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Abstract

We consider the problem of estimating a semiparametric varying coefficient panel data

model where the unobserved individual effects are correlated with explanatory variables in an

unknown arbitrary way using a local linear regression approach. We present a new technique

to estimate this model whereby, we locally approximate the fixed-effects-free transformed

equation around two different points. Using Monte Carlo simulations, we study potential

gains in the finite sample performance and/or the computational time of the proposed es-

timation procedure over available alternatives under different scenarios. We also consider a

conceptually different approach to controlling for unobserved fixed effects in which the fixed

effect is modelled as an unknown function of an unordered factor variable indexing indi-

viduals. The existing semiparametric estimators for varying-coefficient fixed-effects models

exclusively assume one-way fixed effects, typically in the dimension of cross-sectional units.

However, more often than not applied researchers wish to control for both the individual and

time fixed effects in their panel regressions, with the latter included to account for common

unobservable factors correlated with regressors. While rather trivial in a linear model, con-

trolling for time effects by explicitly including time-period dummies as additional regressors

does not provide a straight-forward estimation procedure in the case of a semiparametric

model. We provide an alternative by extending the Sun et al. (2009) smoothed least-squares

dummy variable (LSDV) estimator to the case of a functional-coefficient model with two-

way fixed effects whereby we allow for unobservable heterogeneity in both dimensions of

the data: cross-section and time. Both fixed effects are concentrated out of the model via
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locally smoothed two-dimensional within transformation. Simulations show that the esti-

mator performs well in finite samples. We showcase its practical usefulness in two different

scenarios.1

1This chapter includes excerpts from ” Halder, S., and Malikov, E. Smoothed LSDV Estimation of Functional-
Coefficient Panel Data Models with Two-Way Fixed Effects, Economics Letters. 2020, Volume 192, Article
109239.”
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Chapter 1

Introduction

In statistics and econometrics, a panel data (or longitudinal data) is a multi-dimensional

data involving measurements over time. A panel data contains observations of multiple phe-

nomena obtained over multiple time periods for the same firms or individuals.

A linear fixed-effects model is a workhorse of applied research in economics. For ex-

ample, [19],[17], [18], and [13] are some excellent source of parametric panel data model

analysis. The model’s broad popularity chiefly stems from its ability (given the availability

of panel data) to control for unobservable confounders that may correlate with regressors.

However, just like all parametric models, a linear fixed-effects regression is prone to mis-

specification owing to its reliance on the parametric form assumption (here, linearity) the

violation of which may lead to inconsistency and thus misleading inference ; while partially

linear semiparametric models may be too restrictive as they only allow for some additive

nonlinearities. The semiparametric functional-coefficient1 fixed-effects model of [1] provides

a means to robustify the conventional linear fixed-effects regression by letting its coefficients

be unspecified nonparametric functions of relevant contextual variables which, among other

benefits, accommodates potential heterogeneity in marginal effects of linear regressors. While

not as flexible as a fully nonparametric fixed-effects model [15], such a semiparametric speci-

fication is attractive because of its ability to alleviate the so-called “curse of dimensionality”

associated with nonparametric estimation and thus to achieve better convergence rates. For

instance, [11] considered fixed effects varying coefficient models. [14] , [20] and [36] also

1Also sometimes referred to as a “varying-coefficient” or “smooth-coefficient” model.
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considered fixed-effects panel data models as well as partially linear fixed-effects panel data

models.

We consider the problem of estimating the following varying-coefficient panel data model

with individual fixed effects using a local linear regression approach:

yit = x′itβ(zit) + µi + uit (1.1)

where i = 1, . . . , n, t = 1, . . . , T . The covariate vector zit = (zit,1, . . . , zit,q)
′ is of dimension

q, xit = (xit,1, . . . , xit,p)
′ is of dimension p and excludes time-invariant regressors for iden-

tification purposes, β(·) = (β(·)1, . . . , β(·)p)′ contains p unknown functions, and all other

variables are scalars. None of the variables in xit can be obtained from zit and vice versa.

The random errors uit are assumed to be i.i.d. over i and t with a zero mean and finite vari-

ance, and E[uit|µi,xi, zi] = 0, where xi = (x′i1, . . . ,x
′
iT )′ and zi = (x′i1, . . . , z

′
iT )′. Individual

effects µi correlate with zit and/or xit with an unknown correlation structure. Hence,the

model in eq. (1.1) is a fixed-effects model.

When the individual effects µi are not correlated with zit and/or xit then the the model

in eq. (1.1) is a random-effects model.

In chapter 2, we compare the relative finite sample performance (on the basis of root

mean squared error, mean absolute error, and computational time) of the two existing esti-

mators and a proposed (new) alternative estimation procedure.

In chapter 3, we consider a conceptually different approach to controlling for unobserved

fixed effects in which µi is modelled as an unknown function of an unordered factor variable

indexing individuals, i.e., µi = µ(Di), where Di is a discrete scalar variable. As its core,

such an approach is similar in the spirit to the Least Squares Dummy Variable Approach,

whereby fixed effects are modeled via n dummies included as additional regressors, except

that we circumvent the need for numerous indicator variables by relying on the ability of
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kernel estimators to tackle unordered discrete data. Effectively, we can use a single factor

variable to deliver the same information. The estimation procedure is two-step a la [37].

In chapter 4, we extend model in eq. (1.1) to also allow for time fixed effects λt. We

then generalize the Smoothed Least Square Dummy Variable estimator of [1] to accommo-

date such effects as well and study its finite-sample performance. In this case, we do not

however need to assume additivity of λt and µi.

In chapter 5, we showcase the practical usefulness of our proposed model in chapter 4 in

two different scenarios using balanced data as well as unbalanced data. Finally, the chapter

6 is for concluding remarks. 2

2This chapter includes excerpts from ” Halder, S., and Malikov, E. Smoothed LSDV Estimation of Functional-
Coefficient Panel Data Models with Two-Way Fixed Effects, Economics Letters. 2020, Volume 192, Article
109239.”
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Chapter 2

Estimation Methodologies

In this chapter, we compare the relative finite sample performance (on the basis of root

mean squared error, mean absolute error, and computational time) of the two existing esti-

mators by [1] and [24][23]. Specifically,[1] use the Smoothed Least Square Dummy Variable

one-stage approach that locally approximates the original estimating equation around the

point zit = z and then concentrates fixed effects out. [24][23] use a two-stage approach

whereby they first remove fixed effects via first differencing and then approximate the trans-

formed equation, now containing both β(zit) and β(zit−1), around the same two points

(zit, zit−1) = (z1, z1). We also propose a (new) alternative estimation procedure based on a

modification of [11] alternative two-stage first-difference approach which, unlike [24][23], ap-

proximates the transformed equation around two different points (zit, zit−1) = (z1, z2) thereby

having the potential to significantly reduce the computational time. We then compare finite

sample performance (on the basis of root mean squared error, mean absolute error, and com-

putational time) of the proposed estimator with the existing estimators. Using local-linear

fitting, the simulation study shows that our proposed estimator is computationally more

efficient in finite samples.

2.1 Sun et al (2009) estimator

[1]removes the unknown fixed effects by partialing them out motivated by a least squares

dummy variable (LSDV) model in parametric panel data analysis. Writing the model in (1.1)

in the matrix from, we have

y = M{X,β(Z)}+ Dµ+ u, (2.1)

4



where y = (y′1, . . . ,y
′
n)′ and u = (u′1, . . . ,u

′
n)′ are (nT )× 1 vectors, with yi = (yi1, . . . , yiT )′

and ui = (ui1, . . . , uiT )′. The operator M{·} stacks x′itβ(zit) into a nT × 1 vector with the

(i, t) subscripts matching those of y and u. Further, µ = (µ1, . . . , µn)′ is an n× 1 vector of

individual fixed effects, and D = In⊗ iT is an (nT )×n design matrix, where In is an identity

matrix of dimension n and iT denotes an T × 1 vector of ones.

First, define a nT×nT diagonal matrix of local kernel weights WH(z) = diag{KH(z1, z), · · · ,KH(zn, z)},

with KH(zi, z) = diag{kH(zi1, z), · · · , kH(ziT , z)} being a T × T diagonal matrix for each i,

where kH(zit, z) = k{H−1(zit − z)} is the q-variate product kernel such that K(u, v) =

K(u)K(v), where for each u, v,
∫
K(u)du = 1 and Kh(u) = (1/h)K(u/h) and H =

diag{h1, . . . , hq} is a diagonal bandwidth matrix of dimension q. To derive the estimator for

unknown functional coefficients, we then solve the following locally weighted least-squares

problem:

min
β(z),µ

[y −M{X,β(z)} −Dµ]′WH(z)[y −M{X,β(z)} −Dµ]. (2.2)

The first-order condition of (2.2) with respect to individual fixed effects, µ is

D′WH(z)[y −M{X,β(z)} −Dµ] = 0 (2.3)

which can be solved for µ̂, i.e.,

µ̂(z) =(D′WH(z)D)−1D′WH(z)(y −M{X,β(z)}), (2.4)

Define the local within transformation matrix: MH(z) = InT−D[D′WH(z)D]−1D′WH(z)).

Then, substituting µ̂(z) from (2.4) for µ in the objective function in (2.2) yields a concen-

trated locally weighted least-squares problem from which the individual fixed effects are

removed:

min
β(z)

(y −M{X,β(z)})′SH(z) (y −M{X,β(z)}) , (2.5)

5



where SH(z) ≡ MH(z)′WH(z)MH(z). The riddance of fixed effects from the model is

ensured by MH(z)Dµ = 0nT×1 for all z. Upon a close examination of the local weighting

matrix SH(z), it is evident that µ is removed via local z-specific kernel-weighted within

transformation whereby a kernel-weighted time average is subtracted from each variable.

To operationalize the estimator of β(z) from the profiled problem in (2.5), we rely on

local-polynomial kernel approximators. For each s = 1, . . . , p, the local Taylor expansion of

the unknown functional coefficient around zit = z is

βs(zit) = βs(z) + (zit − z)′∇zβs(z) + (zit − z)′∇2
zβs(z)(zit − z) + . . . , (2.6)

where ∇zβs(z) = (∂βs(z)/∂z1,it, . . . , ∂βs(z)/∂zq,it)
′ is a q × 1 vector of first-order gradients

and ∇2
zβs(z) = ∇z′(∇zβs(z)) is the q× q Hessian matrix of the second-order derivatives, etc.

The first-order (local linear) approximation is arguably the most popular among practitioners

[16], and we adopt it here too and so do [1]. Thus, in what follows, we make use of βs(zit) ≈

βs(z) + (zit − z)∇zβs(z) around zit = z.

Define a (q + 1) × 1 vector θs(z) = (βs(z),∇zβs(z)′)′ of unknown local parameters

for each s = 1, . . . , p. Then, the unknown p × (q + 1) parameter matrix is defined as

Θ(z) = [θ1(z) . . . θp(z)]′:

Θ(z) ≡


θ1(z)′

...

θp(z)′

 =


β1(z) ∇β1(z)′

...
...

βp(z) ∇βp(z)′

 =

[
β(z) ∇β(z)′

]
,

where the first column of the above matrix is β(·) evaluated at z which is of primary interest.

Next, define a (q + 1) × 1 vector of deviations from z, i.e., Zit(z) = (1, (zit − z)′)′. For zit

close to z, we replace β(zit) in (2.5) with Θ(z)Zit(z) and obtain the local-linear estimator

6



of functional coefficients β(z) from the locally concentrated minimization problem:

min
Θ(z)

(y −X (z)vec{Θ(z)})′SH(z) (y −X (z)vec{Θ(z)}) , (2.7)

where we stack (by columns) the unknown parameter matrix Θ(z) into a p(q+ 1)× 1 vector

denoted by the operator vec{·}, and X (z) = (X ′i (z), . . . ,X ′n(z))′ is an nT × p(q + 1) data

matrix, with each T × p(q + 1) block given by

Xi(z) =


Z ′i1(z)⊗ x′i1

...

Z ′iT (z)⊗ x′iT

 .

