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Abstract

Understanding the connection between variation in climate and population dynamics
of plants and animals is important for predicting the impacts of future climate change. A
popular approach for studying population dynamics is integral projection models, in which
covariates are easily parameterized by regression models. The main goal of this dissertation
is to extend the scope of stochastic integral projection models (IPMs), which have been
commonly fitted with linear or generalized linear models in the past.

The state-space models and the stochastic IPMs using linear mixed models are discussed
in Chapter 2 and Chapter 3 respectively. In the state-space models, we study climate effects
on the population, which is segmented in different age groups. We find that we may need to
include climate effects to better understand the population dynamics. The second chapter
provides an important basic analysis for the validity of the findings of the IPMs. The third
chapter provides the analyses of the stochastic IPMs with linear and generalized linear models
in which the LASSO method is applied for variable selection, and perturbation analyses are
discussed.

In Chapter 4, by fitting more flexible IPMs, we develop a new method of finding elas-
ticities of population growth rate to climate effects by estimating the derivatives of smooth
functions of semi-parametric regression models.

Based on the models studied in this dissertation, we find that the projected population
growth is consistent across all models. In addition, we find that climate variables associated

with temperature have significant effects on the population growth rate.
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Chapter 1

Introduction
1.1 Background

Matrix projection models have been commonly used to study population dynamics in
the past (Coulson et al. 2001; Saltz et al. 2006; Bakker et al. 2009; and Hunter et al.
2010). Matrix models are easy to compute and have well established methods for estimating
sensitivities and elasticities (Caswell 2001). In matrix models, populations are often divided
into discrete classes or stages: the most general structure in populations is age.

However, matrix population models do not have a seamless way to include effects of
environments, or other biological variables in the estimation of vital rates. One way to
overcome the limitations that the matrix population models present is given by state-space
models or dynamic linear models, which were introduced in Kalman (1960) and Kalman and
Bucy (1961). In addition to accounting for temporal correlations in variables by modeling
them as a Markov process, state-space models provide a means to efficiently include covari-
ates that can affect vital rates as well as stochasticity to account for possible unmeasured
observation errors.

State-space models, however, do not provide a way to include individual characteristics
that are important in determining vital rates. For instance, in addition to age, the body
mass of a female may play an important role in her ability to reproduce and survive. For
example, Rubach et al. (2016) showed that female Columbian ground squirrels have alter-
native reproductive options. While most females reproduce annually, some females with low

body mass may skip reproduction and invest more strongly in their own weight and body



condition in any given year. Thus females of the same age may or may not give birth in
a certain year depending on their body condition. A modeling approach that allows one
to include such individual characteristics in the estimation of vital rates as well as quantify
their effects is the integral projection model (IPM). An IPM is a practical tool for organizing
demographic information about populations according to continuous trait variations (Ellner
and Rees 2006). This approach avoids the issues caused by classifying the population into
discrete stages, such as age groups. Another advantage of IPMs is that parameters can be
easily estimated by fitting regression models. For these reasons, IPMs are becoming popular
(Ellner et al. 2016 and references therein), and applications extending the basic IPM to
deal with stochasticity and additional biological properties have been developed since the

introduction of IPMs (Ellner and Rees 2007, Rees and Ellner 2009, and Ellner et al. 2016).

1.2 Contribution

Motivated by a population ecology problem that involves Columbian ground squirrels,
our study presents a stochastic integral projection model as a viable method to capture the
effect of individual biological traits as well as climate effects on population vital rates. We
integrate model selection via the LASSO into the fitting IPMs to provide parsimonious IPM
models. This is particularly useful for selecting combinations of climate and environmental
variables that influence vital rates. Variable selection was commonly done using stepwise
regression with Akaike information criterion (AIC) and Bayesian information criterion (BIC)
in the past. However, in addition to being computationally expensive, these methods have
a limitation in that they may end up selecting models that are too simplistic. To avoid
the limitation, we apply the LASSO shrinkage method to include relevant variables in the
regression models within the IPM framework. To our knowledge, this is the first work that

combines constrained estimation for model selection with integral projection models.



We first conducted a preliminary analysis of the data using state-space models in order
to contrast them with the IPM approach. We expected the approaches to give comparable
estimates of the projected population growth, because both are based on the same changes
in population size. However, these alternative methods may differ in their estimation of
model components. Additionally, our primary goal was to understand the effects of climate
variables in changes of population growth.

In Chapter 4, we extended the IPM approach using semi-parametric models: partial
linear models and single index models. These approaches combine the flexibility of non-
parametric, additive models with interpretability of parametric regression models. The ap-
proach allows us to measure the contribution of individual variables to the vital rates that
guide population dynamics. To understand the effect of environmental conditions on pop-
ulation growth rate, we calculated the elasticities of climate variables within the proposed
semi-parametric IPM framework, which involved evaluations of derivatives of the unknown
smooth functions. The computing method of elasticities using the derivatives of smooth
functions is new in IPMs, and the new approach is particularly important as it expands the

scope of IPM applications.



Chapter 2

State Space Models

2.1 Introduction

An understanding of population dynamics is fundamental to the study of ecology (Elton
1927; Krebs 1985). This is not only a theoretical focus of ecology, but also a practical matter
given global change (IPCC 2019). Such research requires a means for describing the life
cycles of individuals. In any population, the rates at which the individuals are born, grow,
reproduce, and die are termed vital rates. The dynamics of the population are determined
by these vital rates. Matrix population models provide a way to link the individual to its
population, based on fairly simple descriptions of these vital rates (Caswell 2001). Matrix
models allow us to make crude groupings of individuals (usually by age and gender, but
also by such groups as body mass classes), but they do not allow us to differentiate between
individuals in the same grouping. Vital rates also depend on the environment, in addition to
the characteristics of the individuals. Thus, models that make explicit connections between
vital rates and environmental factors are essential for studying population dynamics.

In this chapter, we consider state-space models (SSMs), which provide the flexibility
in modeling various types of data (continuous, count, binary, and categorical data) with
linear or nonlinear processes (Auger-Methe, et al. 2020). Also, the SSMs allow us to model
process variation and observation errors separately. Including these two separate sources of
stochasticity in the model allows us to differentiate between biological variation and obser-
vation errors. This allows fuller characterization of uncertainty in the model, than if only

one source of stochasticity were included. Since their first introduction by Kalman (1960)



and Kalman and Bucy (1961), SSMs have been extensively used in signal processing and
more recently for modeling population dynamics (Newman et al., 2014), metapopulation
dynamics (Ward et al., 2010), and fisheries stock assessment (Aeberhard et al., 2018).

We are interested in estimating the population growth rate by projecting future pop-
ulation sizes and also the differential effect of weather on the various age groups of the
Columbian ground squirrels (CGS). We considered “normal” SSMs with process variance
and observation errors modeled with Gaussian distributions. SSMs make two main assump-
tions. First, SSMs assume that the underlying state time series evolves as a Markov process.
This means that the state at time ¢, Ny, depends only on the state at the previous time step,
N, 1. Second, SSMs assume that given their dependence on the state, each observation Y,

is independent of all other observations Yy, s # t (Figure 2.1).

State o o o o o o
process:

Observation

process:

Figure 2.1: Diagram of a state space model

2.2 Data

2.2.1 Population Data

Our population data set that motivated our development were individual-based, and
consisted of information for uniquely marked individual in a population of Columbian ground
squirrels within the Sheep River Provincial Park in the Rocky Mountains of Alberta, Canada
(50.39° 7 N, 114.37° 27" W; 1550 m elevation, see Figure 2.2). Each spring, all ground
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squirrels were permanently marked with numbered metal ear tags and dyed with individual
symbols for later visual recognition. In summer, mothers and their known litters were
trapped and individually marked during intensive monitoring. The ground squirrels were
thus monitored annually during their April to July/August annual activity period in each
year between 1992 and 2018 (with 2018 used for survival and growth of ground squirrels
monitored in 2017). For more information on how data were collected or further information
on the study area, see Dobson et al. (2016). For each individual adult female, the variables

we are interested in include:

e year: indexed by year t.
e 7: body mass at emergence from hibernation, in log scale of the individual at year t.

e 7z': body mass at emergence from hibernation, in log scale of the individual at year

t+ 1.

e juv.mass: mean mass at emergence from hibernation, in log scale of one-year-old

offspring (young in the past year).

e Is.wean: the number of young in a female’s litter, when young first emerge from nest

burrows near the time of at weaning.

e surv.juv: a number of young that survived to the next year from the mother’s litter

in the previous year.
e had.lit: whether or not (1/0) a female reproduced.
e fy.surv: whether or not (1/0) a female survived to the next spring.

e wean.f: the number of female pups at weaning per mother.

Scatter plots of the population data set are shown in Figure 2.3. These show the

expected patterns that higher mass appears to be related to higher rates of survival,
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Figure 2.2: Columbian ground squirrel study site

higher reproduction probability, more offspring per reproduction, and higher mass of
recruits. Connections between mass and reproduction for Columbian ground squirrels

were discussed in the paper Rubach et al. (2016).

2.2.2 Climate Data

In order to examine the effect of environmental variables on CGS population dynam-
ics, we used climate data from Dobson, et al. (2016). Dobson et al. (2016) used the
climate data for examining the relations between inter-annual variation in climate variables
(rainfall, temperature, snowfall, and snowpack) and annual fitness of Columbian ground
squirrels. In particular, they used a “sliding window” search procedure (Lane et al. 2012;
Mihoub et al. 2012) to identify relevant periods of climate windows. Original climate

data were obtained for Okotoks, Alberta, from the Environment Canada weather archive
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(http://climate.weather.gc.ca/) (Lane et al. 2012; Dobson et al. 2016). The full list of
climate variables we examined include mean annual temperature (TempAnn), mean temper-
ature during the annual emergence from hibernation, from April 12 to May 3 (TempAM1),
mean temperature from April 26 to May 7 (TempAM?2), mean temperature after most litters
were weaned, from June 28 to July 18 (TempJJ), mean annual rainfall (RainAnn), mean rain-
fall after most litters were weaned, from June 28 to July 11 (RainJJ), mean annual snowfall
(SnowAnn), mean annual precipitation (Precip), mean annual snow pack (PackAnn), mean
annual daily snow pack from December 5 to December 15 (PackD), mean daily snow as
ground squirrels were emerging from hibernation and starting the active season, from April
13 to April 28 (Snow before), mean daily snow after the end of the annual active season
when all ground squirrels were hibernating, from November 26 to December 10 (Snow after),

mean annual daily snowfall during the following year (Snow following year) (Figure 2.4).

2.3 Fitting State Space Models

Let N; be the estimates of the true (hidden) population size at time ¢ , and Y; be
the observed population size at time t. To construct the SSM, we divided the population
of Columbian ground squirrels into p + 1 = 10 age classes: N; = (o, ..., 2p)", where
x; represents the number of squirrels in the population within the ¢-th age class in year t.
For example, o is the number in the population that are age 0, and x,; is the number of
population of age p = 9 and older at year . The last class is an absorbing class, since few
ground squirrels survive beyond 9 years of age (maximum age = 14 years).

Then our state space model has the following two time series:

N; = ®N;_ 1 + T'uy + wy (state equation)

Y, =N, +v, (observation equation)
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Here ® is a (p+ 1) x (p + 1) unknown transition matrix composed of birth rates and
survival rates (equation 2.1), and I' is an unknown (p+ 1) x ¢ coefficient matrix for the ¢ x 1
weather variable vector u;. Here w; are (p + 1)-dimensional independent and identically
distributed, zero-mean normal vectors with covariance matrix @) (we write this as w; ~yq
Npi1y(0,Q)). Y, is a (p + 1)-dimensional observed data vector. The additive observation
noise is vy ~iiq Nip41)(0, R), where R is the covariance matrix of v¢. While in general it is
possible to include input variables in the observation equation, we will not discuss that case
since that does not apply to the study in question. We also assume that the process starts
with a normal vector Ny, such that Ng ~ N¢,11)(teg, 20).

Since we have p + 1 age classes in our model, the transition matrix ® has the following

form:

0 by by bp—2 bp—l bp
10 0 0 0 0 0
0 0 0 0 0
® = P (2.1)
0 0 0 - @po1po2 0 0
0 0 0 - 0 S

where b; is a female birth function for the i-th age class and ¢;; is a female survival
function from j-th age class to i-th age class. The diagonals of ® for the first p classes are
0 since we have single age groups and the post-breeding census is conducted yearly. The
(p + 1)-th diagonal (¢,,) is non-zero since we have multiple ages (> 9 for CGS data) and
within-class age transitions can occur.

A primary goal of the state-space model is to estimate and forecast the underlying
unobserved, hidden population size N;, given the observed data Y1, = {Y1,Ys,... Y}

When s < t, the problem is called forecasting or prediction. When s = ¢, the problem is

11



called filtering. When s > t, the problem is called smoothing (Shumway and Stoffer 2017).
If there are no weather variables, then the population growth rate can be estimated directly
by finding the principal eigenvalue of ®. If weather variables u; are included in the model,
then we can approximate the growth rate by studying the rate of change in the estimated
signal Nj.

The Kalman filter approach can be used to obtain the filtering and forecasting equations.

We will use the notation and description given in Shumway and Stoffer (2017). Let

N} = E(Ny| Y1)

Py = B{(N; — Nj)(N, — N;)'}

be the conditional mean and covariance of the state process.
For the state space model specified in (state equation) and (observation equation), with
initial conditions N§ = pp and B = %, for t = 1,2,...,n, we can show that the mean and

covariance can be iteratively updated as

Ni™t = ON!IT] 4 Ty, (2.2)
Pt =oP e +Q (2.3)
with
Ny = N; '+ K (Y, - NY)
Pl =1 - k)P
where

Kt — Pttfl[Pttfl _i_R]fl

12



is the so-called Kalman gain.
Prediction for ¢ > n is obtained using (2.2) and (2.3) with conditions NI and P[.

Moreover, we have the following prediction errors (innovations)

€& =Yy — E(Yt’Ylst—l) =Y;— Ni_l

and the corresponding variance-covariance matrices

¥, = var(e) = var[N; = N Y+ v ] = P+ R for t=1,....n.

This assumes that the model parameters are known and if so, then we can use the
ksmoothl function of the package astsa to estimate N using the Kalman filter. In real
applications, however, the model parameters are unknown and need to be estimated. When
the parameters are unknown, then we can use the maximum likelihood estimation to estimate
the parameters which are then plugged into the Kalman filter routine. For this optimization
problem we use the method of Byrd et al. (1995) which uses box constraints where each
variable can be given a lower and /or upper bound along with the quasi-Newton method. The
quasi-Newton method is an optimization method that uses the first derivatives (gradients)
and approximated second derivatives (Hessian matrix) of the function being optimized. This
is implemented in the method "L-BFGS-B” of the R function optim. Initial values are
obtained using the EM algorithm, which performs maximum likelihood estimation in the

presence of latent variables (Shumway and Stoffer 2017). The details are given below.

13



2.4 Maximum Likelihood Estimation

Let © be the vector of all unknown parameters. That is, © contains the initial mean gy
and covariance matrix Yy, the transition matrix ®, and the state and observation covariance
matrices () and R, and the input coefficient matrix I'.

Under the assumptions No ~ Npy1(tg, 20), Wi ~iid Np41(0,Q)), and vy ~;i0 Npy1(0, R),
we used the method of maximum likelihood to estimate ©. Under the Gaussian distribution

assumption, the negative log likelihood function Ly (©) to be minimized is given by

n

Cn Ly (©) = % S In [5(0)] + % 3 6 (0)5:(0) e (O)

t=1

where ¢, =Y, — Nf_l and X; = Pf_1 + R.
To accomplish maximum likelihood estimation, we can use a Newton-Raphson algo-

rithm:

Step 1 : Select initial values for the parameter, say, ©(®). We will use the EM algorithm to

estimate ©©),

Step 2 : Run the Kalman filter using the initial parameter values, ©(°), to obtain a set of

innovations and error covariances, {e§°) :t=1,---,n} and {ES’) t=1,---,n}

Step 3 : Run one iteration of a Newton-Raphson procedure with — In Ly () as the criterion

function (i.e., the function to be minimized), to obtain a new set of estimates ©()

Step 4 : At iteration j, (j = 1,2,---), repeat Step 2 using OU) in place of U~ to obtain

a new set of innovation values {eﬁj) :t=1,---,n} and {Zl(fj) t=1,---,n}

Step 5 : Repeat Step 3 to obtain a new estimate ©U*YD . Stop when the values of @UFY
differ from O, or when Ly (©U+Y) differ from Ly (0\W), by some predetermined,

small amount.
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2.5 Results

We first considered the state space model without climate effects on the population. In

this case, the input vector u; in the state equation is zero. So, the state space model becomes

Nt = (I)Nt,1 + Wt (24)

Yt = Nt + vy (25)
Then, using the estimated ®, we obtained Ny = (14, -+ ,z10,) by the equation
Nt - (I)Nt_l (26)

We then used the initial population number in 1992 and projected the population forward for
each age class using the estimated ®. The overall estimated annual population n; = Zgl Ty
and growth rates are shown as solid blue curves in the Figure 2.5. Depicting the population
growth as a monotonic increase, the blue curves clearly fail to detect annual population
fluctuations. In particular, a significant decrease of the population between the years 2001
and 2003 is not reflected in the blue curves. So this observation suggests that we may need to
include other variables such as climates, which may influence the survival and reproduction
probabilities of the population.

Thus, we included climate variables in the state space model. To simplify our estimation
process and reduce the number of parameters we need to estimate, we considered two cases

with simple climate effect scenarios:
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Figure 2.5: Left: The population trajectory with
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Case 1: Climate effects are the same on all ages. If the non-zero input vector u, represents

all 13 weather variables at year t, then the input coefficient matrix I' has the form

where ¢ = (¢1,¢9, -+, C13).
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Case 2: Climate effects on age 0 is different from the rest of the age groups, but it is uniform

for all over age 0. In this case, the input coefficient matrix I" has the form

10x13

where ¢ = (¢1,¢9,- -+ ,c13) and d = (dy, ds, - - -, dy3).

Now our state space model becomes as follows.

Nt = ®Nt—l —|— Fut + Wt

Y, =N, +v,

Using the initial 1992 population, the measured climate variables, and the estimated ® and
I' in each case, we projected the population forward for each age group. The aggregate total
annual population trajectories and growth rates are shown in Figure 2.6. The solid blue
curves were drawn with no climate vectors (equation 2.6). On the other hand, the red curves

shown were obtained by using the equation that incorporated annual climate vectors

Nt = (I)Nt—l + Fut (27)

We see that the blue curves miss the fluctuations of the actual population given by
the black line. Also the blue curves on the left-hand panels project that the population is

increasing at a much faster rate than the actual population. The red curves indicate that
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environmental conditions have a large impact on population dynamics. We see that the
model with the assumption of the uniform climate effects captures the actual population
trajectory best. This could be due to the numerical efficiency of the estimation of a uniform
effect. The population growth rate A from the model was calculated at a mean of 1.13,

indicating that the population was projected to increase at 13% per year.

2.6 Discussion

All in all, our results serve as a proof of concept that the stochastic components of CGS
population dynamics are better captured when including climate effects. The state-space
model includes both process stochasticity and observation errors. If, instead of using only
the initial 1992 population, we only made one year ahead forecasts, then we can observe that
the state space model gives very accurate forecasts. Figure 2.7 shows one-step ahead annual
population predictions using the uniform weather effect model. Few of the observed annual
populations are outside error bounds of the predicted populations. This result motivates
further research to validate the accuracy of the state estimates, because the state estimates
by incorporating process and observation errors can be a closer approximation of the true
population dynamics than the observed data. Our study shows that including climate vari-
ables as covariates can lead to a better understanding of population dynamics. However, we
still need to identify which climate variables are most important to population growth. Also,
the analysis was done with simplified age-class segmentation, which may not be the most
appropriate approach for describing the population. For example, rather than ages, body
mass might better explain the probabilities of survival and reproduction. In fact, as noted by
Ruback et al. (2016), for Columbian ground squirrel, it is the combination of age and body
condition that affects the probability of successful reproduction. The effect of mass is also

apparent in Figure 2.3. Two squirrels in the same age class may or may not reproduce in a
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given year, depending on their body condition. Thus, further research is needed to identify

approaches that include such individual-level effects on population dynamics.

