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Abstract

Conservation laws play an important role in many areas of natural science. When

we design numerical schemes for conservation laws, we usually assume that initial data

and flux function (the rate of change of quantity of interest) are known exactly. However,

this is generally not the case as these are often obtained through indirect measurements.

As a consequence the initial data and flux function are known only in terms of statistical

quantities like mean, variance and involve some uncertainty. These uncertain inputs should

be handled statistically. In our study, we analyze and implement the Monte Carlo Finite

Volume Method and the Stochastic Finite Volume Method to solve conservation laws in

random media. We particularly focus on Stochastic Finite Volume Method and formulate

an algorithm for conservation laws with random initial data. Our simulations include that

of the inviscid Burgers equation with random inputs.
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Chapter 1

Introduction

1.1 Conservation Laws

Many wave motion problems in Natural Science are modeled by a first order hyperbolic

partial differential equation. In particular, conservation and balance laws are used to describe

wave and advection phenomena in a variety of settings ranging from gas dynamics, modeled

by the Euler equations, to ocean waves, modeled by the shallow water equations. The general

form of balance Laws is given as follows [3]:


∂tU +∇x · F = S

U(x, 0) = U0(x)

(1.1)

where

• U is the vector of conserved quantity, U = U(x, t) : Rd × R+ → Rm

• F is the flux function, F = F (U) = (F 1, ..., F d) : Rm → Rm×d

• S is the source term, S = S(x, t, U) : Rd × R+ × Rm → Rm

This phenomenological observation can be interpreted as: The sum of the time rate of

change of conserved quantity U in any fixed domain and the flux of U across the boundary of

the domain equals U produced or used inside the domain (source). The special case, S = 0 is

called conservation law as the only change in U comes from the quantity entering or leaving

the domain of interest. In particular, when m = 1, System (1.1) is called scalar conservation

law.
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Characteristics of such systems include waves with finite propagation speed and forma-

tion of shocks. In fact, the solutions of (1.1) can involve discontinuities even if the initial

data is smooth, thus the solutions must be sought in “weak” sense. The issue with the weak

solutions is that they are not unique. To obtain uniqueness when d > 1 and N = 1 (scalar

case), an entropy condition is necessary [2]. The weak solution satisfying an entropy condi-

tion is called entropy solution which will be introduced in Chapter 3. The numerical methods

to approximate entropy solutions have been frequently applied. In particular, finite volume

methods have been employed to approximate entropy solutions [59] , [61]. The reason why

finite volume methods are more preferable than finite element methods to solve conservation

laws is that they are more able to capture the shocks in the solutions. Godunov, Engquist-

Osher, Rusanov, Lax Friedrichs methods are some of the well-known finite volume methods

to solve (1.1) deterministic conservation laws (the case without randomness).

The main assumption when a numerical scheme is designed to solve conservation laws is

that the initial data and flux function is known for certain. In general, these data are not

exactly known and can be obtained in terms of statistical quantities of interest such as mean,

variance and higher moments. In such cases, we need to reformulate the conservation law

with random problem data. If we rewrite (1.1) with no source term and random inputs:


∂tU(x, t, ω) +∇x · F (U, ω) = 0

U(x, 0, ω) = U0(x, ω)

(1.2)

where ω is the random variable which represents the uncertainty. The system basically pro-

duces a sample path for each ω to reflect the uncertainty, then we compute its statistical

quantities of all paths and this allows us to make predictions in more realistic scenarios.

To numerically solve (1.2), there have been a lot of recent studies. The numerical methods

including Monte-Carlo Finite Volume Method [9], [13] , Stochastic Collocation Method [43]
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and Stochastic Finite Volume Method [1] have been developed to approximate entropy solu-

tion of random conservation laws. The existence and uniqueness of random entropy solutions

for scalar conservation laws have been shown by Mishra and Schwab [13].

I will present some of the commonly used applications of conservation laws.

1.2 Examples of Conservation Laws

• Traffic Flow Problem [10]

Let’s consider a road starting at point a and ending at point b. Let u(x, t) be the

density of cars at point x , time t. Hence, the total number of cars between the points

a and b can be shown as ∫ b

a

u(x, t)dx

At time t, the rate of change in the number of cars between a and b is given by

d

dt

∫ b

a

u(x, t) = f(u(a, t))− f(u(b, t))

where f represents the flow rate onto and off the street. Supposing that f and u are

continously differentiable functions, we see that

∫ b

a

ut(x, t) = f(u(a, t))− f(u(b, t))

and, therefore,

1

b− a

∫ b

a

ut(x, t) =
f(u(a, t))− f(u(b, t))

b− a

then
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lim
b→a

1

b− a

∫ b

a

ut(x, t) = lim
b→a

f(u(a, t))− f(u(b, t))

b− a

so we obtain

ut = −[f(u)]x

Hence, it can be concluded that the density of cars at point x at time t satisfies the

first order PDE also known as scalar conservation law:

ut + [f(u)]x = 0 (1.3)

where f is a smooth function. However, this is assuming the density of cars is a

continuous function. We aim to attain some sort of notion to say that a function u

which is not even differentiable will “solve” the PDE.

(1.3) is the general form of scalar conservation laws which will be studied more detailed

in Chapter 2.

• Euler Equations of Gas Dynamics [7]

When the motion of the gas is modeled, it is difficult to track the motion of each

molecule of gas individually, since gas consists of a huge number of molecules. Instead,

a more macroscopic model can be used. The quantities of interest are the gas density,

velocity field and gas pressure.

Consider a tube that is filled with gas and assume that the initial position of the

diaphragm is uncertain. The relevant conservation law can be written as :

ut + (ρu)x = 0

4



where u is the gas density, ρ is the velocity field. To handle the unknown initial

condition, we benefit from some prior knowledge about the field and can write

u(x, 0) =


1 if x ≤ xd

0.125 else

we set xd = 0.5 + 0.05ω where the stochastic parameter ω ∈ [−1, 1] parametrizes a

uniform law.

This is an example of conservation law with random initial data which will be explained

more deeply in Chapter 3.

• Elastic Waves in Heterogeneous Media [24]

Consider the propagation of compressional waves in heterogenous (spatially dependent)

media in 1-D. The motion of waves in elastic rod with density ρ(x), strain ε(x, t) and

stress σ(ε, x) can modeled by kinematic relation and Newton’s second law:


εt − ux = 0,

mt − σx = 0,

where m(x, t) = ρ(x)u(x, t) denotes momentum. This system can be written as a

conservation law

qt + f(q, x)x = 0

where

q(x, t) =

 ε

ρu

 =

 ε
m

 f(x, t) =

−m/ρ(x)

−σ(ε, x)



5



• Shallow Water Equation [11]

The system of one-dimensional equations of shallow water theory, neglecting the effects

of friction and inclination of the bottom, has the form of two quasilinear differential

equations :


ht + vhx + hvx = 0

vt + ghx + vvx = 0

where h = h(x, t) is the depth of the flow, v = v(x, t) denotes the flow velocity over

the cross section and g is the gravitational acceleration. This system can be rewritten

as

ut + A(u)ux = 0, u =

h
v

 , A(u) =

v h

g v


Let U(u) and F (u) satisfy the vector equation UuA(u)u = Fu. Then the system admits

infititely many linear conservation laws:

[U(u)]t + [F (u)]x = 0

1.3 Outline of the Dissertation

This dissertation’s main interest is to analyze the methods to produce numerical simu-

lations for conservation laws in random media in one dimensional space, in particular con-

servation laws with random initial data.

First, the deterministic scalar case for Conservation Laws in 1-D will be analyzed in Chap-

ter 2. The prototype for conservation laws Burger’s equation will be introduced and the

methods to solve deterministic inviscid Burger’s equation, i.e. finite volume methods and a

particular flux limiter method will be discussed. Some numerical experiments will be shown
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and the efficiency of these methods will be stated.

In Chapter 3, the random conservation laws and the methods to solve random conservation

laws in particular Burger’s equation with random initial data will be discussed. I will men-

tion the general numerical challenges to simulate random conservation laws. The algorithms,

implementations, convergence analysis and work estimates for Monte Carlo Finite Volume

Method and Stochastic Finite Volume Method will be presented. Stochastic Finite Volume

Method will be focused on more detailed. I will show how its algorithm is obtained. How the

methods for deterministic case are used to solve random conservation laws will be explained.
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Chapter 2

Deterministic Conservation Laws

2.1 Burger’s Equation

Let’s consider a scalar one-dimensional conservation law:

ut + f(u)x = 0 (2.1)

The scalar transport equation can be written as

ut + a(x, t)ux = 0 (2.2)

where a(x, t) is the velocity field. A special case is the linear advection(transport)

equation where the velocity is constant a(x, t) = a. However, the most general and natural

phenomena are nonlinear. In such models, the velocity field depends on the quantity u itself.