Lastly, solving the first-order condition of (2.7) for the unknown Θ(z) yields the follow-

ing local-linear two-way fixed-effects estimator:

vec
{

Θ̂(z)
}

= (X (z)′SH(z)X (z))
−1X (z)′SH(z)y. (2.8)

2.2 Rodrigue-Poo & Soberon (2014) Estimator

[24] remove the unknown fixed effects, ui of the model in (1.1) by transforming the

model in order to obtain a consistent estimator of the parameters of interest. Any estimation

technique suffers from the so called incidental parameters problem, e.g., [34]. A standard

solution to this problem is to remove µi from (1.1) by taking a transformation, and then

estimating the unknown curve through the use of a non-parametric smoother [24]. The

simplest approach to remove the unknown fixed effects is to take first differences, i.e.,

∆yit = x′itβ(zit)− x′i(t−1)β(zi(t−1)) + ∆uit (2.9)

7



i = 1, · · · , n; t = 2, · · · , T . ∆yit = yit − yi(t−1) and ∆uit = uit − ui(t−1). Consider the

univariate case, p = q = 1. Apply first order Taylor expansion for (zit) and (zi(t−1)) at an

interior point z = [z1, z2] such that ‖zit − z1‖ = o(1) and ‖zi(t−1) − z2‖ = o(1) with z1 = z2

∆yit ≈ β(z1)xit − β(z2)xi(t−1) + β′(z1)xit(zit − z1)− β′(z2)xi(t−1)(zi(t−1) − z2)) (2.10)

for a given (i, t). So we estimate β(z) , β′(z) by regressing ∆yit on the terms (xit(zit−z1)−

xi(t−1)(zi(t−1) − z2)) with kernel weights. To derive the estimator for unknown functional

coefficients, we solve the following locally weighted least-squares problem:

n∑
i=1

T∑
t=2

(∆yit − β(z1)xit + β(z2)xi(t−1) − β′(z1)xit(zit − z1) + β′(z2)xi(t−1)(zi(t−1) − z2))2×

K((zit − z1)/h)K((zi(t−1) − z2)/h)

(2.11)

h is the bandwidth. Here, K is 2q-variate kernel. In contrast, in the case of Sun et

al. estimation, the kernel is q-variate

[24] propose a transformation that is a one-step backfitting algorithm in order to achieve

the desirable rate of
√
nTh. Denote ∆y

(1)
it the following expression:

∆y
(1)
it = ∆yit + β(zi(t−1))xi(t−1) (2.12)

i = 1, · · · , n; t = 2, · · · , T . Substitute eq. (2.9) into eq. (2.12), we get

∆y
(1)
it = β(zit)xit + ∆uit (2.13)

i = 1, · · · , n; t = 2, · · · , T

The eq. (2.13) clearly indicates the estimation of β(.) is now a q dimensional problem, and
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we use local linear least-squares estimation procedure with q-variate kernel weights.

To smooth over fewer variables (q instead of 2q as in the first stage), we can achieve a

better convergence rate. In eq. (2.12), βxi(t−1) is unknown. We replace it by the initial local

linear regression estimator, ∆ỹ
(1)
it = ∆yit + β̂h(zi(t−1))xi(t−1) with the following regression

model:

∆ỹ
(1)
it = β(zit)xit + uit (2.14)

i = 1, · · · , n; t = 2, · · · , T . Here, uit = (β̂h(zi(t−1))− β̂(zi(t−1)))xi(t−1) + ∆uit.

So we estimate β̃(·) with the following weighted local linear regression:

n∑
i=1

T∑
t=2

(∆ỹ
(1)
it − β̃(z)xit − β̃′(z)xit(zit − z))2Kh̄(zit − z) (2.15)

β̃(z) and ˜β′(z) are the estimators of β(z) and β′(z) respectively. The direct application of

local linear regression techniques to first-differencing transformations in panel data models

renders biased estimators and the bias does not degenerate, even with large samples [44]. Us-

ing a higher dimensional kernel weight, [24] the estimation technique overcomes the problem

of non-vanishing bias. However, as expected, the variance term becomes larger.

2.3 Modified Rodrigue-Poo & Soberon Estimator

We can improve the computational time of the [24] first difference approach. We pro-

pose a modified estimator based on [11] alternative two-stage first-difference approach which,

unlike [24], approximates the transformed equation around two different points (zit, zit−1) =

(z1, z2), z1 6= z2.
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First take the first differences of our model of eq. (1.1) to remove the heterogeneity of

unknown form:

∆yit = x′itβ(zit)− x′i(t−1)β(zi(t−1)) + ∆uit (2.16)

i = 1, · · · , n; t = 2, · · · , T . ∆yit = yit − yi(t−1) and ∆uit = uit − ui(t−1).

Consider the univariate case, p = q = 1. Apply Taylor expansion for (zit) and (zi(t−1))

at an interior point z = [z1, z2] with z1 6= z2

∆yit ≈ β(z1)xit − β(z2)xi(t−1) + β′(z1)xit(zit − z1)− β′(z2)xi(t−1)(zi(t−1) − z2)) (2.17)

for a given (i, t). So we estimate β(z) , β′(z) by regressing ∆yit on the terms (xit(zit− z1)−

xi(t−1)(zi(t−1) − z2)) with kernel weights. To derive the estimator for unknown functional

coefficients, we solve the following locally weighted least-squares problem:

n∑
i=1

T∑
t=2

(∆yit − β(z1)xit + β(z2)xi(t−1) − β′(z1)xit(zit − z1) + β′(z2)xi(t−1)(zi(t−1) − z2))2×

K((zit − z1)/h)K((zi(t−1) − z2)/h)

(2.18)

h is the bandwidth.

So comparing the eq. (2.11) and eq. (2.18), we see the contrast. The original [24] esti-

mator in eq. (2.11) requires nT repeated approximations/estimations, whereas the proposed

modified estimator in eq. (2.18)) asks only for n(T − 1) such approximations/estimations.

So we can intuitively explain that the proposed modification is more computationally faster.
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The second stage estimator of our proposed Modified Rodriguez-Poo & Soberon esti-

mator follows the same steps as did by [24]. Denote ∆y
(1)
it the following expression:

∆y
(1)
it = ∆yit + β(zi(t−1))xi(t−1) (2.19)

i = 1, · · · , n; t = 2, · · · , T . Substitute eq. (2.16) into eq. (2.19), we get

∆y
(1)
it = β(zit)xit + ∆uit (2.20)

i = 1, · · · , n; t = 2, · · · , T

The eq. (2.20) indicates the estimation of β(.) becomes a q dimensional problem, and we use

local linear least-squares estimation procedure with q-variate kernel weights.

To smooth over fewer variables (q instead of 2q as in the first stage), we can achieve a

better convergence rate. In eq. (2.19), βxi(t−1) is unknown. We replace it by the initial local

linear regression estimator, ∆ỹ
(1)
it = ∆yit + β̂h(zi(t−1))xi(t−1) with the following regression

model:

∆ỹ
(1)
it = β(zit)xit + uit (2.21)

i = 1, · · · , n; t = 2, · · · , T . Here, uit = (β̂h(zi(t−1))− β̂(zi(t−1)))xi(t−1) + ∆uit.

So we estimate β̃(·) with the following weighted local linear regression:

n∑
i=1

T∑
t=2

(∆ỹ
(1)
it − β̃(z)xit − β̃′(z)xit(zit − z))2Kh̄(zit − z) (2.22)

β̃(z) and ˜β′(z) are the estimators of β(z) and β′(z) respectively.
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2.4 Simulation Study

We study the finite-sample performance of the model (1.1) in a series of Monte Carlo

experiments of the [1], [24], and our proposed Modified Rodriguez-Poo & Soberon estimator.

First, we consider the Data Generating Process (DGP) for univariate case with p = q = 1

whereby yit = xitβ(zit) + µi + uit, where the variables are drawn as follows: zit = 0.5(ωit +

ωit−1), where ωit ∼ i.i.d. U(0, 0.5π); xit = 0.5(bzit + xit−1) + ζit, where ζit ∼ i.i.d. N (0, 1);

and uit ∼ i.i.d. N (0, 0.5). We consider two cases: (1) xit and zit are correlated with b = 1

and (2) xit and zit are uncorrelated with b = 0. The outcome is generated with the following

specification of individual effects: µi = c(zi + xi) + ρi with ρi ∼ i.i.d. N (0, 0.5), where c

controls the degree of correlation with regressors. Here, we set c = 0.5 for “fixed” effects.

The functional coefficient is specified as β(zit) = sin(πzit).

We consider cross-sectional sample sizes n = {50, 100, 200} with the number of time

periods T = {3, 5}. For each (n, T ), we simulate the model 500 times. We use the popular [9]

rule-of-thumb bandwidth for the smoothing variables. The kernel function of choice is second-

order Gaussian. For each simulation, we compute the average (over zit) root mean squared

error (RMSE) and the average (over zit) mean absolute error (MAE) for each functional

coefficient function:

RMSE
(
β̂(·)

)
=

√√√√ 1

nT

n∑
i=1

T∑
t=1

[
β̂(zit)− β(zit)

]2

MAE
(
β̂(·)

)
=

1

nT

n∑
i=1

T∑
t=1

∣∣∣β̂(zit)− β(zit)
∣∣∣ ,

and then report their respective averages computed over 500 simulations in Table 2.1–2.6.

We also report the computational time for all estimators.

The results in Table 2.1–2.6 are encouraging and indicate that, in all cases, the esti-

mation of β(·) of [1], [24], and our proposed Modified Rodriguez-Poo & Soberon estimator
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Table 2.1. Simulation results for the Sun et al. (2009) estimator (p = 1, q = 1)

T = 3 T = 5
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Case 1: x and z are correlated
RMSE 0.1721 0.1338 0.1045 0.1179 0.0940 0.0739
MAE 0.1201 0.0915 0.0707 0.0803 0.0624 0.0468
Com.time (s) 804.67 6,085.24 66,714.25 3,257.09 30,182.19 453,627.8

Case 2: x and z are uncorrelated
RMSE 0.1822 0.1409 0.1099
MAE 0.1239 0.0939 0.0727
Com.time (s) 765.48 5,816.55 62,066.40

Reported are the results for the functional coefficient estimator β̂1(·).

becomes more stable as the sample size increases for both fixed T and fixed n. Both the

RMSE and MAE decline significantly.

Next, we examine the performance of the estimators in mutivariate case. We increase

the number of variables that enter the model nonparametrically. The fixed-effects DGP with

p = 1 regressor but q = 2 smoothing variables is yit = xitβ(zit) + µi + uit, where zl,it =

0.5(ωl,it +ωl,it−1) for l = 1, . . . , q; xit = 0.5(zq,it +xit−1) + ζit; µi = c(0.5z1,i + 0.5z2,i +xi) +ρi

with c = 0.5. The remaining random terms ωl,it, ζit, uit, ρi and %t are drawn as before. The

functional coefficient is specified as β(zit) = 1 + z1,itz2,it + z2
2,it. The corresponding results

are reported in Table 2.7–2.12.

2.5 Comparison of Computation Time

We perform simulation study in finite samples and compare the computational time

for existing estimators of semiparametric functional-coefficient panel data models with fixed

effects by [1], [24], and our proposed Modified Rodriguez-Poo & Soberon estimator. We

used a system with the Core i7, 8.00 GB memory with 64-bit Operating System, x64-based

processor to compute the estimators. The computational time (in seconds) to evaluate

the existing estimators and our proposed estimator is reported in Table 2.13 for univariate

case. The percentage time saved relative to the base line estimator (Sun et al. estimator)

13



Table 2.2. Simulation results for the Rodriguez-Poo & Soberon (2014) Two-Stage estimator
(p = 1, q = 1)

T = 3 T = 5
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 0.2273 0.1815 0.1373 0.1741 0.1430 0.1100
MAE 0.1540 0.1203 0.0923 0.1183 0.0931 0.0714

Com.time (s) 544.03 2,204.69 9,044.61 1,450.16 6,318.42 28,334.03

2nd Stage
RMSE 0.5036 0.4612 0.4349 0.4495 0.4297 0.4283
MAE 0.4052 0.3832 0.3764 0.3743 0.3684 0.3761

Com.time (s) 943.24 3,991 16,576.89 3,456.47 14,451.92 61,168.94
Case 2: x and z are uncorrelated

1st Stage
RMSE 0.2411 0.1877 0.1446
MAE 0.1585 0.1226 0.0942

Com.time (s) 524.48 2,079.22 8,747.26

2nd Stage
RMSE 0.5337 0.4907 0.4654
MAE 0.4269 0.4071 0.4004

Com.time (s) 946.51 3,972.37 15,257.72

Reported are the results for the functional coefficient estimator β̂1(·).

is also reported. The Table 2.14 results for multivariate case. In all cases, our proposed

Modified Rodiriguez-Poo & Soberon estimator takes less time to compute the estimator.