100 150
| |

Squirrel Population

50

Figure 2.7: The observed annual populations y; are shown as open dots. Based on the

uniform climate effects model, the predicted annual populations n; are shown as a red line
with +2+/p!~! error bounds as dashed lines in the 95% confidence level.
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Chapter 3

Stochastic Integral Projection Models

3.1 Introduction

Climate change is an important influence on the population dynamics of plant or animal
species. Understanding and predicting the ecological effects of climate change on plant
and animal species has thus become a central objective in ecology (e.g. Simmonds and
Coulson 2015; Dalgleish et al. 2011). Study of the effects of environmental factors on
populations is especially important for ecosystem conservation and management strategies
due to potential chain effects among species within the ecosystem (Fortin et al. 2005). Many
studies have identified the statistical association between climate or a specific climatic factor
and demographic variables that contribute to population growth (Post et al. 1997; Post and
Forchhammer 2002; Ellis and Post 2004; Parmesan 2006; and Ozgul et al. 2010).

In particular, Parmesan (2006) found a general pattern of earlier timing of reproduction
in response to climate warming. Dalgleish et al. (2011) modeled effects of precipitation and
temperature on all vital rates of three sage-brush steppe plants. Simmonds and Coulson
(2015) analyzed how changes in a large-scale climate index, the North Atlantic Oscillation
(NAO), might influence population dynamics and phenotypic characters in a population of
Soay sheep on St. Kilda in the U.K.

Our objective was to examine how the vital rates of individuals responded to climate
and how these vital rates translate into population dynamics. Vital rates are the patterns of
survival, growth, reproduction and recruitment that occur in a dynamic biotic population.

We used a stochastic IPM to link yearly variability in climate to interannual fluctuations
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of vital rates, and finally to discern the influences of changes in vital rates on changes in
population size. We estimated the importance of vital rates based on a continuous state
variable, log body mass. We examined the influences of climatic variables on vital rates with
mixed-effects regression models, and then computed their relative influences on population
growth. We applied our examination to a long term (27-year) dataset on female Columbian
ground squirrels, Urocitellus columbianus.

The ground squirrels were an excellent model organism for us to evaluate climatic in-
fluences on populations. They are hibernating sciurid rodents that live in mountain envi-
ronments, and have a very short active season each year. The lifecycle is very well known
(e.g., Dobson and Kjelgaard 1985a; Dobson and Murie 1987; Dobson 1988; Dobson et al.
1999) and changes in population size have been studied using matrix and other traditional
methods (e.g. Dobson and Kjelgaard 1985b; Dobson 1995; Dobson and Oli 2001). A single
reproductive period occurs during their short active season, and adult females support their
small litter of young from a combination of stored energy and daily foraging (Dobson et al.
1992; Broussard et al. 2003, 2005; Rubach et al. 2016). Spring and summer climatic condi-
tions are known to influence reproduction and survival of the ground squirrels (Lane et al.
2012; Dobson et al. 2016). The influence of the changing climate in their Rocky Mountain
environments on the dynamics of their populations, however, is not well examined. Thus,

the species provides a good model for such an evaluation using an Integral Projection Model

(IPM) approach.

3.2 Stochastic integral projection models

An IPM begins with a kernel expression, K(z, z;w;), which in our case describes all
possible transitions from body mass z at time ¢ to body mass 2z’ at time ¢+ 1, consists of two

components, a survival-growth component and a fecundity component. The kernel is given
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K, z;wy) = §(Z§Wt)G(Z/>Z§Wt) + ?b(z§Wt)b(Z§Wt)pr01(ZI7Z;Wtz
Survival and Gr(;;th component P Fecundity ;(:mponent F

where
e S(z;wy): Survival probability function
e G(Z,z;w;): Growth distribution function
e py(z; wy): Probability of reproduction function
e b(z;wy): The expected litter size per individual for those that reproduce

e p,: Probability of successful recruitment for a juvenile (from the year of weaning to

the next year )
o (1(Z, z;wy): Mass distribution of new recruits at age 1
e w;: A vector of climate variables

Then, the stochastic integral projection model for the number of individuals of size 2’

at time t 4+ 1 is given by
U
n(z,t+1)= / K(Z, z;wy)n(z,t) dz
L

The integral is evaluated over all possible masses, [L, U] where L is 0.9 x the minimum

mass, U is 1.1 X the maximum mass.

3.3 Regressions of vital rate functions with climate

In regressions, identifying relevant predictors for response variables is important to

enhance the performance of the model. In our case, one possible way to select variables is to
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examine the correlations between vital rate parameter and the full list of climate variables.
Then we can select climate variables that are correlated with a vital rate parameter with P-
value below the chosen significance level. However, this method can be considered arbitrary
because selected variables can be very different depending on the chosen level of significance.
Another variable selection method is to apply subset selection technique. However, the
method suffers from computational complexity when the number of predictors is large, and
the high variability with small changes in the data because predictors are either retained or
removed (Tibshirani, 1996). However, the LASSO continuously shrinks coefficient estimates
towards zero, it provides more stable variable selection procedure. Also the LASSO sets some
coefficients exactly equal to zero, thus it performs variable selection and therefore provides
more interpretable model.

For this reason, we used the method of LASSO (Tibshirani, 1996) to find the relevant
weather variables for each vital rate function (survival, growth, reproduction, litter size, and
recruit mass). The LASSO coefficients Bf are found by minimizing the ¢;-penalized least

squares objective function

S (v 50— Y Bwy) #2151 =RSs 44D 15 (31)
j=1 j=1 j=1

i=1
——
l1 —penalty

The tuning parameter A controls the relative impact of the two terms RSS (residual sum of
squares) and ¢;-penalty on the regression coefficient estimates. The value of the tuning pa-
rameter A was chosen using a 10-fold cross-validation to compare the predictive performance
of candidate models. Because the /;-penalty has singularity points, there was a positive
probability that some of the regression coefficients would shrink to exactly zero. To select
the tuning parameter A\, we used cv.glmnet () in R (R Core Team 2016) in a 10-fold cross-

validation. Once the value of A\ which gives the smallest cross-validation error was chosen,
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we performed variable selection using glmnet () to obtain a list of predictors for each vital
rate function.

We modeled vital rate functions with random effects describing yearly variation in the
intercepts and fixed effects of body mass, and the LASSO-selected weather variables using
lmer () and glmer () in R (R Core Team 2016).

The survival function, which describes survival probability of individuals from time ¢ to

t+1, s(z,wy), was modeled using logistic regression

logit[s(z, w)| = Boy + 12 + BeaWie - + BeiWiz

where z is the log body mass at time ¢, By, is a random, year-specific intercept, 4 is a
common slope for mass, w; is a vector of climate variables, 3., is a common slope for the
1th climate variable.

The growth function describes a distribution of changes in body mass among surviving
individuals from time ¢t to ¢t + 1. The expected body mass at time ¢ 4+ 1 for a given body

mass at time ¢ was modeled as a linear regression

Po(2,Wi) = Pot + P12+ BeaWie -+ BeiWis + €4

where p, is expected body mass at time ¢ + 1, and By, 51, B.; and w; are as described
above. The error term, ;, was assumed to be normally distributed with a mean zero and
a constant variance. Then, we modeled the growth function using the normal probability

density function

1 (2 = pg(z, wy))?
o) =~ - )
V2mo, 207

with (2, w;) given above and a constant variance o,.
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The reproduction function, p,(z; w;), which denotes the probability that an individual
reproduces, was modeled in the same way as the survival function.

The recruit mass distribution, C;(2’, z; w;), described a body mass distribution of one-
year olds which enter the population at time ¢ + 1, given a mother body mass z at time t.
The recruit mass distribution was modeled in the same way as the growth function.

To model the litter size function, b(z;w;), which describes the expected number of

female offspring, given a mom body mass z at time ¢, we used a Poisson distribution

b(Z' Wt) — eﬁo,t+ﬂ12+5c,1wl,t---+5c,¢Wi,z
)

The probability of successful recruitment, p,., can be estimated by the ratio of the number
of surviving female offspring to the number of weaned female offspring. Since we didn’t have
the number of surviving female offspring in the data, we estimated p, by dividing the total
number of juveniles that survived to emergence from their first hibernation by the total
number of litters at weaning (assuming male and female offspring have the same probability
of survival).

Finally, we constructed a set of 26 yearly kernels using the parameters obtained from
the models. Next we projected the population one step forward using a kernel selected at
random, of which step was iterated 50, 000 times to calculate growth rate (See equation (3.2)

or (3.3)).

3.4 Stochastic growth rate

The stochastic growth rate of the population, log Ag, is defined by (Caswell 2001, Tul-
japurkar and Haridas 2006)
1
log Ag = lim —log N(1), (3.2)
t—oo t
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where N (t) is the total population size at time ¢ and Ag corresponds to the dominant eigen-
value of a time-invariant projection kernel. Ellner and Rees (2007) showed that the stochastic

growth rate is equal to the average annual growth rate,

log \s = Ellog(N(t +1)/N(#))] (3.3)

Based on the equation (3.3), the stochastic growth rate, logAs, was estimated as

(Caswell 2001, Ellner and Rees 2006)

S

1

lo/gTS:T Tt
t

Il
o

where 7, = log(N(t + 1)/N(t)) and T" = 50,000. We also calculated an approximate 95%

confidence interval on log A\g using the formula

V(r)

log Ay =+ 1.96

where /V(r;)/T is its approximate standard error and V(r;) is the variance of {r;}/ -
(Caswell 2001; Ellner et al. 2016).

3.5 Perturbation analysis

Following the general procedures from Rees and Ellner (2009) (also, see Ellner, Childs,
and Rees 2016), a perturbation analysis for the stochastic IPM was carried out at two
different levels: the projection kernel and parameters that define the vital rate functions.
From each level of perturbations, we calculated the elasticity, the fractional change in the
growth rate A, relative to the fractional change in the quantity being perturbed (Ellner et
al. 2016). By definition, the elasticity is obtained by taking the partial derivative of log A,

with respect to a specific perturbation (Ellner et al. 2016).
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The basic formula for the general perturbation of yearly kernels K; to K; + €C}, where

Cy = C(7, z,w,) is a sequence of perturbation kernels, is given by

8 log )\S _ i aAS _ E |: <Ut+17 tht> i| (34)
Oe Ag Oe (Vpy1, Kywy)
where angled bracket is the inner product (f,g) = [, f X x)dz and v, and w, are the

sequences of reproductive values and the time-varying population structure. Roughly speak-
ing, reproductive value v; is the relative, expected total number of descendants that will
ever be produced by an individual of size z at time ¢t. w; represents the relative population

structure at time ¢ (Caswell 2001). w; and v; are calculated as follows:

lIJH_l = Ktwt = / Kt(Z,, Z)'wt(Z) dZ, W1 = ﬁJtH// 'II)H_l(Z) dZ
Z Z

V1 = 0 K41 = / v (VK1 (2, 2)d2, v = 17,51// 01(2)dz
7z 7z

In practice, to use the formula (3.4), we generate the sequences {w;}_, and {v;}_, with
arbitrary choices of wy and vy. Then, these sequences are used to evaluate the sensitivity
or elasticity for any perturbation by using a time average from ¢t = k tot = T — k to
approximate the expectation for some large k.

To find the elasticity of A\g to kernel value K (z(, 2o), since we have
Ki(7,2) = Ky(2', 2) + €6 ., (2, 2) Ki (2, 20),

where 0. ., represents the Dirac delta function, the perturbation kernel becomes C; =

021,20 (2', 2) Ki(2g, 20). Then, by the formula (3.4), the elasticity is given by

Jlog As _E Ut+1(26)wt(20)Kt(Z6aZO)]

S(ZO’ZO) dlog Ki(zj, z0) B (U1, Kywy)
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For the elasticity to parameters, we found the perturbation kernel C; by using the chain

rule
c 0K, 0f 09;
YT0F 06; O¢

where f is a vital rate function and 6; is a parameter in f.
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3.6 Results

3.6.1 Growth rate and parameter perturbation

The final vital rate models chosen by the Lasso procedure are shown in Tables 3.1 - 3.3.

Vital rates Function Parameter (SE) estimates
Survival  logit[S(z; wy)|=PFo+ Bs12 +0s2 TempAnn+f; 5 Bos = 0.728(2.205)
TempAM1 +f; 4 TempAM2 + 0, 5 TempJJ+5;6 Bs1 = 0.256(0.287)

RainAnn+f; 7 RainJJ 4+, Snow before +8,9 Snow ;5 = —0.276(0.167)
after +f; 10 Snow following year 43, 11 Precip+/5; 12 Bs,3 = 0.14(0.10)
PackD Bs.a = 0.24(0.049)
Bes = —0.176(0.063)
By = 0.764(0.661)
Bs7 = —0.172(0.084)
B.s = 0.211(0.167)
Bso = —0.058(0.239)
Bs10 = —0.257(0.188)
Bs11 = 0.109(0.545)
Bs12 = 0.01(0.023)
Growth  pg(z, w)=PFo++0y12 + Byo TempAnn +f, Lo+ = 4.688(0.13)
TempAM1 +f, 4 TempAM2 +5, 5 TempJJ +5,¢ Bg1 = 0.243(0.017)
RainAnn +f, 7 RainJJ 43,5 SnowAnn 44,9 Snow Bg2 = —0.027(0.01)
before + 419 Snow after +£, 11 Snow following year Bg.3 = 0.01(0.006)
+ 8412 Precip +0,,13 PackAnn +0, 14 PackD Bg.4 = 0.007(0.003)
By5 = —0.007(0.004)
By = 0.052(0.04)
o, =0.1124 B,z = —0.008(0.005)
B,s = 0.193(0.089)
Bye = 0.017(0.01)
Bg.10 = 0.032(0.019)
By11 = —0.03(0.012)
By12 = —0.039(0.03)
By13 = —0.002(0.003)
By14 = —0.003(0.001)

Table 3.1: Estimated survival and growth functions using linear mixed models. Here, z is
log(body mass).
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Vital rat Functi .
1tal rates unction Parameter (SE) estimates

Reproduction logit[py(z; w:)]|=PFo++ L1z + 02 TempAnn + 53 Bo+ = —50.727(3.524)
TempAM2 +4, 4 RainAnn+/f;, 5 RainJJ +/ 6 Snow B = 7.654(0.538)
following year +3, 7 Precip+ s PackAnn +/, 9 PackD 3,2 = 0.486(0.151)

Bys = 0.115(0.047)
B4 = 0.818(0.676)
Bys = —0.179(0.072)
Bre = 0.302(0.182)
Bz = 1.101(0.524)
Bys = 0.108(0.046)
By = —0.021(0.021)

litter log(b(%; wy))=Pot+0i1% + B2 TempAnn +0; 5 Bot = —7.318(1.903)
size RainAnn + ;4 Snow after +/0;5 Precip +/,6 Bi1 = 1.052(0.298)
PackAnn B2 = 0.183(0.061)

B3 = 0.202(0.228)
B4 = —0.0997(0.081)
Brs = 0.076(0.185)
B16 = 0.046(0.019)

Table 3.2: Estimated reproduction and litter size functions using linear mixed models. Here,
z is log(body mass).

Using the equation (3.3), we obtained the growth rate

log Ag = 0.0784,

with 95% confidence interval (0.0769,0.0799). This value indicated that the population
slowly increased in the long run.

We examined how the growth rate might change under different circumstances by cal-
culating elasticities, the fractional change of Ag to a perturbation of a specific parameter

(Tables 3.4 - 3.7).
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ital rat Functi i
Vital rates unetion Parameter (SE) estimates

Recruitment pr = 0.42797

recruit mass  fi,.(2, wy)=Bo ¢+ 612 + B2 TempAnn +5,.3 TempAM1 Sy, = 4.453(0.321)
+05,4 TempAM2 +5, 5 TempJJ 403, RainAnn +0, 7 Br1 = 0.229(0.049)

RainJJ 43, s SnowAnn +/, 9 Snow before + . 19 Br2 = —0.099(0.014)
Snow after 40,11 Snow following year 40,12 Precip Br3 = 0.032(0.009)
+05,.13 PackAnn +4, 14 PackD Br.a = 0.019(0.004)

Br5 = —0.011(0.005)
Brs = 0.153(0.053)
o, =0.1104 Br7 = —0.017(0.006)
Brs = 0.183(0.114)
B0 = 0.017(0.013)
Br10 = 0.048(0.025)
Br11 = —0.024(0.016)
Br12 = —0.11(0.039)
B.13 = —0.005(0.004)
B14 = —0.003(0.002)

Table 3.3: The probability of successful recruitment, and estimated recruit mass function
using linear mixed models. Here, 2z is log(body mass).

We found that an increased mass slope (rate of growth) had consistent positive effects
on the growth rate Ag in all vital rate functions (Figure 3.1). The growth rate Ag was more
sensitive to the change of the mass slope in growth than in recruit mass. It means that the
female adults’ growth would affect population size more than how big one-year-olds were as
they were recruited to the population. Also, the growth rate Ag was more sensitive to the

change of mass slope in reproduction than in survival.
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Vital Rate Parameter €s,i €, €3,
Survival Intercept 0.1377  0.1387  —0.0009

Mass 0.2884 0.2884

TempAnn —0.2445 —0.2445
TempAM1 0.1558  0.1558
TempAM?2 0.3058  0.3058

TempJJ —0.5728 —0.5728
RainAnn 0.1433 0.1433

RainlJJ —0.0696 —0.0696
Snow before 0.0451 0.0451

Snow after —0.0074 —0.0074

Snow following year —0.0485 —0.0485
Precip 0.0302  0.0302
PackD 0.0136  0.0136

Table 3.4: Stochastic elasticities for parameters in survival function; the eg; are the stochas-

"

tic elasticities, €, are the stochastic elasticities to the mean, and eg,; are the stochastic

elasticities to the standard deviation

Vital Rate Parameter €s.i €. €3,
Growth Intercept 11.6399 11.6394 0.0005
Mass 3.5729 3.5729
TempAnn —0.3239 —0.3239
TempAM1 0.1566 0.1566
TempAM2 0.1305 0.1305
TempJJ —0.3023 —0.3023
RainAnn 0.1282 0.1282
RainJJ —0.0485 —0.0485
SnowAnn 0.1864 0.1864
Snow before 0.0330 0.0330
Snow after 0.0347 0.0347
Snow following year —0.0741 —0.0741
Precip —0.1421 —-0.1421
PackAnn —0.0115 —0.0115
PackD —0.0553 —0.0553
standard deviation  0.1444 0.1444

Table 3.5: Stochastic elasticities for parameters in growth function; the eg; are the stochas-
tic elasticities, e, are the stochastic elasticities to the mean, and eg,; are the stochastic
elasticities to the standard deviation
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. M o
Vital Rate Parameter €s.i €s €3,

Reproduction Intercept —24178 —2.4178 —0.000073202
Mass 2.1769 2.1769
TempAnn 0.1093 0.1093
TempAM?2 0.0394  0.0394
RainAnn 0.0390 0.0390
RainJJ —0.0204 —0.0204
Snow following year  0.0128 0.0128
Precip 0.0771 0.0771
PackAnn 0.0173 0.0173
PackD —0.0064 —0.0064
litter size Intercept —1.6677 —1.6677
Mass 1.4574 1.4574
TempAnn 0.2039 0.2039
RainAnn 0.0479 0.0479
Snow after —0.0135 —0.0135
Precip 0.0262 0.0262
PackAnn 0.0367  0.0367

Table 3.6: Stochastic elasticities for parameters in reproduction and litter size functions; the
es,i are the stochastic elasticities, € ; are the stochastic elasticities to the mean, and eg; are
the stochastic elasticities to the standard deviation

35729

2.1769

Elasticity

14574

1.0168

0.2884

Litter.number Recruit size
Mass of Vital Rate Functions

Figure 3.1: Elasticities of Ag to the mass slope in vital rate functions
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. 1 a
Vital Rate Parameter €s,i €5 €3,

Recruit Mass Intercept 3.2478 3.2478
Mass 1.0168 1.0168
TempAnn —0.3215 —0.3215
TempAM1 0.1389 0.1389
TempAM?2 0.0755 0.0755
TempJJ —0.1332 —0.1332
RainAnn 0.1127  0.1127
RainJJ —0.0311 —0.0311
SnowAnn 0.0604 0.0604
Snow before 0.0130 0.0130
Snow after 0.0163 0.0163
Snow following year —0.0171 —0.0171
Precip —0.1328 —0.1328
PackAnn —0.0133 —0.0133
PackD —0.0170 —0.0170

standard deviation 0.5053 0.5053

Table 3.7: Stochastic elasticities for parameters in recruit mass function; the eg; are the
stochastic elasticities, e’éﬂ- are the stochastic elasticities to the mean, and eg; are the stochas-
tic elasticities to the standard deviation

In the survival function, parameters related to temperature were more important than
the ones related to snows or rains to Ag (Figure 3.2). In particular, parameter increase of
mean temperature from June 28 to July 18 was most influential to the growth rate. An
increase of mean temperate from April 26 to May 7 increased the survival probability of
individuals, but an increase of mean temperature from June 28 to July 18 had a negative
effect on the survival probability of individuals. Mean annual daily snow pack from December
5 to December 15 and mean daily snow after the end of the annual active season from
November 26 to December 10 showed the least impact on growth rate.