The simplest nonlinear case is a(x, t) = u(x, t) hence (2.2) becomes

ut + uux = 0 (2.3)

which is called inviscid Burger’s equation. It can be rewritten in the conservative form

ut + (
u2

2
)x = 0 (2.4)

Burger’s equation serves as a prototype for scalar conservation laws where flux function

f(u) = u2

2
. It is regarded as the simplest model for nonlinear advection and diffusion. I will

mainly focus on inviscid Burger’s equation in our applications.
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2.1.1 Riemann problems for Burgers Equation

The characteristics x(t) for Burger’s equation ,when u is smooth, are given by


x′(t) = u(x(t), t)

x(0) = x0

We consider the initial data

u0(x) =


uL if x < 0

uR if x > 0

Data consists of piecewise constants seperated by a discontinuity of the origin. The

initial value problem for a conservation law ut + f(u)x = 0 is called Riemann problem. The

solution u does not vary along the characteristics, that is, u(x(t), t) = u0(x0). Therefore, the

characteristic solution is [5]

x(t) = u0(x0)t+ x0

One of the simplest choices for the Riemann problem is uL = 1 and uR = 0. For x0 < 0,

the characteristics will have velocity u(x0) = 1, while for x0 > 0 the velocity is 0. Hence,

the characteristics will intersect immediately. It reveals that even smooth initial data can

cause intersection of characteristics, so smooth solutions cannot be obtained. The formation

of discontinuities in the solution of Burger’s equation are expected. Therefore, the solutions

have been interpreted in the weak sense. However, the weak solutions are not unique. The

numerical methods for approximating entropy solutions of systems of Burger’s equation have

been extensively developed. One of the most commonly used numerical methods is finite

volume methods.
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2.2 Finite Volume Methods for Scalar Conservation Laws

2.2.1 Cell Averages

We want to capture the discontinuities occurring in the solution of conservation laws,

hence finite volume methods are designed to numerically solve scalar conservation laws.

Let’s consider the uniform discretization of the spatial domain [xL, xR]. Hence the discrete

points are obtained as xj = xL + (j + 1/2)∆x, for j = 0, .., N , where ∆x = xR−XL

N+1
. An

uniform discretization in time with time step ∆t will be used. The time levels are denoted

by tn = n∆t. Let’s define the cell averages at each time level [5],

unj ≈
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx

which is the main quantity of interest for our approximation. The aim of the finite

volume method is to iterate the cell averages at every time step, starting with

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx

Now, let’s suppose that we know the cell averages at a certain time level. How do we

find the cell averages at the next time level ? If we integrate (2.1) over the spatial cell

[xj+1/2, xj−1/2) and time interval [tn, tn+1),

∫ tn+1

tn

∫ xj+1/2

xj−1/2

ut dxdt+

∫ tn+1

tn

∫ xj+1/2

xj−1/2

f(u)x dxdt = 0

hence,

∫ xj+1/2

xj−1/2

u(x, tn+1) dx−
∫ xj+1/2

xj−1/2

u(x, tn) dx = −
∫ tn+1

tn
f(u(xj+1/2, t) dt+

∫ tn+1

tn
f(u(xj−1/2, t) dt

10



Figure 2.1: Finite volume grid displaying cell averages and fluxes

Defining

F̄ n
j+1/2 =

1

∆t

∫ tn+1

tn
f(u(xj+1/2, t)dt (2.5)

and dividing both sides by ∆x, it is obtained [5]

un+1
j = unj −

∆t

∆x
(F̄ n

j+1/2 − F̄ n
j−1/2) (2.6)

It can be interpreted that the change of cell average is given by the difference in fluxes

across the boundary of the cell. The main objective in a finite volume scheme is an efficient

procedure to approximate fluxes F̄ n
j−1/2 , F̄ n

j+1/2. We can see the illustration of the grid with

cell averages and fluxes in the Figure 2.1.
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Godunov came up with a brilliant approach for approximating the numerical fluxes in

(2.6). As the cell averages unj are constant in each spatial cell at each time level, Godunov

figured that they define a Riemann problemn at each cell interface xj+1/2 [12]:


ut + f(u)x = 0

u(x, tn) =


unj , if x < xj+1/2

unj+1 , if x > xj+1/2

(2.7)

Thus, at every time level, the cell averages define a superposition of Riemann problems

of this form. The solution of each Riemann problem ūj(x, t) of (2.7) can be written as a

function of a single variable a =
x−xj+1/2

t−tn

ūj(x, t) = ūj(
x− xj+1/2

t− tn
) (2.8)

Assuming the the continuity of the flux, it is observed that at a = 0 , f(ūj(0)) is well

defined and f(ūj(0
+)) = f(ūj(0

−)). The edge-centered flux value can be defined as [5]

F n
j+1/2 := f(ūj(0

+)) = f(ūj(0
−))

The numerical flux does not change over the time hence can be explicitly computed as

F̄ n
j+1/2 =

1

∆t

∫ tn+1

tn
f(u(xj+1/2, t) dt = F n

j+1/2

If we plug that into (2.6),

un+1
j = unj −

∆t

∆x

(
F n
j+1/2 − F n

j−1/2

)
(2.9)

which is the standard form of a finite volume scheme for conservation laws.
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We can compute explicit formulas for the numerical fluxes attaining the value of the

flux of the Riemann problem at the interface xj+1/2. Some different schemes to calculate

numerical fluxes can be presented as follows.

2.2.2 Godunov Scheme

For non-convex flux functions, Godunov came up with the following formula to compute

numerical flux [12]

F n
j+1/2 = F (unj , u

n
j+1) =


minunj ≤θ≤unj+1

f(θ) if unj ≤ unj+1

minunj+1≤θ≤unj f(θ) if unj+1 ≤ unj

This formula requires calculating an optimization problem, hence the computation can

be complicated. Instead, we will benefit from the following fact to implement Godunov

scheme.

Lemma 2.1. If the flux function is strictly convex and f has a single minimum point at k

and no local maxima, Godunov scheme can be rearranged as [5]

F n
j+1/2 = F (unj , u

n
j+1) = max

(
f(max(unj , k)), f(min(unj+1, k))

)
(2.10)

I will mainly be doing simulations for the solutions of Burger’s equation. The flux

function u2

2
, so there is a single minimum at 0. (2.10) can be rewritten for Burger’s equation

F n
j+1/2 = F (unj , u

n
j+1) = max

(
f(max(unj , 0)), f(min(unj+1, 0))

)
(2.11)

In the following numerical examples, the numerical flux (2.11) is used.

13



Figure 2.2: Godunov method applied to Example 2.1 at time t=1.5

Example 2.1. Consider Burger’s equation (2.3) with the following Riemann data

u(x, 0) =


1 if x < 0

0 if x > 0

The numerical solution with the spatial step size h = 0.04 can be seen in Figure 2.2.

The solution doesn’t oscillate nearby the shock and is stable.

Example 2.2. Consider another Burger’s equation (2.3) with the initial data

u(x, 0) = sin(4πx) − 1 ≤ x ≤ 1

Using periodic boundary conditions and with the step size h = 0.04 , the numerical

solution obtained by Godunov scheme is plotted in Figure (2.3). The solution includes both

shocks and rarefaction waves which is why it is called N-wave.

14



Figure 2.3: Godunov method applied to Example 2.2 at time t=1.5

Next, we will see some approaches that approximate the solutions of the Riemann

problem by replacing the exact solution with two waves, one traveling to the left of the

interface with speed slj+1/2, and another to the right srj+1/2 [5].

Lemma 2.2. (Rankine-Hugoniot condition) The classical paradigm about PDEs is that the

solutions must be differentiable functions. However, the weak solutions have to be neither

differentiable nor continuous. This implies that weak solutions can contain discontinuities.

These discontinuities appear in nature as shock waves. The shock speed must satisfy [5]

s(t) =
f(uR(t))− f(uL(t))

uR(t)− uL(t)
(2.12)

Now, let’s consider the approximation to the solution of (2.7)

u(x, t) =


unj if x < slj+1/2t

unj+1/2 if slj+1/2t < x < srj+1/2t

unj+1 if x > srj+1/2t

(2.13)
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applying Rankine-Hugoniot condition


f(unj+1)− fnj+1/2 = srj+1/2(unj+1 − unj+1/2)

f(unj )− fnj+1/2 = slj+1/2(unj − unj+1/2)

If we solve this system for fnj+1/2

fnj+1/2 =
srj+1/2f(unj )− slj+1/2f(unj+1) + srj+1/2s

l
j+1/2(unj+1 − unj )

srj+1/2 − slj+1/2

(2.14)

and choose the wave speeds to be equal in opposite signs, srj+1/2 = −slj+1/2 = s .

(2.14) simplifies to

fnj+1/2 =
f(unj+1) + f(unj )

2
−
s(unj+1 − unj )

2
(2.15)

Different choices of the speeds will describe different schemes. Three of them are pre-

sented as follows [5].

