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Abstract 

 

 

 The developing fetus is exceptionally sensitive to insult.  Perturbation during this critical 

period of development can have lasting effects throughout offspring lifespan.  Viral infection and 

obesity are insults that induce a proinflammatory response in the maternal host and are pertinent 

to adverse offspring outcomes.  Attenuating the maternal inflammatory response, at the time of 

insult, has shown limited success on fetal outcomes; these factors are necessary for normal fetal 

development.  Attenuating the maternal inflammatory response by increasing anti-inflammatory 

activity could restore or approximate homeostasis and avoid or attenuate adverse outcomes in 

offspring.  This was tested by inducing maternal immune activation with a high-fat diet or 

polyinosinic:polycitidylic acid, with some dams receiving concurrent immunomodulatory glycan 

exposure.  Adult offspring were assessed on discrimination reversal tasks and delayed matching 

to position, measures of behavioral flexibility and working memory, respectively.  When 

differences in behavioral flexibility or working memory did occur, they were often in the 

opposite direction that was expected.  In some instances glycan did attenuate changes to make 

these animals more similar to controls. 
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Chapter 1: Introduction 

The developing nervous system is highly vulnerable to insult, and disruption of 

homeostatic development can have lasting effects on offspring long after the insult has ended.  

Decades of epidemiological and experimental research have implicated prenatal insult with the 

later development of neurodevelopmental disorders, especially autism spectrum disorders (ASD) 

and schizophrenia.  Based on epidemiological studies, important risk factors for ASD and 

schizophrenia include maternal: viral or bacterial infection, high-fat diet, diabetes, and/or 

obesity.  In subsequent experimental studies, these risk factors have been shown to play a causal 

role in changing the trajectory of neural, immune, and behavioral programming in ways that 

promote outcomes consistent with ASD and schizophrenia in non-human animals. 

Although these risk factors may appear unrelated, they all share some degree of maternal 

immune activation (MIA) (Gilmore & Jarskog, 1997; Sullivan, Nousen, & Chamlou, 2014), 

meaning the pro- and anti-inflammatory cytokine balance is disrupted.  Often, MIA is used to 

describe disruption that favors a proinflammatory state (Lumeng & Saltiel, 2011; Meyer, Feldon, 

& Yee, 2009), but it may also refer to the programming of an anti-inflammatory response.  The 

presence of MIA is not always sufficient to produce adverse fetal outcomes – intensity, timing, 

and duration of the MIA are also important (Gilmore & Jarskog, 1997; Meyer et al., 2006).  

Maternal immune activation that produces an abnormal immune response in offspring is 

especially pertinent to neurodevelopmental disorder research.  Specifically, greater baseline 

inflammation and sensitized proinflammatory immune response to proinflammatory stimuli 

following MIA.  This characteristic abnormal immune response in offspring following MIA has 

been associated with generally poorer cognitive performance (Crichton et al., 2011; Rajia, Chen, 

& Morris, 2010), ASD (Dodds et al., 2011; Krakowiak et al., 2012; Lyall, Munger, O’Reilly, 
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Santangelo, & Ascherio, 2013; Van Lieshout, Taylor, & Boyle, 2011), and schizophrenia 

(Knuesel et al., 2014; Yolken & Torrey, 1995).  Importantly, this abnormal immune response is 

not readily apparent at birth.  Instead, these effects of MIA are unmasked following some later 

insult or stress, which may account for the delay in symptom onset for some neurodevelopmental 

disorders (Meyer & Feldon, 2010; Bilbo & Tsang, 2010; Knuesel et al., 2014). 

To date, there has been limited success with interventions that attenuate the maternal 

proinflammatory response.  Cytokines, including proinflammatory cytokines, are necessary for 

normal fetal development (Bilbo & Schwarz, 2012; Boulanger, 2009; Deverman & Patterson, 

2009; Garay & McAllister, 2010; Stolp, 2013).  Attenuating the proinflammatory response 

during development can also produce adverse fetal outcomes (Meyer, Schwarz, & Müller, 2011).  

Meyer, Schwarz, et al. (2011) offer an interesting solution to this logistical issue.  They propose 

that the key to adverse developmental programming by maternal immune activation is the 

disruption of proinflammatory and anti-inflammatory cytokine balance and restoring this balance 

would prevent adverse effects.  This balance could be achieved by increasing anti-inflammatory 

activity instead of reducing proinflammatory activity.  Although levels of proinflammatory 

cytokines would still be elevated, the increased anti-inflammatory cytokine levels would 

theoretically result in a restoration of homeostatic cytokine balance possibly preventing adverse 

developmental programming. 

This type of intervention could prove useful for preventing or attenuating symptoms of 

neurodevelopmental disorders that are associated with increased maternal proinflammatory 

response in gestation.  The subsequent sections will review developmental programming in 

general, as well as, the specific role maternal immune activation plays in the developmental 

programming of neurological and behavioral outcomes in offspring.  This review will separately 
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focus on acute inflammation characteristic of a viral immune response and chronic inflammation 

characteristic of low-grade inflammation as a result of consuming a diet high in saturated fatty 

acids.  The subsequent sections are a review of epidemiological evidence linking these two 

patterns of maternal immune activation to incidence and symptoms (neurological and behavioral) 

of ASD and schizophrenia.  Finally, the review will address a potential intervention, 

immunomodulatory glycan, to prevent or attenuate these adverse neurological and behavioral 

outcomes. 

Inflammation and Developmental Programming 

Developmental programming (Barker, 1997) refers to a process by which an adverse fetal 

environment, especially during critical periods of fetal development, permanently change 

immune, neural, and/or endocrine function (Bilbo & Schwarz, 2009; Lucas, 1994).  These 

changes in turn promote diseased or disordered states in the offspring that can appear well into 

adulthood or even aging.  This hypothesis is often referred to as the fetal origins of adult disease 

(FOAD) hypothesis (Barker, 1995).  Given that not all critical periods of development occur in 

utero, this hypothesis can be expanded to include any critical period of development and is 

known as the Developmental Origins of Adult Disease (DOAD) hypothesis (Barker, 2003).  

Interestingly, the alterations programmed by the adverse environment promote fetal survival in 

the short-term (Barker, 1997), but they later produce adverse health outcomes when the postnatal 

environment does not match that in development (Gluckman, Hanson, & Spencer, 2005; 

Tamashiro & Moran, 2010).  For example, severe fetal undernutrition programs insulin 

resistance in offspring (Phillips & Barker, 1997).  Under starvation conditions insulin resistance 

is consistent with survival because it promotes adiposity, but when calories are abundant it 

promotes obesity, type II diabetes, and metabolic syndrome (Gluckman et al., 2005). 
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Although developmental programming was conceived as a way to understand the 

relationship between fetal undernutrition with offspring obesity and related health outcomes (De 

Boo & Harding, 2006; Hales & Barker, 2001; Phillips & Barker, 1997), this paradigm has also 

proven useful for understanding non-nutritional programming and its role in long-term offspring 

health and potential origins of some neurodevelopmental disorders including ASD and 

schizophrenia.  This approach has been particularly useful for studying these disorders because 

of their epidemiologically identified risk-factors (Buka et al., 2001; Dodds et al., 2011; Knuesel 

et al., 2014; Krakowiak et al., 2012; Lyall et al., 2013; Van Lieshout et al., 2011; Yolken & 

Torrey, 1995); hypothesized neuro-immune developmental programming (Gilmore & Jarskog, 

1997; King & Lord, 2011; Meyer, Feldon, & Dammann, 2011); and altered immune (Ashwood 

et al., 2011a, 2011b; Müller & Schwarz, 2010; Nawa & Takei, 2006), neural (Fatemi, 2008), and 

behavioral function (E. L. Hill, 2004; Lord, Cook, & Leventhal, 2000; Meyer, Feldon, et al., 

2011).  Of their overlapping impairments, a behaviorally rigid endophenotype and working 

memory deficits are particularly worthwhile for investigation: behavioral flexibility, the inverse 

of rigidity, is by definition necessary for learning to occur (Neuringer, 2002) and deficits in this 

behavioral domain are well established in both ASD and schizophrenia (King & Lord, 2011; 

Leekam et al. 2011; Zeina et al. 2014; Hill, 2004; Rodriguez & Thompson, 2015; Jazbek et al. 

2007; Pantelis et al. 2009).  The latter, working memory, is necessary for a stimulus(i) to 

occasion behavior in its absence (Goldman-Rakic, 1994; Lind, Enquist, & Ghirlanda, 2015; K. 

G. White & McKenzie, 1982), however, working memory deficits are well-established in 

schizophrenia (Dudchenko, Talpos, Young, & Baxter, 2013), but less consistently observed in 

ASD (Barendse et al., 2013; Chien et al., 2015; Sinzig, Morsch, Bruning, Schmidt, & Lehmkuhl, 

2008; Steele et al. 2007). 
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 The developing nervous system is especially vulnerable to proinflammatory 

developmental programming by MIA because neither the placenta nor the (as-yet developed) 

blood-brain barrier (BBB) confer absolute protection from the maternal immune system (Bilbo, 

2011; Bolton & Bilbo, 2014; Hsiao & Patterson, 2011; Urakubo, Jarskog, Lieberman, & 

Gilmore, 2001).  Barrier permeability to immune factors is important because cytokines are 

necessary for normal placental (Bilbo, 2011) and offspring development (Bilbo & Schwarz, 

2012; Boulanger, 2009; Deverman & Patterson, 2009; Garay & McAllister, 2010; Stolp, 2013).  

In addition to altering the course of neurodevelopment, there is also evidence that MIA can 

permanently program an abnormal immune response in offspring that matches the maternal 

immune response during development, which is referred to as immune priming (Bilbo & Tsang, 

2010; Knuesel et al., 2014).  Furthermore, the typically developed BBB remains permeable to 

immune factors (Degos et al., 2010), like cytokines which are involved in normal neural and 

behavioral processes (Deverman & Patterson, 2009; Vitkovic, Bockaert, & Jacque, 2000).  This 

permeability renders the nervous system especially vulnerable to disruption by immune priming.  

Any event that causes a deviation from the normal ebb and flow of cytokines during pregnancy 

can permanently alter the trajectory of offspring neural development and immune response to 

subsequent challenge (Albensi & Mattson, 2000; Hagberg, Gressens, & Mallard, 2012). 

 Immune priming and subsequent neural and behavioral disruption is especially relevant 

to individuals with genetic predisposition for neurodevelopmental disorders because these 

individuals may be especially sensitive to these changes (A. S. Brown, 2011; Ehninger et al., 

2010; Machon, Mednick, & Schulsinger, 1983; Meyer, Feldon, & Yee, 2009; Nawa & Takei, 

2006).  Patients with ASD and schizophrenia showed elevated basal serum levels of 

proinflammatory cytokines relative to age-matched controls even in the absence of immune 
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challenge suggesting a preferentially proinflammatory state in these individuals (Al-Hakeim, Al-

Rammahi, & Al-Dujaili, 2015; Ashwood et al., 2011a, 2011b; Choi et al., 2016; Malik et al., 

2011).  Meaning, proinflammatory pathways are in a constant state of activation, even in the 

absence of an immune challenge. 

 The way MIA interacts with genetic predisposition could also account for delayed 

symptom onset in schizophrenia (Ellman, Yolken, Buka, Torrey, & Cannon, 2009; Knuesel et 

al., 2014), while symptoms of ASD are established much earlier in life (Arndt, Stodgell, & 

Rodier, 2005; Lord, Risi, et al., 2000).  Meyer, Feldon, et al. (2011) have hypothesized that MIA 

programming of persistent postnatal inflammation in offspring will give rise to ASD.  In contrast 

MIA programming of latent immune priming that is unmasked during some later life stage, like 

adolescence, may account for delayed symptom onset in disorders like schizophrenia (Kinney et 

al., 2010; Meyer, 2013; Meyer, Feldon, et al., 2011; Meyer, Feldon, & Yee, 2009; Spear, 2000). 

 Given the evidence indicating MIA-induced cytokine imbalance is critical for 

neurodevelopmental disorders, interventions that attenuate this activation are appealing (Harry & 

Kraft, 2012).  Preventing or attenuating MIA could be useful for ameliorating or dampening 

adverse postnatal outcomes for offspring.  As appealing as these interventions may be, restoring 

cytokine balance during gestation has proven to be a delicate matter.  Immune factors play a 

critical role in normal offspring development (Bilbo & Schwarz, 2012; Harry & Kraft, 2012; 

Huh et al., 2000; Nakanishi et al., 2007; Schafer et al., 2012; Stellwagen & Malenka, 2006; 

Wang, Wu, Shieh, & Wen, 2002), but homeostatic levels of these factors, especially the 

cytokines, change throughout non-clinical pregnancy (Mor & Cardenas, 2010).  To further 

complicate the matter, insufficient levels of these immune factors can also produce abnormal and 

behavioral function in offspring (Meyer, Feldon, et al., 2011).  Therefore, appropriately 
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attenuating proinflammatory pathways, without overly reducing cytokine levels and thus 

impairing normal development, would be an exceedingly difficult intervention to implement.  To 

avoid such difficulties it may be possible to restore homeostasis not by decreasing 

proinflammatory activity, but by increasing anti-inflammatory activity (Meyer, Feldon, & Yee, 

2009). 

Modeling MIA 

 Establishing causal relationships between prenatal factors, like MIA, and offspring 

behavioral impairment requires the development and use of experimental, usually rodent, 

models. In general, the severity and pattern of MIA modeled in these experiments fall into one of 

two categories: moderate, acute activation during critical windows of fetal development or low-

grade, chronic activation.  There is a staggering number of stimuli that induce acute immune 

activation, but here only models of viral infection will only be reviewed as viral mimic 

interventions were used in the inflammation experiment. In the following section, review of 

chronic inflammation will focus on maternal obesity and diet, specifically one high in saturated 

fatty acids.  

 Viral Infection and Acute Inflammation: Neurobiological Consequences 

 There is extensive epidemiological evidence suggesting that maternal influenza infection 

is a particularly potent risk factor for both ASD and schizophrenia (Meyer, 2014; Patterson, 

2011, 2012).  Some experimental models have focused on directly infecting pregnant dams with 

virus (Meyer & Feldon, 2010; Meyer, Feldon, & Fatemi, 2009).  These models of infection allow 

for precise control of when the insult occurs in gestation.  Control over the timing of insult is 

imperative for determining periods of maximum offspring neural, immune, and behavioral 

vulnerability in offspring and whether these vulnerabilities are consistent with 
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neurodevelopmental disorders in humans (Meyer, Feldon, & Fatemi, 2009).  Despite its 

ecological validity, subsequent research in this area has made quite clear that influenza itself is 

not responsible for adverse fetal outcomes because the virus was not detected in fetal tissues 

(Fatemi et al., 2012; Shi, Tu, & Patterson, 2005).  Instead, influenza-induced MIA, not the virus 

itself, is the key factor linking infection and proinflammatory developmental programming in 

offspring (Buka et al., 2001; Gilmore & Jarskog, 1997; Patterson, 2009; B. D. Pearce, 2001). 

 Polyriboinosinic:polyribocytidylic (Poly I:C) acid is a synthetic analog of double-

stranded RNA and a potent toll-like receptor (TLR)-3 agonist (Alexopoulou, Holt, Medzhitov, & 

Flavell, 2001) that induces an immune response mimicking viral infection (Cunningham, 

Campion, Teeling, Felton, & Perry, 2007; Field, Campion, Warren, Murray, & Cunningham, 

2010; M.-E. Fortier et al., 2004).  TLR-3 receptors are located intracellularly, meaning Poly I:C 

is capable of not only crossing the lipid bilayer of cells, but also the placental barrier (Marshall-

Clarke et al., 2007; Koga & Mor, 2008).  In rodents, immediate, overt symptoms of Poly I:C 

include a febrile episode and sickness behaviors (M.-E. Fortier et al., 2004).  At the cellular 

level, Poly I:C activates the TLR-3 pathway, which causes the production of anti-viral 

interferons, proinflammatory cytokines via NF-B- and activator protien-1- dependent 

mechanisms, and cell death (Alexopoulou et al., 2001; Field et al., 2010; Reisinger et al., 2015). 

 Exposure to Poly I:C during pregnancy produces a characteristic immune profile quite 

similar to that observed in non-pregnant animals: shortly after Poly I:C injection of dams, there is 

an increase in the expression of mRNA for the cytokines interleukin (IL)-2, IL-5, IL-6, TNF-, 

IL-1, interferon (IFN)-, and cyclooxygenase (COX)-2 (Arsenault, St-Amour, Cisbani, 

Rousseau, & Cicchetti, 2014; Cunningham et al., 2007; M.-È. Fortier et al., 2004; Gilmore, 

Jarskog, & Vadlamudi, 2005; Meyer, Murray, et al., 2008; Meyer et al., 2006).  These Poly I:C 
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induced changes are rapid with peak immune response occurring within hours of injection (M.-È. 

