble. While SLAM-based approaches have high performance, airline cabin cleaning requires

an approach that balances acceptable coverage and time-costs.

The method described in this dissertation is inspired by decomposition based approaches.

Figure 4.5 shows the divided sub-areas using decomposition approaches. Decomposition ap-

proaches split area according to vertex or points of obstacles, such as when there is furniture

in a room. In 4.5(a), the black edges are four walls and the blue circle and the rectangles

represent obstacles. For many house cleaning cases, the distribution of furniture is sparse

in a room, and the number of sub-areas remains low. The robot is capable of performing

cleaning in one sub-area and moving to the next. However, the decomposition process is

impacted adversely in complex environments with high-density obstacles. Figure 4.5(b) is

a sample for cabin area decomposition. The sub-areas in 4.5(a) are tiny. It is meaningless

for a robot to perform cleaning within each sub-area in 4.5(b). Hence, we plan to define the

size of decomposition sub-areas.

Reinforcement learning algorithms train a robot to perform CCPP. A training environ-

ment (i.e., airline cabin) is selected for a robot to gain specific policies and strategies for

26

(a) Decomposition room (b) Decomposition cabin

Figure 4.5: Decomposition cleaning area

navigation. A corresponding behavior model is obtained from the training process. During

training iterations, rewards guide network convergence to achieve complete coverage; posi-

tive rewards are given for cleaning new areas, while negative rewards are given for obstacle

collisions and inefficient trajectories. RL algorithms build CCPP strategies in training rather

than during testing. The training process of RL takes on the computing burden for CCPP

performance to generate optimal policy networks. When the robot performs CCPP in test-

ing, motion commands are sent from these networks without large computational resources.

4.2.3 Reinforcement Learning

As one of the branches of machine learning approaches [77], RL focuses on generating

specific outputs for a given mission while using rewards to improve performance during

training. There are several elements in RL approaches [78]:

Environment: The place built for training or testing.

Agent: The players in the environment that complete tasks.

Observation: The players observe the environment to get information about the sur-

roundings.

27

Action: The agent takes action while in the environment. The agent takes random

actions at the beginning of the training, while the efficiency of actions improves during

training. At time T = t, the agent takes action at.

State: For each step, the states include environmental conditions and agent actions.

State information is used by RL approaches to improve performance during training. At

time T = t, the state of agent is st.

Reward: Positive rewards are given to an agent for actions that contribute towards

mission completion, while negative rewards are given for actions that should be avoided. At

time T = t, the agent gains current reward rt.

4.2.4 Policy Gradient

Policy gradient (PG) methods are a type of reinforcement learning approaches. Actions

are selected through probabilities and the probabilities of actions are generated by gradients.

In order to gain optimal policy through training, PG approaches use the gradient of the loss

function Equation 4.9 to update the policy. Gradient estimators calculate gradients by

differentiating loss functions shown in Equation 4.9. Expectation Et[] computes the mean

value of samples.The policy πθP for action probabilities converges after numbers of training

iterations and θP is the corresponding parameter. The policy πθP (at|st) represents the policy

when the agent takes actions at at state st. At is the advantage function at time T = t and

At values futures reward sum in Equation 4.10. In Equation 4.10 V (st) is the value function

and Q(st, at) is the Q function from Q-learning. V (st) calculates the sum of future rewards

at state st from time T = t in Equation 4.11. γ is the reward discount and Rt is the

gained reward at time T = t. The equation of Q function is similar to value function in

28

Equation 4.12. Despite, Q function computes the sum of future rewards at the state st

with action at taken by the agent. Advantage function is the difference from that Q(st, at)

minus V (st). Advantage function is used to measure the future trends after current actions.

When the training performance is better than the estimation, the gradients are positive

and the policy updates to increase the probabilities of corresponding actions. When the

training performance goes worse than the estimation, the gradients are negative and the

policy updates to decrease the probabilities of corresponding actions. The policy converges

to optimal results through training iterations. Policy gradient enables continuous actions

as outputs for players. Continuous actions include ground robot headings. Ground robots

can have headings from 0-360 degrees. In contrast, TV game main characters move around

using UP, DOWN, LEFT, and RIGHT keys. The four keys correspond to limited number

of actions as an example of discrete actions. Hence, PG methods were selected for ground

robot map coverage.

Loss = Et[log πθP (at|st)At] (4.9)

At = Q(st, at)− V (st) (4.10)

V (st) = Et[
∞∑
k=0

γkRt+k+1|st] (4.11)

Q(st, at) = Et[
∞∑
k=0

γkRt+k+1|st, at] (4.12)

29

4.2.5 Generalized Advantage Estimator

Generalized advantage estimator (GAE) improves the advantage function to decrease the

variance of gradient estimators [79]. Hence, the number of training samples are reduced for

policy gradient methods. From the original advantage function in Equation 4.10, Ât
GAE(λ,γ)

is shown in Equation 4.13, where δ is defined in Equation 4.14. When λ = 0, Ât
GAE(0,γ)

is

shown in Equation 4.15 and equal to δt. Ât
GAE(0,γ)

has a low variance but the estimation

bias can not be ignored. When λ = 1, Ât
GAE(1,γ)

is shown in Equation 4.16.
∑∞

k=0(γ)kδt+k

leads to high variance of Ât
GAE(1,γ)

and precise prediction of V . Hence, the parameter λ is at

a range of (0, 1), and the value of λ keeps a balance between sample variance and prediction

bias.

Ât
GAE(λ,γ)

=
∞∑
k=0

(λγ)kδt+k (4.13)

δt = rt + γV (st+1)− V (st) (4.14)

Ât
GAE(0,γ)

= rt + γV (st+1)− V (st) (4.15)

Ât
GAE(1,γ)

=
∞∑
k=0

(γ)kδt+k − V (st) (4.16)

30

4.2.6 Proximal Policy Optimization

Proximal policy optimization (PPO) is a state-of-the-art policy gradient algorithm which

is improved from the original policy gradient method. It outperforms other policy gradient

approaches [66]. For previous policy gradient approaches, training failures occur when the

policy change is large. In this case, policy updating leads to lack of convergence. Trust

region policy optimization (TRPO) is focused on decreasing the updating steps to avoid

convergence failures during the training process [60]. TRPO restrains updating steps to

ensure that updated policy does not move far away from old versions of policy. Following

the same concepts of updating steps of TRPO, PPO simplified the equations from TRPO

and uses a clipping function to achieve better performance than TRPO.

rt(θP) =
πθP (at|st)
πθPold(at|st)

(4.17)

PPO defines the probability ratio in Equation 4.17 to measure the policy update degree.

πθPold(at|st) represents for old version of policy and πθP (at|st) stands for new version of policy.

When θP = θoldP , which means the new version of policy is the same as the old version,

rt(θP) =
πθP (at|st)
πθPold

(at|st) = 1. Inspired by TRPO, the log() function in PG loss function in

Equation 4.9 is replaced by the probability ratio and modified to Equation 4.18, where CPI

represents conservative policy iteration [80]. Then PPO adds clip constraints to LCPI to

avoid large steps of policy updating in Equation 4.19.

LCPI = Et[
πθP (at|st)
πθPold(at|st)

At] = Et[rt(θP)At] (4.18)

31

0 1 1 + �

r

LCLIP

A > 0

0 11 - � r

LCLIP

A < 0

Figure 4.6: Clip Function Optimization

LCLIP = Et[min(rt(θP)At), clip(rt(θP), 1− ε, 1 + ε)At)] (4.19)

In LCLIP function, ε is a hyperparameter and set ε = 0.2. In the bracket of min(), the

two elements are rt(θP)At and the clip function. The first element comes from the LCPI

function and the second term provides boundaries using 1− ε and 1 + ε to clip rt(θP) value.

The minimum output is selected between rt(θP)At and the clipping function to retrain large

policy updating. In Figure 4.6 the diagrams show the relation between rt(θP) and clipping

function. The left part is for At > 0 and the right part is for At < 0.

When At > 0, the boundaries of clipping function are [0, 1+ε]. When the probability ra-

tio rt(θP) < 1+ε, the minimum function selects rt(θP) as outputs and min(rt(θP)At), clip(rt(θP), 1−

ε, 1 + ε)At) = rt(θP)At. When the probability ratio rt(θP) > 1 + ε, the clipping function

clips the value of rt(θP) to 1 + ε. Then the minimum function selects 1 + ε as outputs and

min(rt(θP)At), clip(rt(θP), 1−ε, 1+ε)At) = (1+ε)At. The largely positive policy update has

32

been avoided by clipping. When At < 0, the boundaries of clipping function are [1− ε,+∞].

When the probability ratio rt(θP) < 1 + ε, the clipping function clips the value of rt(θP)

to 11ε and the minimum function selects 1− ε as outputs and min(rt(θP)At, clip(rt(θP), 1−

ε, 1 + ε)At) = (1 − ε)At. When the probability ratio rt(θP) > 1 + ε, the minimum func-

tion selects rt(θP) as outputs and min(rt(θP)At, clip(rt(θP), 1− ε, 1 + ε)At) = rt(θP)At. The

probability ratio for negative policy update has been kept a remain value of 1− ε. Accord-

ing to Figure 4.6, clipping functions restrain positive policy update with an upper bound

1 + ε, while clipping functions allow largely policy update with negative At. Equation 4.20

builds the loss function for PPO, where Lt
CLIP (θP) is the CLIP loss function, Lt

V F (θP) is

a squared-error loss and S represents entropy bonus. The squared-error loss is defined as

Lt
V F (θP) = (VθP (st)− V target

t)2. c1 and β are coefficients.