In the growth function, on the other hand, changes of parameters in the mean annual
temperature and the mean temperature from June 28 to July 18 were most influential to
the growth rate Ag (Figure 3.3). Increases of mean temperature from April 12 to May 3

and mean temperature from April 26 to May 6 increased the expected size of all individuals
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Figure 3.2: Elasticities of A\g to the weather parameters in the survival function

after growing for one year, but increases of mean annual temperature and mean temperature
from June 28 to July 18 had a negative effect on the growths of all individuals. Similarly,
parameters for rains or snows showed varied effects. For example, increases of snowfall before
and after the active season had a positive effect on the growth of individuals, but increase
of mean rainfall from June 28 to July 11 decreased the expected size of individuals after
growing for one year.

In the reproduction function, change in TempAnn parameter affected the growth rate
As the most (Figure 3.4). Also each parameter for Precipitation, TempAM2, RainAnn,
and RainJJ demonstrated a significant effect although RainJJ had a negative effect on the
reproduction probability of female adults. Parameters related to temperature and rain were
more important to the growth rate \g than the parameters related to snow.

In the recruit mass function, TempAnn and TempJJ parameters were most important
on \g (Figure 3.5). Also increases in TempAnn and TempJJ reduced the expected body

mass of one-year olds, which enter the population as recruitments in the next year. On

36



0.1864
0.1566
01282 01305
01
00347 0033

00" o015 ]
> R -0.0485
& -0.0741
i

-01

-0.1421
-02
03 -0.3023
-0.3239
Packnn  PackD  Prep  RainAn  Raini  SnowA  SnowB  SnowF  SnowAnn TempAM! TempAll2 TempAmn  Tempd)

‘Weather Variables in Growth

Figure 3.3: Elasticities of A\g to the weather parameters in the growth function

0.1093
008 0.0771
z
24
]
8o 0.039 00394
00173
0.0128
000 L D L
-0.0064
-0.0204
PackAnn PackD Precip RainAnn RainJJ Snow A Snow B Snow F SnowAnn  TempAM1 TempAM2 TempAnn  TemplJ

Weather Variables in Reproduction

Figure 3.4: Elasticities of Ag to the weather parameters in the reproduction function

the other hand, increased TempAMI1 and TempAM2 had a positive effect on the masses of

one-year old recruits.

In the litter size function, annual temperature (TempAnn parameter) showed the strongest

effect on population growth rate Ag (Figure 3.6).
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3.6.2 Kernel perturbation

The kernel-level perturbation analysis showed that the survival-growth component of

the kernel contributed 79.26% of the elasticity (Figure 3.7A) while the fecundity component
accounted for the rest of the elasticity (Figure 3.7B).
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Figure 3.7: Elasticity functions from kernel perturbation

This result showed that the survival-growth component had the major effect on the
population growth rate. We observed that a 1% increase of the survival-growth component
of the kernel at the point with transitions from mass 429 grams (=~ 6.06 in log-scale) to 450
grams (= 6.11 in log-scale) resulted in 6.01% increase of the growth rate (Figure 3.7A).

On the other hand, a 1% increase of the fecundity component of the kernel at the point
(6.09, 5.56) in log-scale, which corresponded with the mother’s mass (= 439 grams) and its
offspring’s mass (& 260 grams) respectively, showed the greatest effect, resulting in 2.30%
increase of the growth rate. In other words, A; was most sensitive when offspring, born from
the mothers with a mass of 439 grams, grew to be 260 grams next year and recruited to the

population.

3.7 Discussion

We considered how the population of Columbian ground squirrels responded to climate
changes with stochastic population models. Using the Lasso, we have determined a list of
weather variables to be included to each vital rate model and further explored climate in-

fluences on population dynamics. To date, we are not aware of any work that combined
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constrained estimation for model selection with integral projection models. Our study un-
covered climate variables that affected vital rates differentially and increased the efficiency
of the integral projection model.

Our study found that the population was slowly increasing in the long run with the
growth rate Ay = 1.08. Climate effects were significant factors on the population of Columbian
ground squirrels, and the growth rate A\, was most sensitive to the changes in temperature
parameters (Figure 3.8). Warm summer temperatures had a negative influence on population
growth rate via their effects on individual growth and particularly survival. Temperature in
spring, however, had lesser but positive influences on growth and particularly survival. These
patterns accord well with previous results for this population (Lane et al. 2011; Dobson et
al. 2016). As one might expect, this produced a negative influence of annual temperature on
growth and survival, but also a positive influence on reproduction. The latter result likely
results from the advantage of beneficial spring conditions associated with warmer weather
(Lane et al. 2011).

We also observed that transitions from body mass about 446 grams (~ 6.1 in log-scale)
had the largest effect on the growth rate As. These individuals weighed from 403 grams
(= 6.0 in log-scale) to 469 grams (= 6.15 in log-scale), and are the adult females in prime
reproductive condition (Rubach et al. 2016). As well, younger females that weigh more than
260 grams may breed in years with early spring conditions, and may have an influence on
population growth (Dobson and Murie 1987; Rubach et al. 2016).

The relative contributions from survival-growth and reproduction for kernel perturba-
tion were in agreement with those we calculated for parameter-level perturbations. From
the parameter-level perturbation, we found that the sum of the elasticities to parameters in
the survival and growth functions was about 77%, which was quite close with the result we

obtained from the kernel perturbation.
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Our vital rate functions had the form

fe1 = Bog + P12+ Beabip - -+ Bejlie + e, (3.5)

where p;11 could represent the expected log body mass or the logit of survival probabil-
ity for individuals at time ¢ 4+ 1. In most literatures on IPMs, parametric models like the
equation (3.5) have been used to describe vital rates functions: linear or generalized linear
models in deterministic IPMs, and linear mixed effects models, including our study, in the
stochastic IPMs. However, parametric models are restrictive with some of the model assump-
tions although they are easy to use and provide interpretable parameter estimation. Fully
nonparametric models are flexible, but do not provide interpretable coefficients. To avoid
some drawbacks of parametric or nonparametric models, we can use semiparametric models
such as single-index models, which achieve more flexibility than fully parametric models,
and greater estimation precision than nonparametric models. We are interested in examin-
ing whether the same result persists between the parametric model and the nonparametric

model.
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Chapter 4

Semi-Parametric Integral Projection Models

4.1 Introduction

The majority of integral projection models (IPMs) in the literature used parametric
models to describe the demographic processes. Linear or generalized linear models in IPMs
have been commonly used. Although these simpler structures make it easier to obtain esti-
mates of effects of variables on vital rates of population dynamics, they lack the flexibility
to capture nonlinearities that are common in relationships of vital rates and covariates in
population dynamics. For instance, we often have threshold effects that cannot be cap-
tured by linear regression coefficients. Nonlinearities may often be unknown and have to
be nonparametrically estimated from the data. At the same time, we want to be able to
characterize the effect of variables on vital rates. The ability to fit IPMs that combine the
flexibility of nonparametric function estimation and the ability to obtain simple estimates
of effects of variables on vital rates is of paramount importance in ecological studies. More-
over, such flexibility in estimating parameters particularly in the presence of outliers as well
as departures or errors from model assumptions would be a big step forward in ecological
modeling.

Thus, our goal in the present study is to explore the use of more flexible, semi-parametric
models to extend the IPM approach. Considering that there is no completely correct model
for a given data set, we investigated different models, some of which may be better than
others as tools for evaluating the validity of different results obtained. The responses Y;

are assumed to follow an exponential family distribution with E(Y;) = p;. Survival and

43



reproduction are assumed to follow a binomial distribution, the litter size is assumed to
follow a Poisson distribution, and size variables are assumed to follow Gaussian distributions.
We considered the following two semi-parametric generalized model formulations to model

vital rate functions:

G (i) = f(zi) + Brwir -+ + Bpwip (4.1)
G(wi) = f(zi) + h(Brwir - - - + Bpwyy) (4.2)

The equation (4.1) is a generalized partial linear model where body mass is related to the
mean response (up to a known link function G) through a smooth function, but the climate
variables are linearly related to the mean response. The equation (4.2) is a generalized model
with a known link function G where body mass is again related to the mean response through
a smooth function, but climate variables are related to the response as single-index model
through an unknown smooth function A. In both cases, we have some flexibility provided
by the unknown smooth functions but a linearity assumption on the climate variables to
enable us to derive elasticities that represent the effect of individual weather variables on the
mean response. The main reason for exploring such models is that in addition to measuring
the effect of size on vital rates, we want to factor-out its effect to be able to measure the
contribution of weather variables to changes in vital rates. For such purposes, the size
variable is treated as a nuisance variable whose effect needs to be accounted for as flexibly
as possible. Thus, following the fitting of the IPM using the equations (4.1) and (4.2), we

estimated growth rates and conducted perturbation analyses to investigate weather effects.
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4.2 Partial Linear Models

A generalized partial linear model consists of two additive components, a linear and a

nonparametric part:

G(ps) = f(zi) + aqwin -+ + apwyy |

where p; = E(Y;), G is a known monotonic link function, wy, - -+ ,w, are climate variables,
f R — R is a smooth, unknown function of the log body mass z (called as a smoother),
and o, -, q, are unknown parameters.

To model vital rate functions, we used gam() in the R package mgcv. A smooth function
f is estimated using penalized regression splines, e.g., cubic penalized regression splines for a
single predictor (Wood 2017). The smoothing parameter, which controls the smoothness or
wiggliness of the smooth function f, is chosen using generalized cross validation (GCV). If
f has bounded second derivatives, then we can show that the spline estimator has favorable

convergence properties (Schumaker 1981).

4.3 Single Index Models

Our generalized single index model for vital functions has the following form:

G (i) = f(zi) + h(Brwir - - - + Bpwip)

where p; = E(Y;), G is a known monotonic link function, wy,--- ,w, are climate variables,
b1, -+, B, are unknown parameters, and f and h are unknown smooth functions. This
model is not identifiable as presented since changes in the size of 8 = (f4,---,3,)’ can be
compensated by changes in the function h. Thus we need an extra assumption for the model

to be identifiable. One approach to make the model identifiable is to fix the size of 3. To
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that end, the assumption we will use is that B resides on the surface of the upper half of the
unit hypersphere. In other words, we will assume that ||3|| = 1 and £, > 0.

A single index model (SIM) summarizes the effects of the explanatory variables within
a single variable called the index. By summarizing all the information contained in the
variables wy, - - - ,w, into one “single index” term, we will greatly reduce the dimensionality
of a problem. So, the single index model was developed as a possible remedy to overcome
the “curse of dimensionality,” which arises when using nonparametric multivariate regression
methods. The curse of dimensionality is a phenomenon that as the number of predictors
increase, the performance of the fitted model decreases due to the sparsity of data in high
dimensional space (e.g., James et al. 2013). The single index model is also a formulation
that allows us to measure the effects of individual explanatory variables.

We again used the generalized cross-validation framework of Wood (2017) to estimate
the smooth functions. We combined this a with constrained optimization subject to || 3] =1
and ;1 > 0 via the optim() function of R. This combination of estimating parameters of
climate variables and finding the optimal smoothing parameter using the maximum likelihood
estimation procedure were implemented through the gam() function of R. An example code

that shows how this is performed is given in the Appendix.

4.4 Results

The final vital rate models by partial linear models and single index models are shown in
Tables 4.1 - 4.3 and Tables 4.4 - 4.6 respectively. Figures 4.1, 4.2, and 4.3 give the estimated
smooth functions f and h.

For the generalized partial linear approach, TempAM2 had a large positive impact on
the survival rate while TempJJ and RainJJ both had a moderate but significant (P < .05)

negative effect on survival. Average growth was negatively affected by increasing levels of
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TempAnn, TempJJ, RainJJ, Snow following year, and PackD. Average growth was posi-
tively affected by TempAM?2 and SnowAnn. The reproduction rate was positively affected
by increasing levels of TempAnn, TempAM?2, Precip, and PackAnn while it was negatively
affected by increasing RainJJ. The average litter size was positively related to increasing
TempAnn and PackAnn. Finally the average size of recruits was positively related to Tem-
pAM1, TempAM?2 and RainAnn while it was negatively related to TempJJ, RainJJ, and
PackAnn. As expected, we can see in Figure 4.1 that mass has an increasing relationship
with survival, reproduction, the litter size, recruit mass, and obviously, the size of the ani-
mal the following year. However, there appears to be a threshold effect in the effect of mass
on survival where the effect on survival does not change beyond around mass = 5.7 (298.8
grams).

For the generalized single index model, once again we notice that all vital rates are
positively related to mass. However, the interpretation of the effect of climate variables on
vital rates is dependent upon the shape of the estimate of the function h. For example,
consider the estimation of reproduction probability. We notice from Table 4.5 that the
coefficient for RainAnn is -0.88. This means high values of RainAnn lead to low values
of the estimated index B’w. However, from Figure 4.2, we see that the estimate of the
function A fluctuates around a constant at low values of the index B’ w, which then becomes
a quadratic curve with a deep valley as the index increases. Thus, since increasing values of
RainAnn decrease the index 5” w, the high values of RainAnn have no substantial impact on
the probability of reproduction and the effect turning to decreasing and then increasing as
RainAnn decreases.

As in the general linear model approach, we will further study the elasticities computed

from the models to provide an effect direction and size of all variables.
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Vital rates

Function

Parameter (SE) estimates

Survival

Growth

logit[S(z; wy)|=/fs(2) +Bs2
TempAnn+/3, 5 TempAM1
+55.4 TempAM?2 40 5
TempJJ+f;6
RainAnn+f; ; RainJJ
+05.8 Snow before 459
Snow after 40519 Snow
following year +03, 11
Precip+/3,.12 PackD

tg(z, wi)=F¢(2) + By,
TempAnn +f, 3 TempAM1
+854 TempAM2 +5, 5
TemplJJ +3,¢ RainAnn
+B47 RainJJ +5, 5
SnowAnn +f,9 Snow
before + 3,190 Snow after
+084,11 Snow following year
+ 84,12 Precip +06,,13
PackAnn + ;14 PackD

o, = 0.1121

(By = 2.264(1.168))
Bsa = —0.274(0.152)
B3 = 0.151(0.089)
Bea = 0.244(0.044)
Bs5 = —0.182(0.056)
Bss = 0.767(0.612)
Be7 = —0.178(0.076)
Bes = 0.220(0.154)
Beo = —0.042(0.211)
By 10 = —0.281(0.167)
Bs11 = 0.079(0.515)
Bs12 = 0.012(0.021)

(By = 6.092(0.060))
B,2 = —0.026(0.008)
By3 = 0.009(0.005)
By4 = 0.007(0.003)
B,5 = —0.006(0.003)
By6 = 0.050(0.035)
B,7 = —0.008(0.004)
By = 0.205(0.075)
By9 = 0.019(0.009)
By10 = 0.025(0.016)
Bya1 = —0.027(0.010)
By12 = —0.001(0.003)
By13 = —0.036(0.026)
By14 = —0.003(0.001)

Table 4.1: Estimated survival and growth functions using partial linear models.

4.4.1 Estimating growth rates

The Columbian ground squirrel population growth rate estimated using the generalized

partial linear IPM was

log A = 0.0521 (A, = 1.0535)
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Vital rates

Function

Parameter (SE) estimates

Reproduction logit[py(2z; w)|=fs(2) + 02 (8o = —5.689(0.808))
TempAnn +f 5 TempAM2 (5 = 0.468(0.144)
+5y.4 RainAnn+, 5 Brs = 0.118(0.044)
RainJJ 43,6 Snow Br.a = 0.869(0.659)
following year +/ 7 B = —0.164(0.070)
Precip+0, s PackAnn +5,9 B¢ = 0.296(0.172)
PackD Brr = 1.011(0.509)

Bys = 0.102(0.045)

Bpo = —0.017(0.019)
litter log(b(z;wy))=fi(2) + B2 (Bo = —0.968(0.399))
size TempAnn 44,3 RainAnn 55 = 0.183(0.061)

B3 = 0.202(0.228)
Bia = —0.099(0.081)
Bi5 = 0.076(0.185)
B16 = 0.046(0.019)

+ 1.4 Snow after 40,5
Precip +f;6 PackAnn

Table 4.2: Estimated reproduction and litter size functions using partial linear models.

with 95% confidence interval (0.0505,0.0537). The result is similar to that obtained using
the single index IPM

with 95% confidence interval (0.0443,0.0473).

Considering the growth rate log Ag = 0.0784 (A\; = 1.0816) from the linear model, it
is reassuring that all three estimates of the growth rates were similar, indicating that the
population slowly increased in the long run. Given that there is variation in the estimated
population grown rates, we performed a stability analysis to select the most appropriate

model to use.
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Vital rates

Function

Parameter (SE) estimates

Recruitment

recruit mass

by = 0.42797

,ur(szt):fr<z) + 6r,2
TempAnn +f, 3 TempAM1
+67‘,4 TempAM2 +67",5
TemplJJ +03, 6 RainAnn

(B = 5.838(0.092))
Bro = —0.099(0.015)
3.3 = 0.032(0.009)
B4 = 0.019(0.004)

+Br7 RainJJ 44,5
SnowAnn +f,9 Snow
before + 3,10 Snow after
+05,11 Snow following year
+Br,12 PreCip +6r,13
PackAnn +, 14 PackD

B.5 = —0.011(0.005)
Br6 = 0.153(0.054)
B.7 = —0.017(0.006)
Brs = 0.183(0.117)
B.9 = 0.017(0.014)
Br10 = 0.048(0.026)
Br11 = —0.024(0.017)
B.12 = —0.005(0.004)
Br13 = —0.109(0.039)
( )

o, = 0.1104 Br.14 = —0.003(0.002

Table 4.3: The probability of successful recruitment, and estimated recruit mass function
using partial linear models.

4.4.2 Stability Analysis

We designed a bootstrapping approach to determine how much the estimate of log Ag
is likely to vary from the original data (n = 1704) to sub-samples with different sample sizes
(n = 1689 and n = 1685). This is used to understand the approach among the generalized
linear, partial linear, and single index models that gave us results that are more stable. The
smaller the variation, the more stable the procedure. We conducted the bootstrap samplings
with 100 and 1000 iterations to compute the standard deviations. The result found from the
bootstrap method is shown in Table 4.7.

We observed that the partial linear model showed the smallest variation both in sample
sizes n = 1689 and n = 1685 in 100 iterations, and the linear model had the largest variance.