Fortier et al., 2004).  Although the immune response is rapid, it is fleeting – TNF- levels 

normalize within 24h of injection (Gilmore et al., 2005). 

 Importantly, repeated postnatal dosing with Poly I:C that is separated by one to three 

weeks, does not quantitatively or qualitatively alter the immune response between exposures 

(Cunningham et al., 2007).  This fleeting immune response is advantageous because the precise 

control over the timing of insult and the lack of blunted response to repeated Poly I:C 

administration allows for repeated testing within the same animal.  That being said, 

developmental exposure to Poly I:C has been shown to program an abnormal immune response 

in offspring, specifically one that favors a proinflammatory state (Garay, Hsiao, Patterson, & 

McAllister, 2013; Giulivi, Napoli, Schwartzer, Careaga, & Ashwood, 2013; Han, Li, Meng, 

Shao, & Wang, 2011; Kranjac et al., 2012; Meyer, Feldon, Schedlowski, & Yee, 2005; Meyer, 

Nyffeler, Schwendener, et al., 2008; Rose et al., 2017). 

Together, these findings highlight key methodological advantages of inducing MIA with 

Poly I:C instead of direct infection with a live virus. Using viral infection can produce 

inconsistency in the degree and duration of MIA, especially when comparing across infectious 

agents (Boksa, 2010) whereas with Poly I:C the dosing is consistent, the inflammation is 

constant, and the degree of inflammation can be determined by the dose, giving the investigator 

more control and reducing variability.  Findings from Poly I:C can be generalized to any virus 

that produces double-stranded RNA during replication. Furthermore, influenza models do not 

allow for the control of maternal antibodies and subsequent offspring autoimmunity (Müller & 

Schwarz, 2010; Wright & Murray, 1993), while Poly I:C avoids a blunted immune response 

following repeated administrations.  This is a critical advantage because an abnormally 
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heightened immune response in MIA is a major component of hypotheses describing the etiology 

of disorders thought to involve immune priming (Meyer, Feldon, et al., 2011).  Testing these 

hypotheses inherently requires exposing offspring to the proinflammatory agent multiple times. 

Viral Infection and Acute Inflammation: Behavioral Consequences 

In addition to these methodological advantages, deficits observed in offspring prenatally 

exposed to Poly I:C recapitulate many deficits observed in influenza models.  Some important 

deficits, because of their relevance to behavioral flexibility, include impaired intradimensional 

shifting (IDS) and extradimensional shifting (EDS) (Canetta et al., 2016; Choi et al., 2016; Han 

et al., 2011; Malkova, Yu, Hsiao, Moore, & Patterson, 2012; Meyer et al., 2005, 2006; Rose et 

al., 2017; Wallace, Marston, McQuade, & Gartside, 2014; Z. Zhang & van Praag, 2015) and 

sensorimotor gating (Meyer, Nyffeler, Yee, Knuesel, & Feldon, 2008).  Both of these behavioral 

impairments are consistent with neural abnormalities also observed in Poly I:C offspring 

including: frontal cortex (Garay et al., 2013; Gilmore, Fredrik Jarskog, Vadlamudi, & Lauder, 

2004; Nyffeler, Meyer, Yee, Feldon, & Knuesel, 2006; Y. Zhang, Cazakoff, Thai, & Howland, 

2012) and dopaminergic dysfunction (Luchicchi et al., 2016; Meyer et al., 2005; Meyer, 

Nyffeler, Yee, et al., 2008; Ozawa et al., 2006). 

Poly I:C offspring also showed impaired behavioral flexibility, but they did not show 

impaired acquisition of the spatial discrimination, which is interesting because mesolimbic 

region dysfunction has been noted in Poly I:C offspring (Nyffeler et al., 2006; Ozawa et al., 

2006; Zuckerman, Rehavi, Nachman, & Weiner, 2003).  Interestingly, these findings are 

consistent with behavioral outcomes in ASD (Yerys et al., 2009) and schizophrenia (Pantelis et 

al., 2009).  Furthermore, Poly I:C offspring showed impaired spatial matching to position, which 
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is a measure of working memory (Meyer & Feldon, 2009; Richetto, Calabrese, Meyer, & Riva, 

2013). 

Although infecting animals with influenza recapitulates changes observed in 

epidemiological studies of human offspring, influenza itself is not responsible for these 

outcomes.  Viral mimic models, like Poly I:C, have been critical for identifying the importance 

of MIA the mechanism that unifies may seemingly disparate infection-based risk factors.  More 

generally, these models have been integral in understanding developmental programming of 

latent adverse offspring outcomes, like immune priming.  This understanding may be critical for 

identifying the etiology of specific neurodevelopmental disorders and disordered behavior more 

generally as well as a time period during and mechanism by which to intervene (Meyer, 

Schwarz, et al., 2011). 

 Obesity and Chronic Inflammation: Neurobiological Consequences. 

 Obesity is a major risk factor for a variety of adverse health outcomes including 

metabolic syndrome (Cottrell & Ozanne, 2008), type II diabetes (Armitage, Taylor, & Poston, 

2005), high blood pressure and cardiovascular disease (Schulz, 2010), and cognitive impairments 

(Hargrave, Jones, & Davidson, 2016).  Adipose is an endocrine organ that secretes 

proinflammatory factors – leptin, C-reactive protein, tumor necrosis factor (TNF)-, IL-1, and 

IL-6 – and anti-inflammatory factors: – adiponectin, resistin, and IL-10 (Das, 2001; Hariri & 

Thibault, 2010; Parimisetty et al., 2016).  Under non-clinical circumstances, levels of 

proinflammatory and anti-inflammatory factors secreted from adipose in the periphery are 

balanced.  As excess adipose accumulates this peripheral balance tips in favor of a 

proinflammatory state (Parimisetty et al., 2016).  Indeed, humans with obesity show elevated 

peripheral levels of proinflammatory biomarkers and decreased levels of anti-inflammatory 
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markers compared to non-obese individuals (Spyridaki, Avgoustinaki, & Margioris, 2016).  Due 

to this peripheral inflammation, obesity has been described as a state of low-grade, chronic 

inflammation (Das, 2001).  Inflammation in peripheral tissues is important because it promotes 

the development of metabolic disorders (Armitage et al., 2005; Crichton et al., 2011; Everard & 

Cani, 2013; Gniuli et al., 2008; Whitaker, Totoki, & Reyes, 2012), increases BBB permeability 

thus promoting neuroinflammation (Buckman et al., 2014; Heneka & Nicotera, 2016; Pepping, 

Freeman, Gupta, Keller, & Bruce-Keller, 2013; Stolp et al., 2011), and is associated with 

cognitive dysfunction (Marqués-Iturria et al., 2013; Miller & Spencer, 2014; Pepping et al., 

2013) including impaired EDS (Lasselin et al., 2016) and delayed recall (Coppin, Nolan-Poupart, 

Jones-Gotman, & Small, 2014; Cournot et al., 2006; Nguyen, Killcross, & Jenkins, 2014). 

  Maternal obesity and corresponding low-grade, chronic inflammation not only adversely 

affects maternal health, but can also result in adverse developmental programming of offspring 

(Alfaradhi & Ozanne, 2011; Bilbo & Tsang, 2010; Cottrell & Ozanne, 2008; Hargrave et al., 

2016; Nivoit et al., 2009; Vucetic, Kimmel, Totoki, Hollenbeck, & Reyes, 2010).  In brief, 

maternal obesity has been shown to increase the risk of offspring obesity and associated adverse 

health outcomes (Elahi et al., 2009; Samuelsson et al., 2008; Yu et al., 2011), inflammation 

(Kang, Kurti, Fair, & Fryer, 2014), and cognitive impairment (Davidson et al., 2013; Gillette-

Guyonnet et al., 2007; Y. Lee et al., 2010). 

 Increased risk of obesity is important because of its relation to metabolic and 

cardiovascular disorders (Armitage et al., 2005; Cottrell & Ozanne, 2008; Schulz, 2010), which 

are indirectly albeit importantly relevant to neural and behavioral outcomes.  Metabolic 

alterations can affect motivating operations of food-reinforcement (Grissom et al., 2014; X. 

Zhang et al., 2008), alter feeding (Niswender & Schwartz, 2003; Sample, Martin, Jones, 
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Hargrave, & Davidson, 2015; Sun et al., 2012), increase the palatability of obesogenic foods 

(DelParigi, Chen, Salbe, Reiman, & Tataranni, 2005; Figlewicz & Benoit, 2009), and contribute 

to postnatal low-grade, chronic inflammation in offspring (Bilbo & Tsang, 2010).  Together, 

low-grade chronic MIA-induced programming and promotion of continued inflammatory insult 

are important for understanding relationships between maternal obesity, general cognitive delay 

(Hinkle et al., 2012), and increased risk of some neurodevelopmental disorders (Dodds et al., 

2011; Khandaker, Dibben, & Jones, 2012; Krakowiak et al., 2012; Van Lieshout et al., 2011) in 

offspring. 

 Diet-induced obesity has become the preferred manner by which to model maternal 

obesity and offspring outcomes for four important reasons.  First, there is little evidence for a 

genetic contribution to the etiology of obesity in humans (J. O. Hill & Peters, 1998).  Instead, the 

combination of diet, sedentary lifestyle, and developmental programming better accounts for the 

increase in obesity for all ages in countries like the United States (Dyer & Rosenfeld, 2011; 

Ogden, Carroll, Fryar, & Flegal, 2015).  Second, dietary models capture the slow onset of 

obesity and associated pathologies and behavioral perturbation better than genetically modified 

rodents (Everard et al., 2011; Fulton et al., 2006; Stranahan, Hao, Dey, Yu, & Baban, 2016; 

Winocur et al., 2005).  That said, the importance of genetically modified rodents should not be 

discounted because they remain useful for understanding the role specific factors play in 

developmental programming, organ system dysfunction, and behavioral perturbation.  Third, 

diet-induced obesity models allow for the comparison of diets that differ in percent kcal 

macronutrient profiles on physiological and behavioral outcomes.  Fourth, dietary exposure 

affects breast milk quality, meaning insult may continue through weaning (Franco et al., 2012; 

Saste et al., 1998; Sun et al., 2012; C. L. White, Purpera, & Morrison, 2009). 
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 For dietary models, dams are typically exposed to an obesogenic diet for several days to 

weeks prior to mating with an (often) unexposed sire.  Starting the dietary exposure prior to 

mating is important because it allows sufficient time for metabolic and inflammatory changes to 

occur.  Dietary exposure can continue through gestation and lactation or cross-fostering studies 

can be used to identify critical periods of development (Williams, Seki, Vuguin, & Charron, 

2014).  A high-fat diet is often used as an obesogenic diet in animal models because it resembles 

a diet common in countries with high rates of obesity.  The percent kcal macronutrient profile of 

a HFD consists of 20% protein, 35-20% carbohydrate, and 45-60% fat (Guillemot-Legris & 

Muccioli, 2017).  This is in contrast to a standard rodent chow diet with a percent kcal 

macronutrient profile of 15% protein, 75% carbohydrate, and 10% fat (Guillemot-Legris & 

Muccioli, 2017).  That said, the specific fatty acid profile will determine whether a diet high in 

fat is beneficial or adverse – all other macronutrients being equal (Winocur & Greenwood, 

1999).  

 In general, diets high in monounsaturated fatty acids, like olive oil or avocado, or 

polyunsaturated fatty acids with a high -3:-6 ratio, like salmon, are not only protective against 

obesity (Cintra et al., 2012) and adverse offspring outcomes (Camer et al., 2015), but have been 

shown to attenuate obesity- or diet-induced inflammation (Cintra et al., 2012; Song, 2004; Song, 

Leonard, & Horrobin, 2004).  Contrarily, diets high in saturated-fatty acids, like lard; diets high 

in trans-unsaturated fatty acids, like palm oil; or diets with a low -3:-6 ratio generally produce 

adverse health outcomes (Armitage et al., 2005; Buckley et al., 2005; Greenwood & Winocur, 

1996; Lyall et al., 2013).  Specifically, diets high in saturated or trans-unsaturated fatty acids 

increased adiposity (Akagiri et al., 2008), induced metabolic syndrome (Buckley et al., 2005; 

Srinivasan, Katewa, Palaniyappan, Pandya, & Patel, 2006), increased peripheral (Cani et al., 
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2007; Lumeng & Saltiel, 2011) and central inflammation (Cintra et al., 2012; Elahy et al., 2015; 

Manousopoulou et al., 2015; Nerurkar et al., 2011) which primed the immune system to 

subsequent insult (Bilbo & Tsang, 2010; C. L. White, Pistell, et al., 2009), and impaired learning 

and memory (Kanoski, Meisel, Mullins, & Davidson, 2007; Lu et al., 2011).  These diets may 

also be involved in the etiology of neurodevelopmental disorders – the offspring of women who 

consumed diets very low in -3 had a 34% increased risk of ASD (Lyall et al., 2013). 

 Extended exposure to a diet rich in saturated-fatty acids not only promotes the 

development of obesity and metabolic dysfunction, but also changes to the inflammatory profile 

can occur mere days after dietary exposure weeks before the onset of obesity or metabolic 

dysfunction (Münzberg, Björnholm, Bates, & Myers, 2005; Thaler et al., 2011; Williams et al., 

2014).  This is important because it suggests a proinflammatory state is not only important for 

adverse health progression, but it also provides a rapid and therefore appealing way to induce 

chronic, low-grade inflammation relevant to developmental programming in offspring (Ashino et 

al., 2012; Volpato et al., 2012).  Maternal consumption of a saturated-fatty acid rich diet 

produced low-grade, chronic maternal immune activation and offspring showed evidence of 

immune priming: increased basal microglial activation (Kang et al., 2014), increased microglial 

response following immune challenge in adult offspring (Bilbo & Tsang, 2010; C. L. White, 

Pistell, et al., 2009), and elevated basal  levels of proinflammatory cytokines like IL-1 and 

TNF- (Ashino et al., 2012; Kang et al., 2014; C. L. White, Pistell, et al., 2009). 

 An important limitation of dietary models is the difficulty separating developmental 

effects of diet from obesity itself because extended feeding of an obesogenic diet, like one high 

in saturated-fatty acids, will eventually result in obesity (Hariri & Thibault, 2010).  Few studies 

have separated out these two effects by exposing animals to isocaloric, or near isocaloric 
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standard laboratory chow diet or a saturated-fatty acid rich diet (Franco et al., 2012; Hao, Dey, 

Yu, & Stranahan, 2016; Raygada, Cho, & Hilakivi-Clarke, 1998).  When compared, a saturated-

fatty acid rich diet clearly induces greater inflammation than standard chow (Hao et al., 2016; C. 

L. White, Pistell, et al., 2009), but there is less consistent evidence for developmental 

programming of offspring in the absence of obesity (C. L. White, Purpera, et al., 2009). 

 Obesity and Chronic Inflammation: Behavioral Consequences.  Despite this 

caveat, developmental programming by maternal consumption of a diet rich in saturated-fatty 

acids often produces deficits that are in-line with obesity models.  Some important deficits 

because of their relevance to behavioral flexibility include altered motivational operations of 

food-reinforced behavior (Naef et al., 2008), impaired acquisition of spatial discriminations 

(Bilbo & Tsang, 2010; Tozuka et al., 2010), and possibly deficits in reversal learning (Wu et al., 

2013; Menting et al. 2019), and working memory (Cordner & Tamashiro, 2015).  These findings 

are consistent with evidence from human obesity studies (Lasselin et al., 2016). 

 Offspring of dams consuming a saturated-fatty acid rich diet in gestation show increased 

preference for obesogenic foods high in fat, sugar, and salt (Ong & Muhlhausler, 2011; Sullivan, 

Smith, & Grove, 2011; Vucetic & Reyes, 2010).  Additionally, these offspring also showed 

abnormal dopamine, opioid, and GABA function in the nucleus accumbens (Grissom et al., 

2014; Naef et al., 2011; Vucetic et al., 2010), ventral tegmental area (Alfaradhi & Ozanne, 2011; 

Naef et al., 2008), and prefrontal cortex (Vucetic & Reyes, 2010).  Each of these 

neurotransmitter systems and brain regions play important roles in food-based reinforcement, 

liking, wanting, and learning (Berridge, 1996; Kelley, 2004; Vucetic & Reyes, 2010; Woolley, 

Lee, & Fields, 2006).  Altered food preference could be one mechanism by which maternal diet 

promotes adverse offspring outcomes in humans because the preferred foods are those that 
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promote obesity and inflammation.  From a procedural perspective, these changes are important 

because sucrose is often used as a reinforcer in experiments. 