The first-stage estimator actually performs better than the second step, as can easily be

seen from the RMSE results of the [24] estimator and our proposed Modified Rodriguez-Poo

& Soberon estimator . So we mainly focus on the performance of computational time gains

of the first-stage estimator. In all scenarios, our proposed estimator performs better and the

computation gains become more significant when the the sample size n increases. So our

proposed estimator is computationally more efficient. 1

1This chapter includes excerpts from ” Halder, S., and Malikov, E. Smoothed LSDV Estimation of Functional-
Coefficient Panel Data Models with Two-Way Fixed Effects, Economics Letters. 2020, Volume 192, Article
109239.”
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Table 2.3. Simulation results for the Proposed Modified Rodriguez-Poo & Soberon Two-
Stage estimator (p = 1, q = 1)

T = 3 T = 5
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 0.2739 0.2094 0.1629 0.1903 0.1500 0.1159
MAE 0.1841 0.1390 0.1065 0.1269 0.0985 0.0754

Com.time (s) 412.60 1,721.67 6,997.58 1,839.87 7,110.37 29,297.92

2nd Stage
RMSE 0.5128 0.4642 0.4445 0.4544 0.4321 0.4322
MAE 0.4164 0.3897 0.3845 0.3821 0.3760 0.3825

Com.time (s) 857.28 3,430.39 14,056.90 3,446.44 14,411.68 59,916.86
Case 2: x and z are uncorrelated

1st Stage
RMSE 0.2918 0.2199 0.1688
MAE 0.1937 0.1457 0.1118

Com.time (s) 398.94 1,573.57 6,709.93

2nd Stage
RMSE 0.5473 0.4937 0.4693
MAE 0.4384 0.4122 0.4053

Com.time (s) 810.52 3,273.68 13,165.84

Reported are the results for the functional coefficient estimator β̂1(·).

Table 2.4. Simulation results for the Sun et al. (2009) estimator (p = 1, q = 1)

n = 50 n = 100 n = 200

Case 1: x and z are correlated
RMSE 0.2897 0.2239 0.1745
MAE 0.2035 0.1540 0.1192
Com.time (s) 765.46 5,711.00 62,689.59

Case 2: x and z are uncorrelated
RMSE 0.3259 0.2499 0.1953
MAE 0.2203 0.1653 0.1285
Com.time (s) 739.81 5,741.03 62,533.00

Reported are the results for the functional coefficient
estimator β̂1(·). T = 3 throughout. Here, we change
the variability of ζit = 0.5. ζit ∼ i.i.d. N (0, 0.25)
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Table 2.5. Simulation results for the Rodriguez-Poo & Soberon (2014) Two-Stage estimator
(p = 1, q = 1)

n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 0.3933 0.3151 0.2406
MAE 0.2727 0.2146 0.1649

Com.time (s) 484.52 1,991.31 8,424.25

2nd Stage
RMSE 0.5842 0.5029 0.4391
MAE 0.4422 0.3885 0.3604

Com.time (s) 902.46 3,698.20 15,298.67
Case 2: x and z are uncorrelated

1st Stage
RMSE 0.4388 0.3545 0.2646
MAE 0.2932 0.2283 0.1749

Com.time (s) 517.83 2,036.15 8,691.92

2nd Stage
RMSE 0.6784 0.5894 0.5041
MAE 0.5082 0.4435 0.4094

Com.time (s) 894.36 3,701.02 15,475.75

Reported are the results for the functional coefficient estimator β̂1(·).
T = 3 throughout. Here, we change the variability of ζit = 0.5. ζit ∼
i.i.d. N (0, 0.25)

Table 2.6. Simulation results for the Proposed Modified Rodriguez-Poo & Soberon Two-
Stage estimator (p = 1, q = 1)

n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 0.4539 0.3497 0.2708
MAE 0.3144 0.2395 0.1845

Com.time (s) 385.36 1,588.46 6,570.97

2nd Stage
ARMSE 0.5825 0.4897 0.4385
AMAD 0.4462 0.3855 0.3638

Com.time (s) 744.57 3,197.89 13,158.37
Case 2: x and z are uncorrelated

1st Stage
RMSE 0.5305 0.3967 0.3073
MAE 0.3577 0.2683 0.2067

Com.time (s) 391.54 1,666.42 6,769.00

2nd Stage
RMSE 0.6980 0.5735 0.4999
MAE 0.5234 0.4405 0.4069

Com.time (s) 803.96 3,277.07 13,620.36

Reported are the results for the functional coefficient estimator β̂1(·).
T = 3 throughout. Here, we change the variability of ζit = 0.5. ζit ∼
i.i.d. N (0, 0.25)
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Table 2.7. Simulation results for the Sun et al. (2009) estimator (p = 1, q = 2)

n = 50 n = 100 n = 200

Case 1: x and z are correlated
RMSE 0.3292 0.2711 0.2293
MAE 0.2065 0.1647 0.1353
Com.time (s) 763.75 5,696.14 65,100.73

Case 2: x and z are uncorrelated
RMSE 0.3574 0.2919 0.2411
MAE 0.2182 0.1725 0.1408
Com.time (s) 766.22 5,827.25 65,944.43

Reported are the results for the functional coefficient
estimator β̂1(·). T = 3 throughout.

Table 2.8. Simulation results for the Rodriguez-Poo & Soberon (2014) Two-Stage estimator
(p = 1, q = 2)

n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 0.4709 0.4118 0.3555
MAE 0.2888 0.2435 0.2047

Com.time (s) 500.66 2,018.57 8,503.10

2nd Stage
RMSE 1.5989 1.3657 1.2453
MAE 1.1706 1.0637 1.0101

Com.time (s) 911.95 3,742.94 15,539.04
Case 2: x and z are uncorrelated

1st Stage
RMSE 0.5324 0.4521 0.3769
MAE 0.3071 0.2561 0.2120

Com.time (s) 517.73 2,172.25 8,973.36

2nd Stage
RMSE 1.8419 1.6526 1.5425
MAE 1.4184 1.3216 1.2744

Com.time (s) 945.72 3,796.75 15,822.31

Reported are the results for the functional coefficient estimator β̂1(·).
T = 3 throughout.
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Table 2.9. Simulation results for the Proposed Modified Rodriguez-Poo & Soberon Two-
Stage estimator (p = 1, q = 2)

n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 1.0668 0.9512 0.8585
MAE 0.6554 0.5718 0.5077

Com.time (s) 398.98 1,649.39 6,808.45

2nd Stage
RMSE 1.7396 1.4514 1.3108
MAE 1.2671 1.1171 1.0612

Com.time (s) 820.46 3,246.17 13,676.62
Case 2: x and z are uncorrelated

1st Stage
RMSE 1.2075 1.0889 0.9974
MAE 0.7292 0.6388 0.5681

Com.time (s) 428.36 1,705.93 6,997.98

2nd Stage
RMSE 2.0079 1.7511 1.6030
MAE 1.5109 1.3638 1.3066

Com.time (s) 858.82 3,474.24 14,394.41

Reported are the results for the functional coefficient estimator β̂1(·).
T = 3 throughout.

Table 2.10. Simulation results for the Sun et al. (2009) estimator (p = 1, q = 2)

n = 50 n = 100 n = 200

Case 1: x and z are correlated
RMSE 0.5533 0.4525 0.3837
MAE 0.3508 0.2844 0.2329
Com.time (s) 787.78 5,823.62 64,066.79

Case 2: x and z are uncorrelated
RMSE 0.6599 0.5313 0.4416
MAE 0.3999 0.3181 0.2590
Com.time (s) 792.11 5,925.38 66,201.60

Reported are the results for the functional coefficient
estimator β̂1(·). T = 3 throughout. Here, we change
the variability of ζit = 0.5. ζit ∼ i.i.d. N (0, 0.25)
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Table 2.11. Simulation results for the Rodriguez-Poo & Soberon (2014) Two-Stage estimator
(p = 1, q = 2)

n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 0.8265 0.7237 0.6064
MAE 0.5077 0.4319 0.3641

Com.time (s) 528.86 2,189.22 8,933.40

2nd Stage
RMSE 1.4330 1.2175 1.0442
MAE 0.9723 0.8281 0.7416

Com.time (s) 938.14 3,837.67 16,025.62
Case 2: x and z are uncorrelated

1st Stage
RMSE 0.9649 0.8437 0.7197
MAE 0.5713 0.4812 0.4005

Com.time (s) 538.46 2,126.70 8,913.52

2nd Stage
RMSE 1.9643 1.7048 1.5879
MAE 1.4219 1.2747 1.2035

Com.time (s) 956.47 3,895.80 16,243.70

Reported are the results for the functional coefficient estimator β̂1(·).
T = 3 throughout. Here, we change the variability of ζit = 0.5. ζit ∼
i.i.d. N (0, 0.25)

Table 2.12. Simulation results for the Proposed Modified Rodriguez-Poo & Soberon Two-
Stage estimator (p = 1, q = 2)

n = 50 n = 100 n = 200

Case 1: x and z are correlated

1st Stage
RMSE 1.6756 1.4885 1.3349
MAE 1.0202 0.8915 0.7945

Com.time (s) 432.58 1,732.94 7,184.98

2nd Stage
RMSE 1.6364 1.3565 1.1618
MAE 1.1092 0.9183 0.8130

Com.time (s) 875.65 3,427.75 14,228.36
Case 2: x and z are uncorrelated

1st Stage
RMSE 2.3030 2.0795 1.8686
MAE 1.3762 1.2013 1.0622

Com.time (s) 426.58 1,720.35 7,051.96

2nd Stage
RMSE 2.3712 1.9677 1.7351
MAE 1.6539 1.3817 1.2590

Com.time (s) 865.96 3,495.36 14,092.38

Reported are the results for the functional coefficient estimator β̂1(·).
T = 3 throughout. Here, we change the variability of ζit = 0.5. ζit ∼
i.i.d. N (0, 0.25)
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Table 2.13. Comparison of Com.Time of existing estimators and our proposed estimators
for univariate case

% Time Saved

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Sun et. al. estimator 804.67 6,085.24 66,714.25

R-P estimator 544.03 2,204.69 9,044.61
943.24 3,991 16,576.89

Proposed Modified
R-P estimator 412.60 1,721.67 6,997.58 48.72 71.71 89.51

857.28 3,430.39 14,056.90

Reported are the results for the computational time (s) of the existing estimators and
our proposed estimator. T=3 throughout

Table 2.14. Comparison of Com. Time of existing estimators and our proposed estimators
for multivariate case

% Time Saved

n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Sun et. al. estimator 763.75 5,696.14 65,100.73

R-P estimator 500.66 2,018.57 8,503.10
911.95 3,742.94 15,539.04

Proposed Modified
R-P estimator 398.98 1,649.39 6,808.45 47.76 71.04 89.54

820.46 3,246.17 13,676.62

Reported are the results for the computational time (s) of the existing estimators and
our proposed estimator. T=3 throughout
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Chapter 3

Semiparametric Methods with Discrete Covariates

In this chapter, we construct nonparametric estimators for a regression model in the

presence of unordered discrete variable. In the literarure there have been a handful of

studies use discrete regressors in nonparametric regression, e.g. [35] , [42], [43]. However, it

is naive to use a discrete variable to control for fixed effects. We perform simulation study

and the estimates are not consistent for fixed T as n increases.