2.2.3 Lax-Friedrichs Scheme

To ensure that waves occurring at neighboring Riemann problems not to interact 2.13,

Lax-Friedrichs have chosen the wave speeds as [5]

srj+1/2 = −∆x

∆t
, srj+1/2 =

∆x

∆t

If we plug these into (2.15) we get Lax-Friedrichs flux

F n
j+1/2 =

f(unj+1) + f(unj )

2
− ∆t

2∆x
(unj+1 − unj ) (2.16)

to be substituted into (2.9).

The numerical results for Example 2.2 using Lax-Friedrichs scheme is plotted in Figure

(2.4). We can observe the obvious diffusions nearby the shock.
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Figure 2.4: Lax Friedrichs method applied to Example 2.1 at t=1.5

2.2.4 Rusanov Scheme

The Lax Friedrichs scheme is very diffusive around shocks. The main reason for that

lies in the choice of the wave speeds. These speeds were the maximum allowed speeds and

did not take into the account the speeds of propagation of the problem under consideration.

An improvement in the choice of speeds can be made by locally selecting [5]

srj+1/2 = −slj+1/2 = max(|f ′(unj )|, |f ′(unj+1)|)

If we plug this into (2.15)

F n
j+1/2 =

f(unj+1) + f(unj )

2
−

max(|f ′(unj )|, |f ′(unj+1)|)
2

(unj+1 − unj )

Example 2.3. Consider Burger’s equation (2.3) with the following Riemann data

u(x, 0) =


1 if x < 0

−1 if x > 0

17



Figure 2.5: Rusanov method applied to Example 2.3 at t=0.5

Figure (2.5) shows the numerical result which is the rarefaction wave solution.

2.2.5 Engquist-Osher Scheme

Engquist-Osher scheme has the flux [5]

F n
j+1/2 =

f(unj+1) + f(unj )

2
− 1

2

∫ unj+1

unj

|f ′(x)|dx

When f has a single minimum k and no maxima, i.e. Burger’s equation, Engquist-Osher

flux can be rearranged as

F n
j+1/2 = f(max(unj , k)) + f(min(unj+1, k))− f(k)

When we plug the flux into (2.9) the term f(k) will get cancelled. Hence, we can rewrite

the flux

F n
j+1/2 = f(max(unj , k)) + f(min(unj+1, k))

18



Figure 2.6: Engquist-Osher method applied to Example 2.2 at t=0.5

Therefore, Engquist Osher scheme is regarded as flux splitting scheme which splits the

flux into its negative and positive parts taking the direction of propagation into account. In

the particular case Burger’s equation, it should be recalled that k = 0.

The numerical solution of Example 2.2 with Engquist-Osher flux can be seen in Fig-

ure 2.6. Like Rusanov scheme, we can see the rarefaction wave formation without lots of

diffusions.

• Comparison of Finite Volume Schemes

We compare all the numerical fuxes presented in this section for two sets of initial data.

In other words, the behaviour of each scheme for shock wave and rarefaction wave solutions.

First, we consider Example 2.1 and compare the four different numerical fluxes we’ve used on

a mesh consisting of 50 points. We can see the shock wave formation and how each scheme

handles the shock in Figure 2.7. It reveals that Godunov and Engquist-Osher are superior to

Rusanov and Lax Friedrichs in terms of the behaviour and stability nearby the shock wave.

Secondly, the comparison of finite volume schemes for Example 2.2 is shown in Figure

2.8. The solution involves rarefaction wave because of the initial data. Again, Godinov
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Figure 2.7: Comparison of all methods for Example 2.1 at t=0.5

and Engquist-Osher have turned out to be most efficient schemes in terms of capturing the

rarefaction waves.

It should be noted that in both cases Lax-Friedrichs and Rusanov schemes have faster

run times than other two methods. However, since our aim is to obtain efficiency nearby the

shock and rarefaction waves, we will use Godunov and Engquist Osher schemes when we do

simulations for Random Conservation Laws.

2.3 Flux Limiter Methods

High order flux methods like Lax-Wendroff scheme do not behave well at discontinuities

and low order flux methods like the upwind scheme do not work well in smooth regions.

To benefit from the advantages of both types of methods, high resolution methods, which

are at least second order accurate on smooth solutions and reduce the amount of numerical

dissipation nearby the discontinuities, have been studied to solve nonlinear conservation laws.

In particular, the flux limiter method with which we can arrange the flux depending on

the region can be useful. One can rewrite high order flux as the sum of low order flux and

corrector [6]
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Figure 2.8: Comparison of all methods for Example 2.2 at t=0.5

fH = fL + [fH − fL].

In a flux limiter method, the magnitude of this correction depends on the data, so the

flux becomses

fH = fL + φ[fH − fL],

where φ is the limiter. φ is chosen as near 1 if data is smooth and we want it to be close

to 0 near discontinuities. One particular flux limiter method which have been presented by

Galiano and Zapata as follows

• TVD Flux Limiter Method [4]

Consider the conservative hyperbolic equation


ut + f(u)x = 0, x ∈ R t ≥ 0

u(x, 0) = u0(x)

where u = u(x, t) is a scalar field carried along by a nonlinear flux function f = f(x, t).
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Definition 2.1. A numerical method is called Total Variation Diminishing (TVD) if for all

grid functions un,

TV (Un+1) ≤ TV (Un)

where

TV (Un) =
∑
j

|unj+1 − unj |

The aim of the new method is to build a method that reduces the numerical diffusion at

discontinuities and is accurate and TVD stable. In order to do that, second order accurate

in smooth regions Richtmyer two-step Lax Wendroff method will be incorporated in first

order accurate in shock wave solutions conservative upwind scheme .

Defining the discrete mesh points (xj, tn) by xj = jh and tn = nk where j ∈ Z and

n ∈ N , h is the spatial size and k is the time step. The Richtmyer two-step Lax Wendroff

scheme has the predictors

u
n+1/2
j+1/2 =

1

2

[
unj+1 + unj −

k

h
(f(unj+1)− f(unj ))

]
(2.17)

u
n+1/2
j−1/2 =

1

2

[
unj + unj−1 −

k

h
(f(unj )− f(unj−1))

]
(2.18)

with the corrector step

un+1
j = unj =

k

h

[
f(u

n+1/2
j+1/2 )− f(u

n+1/2
j−1/2 )

]
The upwind scheme is given by

un+1
j = unj −

k

h

[
λ+(f(unj )− f(unj−1))− λ−(f(unj+1)− f(unj ))

]
where
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λ+ = max
( fu(unj )

|fu(unj )|
, 0
)
, λ− = min

( fu(unj )

|fu(unj )|
, 0
)

If we add the new approximation point un+1/2
j in the predictor step of Richtmyer two-step

Lax Wendroff method using upwind scheme,

u
n+1/2
j = unj −

k

2h

[
λ+(f(unj )− f(unj−1))− λ−(f(unj+1)− f(unj ))

]
(2.19)

We can write the corrector step of flux limiter scheme proposed by Galiano and Zapata

with the predictors (2.17), (2.18) and (2.19),

un+1
j = u

n+1/2
j − k

h

[
φ(θ

n+1/2
j )

(
f(u

n+1/2
j+1/2 )− f(u

n+1/2
j )

)
− φ(θ

n+1/2
j−1/2 )

(
f(u

n+1/2
j )− f(u

n+1/2
j−1/2 )

)]

where

θ
n+1/2
j =

|f(u
n+1/2
j )− f(u

n+1/2
j−1/2 )|

|f(u
n+1/2
j+1/2 )− f(u

n+1/2
j )|+ |f(u

n+1/2
j )− f(u

n+1/2
j−1/2 )|

θ
n+1/2
j−1/2 = 1− θn+1/2

j

The flux function φ is defined as

φ(θ
n+1/2
j ) =


0 bnj ≤ 0,
θ
n+1/2
j bnj > 0 and | k

h
fu(u

n
j )| ≤ 1

2

1
2
θ
n+1/2
j bnj > 0 and | k

h
fu(u

n
j )| > 1

2
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Figure 2.9: Flux limiter method applied to Example 2.4 at t=0.4

with the local flow parameter

bnj =


unj+1−unj
unj −unj+1

k
h
fu(u

n
j ) ≥ 0

unj −unj−1

unj+1−unj
k
h
fu(u

n
j ) < 0

Example 2.4. Consider Burger’s equation (2.3) with the following Riemann data

u(x, 0) =


2 if x < 0

1 if x > 0

The numerical result with the spatial step size h = 0.0125 is shown in Figure (2.9). The

solution does not disperse nearby the shock and is stable.
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Some numerical properties of the methods such as consistency, linear stability and TVD

stability have been shown by Galiano and Zapata [4]. I will give details on proving the

consistency.

Proposition 2.1. The scheme is consistent. In fact, it is first order accurate in time and

second or first order accurate in space depending on the value of θ.