 Despite the evidence of improved reinforcer efficacy of palatable food, there is clear 

evidence for impaired acquisition of spatial discriminations in offspring gestationally exposed to 

a diet rich in saturated-fatty acids (Bilbo & Tsang, 2010; Lu et al., 2011; Molteni, Barnard, Ying, 

Roberts, & Gómez-Pinilla, 2002; Page, Jones, & Anday, 2014; Pini, do Vales, Braga Costa, & 

Almeida, 2016; Robb et al., 2017; Sullivan et al., 2014; Tozuka et al., 2010).  Impaired spatial 

discrimination learning is consistent with dysfunction in the aforementioned brain regions – in 

particular striatal dysfunction has been shown to be related to impaired spatial discrimination 

(Bussey, Muir, Everitt, & Robbins, 1996; Owen et al., 1992).  In addition to spatial learning, 

impaired acquisition of fixed-ratio schedules have also been observed in offspring gestationally 

exposed to a diet rich in saturated-fatty acids (Rodriguez et al., 2012). 

 Abnormal neurodevelopment of and increased neuroinflammation in these cortical 

regions are likely to have important implications for executive function including 

intradimensional and extradimensional set-shifting in behavioral flexibility.  Despite its 

importance, few studies have assessed this aspect of behavior following gestational exposure to a 

saturated-fatty acid rich diet.  In one study, male offspring gestationally exposed to a saturated-

fatty acid rich diet performed more perseverative errors following an intradimensional shift than 

standard laboratory chow offspring (Wu et al., 2013).  In another study, females gestationally 

exposed to a diet rich in saturated fatty acids showed impaired working memory on a 5-choice 

serial reaction timed task, specifically these mice required longer stimulus durations to perform 

the correct response (Mckee, Grissom, Herdt, & Reyes, 2017). 
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 Importantly, there is a wealth of evidence demonstrating impaired spatial learning and 

memory in offspring gestationally exposed to saturated-fatty acid rich diet (Lu et al., 2011; Page 

et al., 2014; Robb et al., 2017; C. L. White, Pistell, et al., 2009; Winocur & Greenwood, 2005).  

Within the hippocampus of these offspring, altered apoptosis, differentiation, neurogenesis, and 

synaptic plasticity (Robb et al., 2017) has been observed.  The dentate gyrus seems especially 

vulnerable to this perturbation (Niculescu & Lupu, 2009; Page et al., 2014; Tozuka et al., 2010).  

Interestingly, insulin resistance, which is an important aspect of metabolic syndrome, may also 

be relevant to impaired memory in these studies – insulin’s normal function in the hippocampus 

is important for spatial memory (McNay et al., 2010).  This abnormal proliferation and 

apoptosis, is not limited to the hippocampus but has also been observed in the cortex 

(Manousopoulou et al., 2015; Niculescu & Lupu, 2009). 

 Together, deficits in spatial and schedule learning may reflect a global dysfunction in 

reinforcement, perhaps as a consequence of the previously outlined neurotransmitter systems.  

To date, there have been no assessments of extradimensional set-shifting following 

developmental programming by maternal diet rich in saturated-fatty acids.  Such a study would 

complement the literature assessing the role maternal immune activation plays in offspring 

developmental programming of cognitive dysfunction and neurodevelopmental disorder risk. 

Measuring Behavioral Flexibility 

Behavioral flexibility is a fundamental component of behavior change (Neuringer, 2004; 

Skinner, 1953, 1981) and describes the ability to modify behavior in response to changing 

environmental contingencies, an important aspect of executive function (V. J. Brown & 

Bowman, 2002).  For humans, this aspect of executive function is often assessed with the intra- 

extra-dimensional set shift subtest of the Cambridge Neuropsychological Test Automated 
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Battery (CANTAB) (Owen, Roberts, Polkey, Sahakian, & Robbins, 1991; Robbins, 1996; 

Sahakian & Owen, 1992) or the Wisconsin Card Sorting Test (WCST). Performance on the 

intradimensional shift (IDS) can be characteristic of specific neural dysfunction (Ragozzino, 

2007) and neuropsychiatic disorders (Pantelis et al., 1999; Russo et al., 2007). 

The focus of this review will be on the CANTAB because it is comprehensive and 

relevant to the animal literature. For the CANTAB task, participants must first acquire an 

original discrimination (OD) along some perceptual dimension – for example choosing purple, 

not blue, stimuli would result in reinforcement. Inability or difficulty acquiring the OD because 

of excessive errors has been observed in patients with striatal dysfunction due to Parkinson’s 

disease (Owen et al., 1992) and animals with posterior cingulate lesions (Bussey et al., 1996).  

Patients with schizophrenia predominated by negative and cognitive symptoms required more 

trials to master the OD than patients with frontal lobe damage or matched controls (Pantelis et 

al., 1999).  This delay in OD mastery was not due to increased errors, but to increased omissions 

or failure to respond during the trial.  Excessive omissions could be due to anhedonia, which is 

consistent with this subtype of schizophrenia (Berridge, 1996). 

Following acquisition of the OD, an intra-dimensional shift (IDS) occurs.  That is, the 

contingency reverses along the same perceptual dimension as the OD (Owen et al., 1991).  Now, 

choosing blue, not purple, stimuli produces reinforcement.  As with the OD, inability or 

difficulty acquiring the IDS is indicative of specific neurological function and certain 

neuropsychiatric disorders.  Often, impaired acquisition of the IDS is due to perseverative 

responding in which the increase in errors following the reversal persists for a longer period than 

in control/comparison groups (Dalley, Cardinal, & Robbins, 2004).  Dysfunction and serotonin 

depletion in the orbitalfrontal cortex (Bissonette & Powell, 2012; V. J. Brown & Bowman, 2002; 
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Colacicco, Welzl, Lipp, & Würbel, 2002; Dias, Robbins, & Roberts, 1996a, 1996b; Kesner & 

Churchwell, 2011; McAlonan & Brown, 2003; Ragozzino, 2007; Salazar, White, Lacroix, 

Feldon, & White, 2004) and dopaminergic dysfunction in the striatum (Clarke, Hill, Robbins, & 

Roberts, 2011; Izquierdo, Brigman, Radke, Rudebeck, & Holmes, 2017).  In humans, patients 

with schizophrenia made more errors following reversal (Pantelis et al., 1999) and required more 

trials to acquire the IDS (Pantelis et al., 2009) than control participants or patients with prefrontal 

lobe lesions. 

Following the intra-dimensional shift on the IDS, an extradimensional shift (EDS) 

occurs.  The EDS is also referred to as an attentional set-shift because it involves the transition of 

the discrimination from one stimulus dimension (e.g., color) to another (e.g., shape) (Owen et al., 

1991).  For rodent EDS, the task often involves a shift from one perceptual dimension (e.g., 

spatial location of the lever within the chamber) to another (e.g., visual location of a light) 

(Colacicco et al., 2002).  Impaired acquisition of the EDS, which is often due to perseverative 

responding, is indicative of specific neurological dysfunction.  Lesion studies have shown that 

inactivation of medial prefrontal cortex (Birrell & Brown, 2000; Bissonette & Powell, 2012; 

Bissonette & Roesch, 2017; Dias et al., 1996b, 1996a; Dias, Robbins, & Roberts, 1997; Owen et 

al., 1991) and anterior cingulate cortex (Bissonette, Powell, & Roesch, 2013; Bissonette & 

Roesch, 2017) are important for attentional set-shifting.  Poor acquisition of EDS has also been 

observed in patients with frontal lobe damage (Pantelis et al., 1999), high-functioning autism 

(Brady et al., 2013) schizophrenia predominated by negative symptoms (Pantelis et al., 1999, 

2009) that becomes further impaired with disorder progression (Leeson et al., 2009; Pantelis et 

al., 2009) and obesity (Cserjési, Molnár, Luminet, & Lénárd, 2007) especially when 

accompanied by low-grade inflammation (Lasselin et al., 2016). 
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Measuring Working Memory 

Working memory allows stimuli to briefly, on the order of seconds to minutes, occasion 

behavior in the absence of the controlling stimulus (Barendse et al., 2013; Goldman-Rakic, 1994, 

1995).  This type of memory is assessed using procedures that require delayed responding.  

Common procedures include delayed matching to sample (DMTS), which is a component of the 

CANTAB (Castner, Goldman-Rakic, & Williams, 2004) or the spatially-based rodent analogue 

of DMTS termed delayed matching to position (DMTP) (Sahakian & Owen, 1992).  Like, 

behavioral flexibility, working memory impairment is indicative of specific neural, especially 

frontal lobe, dysfunction (Barendse et al., 2013; Castner et al., 2004; Chudasama & Muir, 1997; 

Correll & Scoville, 1965; Sloan, Döbrössy, & Dunnett, 2006), neuropsychiatric disorders (Chien 

et al., 2015; Park & Holzman, 1992; Steele, Minshew, Luna, & Sweeney, 2007), diet 

(Greenwood & Winocur, 1990, 1996; McNeilly, Williamson, Sutherland, Balfour, & Stewart, 

2011; Winocur & Greenwood, 1999), and obesity (Winocur et al., 2005).  There is also some 

evidence for developmental programming of adult spatial working memory by MIA (Meyer et 

al., 2005; Meyer, Nyffeler, Schwendener, et al., 2008; Samuelsson, Jennische, Hansson, & 

Holmang, 2005). 

 Both DMTS and DMTP consist of three phases: sample, delay, and choice. In the sample 

phase, a stimulus is presented and the animal must attend to it (Baddeley & Hitch, 1974; Cowan, 

1995; Kastner & Ungerleider, 2000; Petersen & Posner, 2012; Eriksson, Vogel, Lasner, 2015).  

Often, the animal is required to respond to the sample stimulus as an indication of perception.  

Impaired performance on this phase of the task can be indicative of sensory, motor, or attentional 

deficits (Paule et al., 1998; Srimal & Curtis, 2008).  Following its presentation, the sample is 

removed the delay period will begin.  During the delay, which can last several centiseconds to 
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minutes, the animal cannot perform the target response or, depending on the apparatus used, 

responding is ineffectual.  During the delay, hippocampal function is important for recall of the 

sample stimulus (Dudchenko et al., 2013).  Following the delay, at least two response 

alternatives become available or active and the animal must respond based on the sample 

stimulus.  Commonly this entails choosing the alternative that matches the sample.  Prefrontal 

cortex function is important for performance in the choice phase (Dudchenko et al., 2013). 

Immunomodulatory Intervention and Rescue 

 Given the importance of immune priming in unmasking developmental programming by 

MIA, interventions that attenuate abnormal immune response in postnatal offspring should afford 

at least some protection against disordered behavior.  In addition to providing greater 

improvements in behavioral inflexibility than traditional pharmacological interventions, drugs 

with anti-inflammatory effects show some preventative value (Pointkewitz, Arad, & Weiner, 

2012; Pointkewitz, Assaf, & Weiner, 2009; Amminger, Schäfer, Schlögelhofer, Klier, & 

McGorry, 2015; Zheng et al., 2017).  Although most antipsychotic drugs do not produce anti-

inflammatory effects, some do (Cazzullo et al., 2002; Maes et al., 1996; Meyer, Schwarz, et al., 

2011; Monji et al., 2013; Müller, Empl, Riedel, Schwarz, & Ackenheil, 1997; Sirota, Meiman, 

Herschko, & Bessler, 2005; Song, Lin, Kenis, Bosmans, & Maes, 2000; Sugino, Futamura, 

Mitsumoto, Maeda, & Marunaka, 2009).  When these anti-inflammatory antipsychotic drugs are 

administered to experimental models prior to symptom onset, they successfully prevent brain and 

behavioral dysfunction (Piontkewitz et al., 2012; Piontkewitz et al., 2009).  Relatedly,-3 reduce 

the rate of progression to first-episode psychotic disorders (Amminger et al., 2015; Zheng et al., 

2017).  
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 Lacto-N-fucopentaose III (LNFPIII) is a Lewisx trisaccharide containing 

immunomodulatory glycan secreted by helminth parasites (Bhargava, Li, Stanya, Jacobi, & Dai, 

2012; Tundup, Srivastava, Norberg, Watford, & Harn, 2015).  LNFPIII potentially activates anti-

inflammatory immune activity in the host (Atochina & Harn, 2005; Harn, McDonald, Atochina, 

& Da’Dara, 2009; E. J. Pearce, 2005; van Riet, Hartgers, & Yazdanbakhsh, 2007; Velupillai, 

Secor, Hoerauf, & Harn, 1997).  Specifically, TLR expression is attenuated (Hartgers et al., 

2008; Maizels, 2016; Thomas et al., 2003) and Th-2, or anti-inflammatory, response is sensitized 

(Harn et al., 2009; Mpairwe, Tweyongyere, & Elliott, 2014).  

 Gestational LNFPIII exposure has been shown to program a dampened proinflammatory 

immune response (Elliott et al., 2007; Labeaud, Malhotra, King, King, & King, 2009; Maizels, 

2016; Smits & Akdis, 2014), a sensitized anti-inflammatory immune response during postnatal 

immune challenge (Pit, Polderman, Schulz-Key, & Soboslay, 2000; Thomas & Harn, 2004), and 

reduced immunity following childhood vaccination (Labeaud et al., 2009).  Offspring of 

maternal helminth infection also show reduced development of disorders characterized by 

increased proinflammatory immune activity: respiratory allergy (Smits & Akdis, 2014), infant 

eczema (Elliott et al., 2007), and disordered autoimmune function (Maizels, 2016).  

Developmental programming of this nature could prove beneficial for attenuating the adverse 

effects of proinflammatory MIA that is associated with increased risk of ASD, schizophrenia, 

and obesity in offspring.  To date, no studies have assessed whether these immune alterations are 

sufficient to balance proinflammatory activation and attenuate offspring behavioral or 

neurological impairments observed following maternal Poly I:C or a maternal diet rich in 

saturated fatty acids. 

Conclusion 
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Behavioral flexibility is an important aspect of behavior because its inverse, rigidity, is 

incompatible with learning.  Furthermore, working memory is also an important aspect of 

behavior that is necessary for learning and performing complex behaviors (Baddeley, 1992).  

Dysfunction in these behavioral domains are also important aspects of some neurodevelopmental 

disorders including ASD (Russo et al., 2007) and schizophrenia (Goldman-Rakic, 1994; J. Lee & 

Park, 2005; Leeson et al., 2009; Pantelis et al., 1999).  More severe behavioral inflexibility is 

associated with poorer clinical outcomes (Meyer, Schwarz, et al., 2011; Troyb et al., 2016).  The 

etiology of these disorders and behavioral inflexibility more generally remains unknown, but 

converging evidence from epidemiological studies and experiments using animal models indicate 

an important role for the maternal immune system in these offspring outcomes.  Importantly the 

specific event that induces maternal immune activation is less important for fetal outcomes than 

intensity, timing, and duration of the immune activation (Gilmore & Jarskog, 1997; Meyer et al., 

2006).  

Whether maternal immune activation is acute or chronic, it readily produces adverse 

developmental programming in offspring.  Immune priming, is of particular interest because 

greater baseline inflammation and sensitized immune response to proinflammatory stimuli have 

been associated with generally poorer cognitive performance (Crichton et al., 2011; Rajia et al., 

2010), ASD (Dodds et al., 2011; Krakowiak et al., 2012; Lyall et al., 2013; Van Lieshout et al., 

2011), and schizophrenia (Knuesel et al., 2014; Yolken & Torrey, 1995).  The delayed effect of 

MIA immune priming can account for the delayed onset of symptoms for disorders like ASD and 

schizophrenia. 

Immune priming also identifies a mechanism for intervention – attenuating inflammation 

in offspring. There is compelling evidence that preventative, rather than corrective, interventions 
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produce better offspring outcomes (Amminger et al., 2015; Piontkewitz et al., 2012, 2009).  

Given this information, it seems logical to intervene by reducing proinflammatory cytokine 

levels concurrent with the proinflammatory insult.  In experimental models, implementing such 

immunomodulatory interventions during gestation have proven tricky.  Over-attenuation of 

proinflammatory cytokines produces adverse offspring outcomes in its own right (Meyer, 

Schwarz, et al., 2011) because these cytokines are necessary for normal development (Bilbo & 

Schwarz, 2012; Boulanger, 2009; Deverman & Patterson, 2009; Garay & McAllister, 2010; 

Stolp, 2013). 

Interventions that restore homeostatic proinflammatory and anti-inflammatory cytokine 

balance without reducing levels of proinflammatory cytokines are appealing (Meyer, Schwarz, et 

al., 2011).  In this regard, gestational administration of LNFPIII is appealing because it increases 

anti-inflammatory cytokine activity, but does not directly reduce levels of proinflammatory 

cytokines.  As such, levels of proinflammatory cytokines would still be elevated, the increased 

anti-inflammatory cytokine levels would theoretically result in a restoration of homeostatic 

cytokine balance preventing adverse developmental programming in offspring. 

