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Abstract

Aňusić, Bruin, and Činč have asked in [2] which hereditarily decomposable chainable

continua (HDCC) have uncountably many mutually inequivalent planar embeddings. It was

noted, as per the embedding technique of John C. Mayer with the sin(1/x)-curve [12], that

any HDCC which is the compactification of a ray with an arc likely has this property. We

show here two methods for constructing c-many mutually inequivalent planar embeddings of

the classic Knaster V Λ-continuum, K, also referred to here as the Knaster accordion. The

first of these two methods produces c-many planar embeddings of K, all of whose images

have a different set of accessible points from the image of the standard embedding of K, while

the second method produces c-many embeddings of K which preserve the set of accessible

points of the standard embedding.
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Chapter 1

Introduction and Preliminaries

When referring to a collection as having continuum many elements, we mean that its

cardinality is the same as that of the set of real numbers, which will be denoted by c.1 By a

continuum, we mean a compact connected metric space.

Let X be a metric space with metric d, and let A ⊂ X. The diameter of A, de-

noted diam(A), is given by diam(A) = sup{d(x, y) | x, y ∈ A}. A finite collection C =

{C1, C2, . . . , Cn} of subsets of X having the property that Ci∩Cj 6= ∅ if and only if |i−j| ≤ 1

is called a chain in X. By the mesh of C, we mean the maximum of the set of diameters of

each member C. If C covers X, that is, if X =
⋃
C, we say that C is a chain covering of X.

A continuum is chainable if it can be covered by a chain covering of open subsets having

arbitrarily small mesh. If a continuum can be expressed as the union of two of its proper

subcontinua, then it is said to be decomposable; otherwise, we say it is indecomposable. If a

continuum has the property that each of its nondegenerate subcontinua is decomposable, it

is said to be hereditarily decomposable. We will mainly concern ourselves with hereditarily

decomposable chainable continua (HDCC for both singular and plural).

By the plane, we mean here the xy-plane, which will sometimes be denoted by R2,

endowed with the usual Euclidean metric, which we will refer to as d. Given a planar contin-

uum X and two planar embeddings ϕ and ψ of X, we say that ϕ and ψ are equivalent planar

embeddings of X if there exists a homeomorphism of the plane onto itself mapping ϕ(X)

onto ψ(X). If no such homeomorphism exists, we say that ϕ and ψ are inequivalent planar

embeddings of X, or simply, are inequivalent for short. If Φ is a collection of embeddings of

1Loosely speaking, the cardinality of a set S is the number of elements contained in S. For rigorous
definitions of cardinality and cardinal numbers, especially infinite cardinal numbers, we refer the reader to
[8] and [19].
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X having the property that for each ϕ and ψ in Φ such that ϕ 6= ψ, ϕ and ψ are inequivalent,

then we say that Φ is a collection of mutually inequivalent embeddings of X.

Let X is a continuum in the plane and let x ∈ X. If x is such that there exists an arc A

in the plane such that A ∩X = {x}, we say x is accessible from the complement of X. For

short, we may say that x is an accessible point of X, or simply, that x is accessible if the

continuum X is understood.

If x is an accessible point of ϕ(X) and A is a planar arc with x as an endpoint and

A ∩ ϕ(X) = {x}, then A is called an endcut of ϕ(X). If C is a planar arc whose interior is

contained in the complement of ϕ(X) and whose endpoints are contained in ϕ(X), then C

is called a crosscut of ϕ(X).

Planar embeddings of continua have been a subject of inquiry in topology since at least

the early twentieth century. According to R.H. Bing in [5], Theorem 4, every chainable con-

tinuum can be embedded in the plane. It is well-known, as one can verify as a consequence

of the Jordan-Schoenflies Theorem [6], that an arc has only one planar embedding up to

equivalence. The question of how many mutually inequivalent planar embeddings can be

produced for one specific chainable continuum or a particular class of chainable continua has

also been of interest. For example, Michel Smith [20] and Wayne Lewis [10] have both inde-

pendently shown that there are uncountably many mutually inequivalent planar embeddings

of the pseudo-arc. More recent results include those of Anušić, Činč, and Bruin in [1], [2],

and [4].

The accessibility of points in the images of planar embeddings is of particular interest. A

well-known problem concerning the accessibility of points of the images of planar embeddings

of continua is that of Nadler and Quinn in [16]. It is asked, given a chainable continuum X

and a point x ∈ X, if there is a planar embedding ϕ of X such that ϕ(x) is accessible. This

question was answered as positive for all HDCC by Minc and Transue in Theorem 6.1 of [13].

However, the question remains open for indecomposable continua. A survey of this problem

can be found in [3]. How accessibility of points in the images of planar embeddings relates to
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inequivalent embeddings can be manifested by the following proposition, which says that if

the images of two planar embeddings of a continuum have a different set of accessible points,

then the embeddings are inequivalent.

Proposition 1.0.1. Let ϕ and ψ be planar embeddings of a continuum X. If there is an

x ∈ X such that ϕ(x) is accessible while ψ(x) is not, then ϕ and ψ are inequivalent.

Thus, one way to ensure two planar embeddings of a continuum are inequivalent is

to construct them so that their images contain different sets of accessible points. In [12],

John C. Mayer constructed a procedure for embedding the sin(1/x)-continuum (shown in

Figure 1.1) in uncountably many mutually inequivalent ways so that their images all have

the same set of accessible points. This procedure is done by forming a schema (plural:

schemata) consisting of subschemata (singular: subschema) based on a given sequence of

nonnegative integers, and by manipulating the ray in the sin(1/x)-continuum on each side of

its limiting arc according to the schema. A somewhat similar procedure can apply to forming

uncountably many mutually inequivalent embeddings of other HDCC. One example in which

we demonstrate using such a similar embedding procedure will be with the Knaster V Λ-

Continuum, otherwise known as the Knaster accordion, which we will denote as K, shown in

Figure 1.2. This paper will be devoted to K, in which we construct two different collections

of mutually inequivalent embeddings of K each having cardinality c. This exhibits a way to

produce uncountably many, and in fact c-many, mutually inequivalent planar embeddings

of an HDCC which contains no subcontinuum having a dense ray and which is not path

connected and nowhere locally connected.

Recently, Aňusić, Bruin, and Činč showed in [2] that every chainable continuum con-

taining a nondegenerate indecomposable subcontinuum admits uncountably many mutually

strongly inequivalent planar embeddings.2 They asked (Question 6) which HDCC (other

than an arc) have uncountably many mutually inequivalent planar embeddings. It was

2Planar embeddings ϕ and ψ of a planar continuum X are strongly equivalent if ψ ◦ϕ−1 : ϕ(X)→ ψ(X)
can be extended to a homeomorphism of the plane onto itself.
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Figure 1.1: The sin(1/x)-continuum, also known as the topologist’s sine curve, is an HDCC
which is the compactification of a ray with an arc. This continuum is not path connected,
nor is it locally connected.

noted that Mayer’s embedding approach for the sin(1/x)-continuum, as mentioned in the

previous paragraph, likely works to show that any continuum which is the compactification

of a ray with an arc has uncountably many mutually inequivalent planar embeddings. They

further added that Mayer’s approach would not generalize to the remaining HDCC since not

all of them have subcontinua with dense rays.

As previously noted, and as is made apparent in Figure 1.2, K is an HDCC containing

no subcontinuum which is the compactification of a ray with an arc. In fact, K contains

no subcontinuum containing a dense ray. Furthermore, K is not path connected and it is

nowhere locally connected. Note that the sin(1/x)-continuum contains a dense ray, and

although it is not path connected, it is not nowhere locally connected. Regardless, we will

still be able to give a “Mayer-like” approach to producing uncountably many, and in fact,

c-many, inequivalent planar embeddings of K. Furthermore, we will provide two methods

of producing these embeddings—one which produces c-many planar embeddings of K, all

of whose images have a different set of accessible points from the image of the standard

embedding of K, and the other producing c-many embeddings of K which preserve the

accessibility of points accessible in the standard embedding. The collection of embeddings

of the former will be constructed in Section 2 and the later will be constructed in Section 3.
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Before we give a geometric construction defining K, we must first provide some basic

theory and terminology regarding the general structure of all HDCC, most of which is ex-

tracted from Kuratowski’s theory on the structure of irreducible continua in Chapter V, §48

of [9]. For a given HDCC X, there exists a continuous function g mapping X onto [0, 1]

so that for each t ∈ [0, 1], g−1(t) is a maximal nowhere dense subcontinuum of X. Such a

function g will be called a Kuratowski map of X, and the subcontinua g−1(t) will be called

the layers of X. The layers given by g−1(0) and g−1(1) will be called the left end layer and

right end layer of X, respectively. All other layers are called interior layers of X.

In particular, each HDCC admits an upper semicontinuous decomposition into layers.

That is, if X is an HDCC and g a Kuratowski map of X, then g−1 is an upper semicontinuous

set-valued map. The curious reader may refer to Chapter III, §2 of [15] for more information

on upper semicontinuous decompositions of continua. Each nondegenerate layer L of an

HDCC X is also an HDCC and can itself be decomposed into layers. As can be found in

[13], [14], and [21], we refer to generalized layers of X as those which may be layers of X,

layers of layers of X, etc. In particular let L0(X) = {X}. If α = β + 1, let Lα(X) consist

of the degenerate members as well as the layers of the nondegenerate members of Lβ(X). If

α is a limit ordinal, let Lα(X) = {
⋂
β<α Lβ | Lβ ∈ Lβ(X)}. It was also shown by Thomas

in [21] that there exists a least countable ordinal σX such that every member of LσX (X)

is degenerate. Thus, the generalized layers of X are any members of the set L (X) =⋃
α≤σX Lα(X). Mohler showed in [14] that for every countable ordinal α, there exists an

HDCC Xα so that every member of Lα(Xα) is degenerate. Thus, for a given HDCC X and

a point x ∈ X, there exists a countable ordinal σx such that σx = min{α | {x} ∈ Lα(X)}.

Note that if L is a nondegenerate generalized layer of X, then there exists a unique countable

ordinal σL > 0 such that L ∈ LσL(X). In either case, we say that σX is the layer level of

X, that σx is the layer level of x in X for x ∈ X, and that for a nondegenerate generalized

layer L of X, σL is the layer level of L in X. It becomes self-evident at this point that when

referring to a layer of an HDCC, we mean a generalized layer having a layer level of 1. It is
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worth noting that generalized layers of K having a layer level more than 1 will not be used

in this paper. However, we have defined generalized layers of HDCC since they are relevant

in one of the questions of Chapter 4.