In 1000 iterations, the result was consistent in that the partial linear model performed
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Figure 4.1: Plots of smooth functions by partial linear models

the best. However, the single index model showed the smallest change between different
sample sizes. This relatively small change of the single index model was still persistent when

the bootstrap sampling was iterated 1000 times. The result suggests that the proposed
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Vital rates Function Parameter estimates

Survival logit[S(z; wy)|=fs(2) +hs(Bs2 TempAnn+p; 3 (Bo = 1.0341)
TempAM1 +8; 4 TempAM2 +f, 5 TempJJ+/5; ¢ Bs2 = 0.0156
RainAnn+f; 7 RainJJ 43, ¢ Snow before 4359 Snow Bs3 = 0.1523
after +f; 10 Snow following year +f; 11 Precip+ s 12 Bsa = 0.2357
PackD) Bss = —0.4312

55,6 = 0.0359
Bs7 = —0.2150
Bss = 0.3167
Bso = 0.1340
Bs10 = —0.5516
Bsi11 = 0.5136
Bs12 = —0.0357

Growth g (2, we)=fy(2) + hy(By2 TempAnn +4, 5 TempAM1 (Bo = 6.0183)
+854 TempAM2 +3, 5 TempJJ +f5,6 RainAnn +/5, 7 Bg,2 = 0.0236
RainJJ +3, s SnowAnn +/3, 9 Snow before + 3,19 Bg.3 = 0.1358
Snow after 40,11 Snow following year +/, 12 Precip Bga = —0.0628
+B413 PackAnn +5,14 PackD) Bg5 = 0.0312

Bg,6 = 0.0190
Bg7 = —0.0030
o, = 0.1094 Bg,s = 0.9057
Bgo = —0.1799
Bgi0 = —0.1797
Bg11 = 0.0696
Bgi2 = —0.1585
Byas = 0.2243
B4 = 0.1024

Table 4.4: Estimated survival and growth functions using single index models.

semiparametric IPM approaches provide more stable estimates than the current generalized

linear model based IPMs.
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Vital rates Function

Parameter estimates

Reproduction logit|py(z; we)|=fs(2) +hp,(p2 TempAnn +/5; 3
TempAM2 +f; 4 RainAnn+4, 5 RainJJ +/5, ¢ Snow
following year +/, 7 Precip+/,s PackAnn +/3; 9

PackD)
litter log(b(z; wy))=fi(2) + hy (51,2 TempAnn +; 3 RainAnn
size + (1.4 Snow after 4+, 5 Precip 4+, PackAnn )

(Bo = —0.1962)
b2 = 0.2110
By = 0.0284
Ba = —0.8808
Bys = 0.1111
Bys = —0.0418
Bp7 = 0.2763
Byrs = 0.1345
Byo = 0.2653
(Bo = 0.3343)
B2 = 0.6031
B3 = 0.6648
Bra = —0.3289
Br5 = 0.2506
B = 0.1531

Table 4.5: Estimated reproduction and litter size using single index models.

4.4.3 Parameter perturbation

To find the elasticity of log Ag to changes in parameters, we need to find the perturbation

kernel Cy (Section 3.6) for parameters in vital rate functions. For partial linear models, since

the climate variables enter the model linearly, C; was similar to the one for linear models

we considered in Chapter 3. But, for single index integral projection models, we need to

additionally evaluate the derivatives of estimated smooth functions h. The full list of C} for

parameters in single index models is listed in Table 4.8.

The derivatives have to be evaluated numerically for the estimated h values. This can

be done using the method of finite differences which is implemented in R. To numerically

evaluate the derivatives of smooth functions, we used derivatives() in the R package

gratia, which evaluates the derivatives of estimated smooth functions via finite differences.
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Vital rates Function

Parameter estimates

Recruitment pr = 0.42797

recruit mass  p,(z, wy)=f.(z) + hy (8,2 TempAnn +f, 3 TempAM1
+06,4 TempAM2 +0, 5 TempJJ 40, ¢ RainAnn +4, 7
RainJJ +43, s SnowAnn +f, 9 Snow before + 3, 19
Snow after +0, 11 Snow following year +4, ;2 Precip
+05,13 PackAnn +0, 14 PackD )

o, = 0.10774

(B = 5.526)
Br2 = 0.1299
B3 = 0.2028
Bra = 0.1740
Brs = 0.1196
B = 0.2452
Br7 = 0.2559
Brs = —0.7194
Bro = 0.2208
Br10 = —0.2193
Br11 = —0.1455
Bri2 = 0.2975
Bras = 0.1791
Br1a = 0.1250

Table 4.6: The probability of successful recruitment, and estimated recruit mass function

using using single index models.

Based on the formula listed in Table 4.8, the elasticities to climate parameters are computed

as shown in Table 5.1 - Table 5.4.

In the survival function, both models showed that parameters related to temperature

were more important than the ones related to snow or rain to the growth rate Ag (Figure 5.1).

In particular, the parameter change of mean temperature from June 28 to July 18 (TemplJJ)

had the greatest impact on the population growth rate. These results were consistent with

the ones from the linear model.

The figure 5.2 of the growth function showed that parameters related to temperature

were important to the population growth, which is consistent to the linear mixed model.

But, unlike the linear or partial linear models, parameters related to snow pack (PackAnn,

PackD) showed large impacts to Ag in the single index model.
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100 iterations 1000 iterations

Sample Models Mean SD Mean SD

Size

n = 1689 LM 0.07701 0.00475 0.07627 0.00479
PLM 0.05113 0.00188 0.05071 0.00191
SIM 0.04406 0.00202 0.04434 0.00202

n = 1685 LM 0.07645 0.00660 0.07595 0.00567
PLM 0.05063 0.00224 0.05069 0.00215
SIM 0.04395 0.00230 0.04407 0.00224

Table 4.7: Mean and standard deviation of log Ag from samples of sizes n=1689 and n=1685.
LM: Linear Models; PLM: Partial Linear Models; SIM: Single Index Models

Vital Rates C
(B'x) - ;
Survival g(2' 2, wy) - s(z, wy) - ﬁkwéx—);)(ni) - Bsi
aQ h / 2 — My / /
rowt g(Z', 2z, wy) - s(z, wy) - ool hy(B'%) - ;- By
g

h/Pb<18/X) T Ty ]

T+ exp(mn) P

Reproduction po(z, wy) - b(z,wy) - pr - C1(2, 2, Wy)

pb(z7wt) : b(Z,Wt) *Pr Ol(zl7 Z7Wt) : h2</3lx) c Xy Bl,’i

/

z m,.
2 o h;(lﬁlx) c Xy ﬂr,i
o

litter size

recruit mass  py(z, wy) - b(z, wy) - pr - C1(2, 2, wy)

Table 4.8: Perturbation kernels for single index models. m; = f;(z) + h;(8'x), I)(-) is a
derivative of the single index component in each vital rate function, and x; is a climate
variable.
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Figure 4.2: Plots of smooth functions by single index models

In the reproduction function, the parameter change in TempAnn (mean annual tem-

perature) in the partial linear model had the largest impact on A\g. However, in the single
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Figure 4.3: Plots of smooth functions by single index models

index model, PackD (mean annual daily snow pack from December 5 to December 15) had
the largest elasticity (Figure 5.3).

In the litter size function, the elasticity in all three models showed very similar patterns.
TempAnn (mean annual temperature) had the largest effect on the population growth rate
As (Figure 5.4).

In the recruit mass function, the parameters related to temperature had significant ef-
fects on the population growth rate in all three models. The elasticity of TempAnn parameter
showed the largest impact on the growth rate in the linear and partial linear models, but

TempJJ showed the largest effect in the single index model (Figure 5.5).
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4.4.4 Kernel Perturbation

Figure 4.4 shows the contour plots of elasticities of Ag to kernel perturbations in the
partial linear models (PLMs) and single index models (SIMs). We see that there is very little
difference in the shape of the contour plots, which means that the local change of kernels in
the PLMs and SIMs have similar effects on the population growth rate. For example, a 1%
increase of the survival-growth component of the kernel at the point with transitions from
mass 419 grams (= 6.04 in log-scale) to 429 grams (= 6.06 in log-scale) resulted in 5.75%
increase of the growth rate in the PLMs (Figure 4.4a) and 5.80% increase of the growth rate
in the SIMs (Figure 4.4c). Similarly, a 1% increase of the fecundity component of the kernel
at the point (6.06, 5.54) in log-scale, which corresponded with the mother’s mass (~ 429
grams) and its offspring’s mass (= 254 grams) respectively, had the greatest effect, resulting
in 2.18% increase of the growth rate in the PLMs (Figure 4.4b) and 2.15% increase of the

growth rate in the SIMs (Figure 4.4d).
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Chapter 5

Discussion and Future Work

Models help us understand the population dynamics in the data. Since there is no fully
right model, it is important to explore different models in search of the best-fit model for
the data. In this dissertation, we studied four population dynamics models and modeled the
effect of climate as well as individual characteristics on population vital rates. The first one
is the traditional state-space model, which is a generalization of matrix population models
to include the effect of other covariates as well as stochasticity seamlessly. This, however,
does not allow individual characteristics to be included. The last three are variations of
the integral projection model (IPM). One is based on parametric generalized linear model
formulation. This assumes linear relationships (up to known link functions) between vital
rates and covariates. This has two major limitations. The first is that such relationships
are rarely (if ever) linear. The second is including obvious influencers like size in a linear
regression obfuscates the measurement of the effect of other covariates. In a sense, we want to
treat this variable as an unknown, but flexible, nuisance to be integrated out for the purpose
of measuring the effect of covariates like climate variables. Thus the last two models are
novel semiparametric IPM formulations where we allow the effect of size on vital rates to
be non-parametric: one where climate effects are assumed to be linear (PLM: Partial Linear
Model) and another where climate effects are assumed to be via a single index model (SIM).

Reassuringly, all four models indicated that the population of Columbian ground squir-
rels was slowly increasing in the long run. The shape of the kernel perturbation showed little
difference in all three IPM models. In the linear model, the largest elasticity was 6.01% at

the point transitioning from mass 429 grams (=~ 6.06 in log-scale) to 450 grams (= 6.11 in
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log-scale) as shown in the Figure 3.7A. However, in the PLMs and SIMs, the largest elas-
ticities were 5.75% and 5.80% each, at the point transitioning from 419 grams (= 6.04 in
log-scale) to 429 grams (= 6.06 in log-scale) as shown in Figure 4.4.

In parameter perturbations, we found that all three models revealed that the population
growth rate was most sensitive to climate variables associated with temperature. The partial
linear model showed a similar pattern to the linear model while the elasticities from the SIMs
showed some discrepancies with the linear models and PLMs. The variables associated with
snow (PackD and PackAnn) in the SIMs were suggested to be important to the growth rate,
while the effects of these variables appeared small in the linear models and PLMs.

In all of our evaluations, we applied the LASSO procedure to select the relevant vari-
ables in the model. Previous IPM evaluations either did not have a mechanism for selecting
variables or depended on simple correlations among variables combined with subjective ex-
pert evaluations to decide on variables to be included. To our knowledge, this is the first
work to incorporate constrained optimization in the IPM framework.

When a group of predictors present a collinearity problem, the LASSO tends to select
only one predictor from the group and may hide the relevance of one of the highly correlated
variables (Zou and Hastie 2005). Ridge regression, on the other hand, shrinks coefficients
towards zero to give similar coefficient estimates for the highly correlated variables (Zou
and Hastie 2005). If predictors are highly correlated, the prediction performance of ridge
regression is better than the LASSO (Tibshirani 1996). However, one disadvantage of ridge
regression is that it does not perform variable selection and include all predictors in the
final model. When feature selection is a main interest, the LASSO is more desirable because
it provides parsimonious modeling. To combine the strengths of the LASSO and ridge
regression, Zou and Hastie (2005) proposed the elastic net. The elastic net performs variable

selection and once one predictor in the group of highly correlated predictors is selected,

61



all predictors in the group will be included in the model. Therefore, if there are strongly
correlated predictors, the elastic net provides a viable option.

Using a simulation experiment to compare different models within the IPM framework
is difficult since the IPM kernels consist of several vital rate functions, in which many pa-
rameters need to be estimated. After taking all the components of the IPM into account,
defining the relationships between the vital rate functions and the population growth rate is
not easy. In other words, it is very difficult to specify parameters in vital rate functions with
the given growth rate since the relationships among them are unknown due to the variations
associated with the complexity of the IPM kernels.

An honest comparison of such models is quite complicated since predictive assessment
via cross-validation or information criteria is not very straightforward. This is a current topic
of heated discussion in the population modeling community. Further research is needed to in-
vestigate how to properly assess the differences among IPMs. We are considering theoretical

and numerical investigations of such evaluations as a future work.
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Vital Rate Parameter etM e M etM

Survival TempAnn —0.2445 —0.2487  0.0087
TempAM1 0.1558  0.1721 0.2022
TempAM?2 0.3058  0.3172  0.2023

TempJJ —0.5728 —0.6075 —0.9298
RainAnn 0.1433 0.1478 0.0029
RainJJ —0.0696 —0.0735 0.0210

Snow before 0.0451 0.0484 —0.0111
Snow after —0.0074 —0.0054 —0.0120
Snow following year —0.0485 —0.0537 —0.0371
Precip 0.0302 0.0227 0.0762

PackD 0.0136  0.0166 —0.0147

Table 5.1: Stochastic elasticities for parameters in survival function; e5™ is the stochastic

elasticities of linear models, e£“ is the stochastic elasticities of partial linear models, and

e3™ is the stochastic elasticities of single index models.

Vital Rate Parameter eLM eL LM eM
Growth TempAnn —0.3239 —0.0972 0.0142
TempAM1 0.1566  0.0416  0.1160
TempAM2 0.1305 0.0416  —0.0533
TempJJ —0.3023 —0.0798  0.0691
RainAnn 0.1282 0.0406 0.0023
RainJJ —0.0485 —0.0156 —0.0007
SnowAnn 0.1864  0.0682 0.0512
Snow before 0.0330  0.0155  —0.0212
Snow after 0.0347  0.0116  —0.0109
Snow following year —0.0741 —0.0183  0.0098
Precip —0.1421 —0.0430 —0.0283
PackAnn —0.0115 —0.0034  0.0875
PackD —0.0553 —0.0172  0.0827

Table 5.2: Stochastic elasticities for parameters in growth function; e5" is the stochastic
elasticities of linear models, e5“M is the stochastic elasticities of partial linear models, and

e3™ is the stochastic elasticities of single index models.
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PLM

SIM

Vital Rate Parameter ekM ek e
Reproduction TempAnn 0.1093 0.1134 0.2830
TempAM?2 0.0394  0.0437  0.0561
RainAnn 0.0390 0.0445  —0.2620
RainJJ —0.0204 —0.0200 0.0811
Snow following year  0.0128 0.0134  —0.0115
Precip 0.0771  0.0759  0.1265
PackAnn 0.0173  0.0175  0.1605
PackD —0.0064 —0.0057  0.5984
litter size TempAnn 0.2039  0.1963  0.3793
RainAnn 0.0479  0.0461  0.0876
Snow after —0.0135 —0.0128 —0.0249
Precip 0.0262 0.0251 0.0478
PackAnn 0.0367  0.0349  0.0645

Table 5.3: Stochastic elasticities for parameters in reproduction and litter size functions;

eEM is the stochastic elasticities of linear models, e
is the stochastic elasticities of single index models.

linear models, and e3!™

PLM

g is the stochastic elasticities of partial

Vital Rate Parameter etM eL M et
Recruit Mass TempAnn —0.3215 —0.0929 0.0103
TempAM1 0.1389 0.0378 0.0231
TempAM?2 0.0755 0.0272 0.0181
TempJJ —0.1332 —0.0357  0.0340
RainAnn 0.1127  0.0305 0.0030
RainJJ —0.0311 —0.0076  0.0032
SnowAnn 0.0604  0.0141  —0.0058
Snow before 0.0130 0.0032 0.0039
Snow after 0.0163 0.0053  —0.0020
Snow following year —0.0171 —0.0041 —0.0047
Precip —0.1328 —0.0316  0.0061
PackAnn —0.0133 —0.0034  0.0065
PackD —0.0170 —0.0040  0.0186

Table 5.4: Stochastic elasticities for parameters in recruit mass function; ek is the stochastic

elasticities of linear models, £t

6gIM
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is the stochastic elasticities of partial linear models, and
is the stochastic elasticities of single index models.
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Appendix A
R Codes

In this appendix we provide two example R codes: one for the state space model esti-
mation and the second for the IPM using the generalized single-index model. We will leave

the other models out, but all codes will be provided upon request.

A.1 R code for State Space Models

HARBHHHHAAAFAAAAAH A A AR BB BB BH AR AHFFAAAA AR R R AR RS
#State Space Model with varying weather effects
HUdddnnn##HHHAAASHHA AR AR R BB HHHH S SR RS SASSSRRRH Y

library (astsa)

agedata <- read.csv("age_weather.csv")
agedata2 <- as.data.frame(agedata)

y <- yy <- agedata2[,c(-1, -12:-17)]

y <- ylcomplete.cases(y),]

#num=27 (years)
#p=10(ageO-age914)

yy <- ts(y[,1:10], start = 1992)

; weather <- ts(y[,11:23], start = 1992)

num <- nrow(yy)

p <- ncol(yy)

#num=26 (years)

#p=10(age0-age914) and 13 weather variables

##H
# State: N(t+1) = Phi*N(t) + Ups*weather(t) + w(t)
Observation: Y(t) = A(t)N(t) + v(t)

#
5 # Parameters: Phi, Q=Var(w(t)), R=Var(v(t))
#

ACt) = I

=+

make array of obs matrices
A <- array (0, dim=c(p,p,num))
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31 for(k in 1:num){
32 Al, ,k] <- diag(1l,p)
33 }

36 # Initial values

37 mu0 <- matrix(l, p, 1)

38 Phi <- diag(1l, p)

30 cQ <= cR <- SigmaO <- 1xdiag(l, p)

11 em <- EM1(num, yy, A, muO, SigmaO, Phi, cQ, cR, 1000, .001)

13 Ups <= O

i1 Gam <- O

45 input <- O

46 cR <- chol(em$R)

7 ¢Q <- chol(em$Q)

s mu0 <- em$mul

10 Sigma0 <- em$Sigmal

50 ks <- Ksmoothl (num, yy, A, em$muO, em$SigmaO, em$Phi, 0, O,
51 chol(em$Q), chol(em$R), 0)

53 init.transition <- rep(.5, 19)
. init.weather <- rep(0, 26)
5 Phi <- matrix(0,p,p)

57 # Estimate SSM

58 # Repeat a few times for consistency

50 for(i in 1:1){

60 11f . transition <- function(par.t, Ups){

61 Phi[1,] <- cbind(0, par.t[1], par.t[2], par.t[3], par.t[4],

62 par.t[5], par.t[6], par.t[7], par.t[8], par.t[9])

63 Phi[2,1] <- par.t[10]

64 Phi[3,2] <- par.t([11]

65 Phi[4,3] <- par.t[12]

66 Phi [5,4] <- par.t[13]

67 Phi[6,5] <- par.t[14]

68 Phi[7,6] <- par.t[15]

69 Phi[8,7] <- par.t[16]

70 Phi[9,8] <- par.t[17]

71 Phi[10,9] <- par.t[18]

72 Phi[10,10] <- par.t[19]

73 kf <- Kfilterl(num, yy, A, muO, SigmaO, Phi, Ups, Gam = 0, cQ, cR,
input=weather)

74 return (kf$like)

79 est <- optim(init.transition, 11f.transition, Ups=Ups, NULL,
80 method=’L-BFGS-B’, hessian=TRUE,
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90

94

107

108

109

111

lower = rep(.05, 19),
upper = c(rep(5,9), rep(.99,10)),
control=1list(trace=1, maxit = 10000))
round (cbind (estimate=est$par), 4)
par.t <- init.transition <- est$par

Phi <- matrix(0,p,p)
Phi[1,] <- cbind(0, par.t[1], par.t[2], par.t([3], par.t[4],
par.t[5], par.t[6], par.t[7], par.t[8], par.t[9])

Phi[2,1] <- par.t[10]

Phi[3,2] <- par.t[11]

Phi[4,3] <- par.t[12]

Phi [5,4] <- par.t[13]

Phi[6,5] <- par.t[14]

Phi [7,6] <- par.t[15]

Phi[8,7] <- par.t[16]

Phi[9,8] <- par.t[17]

Phi [10,9] <- par.t[18]

Phi[10,10] <- par.t[19]

# Assume climate effect on age O different from rest
# but otherwise same. We may need better screening of weather vars
11f .weather <- function(par.w, Phi){
young <- c(par.w([1],par.w([2],par.w([3],par.w[4], par.w([5], par.w[6],par
wl7],
par.w[8], par.w[9],par.w[10], par.w([11], par.w([12],par.w
[13]1)
others <- c(par.w([14],par.w([15],par.w[16] ,par.w[17], par.w([18], par.w
[19],
par.w[20], par.w([21], par.w[22],par.w[23], par.w[24], par.
w[25] ,par.w([26])
Ups <- matrix(c(young, rep(others, p-1)), nrow = p, byrow = T)
kf <- Kfilterl(num, yy, A, muO, SigmaO, Phi, Ups, Gam = 0, cQ, cR,
input=weather)
return(kf$like)

# Use optim to maximize likelihood
est <- optim(init.weather, 11f.weather, Phi = Phi, NULL,
method=’L-BFGS-B’,
control=list (trace=1, maxit = 10000))
round (cbind (estimate=est$par), 4)
par.w <- init.weather <- est$par
young <- c(par.w[1],par.w([2],par.w([3],par.w[4], par.w([5], par.w[6],par.w
(71,
par.w[8], par.w[9],par.w[10], par.w([11], par.w[12],par.w([13])
others <- c(par.w[14] ,par.w([15] ,par.w[16] ,par.w[17], par.w[18], par.w
[191,
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168
169
170