In the current study, offspring will be exposed to either acute or chronic maternal 

immune activation with the viral mimic poly I:C or a diet high in saturated fatty acids, 

respectively.  Adult offspring will then be assessed on a spatial discrimination reversal task and 

visual discrimination reversal task to assess two unique aspects of behavioral flexibility: reversal 

learning and extradimensional set-shifting.  Working memory of adult offspring will then be 

assessed with a delayed matching to position task.  Within each exposure group (acute or 

chronic) some dams will also be exposed to immunomodulatory glycan.  Offspring of these dams 

will also be assessed on the same behavioral measures to determine whether concurrent 
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activation of antiinflammatory cytokines (glycan) balances or dampens the effect of elevated 

proinflammatory cytokines (maternal high-fat diet or poly I:C) on behavioral outcomes. 



 35 

 

Poly I:C Induced Maternal Inflammation: Sex-Dependent Developmental Programming 

and Attenuation by Glycan in Adult Offspring 

The developing nervous system is especially vulnerable to disruption.  Adverse events 

during this critical period of development can have lasting effects on offspring neural, immune, 

and behavioral function, which is referred to as developmental programming (Barker, 1997; 

Calkins & Devaskar, 2011; Gluckman, Hanson, & Spencer, 2005).  Proinflammatory maternal 

immune activation (MIA) is an especially potent disruptor because placental and blood-brain 

barriers are permeable to these immune factors (Bilbo, 2011; Bolton & Bilbo, 2014; Hsiao & 

Patterson, 2011; Urakubo, Jarskog, Lieberman, & Gilmore, 2001).  Indeed, these immune factors 

are necessary for normal offspring development (Bilbo, 2011; Bilbo & Schwarz, 2012; 

Boulanger, 2009; Deverman & Patterson, 2009; Garay & McAllister, 2010; Stolp, 2013). 

Deviations from homeostatic levels of immune factors can result in developmental 

programming of offspring and promote adverse health outcomes including some 

neurodevelopmental disorders (Ghassabian et al. 2018; Hui et al. 2018).  In humans, MIA as a 

result of viral infection, especially influenza, has been identified as an important risk factor for 

the development of autism spectrum disorders (ASD) and schizophrenia in offspring (Meyer, 

2014; Patterson, 2011, 2012; Patel et al., 2018).  Experimental models involving the direct 

infection of pregnant rodents with influenza recapitulated epidemiological findings with humans, 

specifically that infection promoted ASD and schizophrenia-like symptoms in offspring (Meyer 

& Feldon, 2010; Meyer, Feldon, & Fatemi, 2009).  Importantly, the influenza virus was not 

detectable in fetal tissues, meaning the virus itself was not responsible for adverse offspring 

developmental programming (Fatemi et al., 2012; Shi, Tu, & Patterson, 2005). 

Findings from subsequent studies infecting pregnant dams with the viral mimic 
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polyinosinic:polysytidylic (Poly I:C) acid, a synthetic analog of double-stranded RNA and a 

potent TLR-3 receptor agonist (Alexopoulou, Holt, Medzhitov, & Flavell, 2001) indicated that 

MIA and not influenza itself was responsible for adverse proinflammatory developmental 

programming in offspring (Buka et al., 2001; Gilmore & Jarskog, 1997; Patterson, 2009; Pearce, 

2001).  Studies using Poly I:C to induce MIA recapitulate findings with influenza infection, 

namely impaired behavioral flexibility (Amodeo et al., 2019; Canetta et al., 2016; Choi et al., 

2016; Han, Li, Meng, Shao, & Wang, 2011; Malkova, Yu, Hsiao, Moore, & Patterson, 2012; 

Meyer, Feldon, Schedlowski, & Yee, 2005; Rose et al., 2017; Wallace, Marston, McQuade, & 

Gartside, 2014; Zhang & van Praag, 2015) and impaired spatial matching to position (Meyer & 

Feldon, 2009; Richetto, Calabrese, Meyer, & Riva, 2013), spatial non-matching to position 

(Murray et al. 2017), and prepulse inhibition (Bates et al., 2018; Ding et al. 2019).  The Poly I:C 

model also recapitulates sex differences in behavioral outcomes observed in humans with ASD 

and schizophrenia.  Often, male offspring of dams exposed to Poly I:C (up to 20 mg/kg) mid-

gestation (E 9.5 to E 12.5) show increased perseverative behavior (Xuan & Hampson, 2014; 

Barke et al., 2019; Estes et al., in press).  Although it is unclear whether Poly I:C directly 

interacts with the fetal immune system, studies that assess sex-differences in immune activation 

show sexual dymorphism in patterns of placental inflammation following Poly I:C exposure 

(Barke et al., 2019) and a greater proinflammatory immune response and oxidative imbalance in 

male offspring (Hui et al., 2018). 

Importantly, impairment was noted in specific neural regions associated with these 

behavioral deficits: impaired frontal cortex (Amodeo et al., 2019; Ding et al., 2019; McColl & 

Piquette-Miller, 2019) and hippocampal (Ding et al., 2019; Gao et al. 2019; Hui et al., 2018) 

function.  In addition, this model also captures sex bias, with greater effects observed in males 
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than females, observed for ASD and schizophrenia (McColl & Piquette-Miller, 2019; Hui et al. 

2018; Barke et al., 2019; Hui et al., 2018; Yerys et al., 2009; Pantelis et al., 2009).   

Both influenza and Poly I:C models of MIA have been critical for determining periods of 

vulnerability to adverse developmental programming by MIA in offspring (Meyer, Schwarz, & 

Müller, 2011).  Identifying these windows is important because it highlights important periods 

during which interventions could be implemented. 

Given that non-homeostatic elevation of proinflammatory cytokines during gestation has 

been shown to induce adverse developmental programming in offspring, interventions that 

reduce levels of these proinflammatory immune factors should afford protection against 

disordered behavior.  There is some evidence that administering antipsychotic drugs with anti-

inflammatory effects reduces the progression to first-episode psychosis in schizophrenia 

(Amminger, Schäfer, Schlögelhofer, Klier, & McGorry, 2015; Piontkewitz, Arad, & Weiner, 

2012; Piontkewitz, Assaf, & Weiner, 2009; Zheng et al., 2017). 

It remains unclear whether interventions that restore maternal cytokine balance, at the time 

of insult, can prevent or greatly attenuate adverse developmental programming in offspring.  

Such interventions are difficult because over-attenuation of proinflammatory cytokines can 

produce adverse health outcomes because these factors are necessary for normal offspring 

development (Boulanger, 2009; Deverman & Patterson, 2009; Garay & McAllister, 2010; 

Grissom et al., 2014; Stolp, 2013) (Mosser et al. 2017). 

Interventions that restore homeostatic balance by increasing levels of anti-inflammatory 

cytokines and without reducing levels of proinflammatory cytokines are appealing (Meyer et al., 

2011).  One promising compound is Lacto-N-fucopentaose III (LNFPIII), a Lewisx trisaccharide 
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containing immunomodulatory glycan secreted by helminth parasites and found in human breast 

milk (Bhargava, Li, Stanya, Jacobi, & Dai, 2012; Tundup, Srivastava, Norberg, Watford, & 

Harn, 2015; Tundup et al., 2012).  This compound has been shown to produce developmental 

programming of a sensitized anti-inflammatory response (Pit, Polderman, Schulz-Key, & 

Soboslay, 2000; Thomas & Harn, 2004) and dampened proinflammatory response (Elliott et al., 

2007; Labeaud, Malhotra, King, King, & King, 2009; Maizels, 2016; Smits & Akdis, 2014). 

To date, no studies have investigated whether concurrent administration of the 

proinflammatory viral mimic Poly I:C and immunomodulatory glycan are sufficient to balance 

proinflammatory MIA and attenuate offspring behavioral impairments in offspring.  We predict 

that gestational exposure to Poly I:C will impair intradimensional shifting on a spatial 

discrimination reversal task and extradimensional shifting on a visual discrimination, as well as 

impair working memory at longer, but not shorter delays.  Furthermore, concurrent 

administration of glycan and Poly I:C should result in a dampening or complete reversal of these 

effects.  Namely animals administered Poly I:C and glycan should be statistically 

indistinguishable from control or their performance should fall between the other two groups.  

Finally, if sex differences do occur as a function of Poly I:C, we expect that males show greater 

impairment, as this would recapitulate sex differences observed in the incidence of ASD and 

schizophrenia observed in humans, as well as obseved sex-differences in behavioral, neural, and 

immune outcomes following prenatal Poly I:C exposure (Hui et al., 2018; Xuan & Hampson, 

2014; Barke et al., 2019). 

Methods 

 

Breeding and Exposure 
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C57Bl/6 mice were mated at University of Georgia until a sperm plug was detected, which 

marked embryonic day 0 (E0).  Throughout gestation and lactation, dams were exposed twice 

weekly to either a dextran vehicle or to an immunomodulatory sugar, glycan, which is LNFPIII 

conjugated to dextran (35 g/mouse of LNFPIII or vehicle at each dosing).  All dextran or 

glycan injections occurred twice weekly and were administered subcutaneously.  Injection 

volume was 5µl/g maternal body weight.  In addition, acute maternal inflammation was induced 

on E12.5 with 20mg/kg intraperitoneal injections of the potent immune stimulant and viral 

mimic Poly I:C.  This dosing regimen generated three exposure conditions: Dextran + Saline 

(D+Saline), Dextran + Poly I:C (D+Poly I:C), and Glycan + Poly I:C (G+Poly I:C).  Mice were 

bred until there were sufficient animals for behavioral testing at Auburn University.  All 

breeding and exposure procedures were approved by the University of Georgia Institutional Care 

and Use Committee and complied with the National Institutes of Health guide for the care and 

use of laboratory animals. 

Subjects 

 Subjects were 39 (20 female and 19 male) C57Bl/6 offspring of dams in D + Saline, D + 

Poly I:C, or G + Poly I:C exposures.  Offspring were housed at University of Georgia until being 

shipped to Auburn University, an AAALAC-accredited facility with a 12-hr light-dark cycle, on 

PND 100-130.  Upon arrival animals were group housed by treatment and sex with up to four 

mice per cage and placed in quarantine for 67 days.  Throughout quarantine, animals had free 

access to food and water, but were separated, by a plexiglass partition, if they became aggressive 

with cagemates.  As quarantine ended, body weights were gradually reduced to 22.0g +/- 2.0g 

for females and 25.0g +/- 2.0g for males.  Following body conditioning and caloric restriction, 
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animals began behavioral testing at approximately P190.  All behavioral procedures were 

approved by the Auburn University Institutional Care and Use Committee and complied with the 

National Institutes of Health guide for the care and use of laboratory animals. 

Apparatus 

 

 Behavioral testing was conducted in 11 Med Associates® (St. Albans, VT) rat operant 

chambers modified for mice. Each chamber was equipped with two retractable levers, a non-

retractable lever, an alcove for liquid-reinforcement delivery, two light emitting diodes (LED), a 

houselight, and two Sonalert® tone generators (2900 Hz and 4500 Hz).  The alcove for liquid-

reinforcement was located on the center panel of the front wall and dispensed 0.1cc of 3:1 

water:sweetened-condensed milk solution.  The houselight was located above the alcove at the 

top of the chamber.  A retractable lever was located on either size of the alcove and there was an 

LED above each retractable lever.  The 2900 Hz tone was located at the top of the chamber 

above the left retractable lever while the 4500 Hz tone was located at the top of the chamber 

above the right retractable lever.  The non-retractable lever was located on center panel of the 

back wall of the chamber.  Each chamber was located within a sound-attenuating cubicle and a 

fan was located in the upper-left corner of the right cubicle wall, to ensure air circulation.  A 

Windows® computer, located in the adjacent room controlled all experimental events with 0.01s 

resolution. 

Procedure 

 

Autoshaping. 

 

Beginning on P190, mice began daily 4-hr sessions training on an autoshaping procedure 
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to establish lever-pressing.  Autoshaping sessions began with a 300s inter-trial interval (ITI), 

during which the houselight and LEDs were darkened, tones were off, front wall levers were 

retracted, and the back wall lever was inactive, but accessible.  Following the ITI, was a 30s 

pairing interval.  At the beginning of the 30s, the houselight and LED above the active lever 

illuminated, the active lever (e.g., left lever) extended, and the 4500 Hz tone sounded for 0.5s.  

For the last 10s of the 30s interval, the dipper arm raised and 0.1cc milk solution was available.  

Milk availability was paired with 0.5s 4500 Hz tone.  If the mouse pressed the active lever, then 

milk became immediately available and was paired with the 0.5s 4500 Hz tone.  After the animal 

responds on the lever, or 30s elapsed, another 300s ITI began.  Non-contingent milk delivery 

ended once the animal performed 10 responses on the active lever within a single 4-hr session. 

After this criterion had been satisfied, milk was only delivered on a fixed-ratio (FR) 1 

schedule of reinforcement.  During FR 1 reinforcement, the houselight and LED above the active 

lever illuminated and the active lever was extended for the entirety of the session.  FR 1 training 

for the active lever was complete when the animal performed 40 responses within a single 4-hr 

session, but these 40 responses do not need to occur during the same session as the 10 

autoshaping responses.  Non-contingent milk delivery in autoshaping only occurred for the first 

lever trained. For the last two levers trained, milk was only delivered according to an FR 1 

schedule of reinforcement.  The order that the first two levers were trained was counter-balanced 

by gestational exposure and sex.  The levers on the front wall were always trained first and the 

lever on the back wall was always trained last.  Once the animal performed 40 responses under 

the FR 1 contingency for all three levers, this aspect of training ended and chain training began. 

Chain Training. 
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Chain Training began once responding had been established on all three levers.  The 

purpose of chain training was to establish a two response behavior chain, a necessary component 

for IDS and EDS procedures.  In the initial link of the chain, the mouse must respond on the back 

lever.  This response caused one of the front levers to extend in the terminal link of the chain.  

Responding on the extended front lever, in the terminal link, resulted in 3s primary reinforcer 

(milk) availability.  This behavior chain was trained using backward chaining, i.e., starting with 

the terminal link.  On each trial, one of the levers located on the front wall was pseudorandomly 

presented meaning a lever was not presented on more than two consecutive trials.  Once the 

active lever had extended the mouse had 300s to respond on the extended lever before it 

retracted.  If the mouse responded within 300s, then milk was available for 3s and its availability 

was be paired with a 0.5s 4500 Hz tone.  Failure to respond within 300s resulted in lever 

retraction and caused the ITI to begin. Each trial was followed by a 10s ITI in which all devices 

in the chamber were turned off or inactive.  Once mice responded 12 times on both front wall 

levers, the initial link of the behavior chain, i.e. pressing the back lever, was added. 

In the initial link an alternating 2900 Hz tone sounded (on 0.3s, off 0.3s).  The mouse had 

300s to respond on the lever located on the back wall.  Responding on the back wall lever caused 

the alternating tone to terminate and the active front lever to extend.  To complete the chain, the 

animal was required to respond in the terminal link within 300s.  Failure to respond within 300s 

in the initial or terminal link resulted in a 10s ITI and a new trial began.  Chain training ended 

when the mouse performed 50 two-response chains within a single session for three consecutive 

sessions. 

Behavioral Flexibility. 
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Two procedures were used to assess behavioral flexibility: a spatial discrimination 

reversal task followed by a visual discrimination task.  For both tasks, sessions included 60 trials 

separated by a 10s ITI and lasted no longer than 30m.  As in chain training, each trial consisted 

of two phases: a trial initiation phase (initiation link) and a choice phase (terminal link).  The 

trial initiation phase was identical to chain training, except that the animal was required to press 

the back wall lever within 15s.  If the trial was initiated, then the choice phase began.  In the 

choice phase, both levers on the front wall were extended and at least one of the LEDs located 

above the retractable levers illuminated.  Both LEDs were illuminated in spatial discrimination 

reversal learning while only one was illuminated in visual discrimination. 

Intradimensional shift: Spatial Discrimination with Reversal. 

 

In order to assess intradimensional shifting (IDS), the mouse first acquired a spatially 

defined discrimination, termed an original discrimination (OD).  In the choice phase of spatial 

discrimination trials, both front wall levers extended and the LED above each lever illuminated, 

but only one of the levers was active, for example the lever to the right of the milk alcove.  The 

spatial location of the active lever in OD was counterbalanced by gestational exposure and sex.  

A correct choice, i.e., responding on the right front wall lever during the choice phase produced 

3s access to milk.  In contrast an incorrect choice, or error, i.e., responding on the left front wall 

lever during the choice phase ended the trial.  Each trial, independent of outcome was followed 

by a 10s ITI.  Failure to respond in trial initiation or choice phases, both omissions, ended the 

trial and initiated the ITI. 