A nondegenerate continuum Y is irreducible between two points x, y,∈ Y if there is no

proper subcontinuum of Y containing both x and y. Likewise, Y is irreducible between two

subcontinua A1, A2 ⊂ Y if there is no proper subcontinuum Z such that A1, A2 ⊂ Z. If X

is an HDCC and x and y are distinct points in X, then the subcontinuum of X irreducible

between x and y will be denoted by [x, y]. Likewise, given subcontinua C1 and C2 of X,

we denote the subcontinuum of X irreducible between C1 and C2 as [C1, C2]. Also, we

have (C1, C2] := [C1, C2]\C1, [C1, C2) := [C1, C2]\C2, and (C1, C2) := [C1, C2]\(C1 ∪ C2).

Note that if C1 and C2 are layers of X with x ∈ C1 and y ∈ C2, then [x, y] = [C1, C2],

(x, y] = (C1, C2], [x, y) = [C1, C2), and (x, y) = (C1, C2).

Given an interior layer L of X, we define the left part of L and the right part of L as

`(L) = cl
(
g−1([0, g(L)))

)
∩ L and r(L) = L ∩ cl

(
g−1((g(L), 1])

)
,

respectively.

Definition 1.0.2. Let X be an HDCC, let g be a Kuratowski map of X, and let L be a layer

of X. We say that L is a layer of cohesion if L is an end layer or if `(L) = L = r(L).

Definition 1.0.3. Let X be an HDCC and let g be a Kuratowski map of X. We say that a

layer L of X is a layer of continuity if the set-valued map g−1 is continuous at the point

g(L).

As noted by Kuratowski on page 201 of [9], layers of cohesion need not be layers of

continuity, as is the case for the limiting arc of the sin(1/x)-continuum.

Proposition 1.0.4. Let X be a hereditarily decomposable chainable continuum, let h be a

homeomorphism of X onto itself, and let g : X → [0, 1] be a Kuratowski map. Then for every

6



Figure 1.2: The image of the standard embedding of the Knaster V Λ-continuum, K, also
known as the Knaster accordion, approximated by the first five steps along with the end
layers. Note that K contains no subcontinuum containing a dense ray and that it is also not
path connected and is nowhere locally connected.

s, t ∈ [0, 1] such that s ≤ t, we have either g(h(g−1(s))) ≤ g(h(g−1(t))) or g(h(g−1(s))) ≥

g(h(g−1(t))).

That is, Proposition 1.0.4 says that any homeomorphism of a hereditarily decomposable

chainable continuum onto itself will preserve the order of the top layers in the sense that

if one top layer is between two other top layers, the same will hold in its image under a

homeomorphism.

We may now begin to construct the Knaster V Λ-Continuum, otherwise called the Ku-

ratowski accordion, which will be denoted by K and shown in Figure 1.2. By a “V ” and

a “Λ,” we mean an arc consisting only of two straight maximal line segments shaped like

the letters V and Λ, respectively.3 We construct K in such a way that also constructs the

standard planar embedding of K, as given by the following sequence of steps.

(1K .) Draw the V whose vertex is the point (1/2, 0) and whose endpoints are (1/3, 1) and

(2/3, 1).

...

3More precisely, we mean arcs shaped like ∨ and ∧, respectively.
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(nK .) Consider the set ∆n consisting of all 2n−1 quadrilaterals contained in [0, 1]×[0, 1] whose

left and right sides contain either {0}× [0, 1], {1}× [0, 1], or maximal straight segments

of two different V ’s or Λ’s from the preceding steps, and whose interiors contain no

points from any V ’s or Λ’s in the preceding steps. If n is even (odd), we draw the

2n−1-many Λ’s (V ’s) each sitting in individual members of ∆n. The vertex of each Λ

(V ) is on the top (bottom) side of its given quadrilateral, sitting halfway between the

two top (bottom) vertices of the quadrilateral. Finally, the two endpoints of each Λ

(V ) sit evenly spaced on the bottom (top) side of its given quadrilateral.

...

(ωK .) Let K be the closure of the set consisting of all V ’s and Λ’s from the preceding steps.

Again, a rough image of K can be seen in Figure 1.2 as approximated by the first five

steps listed above, together with the arcs {0} × [0, 1] and {1} × [0, 1]. One may observe

geometrically that K is chainable. Upon taking the closure of the union of all V ’s and Λ’s

to form K as described in step ωK , we have immediately inserted c-many straight arcs, two

of which are the left end {0} × [0, 1] and the right end {1} × [0, 1], with the rest of them

between any two V ’s or Λ’s. One may observe that these c-many straight arcs are the layers

of continuity as well as the layers of cohesion of K, with {0} × [0, 1] the left end layer and

{1} × [0, 1] the right end layer. Each V and Λ of K is layer of K which is neither a layer of

continuity nor a layer of cohesion. Thus, K is an HDCC with each of its layers being arcs

and thus nondegenerate. Furthermore, the layer level of K is 2. Finally, one may observe

geometrically from Figure 1.2 that the set of accessible points of the standard embedding

of K consist of all points of end layers and non-cohesion layers of K and the endpoints of

interior layers of continuity of K. That is, if L is either an end layer, a V -layer, or a Λ-layer,

then every point of L is accessible, whereas if L is an interior straight-arc layer, then only

the endpoints of L are accessible.
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Kazimierz Kuratowski attributed K to Bronis law Knaster in [9], hence its namesake

herein. It has also be referred to as the “Cajun accordion” by James Rogers in [17] and [18]

and by David Lipham in [11]. In [18], James Rogers gives mention to both the Knaster accor-

dion and its circularly chainable counterpart which he refers to as the “Zydeco accordion.”

The Zydeco accordion can be constructed by identifying the end layers of K. In particular,

he points out that although many continuum theorists would consider the Zydeco accordion

as being “rich” in rotations, it turns out to be meager with respect to extendable intrinsic

rotations about the origin.

Although vertices of layers of K can be understood to be the geometric vertices of V or

Λ layers of K, we also provide the following topological definition of vertices of layers of K.

Definition 1.0.5. Let L be a V -layer or a Λ-layer of K. We say that a point v ∈ L is

a vertex of L if v ∈ intL(L) and for every open subset U of K containing v, U contains

infinitely many endpoints of layers of K.

If v is a vertex of a layer L, it is understood that L is not a layer of continuity of K.

Furthermore, we may also say that v is a vertex of K, understanding that it is a vertex of a

layer of K which is not a layer of continuity of K. Note that in the following lemma, we will

let E = {0}× [0, 1] and E ′ = {1}× [0, 1] denote the end layers of K, we will let p = (0, 0) and

p′ = (1, 0) denote the bottom endpoints of E and E ′, respectively, and we will let q = (0, 1)

and q′ = (1, 1) denote the top endpoints of E and E ′, respectively. Furthermore, we will

denote the collection of bottom endpoints and vertices of layers of K by P while the top such

points will be denoted by Q. That is, P consists of all points in K whose y-coordinates are 0

under the standard embedding of K while Q consists of all points in K whose y-coordinates

are 1 under the standard embedding of K.

Proposition 1.0.6. Let h be a homeomorphism of K onto itself. Then h(v) is a vertex of

K for every vertex v of K, and if p is an endpoint of a layer of K, then h(p) is also an

endpoint of a layer of K.

9



Proof. Since every layer of K is an arc, the endpoints of layers of K must be mapped to

endpoints of layers of K. If v is a vertex of K, then it is in the interior of some non-

continuity layer of K. Thus, h(v) must be mapped to the interior of a non-continuity layer

of K. Furthermore, if U is an open set of containing h(v), then h−1(U) is an open subset

of K containing v and thus must contain an infinite number of endpoints of layers of K,

whence U must contain an infinite number of endpoints of layers of K. Therefore, h(v) is

also a vertex of K.

Corollary 1.0.7. If h is a homeomorphism of K onto itself, then every Λ-layer or V -layer

of K is mapped to a Λ-layer or V -layer of K and every layer of continuity of K is mapped

to a layer of continuity of K.

Lemma 1.0.8. Let h be a homeomorphism of K onto itself. Then h({E,E ′}) = {E,E ′}.

Furthermore, if h(p) ∈ {p, p′}, then h(P ) = P and h(Q) = Q, and if h(p) ∈ {q, q′}, then

h(P ) = Q and h(Q) = P .

Proof. Let g : K → [0, 1] be a Kuratowski map. Then g ◦h is also a Kuratowski map. Thus,

h({E,E ′}) = h((g ◦ h)−1({0, 1})) = h(h−1(g−1({0, 1})) = g−1({0, 1}) = {E,E ′}.

Suppose now that h(p) ∈ {p, p′}, but that there exists a nonempty subset C of P such

that h(c) /∈ P for every c ∈ C. By Proposition 1.0.6, it follows that h(c) ∈ Q for every

c ∈ C. Since h is a homeomorphism, it follows that for every c ∈ C, there exists a number

εc > 0 such that if Bεc(c) is the open ball of radius εc centered on c, then h(P ∩Bεc(c)) ⊂ Q.

Let D = P\C—the set of all members of P mapped to P by h. Again, since h is a

homeomorphism, it follows that for every d ∈ D, there is an δd > 0 such that if Bδd(d) is the

open ball of radius δd centered on d, then h(P ∩ Bδd(d)) ⊂ P . Note that C =
⋃
c∈C Bεc(c)

is open in P and that D =
⋃
d∈D Bδd(d) is also open in P . Also, since C = P\D, it follows

that both C and D are closed in P as well.

Let g be a Kuratowski map of K onto [0, 1] as before. Since g is continuous, g(C) and

g(D) are both closed in [0, 1]. Since [0, 1] = g(C) ∪ g(D) and g(C) = [0, 1]\g(D) with g(C)
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and g(D) both nonempty, it follows that g(C) and g(D) are also open in [0, 1], making them

both nonempty, open and closed subsets of [0, 1] whose union is [0, 1]. This contradicts that

[0, 1] is connected. Therefore, h(P ) = P and h(Q) = Q.

It follows similarly that if h(p) ∈ {q, q′}, then h(P ) = Q and h(Q) = P .