Lt
CLIP+V F+S(θP) = Et[Lt

CLIP (θP)− c1LtV F (θP) + βS[πθP](st)] (4.20)

4.2.7 Generative Adversarial Imitation Learning

Reinforcement learning approaches gain optimal policy through training process. How-

ever, sometimes iterations are unable to convergence to optimization results when compli-

cated missions are assigned to training process. In this case, the fact that the success rate

during training process is low leads to training failures. In order to accomplish training

with complicated missions, imitation learning methods are considered. As the name implies,

imitation learning provides expert demonstrations as reference, and the training process of

reinforcement learning converges to the expert demonstrations.

33

Unlike the behavioral cloning method, which requires large amounts of data for training

[81], generative adversarial imitation learning (GAIL) performs successful training with only

several or dozens of expert demonstration episodes. Improved from inverse reinforcement

learning (IRL), which generates cost functions from expert trajectories and runs reinforce-

ment learning using the cost function as rewards [82], GAIL gains optimal policy directly

from expert demonstrations. GAIL implements generative adversarial nets (GAN) to gener-

ate optimal policy based on expert demonstrations [64].

GAN gains optimal models through adversarial process [83]. GAN selects n example

samples xi = {x1, x2, ..., xn} from dataset and generates n random samples zi = {z1, z2, ..., zn}

from noise using generator G. A discriminator D is applied to distinguish whether the sample

comes from data or from the generator G. The generator G updates to generate samples

more similar to the dataset, and the discriminator updates to distinguish samples. At the

end of training, the probability for the discriminator D to distinguish samples converges to

1/2, which means the discriminator D recognises the samples randomly. In this case, the

generator G generates samples the same as the dataset samples to complete missions.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.21)

gD = Eτagent∇ω[logDω(s, a)] + EτE∇ω[log(1−Dω(G(s, a)))] (4.22)

34

The value function V (D,G) presents the updating of the discriminator D in Equa-

tion 4.21. The variable maxD maximizes the capability of the discriminator D to distinguish

the data from source data or from the generator G. The variable minG enables the gener-

ator G to generate data that has minimum difference comparing with source data. After a

number of iteration process, G is able to generate data that are close to the source data.

Following the same method of GAN, GAIL uses the generator and discriminator to generate

optimal policy as well. The agent during training acts as the generator to take actions.

The discriminator is used to distinguish the trajectories from experts and from the agent in

Equation 4.22. The variable ω stands for the parameters of discriminator D. Expert trajec-

tories and generated trajectories are represented by τE and τagent separately. Originally, the

authors applied TRPO for generator G policy updated in GAIL for the publication date of

GAIL was earlier than PPO. In this dissertation, I selected PPO for GAIL to restrain large

policy updating. When the capability of generator and discriminator largely improve during

iterations, the agent acts close to the the expert trajectories. The Figure 4.3 shows the flow

chart of GAIL process using PPO.

At the initiating step, Nmax is set as the maximum iteration. The GAIL process ends

when iterations increase beyond Nmax. The records of expert trajectories are imported and

the parameters of discriminator and generator for agent are initialized. For each GAIL

iteration, the agent as generator G runs to generate actions. With generated trajectories

and expert trajectories as inputs, the discriminator D updates its parameters according to

Equation 4.22. Then the agent as generator g updates policy by differentiating PPO loss

function. Gradually, the policy θP convergences to optimization after iterations of GAIL

process.

35

Figure 4.7: The flow chart of GAIL using PPO

4.2.8 Curiosity-Driven Exploration

In order to gain optimal results in complicated environments, rewards for curiosity-

driven exploration is implemented to our projects. As explained in [65], reward functions

for reinforcement learning training are designed into two parts, namely the extrinsic rewards

and intrinsic rewards. The extrinsic rewards are the rewards received from the environ-

ment. When the agent accomplishes missions, the agent receives positive rewards. When

the agent causes damages, negative rewards are given as punishments to decrease the same

motions from agent. However, the extrinsic rewards have difficulty to lead training process

to convergence to optimal results in complicated scenarios. In these kinds of cases, intrinsic

rewards are introduced to training as curiosity to encourage the agent to explore to gain new

36

Figure 4.8: The flow chart of ICM

information and learn new skills that can be potentially useful in the future.At time step t,

ret represents extrinsic rewards and rit represents intrinsic rewards.

Intrinsic Curiosity Module (ICM) is designed to compute intrinsic rewards with actions

at, at+1, states st, and st+1 at time step t as inputs. ICM contains a forward model and

an inverse model separately. The flow chart of ICM is shown in Figure 4.8. The forward

model is used to compute environmental impacts which the agent does not conduct but can

have an influence to the agent. The inverse model uses environmental data to predict agent

actions. Vector φ() is used to extract feature from environments. Feature φ(st) and φ(st+1)

encode the environmental conditions at state st and st+1.

The forward model has function f() and the network parameters θF . The function f()

take action at and feature φ(st) as inputs to perform prediction of φs+1 in Equation 4.23, and

37

ˆφs+1 is the predicting result of function f(). The loss function LF is designed as Equation 4.24

to optimize parameter θF . Then the intrinsic rewards are computed as Equation 4.25 and η

is a positive scale factor.

ˆφs+1 = f(φs, at; θF) (4.23)

Lf (φs, ˆφs+1) =
1

2
|| ˆφs+1 − φs+1||22 (4.24)

rit =
η

2
|| ˆφs+1 − φs+1||22 (4.25)

The inverse model has function g() in Equation 4.26, where θI is the network parameter.

The inverse model are used to estimate action at using feature φ(st) and φ(st+1), and ât is

the predicting results of function g(). Then the loss function LI in Equation 4.27 is used to

optimize parameter θI by minimizing LI .

ât = g(st, st+1; θI) (4.26)

minLI(ât, at) (4.27)

min
θP ,θI ,θF

[−λEt[
∞∑
k=0

γkRt+k+1|st, at; θP] + (1− β)LI + βLF] (4.28)

38

The optimization for the whole network is built using Equation 4.12, Equation 4.24 and

Equation 4.27 in and at ∼ (st, θP), where θP will convergence to the optimal policy. The

variable β is the scale factor to value the importance of LF and LI , and β is at a range of

(0, 1). The variable λ is the scale factor to decide the importance between extrinsic rewards

and intrinsic rewards.

4.3 Simulation Design

4.3.1 Environmental Setting

For this project, we created a framework that enables a mobile robot to autonomously

navigate a room for tasks, such as floor cleaning, using a pseudo-map. Our framework design

is based on a deep RL network, and takes the raw input from sensors (such as LIDAR) on

the robot to create an optimal strategy that guides the robot while it fully and safely scans

a given environment (i.e., factory, warehouse, airplane cabin, etc.).

Figure 4.9 shows both the airline cabin area map and the simplified environmental map.

In 4.9(a) a common passenger seat map is used to describe the cabin environment. The two

vertical black lines are the bulkheads. Blue passenger seats are set on the map line by line.

Between lines of seats, the free spaces are the spaces for passenger legs. In the middle of

the passenger seat map, the aisle provides space to connect the whole cabin area. In order

to simplify environmental setting up, black blocks in 4.9(b) are used to represent lines of

passenger seats. Cabin area is one type of specific environments for flights, the robot is

required to avoid large amounts of hard collisions when it conducts CCPP cleaning tasks.

39

(a) Passenger seat map (b) Simplified top-view of passenger seat map

Figure 4.9: Cabin area simulation map

40

During the cleaning process, the entire target area is split into smaller sub-areas. Two

layers of training environments are shown in Figure 4.10. In Fig. 4.10(a) each blue node

represents one sub-area, and the purple dash lines are the boundaries of each sub-area. The

vertical blue line in the middle is the aisle space, and the blue line connects all nodes to

construct the entire target space, which in this example is an airline cabin. To complete the

cleaning task in each sub-area, the robot is required by our framework to clean the free space.

After the area has been cleaned, the robot then moves to the next sub-area through the aisle.

Combined with Generative Adversarial Imitation Learning (GAIL), we selected Proximal

Policy Optimization (PPO) for simulating the airline cabin cleaning process and to give

the robot continuous motion commands [66, 64]. Additionally, we used curiosity functions

to generate intrinsic rewards for the agent (robot) during training [65]. The two training

environments were a node guidance map and a cabin cell with three aisles of passenger seats

and two areas of free space, as shown in Figure 4.10(b). During training, the robot learns

the skills to cover the map with a high coverage ratio and to avoid frequent collisions. After

the cleaning task is finished within the target cells, the robot moves to the next uncovered

cell following the node guidance map. For an area that contains many repeated structures

and where the environment is built by multiple cells that are exactly the same, the robot

that learned to navigate during training is expected to repeat the behaviors. Once that

area is complete, it should move to the next cell until it cleans the entire cabin area. For

this project, our testing environments included a whole aircraft cabin space in a simulation

setting and two other maps with altered scale and obstacle locations.