3.1 The Model

We consider a conceptually different approach to controlling for unobserved fixed effects

in which µi is modelled as an unknown function of an unordered factor variable indexing

individuals, i.e., µi = µ(Di), where Di is a discrete scalar variable. As its core, such an

approach is similar in the spirit to the Least Squares Dummy Variable Approach, whereby

fixed effects are modeled via n dummies included as additional regressors, except that we

circumvent the need for numerous indicator variables by relying on the ability of kernel

estimators to tackle unordered discrete data. Effectively, we can use a single factor variable

to deliver the same information. The estimation procedure is two-step a la [37]. Introducing

an unordered factor variable indexing individuals, i.e., µi = µ(Di), where Di is a discrete

scalar variable in our model in eq. (1.1):

yit = x′itβ(zit) + µ(Di) + uit (3.1)

So, µi is modelled as an unknown function of an unordered factor variable indexing

individuals, i.e., µi = µ(Di), where Di is a discrete scalar variable. [36] developed the
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unordered kernel functions :

l(Xi, x, λ) =

 1, Xi = x

λ, Xi 6= x

where, λ ∈ [0, 1] is an indicator function.

3.2 Estimation

3.2.1 Single-step Estimator

In single step estimator, we approximate the model in (3.1) around (zit, Di) = (z,D),

where Di is a discrete scalar variable.

3.2.2 Two-step Estimator

The estimation procedure of eq. (3.1) is two-step a la [37]. First, the model is trans-

formed to remove the unknown function then β is estimated using OLS. The way we do this

is to take the conditional expectation of eq. (3.1) with respect to zit, Di.

E[yit|zit, Di] = E[xit|zit, Di]
′β(zit) + µ(Di) (3.2)

Substitute eq. (3.2) from eq. (3.1):

yit − E[yit|zit, Di] = (xit − E[xit|zit, Di])
′β(zit) + uit (3.3)

1st Step:

If we know E[yit|zit, Di] and E[xit|zit, Di], we proceed with OLS to estimate β. In practice

E[yit|zit, Di] and E[xit|zit, Di] are unknown and must be estimated. [37] suggests to use Lo-

cal Constant Least Square (LCLS) Estimator to estimate each conditional mean separately,
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where h is the Silverman bandwidth.

2nd Step:

yit − E[yit|zit, Di] = (xit − E[xit|zit, Di])
′β(zit) + uit

We estimate eq. (3.3) via Local Linear Least Square (LLLS) Estimator taking an approxi-

mation around zit = z.

3.3 Simulation Study

We study the finite-sample performance of the model (3.1) in a series of Monte Carlo

experiments.

We consider the DGP for univariate case with p = q = 1 whereby yit = xitβ(zit)+µi+uit,

where the variables are drawn as follows: zit = 0.5(ωit + ωit−1), where ωit ∼ i.i.d. U(0, 0.5π);

xit = 0.5(zit + xit−1) + ζit, where ζit ∼ i.i.d. N (0, 1); and uit ∼ i.i.d. N (0, 0.5). The outcome

is generated with the following specification of individual effects: µi = c(zi + xi) + ρi with

ρi ∼ i.i.d. N (0, 0.5), where c controls the degree of correlation with regressors. We estimate

fixed effects as well as random effects. Here, we set c = 0.5 for “fixed” effects and c = 0 for

“random” effects. The functional coefficient is specified as β(zit) = sin(πzit).

We consider cross-sectional sample sizes n = {50, 100, 200} with the number of time

periods T = {3, 5, 7}. For each (n, T ), we simulate the model 500 times. We use the popular

[9] rule-of-thumb bandwidth for the smoothing variables. The kernel function is [2]’s kernel

for discrete unordered random variable. We consider the indicator function, λ = 0.5. For

each simulation, we compute the bias, average (over zit) root mean squared error (RMSE),

and the average (over zit) mean absolute error (MAE) for each functional coefficient function

and then report their respective averages computed over 500 simulations in Table 3.1–3.4.

We report results for both fixed effects as well as random effects estimator.
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Table 3.1. Simulation study of Fixed effect one-step Discrete Variable estimator

T = 3 T = 5 T = 7
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

BIAS -0.2792 -0.2832 -0.2903 -0.2030 -0.2105 -0.2109 -0.1573 -0.1605 -0.1644
RMSE 0.3123 0.3004 0.2998 0.2300 0.2259 0.2193 0.1817 0.1756 0.1721
MAE 0.2858 0.2860 0.2916 0.2089 0.2131 0.2123 0.1630 0.1637 0.1656

Reported are the results for the functional coefficient estimator.

3.4 Concluding Remarks

The simulation results in Table 3.1–3.4 indicate that the estimation β(·) are consistent

for fixed n as T increases. The estimates are also consistent when both n as T increases.

However, the estimates are not consistent for fixed T as n increases. This is due to incidental

parameters problem in nonlinear model. Fixed effects generally inconsistent in nonlinear

model as n grows with T fixed. In a linear model, least squares treating the additive constant,

µi as a parameter to be estimated is consistent. Incidental parameters problem in nonlinear

model is caused by only having T observations to estimate each µi , so that as n grows the

estimate of µi remains random. In linear models this randomness gets ”averaged out.” In

nonlinear models it does not. This highlights the caution the practitioners ought to use a

discrete variable to control for fixed effects. 1

1This chapter includes excerpts from ” Halder, S., and Malikov, E. Smoothed LSDV Estimation of Functional-
Coefficient Panel Data Models with Two-Way Fixed Effects, Economics Letters. 2020, Volume 192, Article
109239.”
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Table 3.2. Simulation study of Random Effect one-step Discrete Variable estimator

T = 3 T = 5 T = 7
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

BIAS 0.0189 0.0189 0.0124 0.0134 0.0103 0.0108 0.0161 0.0128 0.0093
RMSE 0.1326 0.0975 0.0721 0.1028 0.0778 0.0580 0.0877 0.0695 0.0504
MAE 0.0951 0.0709 0.0518 0.0739 0.0568 0.0418 0.0631 0.0498 0.0362

Reported are the results for the functional coefficient estimator.

Table 3.3. Simulation study of Fixed Effect two-step Discrete Variable estimator

T = 3 T = 5 T = 7
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

BIAS -0.2667 -0.2737 -0.2822 -0.1916 -0.2017 -0.2037 -0.1473 -0.1528 -0.1583
RMSE 0.2987 0.2906 0.2917 0.2199 0.2175 0.2124 0.1727 0.1679 0.1666
MAE 0.2734 0.2766 0.2835 0.1982 0.2044 0.2052 0.1540 0.1562 0.1596

Reported are the results for the functional coefficient estimator.

Table 3.4. Simulation study of Random Effect two-step Discrete Variable estimator

T = 3 T = 5 T = 7
n=50 n=100 n=200 n=50 n=100 n=200 n=50 n=100 n=200

BIAS 0.0179 0.0184 0.0127 0.0139 0.0106 0.0108 0.0163 0.0132 0.0094
RMSE 0.1317 0.0978 0.0729 0.1050 0.0791 0.0592 0.0894 0.0702 0.0512
MAE 0.0952 0.0709 0.0523 0.0749 0.0572 0.0422 0.0635 0.0501 0.0364

Reported are the results for the functional coefficient estimator.
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Chapter 4

Two-way Fixed Effect Estimator

4.1 Introduction

The existing semiparametric estimators for varying-coefficient fixed-effects models [1, 24, 25],

however, exclusively assume one-way fixed effects, typically in the dimension of individual

cross-sectional units.1 This is unfortunate because more often than not researchers wish to

control for both unit- and time-specific fixed effects in their panel regressions, especially with

the widespread popularity of the difference-in-difference based identification strategies. In

addition to the conventional time-invariant individual effects, the time effects are included

with the intent to control for common unobservable factors correlated with regressors. In

linear models, this is rather simple. Since most microeconomic studies use short panels

(n � T ), practitioners customarily control for time effects by explicitly including time-

period dummies as additional regressors, whereas the individual fixed effects are usually

transformed out of the equation by either the within or first-difference transformation. The

same procedure is however not as trivial in the case of a semiparametric functional-coefficient

model because the direct estimation of constant coefficients on such time-period dummies

renders the model a partially linear, functional-coefficient regression thereby necessitating

more than a single-step estimation which, besides theoretical complications, is also more

computationally demanding.

To fill this practically important gap, we contribute to the literature by extending the

[1] smoothed least-squares dummy variable (SLSDV) estimator to the case of a functional-

coefficient panel data model with two-way fixed effects whereby we allow for unobservable

1The same applies to other types of semiparametric fixed-effects panel data models such as a partially linear
specification, see [29, 20, 10].
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heterogeneity in both dimensions of the data: cross-section and time. Both fixed effects are

(asymptotically) concentrated out of the model via local kernel-smoothed two-dimensional

within transformation. One of the benefits of the proposed estimation procedure is that

the unknown functional coefficients are estimated in a single step. Using local-linear fitting,

the simulation experiments show that the two-way SLSDV estimator performs well in finite

samples. We also showcase its practical usefulness in two different scenarios.

4.2 The Model

We consider the problem of estimating the following semiparametric functional-coefficient

panel data model with two-way fixed effects:

yit = x′itβ(zit) + µi + λt + uit, (4.1)

where i = 1, . . . , n, t = 1, . . . , T . The outcome yit is a scalar; the covariate column vector xit

is of dimension p and excludes time-invariant regressors for identification purposes; β(·) is a

p × 1 vector of the corresponding unknown functional coefficients which are assumed to be

smooth functions; and the vector of smoothing variables zit is of dimension q. The remaining

variables in the equation are all scalars. We assume the following about unobservables in

the model. The individual-specific effects {µi} are an i.i.d. sequence (over i) with a zero

mean and finite variance. Analogously, the time-specific effect λt is i.i.d. over t and also

has a zero mean and finite variance. We let both µi and λt correlate with xit and/or zit in

an arbitrary unspecified way. Such a nonparametric treatment of both unobservable effects

and their correlation with the regressors in the equation renders them “fixed.” Lastly, the

random disturbance uit is assumed to be i.i.d. over both i and t with a zero mean and finite

variance, and E[uit|wi] = 0 with wi = (µi, λt,x
′
i1, . . . ,x

′
iT , z

′
i1, . . . , z

′
iT )′. Thus, eq. (4.1) is a

fixed-effects model with strictly exogenous regressors.
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The salient feature of our model is that it accommodates heterogeneity in both dimen-

sions of the data: cross-section (µi) and time (λt). In that, it nests the more traditional

functional-coefficient one-way fixed-effects panel data model with individual effects only.

Namely, when λt = 0 for all t, model (4.1) reduces to the more standard specification first

studied by [1].

The consistent estimation of (4.1) is complicated by the presence of unobservable {µi}

and {λt} which cannot be ignored due to their correlation with the regressors. A popular

approach to tackling fixed effects is to transform the model to rid it of the former. For

instance, this is the route taken by [24, 25] in their estimation of the one-way model whereby

they remove individual effects via cross-time first-difference/within transformation before

taking a local approximation of the transformed equation. Such an approach is non-trivial

in the case with two fixed effects because (i) if first-differencing, it is not obvious what cross-

sections to difference λt over given that there is typically no natural ordering across units

and (ii) if within-transforming, the local approximation of the transformed two-way model

would need to be TNq-variate which would deliver an exceptionally poor convergence rate

and is practically prohibitive.2 We therefore proceed with the alternative method whereby

both fixed effects are removed after taking the local approximation of (4.1).