The OD was to be completed when the mouse responded correctly on 51 of 60 trials for 

three consecutive sessions.  Once these criteria were met, the discrimination would reverse along 
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the same spatial dimension: if the active lever in the OD was located on the right front wall, the 

active lever in the first reversal was located on the left front wall.  The first reversal proceeded 

until the mouse again responded correctly on 51 of 60 trials for three consecutive sessions.  The 

discrimination then reversed for a second time, back to the OD contingency and ended once the 

mouse demonstrated mastery. 

A subset of mice failed to satisfy the original accuracy criterion, in which omissions 

counted, for a reversal because they failed to respond on several trials.  For these animals, the 

contingency was reversed based on accuracy calculations that only included trials on which the 

animal responded..  Although some animals did omit many trials, when responding did occur it 

was highly accurate with few errors (Figure 1), which indicates that animals did learn the 

discrimination.  Reversals were only imposed if response accuracy, without omissions included 

in the calculation, exceeded 85%.  All animals met the updated accuracy criterion by the 24th 

trial (Table 1). 

Extradimensional Shift: Visual Discrimination. 

 

Following IDS, mice began a visual discrimination task in order to assess EDS.  Sessions 

proceeded in a similar manner as spatial discrimination sessions, with key differences in the 

choice phase of trials.  In the choice phase, both levers on the front wall extended, but only one 

LED illuminated.  The lever under the illuminated LED became the active lever on that trial.  

Importantly, the location of the active lever pseudorandomly changed from trial-to-trail, but the 

active lever did not occur in the same spatial location for more than two consecutive trials.  

Additionally, a correction procedure was implemented following trials that did not end in 

reinforcement in order to prevent exclusive responding in one spatial location.  Specifically, the 
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trial repeated until a correct choice was made.  These correction trials were not included in 

calculations of accuracy.  EDS ended when the animal responded correctly on 51 of the 60 (non-

correction) trials for three consecutive sessions.  

Delayed Matching to Position (DMTP). 

 

Following the visual discrimination procedure, a delayed match to position (DMTP) 

procedure was implemented.  Trials within DMTP sessions were broken down into three 

components: sample, delay, and choice.  For the sample portion of a trial, the active lever (either 

left or right) extended and the mouse was required to respond five times on the active lever in 

order to complete the sample. Successful responding resulted in the retraction of the active lever 

to retract and initiation one of eight randomly-selected (without replacement) delays (0.01, 2, 4, 

6, 8, 12, 16, and 20s).  Once the delay was completed, both retractable levers located on the front 

wall (Left and Right) extended.  Correct responding on the lever that was previously extended 

during the sample caused both levers to retract and the dipper arm to raise for 3s.  In contrast, 

errors entailed responding on the lever opposite that was previously extended during the sample 

caused both levers to retract, initiating a 3-sec blackout period. This sequence of events was 

repeated for twelve trials for each of the delays, for a total of 96 trials per session.  

Data Analysis. 

 

For both the spatial discrimination with reversal and visual discrimination tasks, 

dependent measures included the number of trials on which animals responded correctly 

(correct), responded incorrectly (errors), and failed to respond (omission).  For the EDS task, the 

number of correction trials was also be analyzed.  Data was analyzed using linear mixed effects 
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(LME) with SYSTAT® 13 (SYSTAT Software Inc. Richmond, CA, USA) and the Type I error 

rate (α) was set to 0.05.  LME was used because it better models incomplete repeated-measures 

data than traditional repeated-measures ANOVA, which was necessary because number of pups 

and sex ratio varied between litters.  Finally, between subjects factors were sex (female or male) 

and exposure (Dextran + Saline, Dextran + Poly I:C, or Glycan + Poly I:C), while the within 

subjects factor was session.  For the spatial discrimination reversal and visual discrimination 

tasks, analyses focused on initial sessions, within each phase of the tasks, to assess behavior in 

transition.  For delayed matching to position task, analyses focused on terminal sessions when 

behavior was in steady-state. 

Results 

 

Intradimensional Shift 

On any trial there can be a correct response or one of two types of error, commission or 

omission.  Figure 2 shows the mean correct trials across the first five and last three sessions of 

each phase OD (top), Reversal 1 (middle), and Reversal 2 (bottom).  Data are further separated 

by exposure group with D+Saline (left), D+Poly I:C (center), and G+Poly I:C (right) with sexes 

plotted separately.  When both sexes were included in the analysis the number of corrects 

increased to a greater degree for G + Poly IC mice than for the two Dextran groups (F(4, 125) = 

4.335, p = 0.003).  The additional Exposure by Sex interaction indicated that this increase in 

correct trials for the G+Poly I:C animals was driven by the males (F(1, 125) = 6.139, 0.015). 

The middle row of Figure 2 shows the mean correct trials across sessions during 

Reversal 1.  A significant main effect of Exposure and significant Exposure by Sex interaction 

indicated the increase in correct trials was greater for the two Poly I:C groups than for D+Saline, 
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which was driven by G+Poly I:C males (F(1, 128) = 3.938, p = 0.049; F(4, 128) = 2.862, p = 

0.026). 

The bottom row of Figure 2 shows the mean correct trials across sessions for each 

exposure and sex in Reversal 2.  As in Reversal 1, the extent to which correct trials increase 

across sessions was greater for the Poly I:C mice than D+Saline (F(1, 117) = 4.995, p = 0.027).  

However, the G+Poly I:C group made significantly fewer correct trials than the D+Poly I:C 

group as the sessions progressed after Reversal 2 (F(4, 117) = 3.242, p = 0.015; F(1, 117) = 

4.077, p = 0.046). 

Figure 3 shows error data for the three exposure groups (D+Saline, left; D+Poly I:C, 

center; G+Poly I:C, right) across the three phases (OD, top; Reversal 1, middle; Reversal 2, 

bottom), with data plotted by sex.  In the original discrimination, D+Poly I:C males made 

significantly more errors than the other exposure groups (F(1, 126) = 4.667, p = 0.033).  For the 

middle and bottom panel of Figure 3 (Reversal 1 and Reversal 2) there was only a significant 

main effect of session, the number of errors significantly decreased across sessions for all 

groups, but there were no exposure or sex differences. 

Figure 4 shows the number of omitted trials for each exposure group and sex with each 

panel, from top to bottom, representing the OD, Reversal 1, and Reversal 2, respectively.  The 

number of omitted trials for males was similar across all three exposure groups but the D + 

Saline females omitted the most trials and the G + PolyI:C females the fewest. F(1, 125) = 5.885, 

p = 0.017; F(4, 125) = 2.579, p = 0.041; F(4, 125) = 5.116, p = 0.001; F(4, 125) = 3.058, p = 

0.019). 

For the middle panel of Figure 4 (Reversal 1), a significant main effect of Poly I:C (F(1, 

128) = 7.126, p = 0.009).  Both Poly I:C groups omitted fewer trials than D+Saline.  In addition, 
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there was a significant Poly I:C by Session interaction (F(4, 128) = 3.676, p = 0.007), which 

demonstrated that the degree to which the average number of omitted trials decreased across 

sessions was greater for the two Poly I:C groups than D+Saline.  Reversing the contingency did 

not affect the overall number of D+Saline omissions.  For D+Poly I:C mice, reversing the 

contingency reduced the number of omitted trials from OD, but there was no sex difference.  

Finally, the number of omitted trials decreased for G+Poly I:C from OD to Reversal 1, but the 

females continued to omit more trials than males.   

In Reversal 2 (Figure 4, bottom) there was a significant main effect of Exposure (F(1, 

117) = 4.737, p = 0.032).  Together, D+Poly I:C animals omitted fewer trials than D+Saline (F(1, 

117) = 4.255, 0.041).  In Reversal 2, there were no sex-differences in omitted trials for D+Saline.  

There was a fleeting difference between sexes for D+Poly I:C mice in which females omitted 

more trials than males, on early sessions.  Both D+Poly I:C sexes omitted near zero trials as 

sessions progressed.  Finally, G+Poly I:C mice omitted a similar number of trials as D+Saline.  

For this group, females tended to omit more trials than males, but this sex difference failed to 

reach statistical significance. 

Extradimensional Shift 

 

Corrects, errors, omissions, and correction trials were compared for the first five 

sessions of the visual discrimination for the three exposure groups and two sexes.  Figure 5 

shows the mean correct trials for the three exposures by sex.  There was a significant main effect 

of Session (F(4, 108) = 33.68, p < .001).  For all groups, the number of correct trials increased 

across sessions.  There was also a main effect of Exposure (F(1, 27) = 10.29, p < .01).  The two 

Poly I:C groups performed significantly more correct trials than D+Saline.  There were no 

effects of anti-inflammatory drug, sex, or significant interactions. 
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Figure 6 shows the mean error trials across sessions for each Exposure by Sex.  There 

was a main effect of Session; errors decreased across sessions (F(4, 108) = 7.51, p < .001).  

There were no other significant main effects or interactions.  Figure 7 shows the mean number of 

omitted trials across sessions for each Exposure group by Sex.  There was a significant main 

effect of session - the number of omitted trials generally decreased as a function of Session (F(4, 

108) = 6.72, p < .001).  There was also a main effect of Exposure, with Poly I:C mice omitting 

fewer trials than D+Saline F(1, 27) = 9.41, p < .01).  There were no other main effects or 

significant interactions. 

Figure 8 shows the mean number of correction trials for each Exposure by Sex across 

the first five sessions of the visual discrimination.  There was a main effect of Session showing 

that the number of correction trials decreased across sessions (F(4, 108) = 22.91, p < .001).  There 

was also main effect of Exposure (F(1, 27) = 8.81, p < .01).  Mice exposed to Poly I:C required 

fewer correction trials than D+Saline, however this difference was driven by the D+Poly I:C 

group and G+Poly I:C males.  G+Poly I:C female responding more resembles D+Saline 

responding (F(1, 27) = 5.39, p = .03).  There was also a main effect of Sex on number of 

correction trials and this difference was driven by the poor performance of D+Saline and G+Poly 

I:C females (F(1, 27) = 4.29, p < .05). 

Delayed Matching to Position 

Figure 9 shows response accuracy across exposures and by sex.  For all dependent 

measures there was a significant main effect of delay (F(7, 240) = 8.848, p = 0.005).  For all 

three Exposures, accuracy decreased as delays increased, which is indicative of delays being 

sufficiently long to challenge working memory capacity.  There were no significant main effects 

of exposure or sex and no significant interactions. 

Discussion 
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 We conducted a thorough and detailed examination of gestational exposure to an acute 

proinflammatory state as well as concurrent immunomodulation via three behavioral tasks.  

These tasks were selected because they have been shown to assess executive function and 

functionality in associated neural regions, in rodents (Brown & Bowman, 2002; Owens et al., 

1991; Owens et al., 1992; Bussey et al., 1996; Robbins, 1996; Sahakian & Owen, 1992; 

Ragozzino, 2007; Pantelis et al., 1999; Russo et al., 2007).  The first procedure tested was a 

spatial discrimination with reversal task, which is a measure of intradimensional shifting and 

perseverative responding, both of which are important aspects of behavioral flexibility (Dalley, 

Cardinal, & Robbins, 2004).  The second task proceeded from a spatial discrimination reversal 

task into a visual discrimination task; this procedure has been used as a rodent analogue for 

extradimensional shifting and cognitive flexibility in humans (Birrell & Brown, 2000; Bissonette 

& Powell, 2012; Bissonette & Roesch, 2017; Dias et al., 1996b, 1996a; Dias, Robbins & 

Roberts, 1997; Owen et al., 1991).  The third procedure was a delayed matching-to-position task 

that tested working memory (Sahakian & Owen, 1992; Barendse et al., 2013; Goldman-Rakic, 

1994, 1995). 

Spatial Discrimination Reversal 

 For this task, performance under the original discrimination is rarely informative for 

exposure because deficits are not common.  Instead performance on Reversal 1 is of greatest 

interest.  Intact performance involves an increase in errors and decrease in correct responding 

after the reversal, however animals quickly learn to press the lever in the other spatial location.  

Delayed learning or the inability to acquire the reversed contingency is indicative of 

perseverative responding and neurodysfunction (Dalley, Cardinal, & Robbins, 2004; Bissonette 

& Powell, 2012; Brown & Bowman, 2002; Colacicco et al., 2002; Dias et al., 1996a, 1996b; 
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Kesner & Churchwell, 2011; McAlonan & Brown, 2003; Ragozzino, 2007; Salazar, white, 

Lacroix et al., 2004; Clarke, Hill, Robbins, & Robberts, 2011; Izquierdo et al., 2017). 

 Here, the D+Saline, or control, mice performed worse than either Poly I:C animals on the 

original discrimination and Reversal 1.  Indeed, performance was so poor that we moved forward 

with Reversal 1 after animals completed 24 sessions regardless of their ability to meet the 85% 

accuracy criteria.  Interestingly, relatively few errors were made throughout the experiment, 

which indicates that impaired performance was not due to an excess of errors or impaired 

learning.  Instead, impaired performance was driven by an excess of omissions, which could be 

indicative of poor motivation despite the use of a highly palatable reinforcer (sweetened 

condensed milk). 

 The low accuracy due to omissions was a finding driven by the D+Saline mice, which 

suggests performance was related to motivational differences between groups.  Although G+Poly 

I:C animals did not significantly differ from D+Poly I:C on this task, the G+Poly I:C mice 

tended to perform better on this task than the D+Poly I:C mice.  Under the second and all 

subsequent reversals group differences due to exposure, where applicable, often resolved or were 

minimal. 

 In Reversal 2, groups were mostly indistinguishable despite the finding that the two Poly 

I:C groups performed somewhat better than D+Saline.  On later sessions in Reversal 2, animals 

in the G+Poly I:C exposure failed to maintain this improved performance. Therefore it is unclear 

if this difference is spurious or whether glycan attenuated Poly I:C-induced effects by impairing 

G+Poly I:C performance D+Saline group.  Although these effects are not as we predicted, this 

finding does potentially demonstrate an amelioration of Poly I:C-induced effects by glycan. 
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Visual Discrimination 

 Overall, differences in intradimensional shifting observed for the spatial discrimination 

reversal task were also apparent in extradimensional shifting to a visual discrimination.  One 

striking difference was that the impact of Poly I:C on performance became more apparent with 

the visual discrimination.  The increased sensitivity to Poly I:C exposure is consistent with 

extradimensional shifts being a more difficult discrimination to acquire than intradimensional 

shifts, making exposure-related effects more apparent (Owen et al., 1991; Colacicco et al., 2002; 

Robbins, 2000).  Exposure to Poly I:C was associated with improved extradimensional shifting 

as compared to the D+Saline group and this effect was driven by the number of omitted trials 

(Figures 7 and 9).  This effect of Poly I:C could reflect the changes seen in motivation, which 

have been observed on breakpoint in other models of the negative symptoms of schizophrenia 

(Simpson et al., 2011). 

 An interesting finding was an adverse effect of Poly I:C on errors in males only.  Poly I:C 

males made more errors than D+Saline males.  This could mean that the Poly I:C animals had 

difficulty transitioning from the spatial to the visual discrimination.  Alternatively, it could be a 

result of differences in motivation because these animals responded more and therefore there 

were more opportunities to respond incorrectly.  An increase in errors are to be expected 

following a change in contingency.  This conclusion, regarding changes in motivation, is an 

appealing one in the context of the generally superior performance for Poly I:C animals.  One 

study assessed the effects of a single midgestation exposure to Poly I:C (4 mg/kg) on motivation 

in adulthood by comparing the number of omitted trials when reinforcer probabilities were high, 

low, and during extinction (Bates et al., 2018).  In this study, control and Poly I:C animals did 

not differ in the number of omitted trials, however all animals omitted more trials when 
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reinforcer probability was low and during extinciton.  Given the difference in dosing in Bates et 

al., (2018) and the present study, it is possible that changes in motivating operations as a result of 

Poly I:C exposure only become apparent with greater maternal immune activation.  

Delayed Matching to Position 

 Often, DMTP procedures include a choice-initiation response in which the animal must 

perform a response (e.g., press a lever) before the two levers extend during the choice phase of 

the trial.  This requirement is important because it forces the mouse to leave the area proximal to 

the active lever and respond to some other location in the chamber, often equidistant from the 

two choice levers.  Here, this requirement was not included due to excessive omissions observed 

throughout the experiment during the spatial and visual discrimination tasks.  These procedures 

required the mouse to initiate a trial by responding on a third lever located on the back wall.  