41

(a) Node connecting (b) Training cell

Figure 4.10: Two layers of the simulation environments

4.3.2 Simulation Setting

The training process is divided into two parts, cleaning and tracking. During cleaning,

the robot focuses on cleaning every corner of the given area to reach high map coverage. Dur-

ing tracking, when the cleaning mission for an area is complete, the robot moves towards the

next uncovered cell and the direction of movement is determined by surrounding landmarks.

Both the cleaning and tracking cells were built by Unity3D, as shown in Figure 4.11.

Figure 4.11(b) and Fig. 4.11(a) are screenshots for the cleaning cell, and Fig. 4.11(a) is

the top-view. Figure 4.11(c) and Fig. 4.11(d) are screenshots for the tracking cell, and Fig.

4.11(c) is the top-view. In both training cells, the brown area represents the oors where the

robot moves freely. Gray blocks represent obstacles such as walls and furniture. The blue

box is the robot or agent. The robot receives an action probability distribution that provides

linear and angular velocities and enables the robot to rotate 360 degrees with continuous

motion. The circle of black lines radiating from the robot simulates the functioning of a

LIDAR sensor. LIDAR is transmitted from the center of the robot to its surroundings to

42

(a) Top-view cleaning cell (b) Cleaning cell

(c) Top-view tracking cell (d) Tracking cell

Figure 4.11: Training cells built by Unity3D

43

detect environmental information. The landmarks with black-and-white patterns represent

the bounds of each cell, and the robot is required to move within the given cell without

touching the bounds. In Fig. 4.11(a) and Fig. 4.11(b), the white cubes represent locations

of uncovered areas and they are set at the corners of the cleaning cells. When the robot

reaches a white cube, the white cube is removed from the map. When the robot reaches every

white cube on the map, the cleaning mission is regarded as complete. When the training

steps of each iteration reach the maximum value, the training cell will be reset even if there

are white cubes left on the map. In Fig. 4.11(c) and Fig. 4.11(d), because one bound of the

tracking cell remains, it is replaced with a green landmark. The remaining bound has the

function of splitting the current cell like the previously visited cell. The green landmark is

set in the direction of the uncovered area, and when the robot detects the green landmark

with its LIDAR, it moves to the landmark and arrives at the next cleaning cell.

The inputs that were imported into the network during the training and testing process

are listed in Table 4.3. The simulated LIDAR function obtains the distance of detected

objects, and the LIDAR rays are transmitted with constant angles. Hence, when the rays

detect objects, the heading angles of objects are obtained by the robot. During cleaning, the

rays can sense objects with tags that include walls, goals, exits, and bounds. The tag ”wall”

and ”bound” represent both walls and obstacles that sit in the middle of the cell. The tag

”goal” is for white cubes that denote uncovered areas. The tag ”exit” represents the green

landmark that guides the robot to leave its current cell and enter a new cell. The velocity of

the robot is sent to the network, and 3D vectors (x, 0, z) are used to store this information.

On the Unity3D platform, the y axis is the vertical axis, and a robot moving on the floor

has velocity of y = 0.

44

However, the RL training process meets challenges when trying to utilize global co-

ordinate values of grid or cell maps as inputs, while traditional path planning approaches

generate routes for robot navigation with global coordinates provided by grid maps. Grid

maps are widely used to represent free space and obstacles of environments. Local coor-

dinates describe the distance and directions of obstacles to the robot. Global coordinates

record the exact location values of free space and obstacles on maps.

One challenge is that when RL uses global coordinates of maps as inputs for training, the

testing performs well if the training and testing environments are the same. When the testing

input values are out of the ranges of training, testing fails. Another is that the coordinates

of grids or cells are imported as a set of vectors. The number of vectors is unchangeable

during training process. If the input coordinates in testing cases are fewer that training, the

remained input space can be set as constant values (e.g. (x, y) = (999, 999)). However, if

the number of coordinate vectors in testing are larger than training environment, the RL

network fails to work.

The global coordinate inputs in the training process are in the boundaries of the simula-

tion plane. The difference of coordinate value range is shown in Figure 4.12. Figure 4.12(a)

is an example for the training plane and Fig. 4.12(b) is the corresponding testing plane.

The global coordinates on the training plane in Fig. 4.12(a) are within the range of (−5, 5),

which means the inputs values in the training process have the same bounds (−5, 5). In Fig.

4.12(b) the testing environment shifts from the training environment and keeps the same

shape, so the global coordinates in the test environment will be out of the range (−5, 5).

45

(a) Training cell coordinate range (b) Testing cell coordinate range

Figure 4.12: Difference of training and testing plane coordinate range

Then the trained RL networks will receive input values that are out of its training experi-

ence. In this case, the testing fails. One solution is to normalize global coordinates with

map boundary length, then the coordinate value will not be out of range.

As mentioned above, Figure 4.13 and Figure 4.14 shows the second challenge. The

training environment is divided into grids or cells. In Figure 4.13, the size of the training

environment is 6 × 6 and there are 36 cells on map. The structure of the RL network is

decided at the beginning of training, so the number of global coordinate inputs stays the

same at 36. When the robot performs map coverage in the environment with a smaller size

in 4.14(a), there are only 16 cells for RL inputs. Then the cells beyond those 16 will be filled

as constant values (e.g. (999; 999)) to keep the RL network working properly. However,

when the robot is required to perform map coverage in 4.14(b), there are more cells on the

simulation plane. The plane size in 4.14(b) is 8× 8 and there are 64 cells on the map. The

extended numbers of inputs will cause errors to conduct testing.

46

Figure 4.13: Training plane with medium coordinate range

(a) Narrow testing coordinate range (b) Expanded testing coordinate range

Figure 4.14: Narrow and Expanded testing plane coordinate range

Hence, in order to enable the robot to learn the behaviors in cleaning and tracking

process rather than limit the robot in one exact environment, the position (x, y, z) of robot

and the locations of white cubes are not used. In our simulation, only local surrounding

information observed by rays and the robot velocity are considered.

After training is finished, both the cleaning process and tracking process alternate when

the robot performs map coverage for the given area. The whole map coverage process is

shown in Figure 4.15. When the process initiates, the robot performs cleaning process at the

47

Input Parameter Description

Ray observations
(cleaning process)

distance
angle

”wall”, ”goal”,”bound”

The circle of rays detect surroundings
and receive information

Ray observations
(tracking process)

distance
angle

”wall”,”bound”,”exit

The circle of rays detect surroundings
and receive information

robot velocity
Vector3
(x, 0, z)

The 2D plane in Unity3D is x0z
and the y axis is the vertical axis

Table 4.3: Training inputs

current cell by reach all white cubes that set on map. After the robot completes the cleaning

task of the current cell, the black-and-white bound that segregates the next uncovered cell

will be removed, and the green landmark for guidance will show up. Then the robot behavior

shifts to tracking process. The robot senses the location of the green guidance using the set

of rays and moves towards to it. After the robot arrives at the green guidance, the guidance

is removed and the bound behind the robot shows up to segregate the new arrived cell to

previous cells. Then the robot repeats perform the cleaning process and tracking process

in this new uncovered cell. When all the uncovered cells have been visited, the whole map

coverage process ends.

4.3.3 Rewards Design

To complete the full coverage task of this project, we set reward functions during the

training process. Reward functions are designed to train cleaning and tracking tasks sep-

arately. To train the cleaning process, there are two basic requirements the robot must

meet. First, the robot needs to avoid frequently colliding with obstacles. Second, the clean-

ing cell must be highly covered by the robot’s cleaning trajectory. Therefore, we set the

48

Figure 4.15: The flow chart of map coverage process

Action Reward Description
Cover new area 0.5 The robot reaches one white cube
Hit obstacles -0.3 The robot hits gray blocks for once

Reach bounds
-10

Current iteration ends
The robot moves cross the

black-and-white patterns for once

Step cost -0.01
The cost accumulates

when the process is running
Clear set 3 The robot covers the cleaning cell

Table 4.4: Rewards for cleaning training

49

Action Reward Description
Hit obstacles -0.3 The robot hits gray blocks for once

Reach bounds
-10

Current iteration ends
The robot moves cross the

black-and-white patterns for once

Step cost -0.01
The cost accumulates

when the process is running

Reach guidance 2
The robot reaches the green landmark

and arrives the next uncovered cell

Table 4.5: Rewards for tracking training

reward functions for cleaning training as listed in Table 4.4. Uncovered areas use white

cubes as landmarks for training and testing. When the robot arrives at the uncovered area,

the corresponding cube is removed, the uncovered area updates to a covered area, and a

positive reward of 0.5 is added to the training network. The algorithm records the total

number of existing and removed landmarks and computes the coverage ratio. If the robot

hits an obstacle, a negative reward of −0.3 is added to the training network, and the robot’s

corresponding behaviors will be diminished in future training scenarios. In this way, the

robot learns to prevent possible damage caused by collisions during testing. When the robot

reaches a boundary, a negative reward of −10 is added to the training network. Additionally,

when the current iteration ends, the environment is reset to make the robot move within

a cell’s area. A negative reward of −0.01 is continuously added to the network while the

training process is running, as this step-cost punishment encourages the robot to complete

cleaning using minimal steps. When all uncovered areas are cleared, the cleaning mission is

complete, and the total reward for this iteration episode is set to a positive value of 3.