Building on Sun’s (2009) idea, we generalize their smoothed LSDV approach to tackling

more than one fixed effect in the functional-coefficient model. This extension is rather

natural. Writing the model in (4.1) in the matrix from, we have

y = M{X,β(Z)}+ Dµ+ Pλ+ u, (4.2)

where y = (y′1, . . . ,y
′
n)′ and u = (u′1, . . . ,u

′
n)′ are (nT )× 1 vectors, with yi = (yi1, . . . , yiT )′

and ui = (ui1, . . . , uiT )′. The operator M{·} stacks x′itβ(zit) into a nT × 1 vector with the

(i, t) subscripts matching those of y and u. Further, µ = (µ1, . . . , µn)′ is an n× 1 vector of

2In case of the two-way first-differencing, the local approximation would need to be 4q-variate which is also
likely practically prohibitive.
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individual fixed effects, and D = In⊗ iT is an (nT )×n design matrix, where In is an identity

matrix of dimension n and iT denotes an T ×1 vector of ones. Analogously, λ = [λ1, . . . , λT ]′

is a T × 1 vector of time fixed effects, with P = in ⊗ IT .

As the name suggests, the smoothed LSDV approach involves local smoothing around

zit = z. First, define a nT×nT diagonal matrix of local kernel weights WH(z) = diag{KH(z1, z), · · · ,KH(zn, z)},

with KH(zi, z) = diag{kH(zi1, z), · · · , kH(ziT , z)} being a T × T diagonal matrix for each i,

where kH(zit, z) = k{H−1(zit− z)} is the q-variate product kernel and H = diag{h1, . . . , hq}

is a diagonal bandwidth matrix of dimension q. To derive the estimator for unknown func-

tional coefficients, we then solve the following locally weighted least-squares problem:

min
β(z),µ,λ

[y −M{X,β(z)} −Dµ−Pλ]′WH(z)[y −M{X,β(z)} −Dµ−Pλ]. (4.3)

The first-order conditions of (4.3) with respect to both fixed effects µ and λ are

D′WH(z)[y −M{X,β(z)} −Dµ−Pλ] = 0 (4.4)

P′WH(z)[y −M{X,β(z)} −Dµ−Pλ] = 0, (4.5)

which can be solved for µ̂, i.e.,

µ̂(z) =
[
In − (D′WH(z)D)−1D′WH(z)P(P′WH(z)P)−1P′WH(z)D

]−1
(D′WH(z)D)−1×

D′WH(z)
[
InT −P(P′WH(z)P)−1P′WH(z)

]
(y −M{X,β(z)}), (4.6)

and for λ̂:

λ̂(z) =
[
IT − (P′WH(z)P)−1P′WH(z)D(D′WH(z)D)−1D′WH(z)P

]−1
(P′WH(z)P)−1×

P′WH(z)
[
InT −D(D′WH(z)D)−1D′WH(z)

]
(y −M{X,β(z)}). (4.7)
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Define the two local within transformation matrices: NH(z) ≡ InT−P[P′WH(z)P]−1P′WH(z)

and MH(z) = InT −D[D′ΩH(z)D]−1D′ΩH(z), where ΩH(z) ≡ N′H(z)WH(z)NH(z). Then,

substituting µ̂(z) and λ̂(z) from (4.6)–(4.7) for µ and λ, respectively, in the objective func-

tion in (4.3) yields a concentrated locally weighted least-squares problem from which both

unknown fixed effects are removed:

min
β(z)

(y −M{X,β(z)})′ΣH(z) (y −M{X,β(z)}) , (4.8)

where ΣH(z) ≡MH(z)′ΩH(z)MH(z). The riddance of fixed effects from the model is ensured

by NH(z)Pλ = 0nT×1 and MH(z)Dµ = 0nT×1 for all z. Upon a close examination of the

local weighting matrix ΣH(z), it is evident that µ and λ are removed via local z-specific

kernel-weighted two-way within transformation. That is, the locally approximated model

is transformed by subtracting the smoothed (around zit = z) version of cross-time and

cross-individual averages and adding the smoothed pooled (grand) average. Note that the

two-way within transformation implied by the smoothed LSDV procedure is performed after

the local approximation is taken thereby removing µi and λt “asymptotically” as opposed

to purging them from (4.1) by directly within-transforming the model using unsmoothed

(global) averages before deriving the estimator for functional coefficients.

To operationalize the estimator of β(z) from the profiled problem in (4.8), we rely on

local-polynomial kernel approximators. For each s = 1, . . . , p, the local Taylor expansion of

the unknown functional coefficient around zit = z is

βs(zit) = βs(z) + (zit − z)′∇zβs(z) + (zit − z)′∇2
zβs(z)(zit − z) + . . . , (4.9)

where ∇zβs(z) = (∂βs(z)/∂z1,it, . . . , ∂βs(z)/∂zq,it)
′ is a q × 1 vector of first-order gradients

and ∇2
zβs(z) = ∇z′(∇zβs(z)) is the q× q Hessian matrix of the second-order derivatives, etc.

The first-order (local linear) approximation is arguably the most popular among practitioners
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[16], and we adopt it here too and so do [1]. Thus, in what follows, we make use of βs(zit) ≈

βs(z) + (zit − z)∇zβs(z) around zit = z.

Define a (q + 1) × 1 vector θs(z) = (βs(z),∇zβs(z)′)′ of unknown local parameters

for each s = 1, . . . , p. Then, the unknown p × (q + 1) parameter matrix is defined as

Θ(z) = [θ1(z) . . . θp(z)]′:

Θ(z) ≡


θ1(z)′

...

θp(z)′

 =


β1(z) ∇β1(z)′

...
...

βp(z) ∇βp(z)′

 =

[
β(z) ∇β(z)′

]
,

where the first column of the above matrix is β(·) evaluated at z which is of primary interest.

Next, define a (q + 1) × 1 vector of deviations from z, i.e., Zit(z) = (1, (zit − z)′)′. For zit

close to z, we replace β(zit) in (4.8) with Θ(z)Zit(z) and obtain the local-linear estimator

of functional coefficients β(z) from the locally concentrated minimization problem:

min
Θ(z)

(y −X (z)vec{Θ(z)})′ΣH(z) (y −X (z)vec{Θ(z)}) , (4.10)

where we stack (by columns) the unknown parameter matrix Θ(z) into a p(q+ 1)× 1 vector

denoted by the operator vec{·}, and X (z) = (X ′i (z), . . . ,X ′n(z))′ is an nT × p(q + 1) data

matrix, with each T × p(q + 1) block given by

Xi(z) =


Z ′i1(z)⊗ x′i1

...

Z ′iT (z)⊗ x′iT

 .

Lastly, solving the first-order condition of (4.10) for the unknown Θ(z) yields the fol-

lowing local-linear two-way fixed-effects estimator:

vec
{

Θ̂(z)
}

= (X (z)′ΣH(z)X (z))
−1X (z)′ΣH(z)y. (4.11)
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A few remarks are in order. Since we assume that all elements in xit are time-varying,

the identification of our fixed-effects model does not require additional restrictions on µi

and λt such as the popular “zero sum” normalization à la [29] or [12] oftentimes imposed in

semiparametric fixed-effects models.3 The latter is normally necessary if the model admits

time-invariant regressors, although one can sometimes achieve identification even without it:

e.g., [1] identify their original one-way fixed-effects model that permits one time-invariant

regressor by relying on the assumption that fixed effects are an i.i.d. sequence of random

variables with a zero mean and finite variance. Similar arguments are used by [10] for a

fully nonparametric one-way fixed-effects model. However, even if the identification can

be achieved without restricting fixed effects, to make the local-polynomial smoothed LSDV

estimation of the functional coefficient on the time-invariant regressor (essentially, a non-

parametric intercept function) feasible, one has to restrict the unobserved effects nonetheless.

This happens because the within transformation is meant to remove any time-invariant term.

The latter is the reason why Sun’s (2009) one-way estimator is operationalized using the re-

stricted matrix D under the zero-sum normalization of fixed effects. In our case however, we

derive the estimator under no such restriction. Having said that, should one be interested in

allowing for a time-invariant x in our two-way model, the estimator in (4.11) may be made

feasible by replacing D and P with their restricted counterparts DR = [−in−1In−1]′⊗ im and

PR = in ⊗ [−im−1Im−1]′ (under
∑

i=1 µi = 0 and
∑

t=1 λt = 0) and accordingly redefining

matrices NH(z), MH(z), ΩH(z) and ΣH(z).

4.3 Simulation Study

We examine the finite-sample performance of the proposed estimator in (4.11) in a series

of Monte Carlo experiments. All data generating processes follow model (4.1).

We begin with the DGP with p = q = 1 whereby yit = xitβ(zit) + µi + λt + uit, where

the variables are drawn as follows: zit = 0.5(ωit + ωit−1), where ωit ∼ i.i.d. U(0, 0.5π);

3The assumption of no time-invariant regressors in functional-coefficient fixed-effects models is not without
precedent, e.g., see [24].
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Table 4.1. Simulation results for the two-way SLSDV estimator (p = 1, q = 1)

T = 3 T = 5
n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

Case 1: x and z are correlated
RMSE 0.1763 0.1398 0.1063 0.1233 0.0981 0.0747
MAE 0.1237 0.0967 0.0713 0.0836 0.0637 0.0478

Case 2: x and z are uncorrelated
RMSE 0.1850 0.1459 0.1096 0.1274 0.1011 0.0788
MAE 0.1267 0.0989 0.0723 0.0849 0.0647 0.0488

Reported are the results for the functional coefficient estimator β̂1(·).

xit = 0.5(bzit + xit−1) + ζit, where ζit ∼ i.i.d. N (0, 1); and uit ∼ i.i.d. N (0, 0.5). We consider

two cases: (1) xit and zit are correlated with b = 1 and (2) xit and zit are uncorrelated

with b = 0. The outcome is generated with the following specification of individual and

time effects: µi = c1(zi + xi) + ρi with ρi ∼ i.i.d. N (0, 0.5), and λt = c2(zt + xt) + %t

with %t ∼ i.i.d. N (0, 0.5), where c1 and c2 control the degree of correlation with regressors.

Here, we set c1 = c2 = 0.5 for “fixed” effects. The functional coefficient is specified as

β(zit) = sin(πzit).

We consider cross-sectional sample sizes n = {50, 100, 200} with the number of time

periods T = {3, 5}. For each (n, T ), we simulate the model 500 times. We use the popular [9]

rule-of-thumb bandwidth for the smoothing variables. The kernel function of choice is second-

order Gaussian. For each simulation, we compute the average (over zit) root mean squared

error (RMSE) and the average (over zit) mean absolute error (MAE) for each functional

coefficient function and then report their respective averages computed over 500 simulations

in Table 4.1.

The results in Table 4.1 are encouraging and indicate that, in both cases, the estimation

of β(·) becomes more stable as the sample size increases for both fixed T and fixed n. Both

the RMSE and MAE decline significantly.

Next, we examine the performance of our estimator in higher-dimensional models. First,

we consider the fixed-effects DGP with p = 2 regressors and q = 1 smoothing variable: yit =
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Table 4.2. Simulation results for the two-way SLSDV estimator (p = 2, q = 1)

n = 50 n = 100 n = 200

β1(·)
∣∣∣ RMSE 0.1798 0.1427 0.1046

MAE 0.1202 0.0933 0.0685

β2(·)
∣∣∣ RMSE 0.1900 0.1489 0.1129

MAE 0.1301 0.1015 0.0759

Reported are the results for the functional coeffi-
cient estimators β̂1(·) and β̂2(·). T = 3 through-
out.

Table 4.3. Simulation results for the two-way SLSDV estimator (p = 1, q = 2)

n = 50 n = 100 n = 200

RMSE 0.3153 0.2592 0.2160
MAE 0.2047 0.1659 0.1351

Reported are the results for the functional
coefficient estimator β̂1(·). T = 3 through-
out.

x1,itβ1(zit)+x2,itβ2(zit) +µi+λt+uit, where zit = 0.5(ωit+ωit−1); xs,it = 0.5(zit+xs,it−1)+ζs,it

for s = 1, . . . , p; µi = c1(zi + 0.5x1,i + 0.5x2,i) + ρi and λt = c2(zt + 0.5x1,t + 0.5x2,t) + %t

with c1 = c2 = 0.5. The random terms ωit, ζs,it, uit, ρi and %t are drawn as before. The

functional coefficients are specified as β1(zit) = 1 + z3
it/3 and β2(zit) = sin(πzit). Table

4.2 summarizes these results. Second, we increase the number of variables that enter the

model nonparametrically. The fixed-effects DGP with p = 1 regressor but q = 2 smoothing

variables is yit = xitβ(zit) + µi + λt + uit, where zl,it = 0.5(ωl,it + ωl,it−1) for l = 1, . . . , q;

xit = 0.5(zq,it+xit−1)+ζit; µi = c1(0.5z1,i+0.5z2,i+xi)+ρi and λt = c2(0.5z1,t+0.5z2,t+xt)+%t

with c1 = c2 = 0.5. The remaining random terms ωl,it, ζit, uit, ρi and %t are drawn as before.