171

par.w[20], par.w[21], par.w[22],par.w[23], par.w[24], par.w

[25] ,par.wl[26]1)
Ups <- matrix(c(young, rep(others, p-1)), nrow = p, byrow = T)

»

ks <- Ksmoothl (num, yy, A, em$mu0, em$SigmaO, Phi, Ups, O,
chol (em$Q), chol(em$R), input=weather)
ys <- ps <- matrix (0, ncol = p, nrow = num)

for(i in 1:p){

ysl[,i] <- ks$xpli,,]

psl,i] <- 2*sqrt(ks$Ppli,i,])
}

T <- num

x <- matrix(0, nrow = p, ncol = T)

x.w <- matrix (0, nrow = p, ncol = T)

yyy <- as.matrix(yy)

x[,1] <- x.wl[,1] <- yyyl[1,]

for(i in 2:T){
x.wl,i] <- Phi%x*%cbind(x.w[,i-1]) + Ups¥%*/weather[i,]
x[,1i] <- Phi%*%cbind(x[,i-1])

7 }

year .pop <- rowSums (yy)
n.fem <- ts(year.pop, start = 1992)

mod.fem <- ts(colSums(x), start = 1992)
mod.fem.w <- ts(colSums(x.w), start = 1992)
+ em.fem <- ts(rowSums(ys), start = 1992)

all.ts <- ts.intersect(n.fem, mod.fem, mod.fem.w)

; lambda.ts <- ts.intersect(n.fem/lag(n.fem,-1), mod.fem/lag(mod.fem,-1),

mod.fem.w/lag(mod.fem.w,-1))

par (mfrow=c(1,2))
plot(all.ts[,1], 1lwd = 1, type = ’o’,ylim = c(0,200), ylab = "Female
Squirrel Population", xlab="Year")
lines(all.ts[,2], 1lwd = 1, col="blue")
lines(all.ts[,3], 1lwd = 1, col="red")
legend ("topleft",legend=c("Annual Population", "SSM Projection", "SSM
Projection (weather)" ),

col = c("black", "blue", "red","green"),
1ty = 1,

lwd = 2,

#pch = c(NA,NA,NA),

bty = ’n’

pt.cex = 15, cex = 0.65, y.intersp=0.55)

7



plot(lambda.ts[,1], 1lwd = 1, type = ’0’,ylim = c(0,2), ylab = "Population

Growth Rate", xlab="Year")
lines (lambda.ts[,2], 1lwd = 1, col="blue")
lines (lambda.ts[,3], 1lwd = 1, col="red")

; legend ("topleft",legend=c("Annual Population", "SSM Projection",

Projection (weather)" ),
col = c("black", "blue", "red"),

lty = 1,
lwd = 2,
bty = ’n’

15, cex = 0.65, y.intersp=0.55)

HHEAHAHBHBHHARAHAH RS HASHAH AR BH B AR AR RS RSB R AR AHHHH
#State Space Model with uniform weather effects
HHAHAHAH BB HAHRAH AR A SRS HAH AR BH RS HAH RSB S B S HAHAH RS H
library (astsa)

agedata <- read.csv("age_weather.csv")

agedata2 <- as.data.frame(agedata)

y <- yy <- agedata2[,c(-1, -12:-17)]

y <= ylcomplete.cases(y),]

#num=27 (years)
#p=10(ageO-age914)

yy <- ts(y[,1:10], start = 1992)

5 weather <- ts(y[,11:23], start = 1992)

num <- nrow(yy)
p <- ncol(yy)

#H##

# State: N(t+1) = Phi*N(t) + Ups*weather(t) + w(t)
# Observation: Y(t) = A(t)N(t) + v(t)

# Parameters: Phi, Q=Var(w(t)), R=Var(v(t))

# A(t) =1

5 # make array of obs matrices
s A <- array (0, dim=c(p,p,num))
» for(k in 1:num){

Al,,k] <- diag(1,p)
}

# Initial values
mu0 <- matrix(l, p, 1)

3 Phi <- diag(1l, p)

cQ <- cR <- Sigma0 <- 1xdiag(l, p)
em <- EM1(num, yy, A, muO, SigmaO, Phi, cQ, cR, 1000, .001)

Ups <- 0
Gam <- O
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IS IS B B |
w V]

input <- O

cR <- chol(em$R)

cQ <- chol(em$Q)
mu0 <- em$muO
Sigma0 <- em$Sigmal

5 ks <- Ksmoothl(num, yy, A, em$mu0, em$Sigmal, em$Phi,

chol (em$Q), chol(em$R), 0)

init.transition <- rep(.5, 19)
init.weather <- rep(0, 13)
Phi <- matrix(0,p,p)

# Estimate SSM
# Repeat a few times for consistency
for(i in 1:3){
11f.transition <- function(par.t, Ups){
Phi[1,] <- cbind(0, par.t[1], par.t[2], par.t[3],

o, O,

par .t [4],

par.t[5], par.t[6], par.t[7], par.t[8], par.t[9])

Phi [2,1] <- par.t[10]
Phi [3,2] <- par.t[11]
Phi[4,3] <- par.t[12]
Phi[5,4] <- par.tl[13]
Phi[6,5] <- par.t[14]
Phi [7,6] <- par.t[15]
Phi[8,7] <- par.t[16]
Phi[9,8] <- par.t[17]
Phi[10,9] <- par.t[18]
Phi[10,10] <- par.t[19]
kf <- Kfilterl(num, yy, A, muO, SigmaO, Phi, Ups,
input=weather)
return(kf$like)

}

Gam = 0, cQ, cR,

est <- optim(init.transition, 11f.transition, Ups=Ups, NULL,

method=’L-BFGS-B’, hessian=TRUE,
lower = rep(.05, 19),
upper = c(rep(5,9), rep(.99,10)),
control=1list(trace=1, maxit = 10000))
round (cbind (estimate=est$par), 4)
par.t <- init.transition <- est$par

Phi <- matrix(0,p,p)

Phi[1,] <- cbind(0, par.t[1], par.t[2], par.t[3], par.t[4],
par.t[5], par.t[6], par.t[7], par.t[8], par.t[9])

Phi[2,1] <- par.t[10]
Phi [3,2] <- par.t[11]
Phi[4,3] <- par.t[12]
Phi [5,4] <- par.t[13]
Phi[6,5] <- par.t[14]
Phi [7,6] <- par.t[15]
Phi [8,7] <- par.t[16]
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96

97

98

Phi[9,8] <- par.t[17]
Phi[10,9] <- par.t[18]
Phi [10,10] <- par.t[19]

# Assume climate effect the same for all ages
#We may need better screening of weather vars
11f .weather <- function(par.w, Phi){
young <- c(par.w[1],par.w[2],par.w[3],par.w[4], par.w[b], par.w[6],par
wl7],
par.w[8], par.w[9],par.w[10], par.w([11], par.w[12],par.w
[131)
Ups <- matrix(rep(young, p), nrow = p, byrow = T)
kf <- Kfilterl(num, yy, A, muO, SigmaO, Phi, Ups, Gam = 0, cQ, cR,
input=weather)
return (kf$like)

}
# Use optim to maximize likelihood
est <- optim(init.weather, 11f.weather, Phi = Phi, NULL,
method="L-BFGS-B’,
control=1list (trace=1, maxit = 10000))
round (cbind (estimate=est$par), 4)
par.w <- init.weather <- est$par
young <- c(par.wl[1l],par.w[2],par.w[3],par.wl[4], par.w[b], par.w([6],par.w
(71,
par.w[8], par.w[9],par.w[10], par.w[11l], par.w[12],par.w[13])
Ups <- matrix(rep(young, p), nrow = p, byrow = T)
}

ks <- Ksmoothl(num, yy, A, em$mu0, em$SigmaO, Phi, Ups, O,
chol (em$Q), chol(em$R), input=weather)
ys <- ps <- matrix (0, ncol = p, nrow = num)

for(i in 1:p){

ys[,i] <- ks$xpli,,]

psl,i] <- 2*xsqrt(ks$Ppli,i,])
}

5 T <- num

; x <- matrix (0, nrow = p, ncol = T)
7 X.w <- matrix (0, nrow =
s yyy <- as.matrix(yy)

p, ncol = T)

x[,1] <- x.w[,1] <- yyyl[1,]

for(i in 2:T){
x.wl,i] <- Phi¥%*%cbind(x.w[,i-1]) + Ups¥*weather[i,]
x[,i] <- Phi¥%*%cbind(x[,i-1])

}

5 year.pop <- rowSums (yy)

n.fem <- ts(year.pop, start = 1992)
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s mod.fem <- ts(colSums(x), start = 1992)
;. mod.fem.w <- ts(colSums(x.w), start = 1992)

em.fem <- ts(rowSums(ys), start = 1992)

all.ts <- ts.intersect(n.fem, mod.fem, mod.fem.w)
lambda.ts <- ts.intersect(n.fem/lag(n.fem,-1), mod.fem/lag(mod.fem,-1),
mod.fem.w/lag(mod.fem.w,-1))

5 lambda.em <- log(em.fem/lag(em.fem,-1))

lambda.nm <- log(n.fem/lag(n.fem,-1))

par (mfrow=c(1,2))
plot(all.ts[,1], 1lwd = 1, type = ’o’,ylim = c(0,200), ylab = "Female
Squirrel Population", xlab="Year")
lines(all.ts[,2], 1lwd = 1, col="blue")
lines(all.ts[,3], 1lwd = 1, col="red")
legend("topleft",legend=c("Annual Population", "SSM Projection",
"SSM Projection (weather)"),
col = c("black", "blue", "red"),

lty = 1,

lwd = 2,

bty = ’n’,

pt.cex = 15, cex = 0.7, y.intersp=0.55)

plot (lambda.ts[,1], 1lwd = 1, type = ’o’,ylim = c(0,3),
ylab = "Population Growth Rate", xlab="Year" )
lines(lambda.ts[,2], 1lwd = 1, col="blue")
lines(lambda.ts[,3], 1lwd = 1, col="red")
legend("topleft",legend=c("Annual Population", "SSM Projection", "SSM
Projection (weather)"),
col = c("black", "blue", "red"),

lty = 1,

lwd = 2,

#pch = c(NA,NA,NA),
bty = ’n’,

pt.cex = 15, cex = 0.7, y.intersp=0.55)

########Plot Predictions
all.ts <- ts.intersect(n.fem, em.fem)

5 plot(all.ts[,1], type=’p’, ylim = c(0,200), ylab = "Female

Squirrel Population", xlab="Year")
lines(all.ts[,2], 1lwd = 2, col="red")

7 lines (em.fem+2*sqrt(ps.fem), lty = 2, col=4)

2, col=4)

lines(em.fem-2*sqrt(ps.fem), 1lty
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A.2 R code for Stochastic Integral Projection Models by Single Index Models

HHEAHAHBHHAHAFBH BB AR RSB HARAHBH B R HAHHHS
## IPM WITH SINGLE INDEX MODEL
HHAHAHHHHAHAH AR RS HAH AR HAH AR AR AH RS HAHH

library (1lme4)
library (nlme)
library (mgcv)
library(gratia)

set.seed (53241986)

workr2 <- read.csv("work6_2017.csv")
weatherl <- read.csv("weatherl.csv")
source ("Standard Graphical Pars.R");

workr2$masstl <- log(workr2$masstl)
workr2$masst <- log(workr2$masst)
workr2$MEAN _JS_MASS <- log(workr2$MEAN_JS_MASS)

1.1*max(na.omit (workr2$z))
1.1*max(na.omit(workr2$=z1))

0.9*min(na.omit (workr2$juv_mass))

# total litter numbers
litters <- na.omit(workr2$LS_WEAN)

# total survived offsprings
surv. juv <- na.omit(workr2$NUMBER_JUV_S)

# probability of successful recruitment
p_r <- sum(surv.juv)/sum(litters)

Yeart <- factor (workr2$YEAR)
HHEBHHHABHHHA S HHAE RS HHH
#fit survival models

HHAHHAHAEHAHBARAH B HAHS

si.surv <- function(theta,dat,opt=TRUE) {

## Fit single index model using gam call, given theta (defines alpha).
## Return ML if opt==TRUE and fitted gam with theta added otherwise.
## Suitable for calling from ’optim’ to find optimal theta/alpha.

alpha.surv <- c(1,theta) ## constrained alpha defined using free theta

kk <- sqrt(sum(alpha.surv~2))

alpha.surv <- alpha.surv/kk ## so now ||alphall|=1
x <- cbind(dat$TempAnn, dat$TempAM1l, dat$TempAM2,
dat$RainAnn, dat$RainJJ, dat$Snow_before,
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dat$snow_f_year, dat$Precip, dat$PackD)

y.surv <- x%*%alpha.surv ## argument of smooth
bl <- gam(dat$fy_surv ~ s(dat$masst, bs="cr") + s(y.surv, bs="cr"),
family=binomial , method="ML") ## fit model

if (opt) return(bl$gcv.ubre) else {
bl$alpha.surv <- alpha.surv ## add alpha
b1$J <- outer (alpha.surv,-theta/kk~2) ## compute Jacobian
for (j in 1:length(theta)) b1$J[j+1,j] <- b1$J[j+1,j]1 + 1/kk  ##
dalpha_i/dtheta_j
return(bl)
3

} ## si.surv
alpha.surv <- rep(NA, 13)
sse.si.surv <- rep(NA)

sdhat.si.surv <- rep(NA)

f1 <- optim(rep(1,10), si.surv, method="BFGS", hessian = TRUE, dat=workr2)

5 apsi.surv <- si.surv(fil$par, workr2, opt = FALSE)

alpha.surv <- apsi.surv$alpha.surv
sse.si.surv <- sum(resid(apsi.surv) "2)
sdhat.si.surv <- sqrt(sse.si.surv/df.residual (apsi.surv))

HAERBHHAFHHAAHHRRBRHHS
#fit growth models
HAHBHAFHBBHAHARBRRHHHS

si.growth <- function(theta,dat,opt=TRUE) {
## Fit single index model using gam call, given theta (defines alpha).
## Return ML if opt==TRUE and fitted gam with theta added otherwise.
## Suitable for calling from ’optim’ to find optimal theta/alpha.

alpha.growth <- c(1,theta) ## constrained alpha defined using free theta
kk <- sqrt(sum(alpha.growth~2))
alpha.growth <- alpha.growth/kk ## so now ||alphal|=1
x <- cbind(dat$TempAnn, dat$TempAM1l, dat$TempAM2, dat$TempJJ, dat$
RainAnn, dat$RainJJ,
dat$SnowAnn, dat$Snow_before, dat$Snow_after, dat$snow_£f_year

3

dat$Precip, dat$PackAnn, dat$PackD)

y.growth <- x%*%alpha.growth ## argument of smooth
bl <- gam(dat$masstl ~ s(dat$masst, bs="cr")+s(y.growth, bs="cr"
method="ML") ## fit model

if (opt) return(bl$gcv.ubre) else {
bl$alpha.growth <- alpha.growth ## add alpha
b1$J <- outer (alpha.growth,-theta/kk"2) ## compute Jacobian
for (j in 1:length(theta)) b1l$JI[j+1,j] <- b1$JI[j+1,j] + 1/kk #
dalpha_i/dtheta_j
return(bl)

}

} ## si.growth
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5 alpha.growth <- rep(NA, 13)

sse.si.growth <- rep(NA)
sdhat.si.growth <- rep(NA)

f1 <- optim(rep(1,12), si.growth, method="BFGS", hessian = TRUE, dat=
workr2)

apsi.growth <- si.growth(fl$par, workr2, opt = FALSE)

alpha.growth <- apsi.growth$alpha.growth

sse.si.growth<- sum(resid(apsi.growth) ~2)

sdhat.si.growth <- sqrt(sse.si.growth/df.residual (apsi.growth))

5 HHAHHAHAHAH RS HAHAH B HAHAHBHHAHA

#fit reproduction models
HHFHAHHBHARARHRRAARBHBRRRAR SRS

si.reproduction <- function(theta,dat,opt=TRUE) {
## Fit single index model using gam call, given theta (defines alpha).
## Return ML if opt==TRUE and fitted gam with theta added otherwise.
## Suitable for calling from ’optim’ to find optimal theta/alpha.

alpha.reproduction <- c(1,theta) ## constrained alpha defined using free

theta
kk <- sqrt(sum(alpha.reproduction~2))
alpha.reproduction <- alpha.reproduction/kk ## so now ||alphal]|=1
x <- cbind(dat$TempAnn, dat$TempAM2, dat$RainAnn, dat$RainJJ,
dat$snow_f_year, dat$Precip, dat$PackAnn, dat$PackD)
y.reproduction <- x%*J%alpha.reproduction ## argument of
smooth

bl <- gam(dat$had_lit ~ s(dat$masst, bs="cr") + s(y.reproduction, bs="cr

"), family=binomial, method="ML") ## fit model

if (opt) return(bl$gcv.ubre) else {
bl$alpha.reproduction <- alpha.reproduction ## add alpha
b1$J <- outer (alpha.reproduction,-theta/kk~2) ## compute Jacobian
for (j in 1:length(theta)) b1$J[j+1,j]1 <- b1$I[j+1,j]l + 1/kk  ##
dalpha_i/dtheta_j
return(bl)

}

} ## si.reproduction

alpha.reproduction <- rep(NA, 13)
sse.si.reproduction <- rep(NA)
sdhat .si.reproduction <- rep(NA)

33 £1 <- optim(rep(1,7), si.reproduction, method="BFGS", hessian = TRUE, dat=

workr2)
apsi.reproduction <- si.reproduction(fl$par, workr2, opt = FALSE)

5 alpha.reproduction <- apsi.reproduction$alpha.reproduction

sse.si.reproduction<- sum(resid(apsi.reproduction) ~2)

- sdhat .si.reproduction <- sqrt(sse.si.reproduction/df.residual (apsi.

reproduction))
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o HERHHARHHARHBAAHERARARHRARHRAHHH

#fit recruit size models
ittt HSHH UGS HS S SRS SRS R B S 1Y

si.recruit.size <- function(theta,dat,opt=TRUE) {
## Fit single index model using gam call, given theta (defines alpha).
## Return ML if opt==TRUE and fitted gam with theta added otherwise.
## Suitable for calling from ’optim’ to find optimal theta/alpha.

alpha.recruit.size <- c(1,theta) ## constrained alpha defined using free

theta
kk <- sqrt(sum(alpha.recruit.size”2))
alpha.recruit.size <- alpha.recruit.size/kk ## so now ||alphall|=1

x <- cbind (dat$TempAnn, dat$TempAM1l, dat$TempAM2, dat$TempJJ, dat$
RainAnn, dat$RainJJ,

dat$SnowAnn, dat$Snow_before, dat$Snow_after, dat$snow_£f_year

dat$Precip, dat$PackAnn, dat$PackD)
y.recruit.size <- xY*Jalpha.recruit.size ## argument of
smooth

bl <- gam(dat$MEAN_JS_MASS ~ s(dat$masst, bs="cr")+ s(y.recruit.size, bs

="cr"), method="ML") ## fit model

if (opt) return(bl$gcv.ubre) else {
bl$alpha.recruit.size <- alpha.recruit.size ## add alpha
b1$J <- outer(alpha.recruit.size,-theta/kk~2) ## compute Jacobian
for (j in 1:length(theta)) b1$J[j+1,j] <- b1$JIJ[j+1,j] + 1/kk ##
dalpha_i/dtheta_j
return (bl)

}

} ## si.recruit.size

alpha.recruit.size <- rep(NA, 13)
sse.si.recruit.size <- rep(NA)
sdhat.si.recruit.size <- rep(NA)

f1 <- optim(rep(1,12), si.recruit.size, method="BFGS", hessian = TRUE, dat

=workr2)
apsi.recruit.size <- si.recruit.size(fl$par, workr2, opt = FALSE)
alpha.recruit.size <- apsi.recruit.size$alpha.recruit.size
sse.si.recruit.size<- sum(resid(apsi.recruit.size) ~2)

sdhat.si.recruit.size <- sqrt(sse.si.recruit.size/df.residual(apsi.recruit

.size))

HuddhnnadASSHASSS SRR H RS S S S S S S S SS RS Y
#fit female number of offsprings models

76 HEHHAHAHAHBHHARAHAHBAHAHAHBHBHBAHAHBHHHHS

si.litter <- function(theta,dat,opt=TRUE) {
## Fit single index model using gam call, given theta (defines alpha).
## Return ML if opt==TRUE and fitted gam with theta added otherwise.
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181 ## Suitable for calling from ’optim’ to find optimal theta/alpha.

