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Abstract

Nonparametric rank-based approaches in many situations provide more flexible mod-

eling specifications and robustness when the distribution of data differs from the assumed

distribution. This dissertation is mainly concerned with two robust Bayesian methods

using the ideas of rank-based approaches and least absolute deviations estimate.

We use simple linear model to propose our Bayesian Wilcoxon rank-based estimate,

and applied this estimate in linear model with measurement error, single-index model

and varying coefficient model. We use two classical real data examples to show that

our Bayesian Wilcoxon rank-based estimate is more efficient than normal rank-based

estimate. Some extensive simulation studies are proceed to demonstrate that Bayesian

Wilcoxon rank-based estimate successfully brings robustness to the results, and it also

inherits several advantages of Bayesian inference.

Another robust Bayesian method base on the idea of least absolute deviations (LAD)

estimate is also proposed in single-index model, and it is applied on single-index varying

coefficient model as well. The simulation studies show that the Bayesian LAD method

provides similar result to Bayesian Wilcoxon rank-based estimate with much less compu-

tation cost, and it does not lose much efficiency. The procedure of Bayesian LAD method

is much easier to achieve which makes it more feasible when dealing with complicated

models.
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Chapter 1

Introduction

1.1 Background

Nonparametric rank-based approaches in many situations provide more flexible mod-

eling specifications, can be much more efficient compared to traditional parametric meth-

ods when the distribution of data differs from the assumed distribution, and when the

assumed model is correct, do not lose much efficiency. Meanwhile, the Bayesian approach

to inference is appealing in incorporating prior information by Bayes ’ theorem into the

inference machinery, resulting in a unifying, constructive methodology of inference.

Historically, Bayesian modeling and non-parametric notions have been considered

incompatible. In order to clarify the difficulty, note that the parameter space of a non-

parametric model consists of one or more unknown functions. One assumes that unknown

functions belong to some appropriate function classes. Under this setup, the Bayesian

modeling, assuming all unknowns are random, requires the unknown functions to be

random and therefore requires priors to be used over function spaces. In contrast to

the parametric case in which the dimension of the space parameter is finite, Bayesian

nonparametric modeling requires an infinite dimensional parameter and therefore a prior

parameter over an infinite dimension.

The mainstream class of approaches in Bayesian nonparametric based on the Dirich-

let process priors, for which a considerable amount of research has been carried out over

the past forty years. The Dirichlet process, a random probability measure for a probabil-

ity measurement space, was the first prior on a function space, specifically the distribution

function space. It was formally developed by Ferguson (1973, 1974) and is now commonly
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referred to as Bayesian nonparametrics after Ferguson’s work has grown rapidly. In the

above-mentioned Bayesian nonparametric modeling, priors are assumed over function

spaces, but the usual method of calculating the posterior distribution, i.e. “the posterior

is proportional to the likelihood times the prior”, is not applicable here, since there is

no likelihood. As a result, the posterior distribution is obtained in a different way. Zhan

(2009) discussed a Bayesian approach to applying non-parametric rank-based methodol-

ogy to linear models instead of postulating a prior to a function space. They only assume

a prior distribution for the parameter(s)θ of interest in the unknown function. In the

mean time, they summarize the information in a sample of data x via the distribution of

a certain quantity, say T (X, θ), and use that distribution as a pseudo-likelihood. After

applying the Bayes theorem directly, they can obtain the complete posterior distribution

of T (X, θ). In this formulation, no specific form of the underlying distribution of data

is assumed, but we specify certain parameters of interest for the unknown function and

assign priors to these parameters.

One simple way to apply Bayesian rank-based estimators is to calculate the complete

posterior distribution for the parameter(s) θ of interest under the frame created by Zhan

(2009) in linear model. The disadvantage of this methodology is that, we need to figure

out the complete posterior distribution(s) for the parameter(s) when the specification

of the model changes. To circumvent this practical problem, we present a new method

to provide a simpler way to obtain Bayesian rank-based estimators in several models.

Consider a general model with additive errors and parameterized by θ given as yi =

f(xi, θ) + εi, for i = 1, . . . , n. Our specification requires a formulation of the problem

in the Mann-Whitney-Wilcoxon rank test framework where we need to create paired

differences of the errors εi−εj for j > i. This means we will be dealing with yi−yj for all

j > i as the response, and correspondingly f(xi, θ)−f(xj, θ) as the “model”. In addition

to the added computational burden of having to deal with
(
n
2

)
data points, we also note

that the responses are no longer independent of each other even if ε are independent and

identically distributed.
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From the well-established theory of multivariate linear regression (Seber and Lee,

2003), we know that while the correlation among response variables will not affect model

parameter estimates’ unbiasedness and consistency, it will affect the variance of the esti-

mated parameters. We could figure out the effect of this dependence under the Bayesian

framework for each of the different model specifications; however, that goes against our

motivation of creating a robust Bayesian estimation framework that can be easily applied

on different models. Using a working correlation structure is another reasonable way to

fix the problem. Since the working correlation structures for many models are known, we

can ignore the covariance first, then we apply the working correlation structure to correct

the variance of the estimated parameters.