As in the cleaning training process, to train the tracking process, the robot must also

avoid frequent collisions. Additionally, the robot must arrive at the green guidance landmark

to exit the recently completed cell and to enter the next uncovered cell. We set the reward

50

functions for tracking training as listed in Table 4.5. The negative rewards for a robot to

avoid collisions and to keep moving efficiently within a given cell have the same value as

those in Table 4.4; the negative reward for collisions is −0.3 and for crossing bounds is −10.

When the robot reaches a bound, the current iteration ends. The step-cost is −0.01, and

it accumulates while the training process is running. When the robot reaches the green

landmark, a positive reward of 2 is added to the training network, the tracking missions are

considered complete for this iteration, and the environment is reset.

4.3.4 Imitation Demo Recording

Unity3D provides a recorder script that records episodes of demos (demonstrations) as

expert trajectories for imitation learning. Demos are the expert trajectories of imitation

learning functions in Unity3D, and the environments for the demos are the same as the

environments used for training. Keyboards or control pads are used by developers to control

the agents during recording. Demos record episodes, total steps, mean rewards, and the

value of all inputs and outputs for every step.

Figure 4.16 shows parameters and a screenshot of demo records for the cleaning cell

training. In Fig. 4.16(b), the agent was controlled manually to move to each corner of

the cleaning cell and reach all the white cubes that are landmarks for uncovered area. In

Fig. 4.16(a), 34 episodes are recorded as demo and 4827 total steps are recorded as total

experiences. The mean reward of all episodes of the demo is −0.1211876. The agent has 244

vectors as inputs, including black rays for environmental observations and its own velocities.

The agent acts as a ground robot, moves on 2D plane, has a vector action size of 2, and has a

51

(a) Parameters for cleaning cell demo

(b) A screen shot for cleaning cell demo

Figure 4.16: Cleaning cell demo

52

(a) Parameters for tracking cell demo

(b) A screen shot for tracking cell demo

Figure 4.17: Cleaning cell demo

53

continuous motion type. We used no image inputs during this project, so camera resolution

is 0.

Figure Figure 4.17 shows parameters and a screenshot of demo records for the tracking

cell training. The agent was controlled manually to the green landmark that are the exit for

current cell in screenshot Fig. 4.17(b). In Fig. 4.17(a), 32 episodes are recorded as demo

and 944 total steps are recorded as total experiences. The mean reward of all episodes of the

demo is −0.9765558. The agent has the same number of observations and acts in the same

continuous motion. Thus, the inputs and outputs for the tracking process training are the

same as those used in the cleaning process.

54

Chapter 5

Experimental Results

5.1 Environmental Complexity Measurement

Robotic platform: The iRobot Create R© 2 was selected as the hardware platform for

our experiment. Two driver motors for the left and right wheels enabled the robot to move

and rotate for 360-degrees. Two ABS plastic boards were set on the top of the robot to form

a chassis. The on-board controller, battery and a LIDAR sensor were set on the chassis.

The on-board controller was connected with the robot to send velocity commands to the

left and right motors and receive odomotery data to locate itself. The on-board controller

was also connected with LIDAR. For the sensor of our robot, we chose a RPLIDAR A1 Low

Cost 360-Degree laser range scanner to observe surroundings and build maps through Robot

Operating System (ROS). The photo of our robot platform is provided in Figure 5.1.

Environmental setting : To present the results of our proposed approach, we selected

three regions to conduct real-world 2D map building at our lab, and the three regions are

the mock mall, meeting area and RFID office. As shown in Figure 5.2 furniture and clothes

shelves were set in mock mall area to simulate a mall environment. In the meeting area

shown in Figure 5.3, the office table, and chairs located at the center of the room. Shelves

and tools were placed against the wall. The main region of RFID office was empty as shown

in Figure 5.4. Office tables and chairs were set to one side wall.

55

Figure 5.1: Robot Platform

Figure 5.2: Mock Mall

56

Figure 5.3: Meeting Area

Figure 5.4: RFID Office

57

Experiments were conducted to generate 2D maps to measure environmental complexity.

Maps of given regions in RFID lab were built up. We sent commands to the robot through

keyboard during the mapping process. The map was established manually, and we controlled

the robot to navigate the whole area.

5.1.1 Experimental results

The mapping process was conducted in the three areas as described above. The Fig-

ure 5.5, Figure 5.6 and Figure 5.7 contain the original 2D maps, the corresponding normalized

maps, and complexity maps. Part (a) of all the three figures are the original maps constructed

by on-board controller and RPLIDAR (Fig. 5.5(a), Fig. 5.6(a) and Fig. 5.7(a)). The white

area is free space and is safe for a robot to move around. The black area is the location of

obstacles and walls. The gray area represents unexplored areas, where the obstacle distribu-

tion is unknown. Part (b) of all the three figures are the normalized maps (Fig. 5.5(b), Fig.

5.6(b) and Fig. 5.7(b)). Before normalizing the original maps, we replaced the value of the

gray area to white. The diameter of the robot is 0.35m. According to the map resolution

in (5.1), the robot diameter on maps is 7 pixels, which means the normalization parameter

of the original maps is 7. The original maps were divided into 7 × 7 size cells. If there are

obstacles within the 7× 7 cell, the cell space occupied and the pixel is set to 1. Otherwise,

the cell is empty and the pixel is set to 0. For each empty pixel, its complexity value was

computed using (4.4) with adjacent pixels as inputs. The complexity maps are shown in (c)

of all the three figures (Fig. 5.5(c), Fig. 5.6(c) and Fig. 5.7(c)). Different grayscale values

58

(a) ROS map (b) Normalized map (c) Complexity map

Figure 5.5: Mock mall maps

Table 5.1: Environmental Complexity for Real-World Maps

Mock Mall RFID Office Meeting Area
Original Size 364x280 392x175 252x413

Normalized Size 52x40 56x25 36x59
Total sum 554.5350 607.1892 338.7164
Total sum/

Normalized Size
0.2666 0.2419 0.2859

of each pixel represent the complexity of its surroundings. The sum of complexity values for

all pixels was computed and shown in Table 5.1.

meter

pixel
= 0.05 (5.1)

According to Table 5.1, the three given regions have different sizes. Finally, the complex-

ity value is defined as the sum divided by the normalized map size. Hence, the complexity

value enables us to measure the whole condition of maps. The meeting area has the highest

complexity value, while the RFID lab area has the lowest complexity value. The complexity

value of the corresponding maps reflects the true complexity of the environments.

59

(a) ROS map (b) Normalized map (c) Complexity map

Figure 5.6: RFID lab maps

(a) ROS map (b) Normalized map

(c) Complexity map

Figure 5.7: Meeting area maps

60

5.2 CCPP for Cabin Area using Reinforcement Learning

5.2.1 Training Parameter Setting

The PPO algorithm was used for cleaning cell training and tracking cell training. Be-

fore training begins, hyperparameters of PPO are as shown in Table 5.2.The batch size is

minbatch that is the number of samples for each policy descent and was set to 128. The

parameter β in Equation 4.20 as coefficient of entropy was set to 0.01. Before policy updat-

ing starts, the number of collected training samples are stored to 2048 as buffer size. The

parameter ε in Equation 4.19 is set to 0.2 as the scale for policy updating. The parameter

hidden units controls the number of neuron units in the hidden layer and was set to 512.

The parameter λ in Equation 4.13 to balance the bias and variance was set to 0.95. The

initial learning rate of PPO as learning rate was set to 3 × 10−4. The variable max steps

represents the maximum steps for all iterations of training. The optimal policy of cleaning

cell training requires more steps than tracking cell training. Hence, max steps in cleaning

cell training was set to 6 × 106 and max steps in tracking cell training was set to 2 × 106.

The normalize function is used to normalize inputs for training. In cleaning cell training and

tracking cell training, the normalize function was turned off. An epoch represented using

all training samples for policy optimization for one time. The times of epoch as num epoch

was set to 3. The num layers was set to 2 and the number of layers in the neuron network

was 2.The parameter time horizon is the number of steps as a frequency to collect samples

to sample buffer for each agent. The time horizon was set to 128. The summary freq was

the frequency to record statistics data. Tensorflow provides TensorBoard to generate scalar

plots. In cleaning cell training, summary freq was set to 20000. In tracking cell training,

61

summary freq was set to 10000. The use recurrent means to implement recurrent neural

networks for training. In both cleaning cell training and tracking cell training, use recurrent

was turned off.

Curiosity-Driven Exploration and GAIL were applied for both cleaning cell training and

tracking cell training. The cleaning cell training and tracking cell training shared the same

parameters as listed in Table 5.3. Extrinsic represents environmental rewards signals and

curiosity represent intrinsic reward signals as mentioned in [65]. The strength of extrinsic

is the parameter that multiplies the raw environmental rewards. This was set to 1.0, which

means environmental reward had a large influence for training. The parameter γ of the

extrinsic signal is the discount factor to compute the sum of future rewards in Equation 4.11

and Equation 4.12. The extrinsic γ was set to 0.99. The strength of curiosity is the parameter

that multiplies the raw intrinsic rewards. The curiosity strength was set to 0.02 to make sure

that the intrinsic rewards would not overwhelm the environmental rewards. The curiosity γ

is the discount factor to compute the sum of future intrinsic rewards and was set to 0.99.