183 alpha.litter <- c(1,theta) ## constrained alpha defined using free theta
184 kk <- sqrt(sum(alpha.litter”~2))

185 alpha.litter <- alpha.litter/kk ## so now ||alphall|=1

186 x <- cbind(dat$TempAnn, dat$RainAnn, dat$Snow_after, dat$Precip, dat$

PackAnn)

187 y.litter <- x%x*Jalpha.litter ## argument of smooth

188 bl <- gam(dat$WEAN_F ~ s(dat$masst,bs="cr" )+ s(y.litter, bs="cr"),
family=poisson, method="ML") ## fit model

189 if (opt) return(bl$gcv.ubre) else {

190 bl$alpha.litter <- alpha.litter ## add alpha

191 b1$J <- outer(alpha.litter ,-theta/kk~2) ## compute Jacobian

192 for (j in 1:length(theta)) b1$J[j+1,j] <- b1$J[j+1,j]1 + 1/kk  ##
dalpha_i/dtheta_j

193 return (bl)

194 T

195 + ## si.litter

196

197 alpha.litter <- rep(NA, 13)
19s sse.si.litter <- rep(NA)
199 sdhat.si.litter <- rep(NA)

200 £1 <- optim(rep(1,4), si.litter , method="BFGS", hessian = TRUE, dat=
workr2)

202 apsi.litter <- si.litter (fi1$par, workr2, opt = FALSE)

203 alpha.litter <- apsi.litter $alpha.litter

200 sse.si.litter <- sum(resid(apsi.litter )~2)

205 sdhat.si.litter <- sqrt(sse.si.litter/df.residual (apsi.litter ))

207 HUHHHFHHASHHSHSSHSHHSHFSHSHH S HBSHAFHHSHHSSHSHH
208 #Define functions to calculate vital rates
200 HHHSHBHHSHHSHSAHSHHSHF S HSHH S HBSHSHH S HHSHSHH

211 alpha.surv.1l <- rep(NA, 13)
212 alpha.surv.1[1:11] <- alpha.surv
213 alpha.surv.1[12:13] <- 0

215 alpha.reproduction.1 <- rep(NA, 13)

216 alpha.reproduction.1[1:8] <- alpha.reproduction
217 alpha.reproduction.1[9:13] <- 0

219 alpha.litter.1 <- rep(NA, 13)

220 alpha.litter.1[1:5] <- alpha.litter

221 alpha.litter.1[6:13] <- 0

223 alpha<- cbind(alpha.surv.1l, alpha.growth, alpha.reproduction.l, alpha.
litter.1, alpha.recruit.size )

225 save (alpha, file="SIM alpha.Rdata")
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229

249

.surv <- alpha[l,1] *workr2$TempAnn + alpha[2,1] *workr2$TempAM1
alpha[3,1] *workr2$TempAM2 + alpha[4,1] *workr2$TempJJ + alphal[5,1]*workr2
$RainAnn + alpha[6,1]*workr2$RainJJ
+ alpha[7,1] *workr2$Snow_before + alphal[8,1]*workr2$Snow_after + alpha
[9,1] *workr2$snow_f_year
+ alpha[10,1] *workr2$Precip +alpha([11l,1]*workr2$PackD

+ <

2 y.growth <- alphal[l,2]*workr2$TempAnn + alpha[2,2]*workr2$TempAM1

+ alpha[3,2] *workr2$TempAM2 + alpha([4,2]*workr2$TempJJ + alphal[5,2]*workr2
$RainAnn + alphal[6,2] *workr2$RainJJ

+ alpha[7,2] *workr2$SnowAnn + alpha[8,2] *workr2$Snow_before + alpha[9,2]*
workr2$Snow_after + alpha[10,2]*workr2$snow_£f_year

5 + alpha[11,2] *workr2$Precip + alpha[12,2]*workr2$PackAnn +alpha[13,2]*

workr2$PackD

y.reproduction <- alpha[1l,3]*workr2$TempAnn

+ alpha[2,3] *workr2$TempAM2 + alpha[3,3]*workr2$RainAnn + alphal[4,3]x*
workr2$RainJJ

+ alpha[5,3] *workr2$snow_f_year

+ alpha[6,3] *workr2$Precip + alphal[7,3]*workr2$PackAnn +alpha[8,3]*workr2$
PackD

s y.litter <- alphal[l,4]*workr2$TempAnn
+

alpha[2,4] *workr2$RainAnn + alpha[3,4]*workr2$Snow_after

5 + alpha[4,4] *workr2$Precip + alphal[5,4]*workr2$PackAnn

y.recruit.size <- alpha[l,5]*workr2$TempAnn + alpha[2,5]*workr2$TempAM1

+ alpha[3,5] *workr2$TempAM2 + alpha[4,5]*workr2$TempJJ + alphal[5,5]*workr2
$RainAnn + alpha[6,5]*workr2$RainJJ

+ alpha[7,5] *workr2$SnowAnn + alpha[8,5] *workr2$Snow_before + alpha[9,5]*
workr2$Snow_after + alpha[10,5]*workr2$snow_f_year

+ alpha[11,5] *workr2$Precip + alpha[12,5]*workr2$PackAnn +alpha[13,5]*
workr2$PackD

workr3 <- cbind(workr2, y.surv, y.growth, y.reproduction, y.litter, y.
recruit.size )

255 surv.gam <- gam(fy_surv ~ s(z, bs="cr")+ s(y.surv, bs="cr"), family=

263

binomial, data=workr3)

7 growth.gam <- gam(zl ~ s(z, bs="cr")+s(y.growth, bs="cr"), data=workr3)

sse.growth <- sum(resid(growth.gam) ~2)

) sdhat.growth <- sqrt(sse.growth/df.residual (growth.gam))

reproduction.gam <- gam(had_lit s(z, bs="cr")+s(y.reproduction, bs="cr"

, family=binomial, data=workr3)
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264

280

208

litter.gam <- gam(WEAN_F ~ s(z, bs="cr")+s(y.litter, bs="cr"), family=
poisson, data=workr3)

recruit.size.gam <- gam(juv_mass ~ s(z, bs="cr")+s(y.recruit.size, bs="cr"
), data=workr3)

s sse.recruit.size <- sum(resid(recruit.size.gam) ~2)

sdhat.recruit.size <- sqrt(sse.recruit.size/df.residual(recruit.size.gam))

HA#HHHHH BB RARA A HH AR BB RRH
# survival probability
HAe#HHHHHHBHARARRA RS HBBBHRH

s_z <- function(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn, RainlJJ,
Snow_before, Snow_after, snow_f_year, Precip, PackD,
alpha){

y.surv <- alpha[1l,1]*TempAnn + alpha[2,1]*TempAM1

+ alpha[3,1] *TempAM2 + alpha[4,1]*TempJJ + alpha[5,1]*RainAnn + alpha
[6,1]*RainJJ

+ alpha[7,1]*Snow_before + alpha[8,1]*Snow_after + alpha[9,1]*snow_f_
year

+ alpha[10,1] *Precip +alpha[11,1]*PackD

survdata <- data.frame(z=z, y.surv = y.surv)
mu.surv <- predict(surv.gam, newdata=survdata)

u <- exp(mu.surv)

return (u/ (1+u))

# survival mean

mu_surv <- function(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn, RainJJ,
Snow_before, Snow_after, snow_f_year, Precip, PackD,
alpha){

y.surv <- alpha[1l,1]*TempAnn + alpha[2,1]*TempAM1

+ alpha[3,1] *TempAM2 + alpha[4,1]*TempJJ + alpha[5,1]*RainAnn + alpha
[6,1]1*RainJJ

+ alpha[7,1]*Snow_before + alpha[8,1]*Snow_after + alpha[9,1]*snow_f_
year

+ alpha[10,1] *Precip +alpha[11,1]*PackD

survdata <- data.frame(z=z, y.surv = y.surv)
mu.surv <- predict(surv.gam, newdata=survdata)
return (mu.surv)

88



307 # Derivative of survival mean

308

300 d_mu_surv <- function(z, TempAnn, TempAMl1l, TempAM2, TempJJ, RainAnn,
RainJJ,

310 Snow_before, Snow_after, snow_f_year, Precip, PackD
, alpha){

312 y.surv <- alpha[1l,1]*TempAnn + alpha[2,1]*TempAM1

313 + alpha[3,1] *TempAM2 + alpha[4,1]*TempJJ + alpha[5,1]*RainAnn + alpha
[6,1]*RainJJ

314 + alpha[7,1] *Snow_before + alpha[8,1]*Snow_after + alphal[9,1]*snow_f_
year

315 + alpha[10,1] #*Precip +alphal[11,1]*PackD

317 survdata <- data.frame(z=0, y.surv = y.surv)

318 d.mu.surv <- derivatives(surv.gam,newdata=survdata ,n=100,eps=1e-07, type
= "central", unconditional = FALSE)

319 return(d.mu.surv$derivative)

300 HUHHHBHFHHASHFHHSHHFSHSH
323 #Growth function
324 HHHBHBAHHBHBHBHHBEHBHAHH

326 g_zlz <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

327 SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn, PackD, alpha){

330 y.growth <- alpha[1,2]*TempAnn + alpha[2,2]*TempAM1

331 + alpha[3,2] *TempAM2 + alpha[4,2]*TempJJ + alpha[5,2]*RainAnn + alpha
[6,2] *RainJJ

332 + alpha[7,2] *SnowAnn + alpha[8,2]*Snow_before + alpha[9,2]*Snow_after +
alpha[10,2] *snow_f_year

333 + alpha[11,2]*Precip + alpha[12,2]*PackAnn +alpha[13,2]*PackD

336 growthdata <- data.frame(z=z, y.growth = y.growth)

338 mu.growth <- predict(growth.gam, newdata=growthdata, type="response")

340 return (dnorm(zl, mean=mu.growth, sd=sdhat.growth))

314 mu_growth <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

345 SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn, PackD, alpha){

346
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349

350

363

364
365
366

367

368

379
380

381

y.growth <- alpha[1,2]*TempAnn + alpha[2,2]*TempAM1

+ alpha[3,2] *TempAM2 + alpha[4,2]*TempJJ + alpha[5,2]*RainAnn + alpha
[6,2] *RainJJ

+ alpha[7,2] *SnowAnn + alpha[8,2]*Snow_before + alphal[9,2]*Snow_after +
alpha[10,2] *snow_f_year

+ alpha[11,2] *Precip + alpha[12,2] *PackAnn +alpha[13,2]*PackD

growthdata <- data.frame(z=z, y.growth = y.growth)
mu.growth <- predict(growth.gam, newdata=growthdata, type="response')

return(mu. growth)

d_mu_growth <- function(zl, z, TempAnn, TempAMl1l, TempAM2, TempJJ, RainAnn,
RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn, PackD, alpha){

y.growth <- alpha[1,2]*TempAnn + alphal[2,2]*TempAM1

+ alpha[3,2] *TempAM2 + alpha[4,2]*TempJJ + alpha[5,2]*RainAnn + alpha
[6,2] *RainJJ

+ alpha[7,2] *SnowAnn + alpha[8,2]*Snow_before + alpha[9,2]*Snow_after +
alpha[10,2] *snow_f_year

+ alpha[11,2] *Precip + alpha[12,2] *PackAnn +alpha[13,2]*PackD

growthdata <- data.frame(z=0, y.growth = y.growth)
d.mu.growth <- derivatives(growth.gam, newdata=growthdata ,n=100,
eps=1e-07,type = "central", unconditional =
FALSE)
return(d.mu.growth$derivative)

HAAAHHHH AR AR A H AR R B R AR AFRHHH R AR AR HHHHHHHH
# Reproduction and number of offsprings
HA#HHHHBBHAAHHH R R B R AR A B RS H R BB R AR H R R BB RHH

pb_z <- function(z, TempAnn, TempAM2, RainAnn, RainJJ, Snow_after,
snow_f_year, Precip, PackAnn, PackD, alpha){

.reproduction <- alpha[1,3]*TempAnn

alpha[2,3] *TempAM2 + alpha[3,3]+*RainAnn + alphal[4,3]*RainJJ
alpha[5,3] *snow_f_year

alpha[6,3] *Precip + alpha[7,3]*PackAnn +alpha[8,3]*PackD

+ 4+ + <
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391

392

393

394

.litter <- alpha[1l,4]*TempAnn
alpha[2,4] *RainAnn + alpha[3,4]*Snow_after
alpha[4,4] *Precip + alpha[5,4]*PackAnn

+ <

+

reproductiondata <- data.frame(z=z, y.reproduction = y.reproduction)
mu.reproduction <- predict(reproduction.gam, newdata=reproductiondata)
litterdata <- data.frame(z=z, y.litter = y.litter)

mu.litter <- predict(litter.gam, newdata=litterdata)

u <- exp(mu.reproduction)

litter.number <- exp(mu.litter)
return(u/ (1+u)*litter.number)

mu_reproduction <- function(z, TempAnn, TempAM2, RainAnn, RainJJ,

3

d_

snow_f_year, Precip, PackAnn, PackD, alpha){

.reproduction <- alpha[1,3]*TempAnn

alpha[2,3] *TempAM2 + alpha[3,3]*RainAnn + alphal[4,3]*RainJJ
alpha [5,3] *snow_f_year

alpha[6,3] *Precip + alpha[7,3]*PackAnn +alpha[8,3]*PackD

+ o+ + <

reproductiondata <- data.frame(z=z, y.reproduction = y.reproduction)
mu.reproduction <- predict(reproduction.gam, newdata=reproductiondata)

return(mu.reproduction)

mu_reproduction <- function(z, TempAnn, TempAM2, RainAnn, RainJJ,

snow_f_year, Precip, PackAnn, PackD, alpha){

.reproduction <- alpha[1,3]*TempAnn

alpha[2,3] *TempAM2 + alpha[3,3]+*RainAnn + alpha[4,3]*RainJJ
alpha[5,3] *snow_f_year

alpha[6,3] *Precip + alphal[7,3]*PackAnn +alpha[8,3]*PackD

+ o+ 4+ <

reproductiondata <- data.frame(z=0, y.reproduction = y.reproduction)

d.mu.reproduction <- derivatives(reproduction.gam, newdata=
reproductiondata ,n=100,
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eps=1e-07,type =

unconditional = FALSE)
return(d.mu.reproduction$derivative)

3

"central",

mu_litter <- function(z, TempAnn, RainAnn, Snow_after, Precip, PackAnn,

alpha){

y.litter <- alpha[1,4]*TempAnn
+ alpha[2,4] *RainAnn + alpha[3,4]*Snow_after
+ alpha([4,4] *Precip + alphal[5,4]*PackAnn

litterdata <- data.frame(z=z, y.litter = y.litter)

mu.litter <- predict(litter.gam, newdata=litterdata)

return(mu.litter)

d_mu_litter <- function(z, TempAnn, RainAnn, Snow_after, Precip, PackAnn,

alpha){

y.litter <- alphal[1,4]*TempAnn

eps=1e-07,type = "central", unconditional =

+ alpha[2,4] *RainAnn + alpha[3,4]*Snow_after
+ alpha([4,4] #*Precip + alphal[5,4]*PackAnn
litterdata <- data.frame(z=0, y.litter = y.litter)
d.mu.litter <- derivatives(litter.gam, newdata=litterdata ,n=100,
FALSE)
return(d.mu.litter$derivative)
}
HEHHHASHHHASRAH B SRR BS SRR B R RS

5 ## Recruit Size function

HHAHAH B HAHAH RS HAHAH B RS HAH RS

c_zlz <- function(zl, z, TempAnn, TempAM1, TempAM2,
RainJJ,
SnowAnn, Snow_before, Snow_after,
PackAnn ,
PackD, alpha){

TempJJ, RainAnn,

snow_f_year, Precip,

y.recruit.size <- alpha[1l,5]*TempAnn + alpha[2,5]*TempAM1
+ alpha[3,5] *TempAM2 + alpha[4,5]*TempJJ + alpha[5,5]*RainAnn + alpha

[6,5] *RainJJ
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190

191

192

193

194

195

196

197

198

199

500

501

502

503

+ alpha[7,5] *SnowAnn + alpha[8,5]*Snow_before + alpha[9,5]*Snow_after +
alpha[10,5] *snow_f_year
+ alpha[11,5] *Precip + alpha[12,5] *PackAnn +alpha[13,5]*PackD

recruitsizedata <- data.frame(z=z, y.recruit.size = y.recruit.size)

mu.recruit.size <- predict(recruit.size.gam, newdata=recruitsizedata,
type="response")

return(dnorm(zl, mean=mu.recruit.size, sd=sdhat.recruit.size))

mu_recruit_size <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ,
RainAnn, RainlJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn,
PackD, alpha){

y.recruit.size <- alpha[1l,5]*TempAnn + alpha[2,5]*TempAM1

+ alpha[3,5] *TempAM2 + alpha[4,5]*TempJJ + alpha[5,5]*RainAnn + alpha
[6,5]*RainJJ

+ alpha[7,5] *SnowAnn + alpha[8,5]*Snow_before + alpha[9,5]*Snow_after +
alpha[10,5] *snow_f_year

+ alpha[11,5] *Precip + alpha[12,5] *PackAnn +alpha[13,5]*PackD

recruitsizedata <- data.frame(z=z, y.recruit.size = y.recruit.size)

mu.recruit.size <- predict(recruit.size.gam, newdata=recruitsizedata,
type="response")

return(mu.recruit.size)

d_mu_recruit_size <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ,
RainAnn, RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_
year, Precip, PackAnn,
PackD, alpha){

y.recruit.size <- alpha[1,5]*TempAnn + alpha[2,5]*TempAM1

+ alpha[3,5] *TempAM2 + alpha[4,5]*TempJJ + alpha[5,5]*RainAnn + alpha
[6,5]*RainJJ

+ alpha[7,5] *SnowAnn + alpha[8,5]*Snow_before + alpha[9,5]*Snow_after +
alpha[10,5] *snow_f_year

+ alpha[11,5] *Precip + alpha[12,5] *PackAnn +alpha[13,5]*PackD
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recruitsizedata <- data.frame(z=0, y.recruit.size

d.mu.recruit.size <- derivatives(recruit.size.gamn,
recruitsizedata ,n=100,
eps=1e-07,type =
unconditional = FALSE)
return(d.mu.recruit.size$derivative)

HHAHHAHASHAHH

535 #### Kernel

536
37

5:

538

541

560

561
562
563

564

HHEAHHAHAHBAHH

#Define the survival-growth kernel

RainJJ,

SnowAnn, Snow_before, Snow_after,

Precip, PackAnn, PackD, alpha){

return(s_z(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
Snow_before, Snow_after, snow_f_year, Precip,

xg_z1z(zl, z, TempAnn, TempAM1, TempAM2, TemplJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,

PackAnn, PackD, alpha))

#Define the reproduction kernel

RainJJ,

SnowAnn, Snow_before, Snow_after,

, PackAnn, PackD, alpha) {
return(pb_z(z, TempAnn, TempAM2, RainAnn, RainJJ,

= y.recruit.size)

newdata=

"central",

) surv.growth<- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ,

Snow_after,

snow_f_year, Precip, PackAnn, PackD, alpha)
, TempJJ, RainAnn,

*p_r*c_zlz(zl, z, TempAnn, TempAM1, TempAM2
RainJJ,
SnowAnn, Snow_before, Snow_after
PackAnn, PackD, alpha))

; ## Build the discretized kernel
mk_k <- function(m, alpha, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,

RainJJ,

SnowAnn, Snow_before, Snow_after,
PackAnn,

PackD, L, U) {

# mesh width

h <- (U - L)/m
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RainAnn ,

snow_f_year,
RainJJ,
PackD, alpha)