The functional coefficient is specified as β(zit) = 1+z1,itz2,it+z
2
2,it. The corresponding results

are reported in Table 4.3.
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From Tables 4.2–4.3, we see that the estimator continues to perform well when the

dimensionality of the model rises. As expected of a consistent estimator, RMSE declines

with the increase in n.4

4This chapter includes excerpts from ” Halder, S., and Malikov, E. Smoothed LSDV Estimation of Functional-
Coefficient Panel Data Models with Two-Way Fixed Effects, Economics Letters. 2020, Volume 192, Article
109239.”
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Chapter 5

Empirical Applications

We showcase the practical usefulness of our two-way SLSDV estimator in two different

scenarios both for balanced dataset as well as for unbalanced dataset.

5.1 Balanced Data

A balanced panel dataset is a dataset in which each panel member is observed every

year. Consequently, if a balanced panel contains n panels and T periods, the number of total

observations in the dataset is N = n× T .1

We showcase the practical usefulness of our two-way SLSDV estimator by revisiting the

estimation of the so-called environmental Kuznets curve (EKC) that relates environmental

quality to economic development with the focus on (the oftentimes overlooked) temporal

variability in the coefficients. The empirical literature on the EKC hypothesis is broad; e.g.,

see [6] and [4] for excellent surveys. The gist of such studies essentially boils down to the

estimation of a “reduced-form” regression of a pollution variable on the region’s per-capita

income, traditionally, using panel data that permit controlling for unobservable confounders

via fixed effects. Most prevalently, the adopted parametric specification is cubic (seldom

quadratic) arguably due to its ability to fit different relationships including the inverted-U

shape implied by the hypothesis e.g.,to name a few [5, 7, 4, 8], with the usual model taking

the following parametric form:

Pit = µi + λt + β1Yit + β2Y
2
it + β3Y

3
it + uit, (5.1)

1We are thankful to Dan Millimet and Alfonso Flores-Lagunes for sharing their data for this empirical
application
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where Pit and Yit are, respectively, the pollutant emissions and income per capita in region i

at time t; The two-way region- and time-specific unobservables are treated as being “fixed”

effects.

Surprisingly, despite that the so-called “technique effect” capturing improvements in

technology and efficiency over time is one of the key proximate factors normally invoked to

explain the EKC hypothesis (and the shape of the curve it predicts), the estimated EKC

regressions just like the one in (5.1) normally assume time-invariance of the relationship

between P and Y . But it is only natural to expect the pollution-income nexus to also evolve

over time with technological change. In this paper, we seek to examine the appropriateness of

this implicit time-invariance assumption by relaxing parameter constancy in (5.1) to let the

slope coefficients smoothly vary with time in an unspecified way. By letting the coefficients

vary with time in an arbitrary nonparametric fashion, we are able to accommodate potential

temporal variation in the relationship between pollution and income in a flexible way that

is robust to misspecification.2 Thus, our preferred EKC regression is a semiparametric

functional-coefficient two-way fixed-effects model:

Pit = µi + λt + β1(Dt)Yit + β2(Dt)Y
2
it + β3(Dt)Y

3
it + uit, (5.2)

where the functional coefficient vector β(·) = (β1(·),β2(·)′,β3(·)′)′ is a function of a (scalar)

ordered discrete time variable Dt taking on T different values in {1, 2, . . . , T}. Since the

smoothing variable is not continuous, equation (5.2) is estimated via the local-constant ver-

sion of our proposed two-way SLSDV estimator using the cross-validated bandwidth and

[2]’s (2007) kernel function for ordered discrete variables.

By virtue of treating time as an ordered “factor” variable entering nonparametric func-

tional coefficients, we essentially achieve the estimation of a fully saturated flexible model

(with a complete set of time dummies) without the need to actually cell-split the sample

2[7] also discuss the important of accounting for temporal variation in the standard EKC regressions driven
by technological changes but do not go beyond the inclusion of time trends, thereby restrictively assuming
additivity while still maintaining the time-invariance of slopes.
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Figure 5.1. Distribution of the semiparametric EKC coefficient estimates over the years for
NOx

Figure 5.2. Distribution of the semiparametric EKC coefficient estimates over the years for
SO2

based on years. By relying on recent advancements in the kernel estimation of functional-

coefficient models with exclusively discrete smoothing variables [see[3]], we circumvent the

need for time dummies and, further, can use relevant information from “similar” time pe-

riods (from before and after) during estimation of the coefficients for each time period by

“smoothing” them over time. Not least importantly, such a kernel-based nonparametric

treatment of a scalar time variable comes at no cost in terms of the speed of convergence

since smoothing over categorical variables does not contribute to the “curse of dimensional-

ity.” In the absence of continuous smoothing variables (like in our case), the estimator of

unknown coefficients exhibits a parametric rate.
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We estimate the EKC at the U.S. state level. The pollutants of focus are NOx and

SO2. The annual panel contains observations for n = 48 contiguous states during 1929–1994

(T = 66). The state-level per-capita emissions Pit and per-capita income Yit are in thousands

short tons and thousands of 1987 U.S. dollars, respectively. See [26] and [8] for summary

statistics and further details about the data.

Figures 5.1–5.2 summarize year-specific estimates of the three functional coefficients

from the semiparametric EKC in (5.2) in the form of kernel densities plotted together with

their fixed-coefficient counterparts (vertical lines) from a fully parametric model in (5.1).

For both pollutants, the data point to non-negligible temporal heterogeneity in the EKC

relationship. In most cases, the parametric coefficient estimates are not even near the mode

of the corresponding semiparametric estimates. To see the latter more clearly, we plot the

estimated EKC using both models.

Since our semiparametric specification produces time-varying coefficients, the implied

EKC relationship is also time-varying. To avoid clutter of 66 year-specific curves, we instead

split the sample period into decades and plot the decade-specific EKCs using medians of

year-specific functional coefficients from each subperiod. These are 1929–1939, 1940–1949,

1950–1959, ..., 1980–1989, 1990–1994, with the first/last subperiods being longer/shorter

than others given the endpoints of our sample period. Each curve is plotted in the range

of Yit values observed during the corresponding decade. The semiparametric decade-specific

EKCs are plotted along with that estimated using a fully parametric model, which is “global”

over the entire sample period, in Figures 5.3 and 5.5. These figures show that, in the face

of temporal changes, a time-invariant fixed-coefficient model can produce an incomplete, if

not distorted, picture of the EKC relationship.

To begin with, consider the case of NOx pollutants. While both models produce an

inverted-U-shaped relationship consistent with the EKC hypothesis, our semiparametric

time-varying model produces additional important insights into the pollution-income nexus
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that the more traditional fixed-coefficient model cannot deliver by design. The latter in-

cludes not only the understanding of the “drift” of the relationship over time as per-capita

incomes of the states grow but, perhaps more importantly, the evolution of the turning point

with technological changes and the states’ position on the EKC relative thereto. The fixed-

coefficient model estimates the “global” turning point around the quite optimistic $8,700.

Although this is near the median of year-specific estimates of the turning point implied by

our time-varying model ($8,600), our model also indicate a considerable variability in the

turning point over the years, with the post-1967 period characterized by significantly larger

values of the point (see Table 5.1 in the Online Appendix). Figure 5.4 plots the time evo-

lution of the semiparametric NOx turning point estimates, from where it is evident that the

hump of the EKC curve was generally drifting to the right (higher income values) for most

years until the reversal of this trend in the last ten years or so.

The contrast between the two models is even more stark in the case of SO2 emissions.

Consistent with the results reported by [26] and [8], the parametric specification produces

a monotonically increasing EKC which offers no support for the hypothesis. The results

from the time-varying model however lead to a different conclusion. From Figure 5.5, the

estimated EKC is non-monotonic in the earlier years before the 1970s, which also can be

concluded from Figure 5.6 that presents yearly estimates of the turning point for SO2 (also

see Table 5.2). The semiparametric estimates suggest the relative stability of the turning

point around the overall median of $8,600 until around 1970, which was only then followed

by the period characterized by dramatically higher or even missing3 values of the turning

point. Thus, the lack of empirical evidence in support of the EKC hypothesis produced by

the time-invariant model is likely driven by the last third of the sample period only. This

highlights the practical importance of using more flexible specifications that allow the EKC

relationship to evolve over time.

3Missing due to positive monotonicity of the EKC in some years.
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Figure 5.3. Semiparametric estimates of the EKC for NOx across decades
(decade-specific curves are plotted in the range of per-capita income values observed during
the corresponding decade; the solid line is the EKC from a time-invariant parametric model)

Figure 5.4. Evolution of the turning point estimates over the years for NOx

(solid line is the fitted fourth-degree polynomial)
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Figure 5.5. Semiparametric estimates of the EKC for SO2 across decades
(decade-specific curves are plotted in the range of per-capita income values observed during
the corresponding decade; the solid line is the EKC from a time-invariant parametric model,
shifted down by 0.2)

Figure 5.6. Evolution of the turning point estimates over the years for SO2

(solid line is the fitted fourth-degree polynomial)
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Besides directly comparing our semiparametric EKC estimates to those from a fully

parametric fixed-coefficient model, we also formally discriminate between the two specifica-

tions. Namely, we test the null hypothesis of a parametric time-invariant fixed-coefficient

model (5.1) against our semiparametric alternative in (5.2). This is, essentially, the test

of overall relevancy of Dt, or parameter constancy. To test this hypothesis, we use [22]’s

nonparametric goodness-of-fit test, or the “nonparametric F-test,” based on the comparison

of the restricted and unrestricted models with the corresponding residual-based test statis-

tic given by Tn = (RSS0 − RSS1)/RSS1, where RSS0 and RSS1 are the residual sums of

squares under the (restricted parametric) null and the (unrestricted semiparametric) alter-

native, respectively. Intuitively, the test statistic is expected to converge to zero under the

null and is positive under the alternative; hence the test is one-sided. To approximate the

null distribution of Tn, we use wild panel-data block-bootstrap by resampling residuals from

the restricted model.

Steps for Block Bootstrap:

After repeating B bootstrap estimations of [β1(Dt), β2(Dt), β3(Dt)], use the empirical

distribution of these B bootstrap estimates of parameter functions
{[
β̂b1(Dt), β̂

b
2(Dt), β̂

b
3(Dt)

]
; b = 1, . . . , B

}
to construct bias-corrected confidence intervals corresponding to each β̂j(Dt) estimate for

j = 1, 2, 3.

Namely, we estimate (1− a) 100% confidence bounds for each β̂j(Dt) as intervals be-

tween the [a1 × 100]th and [a2 × 100]th percentiles of the corresponding bootstrap distribu-

tion
{
β̂bj(Dt); b = 1, . . . , B

}
with

a1 = Φ
(

2Φ̂0 + Zα/2

)
(5.3)

a2 = Φ
(

2Φ̂0 + Z(1−α/2)

)
(5.4)
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where Φ (·) is the standard normal cumulative distribution function, Zα is the (a× 100)th

percentile of the standard normal distribution, and

Φ̂0 = Φ−1
(

#
{
β̂bj(Dt) ≤ β̂j(Dt)

}
/B
)
, (5.5)

where #{A} is the count of A being true.

Bias-corrected confidence intervals for the turning points.:

For each bootstrap iteration b and each Dt value within, use
[
β̂b1(Dt), β̂

b
2(Dt), β̂

b
3(Dt)

]
to

compute the bootstrap estimates of the turning point, say, α̂b(Dt).