Encoders from ICM framework in Figure 4.8 generate vectors from observations. The size

of encoders as encoding size was set as 256. The GAIL rewards can be combined with

environmental rewards for training. The strength of GAIL is the parameter that times with

raw GAIL rewards and the GAIL strength was set to 0.3. The γ of GAIL is the discount factor

to compute the sum of future GAIL rewards and was set to 0.99. The GAIL encoding size

represents the unit size of discriminator in hidden layer and encoding size was set to 128.

62

Table 5.2: Training hyperparameters using PPO

Setting Cleaning Cell Training Tracking Cell Training
batch size 128 128

β 0.01 0.01
buffer size 2048 2048

ε 0.2 0.2
hidden units 512 512

λ 0.95 0.95
learning rate 3× 10−4 3× 10−4

max steps 6× 106 2× 106

normalize FALSE FALSE
num epoch 3 3
num layers 2 2

time horizon 128 128
summary freq 20000 10000
use recurrent FALSE FALSE

Table 5.3: Training hyperparameters using curiosity and GAIL

Setting Parameter Value

Extrinsic
strength 1.0
γ 0.99

Curiosity
strength 0.02
γ 0.99
encoding size 256

GAIL
strength 0.3
γ 0.99
encoding size 128

63

5.2.2 Scalar Analysis using TensorBoard

Tensorflow provides the TensorBoard function that stores statistical data and plots

scalar figures for the training process. TensorBoard generated 6 separate statistical plots for

the cleaning cell and tracking cell trainings in Figure 5.8 and Figure 5.9, respectively. In

each statistical plot, the x axis represents the number of training iterations and the y axis

has various meanings. The Cumulative Reward figure shows the cumulative environmental

rewards from every iteration in the training process (5.8(a)). Gradually, cumulative rewards

grow as the training process is conducted successfully. The GAIL Loss figure (5.8(b)) rep-

resents the level at which the learning model imitates the expert trajectories. GAIL Loss

decreases when a successful training continues. The Curiosity Forward Loss (5.8(c)) and Cu-

riosity Inverse Loss (5.8(d)) figures represent the value of the loss function in the forward and

inverse models, respectively. The loss function of the forward model measures the accuracy

of estimating the feature that represents next step’s state. The loss function of the inverse

model measures the accuracy of estimating the action between two states. The Policy Loss

figure represents the average magnitude of each time policy update in PPO (5.8(e)). The

Value Loss figure measures the difference between the exact and predicted state values (The

value loss shown in Figu).

In cleaning cell training Figure 5.8(a), the cumulative reward value increases rapidly

from 0k to 100.00k iterations and then slightly from 100.00k to 500.00k iterations. The

training process convergence becomes stable after 500.00k iterations. During training, GAIL

Loss continued to decrease in Figure 5.8(b), meaning that training networks followed the

expert trajectories more closely over time. In both Figure 5.8(c) and Figure 5.8(d), the

64

curiosity forward loss and curiosity inverse loss decreased when the number of iterations

increased. The reduction in curiosity loss shows that the prediction accuracy of state vectors

and actions improved throughout the training process. Figure 5.8(e) plots the magnitude

at every time the policy updated during the training process. Magnitude values fluctuated

throughout the training but decreased over time. The value loss shown in Figure 5.8(f)

was high when the training process was learning using reward feedback; however, value loss

fluctuated throughout the training but converged to stable towards the end of the process.

In tracking cell training Figure 5.9(a), the cumulative reward value grew dramatically

between 0k to 60.00k iterations, then increased slightly and converged to stable towards the

end of the training. During training, GAIL Loss in Figure 5.9(b) decreased quickly between

0k to 40.00k iterations and then fluctuated slightly to imitate the expert trajectories. Cu-

riosity forward loss in Figure 5.9(c) and curiosity inverse loss in Figure 5.9(d) both decreased,

but prediction accuracy increased throughout the training process. Figure 5.9(e) shows the

magnitude of policy updates during every iteration. Policy loss fluctuated throughout the

training process but decreased as compared to the loss value in earlier iterations. In Figure

5.9(f), the value loss was high at the beginning of the training process, indicating changes

to the learning policy. Over time, the training somewhat converged to stable but the value

loss fluctuated.

5.2.3 Comparison between Reinforcement Learning and Random Motion Ap-

proaches

Figure 5.10 are screenshots to record the trajectories for a simulated cleaning robot.

In 5.10(a) the robot was implemented random motion algorithms. In 5.10(b) the robot

65

×10
5

0 1 2 3 4 5 6

-140

-120

-100

-80

-60

-40

-20

0
Cumulative Reward

(a)

×10
5

0 1 2 3 4 5 6

0.4

0.6

0.8

1

1.2

1.4
GAIL Loss

(b)

×10
5

0 1 2 3 4 5 6

0

0.05

0.1

0.15
Curiosity Forward Loss

(c)

×10
5

0 1 2 3 4 5 6

0.06

0.07

0.08

0.09

0.1

0.11

0.12
Curiosity Inverse Loss

(d)

×10
5

0 1 2 3 4 5 6

0.064

0.066

0.068

0.07

0.072

0.074

0.076
Policy Loss

(e)

×10
5

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5
Value Loss

(f)

Figure 5.8: Training statistics for clean cell using Tensorflow

66

×10
5

0 0.5 1 1.5 2

-70

-60

-50

-40

-30

-20

-10

0
Cumulative Reward

(a)

×10
5

0 0.5 1 1.5 2

1

1.2

1.4

1.6

1.8

2

2.2

2.4
GAIL Loss

(b)

×10
5

0 0.5 1 1.5 2

0

0.05

0.1

0.15

0.2

0.25
Curiosity Forward Loss

(c)

×10
5

0 0.5 1 1.5 2

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13
Curiosity Inverse Loss

(d)

×10
5

0 0.5 1 1.5 2

0.06

0.065

0.07

0.075

0.08
Policy Loss

(e)

×10
5

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3
Value Loss

(f)

Figure 5.9: Training statistics for track Cell cell using Tensorflow

67

was implemented with optimal policy that was generated from reinforcement learning. As

mentioned before, brown floor represent free space and gray blocks represent obstacles. The

blue box is the cleaning robot. Both robots in 5.10(a) and 5.10(b) were required to perform

the same CCPP missions to gain high coverage ratio of the map with less time cost and

trajectory length. Hence, when the robot reaches the location of all the white cubes that are

set at the corners, the CCPP missions for one episode are regarded as completed. The purple

lines on Figure 5.10 are the trajectories left by the robot cleaner. In 5.10(a) the trajectories

are denser at the corners of the map. The robot moved back and forth repeatedly and kept

hitting on walls. Without simulated external sensors provided, the robot was unable to gain

observations from surrounding area. In other words, the robot was trapped at corners and

had difficulties to move out. Even if the robot moved around at the corner area with repeated

trajectories, the robot ignored two corners on the map. After the maximum steps (3000) to

end the current episode, the corners remained unvisited. In other words, the CCPP mission

was not completed successfully using random motion algorithms. In 5.10(b), the robot used

the learned policy from reinforcement learning to cover corners and moved around. The

robot reached all the white cubes to complete cover the map area. Compared with 5.10(a),

the trajectories in 5.10(b) had fewer repeated lines. The maximum speed for both robots

were set to be the same. Hence, reinforcement learning enabled the robot to complete map

coverage with in less time.

The robot’s position, rotation, and timestamps were recorded while cleaning missions

were performed. In Figure 5.11, the x and y axis represents position coordinates and the z

axis represents the corresponding timestamp. The testing sessions using RL were recorded

for 300 episodes, and the testing sessions using random motion were recorded for 50 episodes.

68

(a) Random motion trajectories (b) Reinforcement learning trajectories

Figure 5.10: Cleaning robot trajectories in simulation

During the simulation, testing sessions using random motion algorithms took longer to collect

trial data, hence, only 50 episodes of random motion testing we rerecorded for comparison

and analysis. Figure 5.11shows the cleaning map coverage area, robot trajectories, and time

cost of random motion algorithms as compared to RL methods for one episode of testing.

This episode was selected randomly from the testing records. Both methods enabled the

robot’s movement within the space to cover all map areas, but the differences in trajectory

length and time-costs between the methods were significant. The trajectories for one episode

are plotted in 5.11(a) and 5.11(b). The center of the robot was recorded and is indicated

by blue lines. In Figures 5.11(c) and 5.11(d),the robot’s trajectories are plotted with cor-

responding timestamps on the z axis. The cleaning map coverage area is plotted in 5.11(e)

and 5.11(f). Figure 5.11(e) shows the coverage area using random motion algorithms, and

Fig. 5.11(f) shows the coverage area using RL networks. The coordinates of the vertices

of gray walls and blocks were recorded from simulation environments in Unity3D, and we

used Matlab to plot blue polygons to represent the location of obstacles based on trails. The

red area indicates previously covered areas. The center positions of the square-shaped robot

69

and heading angles were used to plot its location and rotation. The white area indicates

uncovered areas. The coverage ratio was computed by comparing pixels of the red area

to pixels of the free space. According to 5.11(e), the robot covered the bottom aisle area

fully but with many repeated trails. However, the robot left two corner areas in the top

aisle uncleaned before it reached its step limitation. Comparatively, the robot in 5.11(b)

covered every corner area of both aisles. Note that the area around obstacle edges were left

uncovered, as the robot learned to avoid frequent collisions during the training process.