This response was often omitted by the D+Saline animals during the two behavioral flexibility 

tasks.  Given that response accuracy decreased as a function of delay for all groups, it is unlikely 

that the mice were sitting in front of the lever presented during the sample for the duration of 

delay.  Furthermore, there were no significant differences in the extent to which delay impaired 

accuracy for the different exposures or between sexes.  There was no effect of gestational 

exposure to Poly I:C or glycan on working memory as tested here, but it is unclear if including a 

choice-initiation response would have unmasked differences. 

 Finally, it is also possible that differences in accuracy are due to attentional differences.  

Some studies have noted attentional impairment in animals gestationally exposed to Poly I:C 

(reviewed in Meyer, 2014).  This is important because attention deficits can impair performance 

on a delayed matching task– if the animal does not attend to the sample when it is presented, 
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then it cannot respond accurately during the choice (White & Wixted, 1999).  In the current 

study, animals were required to respond on the sample lever five times.  Although this 

procedural detail cannot rule-out the possibility of attentional differences, these effects should 

have been minimal. 

Conclusion 

 There is a wealth of epidemiological evidence demonstrating a relationship between a 

moderate, acute proinflammatory state during gestation (e.g., influenza) and cognitive deficits, 

and risk of neurodevelopmental disorders like ASD and schizophrenia (Dodds et al., 2011; 

Krakowiak et al., 2012; Lyall, Munger, O’Reilly, 2013; Van Leishout et al., 2011; Knuesel et al., 

2014; Yolken & Torrey, 1995).  These associations have been causally demonstrated and 

replicated in experimental, mostly rodent, models (Buka et al., 2001; Gilmore & Jarskog, 1997; 

Patterson, 2009; Pearce, 2001; Meyer, Feldon, et al., 2011).  We predicted that gestational 

exposure to the viral mimic Poly I:C would impair intradimensional and extradimensional 

shifting, as well as working memory, relative to control D+Saline animals.  We also predicted 

that the concurrent administration of immunomodulatory glycan would rescue or attenuate these 

Poly I:C-induced deficits.  In the present study, differences in performance on the 

intradimensional and extradimensional shifts were not consistent within or across groups and 

when differences did occur, they were opposite of the predicted direction. 

 Animals gestationally exposed to Poly I:C tended to behave more flexibly than the 

D+Saline animals.  One study demonstrated that genetic models of the negative symptoms of 

schizophrenia had increased breakpoint on a progressive ratio schedule of reinforcement 
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(Simpson et al., 2011).  This is pertinent because when differences were observed between Poly 

I:C groups and D+Saline, these differences were driven by omissions, not errors. 

 Another reason for the inconsistency between findings in the literature and the present 

study, could be due to procedural differences.  Often, in the reviewed literature, behavioral 

flexibility is assessed in mazes or open fields.  This is relevant because behaviors assessed in 

these tasks are biologically prepared (i.e., walking, swimming, or digging).  In contrast, the 

present study assessed an arbitrary response (i.e., pressing a lever). 

 There are well-established sex-differences in incidence of ASD and schizophrenia, with a 

higher incidence in males than females.  Gestational exposure to Poly I:C in C57Bl/6 mice has 

been shown to recapitulate these sex differences with males showing neural and behavioral 

changes that are consistent with these neurodevelopmental disorders (Hui et al., 2018).  Here, 

when improved performance was observed for the Poly I:C exposures, it was driven by males, 

while impaired performance was driven by females.  One recent study by Estes and colleagues 

(in press), could shed light on these findings.  Estes et al. (in press) assessed baseline differences 

in immune response of female C57Bl/6 mice.  They found considerable variability in maternal 

immune biomarkers, which were correlated with maternal IL-6 response and with offspring 

outcomes following prenatal Poly I:C exposure.  There was considerable variability in immune 

biomarkers between mice obtained from different vendors and that these biomarkers were 

associated with differential response to Poly I:C exposure and subsequent outcomes in offspring.  

Whether individual differences in maternal immune response to Poly I:C played a role in 

offspring outcomes in this study is not clear, but future research in this area should collect data 

on maternal immune biomarkers and offspring outcomes to determine the replicability and 

relevance of these findings in maternal immune activation models. 
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High-Fat Diet Induced Maternal Inflammation: Sex-Dependent Developmental 

Programming and Attenuation by Glycan in Adult Offspring 

 

Obesity is a major and growing health concern in industrialized nations.  There is little 

evidence for a genetic contribution to the etiology of obesity in humans (Hill & Peters, 1998). 

Instead life-style factors like diet and inactivity better account for rapidly increasing rates of 

obesity (Dyer & Rosenfeld, 2011; Ogden, Carroll, Fryar, & Flegal, 2015). This rise in obesity is 

important because it is a major risk factor for a variety of adverse health outcomes (Armitage, 

Taylor, & Poston, 2005; Cottrell & Ozanne, 2008; Das, 2001; Schulz, 2010) and cognitive 

impairments (Hargrave, Jones, & Davidson, 2016). 

Adipose is an endocrine organ that secretes immune factors (Das, 2001; Hariri & Thibault, 

2010; Parimisetty et al., 2016).  Typically, the levels of proinflammatory and anti-inflammatory 

factors secreted from adipose are balanced, but as excess adipose accumulates this balance tips in 

favor of a chronic proinflammatory state (Das, 2001; Parimisetty et al., 2016).  Elevated levels of 

proinflammatory factors are relevant to cognitive impairment because it increases blood-brain 

barrier permeability inducing a state of neuroinflammation (Buckman et al., 2014; Heneka & 

Nicotera, 2016; Pepping, Freeman, Gupta, Keller, & Bruce-Keller, 2013; Stolp et al., 2011) that 

can impair cognitive function (Marqués-Iturria et al., 2013; Miller & Spencer, 2014; Pepping et 

al., 2013). 

When obesity occurs in the maternal host, this chronic low-grade inflammation has also 

been shown to produce adverse health and behavioral effects in offspring (Alfaradhi & Ozanne, 

2011; Bilbo & Tsang, 2010; Cottrell & Ozanne, 2008; Davidson et al., 2013; Gillette-Guyonnet 

et al., 2007; Hargrave et al., 2016; Lee et al., 2010; Nivoit et al., 2009; Vucetic, Kimmel, Totoki, 

Hollenbeck, & Reyes, 2010) through a process referred to as developmental programming 
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(Barker, 1997).  This developmental programming can result in the permanent alteration of 

immune, neural, and/or endocrine function (Bilbo & Schwarz, 2009; Bilbo & Tsang, 2010; 

Lucas, 1994).  Indeed, maternal obesity has been shown to increase the risk of disorders that 

promote chronic inflammation (Alfaradhi & Ozanne, 2011; Bilbo & Tsang, 2010; Cottrell & 

Ozanne, 2008; Elahi et al., 2009; Hargrave et al., 2016; Nivoit et al., 2009; Samuelsson et al., 

2008; Vucetic et al., 2010; Yu et al., 2011) in what has been described as a vicious circle 

(Davidson, Kanoski, Walls, & Jarrard, 2005; Kanoski, 2012; Sellaro & Colzato, 2017).  In 

addition, maternal obesity has been shown to increase the risk of general cognitive delay 

(Davidson et al., 2013; Gillette-Guyonnet et al., 2007; Hinkle et al., 2012; Kang, Kurti, Fair, & 

Fryer, 2014; Lee et al., 2010), and some neurodevelopmental disorders like autism spectrum 

disorders (ASD) and schizophrenia in offspring (Dodds et al., 2011; Khandaker, Dibben, & 

Jones, 2012; Krakowiak et al., 2012; Van Lieshout, Taylor, & Boyle, 2011). 

Given the limited evidence for a genetic role in the etiology of obesity, diet-induced 

obesity has become the preferred method for modeling maternal obesity and developmental 

programming in animal models.  Diets that induce maternal immune activation and obesity have 

been shown to increase the risk of ASD in humans (Lyall, Munger, O’Reilly, Santangelo, & 

Ascherio, 2013).  Although there are a variety of diets that induce obesity, those high in saturated 

fatty acids, like lard, are especially important because they can induce a proinflammatory state 

prior to the onset of obesity (Münzberg, Björnholm, Bates, & Myers, 2005; Thaler et al., 2011; 

Williams, Seki, Vuguin, & Charron, 2014).  This is important because it allows for the study of 

maternal immune activation on developmental programming without concurrent adverse health 

effects due to obesity and related disorders (Ashino et al., 2012; Volpato et al., 2012). 

Gestational exposure to a high-fat diet recapitulates findings observed with developmental 
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programming due to obesity (Lasselin et al., 2016).  Namely offspring show increased adiposity 

(Akagiri et al., 2008), elevated levels of proinflammatory cytokines (Cani et al., 2007; Cintra et 

al., 2012; Elahy et al., 2015; Kang et al., 2014; Lumeng & Saltiel, 2011; Manousopoulou et al., 

2015; Nerurkar et al., 2011), increased sensitivity to proinflammatory insult (Bilbo & Tsang, 

2010; White et al., 2009), and impaired learning and memory (Bilbo & Tsang, 2010; Cordner & 

Tamashiro, 2015; Kanoski, Meisel, Mullins, & Davidson, 2007; Lu et al., 2011; Mckee, 

Grissom, Herdt, & Reyes, 2017; Naef et al., 2008; Rodriguez et al., 2012; Tozuka et al., 2010; T. 

Wu et al., 2013).  Together, these findings indicate that inflammation induced by obesity is an 

important component of adverse developmental programming in offspring.  Given the 

importance of diet or obesity induced inflammation in adverse offspring developmental 

programming, interventions that attenuate such inflammatory activity are promising.  There is 

promising evidence that postnatal feeding of diets that attenuate the proinflammatory response 

programmed in gestation can attenuate or reverse adverse outcomes in offspring (Camer et al., 

2015; Cintra et al., 2012; Song, 2004; Song, Leonard, & Horrobin, 2004). 

To date, there are no studies have assessed whether anti-inflammatory interventions that 

occur concurrent with the proinflammatory insult can effectively prevent or ameliorate adverse 

developmental programming.  In this regard, parasitic helminth infection is a promising 

intervention because it potently activates anti-inflammatory pathways in the host (Atochina & 

Harn, 2005; Harn, McDonald, Atochina, & Da’Dara, 2009; Pearce, 2005; van Riet, Hartgers, & 

Yazdanbakhsh, 2007; Velupillai, Secor, Hoerauf, & Harn, 1997) by secreting Lacto-N-

fucopentaose III (LNFPIII), a Lewisx trisaccharide containing immunomodulatory glycan 

(Bhargava, Li, Stanya, Jacobi, & Dai, 2012; Tundup, Srivastava, Norberg, Watford, & Harn, 

2015). When parasitic helminth infection occurs during gestation, it can result in developmental 
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programming of an anti-inflammatory response in offspring (Hartgers et al., 2008; Labeaud, 

Malhotra, King, King, & King, 2009; Mpairwe, Tweyongyere, & Elliott, 2014; Pit, Polderman, 

Schulz-Key, & Soboslay, 2000; Thomas & Harn, 2004; D. Wu et al., 2011). 

Immunomodulatory interventions, like glycan, are also appealing because they do not 

directly reduce proinflammatory activity – these cytokines are necessary for normal 

neurodevelopment and their over-attenuation can produce adverse health outcomes in offspring 

(Bilbo & Schwarz, 2012; Boulanger, 2009; Deverman & Patterson, 2009; Garay & McAllister, 

2010; Stolp, 2013).  Instead, immunomodulatory glycan increases anti-inflammatory activity 

(Thomas & Harn, 2004).  Therefore, it may be possible to prevent or dampen the cytokine 

imbalance that results from a proinflammatory state during gestation and resulting 

developmental programming (Meyer, Schwarz, & Müller, 2011). 

Methods 

Breeding and Exposure 

 Breeding and exposures occurred at University of Georgia.  Starting eight weeks prior to 

mating, female C57Bl/6 breeders were exposed either a standard laboratory chow diet (LFD) 

(10% kcal fat, 70% carbohydrate, 20% protein, D12450J, Research Diets, Inc. New Brunswick, 

NJ) or a HFD (60% kcal fat, 20% carbohydrate, 20% protein, D12492, Research Diets Inc., New 

Brunswick, NJ) (Krishna et al. , 2016).  Sires were fed a LFD diet.  Although the two diets 

differed in percent kcal macronutrient profile, they were isocaloric and micronutrient-balanced.  

Dietary exposure continued throughout gestation and lactation.  After six weeks of dietary 

exposure throughout gestation and lactation, LFD dams and half of the HFD dams were 

subcutaneously injected, twice weekly, with dextran vehicle.  The other half of HFD dams were 
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also subcutaneously injected, twice weekly, but with an immunomodulatory sugar, glycan, which 

is an LNFPIII conjugated to dextran.  This produced three exposure groups: Dextran with 

standard chow (D+LFD), dextran with high-fat diet (D+HFD), and glycan with high-fat diet 

(G+HFD).  Both LNFPIII-dextran and dextran vehicle injection volume were 5 µl/g bodyweight.  

Breeding and exposure continued until sufficient offspring, at least 10 females and 10 males in 

each exposure group, were generated for behavioral testing at Auburn University.  All breeding 

and exposure procedures were approved by the University of Georgia Institutional Care and Use 

Committee and complied with the National Institutes of Health guide for the care and use of 

laboratory animals. 

Subjects 

The above described dosing regimen yielded a 2 (Diet) x 2 (immunomodulator) x 2 (sex) 

design.  There were 21 mice in the D+LFD group, 11 female and 10 male; 19 mice in the 

D+HFD group, 9 female and 10 male; and 21 mice in the G+HFD group, 11 female and 10 male.  

All mice were shipped to Auburn University between postnatal day (PND) 100 and PND 130.  

Upon arrival, mice were placed in quarantine in an AAALAC accredited facility with a 12-hr 

light-dark cycle (lights on at 6:00am).  Animals were group housed by treatment and sex for 67 

days with up to four mice per cage.  Two animals were separated by a plexiglass partition 

because they became aggressive in group housing.  After the 67 day quarantine, animals were 

introduced to the general Auburn University mouse colony.  Animals had ad libitum access to 

food and water in their home cages until the end of quarantine when body weights were 

gradually reduced to 22.0g  2.0g for females and 25.0g  2.0g for males, in order to establish 

food as an effective reinforcer for behavioral testing.  Behavioral testing began at approximately 

PND 190.  All behavioral procedures were approved by the Auburn University Institutional Care 
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and Use Committee and complied with the National Institutes of Health guide for the care and 

use of laboratory animals. 

Apparatus 

 Experimental procedures were conducted in 11 Med Associates® (St. Albans, VT) rat 

operant chambers modified for mice.  Each chamber was equipped with two retractable levers on 

the front wall panel to the right or left of an alcove for liquid-reinforement delivery.  A light 

emitting diode (LED) was located above each retractable lever.  A non-retractable lever was 

located on the back wall center panel, directly across from the liquid-reinforcement alcove.  

Liquid-reinforcement consisted of one 0.1-cc presentation of a 3:1 water:sweetened-condensed 

milk solution.  At the top of the chamber front wall a houselight was located on the center panel 

and two Sonalert® tone generators (2900 Hz and 4500Hz) were located on either side of the 

houselight.  The low-tone was located on the left side while the high-tone was located on the 

right side of the houselight.  Each chamber was enclosed in a sound-attenuating cubicle with an 

air-circulating fan in the upper left corner of the right wall.  A Windows® computer, located in 

an adjacent room, controlled all experimental events with a 0.01s resolution.  

Procedure 

Autoshaping. 

Beginning on PND 198 to 200, mice began training daily in a 4-hr autoshaping 

procedure to establish lever-pressing on each of the three levers.  The order in which animals 

were trained to press levers was counter-balanced by gestational exposure and sex.  Due to its 

distance from the milk alcove, the back lever was always trained last.  Therefore, training order 

of levers was right, left, then back for half of the mice, while the other half of the animals 
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experienced left, right, then back. 

Autoshaping sessions began with a 300s inter-trial interval (ITI), during which the 

houselight and LEDs was darkened, tones did not sound, right and left levers were retracted, and 

the back lever was inactive.  After the ITI, the house light turned on, the active lever (e.g., left 

lever) extended, the LED above the active lever illuminated, and the 4500 Hz tone sounded for 

0.5s.  For the last 10s of this 30s interval, the dipper arm raiseed making 0.1cc milk solution 

available.  Availability of milk was paired with 0.5s 4500 Hz tone.  If the mouse pressed the 

active lever during the 20s before milk was non-contingently delivered, then milk became 

immediately available and was be paired with the 0.5s 4500 Hz tone.  After the 30s interval or 

response on the lever, another 300s ITI began. 