The following is a lemma which will be referenced in many of the proofs of Section 3.

We will denote by π the projection of the xy-plane onto the y-axis so that π(x, y) = (0, y)

for every (x, y) ∈ R2.

Lemma 1.0.9. Let (A1, A2, A3, . . .) be a sequence of arcs in R2 converging to {0}× [0, 1] as

i → ∞ so that for each i ∈ N, π � Ai is a homeomorphism of Ai onto π(Ai). Let h be a

homeomorphism of the xy-plane onto itself so that h({0} × [0, 1]) = {0} × [0, 1]. For every

t ∈ [0, 1] and for each i ∈ N, let Ct,i denote the maximal subarc of h(Ai) having the property

that each of its endpoints lie on the horizontal line given by the equation y = t. Then for

every t ∈ [0, 1], diam(Ct,i)→ 0 as i→∞.

Proof. Let t ∈ [0, 1], and let T denote the line given by the equation y = t. For each i ∈ N,

let Ci := Ct,i. Let Ti be the line segment contained on T whose endpoints are the endpoints

of Ci for each i ∈ N. Note that since Ti → {(0, t)} as i→∞, we have h−1(Ti)→ {h−1((0, t))}

as i → ∞. Thus, the endpoints of h−1(Ti) converge to {h−1((0, t))} as i → ∞. Since for

each i ∈ N, π � Ai is a homeomorphism of Ai onto π(Ai), and because the endpoints of

h−1(Ci) are also the endpoints of h−1(Ti), it follows that h−1(Ci)→ {h−1((0, t))} as i→∞.

Therefore h(Ci)→ {(0, t)} as i→∞, whence diam(Ci)→ 0 as i→∞.

11



Chapter 2

Embeddings of K: ℵ0-many Endpoints of Layers Inaccessible

Here, we construct a collection of c-many mutually inequivalent planar embeddings of

K. Each embedding from this collection has the property that all but a countably infinite

set of layers of continuity (straight-arc layers) have at least one point not being accessible

from the complement of the image of the embedding. More precisely, we fix a sequence

Q = (Q1, Q2, Q3, . . .) of interior layers of continuity of K converging to the left end layer

E of K, arranged in order from right to left. After this, we choose an arbitrary sequence

(L1, L2, L3, . . .) of V or Λ layers of K such that for each i ∈ N, Li lies between Qi and

Qi+1, with L0 designated as the right end layer E ′ of K. Then, we choose a sequence A =

(a1, a2, a3, . . .) of 0’s and 1’s so that for each i ∈ N, we produce a certain planar re-embedding

of [r(Li), `(Li−1)] which keeps Qi straight and perturbs [r(Li), Qi) ∪ (Qi, `(Li−1)] about Qi

in a manner according to if ai = 0 and another manner according to if ai = 1. In doing so,

every point in the image of Qi under such a re-embedding is inaccessible from the complement

when ai = 0, and all put one endpoint of Qi is inaccessible from the complement if ai = 1.

Each such re-embedding is made in such a way that the union of their images together with

E = {0} × [0, 1] is a re-embedding of K. We will see that two embeddings constructed

according to different sequences of 0’s and 1’s will produce inequivalent embeddings, thus

providing us with a collection of c-many mutually inequivalent planar embeddings of K.

Suppose Q is an interior layer of continuity of K, with its bottom endpoint labeled b

and its top endpoint labeled t. Two ways in which we can embed K in the plane is so that

the image of Q has none of its points accessible or so that only the image of b is accessible.

Again, let E and E ′ denote the left and right end layers of K respectively.
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We will now describe a decomposition of [E,Q) and (Q,E ′] as shown in 2.1. Let

K
(`)
1 , K

(`)
2 , K

(`)
3 , . . . be a decomposition of [E,Q) with K

(`)
i → Q as i → ∞ and so that

for each i ∈ N,

(1`,i.) K
(`)
i is a homeomorphic copy of K,

(2`,i.) K
(`)
i ∩K

(`)
j 6= ∅ if and only if |i− j| ≤ 1, and

(3`,i.) K
(`)
i ∩K

(`)
i+1 = {`i}, where `i is the vertex of a Λ-layer of K if i is odd and is the vertex

of a V -layer of K if i is even.

Similarly, let K
(r)
1 , K

(r)
2 , K

(r)
3 , . . . be a decomposition of (Q,E ′] with K

(r)
i → Q as i→∞ and

so that for each i ∈ N,

(1r,i.) K
(r)
i is a homeomorphic copy of K,

(2r,i.) K
(r)
i ∩K

(r)
j 6= ∅ if and only if |i− j| ≤ 1, and

(3r,i.) K
(r)
i ∩K

(r)
i+1 = {ri}, where ri is the vertex of a Λ-layer of K if i is odd and is the vertex

of a V -layer of K if i is even.

A depiction of the aforementioned decomposition of [E,Q) and (Q,E] is shown in Figure

2.1.

2.1 Type-0 and Type-1 Planar Embeddings of K about Q

Given the decompositions in the previous paragraph, we shall describe how to construct

a planar embedding ζ of K so that zero points of ζ(Q) are accessible from the complement

of the ζ(K). The most efficient way to describe such an embedding is through comparing

Figure 2.1 with Figure 2.2. Again, Figure 2.1 depicts K with the decompositions of [E,Q)

and (Q,E] as mentioned above. Figure 2.2 depicts ζ(K) by exhibiting how Q and the

elements of the aforementioned decompositions are mapped under ζ. As shown there, ζ(Q)

13



Figure 2.1: The decomposition of [E,Q) and (Q,E ′], where E and E ′ are the left and right
end-layers of K, respectively, and the interior layer of continuity Q is the straight arc in the
middle. The thick red and green line segments other than E and E ′ are either Λ-layers of
V -layers of K defining the aforementioned decompositions, where as the dotted horizontal
red and green line segments represent the endpoints and vertices of interior layers of each
K

(`)
i and each K

(r)
i , respectively.

is mapped to a vertical line segment so that ζ(b) is its bottom endpoint and ζ(t) is its top

endpoint. The rest of [E,Q) and (Q,E ′] is mapped by ζ in such a way that the image of the

top endpoints and vertices of layers of K\Q converge to ζ(t) and ζ(b), respectively, while

bending, stretching, and shrinking members of the decompositions in such a way so that

ζ : K → ζ(K) is a homeomorphism. In doing so, no point of ζ(Q) is accessible from the

complement of ζ(K). Such an embedding is similar in nature to an embedding of a double

sin(1/x)-curve with two rays approaching one limiting arc in the middle, as shown in Figure

2.3. We call the planar embedding ζ a type-0 planar embedding of K about Q, or just

a type-0 embedding for short.

Also given the previous decompositions of [E,Q) and (Q,E ′], we shall next describe how

to construct a planar embedding ξ of K so that only one of the points of ξ(Q) is accessible

from the complement of ξ(K). In fact, since the interiors of interior layers of continuity of

K are inaccessible under any planar embedding of K, the single accessible point under this

type of embedding will be an endpoint of ξ(Q). Just as in the description of the type-0

embedding, the most efficient way to describe the embedding ξ is through comparing Figure

2.1 with Figure 2.4. Figure 2.4 depicts ξ(K) by showing how Q and the elements of the

14



Figure 2.2: A type-0 planar embedding of K about the interior layer of continuity Q. Note
that ζ(Q) is completely “buried” by ζ([E,Q)) and ζ((Q,E ′]) in the sense that no point of
ζ(Q) is accessible from the complement of ζ(K).

Figure 2.3: Here, we have a double sin(1/x)-curve with two rays on opposite sides of a single
limiting arc being re-embedded in the plane so that both approaching rays completely “bury”
the limiting arc, making no point of it accessible from the complement. This embedding
stands as a model for the type-0 planar embedding ζ of K shown in Figure 2.2.
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aforementioned decompositions are mapped under ξ. As shown there, ξ(Q) is mapped to a

vertical line segment so that ξ(b) is its bottom endpoint and ξ(t) is its top endpoint. The rest

of [E,Q) and (Q,E ′] is mapped by ξ in such a way that the image of the top endpoints and

vertices of layers of K\Q converge to ξ(t) and ξ(b), respectively, while bending, stretching,

and shrinking members of the decompositions in such a way so that ξ : K → ξ(K) is a

homeomorphism. In doing so, ξ(b) is accessible from the complement of ξ(K) while every

other point of ξ(Q) is not. Such an embedding is similar in nature to an embedding of a

double sin(1/x)-curve with two rays approaching one limiting arc in the middle, as shown in

Figure 2.5. We call the planar embedding ξ a type-1 planar embedding of K about Q,

or just a type-1 embedding for short.

Proposition 2.1.1. Let ζ and ξ be a type-0 and type-1 planar embedding of K about an

interior layer of continuity, Q, of K. Then ζ and ξ are inequivalent planar embeddings of

K.

Proof. Since ζ(K) and ξ(K) have a different set of accessible points, in particular, since no

endpoints of ζ(Q) is accessible from the complement of ζ(K) while one endpoint of ξ(Q)

is accessible from the complement of ξ(K), it follows by Proposition 1.0.1 that ζ and ξ are

inequivalent planar embeddings of K.

2.2 The c-many Mutually Inequivalent Planar Embeddings of K

We will now construct the c-many mutually inequivalent planar embeddings of K, all

of which do not preserve the accessibility of points in K which are accessible from the

complement of the standard embedding of K. For each such embedding, we will make use of

a fixed sequence Q = (Q1, Q2, Q3, . . .) of interior layers of continuity of K converging to the

left end layer E of K as mentioned in the first paragraph of this chapter. For convenience,
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Figure 2.4: A type-1 planar embedding of K about the interior layer of continuity Q. Note
that ξ(b) will remain accessible from the complement of ξ(K), but ξ(t) will not.

Figure 2.5: As in Figure 2.3, we have a double sin(1/x)-curve with two rays on opposite sides
of a single limiting arc being re-embedded in the plane, this time so that both limiting arcs
“bury” the top endpoint of the limiting arc, leaving only one point—the bottom endpoint—
accessible from the complement. This embedding stands as a model for the type-1 planar
embedding ξ of K shown in Figure 2.4.
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we may assume that the Qi’s are in order from right to left. That is, if g is a Kuratowski

map of K such that g(E) = {0}, then g(Qi+1) < g(Qi) for each i ∈ N.