To compare the performance of random motion testing against RL testing, we considered

three aspects: coverage ratio, trajectory length, and time-cost. Histograms of these aspects

were plotted in Figure 5.12. Figure 5.12(a) and 5.12(b) show the coverage ratio obtained

using random motion and RL, respectively. The coverage ratio using random motion was

mainly in the range of 55% - 65% as shown in Figure 5.12(a), and the coverage ratio using RL

was primarily in the range of 65%− 75%, as shown in 5.12(b). The coverage ratio range of

random motion was 10% lower than that of RL. The trajectory length using random motion

was mainly in the range of 650− 800, as shown in 5.12(c), while the trajectory length using

RL was mostly in the range of 120− 145, as shown in Figure 5.12(d) . The trajectory length

using random motion was more than 5 times longer than that of RL. Figures 5.12(e) and

5.12(f) show the distributions of time-cost for random motion and RL methods. If the robot

reached all of the targets within 3000 steps (the set maximum number of steps), the current

episode of testing ended. If the robot failed to reach all of the targets within 3000 steps,

the current episode also ended. For random motion, each of the 50 episodes reached the

maximum number of steps and failed to complete the cleaning missions. Therefore, the total

time-cost of the random motion method equalled the time it took for the simulation to run

70

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

(a) Map trail using random motion

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

(b) Map trail using reinforcement learning

20

10

0

-10
-10

0
10

0

10

20

30

40

50

60

70

(c) Corresponding time cost using random motion

10

0

-10
20

10

0

-10

0

5

10

15

20

25

(d) Corresponding time cost using reinforcement
learning

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

(e) Map coverage using random motion

-15 -10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

(f) Map coverage using reinforcement learning

Figure 5.11: Map coverage and trajectories for one episode

71

Coverage Ratio

0 0.2 0.4 0.6 0.8 1

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

5

10

15

20

(a) Coverage ratio using random motion

Coverage Ratio

0 0.2 0.4 0.6 0.8 1

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

20

40

60

80

100

(b) Coverage ratio using reinforcement learning

Trajectory Length

0 200 400 600 800 1000

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

2

4

6

8

10

12

(c) trajectory length using random motion

Trajectory Length

0 200 400 600 800 1000

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

50

100

150

200

250

(d) trajectory length using reinforcement learning

Time Cost

0 10 20 30 40 50 60 70

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

5

10

15

20

25

(e) Time cost using random motion

Time Cost

0 10 20 30 40 50 60 70

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

20

40

60

80

100

120

140

160

(f) Time cost using reinforcement learning

Figure 5.12: Cleaning robot trajectories in simulation

72

3000 steps. In 5.12(e) the time it took a robot using random motion to reach the step limit

was around 60s. However, RL networks enabled the robot to complete tasks within the step

limit. The exact time-cost is plotted in Figure 5.12(f). The range in time taken to complete

the cleaning task using RL was mainly between 17− 27s. The time-cost of random motion

was around three times as much as RL according to the histograms in Figures 5.12(e) and

5.12(f).

In this work, we focused on completing cleaning map coverage within a limited time

frame due to practical applications in and requirements for an airline cabin environment.

RL networks completed the coverage task three times faster and with

ve times less movement than random motion. Therefore, RL networks show superior

performance in autonomous robot navigation through environments that are complex and

where time to complete the task is limited.

5.2.4 Demo in Changed Environments

The training process of reinforcement learning requires a lot of time. Hence, reinforce-

ment learning is considered to have difficultly to adapt to changed environments. Because

the optimal policy that was trained for one case becomes invalid in other cases. To explore

this concern, we conducted map coverage experiments in changed environments. We present

demonstrations with optimal policy that enable the robot to complete coverage missions in

a changed environment. The efficiency of cleaning performance decreases, but the robot can

still finished missions, albeit with with longer time and trajectory cost.

The expert trajectories of GAIL helped the robot to learn specific behavior patterns

during training successfully. In the expert trajectories, the robot was controlled to move

73

straight into one corner to cover the corner area. The robot turned around and moved out.

Then the robot was controlled to move to the next row to repeat the same behaviors. Hence,

the expert trajectories taught the robot to sense the uncovered corners When the robot was

on the aisle. When the robot found one uncovered corner, the expert trajectories provided

the behavior patterns that the robot moved into the corner. When the robot was in a corner,

the expert trajectories taught the robot to move out. The robot learned the behavior models

for the structure of aisle and corners based on the expert trajectories of GAIL.

When the environment has been changed, the aisle and corners are still exist on the map

but no longer at the same location. When the robot meets the same structures on a changed

map, the robot conducts proper actions based on the behavior models from training. When

the same cell has a larger scale, the robot can meet familiar structures on an expanded map.

The corners become larger, but more free space bring no difficulties to the robot. With the

efficiency losing, the robot can still complete the map coverage.

Specific behavior models were gained from training. Additionally, the robot also learned

the total action trends from the expert trajectories. I divided the whole cabin area into

multiple cells. I tended to control the robot to clean each row first and move to the next

row. I did not choose to complete the left side or the right side first. In the testing, the

robot had the same trajectories. The robot moved horizontally in one row first, then moved

to the next one.

Shape Changed Environment

Shape modifications are applied to the testing environment in 5.13(a). The testing

environment contains two cells for cleaning, and the two cells are divided by black-and-white

74

bounds. As shown in 5.13(a), one side of the blocks were extended to change the shape

of testing cell. The total width length is extended to 1.25 times of the training clean cell

width. The 5.13(b) is a screenshot for testing. The purple lines recorded the trails left by

the robot. The robot covered the bottom cell then moved to the unvisited cell to perform

cleaning. The 5.13(c) is a Matlab figure that recorded the trajectories of robot in testing

environment. The figure was selected randomly from 100 episodes of records. The blue

areas were blocks and the red areas were covered area the same as testing in the original

clean cell. The 5.13(d) shows that in most cases the robot are able to complete the cleaning

mission and keep the coverage ratio around 60%−70%. However, the robot sometimes failed

the mission in testing. Sometimes the performance became unstable due to environmental

modifications. The trajectory length was shown in 5.13(e) and the time cost was shown in

5.13(f). Both trajectory length and time cost increased when comparing with the same data

of the original clean cell.

In this shape modified environment, the robot reaches all corners to cover unvisited

area. In other words, the policy still works in this testing environment to provide cleaning

functions. However, the optimal trajectories and corresponding minimum time cost were

not generated in this new area. When the robot moves into corners, we observed that the

robot slowed down. When the robot moves into one corner, the rays that detect the back

side of the robot will receive a larger value that represents the distance of blocks or walls.

However, the robot received small values of the original cleaning cell in training process.

The different ranges of observation values caused by environmental modifications lead to

unstable performance in testing. Also, the modified environments increased the trajectory

length and time costs in testing.

75

(a) Changed environment for testing (b) Trajectories in changed environment

(c) A screenshot for changed environment

Coverage Ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

10

20

30

40

50

60

(d) Coverage ratio for changed environment

Trajectory Length

200 400 600 800 1000 1200 1400

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

5

10

15

20

25

30

35

(e) Trajectory length for changed environment

Time cost (s)

50 100 150 200 250

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

5

10

15

20

25

30

(f) Time cost for changed environment

Figure 5.13: Demos in Shape Changing Environment
76

Cabin Cell with Three Column Seats

The testing environment was modified according to the passenger seat setting of large

planes. In training process, the cleaning cell was built according to small planes, such as

airbus. The testing environment is built based on Boeing 767 or 777 types that are for long

time flights.

Figure 5.14(a) shows the top-view of testing environment. The environment contains

two cells as well. Unlike the cleaning cell, two black-and-white bounds are set in the middle

of the environment to divide the two cells. When the robot finished the cleaning in current

cell, the two bounds disappeared and the robot chose the near exit to move to the next cell.

According to 5.14(a), the two columns of blocks were added to three columns. The total

width length is is extended by a factor of two. The 5.14(e) is a screenshot of the testing.

The purple lines are the trajectory of robot during testing. Figure 5.14(c) is a figure that

generated by Matlab showing the coverage area within the testing environment. The testing

continued for 100 episodes and Fig. 5.14(c) was chosen randomly from the 100 recorded

testing. Figure 5.14(d) shows that the coverage ratio for the expand environment is in the

range of 55%− 65%. The robot was able to complete missions in most episodes. The failed

cases still exist due to environmental modifications. Two exits are set to connect with the

next cell. However, when the robot finished cleaning, it moved across only one exit to the

next cell and never returned. Hence, the empty area of the remaining exit was as unvisited

during testing. Hence, the coverage ratio dropped. Figure 5.14(e) shows the trajectory

length and Fig. 5.14(f) shows the time costs of testing episodes. Both trajectory length and

time costs increased when compared with the same size of original cleaning cells.