Following a similar approach used for obtaining the aforementioned new Bayesian

Wilcoxon rank-based estimator, we can also calculate the least absolute deviation (LAD)

estimator under Bayesian framework for any additive model specification. The Bayesian

LAD estimator, however, does not require the pairing of the data, hence avoiding cor-

related response issue that we faced in the case of Bayesian Wilcoxon estimation. At

the same time, this is also a new robust Bayesian estimation approach with much lower

computational cost than the Bayesian Wilcoxon rank-based estimator. This gain in com-

putation time comes at a cost of loss in efficiency (Hettmansperger and McKean, 2011).

1.2 Motivation

Our research was initially motivated by ideas raised in two papers. The first is

Zhan (2009), which has been discussed in Section 1.1, and the second is Jureckova et al.

(2016) which will be discussed in Section 3.1. We started out with the goal of providing a

Bayesian rank-based estimator in linear model with measurement error; that is, the design

variables are measured with error. We quickly noticed that it was very difficult to derive

the complete posterior distribution of the parameters in linear model with measurement

error through a combination of ideas given in these two papers. On the other hand, with

proper specification of the likelihood function in software for Bayesian analysis such as

JAGS (Plummer, 2003), we should be able to obtain robust estimates measurement error

3



issue in linear model easily. We were interested in developing a robust Bayesian approach

which can take advantage of the machinery provided by existing software like JAGS and

can be easily used for a variety of model specifications.

Following a successful application of the proposed method in the linear model with

measurement error, we extended the approach to other models. One such model we

considered was the single-index model (SIM) proposed by Ichimura (1993). There is

some existing research for robust rank-based nonparametric estimation in single-index

model (Bindele et al., 2018), confidence intervals (Bindele et al., 2018), and variable

selection (Bindele et al., 2019). The approach used in these papers shows that the SIM

is treated quite differently from the linear model. However, the method we develop in

this dissertation is flexible enough to be used for SIM estimation. Theoretically, our

method should be able to proceed as long as we can express an appropriate likelihood

and model specification in software like JAGS. An interesting extension would be the

SIM under a measurement error scenario. We show that the classical Bayesian approach

based on a Gaussian likelihood could be used for estimation. We can also use the Bayesian

LAD method. However, the Bayesian Wilcoxon rank-based method presents a practical

challenge due to the lack of identifiability. This problem will be discuss in Section 4.4.

Since the SIM is the intercept case of the single-index varying coefficient model

(SIVCM), we were interested in whether our robust Bayesian approach could be applied

in the more complex SIVCM setup. Again, there is some existing research on rank-based

estimation of the SIVCM (Sun et al., 2019, Abebe et al., 2020), but none of them use

our Bayesian approach. We explore the possibility of extending the proposed Bayesian

computation approach to obtain robust nonparametric estimates of SIVCM parameters

as well as the coefficient functions.

1.3 Contribution

The main contribution of this dissertation is providing a Bayesian Wilcoxon rank-

based estimation procedure that can be used for a variety of models with additive random

error components.
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In Chapter 2, we consider the linear model to develop the Bayesian Wilcoxon rank-

based method. We explain the idea of using Laplace distribution as the likelihood on

paired data to obtain the Bayesian Wilcoxon rank-based estimate. With two real data

examples, we demonstrate that the resulting estimator is as robust as general Wilcoxon

rank-based estimator compared to the Bayesian Least Squares (BLS) estimator when

the data contain several outliers. The cross-validation result showed that the Bayesian

Wilcoxon rank-based estimator provides smaller prediction errors in a majority of the

cases considered. Since the pairwise differenced samples are no longer independent of

each other, the uncertainty of the estimated coefficients that is obtained by ignoring the

covariance structure will be possibly biased. We discuss a possible means to address the

problem using sandwich variance.

In Chapter 3, the linear model with measurement error scenario is introduced. We

used our Bayesian Wilcoxon rank-based method which is proposed in Chapter 2 to show

that this method can also be easily adapted for use on different models other than the

regular linear model, including the linear model with measurement error in the covari-

ates. Our simulation studies demonstrate that our approach that utilized the Bayesian

framework handles measurement error successfully while maintaining the robustness si-

multaneously. Compared to traditional approaches of dealing with measurement error,

our method is much more flexible and efficient when the model error follows a heavy

tailed distribution or the data contain outliers.