Then, for each value of Dt, use the empirical distribution of B bootstrap estimates of{
α̂b(Dt); b = 1, . . . , B

}
to construct bias-corrected confidence intervals corresponding to each

α̂(Dt) computed using the original
[
β̂1(Dt), β̂2(Dt), β̂3(Dt)

]
.

Namely, we estimate (1− a) 100% confidence bounds for each α̂(Dt) as intervals between

the [a1 × 100]th and [a2 × 100]th percentiles of the bootstrap distribution
{
α̂b(Dt); b = 1, . . . , B

}
with

a1 = Φ
(

2Φ̂0 + Zα/2

)
(5.6)

a2 = Φ
(

2Φ̂0 + Z(1−α/2)

)
(5.7)

where Φ (·) is the standard normal cumulative distribution function, Zα is the (a× 100)th

percentile of the standard normal distribution, and

Φ̂0 = Φ−1
(
#
{
α̂b(Dt) ≤ α̂(Dt)

}
/B
)
, (5.8)

where #{A} is the count of A being true.

Specification Test:

To formally discriminate our model against the fixed-coefficient alternative specification,
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we use Ullah’s (1985) nonparametric goodness-of-fit test. Specifically, we are interested in

testing the null hypothesis of a fully parametric fixed-coefficient model:

H0 : E [Pit|wi] = β1Yit + β2Y
2
it + β3Y

3
it + µi + λt, (5.9)

against the alternative hypothesis (our functional-coefficient model):

H1 : E [Pit|wi] = β1(Dt)Yit + β2(Dt)Y
2
it + β3(Dt)Y

3
it + µi + λt, (5.10)

where wi = (µi, λt, Yit, . . . , Y
3
it )
′.

This is, essentially, the test of overall relevancy of zit, or parameter constancy. To test

these hypotheses, we use a “nonparametric F-test” based on the comparison of the restricted

and unrestricted models. First, let the estimator under H0 be denoted by “tilde” whereas

the estimator under H1 be denoted by “hat.” Then, the residual-based test statistic is

Tn =
RSS0 −RSS1

RSS1

, (5.11)

where RSS0 =
∑

i

∑
t ũ

2
it and RSS1 =

∑
i

∑
t û

2
it are respectively the residual sum of squares

under H0 and H1, with the corresponding conditional-mean residuals defined as ũit = Pit −

Ẽ [Pit|wi] = Pit− β̃1Yit− β̃2Y
2
it − β̃3Y

3
it − µ̃i− λ̃t and ûit = Pit− Ê [Pit|wi] = Pit− β̂1(Dt)Yit−

β̂2(Dt)Y
2
it − β̂3(Dt)Y

3
it − µ̂i − λ̂t. The estimated residuals under the null can be obtained

via the standard linear two-way fixed-effect estimator, with the fixed effects recovered under

the
∑

i µi = 0 and
∑

t λt = 0 restrictions via µ̃i = 1
T

∑
t(Pit − β̃1Yit − β̃2Y

2
it − β̃3Y

3
it ) ∀i and

λ̃t = 1
n

∑
i(Pit − β̃1Yit − β̃2Y

2
it − β̃3Y

3
it ) ∀t.

We use bootstrap to approximate the distribution of Tn. The wild panel-data block

bootstrap algorithm is as follow.

(1) Using the original data, estimate both the restricted model (under the null) and the

unrestricted model (under the alternative). Obtain the corresponding residuals {ũit}
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and {ûit}. Use these to compute the test statistic Tn. Also, save the parameter

estimates under H0 {β̃, µ̃, λ̃}.

(2) Generate bootstrap weights wbi for all i = 1, . . . , n from the two-point mass distribution:

wbi =


(
1 +
√

5
)
/2 with prob.

(√
5− 1

)
/
(
2
√

5
)

(
1−
√

5
)
/2 with prob.

(√
5 + 1

)
/
(
2
√

5
) (5.12)

Next, for each observation (i, t) with i = 1, . . . , n and t = 1, . . . , T , generate a new

bootstrap disturbance using the residuals from the model under H0: ubit = wbi × ũit.

(3) Construct a new bootstrap outcome variable based on the specification under H0:

P b
it = β̃1Yit + β̃2Y

2
it + β̃3Y

3
it + µ̃i + λ̃t + ubit for all i = 1, . . . , n and t = 1, . . . , T . The

bootstrap sample now is given by {P b
i,n; i = 1, . . . , n}.

(4) Reestimate both the restricted and unrestricted models using the bootstrap sample

from step (3) to obtain bootstrap residuals {ũbi,n = P b
it−β̃1

b
Yit−β̃2

b
Y 2
it−β̃3

b
Y 3
it−µ̃bi−λ̃bt}

and {ûbi,n = P b
it − −β̂1(Dt)

b

Yit − β̂2(Dt)
b

Y 2
it − β̂3(Dt)

b

Y 3
it − µ̂bi − λ̂bt} under H0 and H1,

respectively. Use these residuals, to compute the bootstrap test statistic T bn.

(5) Repeat steps (2)–(4) B times.

(6) Use the empirical distribution of B+ 1 bootstrap statistics {T bn}, where the first boot-

strap test statistic equals the test statistic Tn calculated from the original data in Step

1, to obtain p-value as
∑

b 1
{
T bn ≥ Tn

}
/(B + 1).

While we cannot reject the null of a time-invariant specification at the conventional

significance level for the NOx pollutant, the empirical evidence however favors our more

flexible, semiparametric time-varying EKC model in the case of SO2, with the corresponding

bootstrap p-value of 0.044. This highlights the caution practitioners ought to exercise in

their choice of the constant-parameter EKC specifications.
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5.2 Unbalanced Data

We also showcase the practical usefulness of our two-way SLSDV estimator using an

unbalanced dataset by revisiting the role of management for production. An unbalanced

panel is a dataset in which at least one panel is not observed every period. Therefore, if an

unbalanced panel contains n panel and T periods, then the following strict inequality holds

for the total number of observations in the dataset: N < n× T .

Researchers in business economics have long argued that management is an important

intangible input to production contributing significantly to productivity differences across

firms and, when aggregated, across countries. However, until recently, the data on systematic

measurements of management practices have been lacking. The World Management Survey

developed and since expanded by [30] and their coauthors was the major step forward in

this regard, and the empirical management literature has ever since been growing.

In our empirical application, we revisit the estimation of management-augmented firm

production functions from [28] that are aimed to measure the association between the firm’s

management practices and its production performance. Specifically, our point of departure is

the (fully parametric) Cobb-Douglas specification akin to their baseline fixed-effects model:

yit = β1kit + β2lit + β3mit + µi + λt + uit, (5.13)

where yit is the logged valued-added, kit is the logged physical capital (fixed assets), lit is

the logged employment, and mit is the logged management score.4

Our focus is on relaxing the time-invariance of production technology and, specifically,

of the relationship between management and firm output implicitly assumed in (5.13). It

is only natural to expect the role of management practices for firm production to change

4We differ from [28] regression in that we log the management variable to facilitate the elasticity-like inter-
pretation, exclude additional firm controls such as firm age and include year effects. We do so because we
do not seek to “replicate” their analysis (for one, we do not have access to their data) but rather use their
research as a context for illustrating our estimator. Also, adding the controls has little implication for our
main results.
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over time due to both the technological and institutional changes. We therefore let the

input elasticities, including that corresponding to the managerial input, smoothly vary with

(discretized) time in an unspecified way. By letting the production-function coefficients

vary with time in an arbitrary nonparametric fashion, we are able to accommodate potential

temporal variation in the relationship between management and output in a flexible way that

is robust to misspecification. Thus, our preferred production function is a semiparametric

functional-coefficient two-way fixed-effects model:

yit = β1(Dt)kit + β2(Dt)lit + β3(Dt)mit + µi + λt + uit, (5.14)

where the functional coefficient vector β(·) = (β1(·), β2(·)′, β3(·)′)′ is a function of a (scalar)

ordered discrete time variable Dt taking on T different values in {1, 2, . . . , T} with T being

small. We opt to discretize time as opposed to treating it continuously by defining Dt = t/T

as commonly done in the semi/nonparametric literature on nonstationary processes e.g., [32]

mainly because most empirical applications in microeconomics deal with short annual panels

implying that n� T with the measurement of time (years) being clearly discrete. Our data

are exactly that, which also helps keep the illustration of our estimator as relevant for such

applications as possible. For more comfort, one may choose to think of Dt not as the “time”

index but, say, as a normalized proxy/measure of the global technological stock shareable

by all owing to its non-rivalry and low excludability. For other examples of a categorical

treatment of the smoothing time variable in the context of production function estimation,

also see [31]. A discrete treatment of Dt also has the secondary benefit of having no adverse

impact on the convergence rate of the estimator.

Since the smoothing variable Dt is not continuous, equation (5.14) is estimated via the

local-constant version of our proposed two-way SLSDV estimator using the AICc-optimal

bandwidth and [2] kernel function for ordered discrete variables.

48



Figure 5.7. Semiparametric input elasticity estimates over the years [the management elas-

ticity of interest β̂3(Dt) is in bottom plot]

We use the publicly available 2002–2010 (T = 9) combined survey data from across

twelve countries used in [27] that contain repeatedly measured company accounts informa-

tion. The sample includes n = 1, 345 firms. The data are summarized in Table 5.3. We

refer the reader to the World Management Survey website for the details on data. The out-

put and input variables are demeaned prior to the estimation to better fit the intercept-free

specification.

Figure 5.7 summarizes year-specific estimates of the three functional coefficients from

the semiparametric management-augmented production function in (5.14) plotted along with

their fixed-coefficient counterparts (solid horizontal lines) from a fully parametric model in

(5.13) for comparison. In the figure, each point estimate of β(Dt) is accompanied by the

corresponding 95% accelerated bias-corrected bootstrap confidence intervals (dashed lines)

which are second-order accurate and provide means not only to correct for the estimator’s
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finite-sample bias but also to account for higher-order moments (particularly, skewness) in

the sampling distribution.5

Our interest is in the management elasticity β3(Dt). Overall, the data point to non-

negligible temporal heterogeneity in the relationship between the firm’s management prac-

tices and its production performance. The semiparametric estimates of the management

elasticity are statistically significant in the year 2005 onward and suggest a growing impor-

tance of the managerial input for production over time (also see Table 5.4). Contrasting these

estimates with the fixed-coefficient counterpart of the more modest effect size (0.13), we see

that, in the face of technological and institutional changes, a time-invariant specification can

underestimate the contribution of management to production thereby leading to incomplete,

if not distorted, insights into the role of management practices for firm performance. This

highlights the practical importance of using more flexible specifications.6

5Note that, given these ”corrections,” the point estimates may sometimes lie outside the confidence interval.
6This chapter includes excerpts from ” Halder, S., and Malikov, E. Smoothed LSDV Estimation of Functional-
Coefficient Panel Data Models with Two-Way Fixed Effects, Economics Letters. 2020, Volume 192, Article
109239.”
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Table 5.1. Semiparametric estimates of the EKC turning points for NOx

Year Turning Point Year Turning Point

1929 6.706* 1962 5.792*
1930 6.636* 1963 6.223*
1931 —– 1964 6.046*
1932 4.182* 1965 6.924*
1933 3.735* 1966 7.939*
1934 4.330* 1967 10.337
1935 4.332* 1968 12.985*
1936 5.430* 1969 13.360*
1937 5.853 1970 14.256*
1938 —– 1971 15.864
1939 8.609 1972 17.792*
1940 9.367* 1973 14.669*
1941 10.418 1974 17.676*
1942 9.244* 1975 —–
1943 8.416* 1976 9.655*
1944 9.508 1977 10.271*
1945 9.847* 1978 9.003
1946 10.184* 1979 12.716*
1947 9.459 1980 87.338*
1948 8.714* 1981 —–
1949 8.077* 1982 11.002*
1950 7.789 1983 11.049
1951 7.638 1984 12.161*
1952 7.436* 1985 —–
1953 7.274* 1986 9.776*
1954 7.212* 1987 8.444*
1955 7.125* 1988 8.436
1956 7.179* 1989 7.847*
1957 6.600* 1990 8.670*
1958 6.449* 1991 9.129*
1959 5.947* 1992 9.503
1960 5.771* 1993 10.547*
1961 5.939* 1994 11.205*