77

In these expanded environments, when the robot moves to one corner, the rays that

provided the simulated LIDAR function will detect nothing at the opposite directions. In

the previous testing environment, the rays are able to reach the opposite walls when robot is

at one side. However, the length of rays are limited, and the rays are unable to touch walls

in the opposite directions. The empty detection caused the robot to wander around without

reaching uncovered landmarks directly. Hence, the robot using reinforcement learning policy

was able to perform cleaning missions in the three column block environment, but efficiency

was reduced.

Multiple Cell Build

Multiple cleaning cells were connected to build a whole cabin. Experiments were con-

ducted to test whether the robot can complete the cleaning mission of the whole cabin

environment. Figure 5.15(a) is a top-view of the whole cabin environment. The previous

experimental environments contained two cleaning cells which were divided by black-and-

white boundaries. The robot only needed to clean the current cell and move to the other.

However, the cabin environment contains 10 cells to be cleaned. In the simulation, 20 lines

of passenger seats were created and 10 exits landmarks were used to guide the robot to move

to the next cleaning cell. This environment is used to observe if the robot is able to repeat

its behaviors with trained with a policy to complete the whole given area.

Figure 5.15(b) is a screenshot of robot motions during testing. Purple lines represent

the trajectory followed by the robot. it can be seen that the robot finished cleaning the

current cell then moved to the next one. it can be seen that, the robot cleaned each cell one

by one to conduct the cleaning process. The robot followed the framework that we designed.

78

(a) Expand environment for testing (b) Trajectories in Expand environment

(c) A screenshot for expand environment

Coverage Ratio

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

5

10

15

20

25

30

35

40

(d) Coverage ratio for expand environment

Trajectory Length

200 400 600 800 1000 1200 1400 1600

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

5

10

15

20

25

30

35

(e) Trajectory length for expand environment

Time Cost (s)

0 100 200 300 400 500 600

N
u
m

b
er

 o
f

T
ra

je
ct

o
ri

es

0

10

20

30

40

50

60

70

(f) Time cost for expand environment

Figure 5.14: Demos in Expand Environment

79

(a) Trajectory length for expand environment (b) Trajectory length for expand environment

Figure 5.15: Demos in Expand Environment

The policy using reinforcement learning training generated robot motions that enable the

robot to complete our project task.

80

Chapter 6

Conclusion

This paper presents a novel approach for environmental complexity measurement and

CCPP demonstrations with a high coverage ratio using reinforcement learning. In order to

measure environmental complexity, it takes robot size, environmental size, obstacle number,

and obstacle locations as inputs for measurement. This approach provides a more compre-

hensive environmental complexity measurement. Lastly, our method gains complexity value

for 2D environmental maps and reflects a reliable complexity level of each map. Thus, our

approach is a promising measurement method to provide environmental complexity reference

for CCPP approaches.

For the CCPP demonstrations using reinforcement learning, the policy takes simulated

LIDAR functions as observations and robot actions as outputs. We designed a framework

that divided the whole environment with repeated obstacles into multiple sample cells. For

a single sample cell, we conducted training using reinforcement learning and GAIL with

intrinsic curiosity rewards. Scalar figures were generated to record statistic data of training.

After the training process, our robot using reinforcement learning were tested in training

environment to cover map area. Comparing with random motion methods, our application

keeps a balance between high coverage ratio and time costs. Then, we tested the performance

of the policy in modified environments. The robot was able to complete map coverage

missions, while the efficiency dropped due to environmental modifications. Also, we built

81

a whole cabin area with multiple cleaning sample cells as a testing environments. In this

environment, the robot was able to clean each sample cell one by one to cover the whole

environmental area. Hence, our CCPP application is promising to apply to environments

where repeated obstacles exist.

82

Bibliography

[1] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[2] A. Khan, I. Noreen, and Z. Habib, “On complete coverage path planning algorithms for
non-holonomic mobile robots: Survey and challenges.,” J. Inf. Sci. Eng., vol. 33, no. 1,
pp. 101–121, 2017.

[3] H. Choset, “Coverage for robotics–a survey of recent results,” Annals of mathematics
and artificial intelligence, vol. 31, no. 1-4, pp. 113–126, 2001.

[4] P. Zhou, Z.-m. Wang, Z.-n. Li, and Y. Li, “Complete coverage path planning of mobile
robot based on dynamic programming algorithm,” in 2nd International Conference on
Electronic & Mechanical Engineering and Information Technology, Atlantis Press, 2012.

[5] R. N. De Carvalho, H. Vidal, P. Vieira, and M. Ribeiro, “Complete coverage path plan-
ning and guidance for cleaning robots,” in ISIE’97 Proceeding of the IEEE International
Symposium on Industrial Electronics, vol. 2, pp. 677–682, IEEE, 1997.

[6] C. Luo, S. X. Yang, D. A. Stacey, and J. C. Jofriet, “A solution to vicinity problem of
obstacles in complete coverage path planning,” in Proceedings 2002 IEEE International
Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 1, pp. 612–617,
IEEE, 2002.

[7] S. X. Yang and C. Luo, “A neural network approach to complete coverage path plan-
ning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 34, no. 1, pp. 718–724, 2004.

[8] Y.-H. Choi, T.-K. Lee, S.-H. Baek, and S.-Y. Oh, “Online complete coverage path plan-
ning for mobile robots based on linked spiral paths using constrained inverse distance
transform,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 5788–5793, IEEE, 2009.

[9] A. Janchiv, D. Batsaikhan, G. hwan Kim, and S.-G. Lee, “Complete coverage path
planning for multi-robots based on,” in 2011 11th International Conference on Control,
Automation and Systems, pp. 824–827, IEEE, 2011.

[10] A. Janchiv, D. Batsaikhan, B. Kim, W. G. Lee, and S.-G. Lee, “Time-efficient and
complete coverage path planning based on flow networks for multi-robots,” International
Journal of Control, Automation and Systems, vol. 11, no. 2, pp. 369–376, 2013.

83

[11] A. Phillips, “The topology of roman mosaic mazes,” Leonardo, pp. 321–329, 1992.

[12] S. Nadler, Continuum theory: an introduction. CRC Press, 1992.

[13] M. S. McClendon et al., “The complexity and difficulty of a maze,” in Bridges: Math-
ematical Connections in Art, Music, and Science, pp. 213–222, Bridges Conference,
2001.

[14] Y. Liu, X. Lin, and S. Zhu, “Combined coverage path planning for autonomous clean-
ing robots in unstructured environments,” in 2008 7th World Congress on Intelligent
Control and Automation, pp. 8271–8276, IEEE, 2008.

[15] K. M. Hasan, K. J. Reza, et al., “Path planning algorithm development for autonomous
vacuum cleaner robots,” in 2014 International Conference on Informatics, Electronics
& Vision (ICIEV), pp. 1–6, IEEE, 2014.

[16] C. E. Taylor, S. F. Lau, E. C. Blair, A. Heninger, and E. Ng, “Robot cleaner with
improved vacuum unit,” Aug. 7 2008. US Patent App. 11/574,290.

[17] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun, Principles of robot motion: theory, algorithms, and implementation. MIT
press, 2005.

[18] T. Oksanen and A. Visala, “Coverage path planning algorithms for agricultural field
machines,” Journal of field robotics, vol. 26, no. 8, pp. 651–668, 2009.

[19] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellular de-
composition,” in Field and service robotics, pp. 203–209, Springer, 1998.

[20] J. W. Milnor, M. Spivak, and R. Wells, Morse theory, vol. 1. Princeton university press
Princeton, 1969.

[21] J. F. Canny and M. C. Lin, “An opportunistic global path planner,” Algorithmica,
vol. 10, no. 2-4, pp. 102–120, 1993.

[22] H. Choset, “Coverage of known spaces: The boustrophedon cellular decomposition,”
Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.

[23] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull, “Morse decompositions for
coverage tasks,” The international journal of robotics research, vol. 21, no. 4, pp. 331–
344, 2002.

[24] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part i,”
IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[25] A. Bircher, M. S. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari, T. Mantel,
and R. Siegwart, “Three-dimensional coverage path planning via viewpoint resampling
and tour optimization for aerial robots,” Autonomous Robots, vol. 40, 11 2015.

84

[26] J. Zhang, Z. Yu, X. Wang, Y. Lyu, S. Mao, S. C. Periaswamy, J. Patton, and X. Wang,
“Rfhui: An rfid based human-unmanned aerial vehicle interaction system in an indoor
environment,” Digital Communications and Networks, 2019.

[27] J. Zhang, X. Wang, Z. Yu, Y. Lyu, S. Mao, S. C. Periaswamy, J. Patton, and X. Wang,
“Robust rfid based 6-dof localization for unmanned aerial vehicles,” IEEE Access, vol. 7,
pp. 77348–77361, 2019.

[28] J. Zhang, Z. Yu, X. Wang, Y. Lyu, S. Mao, S. C. Periaswamy, J. Patton, and X. Wang,
“Rfhui: An intuitive and easy-to-operate human-uav interaction system for controlling
a uav in a 3d space,” in Proceedings of the 15th EAI International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services, pp. 69–76, 2018.