Animals performed 10 responses on the active lever, within a single 4-hr session, to 

complete autoshaping.  Once this criterion had been satisfied, the animal no longer experienced 

the autoshaping procedure, i.e., non-contingent milk delivery and pairing of stimuli in the 

chamber.  Instead, milk was delivered according to a fixed-ratio (FR) 1 schedule of 

reinforcement.  The FR 1 training for the left lever was complete when the animal performed 40 

responses on the lever within a single 4-hr session.  It should be noted that the 40 FR 1 responses 

did not need to occur in the same session as the 10 autoshaping responses.  In addition, 

autoshaping was only be implemented for the first lever trained.  For both subsequent levers 

(e.g., right and back), training  began in the FR 1 component.  Once the animal performed 40 

responses under the FR 1 contingency on each of the three levers, this aspect of training ended 

and chain training began. 

 Chain Training. 
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 Once responding had been established on all three levers, chain training began. The goal 

of this training was to establish a behavior chain consisting of two responses: responding on the 

back lever, which caused the right or left lever to extend, and responding on the extended front 

lever, which resulted in 3s access to milk reinforcement.  This behavior chain was trained using 

backward chaining.  Initially, the left or right lever was pseudorandomly presented.  The active 

lever changed from trial to trial, but the same lever was not be presented on more than two 

consecutive trials in an effort to prevent biasing responding to one side of the chamber.  

Responding on the extended lever caused the lever to retract, a 4500 Hz tone sounded for 0.5s, 

and milk was available for 3s.  Mice had 300s to respond on the extended lever and failure to 

respond during this time caused the trial to end and ITI to begin.  Each trial was followed by a 

10s ITI during which time all devices in the chamber were inactive. 

Once mice responded 12 times on the right and left lever, the second link of the behavior 

chain was added.  At this point, a trial began with an alternating 2900 Hz tone (on 0.3s, off 0.3s).  

Now, the mouse was required to respond on the back lever within 300s.  Responding on the back 

lever terminated the alternating tone and either the left or right lever extended.  As before, the 

mouse had 300s to complete the first link of the chain.  If the mouse responded on the right or 

left lever, milk was available for 3s.  If the mouse failed to respond on the right or left lever, the 

trial ended and the ITI will began.  Chain training ended when the mouse successfully performed 

the 2-link chain 50 times within a session for three consecutive sessions. 

 Behavioral Flexibility. 

Two procedures will be used to assess unique aspects of behavioral flexibility: a spatial 

discrimination reversal task assessed intradimensional shifting (IDS) and a visual discrimination 
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task assessed extradimensional shifting (EDS) from the spatial discriminations.  For both of these 

tasks, sessions last approximately 30m and consisted of 60 trials separated by a 10s ITI.  Each 

trial consisted of two phases, first a trial initiation phase, followed by a choice phase.  To 

complete these phases the animal was required to perform the 2-link chain trained in chain 

training. 

In trial initiation, the house light was illuminated and a 2900 Hz tone pulsed (0.3s on, 0.3s 

off) – indicating that the back lever was active.  Failure to respond on the back lever within 15s, 

referred to as an initiation omission, ended the trial and began the ITI.  If the mouse successfully 

initiated the trial by responding on the back lever within 15s, then the choice phase began.  In the 

choice phase, the 2900 Hz tone stopped pulsing, both of the front wall levers (right and left) 

extended, and at least one of the LEDs located above the retractable levers illuminated – LED 

illumination differed between the intradimensional and extradimensional shifting tasks.  

Intradimensional Shift. 

Spatial Discrimination.  The first phase of behavioral flexibility assessment mice first 

acquired an original discrimination (OD), which was spatially defined.  The trial initiation phase 

proceeded as described above in the behavioral flexibility section.  In the choice phase of spatial 

discrimination trials both levers extended and the LED above each lever illuminated and the 

mouse was required to press one of the levers within 15s.  Failure to respond in the choice phase 

was referred to as a choice omission.  Responding in only one of the spatial locations (e.g., 

responding on the right lever) produced 3s access to milk, which is referred to as a correct.  In 

contrast, responding to the inactive spatial location (e.g., the left lever), an error, ended the trial 

and initiated the ITI.  The spatial location that was active or inactive during OD was be 
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counterbalanced by exposure and sex.  Each session consisted of 60 trials.  The OD was 

considered acquired when the animal responded with 85% accuracy, or correctly on 51 of the 60 

trials, for three consecutive sessions.  Once this criterion has been met the contingency will be 

reversed. 

Spatial Discrimination Reversal.  Reversal sessions proceeded in a similar manner as 

OD sessions, with the important exception that the spatial location of the active and inactive 

lever reversed.  If the active lever in OD was located to the right of the milk alcove, then the 

active lever in the first reversal was be located to the left of the milk alcove.  Once performance 

reached 85% accuracy (51 out of 60 trials were correct) for three consecutive sessions, the 

contingency again reversed for a second time. 

Throughout the experiment, a subset of mice failed to satisfy the original accuracy 

criterion.  In this original calculation, omissions were included and these few mice failed to 

respond on several trials.  Performance for these same mice was, however, highly accurate on the 

trials on which they did respond, which indicated these mice had learned the discrimination 

(Figure 10).  For these animals, the accuracy criteria was updated such that a reversal was only 

imposed if accuracy exceeded 85% for three consecutive days, when omissions were excluded 

from calculations.  All animals met this criterion by the 24th session (Table 2). 

 

Extradimensional Shift. 

Following IDS, mice began a visual discrimination task in order to assess EDS.  This 

procedure was similar to the one used for IDS, except that the discrimination was visual and not 

spatial.  Responding on the back lever during trial initiation caused both front levers to extend, 
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but only one LED was illuminated.  The lever under the illuminated LED was the active lever, 

for that trial.  In order to prevent exclusive responding on one lever during choice, a correction 

procedure was implemented.  If a trial did not end in reinforcement, then that trial was repeated 

until a correct choice was made.  These correction trials were not included in calculations of 

accuracy.  Aside from correction trials, the location of the active lever was pesudorandomly 

changed from trial-to-trial, as described in chain training.  EDS assessment on the visual 

discrimination task ended when the animal performed with 85% accuracy for three consecutive 

sessions. 

Delayed Matching to Position (DMTP). 

 

After behavioral flexibility assessment, working memory was assessed with DMTP.  For 

this task, trials consisted of three components: sample, delay, and choice.  The sample portion of 

the trial began with the extension of the active lever (left or right) and terminated with active 

lever retraction when the mouse performed five responses on the active lever.  Upon lever 

retraction, one of eight randomly-selected (without replacement) delays (0.01, 2, 4, 6, 8, 12, 16, 

and 20s) was implemented.  Once the delay elapsed, the choice portion of the trial began.  

During the choice, both the left and right levers extended and the mouse was required to respond 

on one of the levers.  Correct responding on the lever that matched the spatial location of the 

sample caused both levers to retract and the dipper arm to raise for 3s.  In contrast, errors 

entailed responding on the lever opposite the sample caused both levers to retract and initiated a 

3-sec blackout period. This sequence of events was repeated for twelve trials for each of the 

delays, for a total of 96 trials per session. 

Data Analysis. 
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Important dependent measures for both the IDS and EDS task included the number of 

trials on which animals responded correctly (correct), responded incorrectly (errors), and failed 

to respond (omission).  In addition, the number of correction trials in the EDS task was also be 

analyzed.  For each dependent measure, the between subjects factors was sex (female or male) 

and exposure (D+LFD, D+HFD, or G+HFD), while the within subjects factor was session.  

Given the likelihood of unequal sample sizes, data was analyzed using linear mixed effects 

(LME) because it better models incomplete repeated-measures data than traditional repeated-

measures ANOVA.  We analyzed data using the full model, which included exposure, sex, and 

their interaction.  Statistical analyses were be conducted using SYSTAT ® 13 (SYSTAT 

Software Inc. Richmond, CA, USA) and the Type I error rate (α) will be set to 0.05.  For the 

spatial discrimination reversal and visual discrimination tasks, analyses focused on initial 

sessions, within each phase of the tasks, to assess behavior in transition.  For delayed matching 

to position task, analyses focused on terminal sessions when behavior was in steady-state. 

Results 

Intradimensional Shift 

Figure 11 shows the mean correct trials for each dietary exposure group (D+LFD, left; 

D+HFD, center; G+HFD, right) for the three phases of the intradimensional shift (OD, top; 

Reversal 1, middle; Reversal 2, bottom) with data plotted by sex.  For the OD (top), there was a 

significant main effect of session, meaning the number of corrects increased across sessions – an 

indication of learning (F(4, 210) = 13.372, p < 0.001).  A significant Diet x Sex interaction 

indicated that despite the overall number of corrects being similar across groups, the number of 

corrects for dietary exposure depended upon sex (F(1, 210) = 5.992, p = 0.015).  D+LFD, 
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females made fewer corrects than males of the same exposure while D+HFD females made more 

corrects than males of the same exposure.  This difference decreased as sessions progressed.  

There was no difference between G+HFD females and males for corrects on the first five trials of 

OD.   

During the first five sessions of Reversal 1 (Figure 11, middle), the number of corrects is 

low, but increases across sessions for all groups – again indicating learning of the new 

contingency (F(4, 212) = 77.130, p < 0.001).  There was also a significant Diet x Session 

interaction (F(4, 212) = 3.508, p = 0.008).  This effect was greater for both HFD groups tha 

D+LFD (F(4, 212) = 3.508, p = 0.008), but this finding was not differentially affected by sex.  In 

Reversal 2 (Figure 11, bottom), the number of correct trials, again, increased across the first five 

sessions for all groups (F(4, 207) = 167.207, p < 0.001).  This increase was greater for males 

than females as indicated by a significant main effect of Sex (F(1, 207) = 5.128, p = 0.025).  

There were no effects of diet on correct trials in Reversal 2.   

Figure 12 shows the number of incorrect trials (errors) for each dietary exposure group 

and sex by OD, Reversal 1, and Reversal 2 (top, middle, and bottom panel, respectively).  For 

the OD, a significant main effect of Session indicated that the number of errors significantly 

decreased across the first five sessions – an indication of learning (F(4, 210) = 22.305, p < 

0.001).  A significant Diet x Session interaction indicated that the degree to which errors 

decreased across sessions varied as a function of dietary exposure, which was driven by the two 

HFD groups that made more errors than D+LFD (F(4, 210) = 2.755, p = 0.029). 

In Reversal 1 (Figure 12, middle), the number of errors significantly decreased across 

the first five sessions for all exposure groups (F(4, 212) = 79.422, p < 0.001).  Although errors 

decreased for all groups, they decreased to a lesser extent for G+HFD animals than D+HFD or 
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D+LFD (F(1, 212) = 4.959, p = 0.027).  This effect of glycan on errors did not persist to 

Reversal 2 (Figure 12, bottom) as there was no effects of diet or sex.  Despite this similarity 

across exposures and sex, all groups showed decreasing errors across the first five sessions of 

Reversal 2 (F(4, 207) = 121.923, p < 0.001). 

Due to the relatively low number of incorrect trials for all three dietary exposures it 

would seem the group differences in correct trials are due to differences in omitted trials.  Figure 

13 shows the number of omitted trials across sessions for each of the dietary exposures and sex 

for the OD, Reversal 1, and Reversal 2 (top panel, middle panel, and bottom panel, respectively).  

For the OD there was a slight, overall initial downward trend in omissions for D+LFD mice and 

a slight initial upward trend in omissions for D+HFD and G+HFD mice, although all OD 

functions are relatively flat (F(4, 210) = 3.747, p = 0.006).  A significant Diet x Sex interaction 

indicates that D+LFD females omitted more trials than D+LFD males, but the relationship 

reversed for both HFD groups on the first three sessions of OD (F(1, 210) = 4.240, p = 0.041).  

This relationship did not persist in sessions four and five.  A significant Diet x Session 

interaction indicated that both HFD groups omitted fewer trials than D+LFD (F(4, 210) = 4.200, 

p = 0.003). 

During Reversal 1, the direction of overall omissions reversed from OD.  Omissions for 

D+LFD remained stable across sessions while there was a slight decrease in the number of 

omissions for both D+HFD and G+HFD (F(4, 212) = 5.785, p < 0.001).  Furthermore, the sex 

differences observed during the OD were not present in Reversal 1 (Figure 13, middle).  A 

significant Diet x Session interaction indicated that the two HFD groups omitted fewer trials than 

D+LFD (F(4, 212) = 2.627, p = 0.036).  The bottom panel of Figure 13 shows the number of 

omitted trials in Reversal 2.  There was a significant main effect of session, which indicated that 
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omissions decreased across sessions for all groups (F(4, 207) = 18.692, p < 0.001).  There was 

also a significant main effect of Sex, in which females omitted more trials than males (F(1, 207) 

= 4.908, p = 0.028).  However this effect was driven by the D+LFD females. 

Extradimensional Shift 

Figure 14 shows mean correct trials for the first five sessions of visual discrimination for 

males and females across each exposure group.  There was a main effect of session in that 

corrects increased across sessions (F(4, 208) = 40.23, p < 0.001).  There was also a main effect 

of sex in which male mice, across exposures, made more correct trials than females (F(1, 52) = 

25.84, p < 0.001).  A significant sex by exposure interaction indicated that gestational exposure 

to a high-fat diet increased correct trials for female mice (F(1, 52) = 8.41, p < 0.01).  There were 

no other main effects or interactions.  Figure 15 shows mean error trials across the exposure 

groups and sexes for the first five visual discrimination sessions.  There was a main effect of 

session in that errors decreased across sessions which indicated learning (F(4, 208) = 40.63, p < 

0.001).  There were no other significant main effects or interactions. 

Figure 16 shows mean omitted trials for the three exposure groups by sexes.  There were 

a main effects of session (F(4, 208) = 3.52, p < .01), exposure (F(1, 52) = 9.26, p < 0.01), and sex 

(F(1, 52) = 16.66, p < 0.001).  For all groups, omissions decreased across the first five trials of 

the visual discrimination.  This decrease in omissions was greater for the HFD groups than the 

D+LFD group and overall females emitted more trials than males.  A significant sex by exposure 

interaction indicated that gestational exposure to high-fat diet decrease omitted trials for females 

(F(1, 52) = 8.25, p < .01). 

Figure 17 shows mean correction trials for males and females in the three exposure 

groups.  Similar to omitted trials, there were main effects of session (F(4, 208) = 40.38, p < 
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.001), exposure (F(1, 52) = 4.25, p < .05), and sex (F(1, 52) = 21.38, p < .001).  Correction trials 

decreased across session and this decrease was greater for the high-fat diet groups than D+LFD.  

Furthermore, females tended to require more correction trials relative to males. A significant sex 

by exposure which demonstrated that high-fat diet decreased correction trials for females to a 

greater extent than males (F(1, 52) = 9.74, p < .001). 

Delayed Matching to Position 

 Figure 18 shows accuracy for the three dietary exposure groups by sex.  As the delay 

increased accuracy decreased, which indicates forgetting at longer delays.  There was a 

significant exposure by delay interaction for females (F(14, 168) = 1.933, p = 0.026) in which 

G+HFD females responded more accurately than the two Dextran groups at longer delays. 

Discussion 

 We conducted a detailed examination of gestational exposure to a proinflammatory state 

as well as prevention or amelioration of these effects by immunomodulation on three behavioral 

tasks.  These tasks were selected because they are putative models of executive function and 

sensitive to corresponding neural dysfunction, in rodents (Brown & Bowman, 2002; Owens et 

al., 1991; Owens et al., 1992; Bussey et al., 1996; Robbins, 1996; Sahakian & Owen, 1992; 

Ragozzino, 2007; Pantelis et al., 1999; Russo et al., 2007).  The first procedure tested spatial 

discrimination with reversal.  This task assesses intradimensional shifting and perseverative 

responding, both of which are important aspects of behavioral flexibility (Dalley, Cardinal, & 

Robbins, 2004).  The second task proceeded from a spatial discrimination reversal into a visual 

discrimination; one which has been used as a rodent analogue for extradimensional shifting and 

cognitive flexibility in humans (Birrell & Brown, 2000; Bissonette & Powell, 2012; Bissonette & 
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Roesch, 2017; Dias et al., 1996b, 1996a; Dias, Robbins & Roberts, 1997; Owen et al., 1991).  

The third procedure was a delayed matching-to-position task that measures working memory 

(Sahakian & Owen, 1992). 

Spatial Discrimination Reversal 

 For this task, performance under the original discrimination is rarely informative for 

exposure because deficits are not common.  Instead differences in the extent to which animals 

acquire Reversal 1 is of greatest interest.  Following a reversal, intact performance entails an 

increase in errors and decrease in correct responding.  However, unimpaired animals quickly 

learn to press the lever in the other spatial location resulting in an increase in correct responding 

and decrease in errors.  Delayed learning or the inability to acquire the reversed contingency is 

indicative of perseverative responding, neurodysfunction, and an important component of some 

neurodevelopmental disorders  (Dalley, Cardinal, & Robbins, 2004; Bissonette & Powell, 2012; 

Brown & Bowman, 2002; Colacicco et al., 2002; Dias et al., 1996a, 1996b; Kesner & 

Churchwell, 2011; McAlonan & Brown, 2003; Ragozzino, 2007; Salazar, white, Lacroix et al., 

2004; Clarke, Hill, Robbins, & Robberts, 2011; Izquierdo et al., 2017).   