Proof: It needs to be shown that truncation error

Γnj (u) = Lh,ku
n
j − Lu = Lh,ku

n
j − (ut + f(u)x)

goes to zero as h, k → 0. Assuming u and f(u) are smooth functions, we can use Taylor

expansions about (x, t).

Lh,ku
n
j = un+1

j − un+1/2
j +

k

h

[
θ
(
f(u

n+1/2
j+1/2 )− f(u

n+1/2
j )

)
+ (1− θ)

(
f(u

n+1/2
j )− f(u

n+1/2
j−1/2 )

)]

with

un+1
j = u(xj, tn+1/2) +

k

2
ut(xj, tn+1/2) + k2utt(xj, tn+1/2)

8
+ k3uttt(xj, tn+1/2)

48
+O(k4)

and

f(u
n+1/2
j±1/2 ) = f(u(xj, tn+1/2))±h

2
f(u(xj, tn+1/2)x+h

2f(u(xj, tn+1/2))xx
8

±h3f(u(xj, tn+1/2))xxx
48

+O(h4)

hence

Γnj (u) = Lh,ku
n
j − Lu

=
k

2
ut +

k2

8
utt +

k3

8
uttt +O(k4) +

k

h

[
θ
(h

2
f(u)x +

h2

8
f(u)xx +

h3

48
f(u)xxx +O(h4)

)
+ (1− θ)

(h
2
f(u)x −

h2

8
f(u)xx +

h3

48
f(u)xxx −O(h4)

)]
− ut − f(u)x (2.20)
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If we benefit from

ut = −f(u)x ⇒ utt = −f(u)xt ⇒ uttt = −f(u)xtt

The truncation error simplifies to

−k
8
f(u)xt −

k2

48
f(u)xtt +O(k3) + +(2θ − 1)

h

8
f(u)xx +

h2

48
f(u)xxx + (2θ − 1)O(h3)

thus

Γnj (u) = (2θ − 1)O(h) +O(h2) +O(k2)

It should be noted that if the solution is in the smooth region, θ is expected to be close

to 1/2 so the scheme would be second order accurate in space.

Proposition 2.2. The scheme is TVD stable if the CFL condition is satisfied:

∣∣∣k
h
fu(u

n
j )
∣∣∣ ≤ 1 ∀j, n

2.4 Conservation Laws in Heterogeneous Media

If the flux function is spatially dependent (heterogeneous), system (2.1) can be rewritten

as:

ut + f(u, x)x = 0 (2.21)

where u(x, t) ∈ Rm and f : Rm × R→ Rm.

Let’s reconsider Riemann problem with initial data at each cell interface xj−1/2:

u(x, 0) =


Uj−1 if x < xj−1/2

Uj if x > xj−1/2

(2.22)
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Riemann solution of m equations is m waves that are denoted by W p
i−1/2 propagating

with speeds sj−1/2 where p = 1, 2, ...,m and m = 1 is the scalar case[24].

We have previously seen that Riemann solution involves discontinous waves (shocks)

and initial difference can be decomposed

Uj − Uj−1 =
m∑
p=1

W p
j−1/2 (2.23)

Using the finite volume and cell average approach covered in this chapter, the flux

function f(u, x) can be discretized using cell centered flux function. In other words, the flux

function is assumed to take the same value throughout the ith cell. Hence, (2.21) can be

rewritten as Riemann problem at each interface as follows [24]

ut + Fj−1/2(u, x)x = 0

where

Fj−1/2(u, x) =


fj−1(u) if x < xj−1/2

fj(u) if x > xj−1/2

Bae, Leveque, Mitran and Rosmanith [24] decomposed flux difference between cells into

waves and used that in wave propagation algorithm to solve (2.21). The algorithm is based

on eigenvalues spj−1/2 and eigenvectors rpj−1/2 of approximate Jacobian matrix Aj−1/2 which

will be computed using f(Uj−1) and f(Uj) for p = 1, 2, ...,m. The flux difference can be

decomposed as a linear combination of the eigenvectors

fj(Uj)− fj−1(Uj−1) =
m∑
p=1

βpj−1/2r
p
j−1/2 =

m∑
p=1

Zp
j−1/2

with
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βj−1/2 = R−1
j−1/2(fj(Uj)− fj−1(Uj−1))

The vectors Zp
j−1/2 are called f-waves. The Riemann solution (2.23) can also be written as a

linear combination of eigenvectors

Uj − Uj−1 =
m∑
p=1

W p
j−1/2 =

m∑
p=1

αpj−1/2r
p
j−1/2 (2.24)

One of the famous approaches to approximate Jacobian matrix Aj−1/2 is Roe average:

Aj−1/2(Uj − Uj−1) = fj(Uj)− fj−1(Uj−1) (2.25)

Multiplying both sides of (2.24) by Aj−1/2 and using the fact spj−1/2 is eigenvalue of

Aj−1/2

fj(Uj)− fj−1(Uj−1) =
m∑
p=1

αpj−1/2s
p
j−1/2r

p
j−1/2 =

m∑
p=1

Zp
j−1/2 (2.26)

and it follows from (2.24) and (2.26) that Zp
j−1/2 = spj−1/2W

p
j−1/2.

The wave propagation algorithm [24] can be obtained as follows

Un+1
j = Un

j −
∆t

∆x

[ m∑
p=1

(spj−1/2)+W p
j−1/2 +

m∑
p=1

(spj−1/2)−W p
j−1/2

]
where s+ = max(s, 0) and s− = min(s, 0). We should notice that this is how fluctuations

are seperated as right going waves s > 0 and left going waves s < 0. To upgrade this

algorithm to a high resolution method, correction fluxes can be added

Un+1
j = Un

j −
∆t

∆x

[ m∑
p=1

(spj−1/2)+W p
j−1/2 +

m∑
p=1

(spj−1/2)−W p
j−1/2

]
− ∆t

∆x
[F̃j+1/2− F̃j−1/2] (2.27)

where
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F̃j+1/2 =
1

2

m∑
p=1

|spj+1/2|
(

1− ∆t

∆x
|spj+1/2|

)
W̃ p
j+1/2 (2.28)

Here W̃j+1/2 is the limited version of Wj+1/2, obtained by comparing Wj+1/2 to WK+1/2

which is the wave from the adjacent Riemann problem on the upwind side,

K =


j − 1 if spj+1/2 > 0

j + 1 if spj+1/2 < 0

Using the fact that Z̃p
j+1/2 = spj+1/2W̃

p
j+1/2 , (2.27) can be rearranged as

F̃j+1/2 =
1

2

m∑
p=1

sgn(spj+1/2)
(

1− ∆t

∆x
|spj+1/2|

)
Z̃p
j+1/2

And wave propagation algorithm (2.27) can be rewritten as

Un+1
j = Un

j −
∆t

∆x

[ ∑
p:sp

j−1/2
>0

Zp
j−1/2 +

∑
p:sp

j+1/2
<0

Zp
j+1/2

]

− ∆t

2∆x

[
m∑
p=1

sgn(spj+1/2)
(

1− ∆t

∆x
|spj+1/2|

)
Zp
j+1/2 −

m∑
p=1

sgn(spj−1/2)
(

1− ∆t

∆x
|spj−1/2|

)
Zp
j−1/2

]

Without loss of generality, let’s assume p : spj+1/2 > 0 is satisfied for p = 1, .., k and

p : spj−1/2 > 0 is satisfied for p = 1, .., t. Then this expression can be simplified as

Un+1
j = Un

j −
∆t

∆x

[ t∑
p=1

Zp
j−1/2 +

m∑
p=k+1

Zp
j+1/2

]
− ∆t

2∆x

[
−

m∑
p=k+1

Zp
j+1/2(1 +

∆t

∆x
spj+1/2) +

m∑
p=t+1

Zp
j−1/2(1 +

∆t

∆x
spj−1/2)

]

− ∆t

2∆x

[ k∑
p=1

Zp
j+1/2(1− ∆t

∆x
spj+1/2)−

t∑
p=1

Zp
j−1/2(1− ∆t

∆x
spj−1/2)

]
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and then

Un+1
j = Un

j −
∆t

2∆x

[
2

t∑
p=1

Zp
j−1/2 +

m∑
p=t+1

Zp
j−1/2 −

t∑
p=1

Zp
j−1/2

2
m∑

p=k+1

Zp
j+1/2 +

k∑
p=1

Zp
j+1/2 −

m∑
p=k+1

Zp
j+1/2

]

+
∆t2

2∆x2

[ m∑
p=k+1

Zp
j+1/2s

p
j+1/2 −

m∑
p=t+1

Zp
j−1/2s

p
j−1/2 +

k∑
p=1

Zp
j+1/2s

p
j+1/2 −

t∑
p=1

Zp
j−1/2s

p
j−1/2

]

Hence, the finalized version of wave propagation algorithm is

Un+1
j = Un

j −
∆t

2∆x

[ m∑
p=1

(
Zp
j−1/2 + Zp

j+1/2

)]
+

∆t2

2∆x2

[ m∑
p=1

(
Zp
j+1/2s

p
j+1/2 − Z

p
j−1/2s

p
j−1/2

)]