[29] J. Zhang, Z. Yu, X. Wang, Y. Lyu, S. Mao, S. C. Periaswamy, J. Patton, and X. Wang,
“Rfhui: An rfid based human-unmanned aerial vehicle interaction system in an indoor
environment,” Digital Communications and Networks, vol. 6, no. 1, pp. 14–22, 2020.

[30] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam: A factored solution
to the simultaneous localization and mapping problem,” Aaai/iaai, vol. 593598, 2002.

[31] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the ekf-
slam algorithm,” in 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3562–3568, IEEE, 2006.

[32] J. Zhang, Y. Lyu, J. Patton, S. C. Periaswamy, and T. Roppel, “Bfvp: A probabilistic
uhf rfid tag localization algorithm using bayesian filter and a variable power rfid model,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 8250–8259, 2018.

[33] J. Zhang, Y. Lyu, J. Patton, S. C. G. Periaswamy, and T. Roppel, “Bfvp: A probabilistic
uhf rfid tag localization algorithm using bayesian filter and a variable power rfid model,”
IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 8250–8259, 2018.

[34] X. Wang, Z. Yu, and S. Mao, “Deepml: Deep lstm for indoor localization with smart-
phone magnetic and light sensors,” in 2018 IEEE International Conference on Commu-
nications (ICC), pp. 1–6, IEEE, 2018.

[35] X. Wang, J. Zhang, Z. Yu, E. Mao, S. C. Periaswamy, and J. Patton, “Rfthermometer:
A temperature estimation system with commercial uhf rfid tags,” in ICC 2019-2019
IEEE International Conference on Communications (ICC), pp. 1–6, IEEE, 2019.

[36] X. Wang, Z. Yu, and S. Mao, “Indoor localization using smartphone magnetic and light
sensors: A deep lstm approach,” Mobile Networks and Applications, pp. 1–14, 2019.

[37] X. Wang, J. Zhang, Z. Yu, S. Mao, S. C. Periaswamy, and J. Patton, “On remote
temperature sensing using commercial uhf rfid tags,” IEEE Internet of Things Journal,
vol. 6, no. 6, pp. 10715–10727, 2019.

85

[38] X. Wang, X. Wang, and S. Mao, “Resloc: Deep residual sharing learning for indoor
localization with csi tensors,” in 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, IEEE, 2017.

[39] X. Wang, X. Wang, S. Mao, J. Zhang, S. C. Periaswamy, and J. Patton, “Deepmap:
Deep gaussian process for indoor radio map construction and location estimation,” in
2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7, IEEE, 2018.

[40] Y. Lin, J. Hyyppa, and A. Jaakkola, “Mini-uav-borne lidar for fine-scale mapping,”
IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 3, pp. 426–430, 2010.

[41] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible and scalable slam
system with full 3d motion estimation,” in 2011 IEEE International Symposium on
Safety, Security, and Rescue Robotics, pp. 155–160, IEEE, 2011.

[42] L. A. James, D. G. Watson, and W. F. Hansen, “Using lidar data to map gullies and
headwater streams under forest canopy: South carolina, usa,” Catena, vol. 71, no. 1,
pp. 132–144, 2007.

[43] L. M. Paz, P. Piniés, J. D. Tardós, and J. Neira, “Large-scale 6-dof slam with stereo-
in-hand,” IEEE transactions on robotics, vol. 24, no. 5, pp. 946–957, 2008.

[44] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,
J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface map-
ping and tracking,” in 2011 10th IEEE International Symposium on Mixed and Aug-
mented Reality, pp. 127–136, IEEE, 2011.

[45] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,”
in European conference on computer vision, pp. 834–849, Springer, 2014.

[46] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and visual simultaneous
localization and mapping library for large-scale and long-term online operation,” Journal
of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019.

[47] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate
monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163,
2015.

[48] J. Zhang, Y. Lyu, T. Roppel, J. Patton, and C. Senthilkumar, “Mobile robot for retail
inventory using rfid,” in 2016 IEEE international conference on Industrial technology
(ICIT), pp. 101–106, IEEE, 2016.

[49] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[50] P. Abbeel and A. Y. Ng, “Inverse reinforcement learning.,” 2010.

[51] Y. Chen, J. Z. Wang, and R. Krovetz, “Clue: cluster-based retrieval of images by
unsupervised learning,” IEEE transactions on Image Processing, vol. 14, no. 8, pp. 1187–
1201, 2005.

86

[52] T. Roppel, Y. Lyu, J. Zhang, X. Xia, et al., “Corrosion detection using robotic vehicles
in challenging environments,” in CORROSION 2017, NACE International, 2017.

[53] X. Xia, T. Roppel, J. Zhang, Y. Lyu, S. Mao, S. C. Periaswamy, and J. Patton, “En-
abling a mobile robot for autonomous rfid-based inventory by multilayer mapping and
aco-enhanced path planning,”

[54] X. Wang, X. Wang, and S. Mao, “Cifi: Deep convolutional neural networks for indoor
localization with 5 ghz wi-fi,” in 2017 IEEE International Conference on Communica-
tions (ICC), pp. 1–6, IEEE, 2017.

[55] X. Wang, X. Wang, and S. Mao, “Deep convolutional neural networks for indoor lo-
calization with csi images,” IEEE Transactions on Network Science and Engineering,
2018.

[56] X. Wang, X. Wang, and S. Mao, “Rf sensing in the internet of things: A general deep
learning framework,” IEEE Communications Magazine, vol. 56, no. 9, pp. 62–67, 2018.

[57] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[58] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “Deterministic
policy gradient algorithms,” 2014.

[59] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in Advances in neural
information processing systems, pp. 1057–1063, 2000.

[60] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International conference on machine learning, pp. 1889–1897, 2015.

[61] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[62] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[63] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in Interna-
tional conference on machine learning, pp. 1928–1937, 2016.

[64] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in neural
information processing systems, pp. 4565–4573, 2016.

[65] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven exploration by
self-supervised prediction,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 16–17, 2017.

87

[66] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[67] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and J. Tsang, “Hybrid
reward architecture for reinforcement learning,” in Advances in Neural Information
Processing Systems, pp. 5392–5402, 2017.

[68] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,
“Target-driven visual navigation in indoor scenes using deep reinforcement learning,” in
2017 IEEE international conference on robotics and automation (ICRA), pp. 3357–3364,
IEEE, 2017.

[69] E. Kolve, R. Mottaghi, D. Gordon, Y. Zhu, A. Gupta, and A. Farhadi, “Ai2-thor: An
interactive 3d environment for visual ai,” arXiv preprint arXiv:1712.05474, 2017.

[70] R. H. Creighton, Unity 3D game development by example: A Seat-of-your-pants manual
for building fun, groovy little games quickly. Packt Publishing Ltd, 2010.

[71] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning
with deep reinforcement learning,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1343–1350, IEEE, 2017.

[72] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng, “Ros: an open-source robot operating system,” in Proc. of the IEEE Intl.
Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics, (Kobe,
Japan), May 2009.

[73] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity:
A general platform for intelligent agents,” arXiv preprint arXiv:1809.02627, 2018.

[74] MATLAB, version 9.4.0.813654 (R2018a). Natick, Massachusetts: The MathWorks
Inc., 2018.

[75] C. E. Shannon, “A mathematical theory of communication,” Bell system technical jour-
nal, vol. 27, no. 3, pp. 379–423, 1948.

[76] S. Vajapeyam, “Understanding shannon’s entropy metric for information,” arXiv
preprint arXiv:1405.2061, 2014.

[77] P. Lison, “An introduction to machine learning,” Language Technology Group (LTG),
1, vol. 35, 2015.

[78] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[79] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional contin-
uous control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438,
2015.

88

[80] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement learn-
ing,” in ICML, vol. 2, pp. 267–274, 2002.

[81] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous navi-
gation,” Neural Computation, vol. 3, no. 1, pp. 88–97, 1991.

[82] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement learning.,” in Icml,
vol. 1, p. 2, 2000.

[83] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural in-
formation processing systems, pp. 2672–2680, 2014.

89

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Related Work
	Map Coverage Standards
	CCPP approaches
	Random Motion
	Decomposition
	SLAM based CCPP
	Machine Learning

	Software Introduction
	Robot Operating System
	Unity3D
	Tensorflow
	Matlab

	Theory
	Environmental Complexity Measurement
	Shannon Entropy
	Environmental Complexity Measurement
	The Process of Environmental Complexity Measurement

	Reinforcement Learning
	Cabin Environment Analysis
	Reinforcement Learning Selection from CCPP
	Reinforcement Learning
	Policy Gradient
	Generalized Advantage Estimator
	Proximal Policy Optimization
	Generative Adversarial Imitation Learning
	Curiosity-Driven Exploration

	Simulation Design
	Environmental Setting
	Simulation Setting
	Rewards Design
	Imitation Demo Recording

	Experimental Results
	Environmental Complexity Measurement
	Experimental results

	CCPP for Cabin Area using Reinforcement Learning
	Training Parameter Setting
	Scalar Analysis using TensorBoard
	Comparison between Reinforcement Learning and Random Motion Approaches
	Demo in Changed Environments

	Conclusion
	Bibliography