For each i ∈ N, let Li be either a V -layer or Λ-Layer of K in between Qi and Qi+1, and

designate L0 to be the right end-layer, E ′, of K. Also for each i ∈ N, decompose [r(Li), Qi)

and (Qi, `(Li−1)] in the same way as the decomposition of [E,Q) and (Q,E ′] as given at the

beginning of this section.

Let A = (a1, a2, a3, . . .) be a sequence so that for each i ∈ N, ai = 0 or ai = 1. That

is, A is a sequence of 0’s and 1’s. For each i ∈ N, let ai be assigned to the layer Qi of K.

If ai = 0, replace [r(Li), `(Li−1)] (which is homeomorphic to K) with a type-0 embedding

of [r(Li), `(Li−1)] about Qi by using the aforementioned decompositions of [r(Li), Qi) and

(Qi, `(Li−1)]. If a1 = 1, replace [r(Li), `(Li−1)] with a type-1 embedding of [r(Li), `(Li−1)]

about Qi, again by using the aforementioned decompositions of [r(Li), Qi) and (Qi, `(Li−1)].

Furthermore, make all such replacements be so that their images converge to E as i → ∞,

with the image of a planar embedding of K as a result. We will call such an embedding a

type-A planar embedding of K about Q, or just a type-A embedding for short.

Let Z be the collection of all sequences of 0’s and 1’s.

Lemma 2.2.1. Let A = (a1, a2, a3, . . .) and B = (b1, b2, b3, . . .) be nonidentical sequences in

Z and let α and β denote type-A and type-B embeddings of K about Q, respectively. Then

α and β are inequivalent planar embeddings of K.

Proof. Suppose h is a homeomorphism of the plane onto itself so that h(α(K)) = β(K). By

Corollary 1.0.7, it follows that h(α(Qi)) is a layer of continuity of β(K) for each i ∈ N. Since

for each i ∈ N, α(Qi) has all but at least one endpoint inaccessible from the complement of

α(K), it follows that h(α(Qi)) must be be a β(Qj(i)) for some j(i) ∈ N. Furthermore, by

Proposition 1.0.4, we have j(i) = i for each i ∈ N. Since A and B are nonidentical, there is a

k ∈ N such that ak 6= bk, in which case h(α(Qk)) = β(Qk) and thus, h(α([r(Lk), `(Lk−1)])) =

18



β([r(Lk), `(Lk−1)]). However, this contradicts Proposition 2.1.1 since α � [r(Lk), `(Lk−1)] is

a type-0 embedding about Qk and β � [r(Lk), `(Lk−1)] is a type-1 embedding about Qk.

Theorem 2.2.2. There exist c-many mutually inequivalent planar embeddings of K.

Proof. Let E be the collection of A-type embeddings of K about Q for each A ∈ Z. By

Lemma 2.2, members of E are pairwise inequivalent. Therefore, |E| = |Z|. Since it is well

known that |Z| = c, it follows that |E| = c.

Theorem 2.2.2 gives greater insight to Question 6 in [2], providing an example of an

HDCC having uncountably many, and, in fact, c-many mutually inequivalent planar embed-

dings which is not an HDCC containing a dense ray. Furthermore, K is an HDCC satisfying

this property while having no subcontinuum containing a dense ray. However, these embed-

dings fail to preserve the accessibility of all points which are accessible in the image of the

standard planar embedding of K.
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Chapter 3

Embeddings of K: Endpoints of All Layers Accessible

In this section, we provide a construction of a collection of c-many mutually inequivalent

planar embeddings of K, each of whose image has the same set of accessible points as the

image of the standard embedding of K. That is, under each such embedding, the image of

every point of each end layer, V -layer, and Λ-layer will be accessible, and the image of only

the endpoints of each interior layer of continuity will also be accessible. Before proceeding,

we must first provide the following definition and lemma.

Definition 3.0.1. Let N and M be sequences of positive integers. We say that N and M

are inequivalent if and only if, after removing any finite initial subsequence of N and any

finite initial subsequence of M, the remaining sequences N′ and M′ are not identical.

Lemma 3.0.2. There exist c-many mutually inequivalent sequences of positive integers.

Proof. LetN denote the set of all sequences of positive integers, and let A = (a1, a2, a3, . . .) ∈

N . We shall inductively define the sets An so that A1 = {A}, and for every integer n > 1,

An = {(s1, s2, s3, . . .) ∈ N | (sn, sn+1, sn+2, . . .) = (an, an+1, an+2, . . .)}.

Note that An is countable for every n = 1, 2, . . .. Let A =
⋃∞
n=1An, which forms an equiv-

alence class of all sequences of positive integers equivalent to A. Then A is also countable

as it is the countable union of countable sets. Denote by I the set of all previously defined

equivalence classes, A.

Since each equivalence class in I is countable and
⋃
I = N which has cardinality c, it

follows that the cardinality of I is a cardinal κ satisfying c = κ⊗ ℵ0, where ⊗ here denotes
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cardinal multiplication. By Corollary 10.13 of [8], as well as Section IX.6 of [19] it follows

that κ = c.

3.1 Constructing Schema Embeddings of K

Let N = (n1, n2, n3, . . .) be a sequence of positive even integers greater than or equal to

4. We will construct a planar embedding ψN of K based on a subsequently defined set of

instructions for geometrically altering parts of the standard embedding of K. To do so, we

must first define a decomposition of each Ki, an example of which is shown in Figure 3.1.

For each i ∈ N, let Ki ⊂ K be a homeomorphic copy of K so that the right end layer of

K1 is the right end layer of K, so that Ki ∩Kj 6= ∅ if and only if |i − j| ≤ 1, and so that

Ki ∩Ki+1 = {pi} is a vertex of a V -layer of K. Also for each i ∈ N, let K
(1)
i , . . . , K

(2ni)
i be

a decomposition of Ki so that

(1Ki
.) K

(l)
i is a homeomorphic copy of K,

(2Ki
.) the right end layer of K

(1)
i is the right end layer of Ki and the left end layer of K

(2ni)
i

is the left end layer of Ki,

(3Ki
.) K

(l)
i ∩K

(m)
i 6= ∅ if and only if |l −m| ≤ 1,

(4Ki
.) K

(l)
i ∩K

(l+1)
i = {s(l)i } is the vertex of a Λ-layer of K when l is odd and is the vertex of

a V -layer when l is even.

A depiction of the above decomposition of Ki can be found in Figure 3.1.

Recall that in Chapter 1, we let P denote the set of all points in the standard embedding

of K whose y-coordinates are 0, and we let Q denote the set of all points in the standard

embedding of K whose y-coordinates are 1. That is, P is the set of all bottom endpoints

and vertices of layers of K while Q is the set of all top endpoints and vertices of layers of K.

Each of the subsequently constructed embeddings will have the property that P is mapped

21



Figure 3.1: Ki, where ni = 4, decomposed into 2ni = 8 pieces each homeomorphic to K.

above the line y = 1/2 and that Q is mapped below the line y = 1/2. We shall thus refer to

the line y = 1/2 as the critical line of each of the following embeddings.

We will inductively define, for each i ∈ N, a list of planar embeddings of Ki, whose

images are resembled in Figure 3.2, as follows. First, embed K1 in the xy-plane where x > 0

so that the endpoints and vertices of layers K1 are contained outside of the critical line,

with the top endpoints and vertices of K1 in the part above the critical line, and the bottom

endpoints and vertices in the part below the critical line, with every arc that is straight in

K1 kept straight under this embedding. We then change this embedding as follows. Reflect,

through ambient three-dimensional space, K
(n1)
1 ∪ · · · ∪K(2n1)

1 , about the point s
(n1−1)
1 where

K
(n1−1)
1 and K

(n1)
1 intersect, in such a way that the point where s

(n1+k)
1 is vertically collinear

with s
(n1−k)
1 for every k = 1, 2, . . . , n1 − 1.1 Moreover, this is done while keeping top and

bottom endpoints and vertices of layers of K1 respectively above and below the critical

line and keeping straight under this re-embedding of K1 every arc that is straight in the

standard embedding of K1 while stretching and squeezing where needed. We shall let this

re-embedding of K1 be named ψN,1.

1By vertically collinear, we mean that these points lie on the same vertical line in the xy-plane.
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Assume now that for some i ∈ N, we have constructed ψN,j for every j = 1, . . . , i.

We construct ψN,i+1 somewhat similar to the way ψN,1 was constructed, this time so that

ψN,i+1(Ki+1) meets with ψN,i(Ki) at only ψN,i(pi) with K
(1)
i+1 being stretched by ψN,i+1 below

and to the left of ψN,i(Ki), with the rest of ψN,i+1(Ki+1) placed between the y-axis and

ψN,i+1(K
(1)
i+1) ∪

⋃i
j=1 ψN,j(Kj). In doing so, the only arcs that are straight in the standard

embedding of Ki+1 being kept straight under ψN,i+1 are those contained in K
(2)
i+1, . . . , K

(2ni+1)
i+1 .

Furthermore, we make sure that ψN,i(Ki) converges to the line segment {0}×[0, 1] as i→∞,

doing so in a way that the resulting function ψN : K → ψN(K), as given in the following

definition, is a homeomorphism, and thus, a planar embedding of K.

Definition 3.1.1. Given the elements in the construction above, the schema embedding

of K according to N, denoted as ψN, is the planar embedding of K whose image is given

by

ψN(K) = cl
( ∞⋃
i=1

ψN,i(Ki)
)

= ({0} × [0, 1]) ∪
∞⋃
i=1

ψN,i(Ki),

where the left end layer E of K is mapped onto the line segment {0} × [0, 1] so that the

bottom endpoint p of E is mapped to (0, 0) and the top endpoint q of E is mapped to (0, 1).