The single index model (SIM) is introduced in Chapter 4. We applied the approach

which is proposed in Chapter 2 on SIM. Moreover, to avoid issue of dependence effects on

biasing the standard errors of parameter estimates, we propose a new least absolute devi-

ation (LAD) method under Bayesian framework which is also robust with some trade off

in efficiency. Simulations illustrate that both the Bayesian Wilcoxon rank-based method

and the least absolute deviation method provide similar robustness. We applied these

two methods on a real data example. Again, we used a working correlation structure to

correct the bias on the standard errors caused by covariance when using the Bayesian

Wilcoxon rank-based estimate.
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In Chapter 5, we applied our robust Bayesian methods on varying coefficient (VC)

model, and discussed possible applications on SIVCM. A simulation study was provided

to show that our methods outperformed the BLS method for VC model when there

are outliers in the data or the error distribution is non-normal. We demonstrated an

application on a real data example where we can see that the Bayesian LAD approach

we proposed is robust and efficient in comparison to BLS method.
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Chapter 2

Bayesian Wilcoxon Estimate in Linear Model

2.1 Introduction to Bayesian Wilcoxon Rank-based Estimate in Linear Model

Without loss of generality, we consider the simplest linear regression model

Yi = α + βxi + εi

The least squares estimator can be obtained by minimizing the sum of squared residuals

β̂LS = Argmin ‖ε‖2

where ‖ε‖2 is the square of the Euclidean norm on Rn given by

‖ε‖2 =
n∑
i=1

ε2
i .

This is equivalent to maximizing the Gaussian likelihood given by

Yi ∼ N (β0 + β1xi, σ
2).

This will be the likelihood specification in classical Bayesian estimation.

Since we do not want to impose strong parametric assumptions on the underlying

population as the above classical Bayesian approach, the less restrictive assumption un-

der which a better procedure is possible seems to be absolute continuity of the error

distribution. Among classical rank-based statistics, the Wilcoxon rank statistic is one

that makes this assumption, in addition to finite Fisher information. In this case, the

rank-based Wilcoxon estimator of β is found as (Jaeckel, 1972)

7



β̂R = Argmin ‖ε‖R

where

‖ε‖R = 4
n∑
i=1

(
R (εi)−

n+ 1

2

)
εi (2.1)

where R (εi) =
∑n

j=1 1(εj ≤ εi), where 1(A) is the indicator of the set A, is the rank of

εi among the other residuals.

It can easily be shown that ‖ε‖2 is a norm as well as convex and non-negative as

a function of β. Jaeckel (1972) showed that ‖ε‖R is also convex and non-negative as

a function of β. However, it is easy to show that it is not a norm. It satisfies all the

properties of a norm except ‖ε‖R = 0 does not imply ε = 0. Instead, it is a pseudo-norm

(McKean and Schrader, 1980) and this will be apparent in our development below. This

is also the reason while it can be used to estimate the slope β of the linear model, it

cannot provide an estimate of the intercept α. We can estimate the intercept following

the estimation of the slope (Hettmansperger and McKean, 2011; Sievers and Abebe, 2004)

but for this dissertation we will focus solely on the estimation of the slope parameter.

We will demonstrate below that ‖ε‖R can be rewritten as

‖ε‖R =
n∑
i=1

n∑
j=1

|εi − εj| , ε ∈ Rn . (2.2)

Thus, minimization of ‖ε‖R to give the Wilcoxon rank-based estimator of β can be

obtained by calculating pairwise differences of the data as

εi − εj = (yi − yj)− β(xi − xj) .

Thus the rank-based estimator that minimizes

β̂R = Argmin
∑n

i<j |εi − εj|

can be calculate by maximizing the likelihood

Yi − Yj ∼ Laplace (β1 (xi − xj) , σ),

8



where σ is a scale parameter. This will the likelihood specification in the Bayesian

Wilcoxon rank-based estimation procedure.

The following theorem guarantees that using the Laplace distribution on pairwise dif-

ferences as the likelihood in Bayesian leads to the Bayesian Wilcoxon rank-based estimate

in linear model. This is a well-known result (Hettmansperger and McKean, 2011) but we

will provide the proof here for completeness as this forms the basis of our approach.

Theorem 1.

∑
i<j

|εj − εi| ∝
n∑
i=1

R (εi)

n+ 1
εi

Proof. ∑
i<j

|εj − εi| =
1

2

n∑
i=1

n∑
j=1

|εj − εi| (2.3)

=
1

2
[2(n− 1) ε(n) − 2

n−1∑
i=1

ε(i) + 2(n− 2)ε(n−1) − 2
n−2∑
i=1

ε(i) + . . .+ 2ε(2) − 2ε(i)] (2.4)

=
1

2
[2(n− 1) ε(n) + 2(n− 3)ε(n−1) + . . .+ 2(−n+ 3)ε(2) + 2(−n+ 1)ε(1)] (2.5)

= 2
n∑
i=1

(
R
(
ε(i)

)
− n+ 1

2

)
ε(i) (2.6)

= 2
n∑
i=1

(
R (εi)−

n+ 1

2

)
εi ∝

n∑
i=1

R (εi)

n+ 1
εi (2.7)

Dealing with the paired data will allow us to apply Bayesian Wilcoxon rank-based

method directly on different models as long as we can write out the likelihood function.