Now we can show the method is second order accurate [24]. Recalling that sj+1/2
p is

eigenvalue of A we can get,

Un+1
j = Un

j −
∆t

2∆x

[ m∑
p=1

(
Zp
j−1/2 + Zp

j+1/2

)]
+

∆t2

2∆x2

[
Aj+1/2

m∑
p=1

Zp
j+1/2 − Aj−1/2

m∑
p=1

Zp
j−1/2

]
(2.29)

Provided that the flux f(u, x) is smooth in x, we rewrite f-waves

f(Uj, xj)− f(Uj−1, xj−1) =
m∑
p=1

Zp
j−1/2 (2.30)

and plug that into (2.29)
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Un+1
j = Un

j −
∆t

2∆x
(f(Uj+1, xj+1)− f(Uj−1, xj−1))+

∆t2

2∆x2
[Aj+1/2(f(Uj+1, xj+1)− f(Uj, xj))− Aj−1/2(f(Uj, xj)− f(Uj−1, xj−1))]

this matches with the Taylor series expansion of the exact solution. We know from

(2.21) that ut + f(u, x)x = 0, therefore

ut = −f(u, x)x

utt = −[f(u, x)x]t = [f(u, x)t]x = −[fu(u, x)ut]x = [fu(u, x)f(u, x)x]x

taking Aj−1/2 = f ′j−1(Uj−1) and Aj+1/2 = f ′j(Uj) , we obtain

u(x, tn+1) = u(x, tn)−∆tf(u, x)x +
1

2
∆t2[fu(u, x)f(u, x)x]x +O(∆t3)

⇒ u(xj, tn+1) = u(xj, t
n) + ∆tut(xj, t

n) +
1

2
∆t2utt(xj, t

n) +O(∆t3)

and O(∆t3) can be replaced by O(∆t∆x2).
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Chapter 3

Random Conservation Laws

Let’s reconsider the system of conservation laws with random inputs:


∂tU(x, t, ω) +∇x · F (U, ω) = 0

U(x, 0, ω) = U0(x, ω)

(3.1)

To develop efficient algorithms for quantifying uncertainty in solutions of conservation

laws with random inputs is difficult. One challenge is that discontinuities in the solution

in physical space translates into the random solution. Another challenge is the curse of

dimensionality which is as the dimension of space increases the available information becomes

sparse and the uncertainty is getting very large, especially when parameter space is complex.

Our mathematical formulation of scalar conservation laws with random data will use the

concept of random variables taking values in function spaces. We will need some preliminary

probability definitions.

3.1 Random Fields

Definition 3.1. A probability space is a triple (Ω,F ,P) where Ω is a sample space (set of

outcomes); F is a collection of events that include Ω and ∅ with the property that F is closed

under countable intersections and unions, complementation ; P is a probability function that

assigns probability to events in F ,i.e. P(Ω) = 1 and P(∅) = 0 [8].

On Ω, any real-valued function X defined is a random variable. If (E,G) is a second mea-

surable space, then an E-valued random variable is any mapping X : Ω→ E such that the

set { ω ∈ Ω : X(ω) ∈ A}∈ F for any A ∈ G meaning X is a G-measurable mapping from Ω

into E [3].
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Lemma 3.1. With the assumption that E is a metric space and the Borel σ-field B(E);

the set of all integrable, E-valued random variables X is denoted by L1(Ω,F ,P;E). It is

equipped with the norm [3]

||X||L1(Ω;E) =

∫
Ω

||X(ω)||EP(dΩ) = E(||X||E)

More generally, for 1 ≤ p ≤ ∞ L1(Ω,F ,P;E) is defined as the set of p-summable

random variables taking values in E and is equipped with norm

||X||Lp(Ω;E) := (E(||X||pE))1/p, 1 ≤ p ≤ ∞

Definition 3.2. A random field is a measurable mapping U : ω 7→ U(x, t, ω) from (Ω,F) to

((C([0, T ], L1(Rd))m , B((C([0, T ], L1(Rd)))m).

To deal with uncertainty, let’s suppose (Ω,F ,P) is the underlying probability space .

The uncertain inital data can be modeled as a random field

U0 : (Ω,F) 7→ (L1(Rd)m,B((L1(Rd))m)) (3.2)

Similarly, the flux function can be modeled as random field

F : (Ω,F) 7→ (C1(R;Rd)m,B((C1(R;Rd))m))

Using these random fields, Mishra and Schwab defined the random entropy solution of

U of (3.1) [13].

Definition 3.3. A random field U : Ω 7→ (L1
loc(Rd ×R+))m is a random entropy solution of

the random conservation law (3.1) with random initial data, flux, if it satisfies the following

two conditions for all test functions ϕ ∈ C1
0(Rd × R+):
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1. Weak Solution: For almost every ω ∈ Ω , U(., ., ω) satisfies the following integral

identity, :

∫
R+

∫
Rd

(
U(x, t, ω)ϕt(x, t) +

d∑
j=1

F j(U(x, t, ω), ω)
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫
Rd

U0(x, ω)ϕ(x, 0)dx = 0

2. Entropy Condition: For any pair of deterministic entropy η and stochastic entropy flux

Q(ω; ·) (i.e. η, Qj with j = 1, 2, ..., d are functions such that η is convex and such that

Q′j(ω; ·) = η′F ′j(ω; ·) for all j) and for almost every ω ∈ Ω , U satisfies the inequality

∫
R+

∫
Rd

(
ηU(x, t, ω)ϕt(x, t) +

d∑
j=1

Qj(U(x, t, ω), ω)
∂

∂xj
ϕ(x, t)

)
dxdt

+

∫
Rd

ηU0(x, ω)ϕ(x, 0)dx ≥ 0

The random entropy solutions have been shown to be of the form [13]

U(x, t, ω) = St(U0(x, ω))

where St : Lp(D) 7→ Lp(D) with D ⊂ Rd is the data to solution operator of the

underlying deterministic problem. Rigorous existence and uniqueness results for random

entropy solutions for scalar conservation laws, with random initial data, were obtained by

Mishra and Schwab [13]. Well-posedness results for scalar conservation laws with random

fluxes were obtained by Mishra [3]. The statistics of the random entropy solution such as

the mean, variance and higher moments can be obtained. We will be interested in finding

mean and variance in our numerical experiments.
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Definition 3.4. The expectation of the random solution is defined by the formula

E[U ](x, t) =

∫
Ω

U(x, t, ω)P(dω) =

∫
R
U(x, t, y)ρ(y)dy

where ρ(y) is essentially bounded probability density function which satisfies

ρ(y) =
dP(ω)

dy
∈ (L1 ∪ L∞)(R) and P(R) =

∫
R
ρ(y)dy = 1

also has the corresponding distribution function defined as

P (x) = P(y ≤ x) =

∫ x

−∞
ρ(y)dy

The variance of the random solution is defined as

V[U ] = E[U − E[U ]2] = E[U2]− (E[U ])2

In the upcoming sections, assuming the underlying deterministic problem and random

entropy solutions are well posed, some of the efficient algorithms to approximate random

entropy solutions will be discussed. Before we do that, I would like to give basic details on

Karhunen-Loève expansion which is used to express random fields.

3.1.1 Karhunen-Loève expansion

A very common representation of random fields is to express them in terms of a infinite

set of random variables. An efficient way to define initial parametrizations is in terms of a

Karhunen-Loève expansion. Let’s consider a random field U : Ω 7→ L2(D) for some domain

D ⊂ Rd and suppose that E(U) = 0. Then, the covariance function of this random field is

defined as [3]

CU ∈ L2(D ×D) : CU(x, y) = E(U(x, ω)U(y, ω))
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The corresponding covariance operator is defined as

KC : L2(D) 7→ L2(D) : KC [g](x) :=

∫
D

CU(x, y)g(y)dy

The eigenvalues and eigenfunctions are denoted by λk and Uk

KC [Uk] = λkUk

The underlying random field U can be written as

U(x, ω) =
∞∑
k=1

Yk(ω)Uk(x)

The random variables Yk are uncorrelated as

E(YjYk) = λkδjk

The random field u can be written in terms of its Karhunen-Loève expansion as

U = Ū +
∞∑
k=1

√
λkYkUk

where Ū is the mean value of the random field. Karhunen-Loève expansion can be

truncated with finitely many terms M . The size of M depends on the rate of decay of the

eigenvalues. The final statistics input can be written in terms of finite number of indepen-

dent random parameters [3].