That is, ψN is defined by

ψN(x) =

 ψN,i(x) if x ∈ Ki

x if x ∈ E

A depiction showing ψN(K) with ψN,i(Ki), where ni = 4, is given in Figure 3.2. Such

embeddings somewhat mimic the type of embeddings of the sin(1/x)-curve portrayed in

Figure 3.3. It is worth noting that although ψN(K
(1)
i ) is bent for each i ∈ N, these bends

become less profound as i increases. More precisely, for every ε > 0 there exists an Nε ∈ N

such that for all i ≥ Nε and for every maximally straight arc A contained in the standard

embedding of K
(1)
i , there exists a homeomorphism hA mapping ψN(A) onto π(ψN(A)) such

that ‖π � ψN(A) − hA‖ < ε, where ‖ · ‖ is the supremum norm. Furthermore, recall again
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Figure 3.2: A subschema embedding, ψN,i(Ki), with ni = 4. Each labeled K
(l)
i and is really

ψN(K
(l)
i ) for each l = 1, 2, . . . , 8. Note that we have ψN,i+1(Ki+1) meeting ψN,i(Ki) at the

point ψN,i(pi) = ψN,i+1(pi), simply labeled pi on the figure.

that we denoted by P and Q the set of all bottom and top endpoints and vertices of layers

of K, respectively. Likewise, for each i ∈ N, denote by Pi and Qi the set of all bottom and

top endpoints and vertices of layers of Ki, respectively. We also note that in order to make

ψN a homeomorphism onto its image, we ensure that ψN(Pi) → {ψN(p)} = {(0, 0)} and

ψN(Qi)→ {ψN(q)} = {(0, 1)} as i→∞.

Proposition 3.1.2. For every sequence N of positive even integers greater than or equal to

4, ψN is a homeomorphism of K onto its image. That is, ψN is indeed a planar embedding

embedding of K.

Remark 3.1.3. If N = (n, n, n, . . .) is a sequence of which every term is the same even

positive integer, n, greater than or equal to 4, then we may denote the schema embedding ψN

as ψn. Thus, it should be understood what is meant by, say, the embeddings ψ4, ψ6, ψ8, etc.

Proposition 3.1.4. Given a sequence N of positive even integers greater than or equal to

4, all endpoints of layers of K and all points of V and Λ layers of K are accessible under

ψN.

That is, Proposition 3.1.4 states that all points which are accessible from the complement

of the standard embedding of K are mapped by ψN so that they are accessible from the
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Figure 3.3: The image of an embedding of the sin(1/x)-curve which stands as a crude model
for the image of K under a schema embedding ψN according to a sequence N of positive
even integers greater than or equal to 4, with n1 = 4.

complement of ψN(K) for any given sequence N of positive even integers greater than or

equal to 4.

Proposition 3.1.5. If N and M are equivalent sequences of positive even integers greater

than or equal to 4, then ψN and ψM are equivalent planar embeddings of K.

3.2 Schema Pockets and Escape Arcs

For every i ∈ N, there is a horizontal crosscut CN,i of ψN,i(Ki) below the critical line

with one endpoint being ψN(pi) and other endpoint on ψN(K
(1)
i ). This means ψN(K)∪CN,i

separates the plane into two open connected components, the bounded component being a

topological open disk which we will call the ith schema pocket of the complement of

ψN(K) and which we denote by DN,i. See Figure 3.4.

For each i ∈ N, let qi be the top endpoint of r(Ki). Then there is also a straight crosscut

C ′N,i having one endpoint being ψN(qi+1) and the other being the top endpoint of the left end

layer of ψN(K
(ni)
i ), with C ′N,i → (0, 1) as i → ∞. This means ψN(K) ∪ C ′N,i separates the
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plane into two open connected components, the bounded component also being a topological

open disk which we will call the ith alternate schema pocket of the complement of

ψN(K), which will be denoted by D′N,i. Again, see Figure 3.4.

Let L be a V -layer or Λ-layer of K. Then there exists a straight crosscut C whose

endpoints are the endpoints of ψN(L). Thus, ψN(L) ∪ C separates the plane into two open

connected components, the bounded component being a topological open disk which we will

call the ψN(L)-pocket, or simply the L-pocket when the embedding ψN is understood.

Such a pocket may be denoted as DN,L.

Remark 3.2.1. We may designate the standard embedding of K as ψ1, where 1 = (1, 1, 1, . . .).

Therefore, the ith schema pocket, D1,i, is not unique, but can be chosen to be a V -pocket

or Λ-pocket of the standard embedding of K. Furthermore, suppose Li is the the V -layer or

Λ-layer of ψ1(K) on the boundary of the pocket D1,i. Then if g is a Kuratowski map of K,

Li can be chosen so that Li → E as i→∞, with g(Li+1) < g(Li) for each i ∈ N.

Definition 3.2.2. Let x be a point in the complement of ψN(K). Let J be an arc in the

complement of ψN(K) having x as an endpoint, and let x′ be the other endpoint of J with

sitting below (or above) the critical line y = 1/2. If there exists a straight vertical ray A in

the complement of ψN(K) whose top (or bottom) endpoint is x′, then we say J is an escape

arc of x with respect to N. We may say that J is an escape arc of x, or simply, that J

is an escape arc when the initial endpoint x of J and the embedding ψN are understood.

That is, J is an escape arc of x with respect to N if it is a path which x may follow

so that it may become “free to escape” arbitrarily far away below ψN(K) or arbitrarily far

away above ψN(K). The purpose for the condition on the positioning of the terminal point

x′ of J will become evident upon reading Definition 3.2.7.

Definition 3.2.3. Let J be as in Definition 3.2.2. Suppose further that J can be decomposed

into J1, . . . , Jn such that for each i = 1, . . . , n, Ji is a maximal subarc of J having the property

that π � Ji is a homeomorphism. If n is the least possible integer satisfying such a condition,

26



Figure 3.4: Depicted here is ψN(Ki) ∪ ψN(K
(1)
i+1) with crosscuts CN,i and C ′N,i and their

corresponding pockets DN,i and D′N,i, respectively. What is also shown is an escape arc out
of DN,i having depth 4, and escape arc out of DN,i from a Λ-pocket having a depth of 3,
and an escape arc out of D′N,i having a depth of 2. The orange segments depict vertical rays
moving away from the escape arcs.

then we say that J is a minimal escape arc of x with respect to N. We may say that

J is a minimal escape arc of x, or simply, that J is a minimal escape arc when the initial

endpoint x of J and the embedding ψN are understood.

The meaning of Definition 3.2.3 is that a minimal escape arc is an escape arc that does

not take random and unnecessary turns to escape below or above ψN(K). See Figure 3.4 for

examples of minimal escape arcs.

Remark 3.2.4. Given a schema embedding ψN, and a point x in the complement of ψN(K),

we may wish to specify the type of pocket x may escape from through an escape arc J . That

is, suppose R is a region which is either a schema pocket, an alternate schema pocket, a
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V -pocket, or a Λ-pocket of the complement of ψN(K). If x ∈ R and J an escape arc of x,

then we may say that J is an escape arc of x from R.

Definition 3.2.5. Let J be a minimal escape arc from a point of a schema pocket of the

complement of a schema embedding of K, and let z ∈ J . We say that z is a top (resp.,

bottom) turning point of J if there exists an ε > 0 so that for each horizontal line

segment H contained in the open ball Bε(z) of radius ε centered on z with the boundary of H

contained in the boundary of Bε(z), H ∩J = {z} if and only if H contains z, H ∩J contains

two points if H is below (resp., above) z, and H ∩ J = ∅ if H is above (resp., below) z.

That is, z is a turning point of an escape arc J if {z} = Ji∩Ji+1 for some i = 1, . . . , n−1,

where J1, . . . , Jn is the decomposition of J into the least number of subarcs having the

property that π � Ji : Ji → π(Ji) is a homeomorphism.

Proposition 3.2.6. Let ψN be a schema embedding of K and let (x1, x2, x3, . . .) be a sequence

of points so that for each i ∈ N, xi ∈ DN,i with the depth of xi in DN,i being at least 4. If Ji

is a minimal escape arc from xi out of DN,i for each i ∈ N, then the top turning points of Ji

converge to the top endpoint, (0, 1), of ψN(E) as i→∞ and the bottom turning points of Ji

converge to the bottom endpoint, (0, 0), of ψN(E) as i→∞.

Definition 3.2.7. Let x be as in Definitions 3.2.2 and 3.2.3. The depth of x with respect

to N, or simply, the depth of x, is the number of points of J\{x} contained in the critical

line for any minimal escape arc J of x with respect to N. If S is any subset of the complement

of ψN(K), then we say that the depth of S with respect to N is the maximum of the

depths of all points contained in S.2

Remark 3.2.8. Adding to Remark 3.2.4, we may wish to specify the depth a point x has

within R. If x is contained in R, we may say that the depth of x in R is the minimum

number of times any minimal escape arc of x from R crosses the critical line in R. If x is

2If for every n ∈ N there is a point x in S such that the depth of x is greater than n, we say that the
depth of S is ∞. However, we will not need to consider such subsets of the plane.
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not contained in R, we may take the convention to be that the depth of x in R is 0. However,

this does not mean that the depth of x with respect to N is 0. This is because x may be in

another pocket R′ of the complement of ψN(K) in which the depth of x in R′ is not 0.

The depth of a point in R2\ψN(K) provides us a means to measure how “trapped” or

“confined” it is in the pockets of R2\ψN(K). Note that a point x may be contained in a

pocket of the complement of ψN(K) but still have depth 0. This is because a minimal escape

arc of x would not have to cross the critical line y = 1/2 to be adjoined to a straight vertical

ray. However, just because a point x can be adjoined to such a straight vertical ray does

not make its depth 0. This is why, given the terminal point x′ of an escape arc from x, we

required that x′ lay below the critical line or above the critical line to ensure that a minimal

escape arc from x must cross the critical line once if it is above or below the critical line,

respectively.

Note that if x ∈ R2\ψN(K) and x is not contained in a pocket of the complement of

ψN(K), then its depth is 0 because any straight vertical arc A having x as an endpoint is a

minimal escape arc with A\{x} not touching the critical line. Otherwise, suppose x lies on

the critical line in some pocket of the complement of ψN(x) with depth n. Then there exists

an εx > 0 such that if Bεx(x) is the open disk centered on x, and if y ∈ Bεx(x), then the

depth of y is either n or n+ 1. Furthermore, if B is the subset of Bεx(x) on one side of and

containing the part of the critical line contained in Bεx(x), then the depth of every y ∈ B is

n while the depth of every y ∈ Bεx(x)\B is n+ 1.

Proposition 3.2.9. Let ψN be the schema embedding of K according to the sequence N =

(n1, n2, n3, . . .) of positive even integers greater than or equal to 4. Then for each i ∈ N,

the depth of DN,i with respect to N is ni, and the depth of D′N,i with respect to N is 2.

Furthermore, if L is a V -layer of Λ layer of K, then the depth of DN,L with respect to N is

at least 1.