 In the present experiment, occasional statistical differences were detected for measures 

on the spatial discrimination and its reversal, but these differences were not consistent or 

systematic; overall groups were similar (Figures 11, 12, and 13).  All groups demonstrated 

learning, to an extent.  The number of correct trials performed was low following a reversal and 

increased as sessions progressed.  The inverse was demonstrated for incorrect trials.  Throughout 

the experiment, omissions remained high for all groups, with females overall omitting more trials 

than males and this effect was driven by the D+LFD females. 
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Visual Discrimination 

 Overall, differences in intradimensional shifting observed for the spatial discrimination 

reversal task were also apparent in extradimensional shifting to a visual discrimination.  Namely, 

there were no consistent or systematic differences between the exposure groups in their ability to 

extradimensionally shift to a visual discrimination (Figures 14, 15, 16 and 17).  To an extent 

there was evidence for acquisition of the visual discrimination in all groups because the number 

of correct trials generally increased across sessions.  However the D+LFD group tended to 

underperform on this task (Figure 15).  Within the D+LFD and G+HFD groups, males performed 

more correct trials than females, whereas the sexes did not differ within the D+HFD group.  For 

all groups and sexes, errors were low throughout the visual discrimination, which indicates that 

the superior performance for D+LFD and G+HFD males was due to a reduction in trial 

omissions.  Overall, the D+LFD group underperformed on the extradimensional shift and this 

effect was driven by the poor performance of females. 

 To an extent, glycan pulled performance of the G+HFD group in the direction of the 

D+LFD group.  G+HFD females performed more poorly on the visual discrimination than 

G+HFD males.  Given that these differences were a result of excess omissions and not an excess 

of errors, it is possible that gestational exposure to a high-fat diet improved food-based 

reinforcement.  There is evidence that gestational exposure to a high-fat diet increases the 

palatability of obesogenic foods, like the high-sugar sweetened condensed milk used as a 

reinforcer in this study (Grissom et al., 2014; Zhang et al., 2008; DelParigi, Chen, Salbe, 

Reiman, & Tataranni, 2005; Ong & Muhlhausler, 2011; Sullivan, Smith, & Grove, 2011; Vucetic 

and Reyes, 2010). 
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Delayed Matching to Position 

 For all exposures, response accuracy decreased as a function of delay with few 

differences in the degree of forgetting.  G+HFD females responded more accurately than males 

of the same exposure, but only at short and intermediate delays.  Given that this difference did 

not persist at longer delays, it is unlikely that it reflects differences in working memory and 

instead may be the result of some other difference, or is spurious.  Often, DMTP procedures 

include a choice-initiation response.  This requirement is important because it forces the mouse 

to leave the area proximal to the active lever and respond to some other location in the chamber, 

often equidistant from the two choice levers.  Here, this requirement was not included due to 

excessive omissions observed throughout the spatial and visual discrimination tasks.  Both of 

these procedures required the mouse to initiate a trial by responding on a third lever located on 

the back wall however, this response was often omitted by the D+LFD females during the two 

behavioral flexibility tasks.  It is possible that this omission of a choice-initiation response 

dampened the sensitivity of this measure to differences between exposures.  That said, it does not 

appear to prevented the strain on working memory capacity, because accuracy decreased as 

delays increased. 

 It is also possible that differences in accuracy are the result of attentional differences.  In 

humans, gestational exposure to obesity is associated with an increased risk of developing 

attention-deficit hyperactivity disorder (ADHD) (Rivera et al., 2015; Hargrave et al., 2016).  In 

rodents, maternal HFD resulted in hyperactivity, a symptom of ADHD, in male offspring (Kang 

et al., 2014), however no studies have assessed the relationship between high-fat diet in gestation 

and attention in offspring.  This is relevant because impaired attention can adversely impact 

performance on a delayed matching task – if the animal does not attend to the sample when it is 
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presented, then it cannot respond accurately during the choice (White & Wixted, 1999).  Here 

animals were required to perform five responses on the sample lever.  This procedural detail 

cannot rule-out the possibility of attentional differences between exposures, but these effects 

should have been minimal. 

Conclusion 

 There is a wealth of epidemiological evidence demonstrating an association between a 

low-grade, chronic proinflammatory state during gestation (e.g., maternal high-fat diet) and an 

increase in cognitive deficits, as well as risk of neurodevelopmental disorders like ASD and 

schizophrenia (Cottrell & Ozanne, 2008; Armitage et al., 2005; Schulz, 2010; Hargrave, Jones, 

& Davidson, 2016; Bilbo & Tsang, 2010; Lasselin et al., 2016;).  These associations have been 

causally demonstrated and replicated in experimental models (Tozuka et al., 2010; Wu et al., 

2013; Cordner & Tamashiro, 2015; Bilbo & Tsang, 2010; Lu et al., 2011; Molteni, Barnard, 

Ying,… 2002; Page et al., 2014; Pini et al., 2016; Robb et al., 2017; Sullivan et al., 2014; Tozuka 

et al., 2010).  We predicted that gestational exposure to a high-fat diet would impair 

intradimensional and extradimensional shifting, as well as working memory, relative to control 

D+LFD animals.  We also predicted that the concurrent administration of immunomodulatory 

glycan would prevent or attenuate these dietary-induced deficits. 

 Under the conditions tested in the present study, there was no evidence of behavioral 

inflexibility or impaired working memory as a result of gestational dietary or immunomodulatory 

intervention.  One reason for the inconsistency between findings in the literature and the present 

study, could be due to procedural differences.  Often, feeding higher fat diets, like the one used 

here, will eventually result in obesity (Hariri & Thibault, 2010).  Here, mice fed a high-fat diet 
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gained more weight prior to and throughout pregnancy than LFD mice, however this weight gain 

was not sufficient for a classification of obesity (data not shown).  This deviation from the 

literature was intentional because we sought to assess the effects of gestational exposure to a 

high-fat diet in the absence of maternal obesity.  This is an important distinction. Obesity has 

been shown to cause a wide range of health outcomes, endocrine, immune, and neural changes 

that can impair cognition independent of the macronutrient profile of the diet (Winocur & 

Greenwood, 1999).  Although the dams fed the high-fat diet in this study were found to be 

insulin resistant, these endocrine changes were insufficient for metabolic syndrome (data not 

shown). 

 The findings from this study, or lack thereof, provide further support to the literature 

demonstrating a no adverse effect threshold for chronic, low-grade inflammation resulting from a 

diet high in saturated fatty acids in the absence of maternal obesity and obesity-related disorders 

on higher-order cognitive functions in offspring.  White, Purpera, et al. (2009) similarly did not 

demonstrate developmental programming in offspring gestationally exposed to a high-fat diet in 

the absence of maternal obesity.  Finally, metabolic syndrome is associated with impaired 

cognitive ability in humans and can cause neurological impairment in experimental models 

(reviewed in Panza et al., 2010; Farooqui et al., 2012).  Insulin resistance is but one aspect of 

metabolic syndrome and although cognitive deficits can be observed with insulin resistance, 

these effects are greater when they occur in combination with type 2 diabetes, cardiovascular 

disease, and hypertension (Winocur & Green, 2005).  Importantly the literature investigating the 

role insulin resistance and metabolic syndrome study are primarily conducted with adult rodents 

not exposed to these disease states in utero.  Therefore, prenatal high-fat diet and insulin 

resistance in the dam may be insufficient to induce developmental programming on the 
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endpoints assessed in the present study.  Future research should compare maternal obesity and 

metabolic syndrome due to a high-fat diet, with high-fat diet alone, as well as comparing 

postnatal metabolic or inflammatory insult in order to better elucidate which aspects of maternal 

obesity can cause cognitive impairment on the endpoints assessed in this study.   
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Appendix A 

Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 



 83 

 

Figure 5 

 



 84 

Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9.  
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Figure 10. 
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Figure 11. 
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Figure 13. 
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Figure 15. 
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Figure 16. 
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Figure 17. 
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Figure 18. 
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Appendix B 

Figure Captions 

Figure 1.  Intradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) percent 

accuracy across the first five and last three sessions of each experimental phase, which is 

indicated by a break in data.  The three experimental phases are original discrimination 

(left), reversal 1 (center), and reversal 2 (right).  Data are represented separately for 

exposure (D+Saline, top; D+Poly I:C, middle; G+Poly I:C, bottom) and sex (Female, 

closed circle; Male, open circle).  Accuracy is only calculated for trials on which animals 

responded (correct trials / (correct trials + incorrect trials). 

Figure 2.  Intradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) correct 

trials across the first five and last three sessions of each experimental phase, which is 

indicated by a break in data.  The three phases represented are original discrimination 

(top), Reversal 1 (middle), and Reversal 2 (bottom).  Data are presented separately for 

exposure (D+Saline, left; D+Poly I:C, center; and G+Poly I:C, right) and sex (Female, 

closed circle; Male, open circle).  * significant exposure difference.  ** significant sex 

difference. 

Figure 3.  Intradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) error 

trials across the first five and last three sessions of each experimental phase, which is 

indicated by a break in data.  The three phases of the intradimensional shift are original 

discrimination (top), Reversal 1 (middle), and Reversal 2 (bottom).  Data are presented 

separately for exposure (D+Saline, left; D+Poly I:C, center; and G+Poly I:C, right) and 

sex (Female, closed circle; Male, open circle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 4.  Intradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) omitted 

trials across the first five and last three sessions of each experimental phase, which is 

indicated by a break in data.  The three phases of the intradimensional shift are original 

discrimination (top), Reversal 1 (middle), and Reversal 2 (bottom).  Data are presented 

separately for exposure (D+Saline, left; D+Poly I:C, center; and G+Poly I:C, right) and 

sex (Female, closed circle; Male, open circle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 5.  Extradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) correct 

trials across the first five sessions of the visual discrimination.  Data are presented 

separately for exposure (D+Saline, left; D+Poly I:C, center; and G+Poly I:C, right) and 

sex (Female, closed square; Male, open triangle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 6.  Extradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) error 

trials across the first five sessions of the visual discrimination.  Data are presented 

separately for exposure (D+Saline, left; D+Poly I:C, center; and G+Poly I:C, right) and 

sex (Female, closed square; Male, open triangle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 7.  Extradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) 

omitted trials across the first five sessions of the visual discrimination.  Data are presented 
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separately for exposure (D+Saline, left; D+Poly I:C, center; and G+Poly I:C, right) and 

sex (Female, closed square; Male, open triangle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 8.  Extradimensional Shifting for Acute Inflammation experiment.  Mean (± SEM) 

correction trials across the first five trials of the visual discrimination.  Data are presented 

separately for exposure (D+Saline, left; D+Poly I:C, center; and G+Poly I:C, right) and 

sex (Female, closed square; Male, open triangle).    * significant exposure difference.  ** 

significant sex difference. 

Figure 9.  Working Memory for Acute Inflammation experiment.  Mean (± SEM) accuracy as a 

function of delay (0.01, 2, 4, 6, 8, 12, 16, 20s) for male (open circle) and female (closed 

circle) mice in the three exposures: D+Saline (left), D+Poly I:C (center), and G+Poly I:C 

(right).  * significant exposure difference.  ** significant sex difference. 

Figure 10.  Intradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

percent accuracy across the first five and last three sessions of each experimental phase, 

which is indicated by a break in data.  The three experimental phases are original 

discrimination (left), reversal 1 (center), and reversal 2 (right).  Data are represented 

separately for exposure (D+LFD, top; D+HFD, middle; G+HFD, bottom) and sex 

(Female, closed circle; Male, open circle).  Accuracy is only calculated for trials on which 

animals responded (correct trials / (correct trials + incorrect trials). 

Figure 11.  Intradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

correct trials across the first five and last three sessions of original discrimination (top), 

Reversal 1 (middle), and Reversal 2 (bottom).  Data are presented separately for exposure 

(D+LFD, left; D+HFD, center; and G+HFD, right) and sex (Female, closed circle; Male, 

open circle).  * significant exposure difference.  ** significant sex difference. 

Figure 12.  Intradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

error trials across the first five and last three sessions of original discrimination (top), 

Reversal 1 (middle), and Reversal 2 (bottom).  Data are presented separately for exposure 

(D+LFD, left; D+HFD, center; and G+HFD, right) and sex (Female, closed circle; Male, 

open circle).  * significant exposure difference.  ** significant sex difference. 

Figure 13.  Intradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

omitted trials across the first five and last three sessions of original discrimination (top), 

Reversal 1 (middle), and Reversal 2 (bottom).  Data are presented separately for exposure 

(D+LFD, left; D+HFD, center; and G+HFD, right) and sex (Female, closed circle; Male, 

open circle).  * significant exposure difference.  ** significant sex difference. 

Figure 14.  Extradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

correct trials across the first five trials of the visual discrimination.  Data are presented 

separately for exposure (D+LFD, left; D+HFD, center; and G+HFD, right) and sex 

(Female, closed circle; Male, open circle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 15.  Extradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

error trials across the first five trials of the visual discrimination.  Data are presented 
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separately for exposure (D+LFD, left; D+HFD, center; and G+HFD, right) and sex 

(Female, closed circle; Male, open circle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 16.  Extradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

omitted trials across the first five trials of the visual discrimination.  Data are presented 

separately for exposure (D+LFD, left; D+HFD, center; and G+HFD, right) and sex 

(Female, closed circle; Male, open circle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 17.  Extradimensional Shifting for Chronic Inflammation experiment.  Mean (± SEM) 

correction trials across the first five trials of the visual discrimination.  Data are presented 

separately for exposure (D+LFD, left; D+HFD, center; and G+HFD, right) and sex 

(Female, closed circle; Male, open circle).  * significant exposure difference.  ** 

significant sex difference. 

Figure 18.  Working Memory for Chronic Inflammation experiment. Mean (± SEM) accuracy as 

a function of delay (0.01, 2, 4, 6 8, 12, 16, 20s) for male (open circle) and female (closed 

circle) mice in the three exposures: D+LFD (left), D+HFD (center), and G+HFD (right).  

* significant exposure difference.  ** significant sex difference. 
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Appendix C 

Table 1. 

Exposure Sex 

Original 

Discrimination 
Reversal 1 Reversal 2 

Accuracy 

1 

Accuracy 

2 

Accuracy 

1 

Accuracy 

2 

Accuracy 

1 

Accuracy 

2 

D+Saline 
F 0% 100% 33% 100% 50% 100% 

M 17% 100% 50% 100% 17% 100% 

D+Poly 

I:C 

F 100% 100% 100% 100% 20% 100% 

M 63% 100% 100% 100% 100% 100% 

G+Poly 

I:C 

F 71% 100% 100% 100% 57% 100% 

M 100% 100% 100% 100% 80% 100% 
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Table 2 

Exposure Sex 

Original 

Discrimination 
Reversal 1 Reversal 2 

Accuracy 

1 

Accuracy 

2 

Accuracy 

1 

Accuracy 

2 

Accuracy 

1 

Accuracy 

2 

D+LFD 
F 33% 100% 44% 100% 33% 100% 

M 55% 100% 64% 100% 73% 100% 

D+HFD 
F 44% 100% 67% 100% 56% 100% 

M 50% 100% 80% 100% 80% 100% 

G+HFD 
F 73% 100% 82% 100% 46% 100% 

M 50% 100% 100% 100% 100% 100% 
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Appendix D 

Table Captions 

Table 1.  Acute Inflammation: Percent animals meeting accuracy criteria in Intradimensional 

Shift.  The table shows the percentage of animals in each exposure by sex group for both 

of the accuracy criteria used in the study.  Accuracy 1 refers to the original criteria that 

required 85% accuracy for three consecutive sessions (51 of 60 trials were correct).  

Accuracy 2 refers to the that satisfied the modified contingency, which required 85% 

accuracy for trials on which the animals responded; omissions were excluded from 

calculations. 

Table 2.  Chronic Inflammation: Percent animals meeting accuracy criteria in Intradimensional 

shift.  The table shows the percentage of animals in each exposure by sex group for both 

of the accuracy criteria used in the study.  Accuracy 1 refers to the original criteria that 

required 85% accuracy for three consecutive sessions (51 of 60 trials were correct).  

Accuracy 2 refers to the that satisfied the modified contingency, which required 85% 

accuracy for trials on which the animals responded; omissions were excluded from 

calculations. 
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