Proposition 3.1. Consider the scalar stochastic Burger’s equation

Ut + [F (U, ω)]x = 0

U(x, 0) = U0(x), x ∈ [0, L]
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with

F (U, ω) =
U2

2
+
∞∑
j=1

√
λkYj(ω)Φj(U)

where Φj(U) and λj are the eigenfunctions and eigenvalues of

∫
D

CY (U1, U2)Φ(U1)dU1 = λΦ(U2)

If we use Gaussian process to describe the deviation from the Burgers flux u2/2 in the

random flux F (U, ω) ,and let Y (ω) ∈ N [0, 1], with exponential covariance [14]

CY (U1, U2) = σ2
Y e
−|U1−U2|/η

then,

λj =
2ησ2

Y

η2ω2
j + 1

, Φj(U) =
ηωj cos(ωjU) + sin(ωjU)√

(η2ω2
j + 1)L/2 + η

where ωj are the roots of

(η2ω2
j − 1) sin(ωL) = 2ηω cos(ωL)

Now assuming that unique random entropy solutions for the system (3.1) exists, I will

present Monte Carlo Finite Volume Method and Stochastic Finite Volume Method to solve

random conservation laws.
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3.2 Monte Carlo Finite Volume Method

It is aimed to design an efficient Monte-Carlo type scheme for approximating random

conservation law (3.1). Mischra and Schwab designed Monte-Carlo Finite Volume Method

using spatial-temporal discretization of finite volume schemes [9].

Let the time step be ∆t > 0 and the partition of the spatial domain D ⊂ Rd into a

finite set of nonoverlapping open sets be τ . Let K ⊂ Rd be the convex polyhedra with

boundary being a finite union of plane faces. Defining ∆xK := diamK and by ∆x(τ) := max

{ ∆xK : K ∈ τ } the mesh width of τ , for any volume K ∈ τ , the set N(K) of neighboring

volumes is defined

N(K) := {K ′ ∈ τ : K ′ 6= K ∧measd−1(K̄ ∩ K̄ ′) > 0}

For every K ∈ τ and K ′ ∈ N(K) vK′,K to be the unit normal pointing outward from

the volume K at the face K̄ ∩ K̄ ′. We shall set

λ =
∆t

min{∆xK : K ∈ τ}

with the assumption of a uniform discretization in time with time step ∆t.

When Monte Carlo Finite Volume Method is implemented, we will need to use the

first-order finite volumes covered in Chapter 2 to approximate deterministic conservation

law (1.1)

Un+1
K = Un

K −
∆t

meas(K)

∑
K′∈N(K)

F (Un
K , U

n
K+1)

where

Un
K ≈

1

meas(K)

∫
K

U(x, tn)dx
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is an approximation to the cell average of the solution and F is the numerical flux. We

have seen that numerical fluxes are obtained solving Riemann problems at each cell edge.

Since Godunov and Engquist-Osher gave us the best results in terms of capturing shocks

in the solution, I have prefarably used Engquist-Osher method as Riemann solver in Monte

Carlo Algorithm.

MCFVM algorithm for the scalar conservation law problem with random initial data

consists of the following four steps:

1. Sample: Given M independent, identically distributed samples U i
0 , i = 1, ..,M of

random initial data

2. Solve: Solve the deterministic Burger’s equation for each sample using a Finite Volume

Method, i.e. Godunov or Engquist-Osher.

3. Record: Record the solution U i,n
K

4. Compute: The expectation of the random solution field is estimated by the sample

average of the approximate solution [3]:

EM [Un
τ ] :=

1

M

M∑
i=1

U i,n
τ

where

U i,n
τ (x) = U i,n

K , ∀x ∈ K

Here, we should note that in step 2, any standard finite volume scheme can be used.

Hence, existing code for FVM can be used and there is no need to rewrite FVM code. The

following example is an implementation of Monte Carlo Finie Volume Method.
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Figure 3.1: The expectation for Example 3.1 with Monte-Carlo FVM

Example 3.1. Consider the Burger’s equation

Ut + (
U2

2
)x = 0

with the initial condition having an uncertain amplitude:

U0(x, ω) = Y (ω) sin(2πx)

where Y (ω) is uniformly distributed, i.e. Y (ω) ∈ U [0, 1]

Figure (3.1) illustrates the numerical expectation . The smoothness of probability den-

sity function has no effect on shock. We can clearly expect the shock formation at x = 0.5

in the physical space. It also can be seen in the Figure (3.2) as the deviations go up nearby

the shock.

Example 3.2. The second implementation is the Burger’s equation with Riemann problem

Ut + (
U2

2
)x = 0
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Figure 3.2: The variance for Example 3.1 with Monte-Carlo FVM

with

U0(x, ω) =


2, x < 1 + 0.1(2Y (ω)− 1);

1, x > 1 + 0.1(2Y (ω)− 1);

where Y (ω) ∈ U [0, 1]. The problem can be interpreted as to find initial shock location

and where the shock wave moves to right after the start. We can see where to expect the

initial shock at the time step t = 0.2 in the Figure (3.3) It can be verified that the shock is

nearby x = 1.3 as the deviation blows.

3.2.1 Error Bound for MCFVM

Mishra and Schwab have addressed the error bound for EM [Un
τ ] to the mean E(U) [13].

Theorem 3.1. Assume that

U0 ∈ L∞(Ω, L1(Rd))
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Figure 3.3: The expectation for Example 3.2 with Monte-Carlo FVM

Figure 3.4: The variance for Example 3.2 with Monte-Carlo FVM
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and that (3.2) for m = 1 is satisfied. Assuming further that we’re using a finite volume

method satisfying λ = ∆t
∆x(τ)

and for any initial data U0(x) ∈ L1(Rd) finite volume method

approximation by the cell averages is defined

U0
K =

1

|K|

∫
K

U0(x)dx, K ∈ τ

Let’s suppose that the deterministic FVM solver converges at rate s > 0 in L∞([0, T ];L1(Rd))

for every 0 < T < ∞. Then the Monte Carlo estimate EM [Uτ (·, t)] , for every M, has the

error bound

||E(U(·, t))− EM [Uτ (·, t;ω)]||L2(Ω;L1(Rd))

≤ C
{
M− 1

2 ||U0||L2(Ω;L1(Rd)) + ||U0 − U0
τ ||L∞(Ω;L1(Rd)) + t∆ts||TV (U0(·, ω))||L∞(Ω;dP)

}
(3.3)

where C > 0 is independent of M and ∆t as M →∞ and λ∆x = ∆t→ 0

Proof: For arbitrary t > 0,

||E(U(·, t))− EM [Uτ (·, t)]||L2(Ω;L1(Rd)) ≤

||E(U(·, t))− EM [U(·, t)]||L2(Ω;L1(Rd)) + ||EM(U(·, t)))− EM [Uτ (·, t)]||L2(Ω;L1(Rd)) := I + II

The term I is bounded by 2M− 1
2 ||U0||L2(Ω;L1(Rd)). The reader is referred to [13] for

more details. For term II, the following assumption which holds true for many standard

FVM-schemes will be made:

||U(·, t̄)− Uτ (·, t̄)||L1(Rd) ≤ ||U0 − U0
τ ||L1(Rd) + Ct̄TV (U0)∆ts

where C > 0 independent of ∆x and for every t̄ , (∆t)s ≤ t̄ ≤ T . Hence, using this

assumption and setting up triangle inequality an upper bound for term II can be obtained
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II = ||EM(U(·, t)))− EM [Uτ (·, t)]||L2(Ω;L1(Rd)) = ||EM [U(·, t;ω)− Uτ (·, t)]||L2(Ω;L1(Rd))

≤ 1

M

M∑
i=1

||U i(·, t;ω)− U i
τ (·, t;ω)||L2(Ω;L1(Rd))

≤ ess sup
ω∈Ω
||U(·, t;ω)− Uτ (·, t;ω)||L1(Rd)

≤ C
{
||U0 − U0

τ ||L∞(Ω;L1(Rd) + t∆ts||TV (U0(·, ω))||L∞(Ω,dP)

}
Hence,

I + II ≤ C
{
M− 1

2 ||U0||L2(Ω;L1(Rd)) + ||U0 − U0
τ ||L∞(Ω;L1(Rd)) + t∆ts||TV (U0(·, ω))||L∞(Ω;dP)

}

3.2.2 Work Estimates of MCFVM

Assuming that the computational domain D ⊂ Rd is bounded and boundary conditions

are indicated with ∂D. The work for one time step to solve deterministic conservation law

is of order O(∆x−d) [13],

Work(τ) = O(∆x−d−1), λ∆x = ∆t ↓ 0

which implies that the work for computation of the Monte Carlo estimate EM [Un
τ ]

Work(M, τ) = O(M∆x−d−1), ∆t = λ∆x ↓ 0

so from (3.3) the convergence order can be attained in terms of work, by choosing

M = ∆t−2s and applying the CFL condition λ = ∆t
∆x(τ)

,

Work(τ) = O(∆t−2s∆x−d−1) = O(∆x−d−1−2s)

hence
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||E(U(·, t))− EM [Uτ (·, t;ω)]||L2(Ω;L1(Rd)) ≤ C∆ts ≤ C(Work(τ))
s

d+1+2s

3.3 Stochastic Finite Volume Method

Tokareva and Abgrall came up with a different method to handle the uncertainty (ran-

domness) in conservation laws [1]. Let’s assume that the probability space Ω is presented

by the parametrized probability space Γ. We will parametrize all random inputs using the

random variable y = Y (ω). If Γ is low-dimensional, we can sub-divide it into disjoint subre-

gions

Γ =

Ny⋃
j=1

Kj
y , Kj

y ∩Kj′

y = ∅.