Lemma 3.2.10. Let ψN and ψM be schema embeddings of K. Let (V1, V2, V3, . . .) be a se-

quence of V -layers of K and let (x1, x2, x3, . . .) be a sequence of points in the plane converging
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to ψN(p) = (0, 0) so that for each i ∈ N, xi ∈ DN,Vi. Let h be a homeomorphism of the plane

onto itself mapping ψN(K) onto ψM(K) such that h(ψN(p)) = ψM(p). Then there exists an

N ∈ N such that for every i ≥ N , h(xi) is contained in the V -pocket DM,h(Vi).

Proof. Suppose there exists a subsequence (xi1 , xi2 , xi3 , . . .) such that for every j ∈ N,

h(xij) /∈ DM,h(Vij )
. By Corollary 1.0.7 and Lemma 1.0.8, h(Vij) is a V -layer of ψN(K)

for every j ∈ N. We must consider two cases.

The first case we consider is that for each j ∈ N, the depth of h(xij) with respect to M is

0. Since h is a homeomorphism and xij → ψN(p) as j →∞, it follows that h(xij)→ ψM(p)

as j → ∞. Thus, for some M ∈ N and for every j ≥ M , there exists a straight vertical

arc Aj whose top endpoint is h(xij) so that Aj → A, where A = {0} × [−1, 0] as j → ∞.

Since A ∩ ψM(E) = {ψM(p)}, it follows that h−1(A) ∩ ψN(E) = {ψN(E)}. However, since

xij ∈ DN,Vij
for every j ≥ N , it follows that h−1(Aj) 6→ h−1(A) as j → ∞, a contradiction

to h being a homeomorphism.

The second case we must consider is that for each j ∈ N, the depth of h(xij) with

respect to M is positive. For each j ∈ N, let Cj be an endcut of ψN(K) contained in DN,Vi

whose endpoints are xij and the vertex of Vij , and so that Cj → {ψN(p)} as j →∞. Then

since h(xij) /∈ DM,h(Vij )
for each j ∈ N, it follows that h(Cj) 6→ {ψM(p)} as j → ∞, also

contradicting that h is a homeomorphism.

We are now in position to provide a special case in which we prove that the standard

embedding of K is not equivalent to the schema embedding of K according to the sequence

of all 4’s. Recall by Remark 3.1.3 that this embedding can be denoted by ψ4. It follows as

a consequence that the standard embedding of K is inequivalent to any schema embedding

of K.

Lemma 3.2.11. The standard embedding of the Knaster V Λ-continuum K is inequivalent

to the embedding ψ4. Moreover, the standard embedding of K is inequivalent to ψN for any

sequence N of positive even integers greater than or equal to 4.
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Proof. For simplicity, we will denote the image of the standard embedding of K as X, and

the image of the embedding of K under ψ4 will be denoted as Y . Denote the left end layer

of X as EX , the left end layer of Y as EY , and denote the bottom and top endpoints of EX

as pX and qX and the bottom and top endpoints of EY as pY and qY .3 Recall from Remark

3.2.1 that X = ψ1(K), where 1 here denotes the sequence of all 1’s.

Suppose h is a homeomorphism of the plane onto itself so that h(X) = Y . By Lemma

1.0.8 and due to the symmetry of X, we may assume that h(EX) = EY with h(pX) = pY

and h(qX) = qY . Let (V1, V2, V3, . . .) be the sequence of V -layers of Y whose vertices are

ψ4(s
(4)
i ) for each i ∈ N. Let (y1, y2, y3, . . .) be a sequence of points such that for each i ∈ N,

yi is contained in the Vi-pocket of the complement of Y , with yi → pY as i→∞. Note then

that yi ∈ DN,i, with the depth of yi being 4. Also as a consequence of Lemma 1.0.8, h−1(Vi)

is a V -layer of X for every i ∈ N.

Again, by Remark 3.2.1, we can let, for each i ∈ N, the horizontal crosscuts C1,i be

connecting the endpoints of h−1(Vi) so that D1,i is the ith schema pocket for X having

h−1(Vi) on its boundary. That is, for each i ∈ N, D1,i is the V -pocket, D1,h−1(Vi), of X. For

each i ∈ N, let xi = h−1(yi). Since yi → pY as i → ∞, it follows that xi → pX as i → ∞.

By Lemma 3.2.10, we may assume for each i ∈ N that xi has a depth of 1 inside D1,i.

Let Ji be the straight vertical arc so that xi is the bottom endpoint of Ji, and so that

the top endpoint, x′i, of Ji has 1 as its y-coordinate. Note that in this case, Ji → EX as

i→∞. Furthermore, Ji is a minimal escape arc from xi out of D1,i for each i ∈ N. For each

i ∈ N, let Ai be the straight arc of length 1 with x′i as its bottom endpoint. Then Ai → A

where A = {0} × [1, 2] as i→∞.

Since h(xi) = yi ∈ D4,i for each i ∈ N, it follows that h(Ji) ∩D4,i 6= ∅ for each i ∈ N.

Since h(Ji) → EY with the endpoint yi of h(Ji) having a depth of 4 in D4,i for each i ∈ N,

and since by Lemma 1.0.9 h(Ji) have no points of depth less than 3 for all large enough i, it

follows that there is M ∈ N such that for every i ≥M , the depth of h(Ai) in D4,i is at least

3Even though EX = {0} × [0, 1] = EY , pX = (0, 0) = pY , and qX = (0, 1) = qY , we still wish to make
distinctions in reference to their corresponding embeddings.
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3. Note that since A ∩ EX = {qX} and diam(A) = 1, it follows there exists an η > 0 such

that diam(h(A)) = η and h(A) ∩ EY = {qY }. However, since D4,i → EY as i → ∞, and

because the depth of h(Ai) in D4,i is at least 3 for every i ≥M , it follows that h(Ai) 6→ h(A).

This contradicts that h is a homeomorphism.

Since for each sequence N of positive even integers greater than or equal to 4, the depth

the schema pocket DN,i is greater than or equal to 4 for every i ∈ N, it follows that the

standard planar embedding of K is inequivalent to ψN.

Corollary 3.2.12. If N and M are sequences of positive even integers greater than or equal

to 4 and h is a homeomorphism of the plane onto itself mapping ψN(K) onto ψM(K), then

h(ψN(E)) = ψM(E).

Proof. Suppose instead that h(ψN(E)) = ψM(E ′). Then there exists an N ∈ N for which

h

(
ψN

(
cl(

∞⋃
i=N

Ki)
))
⊂ ψM(K

(1)
1 ).

Let N′ denote the subsequence of N having all but the first N − 1 terms of N. Then N′

and N are equivalent sequences, and thus, ψN and ψN′ are equivalent planar embeddings of

K by Proposition 3.1.5. Since ψN′ is equivalent to ψN � cl(
⋃∞
i=N Ki), so is ψN. However,

ψM � K(1)
1 is equivalent to the standard embedding of K, with ψN

(
cl(

∞⋃
i=N

Ki)
)

being mapped

into ψM(K
(1)
1 ), contradicting Lemma 3.2.11.

Lemma 3.2.13. If N and M are sequences of positive even integers greater than or equal

to 4 and h is a homeomorphism of the plane onto itself mapping ψN(K) onto ψM(K), then

h(ψN(p)) = ψM(p).

Proof. For simplicity, let us denote ψN(p), ψN(q), ψM(p), and ψM(q) by pN, qN, pM, and

qM, respectively. By Corollary 3.2.12, h(pN) ∈ {pM, qM}. Suppose h(pN) = qM. Let

(x1, x2, x3, . . .) be a sequence of points converging to pN with xi having a depth of 4 in DN,i,

and for each i ∈ N, let Hi be a sequence of minimal escape arcs from xi out of DN,i. We
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shall also assume that xi has the least y-coordinate among all other points of depth 4 along

Hi for each i ∈ N. Also for each i ∈ N, let x
(l)
i for l = 0, 1, 2, 3, 4 be the points along Hi so

that

(1) x
(0)
i = xi, and x

(4)
i is the other endpoint of Hi intersecting the crosscut CN,i,

(2) x
(l)
i has depth 4− l in DN,i for each l = 0, 1, 2, 3, 4, and

(3) x
(l)
i is a top turning point of Hi for l = 1, 3 and x

(2)
i is a bottom turning point.

Note that since h(pN) = qM, and thus, h(qN) = pM, condition (3) gives us h(x
(2)
i )→ qM

and h(x
(l)
i ) → pM for l = 1, 3 as i → ∞ by Proposition 3.2.6. Also, by default, we have

x
(l)
i → pN as i → ∞ for l = 0, 4, whence h(x

(l)
i ) → qM as i → ∞ for l = 0, 2, 4. If for

each i ∈ N we let H
(l)
i be the subarc of Hi having as its endpoints x

(l−1)
i and x

(l)
i for each

l = 1, 2, 3, 4, then for each such l, (H
(l)
1 , H

(l)
2 , H

(l)
3 , . . .) forms a sequence of arcs converging

to ψN(E) so that for each i ∈ N, π � H(l)
i is a homeomorphism mapping H

(l)
i onto π(H

(l)
i ).

It follows that, if U and W are the open subsets of the xy-plane sitting respectively above

and below the critical line y = 1/2, then there exists an N ∈ N such that for every i ≥ N ,

Hi = {h(x
(0)
i ), h(x

(1)
i ), h(x

(2)
i ), h(x

(3)
i ), h(x

(4)
i )} ⊂ U ∪W,

with members of the above set alternating between being in U and being in W . That is, for

each i ≥ N , h(x
(l)
i ) ∈ U for l = 0, 2, 4 and h(x

(l)
i ) ∈ W for l = 1, 3.

Claim. Only finitely many Hi are mapped by h into schema pockets of the complement

of ψM(K) so that the depth of h(x
(l)
i ) is the same as the depth of h(x

(l′)
i ) for l 6= l′.

Proof of Claim. Suppose there is a subsequence i1, i2, i3, . . . of positive integers so that

for each j ∈ N, there exists two distinct integers lj and l′j between 0 and 4 such that the

depth of h(x
(lj)
ij

) is the same as that of h(x
(l′j)

ij
). Since members of the set Hij alternate

between being in U and being in W for every ij ≥ N , it follows that lj and l′j can be chosen
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so that |lj − l′j| = 2 for every ij ≥ N . As a consequence of Lemma 1.0.9, we may consider

two cases.