RainAnn, RainJJ,
Precip,

fecundity<- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,

snow_f_year, Precip

, snow_f_year, Precip,

snow_f_year,

Precip,



565

566

567

568

569

570

571

meshpts <- L + ((1:m) - 1/2) x h

P <- h * (outer(meshpts, meshpts, surv.growth, TempAnn=TempAnn, TempAMl=
TempAM1, TempAM2=TempAM2,
TempJJ=TempJJ, RainAnn=RainAnn, RainJJ=RainJJ, SnowAnn=
SnowAnn, Snow_before=Snow_before,
Snow_after=Snow_after, snow_f_year = snow_f_year, Precip
=Precip, PackAnn=PackAnn,
PackD=PackD, alpha=alpha))
F <- h * (outer (meshpts, meshpts, fecundity, TempAnn=TempAnn, TempAMl=
TempAM1, TempAM2=TempAM2,
TempJJ=TempJJ, RainAnn=RainAnn, RainJJ=RainJJ, SnowAnn=
SnowAnn, Snow_before=Snow_before,
Snow_after=Snow_after, snow_f_year = snow_f_year, Precip
=Precip, PackAnn=PackAnn,
PackD=PackD, alpha=alpha))
K <- P + F
return(list (K = K, h=h, meshpts = meshpts, P = P, F = F))

HHAHAHAHBHHAHRAHAH AR BHH AR AR AR AR BB HAHAH AR BH B AR AR AHBH B HH

nBigMatrix <- 100

>n.est <- 50000

n.runin <- 500
minsize <- 4.67

585 maxsize <- 7.05

608

609

n.years <- 26

HHdHHHSH RS HHS S B S HHSSHH
#Run stochastic IPM
HEeHHHAHHAHHB S HHS S HHH S HBHEHH

TempAnn .1 <- weather1$TempAnn
TempAnn <- matrix(NA, nrow=nBigMatrix, ncol=26)

5 for (i in 1:nBigMatrix){

TempAnn[i,] <- TempAnn.1
}

TempAM1.1 <- weather1$TempAM1
TempAM1 <- matrix(NA, nrow=nBigMatrix, ncol=26)
for(i in 1:nBigMatrix){

TempAM1[i,] <- TempAM1.1

s }

TempAM2 .1 <- weather1$TempAM2
TempAM2 <- matrix(NA, nrow=nBigMatrix, ncol=26)
for(i in 1:nBigMatrix){
TempAM2[i,] <- TempAM2.1
}
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638
639
640
641
642
643
644

645

TempJJ.1 <- weather1$TempJJ
nrow=nBigMatrix, ncol=26)
for(i in 1:nBigMatrix){

TempJJ[i,] <- TempJJ.1

TempJJ <- matrix(NA,

}

RainAnn.1 <- weatherl
RainAnn <- matrix (NA,

$RainAnn
nrow=nBigMatrix,

for(i in 1:nBigMatrix){
RainAnn[i,] <- RainAnn.1

}

RainJJ.1 <- weather1$RainJJ
nrow=nBigMatrix, ncol=26)
for(i in 1:nBigMatrix){

RainJJ[i,] <- RainJJ.1

RainJJ <- matrix (NA,

}

SnowAnn.1 <- weatheril
SnowAnn <- matrix (NA,

$SnowAnn
nrow=nBigMatrix,

for(i in 1:nBigMatrix){
SnowAnn[i,] <- SnowAnn.1

3

Snow_before[i,] <-

3

5 Snow_before.1 <- weatherl1$Snow_before
Snow_before <- matrix (NA,
7 for(i in 1:nBigMatrix){

Snow_before.1

Snow_after.1 <- weather1$Snow_after

Snow_after <- matrix(NA,

for(i in 1:nBigMatrix){
Snow_after[i,] <- Snow_after.1

3

7 snow_f_year.l <- weatherl$snow_f_year
snow_f_year <- matrix(NA,

for(i in 1:nBigMatrix){

snow_f_year[i,] <-

3

snow_f_year.1

Precip.1 <- weather1$Precip

Precip <- matrix(NA,

nrow=nBigMatrix,

5 for(i in 1:nBigMatrix){

Precip[i,] <- Precip.1

3

PackAnn .1 <- weather1$PackAnn

) PackAnn <- matrix (NA,

nrow=nBigMatrix,
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ncol=26)

ncol=26)

nrow=nBigMatrix, ncol=26)

nrow=nBigMatrix, ncol=26)

nrow=nBigMatrix, ncol=26)

ncol=26)

ncol=26)



661 for (i in 1:nBigMatrix){

662 PackAnn[i,] <- PackAnn.1
663

664

665 PackD.1 <- weatheri1$PackD
666 PackD <- matrix(NA, nrow=nBigMatrix, ncol=26)
667 for (i in 1:nBigMatrix){

668 PackD[i,] <- PackD.1
669 F

670

671

672 iterate_model<-function (alpha,n.years,n.est) {

-~

673

674 #Construct the yearly kernels
676 K.year.i <- array(NA,c( n.years,nBigMatrix ,nBigMatrix))

678 for(i in 1l:n.years){

680 year .K<- mk_k(nBigMatrix, alpha, TempAnn[,i], TempAM1[,i], TempAM2[,i
1,

681 TempJJ[,i], RainAnn[,i], RainJJ[,i],

682 SnowAnn[,i], Snow_before[,i], Snow_after[,i],

683 snow_f_year[,i], Precipl[,i], PackAnn[,i], PackD[,i],

684 minsize, maxsize)

685 K.year.i[i,,] <- year.K$K

686 }

687

688 h <- year.K$h;

689

690

691 #Calculate mean kernel, v and w

693 mean . kernel <- apply(K.year.i,2:3,mean)

695 w <- Re(eigen(mean.kernel)$vectors[,1]);
<- Re(eigen(t(mean.kernel))$vectors[,1]);

<

# scale eigenvectors <v,w>=1
w <- abs(w)/sum(h*abs(w))
700 v <- abs(v)
v <- v/(h*xsum(v*w))
cat (h*sum(v*w)," should = 1","\n")

704 v.Ktw <- rep(NA,n.years)
706 for(i in 1:n.years) {
707 v.Ktw[i] <- sum(v*(K.year.il[i,,] %*% w))*h

708 T

710 #initialize variables
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nt<-rep(1/nBigMatrix ,nBigMatrix)
rt.V <- rt.N <- rep(NA,n.est)

#Iterate model

for (year.t in 1l:n.est){

if (year.t%%10000==0) cat("iterate: "

#Select year at random

year.i <- sample(l:n.years,1)

H

year.t,"\n");

#iterate model with year-specific kermnel

nt1<-K.year.il[year.i,,] %*7 nt
sum.ntl<-sum(nt1l)

#Calculate log growth rates

rt.V[lyear.t] <- log(sum(ntl*v)/sum(nt*v))

rt.N[year.t] <- log(sum(ntl)/sum(nt))

nt <- ntl / sum.ntil

3

return(list(rt.N=rt.N,rt.V=rt.V,meshpts=year.K$meshpts,
mean .kernel=mean.kernel ,v.Ktw=v.Ktw))

}

iter <- iterate_model(alpha, n.years

rt.N <- iter$rt.N;
rt.V <- iter$rt.V;

5 Ls . Nt <- mean(rt.N)
s SE.Ls.Nt <- sqrt(var(rt.N)/length(rt

acf(rt.N,plot=FALSE)$acf [2:5];

Ls.Vt <- mean(rt.V)

SE.Ls.Vt <- sqrt(var(rt.V)/length(rt
Vt <- sqrt(var(rt.V)/length(rt.V))
acf(rt.V,plot=FALSE)$acf [2:5];

cat ("Log Lambda S using Nt ",Ls.Nt,"
-2*SE.Ls.Nt,"\n")

cat("Log Lambda S using Vt ",Ls.Vt,"
-2*SE.Ls.Vt,"\n")

,n.est)

SN

V)

95%

957%

C.

i

",Ls.Nt+2*SE.Ls.Nt,"

",Ls.Vt+2*xSE.Ls .Vt ,"

lam.1l <- Re(eigen(iter$mean.kernel)$values[1])

var.v.Ktw <- var(iter$v.Ktw)
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44

46

approx.Ls <- log(lam.1) -

cat("Stochastic Log Lambda

var.v.Ktw/(2*lam.1*1lam.1)

" mean(rt.N),"

HA#HHHBARAAHHH B BB R AR HH AR B R RS S A B BB AR AR SR BB BB R AR HH R BB RAHH
## Parameter Perturbations By Single Index Model
HABHHHBRAARBHHRB R RS HHH B AR AR SH BB BB AR AR SRR BB R AR SH R R BB AR SRS H

library (mgcv)
library(gratia)

set.seed (234)

load ("SIM alpha.Rdata")
source ("SIM.R")

approx=",approx.Ls,"\n")

HAHHHHHHAHAHAAAHAAAHH A AR BB R BB HHHAHHASSAAAA R AR BB R BB B R AR A HSSSS A H SR RS
#Stochastic perturbation analysis
HUdHHHHH##HHAASHAAAA SR AR BB A BB HHHHH SR SS RS SR R H R R RS RSSSSSS Y

params <- alpha

nBigMatrix <- 100

b n.est <- 50000

n.runin <- 500
minsize <- 4.67
maxsize <- 7.05
n.years <- 26

year.i <- sample(l:n.years,n.est+l,replace=TRUE)

K.year.i <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

for(i in 1:n.years){

year .K<- mk_k(nBigMatrix,

|
TempJJ [,
SnowAnn [

i], RainAnn([,i],
,il, Snow_beforel[,i],

snow_f_year[,i],

minsize,
K.year.i[i,,] <- year.

3

h <- year.K$h;
meshpts <- year.K$meshpt

#Calculate mean kernel,

maxsize)
K$K

S

v and w

alpha,

Precipl[,i],

99

TempAnn [,i],

RainJJ[,1i],

‘stoc_pert_analysis<—function(params,n.est,n.runin,C.t,C.t.mean){

TempAM1[,i], TempAM2[,1i

Snow_after[,i],

PackAnn[,i],

PackD[,i],



90

91

93

94

96

97

mean . kernel <- apply(K.year.i,2:3,mean)

w <- Re(eigen(mean.kernel)$vectors[,1]);
<- Re(eigen(t(mean.kernel))$vectors[,1]);

<

# scale eigenvectors <v,w>=1

w <- abs(w)/sum(h*abs(w))

v <- abs(v)

v <- v/(h*xsum(v*w))

cat (h*sum(v*w)," should = 1","\n")

#Esimate Lambda s
#initialize variables

nt<-rep(1/nBigMatrix ,nBigMatrix)
rt.V <- rt.N <- rep(NA,n.est)

#Iterate model
for (year.t in 1:n.est){
if (year.t%%10000==0) cat("iterate: ", year.t,"\n");
#iterate model with year-specific kermel
nt1<-K.year.il[year.il[year.t],,] %*% nt
sum.ntl<-sum(nt1l)
#Calculate log growth rates
rt.V[year.t] <- log(sum(ntl*v)/sum(nt*v))
rt.N[year.t] <- log(sum(ntl)/sum(nt))
nt <- ntl / sum.ntl
3
Ls <- exp(mean(rt.V))
### Get wt time series ###
wt<-matrix (1/nBigMatrix, nrow=n.est+l, ncol=nBigMatrix) ;
for (i in 1:n.est) {
K <- K.year.il[year.i[i],,]
wt[i+1,]  <-K %x% wt[i,]

wt[1+1,] <-wt[i+1,]/sum(wt[i+1,]);
if (i%%10000==0) cat("wt ",i,"\n")
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98

99

100 ### Get vt time series ###

101 vt<-matrix (1/nBigMatrix, nrow=n.est+1l, ncol=nBigMatrix) ;
102 for (i in (n.est+1) :2) {

104 K <- K.year.il[year.i[i],,]
105 vt[i-1,] <- vtl[i,] %*% K

106 vt[i-1,] <- vt[i-1,]/sum(vt[i-1,]);
107 if (i%%10000==0) cat("vt ",i,"\n")
109 }

111 elas.s <- matrix(0,nBigMatrix ,nBigMatrix)
112 elas.s.mean <- matrix(0,nBigMatrix ,nBigMatrix)

114 for (year.t in n.runin:(n.est-n.runin)) {
116 #standard calculations needed for the various formulae

118 vtl.wt <- outer(vt[year.t+1,],wt[year.t,],FUN="x%")
119 vtl.C.wt <- vtl.wt * C.t[year.il[year.t],,]

121 vtl.C.wt.mean <- vtl.wt * C.t.mean[year.i[year.t],,]
122

123 K <- K.year.i[year.i[year.t],,]

124

125 vtl.K.wt <- sum(vt[year.t+1,] * (K %*% wtlyear.t,]))

126

127 #calculation of the standard elasticities

128

129 elas.s <-elas.s + (vtl1.C.wt) / vtl.K.wt;

130 elas.s.mean <-elas.s.mean + (vtl.C.wt.mean) / vtl.K.wt;

134 elas.s <- elas.s/(n.est-2*n.runin+1)
135 elas.s.mean <- elas.s.mean/(n.est-2*n.runin+1)

138 return(list (meshpts=year.K$meshpts, h=h, elas.s=elas.s, elas.s.mean=elas
.s.mean,
139 mean .kernel=mean.kernel, Ls=Ls))

141 }

143 HHHBBHAAAHHHBEH AR FH A BB RARFH AR B R AA B R B BB AR AR B R B BB R AR R AR B R AR H R A BB R AR S HH
144 #Let’s do the survival TempAnn slope. Other variables are similar.

5 HHHHAHAHAHHRBHAHAH AR B R AR HH A BB AR A SRS BB AR AR B S B BB R SRS H AR B R AR H R R BB AR RS HHH
146

117 set .seed (53241986)
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140 #Select the parameters to use
150 params.to.use <- alpha

153 #First calculate the mean of perturbation kermnels
155 beta_s.2.mean <- mean(params.to.use[1,1])

157 Ct_z1lz <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

158 SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn, PackD, alpha){

159

160 growth <- g_zl1z(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainlJJ,

161 SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn, PackD, alpha)

162 survival <- s_z(z, TempAnn, TempAMl, TempAM2, TempJJ, RainAnn, RainJJ,

163 Snow_before, Snow_after, snow_f_year, Precip, PackD,
alpha)

164 surv.mean <- mu_surv(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

165 Snow_before, Snow_after, snow_f_year, Precip,
PackD, alpha)

166 surv.d <- d_mu_surv(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

167 Snow_before, Snow_after, snow_f_year, Precip,
PackD, alpha)

168

169 return(growth * survival *TempAnn /(l+exp(surv.mean)) * surv.d * alpha
[1,11)

170 }

172 C.pert <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

174 for(i in 1:n.years){

175 year.C <- h * (outer (meshpts, meshpts, Ct_zlz, TempAnn[,i], TempAM1[,i
1, TempAM2[,il,

176 TempJJ[,i], RainAnn[,i], RainJJ[,i],

177 SnowAnn[,i], Snow_before[,i], Snow_after[,il],

178 snow_f_year[,i], Precip[,i], PackAnn[,i], PackD[,i
i

179 alpha = params.to.use))

180 C.pert[i,,] <- year.C

181 }

182

183 Ct_zlz_mean <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

184 SnowAnn, Snow_before, Snow_after, snow_f_year,

Precip, PackAnn, PackD, alpha){
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189

190

191

193

194

195

196
197
198
199
200

201

; elas.s.sd

; cat ("Stochastic
- cat ("Stochastic

growth <- g_z1z(z1l, z, TempAnn, TempAM1l, TempAM2, TempJJ, RainAnn,
RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn, PackD, alpha)
survival <- s_z(z, TempAnn, TempAMl, TempAM2, TempJJ, RainAnn, RainJJ,
Snow_before, Snow_after, snow_f_year, Precip, PackD,
alpha)
surv.mean <- mu_surv(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,
Snow_before, Snow_after, snow_f_year, Precip,
PackD, alpha)
surv.d <- d_mu_surv(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,
Snow_before, Snow_after, snow_f_year, Precip,
PackD, alpha)

return(growth * survival *TempAnn /(l+exp(surv.mean)) * surv.d *

.2.mean)

3

C.pert.mean <- array(NA,c(n.years,nBigMatrix,nBigMatrix))

for(i in 1:n.years){
year.C <- h * (outer (meshpts, meshpts,
[,i], TempAM2[,i],
TempJJ[,i],
SnowAnn [,i],
snow_f_year[,i],

1,
alpha = params.to.
C.pert.mean[i,,] <- year.C
}
pert.K <- stoc_pert_analysis(params.to.use, n.est, n.runin,
.mean)
elas.s <- sum(pert.K$elas.s)

elas.s.mean <- sum(pert.K$elas.s.mean)
<- elas.s-elas.s.mean
",elas.s,"\n")
",elas.s.

cat ("Stochastic
cat("Stochastic

elasticity
elasticity mean
elasticity sd "
sensitivity
nll

HH#SHHHHSHH S UGBS HSHH SRS H SRS 1Y
#GROWTH Parameter Perturbation

23 HE#HAHAHHAHAHAHHAHAHAH B HAHAHBHS

103

RainAnn[,i],
Snow _
Precipl[,i],

Ct_zlz_mean,TempAnn[,i],
RainJJ[,i],
before[,i], Snow_after|[,

PackAnn[,i],

use))

mean,"\n")

,elas.s.sd,"\n")
mean ",pert.K$Ls*elas.s.mean/beta_s.2.mean,"\

C.pert,

beta_s

TempAM1

i],
PackD[,1i

C.pert



205 HARAHABHHHHHHHHAAHHAAHHAHAHARBRBRHHHHHAHHHAAHHHHH AR BB BB R R B HHHFHHHSR SR HHH
226 #Growth function: TempAnn. Other variables are similar.
227 HARHHHHBHHRBHHHHAAFAAAHAH AR AR BB BRRBHFHAABRRRHH A AR AR BB BB BB R R HRARRRR SRS HH

230 set.seed (563241986)

232 #Select the parameters to use
233 params.to.use <- alpha

236 #First calculate the mean of perturbation kernels
235 beta.g.2.mean <- mean(params.to.use[1,2])

20 Ct_zlz <- function(zl,z,TempAnn, TempAM1, TempAM2,TempJJ, RainAnn, RainJJ,
241 SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn, PackD, alpha){

243 growth <- g_zl1z(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

244 SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn, PackD, alpha)

245 survival <- s_z(z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn, RainlJJ,

246 Snow_before, Snow_after, snow_f_year, Precip, PackD,
alpha)

247 growth.mean <- mu_growth(zl, z, TempAnn, TempAM1, TempAM2, TempJJ,
RainAnn, RainlJJ,

248 SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn, PackD, alpha)

249 growth.d <- d_mu_growth(zl, z, TempAnn, TempAM1, TempAM2, TempJJ,
RainAnn, RainJJ,

250 SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn, PackD, alpha)

N
ot

253 return( survival*growth*TempAnn* (zl-growth.mean)/(sdhat.growth™2 )=x*
growth.d*alpha[1,2])
254 }

256 C.pert <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

258 for(i in 1l:n.years){

259 year.C <- h * (outer (meshpts, meshpts, Ct_zlz, TempAnn[,i], TempAM1[,i
1, TempAM2[,i],

260 TempJJ[,i], RainAnn[,i], RainJJ[,i],

261 SnowAnn[,i], Snow_before[,i], Snow_after[,i],

262 snow_f_year[,i], Precip[,i], PackAnn[,i], PackD[,1i
1,

263 alpha = params.to.use))
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264
265

266

269

289

290

291

294
295

296

297
208

299

C.pert[i,,] <- year.C
}

Ct_zlz_mean <- function(zl,z,TempAnn, TempAM1, TempAM2,TempJJ, RainAnn,

RainJJ,

SnowAnn, Snow_before, Snow_after, snow_f_year,

Precip, PackAnn, PackD, alpha){

growth <- g_zl1z(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,

SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,

PackAnn, PackD, alpha)

survival <- s_z(z, TempAnn, TempAM1l, TempAM2, TempJJ, RainAnn, RainJJ,
Snow_before, Snow_after, snow_f_year, Precip, PackD,

alpha)
growth.mean <- mu_growth(zl, z, TempAnn, TempAM1, TempAM2, TempJJ,
RainAnn, RainJJ,

SnowAnn, Snow_before, Snow_after, snow_f_

Precip, PackAnn, PackD, alpha)
growth.d <- d_mu_growth(zl, z, TempAnn, TempAM1, TempAM2, TempJJ,
RainAnn, RainJJ,

year,

SnowAnn, Snow_before, Snow_after, snow_f_year,

Precip, PackAnn, PackD, alpha)

return( survival*growth*TempAnn* (zl-growth.mean)/(sdhat.growth~2
growth.d *beta.g.2.mean)
by

C.pert.mean <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

for(i in 1:n.years){
year.C <- h * (outer (meshpts, meshpts, Ct_zlz_mean, TempAnn[,i],
TempAM1[,i], TempAM2[,i],
TempJJ[,i], RainAnn[,i], RainJJ[,il],
SnowAnn[,i], Snow_before[,i], Snow_after[,i],

) *

snow_f_year[,i], Precip[,i], PackAnn[,i], PackD[,1i

1,
alpha = params.to.use))
C.pert.mean[i,,] <- year.C
3
pert.K <- stoc_pert_analysis(params.to.use, n.est, n.runin, C.pert,
.mean)
elas.s <- sum(pert.K$elas.s)

elas.s.mean <- sum(pert.K$elas.s.mean)

) elas.s.sd <- elas.s-elas.s.mean

cat ("Stochastic elasticity ",elas.s,"\n")
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302
303

304

305

306

cat ("Stochastic elasticity mean ",elas.s.mean,"\n")

cat ("Stochastic elasticity sd ",elas.s.sd,"\n")
cat ("Stochastic sensitivity mean ",pert.K$Ls*elas.s.mean/beta.g.2.mean,"\
nll

308 HAHAHBHHAHAHBHRAHAHRHRAHAHAHRAHAHAHEH

326

330

335

338
339

340

341

342

##Reproduction
HA#HHHHBHA AR A AR BB AR AR HH SRR BB R AR HHH

HHAHAHAHHBHAHAHAHAHHBHAHAHAHAH BB H ARG H AR RS RS H AR A H A S AS RS H AR AR A SRS RS H AR AR EH

3 #Reproduction function: TempAnn. Other variables are similar.