Similarly, we subdivide the physical domain D = ∪Nx
i=1K

i
x.

Assuming the existence of probability density function ρ(y), we can denote the expec-

tation of the exact solution u:

E[u(x, t)] =

∫
Γ

u(x, t, y)ρ(y)dy

Now integrate the random conservation law


ut(x, t, y) + (f(u(x, t, y))x = 0

u(x, 0, y) = u0(x, y)

(3.4)

over each spatial and each stochastic cell, i.e.

∫
Kj

y

∫
Ki

x

utρ(y)dxdy +

∫
Kj

y

∫
Ki

x

fxρ(y)dxdy = 0 (3.5)

Introducing the cell averages at the time t = tn,
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ūi,j(t
n) =

1

|Kj
y ||Ki

x|

∫
Kj

y

∫
Ki

x

u(x, tn, y)ρ(y)dxdy (3.6)

and

f̄i,j(t
n) =

1

|Kj
y |

∫
Kj

y

[∫
Ki

x

F (uL(x, tn, y), uR(x, tn, y), y)

]
ρ(y)dxdy (3.7)

where F is Godunov approximation of the flux function f ,

|Kj
y | =

∫
Kj

y

ρ(y)dy, |Ki
x| =

∫
Ki

x

1dx.

(3.6) and (3.7) can be written as:

ūi,j(t
n) =

1

|Kj
y ||Ki

x|
E
[∫

Ki
x

u(x, tn, y)dx

]

f̄i,j(t
n) =

1

|Kj
y ||Ki

x|
E
[∫

Ki
x

F (uL, uR, y)dx

]
(3.5) becomes:

d(ūi,j)

dt
+

1

|Ki
x|
f̄i,j(t) = 0

which evolves in time in 1-D space as:

un+1
i,j = uni,j −

∆t

∆x
[E(F (uni , u

n
i+1)|Kj

y)− E(F (uni−1, u
n
i )|Kj

y)]
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Proof:

d(ūi,j)

dt
+

1

|Ki
x|
f̄i,j(t) = 0⇒

un+1
i,j − uni,j

∆t
=
−f̄i,j(t)

∆x

⇒ un+1
i,j = uni,j −

∆t

∆x
f̄i,j(t)

⇒ un+1
i,j = uni,j −

∆t

∆x|Kj
y |

∫
Kj

y

[∫
Ki

x

F (uL(x, tn, y), uR(x, tn, y), y)

]
ρ(y)dxdy

⇒ un+1
i,j = uni,j −

∆t

∆x|Kj
y |

∫
Kj

y

[
F (uni , u

n
i+1, y)− F (uni−1, u

n
i , y)

]
ρ(y)dy

⇒ un+1
i,j = uni,j −

∆t

∆x|Kj
y |

[E(F (uni , u
n
i+1))− E(F (uni−1, u

n
i ))]

⇒ un+1
i,j = uni,j −

∆t

∆x
[E(F (uni , u

n
i+1)|Kj

y)− E(F (uni−1, u
n
i )|Kj

y)]

This can be interpreted as the conditional expectation satisfying conservation law, hence

we can state the following proposition.

Proposition 3.2. Stochastic Finite Volume Method is conservative, that is,

∑
i=1

∑
j=1

un+1
i,j =

∑
i=1

∑
j=1

uni,j −
∆t

∆x

∑
i=1

∑
j=1

(
E(F (uni , u

n
i+1)|Ky

j )− E(F (uni−1, u
n
i )|Ky

j )
)

The expectation can now be reconstructed by using the law of total expectation.

E[u(xi, tn)] =

Ny∑
j=1

E[u(xi, tn)|y ∈ Kj
y ]P(y ∈ Kj

y)

≈
Ny∑
j=1

uni,j|Kj
y |

We can present the algorithm for Stochastic Finite Volume Method for random initial

data as follows:
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Algorithm 1 SFVM
1: procedure SFVM

2: Compute |Kj
y | =

∫
ρ(Kj

y) for j = 1, 2, ..., N

3: Compute u0
i,j = 1

|Kj
y |

∑q
m=1 u0(x, ym)ρ(ym)wm

4: Compute F n
i+1/2 = F n(ui, ui+1) (Godunov)

5: unj+1,i → unj,i − ∆t
∆x

(F n
i+1/2 − F n

i−1/2)

6: un+1
i,j → uni,j

7: E(uni,j) =
∑N

j=1 u
n
i,j|Kj

y |

8: end procedure

where wm is the weight and ym is the node of quadrature rule, i.e. trapezoidal quadrature

rule to calculate
∫
u0ρ(y)dy and q is the number of nodes/weights.

Example 3.3. Consider Burgers’ equation with random initial condition:


ut + (u

2

2
)x = 0 , x ∈ [0, 2π]

u(x, 0, y) = |y| sin(2x− y)

with periodic boundary conditions and random variable y with density

ρ(y) =
1

0.65


0.1 , −1 ≤ y ≤ 0.5

1 , 0.5 ≤ y ≤ 1

0 , otherwise

Figure (3.5) shows the expected value of approximation of random solution over the

spatial domain at the time step t = 2.5. We can expect the obvious shock formations in the

solution at x = 2 and x = 5.

From the Figure (3.6) we can see the expected value of the approximate solution at

different time steps.
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Figure 3.5: The expectation for Example 3.3 with SFVM at t=2.5

Figure 3.6: The expectation at different time steps

Figure 3.7: The expectation at different spatial nodes
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Figure 3.8: The distribution of expectation over time and spatial domain

Figure 3.9: The variance at t=2.5

Figure (3.7) demonstrates the distribution of expectation at spatial nodes over the time.

Each curve represents how expected value is distributed at a certain point in spatial domain

over time.

The distribution of expected value of numerical solution can be seen in Figure (3.8).

The variance of the numerical solution can be seen in (3.9). We can verify the shock

formations we observe at the expectation plot at x = 2 and x = 5. The deviations go up

nearby the shock.
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3.3.1 Convergence Analysis of SFVM

The error estimates for SFVM have been shown by Tokareva [14]

Estimates in L∞ norm

Assume that u(x, t, y) is exact solution to (3.4) and unij is its approximation at t = tn

from SFVM. Assuming further that

||u− unij||L∞(DXΓ) ≤ C1∆xp + C2∆yr (3.8)

where p and r are the convergence rates of the approximate solution by SFVM in physical

and stochastic variable.

• Error estimate for the mean

The mean value of exact solution at (xi, t
n) is

E[u](xi, t
n) =

∫
Γ

u(xi, t
n, y)ρ(y)dy

The mean value of approximate solution by SFVM at (xi, t
n)

E[unij](xi, t
n) =

Ny∑
j=1

unij|Kj
y |

Then we have [14]
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|E[u](xi, t
n)− E[unij](xi, t

n)| =
∣∣∣ ∫

Γ

u(xi, t
n, y)ρ(y)dy −

Ny∑
j=1

unij|Kj
y |
∣∣∣

=
∣∣∣ Ny∑
j=1

∫
Kj

y

u(xi, t
n, y)ρ(y)dy −

Ny∑
j=1

unij

∫
Kj

y

ρ(y)dy
∣∣∣

=
∣∣∣ Ny∑
j=1

∫
Kj

y

[
u(xi, t

n, y)− unij
]
ρ(y)dy

∣∣∣
≤

Ny∑
j=1

∫
Kj

y

|u(xi, t
n, y)− unij|ρ(y)dy

≤ sup
Kj

y

|u(xi, t
n, y)− unij|

Ny∑
j=1

∫
Kj

y

ρ(y)dy

= sup
Kj

y

|u(xi, t
n, y)− unij|

∫
Γ

ρ(y)dy

Using the property of probability density function
∫

Γ
ρ(y)dy = 1, we get

|E[u]− E[unij]| ≤ ||u− unij||L∞(DXΓ)

• Error estimate for the variance

The variance of the exact solution at (xi, tn) is

V[u](xi, t
n) = E[(u(xi, t

n)− E[u](xi, t
n))2] = E[u2(xi, t

n)]− (E[u](xi, t
n))2

and is approximated by

V (unij) = E([unij]
2)− (E[unij])

2

The error estimate can be obtained as [14]
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||V[u]− V (unij)||L∞(D) = ||E[u2(xi, t
n)]− (E[u](xi, t

n))2 − E([unij]
2) + (E[unij])

2||L∞(D)

= ||(E[u2(xi, t
n)]− E([unij]

2))− (E[u](xi, t
n))2 − (E[unij])