The first case is that for each j such that ij ≥ N , there exists an arc Tj contained in

(R2\ψM(K))∩U or contained in (R2\ψM(K))∩W whose endpoints are h(x
(lj)
ij

) and h(x
(l′j)

ij
),

and with diam(Tj)→ 0 as j →∞. However, since for each j ∈ N, x
(lj)
ij

and x
(l′j)

ij
have depths

differing by 2, it follows that diam(h−1(Tj)) 6→ 0 as j → ∞—a contradiction to h being a

homeomorphism.

The second case we consider is that for some M ≥ N and every j ≥ M , there exists

an lj ∈ {1, 3} such that there is a straight vertical arc Aj whose top endpoint is h(x
(lj)
ij

),

with Aj → A, where A = {0} × [−1, 0] as j → ∞. Note that A ∩ EY = {pY } implies that

h−1(A) ∩ EX = {pX}. However, since for each j ≥ M , the depth of x
(lj)
ij

is at least 1, it

follows that h−1(Aj) 6→ h−1(A). This also contradicts that h is a homeomorphism.

By our previous claim, it follows that for some N ′ ≥ N and every i ≥ N ′, no two

different h(x
(l)
i ) have the same depth within a schema pocket of the complement of ψM(K).

We thus have, by the previous claim combined with Proposition 1.0.9, that for each i ≥ N ′,

h(Hi) is mapped into a schema pocket of the complement of ψM(K) such that the depths

of each h(x
(l)
i ) alternate in value, with the depths of h(x

(l)
i ) and h(x

(l′)
i ) differing by 1 if and

only if |l − l′| = 1. Furthermore, the depth of each such h(x
(l)
i ) is no less than 5− l. Thus,

in particular, for each i ≥ N ′, the depth of h(x
(4)
i ) will be at least 1.

This time, for each i ∈ N, let Ai be the straight vertical arc whose top endpoint is x
(4)
i ,

with Ai → A, where again, A = {0} × [−1, 0], as i → ∞. Since A ∩ EX = {pX}, it follows

that h(A) ∩ EY = {pY }. However, since the depth of h(x
(4)
i ) is at least 1 for each i ≥ M ′,

it follows that h(Ai) 6→ h(A) as i → ∞. This contradicts that h is a homeomorphism.

Therefore, h(pN) = pM.
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3.3 Schema Embeddings of K According to Inequivalent Sequences are Inequiv-

alent

We now state and prove the lemmas needed to show that the collection of all schema

embeddings of K according to sequences of even positive integers greater than or equal to

4 has cardinality c. In what follows, let N = (n1, n2, n3, . . .) and M = (m1,m2,m3, . . .)

be sequences of even positive integers greater than or equal to 4. We will let X = ψN(K)

and Y = ψM(K) for simplicity. Though both equal to {0} × [0, 1], we will let the left end

layers of X and Y be denoted by EX and EY , respectively. Denote the bottom and top

endpoints of EX as pX and qX , respectively, and the bottom and top points of EY as pY and

qY , respectively. We remind the reader that π denotes the natural projection of R2 onto the

y-axis so that π(x, y) = (0, y) for every (x, y) ∈ R2.

Let xi be a point in DN,i so that the depth of xi is ni for each i ∈ N, and with xi → pX

as i→∞. We will also assume that for each i ∈ N, xi has the smallest y-coordinate for any

minimal escape arc from xi out of DN,i. For each i ∈ N, let Ji be a minimal escape arc from

xi out of DN,i, and let x
(1)
i , . . . , x

(ni−1)
i ∈ DN,i and x

(ni)
i ∈ CN,i be such that the depth of

x
(l)
i in DN,i is ni − l for each l = 1, . . . , ni. Furthermore, let x

(1)
i , . . . , x

(ni−1)
i be the turning

points of Ji. We will designate x
(0)
i := xi for each i ∈ N. Let J

(1)
i , . . . , J

(ni)
i be such that J

(l)
i

is the subarc of Ji whose endpoints are x
(l−1)
i and x

(l)
i for every l = 1, . . . , ni.

Similarly, let yi be a point in DM,i so that the depth of yi is mi for each i ∈ N, and with

yi → pY as i→∞. We will also assume that for each i ∈ N, yi has the smallest y-coordinate

for any minimal escape arc from yi out of DM,i. For each i ∈ N, let Ii be a minimal escape

arc from yi out of DM,i, and let y
(1)
i , . . . , y

(mi−1)
i ∈ DM,i and y

(mi)
i ∈ CM,i be such that the

depth of y
(l)
i in DM,i is mi − l for each l = 1, . . . ,mi. Furthermore, let y

(1)
i , . . . , y

(mi−1)
i be

the turning points of Ii. We will designate y
(0)
i := yi for each i ∈ N. Let I

(1)
i , . . . , I

(mi)
i be

such that I
(l)
i is the subarc of Ii whose endpoints are y

(l−1)
i and y

(l)
i for every l = 1, . . . ,mi.

We shall also denote by U and W the open subsets of R2 sitting above and below,

respectively, the critical line y = 1/2. Lastly, we will assume h is a homeomorphism onto
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itself such that h(X) = Y . By Corollary 3.2.12 and Lemma 3.2.13, h(EX) = EY with

h(pX) = pY .

Lemma 3.3.1. All but finitely many h(xi) are contained in schema pockets of the complement

of Y in which the depth of h(xi) is at least ni.

Proof. Suppose the subsequence (xi1 , xi2 , xi3 , . . .) has the property that for each j ∈ N,

h(xij) has depth within any schema pocket of the complement of Y being less than ni. Since

xi → pX as i→∞, it follows that h(xij)→ pY as j →∞, and thus, there exists an N ∈ N

such that for every j ≥ N , the depth of h(xij) in a schema pocket of the complement of Y is

even. N can be taken large enough so that {h(xij), h(x
(1)
ij

), h(x
(2)
ij

), . . . , h(x
(nij

)

ij
)} ⊂ U ∪W ,

with members of this set alternating between U and W for each j ≥ N . In particular,

h(x
(l)
ij

) ∈ U when l is odd and h(x
(l)
ij

) ∈ W when l is even. We must now consider two cases.

The first case we consider is that there is an M ≥ N such that for each j ≥ M , there

exists lj, l
′
j ∈ {0, 1, 2, . . . , nij} such that |lj− l′j| = 2 for which there exists an arc Tj contained

in either (R2\ψM(K))∩U or (R2\ψM(K))∩W having as its endpoints h(x
(lj)
ij

) and h(x
(l′j)

ij
),

with diam(Tj) → 0 as j → ∞. However, since the difference in the depths of x
(lj)
ij

and

x
(l′j)

ij
is 2, this implies that diam(h−1(Tj)) 6→ 0 as j → ∞. This contradicts that h is a

homeomorphism.

The second case we consider is that for some M ≥ N and every j ≥M , there exists an

even lj ∈ {0, 2, . . . , nij − 2} such that there is a straight vertical arc Aj whose top endpoint

is h(x
(lj)
ij

), with Aj → A, where A = {0} × [−1, 0] as j → ∞. Recall from previous proofs

that since A ∩ EY = {pY }, it follows that h−1(A) ∩ EX = {pX}. However, since for each

j ≥ M , the depth of x
(lj)
ij

is at least 2, it follows that h−1(Aj) 6→ h−1(A) as j →∞. This is

also a contradiction to h being a homeomorphism.

By using similar arguments in the proof of Lemma 3.3.1, one may obtain the following

corollary.
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Corollary 3.3.2. All but finitely many h(x
(l)
i ) are contained in schema pockets of the com-

plement of Y in which the depth of h(x
(l)
i ) is at least ni − l, where l ∈ {0, 1, . . . , ni}.

Lemma 3.3.3. All but finitely many h(xi) are not contained in schema pockets of the com-

plement of Y whose depth is more than ni.

Proof. Suppose there is a subsequence (xi1 , xi2 , xi3 , . . .) such that h(xij) is in a schema pocket,

DM,k(j), of the complement of Y whose depth is greater than nij . By Lemma 3.3.1, this leaves

two possibilities:

(1.) The depth of h(xij) in DM,k(j) is nij .

(2.) The depth of h(xij) in DM,k(j) is greater than nij .

Assume case (1.) occurs for all but finitely many j ∈ N and, without loss of generality,

for every j ∈ N. As in the proof of Lemma 3.3.1, there exists an N ∈ N such that for every

j ≥ N , {h(xij), h(x
(1)
ij

), . . . , h(x
(nij

)

ij
)} ⊂ U ∪W , the members of this set alternating between

U and W . Furthermore, by Lemma 1.0.9, we may assume N is large enough so that for each

j ≥ N , the difference between the depths of h(x
(l)
ij

) and h(x
(l′)
ij

) in DM,k(j) is 1 if and only if

|l − l′| = 1. Furthermore, by Corollary 3.3.2, the depth of every h(J
(l)
ij

) is that of h(x
(l−1)
ij

),

which is nij − l + 1, for each j ≥ N and each l ∈ {1, . . . , nij}.

For each j ≥ N , let zj be a point in DM,k(j) whose depth is nij + 1 and so that zj → qY

as j → ∞. Note that h−1(zj) → qX as j → ∞. Also for each j ≥ N , let Zj be an arc

in DM,k(j) whose endpoints are h(xij) and zj and so that the depth of Zj in DM,k(j) is also

nij + 1.

It follows, as a consequence of Lemma 1.0.9 on the collection of all Zj, that there exists

a positive integer M ≥ N such that for every j ≥M , there exists an arc Tj in DN,k(j) whose

endpoints are h−1(zj) and x
(1)
ij

, with diam(Tj) → 0 as j → ∞. However, since the depth of

zj in DM,j differs by 2 from the depth of h(x
(1)
ij

) in DM,j for every j ≥ M , it follows that

diam(h(Tj)) 6→ 0 as j →∞, a contradiction to h being a homeomorphism.
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Assume now that case (2.) occurs for all but finitely many j ∈ N and, without loss of

generality, for every j ∈ N. Let N be as in the proof negating case (1.) above. Since the

depth of h(xij) in DM,k(j) is greater than nij for every j ∈ N, this implies that for every

j ≥ N , the depth of h(x
(nij

)

ij
) in DM,j is greater than or equal to 1.