HHHHHASHH A SSRGS H U SR UG HH A SR H UGS H A SSRGS H USRS HH A S HH A SSRGS H BB SRR HH
set.seed (53241986)

#Select the parameters to use
params.to.use <- alpha

#First calculate the mean of perturbation kermnels

beta_rp.2.mean <- mean(params.to.use[1,3])

5 Ct_zlz <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,

RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn,
PackD, alpha){

recruit.size <- c_zl1z(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,

RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn,
PackD, alpha)
reproduction <- pb_z(z, TempAnn, TempAM2, RainAnn, RainJJ, Snow_after,
snow_f_year, Precip, PackAnn, PackD, alpha)
reproduction.mean <- mu_reproduction(z, TempAnn, TempAM2, RainAnn,

RainJJ,
snow_f_year, Precip, PackAnn, PackD
, alpha)
reproduction.d <- d_mu_reproduction(z, TempAnn, TempAM2, RainAnn,
RainJJ,
snow_f_year, Precip, PackAnn, PackD
, alpha)

return(p_r*recruit.size * reproduction *TempAnn /(l+exp(reproduction.
mean)) * reproduction.d * alphal[1,3])
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313 C.pert <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

344

345 for (i in 1:n.years){

346

364

365

366

367

368

369

}

year.C <- h * (outer (meshpts, meshpts, Ct_zlz, TempAnn[,i], TempAM1[,i
1, TempAM2[,il],
TempJJ[,i], RainAnn[,i], RainJJ[,i],
SnowAnn[,i], Snow_beforel[,i], Snow_after[,il],
snow_f_year[,i], Precipl[,i], PackAnn[,i], PackD[,i
1,
alpha = params.to.use))
C.pert[i,,] <- year.C

Ct_zlz_mean <- function(zl, z, TempAnn, TempAM1l, TempAM2, TempJJ, RainAnn,

3

C.

RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn, PackD, alpha){

recruit.size <- c_z1z(zl, z, TempAnn, TempAM1l, TempAM2, TempJJ, RainAnn,
RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn,
PackD, alpha)
reproduction <- pb_z(z, TempAnn, TempAM2, RainAnn, RainJJ, Snow_after,
snow_f_year, Precip, PackAnn, PackD, alpha)
reproduction.mean <- mu_reproduction(z, TempAnn, TempAM2, RainAnn,
RainJJ,
snow_f_year, Precip, PackAnn, PackD

, alpha)
reproduction.d <- d_mu_reproduction(z, TempAnn, TempAM2, RainAnn,
RainJJ,
snow_f_year, Precip, PackAnn, PackD
, alpha)

return(p_r*recruit.size * reproduction *TempAnn /(l+exp(reproduction.
mean)) * reproduction.d
*beta_rp.2.mean)

pert.mean <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

for(i in 1:n.years){

}

year.C <- h * (outer (meshpts, meshpts, Ct_zlz_mean,TempAnn[,i], TempAM1
[,il, TempAM2[,il],
TempJJ[,i], RainAnn[,i], RainJJ[,i],
SnowAnn[,i], Snow_beforel[,i], Snow_after[,il],
snow_f_year[,i], Precipl[,i], PackAnn[,i], PackD[,i
1,
alpha = params.to.use))
C.pert.mean[i,,] <- year.C

107



384
385
386
387
388

389

404
405
406
407
408
409

410

413
414

416

pert.K <- stoc_pert_analysis(params.to.use, n.est, n.runin, C.pert, C.pert

.mean)
elas.s <- sum(pert.K$elas.s)
elas.s.mean <- sum(pert.K$elas.s.mean)
elas.s.sd <- elas.s-elas.s.mean
cat ("Stochastic elasticity ",elas.s,"\n")
cat ("Stochastic elasticity mean ",elas.s.mean,"\n")

cat("Stochastic elasticity sd ",elas.s.sd,"\n")
cat("Stochastic sensitivity mean ",pert.K$Ls*elas.s.mean/beta_rp.2.mean,"

\n")

HHeHHHAHAHBS R HHS S HEHSSY
####### Litter Number

5 HHHHAHAHHAHAHAHHSHAHH

HARBHHHH AR AR AR B R AR A AR R R R R AR AR AR AR B R AR H AR B R AR AR H B R AR AR AR B R AR AR HHHHHRAHS
#Litter Number: TempAnn. Other variables are similar.
HARBHHHHARARA AR B R AR AR AR HH BB R AR B R AR B R AR H AR B R AR A B R R B BB R AR SRS R BB AR SRR BB RARS

set.seed (53241986)

#Select the parameters to use
params.to.use <- alpha

#First calculate the mean of perturbation kernels
beta_litter.2.mean <- mean(params.to.use[1,4])

Ct_zlz <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,

RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn,
PackD, alpha){
recruit.size <- c_zl1z(zl, z, TempAnn, TempAM1l, TempAM2, TempJJ, RainAnn,
RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn,
PackD, alpha)
reproduction <- pb_z(z, TempAnn, TempAM2, RainAnn, RainJJ, Snow_after,
snow_f_year, Precip, PackAnn, PackD, alpha)
litter.d <- d_mu_litter(z, TempAnn, RainAnn, Snow_after, Precip,
PackAnn, alpha)
return(p_r*recruit.size * reproduction *litter.d *TempAnn * alphal[1l,4])
}
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163

C.

pert <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

for(i in 1:n.years){

5}

year.C <- h * (outer (meshpts, meshpts, Ct_zlz, TempAnn[,i], TempAM1[,i
1, TempAM2[,il],
TempJJ[,i], RainAnn[,i], RainJJ[,i],
SnowAnn[,i], Snow_beforel[,i], Snow_after[,il],
snow_f_year[,i], Precip[,i], PackAnn[,i], PackD[,i
1,
alpha = params.to.use))
C.pert[i,,] <- year.C

Ct_zlz_mean <- function(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,

}

C.

RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn, PackD, alpha)({

recruit.size <- c_zl1z(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn,
PackD, alpha)
reproduction <- pb_z(z, TempAnn, TempAM2, RainAnn, RainJJ, Snow_after,
snow_f_year, Precip, PackAnn, PackD, alpha)
litter.d <- d_mu_litter(z, TempAnn, RainAnn, Snow_after, Precip,
PackAnn, alpha)

return(p_r*recruit.size * reproduction * litter.d *TempAnn * beta_litter
.2.mean)

pert.mean <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

for(i in 1:n.years){

)+

year.C <- h * (outer (meshpts, meshpts, Ct_zlz_mean,TempAnn[,i], TempAM1
[,il, TempAM2[,il],
TempJJ[,i], RainAnn[,i], RainJJ[,i],
SnowAnn[,i], Snow_before[,i], Snow_after[,il],
snow_f_year[,i], Precip[,i], PackAnn[,i], PackD[,i

1,
alpha = params.to.use))
C.pert.mean[i,,] <- year.C
pert.K <- stoc_pert_analysis(params.to.use, n.est, n.runin, C.pert, C.pert
.mean)
64 elas.s <- sum(pert.K$elas.s)
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165
466
167
468
469

170

elas.s.mean <- sum(pert.K$elas.s.mean)

elas.s.sd <- elas.s-elas.s.mean

cat ("Stochastic elasticity ",elas.s,"\n")
cat("Stochastic elasticity mean ",elas.s.mean,"\n")
cat ("Stochastic elasticity sd ",elas.s.sd,"\n")

cat ("Stochastic sensitivity mean ",pert.K$Ls*elas.s.mean/beta_litter.2.
mean, "\n")

HHAHAHHAHAEH SR AR AR HA

75 #Recruit Size

489
490
191
492
493
494

195

496

197

498

499

500

503

506

s HEHHAHBARAHBHHAHAHHS

s HHHAHHHHAHARAHAHHHBAHARAHAH AR BAHAHAHAH AR BH B AR AR AR AR BH BB AR AR AR BH BB AR AR HH

#Recruit Size: TempAnn. Other variables are similar.
HARBHHHHHAAHHAASHAAAH A AR AR BB BB R R HHHAASHAAAAHH AR R B AR R B R R R HHH RS S SHAA SR SRS

set.seed (53241986)

5 #Select the parameters to use

params.to.use <- alpha

#First calculate the mean of perturbation kermnels
beta.rc.2.mean <- mean(params.to.use[1,5])

Ct_zlz <- function(zl,z,TempAnn, TempAM1l, TempAM2,TempJJ, RainAnn, RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year, Precip,
PackAnn, PackD, alpha){

reproduction <- pb_z(z, TempAnn, TempAM2, RainAnn, RainJJ, Snow_after,
snow_f_year, Precip, PackAnn, PackD, alpha)

recruit.size <- c_zl1z(zl, z, TempAnn, TempAM1, TempAM2, TempJJ, RainAnn,
RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn,
PackD, alpha)
recruit.size.mean <- mu_recruit_size(zl, z, TempAnn, TempAM1, TempAM2,
TempJJ, RainAnn, RainlJJ,
SnowAnn, Snow_before, Snow_after,
snow_f_year, Precip, PackAnn,
PackD, alpha)
recruit.size.d <- d_mu_recruit_size(zl, z, TempAnn, TempAM1, TempAM2,
TempJJ, RainAnn, RainlJJ,
SnowAnn, Snow_before, Snow_after,
snow_f_year, Precip, PackAnn,
PackD, alpha)
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508

C.

return( p_r*reproduction* recruit.size * (zl-recruit.size.mean )/ (sdhat.
recruit.size”2 )
*recruit.size.d*TempAnn*alpha[1,5])

pert <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

for(i in 1:n.years){

. }

year.C <- h * (outer (meshpts, meshpts, Ct_zlz, TempAnn[,i], TempAM1[,i
1, TempAM2[,il,
TempJJ[,i], RainAnn[,i], RainJJ[,i],
SnowAnn[,i], Snow_beforel[,i], Snow_after[,il],
snow_f_year[,i], Precip[,i], PackAnn[,i], PackD[,i
1,
alpha = params.to.use))
C.pert[i,,] <- year.C

Ct_zlz_mean <- function(zl,z,TempAnn, TempAM1, TempAM2,TempJJ, RainAnn,

3

C

RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn, PackD, alpha){

reproduction <- pb_z(z, TempAnn, TempAM2, RainAnn, RainJJ, Snow_after,
snow_f_year, Precip, PackAnn, PackD, alpha)

recruit.size <- c_z1z(zl, z, TempAnn, TempAM1l, TempAM2, TempJJ, RainAnn,
RainJJ,
SnowAnn, Snow_before, Snow_after, snow_f_year,
Precip, PackAnn,
PackD, alpha)
recruit.size.mean <- mu_recruit_size(zl, z, TempAnn, TempAM1l, TempAM2,
TempJJ, RainAnn, RainlJJ,
SnowAnn, Snow_before, Snow_after,
snow_f_year, Precip, PackAnn,
PackD, alpha)
recruit.size.d <- d_mu_recruit_size(zl, z, TempAnn, TempAM1, TempAM2,
TempJJ, RainAnn, RainlJJ,
SnowAnn, Snow_before, Snow_after,
snow_f_year, Precip, PackAnn,
PackD, alpha)
return( p_r*reproduction* recruit.size * (zl-recruit.size.mean )/(sdhat.
recruit.size”"2 )
*recruit.size.d*TempAnn*alphal[1,5])

.pert.mean <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))
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5 cat ("Stochastic sensitivity mean

for(i in 1l:n.years){
year.C <- h * (outer (meshpts, meshpts, Ct_zlz_mean, TempAnn[,i],
TempAM1[,i], TempAM2[,il],
TempJJ[,i], RainAnn[,i], RainJJ[,il],
SnowAnn[,i], Snow_before([,i], Snow_after[,i],
snow_f_year[,i], Precip[,i], PackAnn[,i], PackD[,1i
] >
alpha = params.to.use))
C.pert.mean[i,,] <- year.C

554 }

- pert.K <- stoc_pert_analysis(params.to.use, n.est, n.runin, C.pert, C.pert

.mean)
elas.s <- sum(pert.K$elas.s)
elas.s.mean <- sum(pert.K$elas.s.mean)
elas.s.sd <- elas.s-elas.s.mean
cat ("Stochastic elasticity ",elas.s,"\n")
cat("Stochastic elasticity mean ",elas.s.mean,"\n")

" elas.s.sd,"\n")

cat ("Stochastic elasticity sd

\n")

HARBRHHHAHAHHAAAHHRRRBRBHHHFHFHHAA SRR AR R BB RS
## Kernel Perturbation by Single Index Model
HAEHBBRHHHAABFRRAH AR AR BB BB R R AHBRAR SRS R AR R BB RS

5 workr2 <- read_csv("work6_2017.csv")

s source ("Standard Graphical Pars.R")
weatherl <- read_csv("weatherl.csv")
s load ("SIM alpha.Rdata")

source ("SIM.R")

HAHBBBHHAAHHHRAHHAAHHARRR BB BB R R R HHHRRHHA SRR BB B R BB R R R AR HH SRS S SRR 2R
#Stochastic perturbation analysis

4 HHBBHHHBHHHBGHHAGHHASHH BB SHH RS HH BB HBSHH A HH BB HH B G HH BB H B HH A HHHEHH
5 set.seed (53241986)

nBigMatrix <- 100
n.est <- 50000
n.runin <- 500
minsize <- 4.67
maxsize <- 7.05
n.years <- 26

3 params <- alpha

stoc_pert_analysis<-function(params,n.est,n.runin){

year.i <- sample(l:n.years,n.est+l,replace=TRUE)
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K.year.i <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))
P.year.i <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))
F.year.i <- array(NA,c(n.years,nBigMatrix ,nBigMatrix))

for(i in 1:n.years){

year .K<- mk_k(nBigMatrix ,params[,i], TempAnn[i], TempAM1[i],

1,
TempJJ[i], RainAnn[i], RainJJ[i],

SnowAnn[i], Snow_beforel[i], Snow_after[i],
PackD[i],

snow_f_year[i], Precip[i], PackAnn[i],
, maxsize)

K.year.i[i,,] <- year.K$K

P.year.i[i,,] <- year.K$P

F.year.i[i,,] <- year.K$F

}
h <- year.K$h;
#Calculate mean kernel, v and w
mean . kernel <- apply(K.year.i,2:3,mean)
mean.kernel .P <- apply(P.year.i,2:3,mean)

mean.kernel .F <- apply(F.year.i,2:3,mean)

w <- Re(eigen(mean.kernel)$vectors[,1]);
<- Re(eigen(t(mean.kernel))$vectors[,1]);

<

# scale eigenvectors <v,w>=1

w <- abs(w)/sum(h*abs (w))

v <- abs(v)

v <= v/(h*sum(v*w))

cat (h*sum(v*w)," should = 1","\n")

#Esimate Lambda s
#initialize variables

nt<-rep(1/nBigMatrix ,nBigMatrix)
rt.V <- rt.N <- rep(NA,n.est)

#lterate model
for (year.t in 1:n.est){

if (year.t%%10000==0) cat("iterate: ", year.t,"\n");

#iterate model with year-specific kermnel
nt1<-K.year.il[year.ilyear.t]l,,] %*% nt
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88
89
90
91
92

93

96

3

sum.ntl<-sum(nt1l)
#Calculate log growth rates
rt.V[year.t] <- log(sum(ntl*v)/sum(nt*v))

rt.N[year.t] <- log(sum(ntl)/sum(nt))
nt <- ntl / sum.ntl

Ls <- exp(mean(rt.V))

### Get wt and Rt time series #H##
wt<—matrix(1/nBigMatrix, nrow=n.est+1, ncol=nBigMatrix);

for (i in 1:n.est) {

K <- K.year.i[year.i[il],,]
wt [1+1,] <-K %*% wt[i,]

wt[i+1,] <-wtl[i+1,]/sum(wtl[i+1,]);

if (i%%10000==0) cat("wt ",i,"\n")

### Get vt time series #H##
vt<-matrix (1/nBigMatrix, nrow=n.est+l, ncol=nBigMatrix);
for (i in (n.est+1):2) {

K <- K.year.i[year.i[i],,]
vt[i-1,] <- vt[i,] %*% K

vt[i-1,] <- vt[i-1,]1/sum(vt[i-1,]1);
if (1i%%10000==0) cat("vt ",i,"\n")

sens.s <- matrix(0,nrow=nBigMatrix ,ncol=nBigMatrix);

elas.s <- sens.s

for (i in n.runin:(n.est-n.runin)) {

#standard calculations needed for the various formulae
K &= K.year.i[year.i[i],,]

vtl.wt = ve[i+1,]%*%t(wt[1,])

vtl.K.wt <- sum(vt[i+1,] * (K %*% wt[i,]1))

#calculation of the standard sensitivities and elasticities
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sens.

elas.

elas
sens

s<-sens.s+vtl.wt/vtl.K.ut;

s<-elas.s+Kx(vtl.wt/vtl.K.wt);

.8 <- elas.s/(n.est-2%n.runin+1)
.8 <- Ls*sens.s/(n.est-2*n.runin+1)

return(list (meshpts=year .K$meshpts ,h=h,sens.s=sens.s,elas.s=elas.s,

mean .kernel=mean.kernel ,Ls=Ls,
mean .kernel .F=mean.kernel .F))

mean .kernel .P=mean.kernel .P,

HHAHAHAHBH RS HAHAHAHBAH AR AR AHRHBAH AR AR AH R AR HA R A HAHBH BB SR A H AR BB H SR A RS

pert.K <- stoc_pert_analysis(wm.par.est.mm,n.est,n.runin)

meshpts <-

h.inv.2 <- 1 /

Kmean .
Pmean.

5 Fmean .

.sens
.elas

23 Iia v e S NS

.mean

K.sd.e

cat ("sum elasticities

.mean.
.mean.

pert .K$meshpts

(pert.K$h~2)

elas <- pert.K$mean.kernel * pert.K$sens.s / pert.K$Ls
elas <- pert.K$mean.kernel.P * pert.K$sens.s / pert.K$Ls
elas <- pert.K$mean.kernel .F * pert.K$sens.s / pert.K$Ls

<- pert.K$sens.s * h.inv.2
<- pert.K$elas.s * h.inv.2

elas <-
elas <-
.elas <-

las <- K.

7 ## plot these

dev.off ()
par (mfrow=c(1,2))
ikeep <- which(meshpts>5 & meshpts<6.5) # use to extract a region to plot
rev(colorRampPalette (c(’darkred’,’red’,’blue’,’lightblue’)) (24))

filled.contour (meshpts[ikeep], meshpts[ikeep],

cols =

>

B

Kmean.elas * h.inv.2
Pmean.elas * h.inv.2
Fmean.elas * h.inv.2

elas - K.mean.elas

",sum(pert.K$elas.s),"

should be 1")

t(P.mean.elas[ikeep,ikeep])

xlab="mass (t), z", ylab="mass (t+1), z\’", col=cols)

75 filled.contour (meshpts [ikeep], meshpts[ikeep],

t(F.mean.elas [ikeep, ikeep])

xlab="mass (t), z", ylab="mass (t+1), z\’", <col=cols)
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