2)||L∞(D)

≤ ||(E[u2(xi, t
n)]− E([unij]

2))||L∞(D) + ||E[u](xi, t
n))2 − (E[unij])

2)||L∞(D)

= I + II

I can be estimated by

|E[u](xi, t
n))2−(E[unij])

2)| =
∣∣∣ ∫

Γ

u2(xi, t
n, y)ρ(y)dy −

Ny∑
j=1

(unij)
2|Kj

y |
∣∣∣

=
∣∣∣ Ny∑
j=1

∫
Kj

y

u(xi, t
n, y)2ρ(y)dy −

Ny∑
j=1

(unij)
2

∫
Kj

y

ρ(y)dy
∣∣∣

=
∣∣∣ Ny∑
j=1

∫
Kj

y

[
u2(xi, t

n, y)− (unij)
2
]
ρ(y)dy

∣∣∣
=
∣∣∣ Ny∑
j=1

∫
Kj

y

[
u(xi, t

n, y)− (unij)
]√

ρ(y)
[
u(xi, t

n, y) + (unij)
]√

ρ(y)dy
∣∣∣

≤
∣∣∣ Ny∑
j=1

(∫
Kj

y

[
u(xi, t

n, y)− (unij)
]2

ρ(y)dy
)1/2(∫

Kj
y

[
u(xi, t

n, y) + (unij)
]2

ρ(y)dy
)1/2∣∣∣

≤ C
∣∣∣ Ny∑
j=1

(∫
Kj

y

[
u(xi, t

n, y)− (unij)
]2

ρ(y)dy
)1/2∣∣∣

≤ C

Ny∑
j=1

(∫
Kj

y

∣∣∣u(xi, t
n, y)− (unij)

∣∣∣2ρ(y)dy
)1/2

≤ C sup
Kj

y

|u(xi, t
n, y)− (unij)|

(∫
Kj

y

ρ(y)dy
)1/2

= C sup
Kj

y

|u(xi, t
n, y)− (unij)|

Therefore,

||E[u](xi, t
n))2 − (E[unij])

2)||L∞(D) ≤ C||u− unij||L∞(D)
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To find an upper bound for term II

||E[u](xi, t
n))2 − (E[unij])

2)||L∞(D) =∥∥∥(E[u](xi, t
n))− (E[unij])

)(
E[u](xi, t

n)) + (E[unij])
)∥∥∥

L∞(D)

≤
∥∥(E[u](xi, t

n))− (E[unij])
)∥∥

L∞(D)

∥∥(E[u](xi, t
n)) + (E[unij])

)∥∥
L∞(D)

≤ C
∥∥(E[u](xi, t

n))− (E[unij])
)∥∥

L∞(D)
||

≤ C||u− unij||L∞(DXΓ)

It reveals that

||V[u]− V (unij)||L∞(D)|| ≤ C||u− unij||L∞(DXΓ)

Similar estimates in L∞ can be obtained for higher moments.

Estimates in L1 norm

Denoting the exact solution of (3.4) by u, the numerical solution which is exact in x

variable and discretized in y by unj ,assuming that the numerical solution uni,j converges with

rate p in x variable and with rate r in y variable,

||unj − unij||L1(D) ≤ C1∆xp

||u− unj ||L1(Γ) ≤ C2∆yr

hence,
||u− unij||L1(DXΓ) ≤ C1∆xp + C2∆yr

• Error estimate for the mean

As before, the mean value of exact solution at (xi, t
n) is a deterministic function

E[u](xi, t
n) =

∫
Γ

u(xi, t
n, y)ρ(y)dy
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and its approximation by SFVM at (xi, t
n)

E[unij](xi, t
n) =

Ny∑
j=1

unij|Kj
y | =

Ny∑
j=1

uni,j

∫
Kj

y

ρ(y)dy =

∫
Γ

unijρ(y)dy = E[unij](xi, t
n)

Then [14],

||E[u]− E[uni,j]||L1(D) = ||E[u]− E[unj ] + E[unj ]− E[uni,j]||L1(D)

≤ ||E[u]− E[unj ]||L1(D) + ||E[unj ]− E[uni,j]||L1(D)

=

∫
D

|E[u]− E[unj ]|dx+

∫
D

|E[unj ]− E[uni,j]|dx

=

∫
D

∣∣∣ ∫
Γ

(u− unj )ρ(y)dy
∣∣∣dx+

∫
D

∣∣∣ ∫
Γ

(unj − unij)ρ(y)dy
∣∣∣dx

≤
∫
D

∫
Γ

|(u− unj )|ρ(y)dydx+

∫
D

∫
Γ

|unj − unij|ρ(y)dydx = I + II

I can be estimated as∫
D

∫
Γ

|(u− unj )|ρ(y)dydx ≤
∫
D

sup
Γ
ρ(y)dy

∫
Γ

|u− unj |dydx = C|u− unj |L1(Γ) ≤ C∆yr

and II is bounded by

∫
D

∫
Γ

|unj − unij|ρ(y)dydx =

∫
Γ

[ ∫
D

|unj − unij|dx
]
ρ(y)dy

= ||unj − unij||L1(D)

∫
Γ

ρ(y)dy = ||unj − unij||L1(D) ≤ C∆xp

It turns out the same convergence rate as (3.8) can be obtained for expectation.

||E[u]− E[uni,j]||L1(D) ≤ C1∆xp + C2∆yr (3.9)

• Error estimate for the variance

As before, the variance of the exact solution at (xi, t
n) is
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V[u](xi, t
n) = E[(u(xi, t

n)− E[u](xi, t
n))2] = E[u2(xi, t

n)]− (E[u](xi, t
n))2

and is approximated by

V (unij) = E([unij]
2)− (E[unij])

2 = E([unij]
2)− (E[unij])

2

Then [14],

||V[u]− V[uni,j]||L1(D) = ||E[u2]− (E[u])2 − E[(unij)
2] + E[(unij)

2]||L1(D)

≤ ||E[u2]− E[(unij)
2]||L1(D) + ||E[u])2 − E[uni,j]

2||L1(D) = I + II

To estimate I

||E[u2]− E[(unij)
2]||L1(D) =

∫
D

|E[u2]− E[(unij)
2]|dx

=

∫
D

∣∣ ∫
Γ

[u2 − (unij)
2]ρ(y)dy

∣∣dx ≤ ∫
D

∫
Γ

|u2 − (unij)
2|ρ(y)dydx

=

∫
D

∫
Γ

|u− unij||u+ unij|ρ(y)dydx ≤ C

∫
D

∫
Γ

|u− unij|dydx

= C||u− unij||L1(DXΓ) ≤ C∆xp +D∆yr

and for II

||E[u])2 − (E[uni,j])
2||L1(D) =

∫
D

|(E[u])2 − (E[uni,j])
2|dx

=

∫
D

|E[u]− E[uni,j||E[u] + E[uni,j|dx

≤ C||E[u]− E[uni,j]||L1(D) ≤ E∆xp + F∆yr

Therefore we can verify that the same convergence rate (3.8) holds true for variance
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||V[u]− V[uni,j]||L1(D) ≤ C1∆xp + C2∆yr

3.3.2 Work Estimates of SFVM

From (3.9) we know that [14]

||E[u]− E[uni,j]||L1(D) ≤ C1∆xp + C2∆yr

where p and r are the convergence rates of the approximate solution by SFVM in physical

and stochastic variable. Let x ∈ Rn , y ∈ Rm. Suppose that the CFL condition is satisfied,

that is, ∆t = O(∆x). Then, the total work done in approximating the random solution u

using SFVM [14]:

CNxNyNt = C
1

∆xn
1

∆ym
1

∆t
=

C

∆xn+1∆ym
= C∆x−(n+1)∆y−m
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Chapter 4

Conclusion/Future Work

We have studied the solutions of Burger’s equation and implemented some methods in

deterministic case. Godunov and Engquist-Osher schemes gave the best result in capturing

the shocks of Burger’s equation. Hence, we have preferred using these two schemes when

we were doing simulations in random media. We used a particular Flux Limiter Method to

solve Burger’s equation. It was second order accurate in the space depending on the smooth-

ness and convergent. To deal with uncertainty in conservation laws, we firstly used Monte

Carlo FVM. Its convergence rate is very slow and this encouraged us to study Stochastic

FVM. We analyzed Stochastic FVM and set up an algorithm for conservation laws with

random initial data. We made an implementation and the scheme turned out to be conser-

vative. Conservativeness leads to stability and convergence. The curse of dimensionality only

allows Stochastic FVM to be viable for a small to moderate number of sources of uncertainty.

We plan to use SFVM as the first step to get a grasp on quantities of interest and

hope to use this notion to develop adaptive schemes. Also, we want to do simulations for

conservation laws with random flux. As mentioned in Chapter 1, shallow water equations is

one of the applications of conservation laws. We aim to model shallow water equations and

do simulations using Stochastic FVM.
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