For each j ≥ N , let Aj be the straight vertical arc having x
(nij

)

ij
as its top endpoint and

so that that Aj → A, where A = {0} × [0, 1] as j → ∞. Again, since A ∩ EX = {pX},

it follows that h(A) ∩ EY = {qX}. However, for each j ≥ N , since the depth of h(x
(nij

)

ij
)

in DM,k(j) is greater than or equal to 1, this implies h(Aj) 6→ h(A) as j → ∞. This also

contradicts h being a homeomorphism.

Lemma 3.3.4. All but finitely many pairs h(xi) and h(xj), where i 6= j, are contained in

different schema pockets of the complement of Y .

Proof. Suppose there exists a subsequences (xi1 , xi2 , xi3 , . . .) and a subsequence (xj1 , xj2 , xj3 , . . .)

such that im 6= jm for every m ∈ N and so that h(xim) and h(xjm) are contained in the same

schema pocket of the complement of Y . Again, as in the previous proofs, there exists an

M(i) ∈ N such that for every m ≥ M(i), {h(xim), h(x
(1)
im

), . . . , h(x
(nim )
im

)} ⊂ U ∪ W , the

members of this set alternating between U and W . Similarly, there exists an M(j) ∈ N such

that for every m ≥M(j), {h(xjm), h(x
(1)
jm

), . . . , h(x
(njm )
jm

)} ⊂ U ∪W , the members of this set

alternating between U and W . Furthermore, for each m ≥M(i), the difference between the

depths of h(x
(l)
im

) and h(x
(l′)
im

) is 1 if and only if |l − l′| = 1, with the depth of every h(J
(l)
im

)

being that of h(x
(l−1)
im

), and for each m ≥M(j), the difference between the depths of h(x
(l)
jm

)

and h(x
(l′)
jm

) is 1 if and only if |l − l′| = 1, with the depth of every h(J
(l)
jm

) is being that of

h(x
(l−1)
jm

).

Let M = max{M1,M2}. By Lemma 3.3.1 and Lemma 3.3.3, the depth of h(xim) and

h(xjm) are the same as the depths of xim and xjm in DN,im and DN,jm , respectively, for every

m ≥ M . That is, nim = njm for every m ≥ M . In particular, for each m ≥ M and each

l = 1, . . . , nim , the depth of h(x
(l)
im

) is nim − l, and the depth of h(J
(l)
im

) is nim − l + 1. These

are also the depths of the corresponding h(x
(l)
jm

) and h(J
(l)
jm

).
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For every m ≥ M and for every l ∈ {1, . . . , nim}, let T
(l)
m be the shortest arc contained

in the complement of Y so that the endpoints of T
(l)
m are h(x

(l)
im

) and h(x
(l)
jm

). Then for every

such m and every such l, diam(T
(l)
m ) → 0 as m → ∞. However, because im 6= jm for every

m ≥ M , it follows that for every m ≥ M and every l ∈ {1, . . . , nim}, diam(h−1(T
(l)
m )) 6→ 0

as m→∞. This is a contradiction to h being a homeomorphism.

Lemma 3.3.5. N and M are equivalent sequences of positive integers.

Proof. By Lemmas 3.3.1 and 3.3.3, there exists a positive integer N such that for every

i ≥ N , h(xi) is contained in a schema pocket DM,ji of the complement of Y with depth ni in

which the depth of h(x
(l)
i ) = ni− l for every l ∈ {0, 1, . . . , ni} and so that the depth of h(J

(l)
i )

is that of h(x
(l−1)
i ). Furthermore, such a sufficiently large N can also satisfy ji 6= jk whenever

i 6= k by Lemma 3.3.4, with ji < ji+1 for every i ≥ N by Proposition 1.0.4. Similarly, there

exists a positive integer M such that for every i ≥M , h−1(yi) is contained in a schema pocket

DN,si of the complement of X with depth mi in which the depth of h−1(y
(l)
i ) = mi − l for

every l = 0, 1, . . . ,mi and so that the depth of h−1(I
(l)
i ) is that of h−1(y

(l−1)
i ). Furthermore,

such a sufficiently large M can also satisfy si 6= sk whenever i 6= k by Lemma 3.3.4, with

si < si+1 for every i ≥M by Proposition 1.0.4.

Let us assume that N = max{N,M}. By the lemmas listed in the previous paragraph,

it follows that for every i ≥ N , ji+1 − ji = 1. Indeed, suppose that there is a sequence

i1, i2, i3, . . . such that jik+1−jik > 1 for every k ∈ N. Then there exists a sequence of integers

(u1, u2, u3, . . .) such that jik < uk < jik+1
for each k ∈ N. By Proposition 1.0.4, it follows

that for every k ∈ N, h−1(yuk) must be mapped to a pocket of the complement of X between

DN,ik and DN,ik+1. However, as a consequence of Lemma 3.3.4 as well as Lemma 3.2.10, the

only option would be for h−1(yuk) to be mapped to a V -pocket of X not contained in any

schema disk of the complement of X. Such a pocket would have a depth of at most 2, and

since the depth of yuk is at least 4 for each k, this would contradict Lemma 3.3.1 and thus

proves our claim.
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It follows that for every i ≥ N , pockets DN,i are mapped so that their depth in DM,ji

is ni, with the depth of DM,ji being ni as well. Thus, for each i ≥ N and each k ≥ jN , we

have that ni = mk. Therefore, N and M are equivalent sequences of positive even integers

greater than or equal to 4.

Theorem 3.3.6. If N and M are inequivalent sequences of positive even integers greater

than or equal to 4, then ψN and ψM are inequivalent planar embeddings of K.

Proof. This follows directly as a consequence of Lemma 3.3.5, where we preemptively as-

sumed that ψN and ψM were equivalent planar embeddings of K by assuming there was

a homeomorphism h of the plane onto itself mapping ψN(K) onto ψM(K), leading us to

conclude that N and M are equivalent sequences. Therefore, by contraposition, we con-

clude that if N and M are inequivalent sequences, ψN and ψM must be inequivalent planar

embeddings of K.

Corollary 3.3.7. There are c-many mutually inequivalent planar embeddings of K, all of

which have the same accessible points as in the standard embedding of K.

Proof. Let I be as in Lemma 3.0.2, and let G ⊂ I be the set of all such equivalence classes

of sequences of positive integers greater than or equal to 4. By a proof similar to that of

Lemma 3.0.2, the cardinality of G is c. Let G be a set formed upon choosing one sequence

from each equivalence class in G. Since by Theorem 3.3.6 the embeddings ψN and ψM are

inequivalent planar embeddings of K whenever N and M are inequivalent sequences in G, it

follows that Ψ = {ψN | N ∈ G} is a collection of planar embeddings of K whose cardinality

is c. Furthermore, the image of each member of Ψ has the same set of accessible points as

the standard embedding of K by Proposition 3.1.4.
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Chapter 4

Closing Comments and Open Questions

The question of which HDCC admit uncountably many mutually inequivalent planar

embeddings is still an open problem. The previously described techniques for constructing

c-many mutually inequivalent planar embeddings for K may provide insight into how this

more general problem can be solved. However, since any given HDCC X may possess a

highly complex underlying structure on its generalized layers, producing planar embeddings

of X using similar such techniques can prove difficult in controlling the rigours details of

their constructions.

Question 1. Can the techniques of producing c-many mutually inequivalent planar embed-

dings of K as in Section 2 and Section 3 be generalized to all non-arc HDCC? If not for all

non-arc HDCC, can they be generalized to those whose layer level is finite?

We may also be able to provide a partial answer to the more general question above by

exploring HDCC which yield a decomposition similar to that of K = K1 ∪K2 ∪ · · · ∪ E as

in Chapter 3. In particular, suppose X is an HDCC with left end layer EX . Furthermore,

suppose X can be decomposed as X = X1∪X2∪· · ·∪EX , where Xi∩EX = ∅ for each i ∈ N,

and so that Xi ∩Xj is a subcontinuum Ci of X if and only if |i− j| ≤ 1, with diam(Ci)→ 0

as i→∞. We thus pose the following question.

Question 2. Can any non-arc HDCC X possessing a decomposition as described in the

previous paragraph be embedded in the plane in c-many mutually inequivalent ways? If so,
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Figure 4.1: The Cantor organ, C, represented by the first four iterations of its construction
along with its end layers. The layer level of C is the same as that of K. In fact, C can
be constructed from K by “blowing up” each individual vertex of V and Λ layers of K
into a horizontal arc. Likewise, K can be constructed from C by collapsing each individual
horizontal arc in C to a point.

can such embeddings be constructed according to sequences of positive even integers greater

than or equal to 4 as was done for K in Chapter 3?

There are many simple examples of HDCC which match the decomposition criteria

mentioned in the paragraph before the previous question. The simplest such non-arc candi-

dates are those possessing a subcontinuum which is the compactification of a ray with an arc.

However, as we stated in Chapter 1, and as was mentioned in [2], it is likely that such HDCC

can be embedded in the plane in uncountably many mutually inequivalent ways. Another

example of a non-arc HDCC other than K matching the aforementioned decomposition cri-

teria above is the continuum C depicted in Figure 4.1 known as the Cantor organ. C was

given as an example of an irreducible space by Kuratowski in Chapter V, §48 of [9]. Though

the Cantor set is invoked in its construction, Kuratowski did refer to C as the Cantor organ.

However, one can find that Janusz J. Charatonik, Pawel Krupski, and Pavel Pyrih have

given C this name in [7]. Regardless of the nomenclature, one may naturally propose a way
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to construct c-many mutually inequivalent planar embeddings of C similar to the schema

embeddings of K in Chapter 3.

Recall the statements of Corollary 1.0.7 and Lemma 1.0.8. To summarize, layers of K

of a given type are mapped to layers of the same type under a homeomorphism of K onto

itself, but it is not necessary that any layer is mapped onto itself.

Question 3. Is there a planar embedding ϕ of K such that, for every layer L of K and

every homeomorphism h of the plane onto itself mapping ϕ(K) onto itself, h(ϕ(L)) = ϕ(L)?

If so, what other HDCC have this property?

It is possible that the question above can be answered for K by inserting schema embed-

dings of subcontinuum copies of K “all over K.” However, the details of providing such an

embedding of K are yet to be developed. It may also be possible that if such an embedding

can be constructed, there exist c-many mutually inequivalent such embeddings.
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