Reported are the year-specific turning points com-
puted using the semiparametric EKC functional
coefficient estimates for each year. Values are
omitted if negative or not satisfying the second-
order condition for the local maximum. The aster-
isk signifies statistical significance at the 5% level.
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Table 5.2. Semiparametric estimates of the EKC turning points for SO2

Year Turning Point Year Turning Point

1929 7.373* 1962 8.118*
1930 7.485 1963 9.207*
1931 7.676* 1964 8.768*
1932 7.933* 1965 9.805*
1933 9.038* 1966 11.076*
1934 9.211* 1967 10.549*
1935 9.594* 1968 10.733*
1936 8.204* 1969 —–
1937 8.569* 1970 12.954*
1938 7.926* 1971 13.571*
1939 8.065* 1972 —–
1940 8.045 1973 —–
1941 7.983* 1974 22.910*
1942 7.519* 1975 —–
1943 9.094* 1976 —–
1944 8.636 1977 —–
1945 8.242 1978 —–
1946 7.044* 1979 —–
1947 5.656 1980 45.021*
1948 4.926* 1981 24.677*
1949 5.930* 1982 —–
1950 6.125* 1983 —–
1951 6.530* 1984 —–
1952 —– 1985 —–
1953 —– 1986 —–
1954 —– 1987 —–
1955 9.145* 1988 —–
1956 9.429* 1989 20.949*
1957 9.122* 1990 20.322*
1958 5.790* 1991 —–
1959 8.119* 1992 18.703*
1960 7.927* 1993 18.196*
1961 8.193* 1994 16.746

Reported are the year-specific turning points com-
puted using the semiparametric EKC functional
coefficient estimates for each year. Values are
omitted if negative or not satisfying the second-
order condition for the local maximum. The aster-
isk signifies statistical significance at the 5% level.
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Table 5.3. Data summary statistics

Variable Mean Min 1st Qu. Median 3rd Qu. Max

Value Added (Y ) 249,942.1 25.9 28,945.0 67,806.5 183,019.9 16,067,545.7
Capital (K) 60,588.4 2.0 4,505.9 12,530.5 37,158.9 4,266,050.4
Labor (L) 880.3 4.0 159.8 271.0 631.2 65,682.0
Management (M) 3.06 1.06 2.67 3.06 3.47 4.86

Value added and the tangible fixed assets (capital) are in USD; labor is the number of employees;
management score is the average of 18 management questions.

Table 5.4. Semiparametric estimates of the management elasticity

Year Estimate Lower Bound Upper Bound

2002 0.0621 –0.2327 0.5022
2003 0.0957 –0.1397 0.3764
2004 0.1633 –0.1690 0.4003
2005 0.1227 0.0081 0.3527
2006 0.2903 0.3632 0.6498
2007 0.2441 0.3581 0.6581
2008 0.3372 0.4184 0.7767
2009 0.1898 0.2641 0.6728
2010 0.4846 0.4876 0.9321

Bounds for the accelerated bias-corrected bootstrap
intervals are at the 95% confidence.
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Chapter 6

Concluding Remarks

Simulation study for our proposed modified Rodriguez- Poo & Soberon estimator per-

forms better in finite samples in all scenarios considered. The existing semiparametric esti-

mators for varying-coefficient fixed-effects models exclusively assume one-way fixed effects,

typically in the dimension of cross-sectional units. We extend the [1] estimator to the case of

a functional-coefficient model with two-way fixed effects whereby we allow for unobservable

heterogeneity in both dimensions of the data: cross-section and time. Both fixed effects are

(asymptotically) concentrated out of the model via locally smoothed two-dimensional within

transformation. Simulations show that the estimator performs well in finite samples. We

also showcase its practical usefulness. 1

1This chapter includes excerpts from ” Halder, S., and Malikov, E. Smoothed LSDV Estimation of Functional-
Coefficient Panel Data Models with Two-Way Fixed Effects, Economics Letters. 2020, Volume 192, Article
109239.”
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Appendix

Algorithm for Modified Rodriguez-Poo & Soberon Two-stage Estimator

#Modified Rodriguez-Poo and Soberon first-stage estimator

# Gaussian kernel function for continuous regressors

kk < − function(g) { (1/sqrt(2*pi))*exp(-0.5*g2̂) }

firststage < − function(Y,X,Z,X1,Z1,h) {

p < − ncol(X)

q < − ncol(Z)

NT < − nrow(X)

ones < − rep(1,NT)

epsilon < − 0.00001

betahat < − matrix(ncol=2*p*(q+1),nrow=NT)

for (j in 1:NT) {

# Construct NTxq matrix of deviations of Z from z ZZ < − matrix(ncol=q, nrow=NT)

for (jj in 1:q) {

zt < − Z[,jj]-Z[j,jj]

ZZ[,jj] < − zt

}

ZZ1 < − matrix(ncol=q, nrow=NT)

for (jj in 1:q) {
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zt1 < − Z1[,jj]-Z1[j,jj]

ZZ1[,jj] < − zt1

}

# Construct NTxp(q+1) matrix of explanatory variables

RR.aux < − matrix(ncol=p*q,nrow=NT)

for (jj in 1:NT) {

RR.aux[jj,] < − ZZ[jj,]%x%X[jj,]

}

RR < − cbind(X,RR.aux)

RR1.aux < − matrix(ncol=p*q,nrow=NT)

for (jj in 1:NT) {

RR1.aux[jj,] < − ZZ1[jj,]%x%X1[jj,]

}

RR1 < − cbind(X1,RR1.aux)

# Construct NTx1 vector of product kernels

KK.aux < − ones

for (jj in 1:q) {

dz < − (Z[,jj]-Z[j,jj])/h[jj]

KK.aux < − KK.aux*kk(dz)

}

KK1.aux < − ones

for (jj in 1:q) {

dz1 < − (Z1[,jj]-Z1[j,jj])/h[jj]
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KK1.aux < − KK1.aux*kk(dz1)

}

KK < − KK.aux*KK1.aux

RR.com < − cbind(RR,RR1)

# Estimate p(q+1) vector of coefficients and their respective partial derivatives

RK < − crossprod(RR.com,diag(KK))

# Ridging (if necessary)

ridge < − 0

if (tryCatch(as.matrix(solve(RK%*%RR.com+diag(rep(ridge,2*p*(q+1))))),

error=function(e) return(c(’error’)) )[1]==’error’) {

ridge < − ridge + epsilon

}

RKR < − solve(RK%*%RR.com + diag(rep(ridge,2*p*(q+1))))

RKY < − RK%*%Y

betahat[j,] < − RKR%*%RKY

}

return(betahat)

}
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# Modified Rodriguez-Poo and Soberon second-stage estimator

secondstage < − function(Y,X,Z,h) {

NT < − NT-N

T < − T-1

p < − ncol(X)

q < − ncol(Z)

ones < − rep(1,NT)

epsilon < − 0.00001

betahat < − matrix(ncol=p*(q+1),nrow=NT)

for (j in 1:NT) {

Construct NTxq matrix of deviations of Z from z

ZZ < − matrix(ncol=q, nrow=NT)

for (jj in 1:q) {

zt ¡- Z[,jj]-Z[j,jj]

ZZ[,jj] ¡- zt

}

# Construct NTxp(q+1) matrix of explanatory variables

RR.aux < − matrix(ncol=p*q,nrow=NT)

for (jj in 1:NT) {

RR.aux[jj,] < − ZZ[jj,]%x%X[jj,]

}

RR ¡- cbind(X,RR.aux)
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# Construct NTx1 vector of product kernels

KK < − ones

for (jj in 1:q) {

dz < − (Z[,jj]-Z[j,jj])/h[jj]

KK < − KK*kk(dz)

}

#Estimate p(q+1) vector of coefficients and their respective partial derivatives

RK < − crossprod(RR,diag(KK))

# Ridging (if necessary) to find inverse of RSR

ridge < − 0

if (tryCatch(as.matrix(solve(RK%*%RR+diag(rep(ridge,p*(q+1))))),

error=function(e) { return(c(’error’)) }

)[1]==’error’) {

ridge < −ridge + epsilon

}

RKR < − solve(RK%*%RR + diag(rep(ridge,p*(q+1))))

RKY < − RK%*%Y

betahat[j,] < − RKR%*%RKY

}

return(betahat)

}
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Algorithm for Two-way Fixed Effects Semiparametric Model

# Gaussian kernel function for continuous regressors

kk < − function(g) { (1/sqrt(2*pi))*exp(-0.5*g2̂) }

# FE design matrices

# Unrestricted NTxNT design matrix

aux < − diag(rep(1,N))

onesT < − matrix( rep(1,T), ncol=1, nrow=T)

D < − aux%x%onesT

ones.I < − matrix( rep(1,N), ncol=1, nrow=N)

aux.T < − diag(rep(1,T))

P < − ones.I%x%aux.T

# Sun et al. Unrestricted Time Effect estimator

SunetalT.ur < −function(Y,X,Z,h)

p < − ncol(X)

q < − ncol(Z)

ones < − rep(1,NT)

epsilon < − 0.00001

betahat < − matrix(ncol=p*(q+1),nrow=NT)

for (j in 1:NT) {

# Construct NTxq matrix of deviations of Z from z

ZZ < − matrix(ncol=q, nrow=NT)
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for (jj in 1:q) {

zt < − Z[,jj]-Z[j,jj]

ZZ[,jj] < − zt

}

# Construct NTxp(q+1) matrix of explanatory variables

RR.aux < − matrix(ncol=p*q,nrow=NT)

for (jj in 1:NT) {

RR.aux[jj,] < − ZZ[jj,]%x%X[jj,]

}

RR < − cbind(X,RR.aux)

# Construct NTx1 vector of product kernels

KK < − ones

for (jj in 1:q) {

dz < − (Z[,jj]-Z[j,jj])/h[jj]

KK < − KK*kk(dz)

}

# Construct transformation matrix

PK < − matrix(ncol=T, nrow=NT)

for (jj in 1:T) {

PK[,jj] < − P[,jj]*KK

}

PK < − t(PK)
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# Ridging (if necessary) to find inverse of DKD

ridge < − 0

if (tryCatch(as.matrix(solve(PK%*%P+diag(rep(ridge,T)))),

error=function(e) { return(c(’error’)) } )[1]==’error’) {

ridge < − ridge + epsilon

}

PKP < − solve(PK%*%P + diag(rep(ridge,T)))

NN.aux < − PKP%*%PK

NN.aux < − P%*%NN.aux

NN < − diag(rep(1,NT))-NN.aux

NK < − matrix(ncol=NT, nrow=NT)

for (jj in 1:NT) {

NK[,jj] < − NN[,jj]*KK

}

NK < − t(NK)

GG < − NK%*%NN

# Construct NTxNT transformation matrix

DG < − crossprod(D,GG)

ridge < − 0

if (tryCatch(as.matrix(solve(DG%*%D+diag(rep(ridge,N)))),

error=function(e) { return(c(’error’)) } )[1]==’error’) {

ridge < − ridge + epsilon
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}

DGD < − solve(DG%*%D + diag(rep(ridge,N)))

MM.aux < − DGD%*%DG

MM.aux < − D%*%MM.aux

MM < − diag(rep(1,NT))-MM.aux

MG < − crossprod(MM,GG)

SS < − MG%*%MM

#Estimate p(q+1) vector of coefficients and their respective partial derivatives

RS < − t(RR)%*%SS

# Ridging (if necessary) to find inverse of RSR

ridge < − 0

if (tryCatch(as.matrix(solve(RS%*%RR+diag(rep(ridge,p*(q+1))))),

error=function(e) { return(c(’error’)) }

)[1]==’error’) {

ridge < − ridge + epsilon

}

RSR < − solve(RS%*%RR + diag(rep(ridge,p*(q+1))))

RSY < − RS%*%Y

betahat[j,] < − RSR%*%RSY
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return(betahat)

}
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