The limitation we have is that the models have to have additive errors and the responses

have to be continuous. Over the last two decades, there has been an “MCMC revolution”

in which Bayesian methods have become a highly popular and effective tool for the ap-

plied statistician. With the development of software like JAGS, logistic regression, mixed

effect regression, Cox model or any other models can be easily arranged in Bayesian anal-

ysis.
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2.2 Standard Error Correction for Dependence

Assuming the errors ε1, . . . , εn are independent and identically distributed according

to a distribution with location 0 and finite variance σ2, we can obtain the covariance

structure of the paired responses yi − yj for all j > i. We can show that the structure of

the covariance matrix looks like Table 2.1.

y1 − y2 y1 − y3 y1 − y4 y2 − y3 y2 − y4 y3 − y4

y1 − y2 2σ2 σ2 σ2 −σ2 −σ2 0
y1 − y3 σ2 2σ2 σ2 σ2 0 −σ2

y1 − y4 σ2 σ2 2σ2 0 σ2 σ2

y2 − y3 −σ2 σ2 0 2σ2 σ2 −σ2

y2 − y4 −σ2 0 σ2 σ2 2σ2 σ2

y3 − y4 0 −σ2 σ2 −σ2 σ2 2σ2

Table 2.1: An example of the covariance matrix when sample size is four

It can be considered as an unstructured covariance matrix, but there are some pat-

terns we can use to form up the general case. It is clear that the diagonals are 2σ2, and

some of them will be 0. The covariance between yi − yj and yi − yk is σ2, while the

covariance between yi−yj and yj−yk is −σ2. By factoring out σ2, the covariance matrix

can be rewritten as the product of σ2 and a structure matrix A.

However, directly incorporating the covariance structure in Bayesian estimation of

multivariate linear regression via a maximization of a Laplace likelihood is quite complex.

First, we need to state the conditional likelihood and then find the appropriate conju-

gate prior to obtain the solution. It is similar to the univariate case of linear Bayesian

regression. Consider the regression problem in matrix form, which is Y = XB + E, we

can write our conditional likelihood as

ρ (E|Σ) ∝ |Σ|−n/2 exp
(
−1

2
tr
(
ETEΣ−1

))
Rewrite the error E in terms of X, Y and B, and we can get

ρ (Y|X,B,Σ) ∝ |Σ|−n/2 exp
(
−1

2
tr
(
(Y −XB)T(Y −XB)Σ−1

))
According to Sinay and Hsu (2014), we can develop a conditional form for the priors:

10



ρ (β,Σ) = ρ (Σ) ρ (β|Σ)

where ρ (Σ) ∼ W−1 (V0,ν0), ρ (β|Σ) ∼ N
(
β0,Σ⊗Λ−1

0

)
, ⊗ denotes the Kronecker

product, and Λ0 is the prior precision matrix.

Then the posterior distribution can be expressed by using the above prior distribution

and the likelihood:

ρ (β,Σε|Y,X) ∝ |Σε|−(ν0+2)/2 exp

(
−1

2
tr
(
V0Σ

−1
ε

))
× |Σε|−1 exp

(
−1

2
tr
(

(B−B0)T Λ0 (B−B0) Σ−1
ε

))
× |Σε|−n/2 exp

(
−1

2
tr
(
(Y −XB)T(Y −XB)Σ−1

ε

))

Sinay and Hsu (2014) proposed a more useful form of this posterior

ρ (β,Σ|Y,X) ∝ |Σ|−(ν0+n+2)/2

× exp
(
−1

2
tr
((

V0 + (Y −XBn)T (Y −XBn) + (Bn −B0)T Λ0 (Bn −B0)
)

Σ−1
))

× |Σ|−1 exp
(
−1

2
tr
(

(B−Bn)T (XTX + Λ0

)
(B−Bn) Σ−1

))
Since it takes the form of a Matrix normal distribution times a inverse-Wishart

distribution, we can get

ρ (B|Y,X,Σ) ∼MN
(
Bn,Λ

−1
n ,Σ

)
,

where Bn =
(
XTX + Λ0

)−1 (
XTY + Λ0B0

)
and Λn = XTX + Λ0.

In our case, Σ is known if σ can be estimated. To the best of our knowledge, the

idea that replacing the normal distribution with Laplace distribution in the above setup

to get the posterior distribution for B is straightforward. Then, we can correct the biased

estimator of Cov(β̂), but this correction violates the idea that we want a method which

is practically solvable in JAGS, so that it can be applied on different models directly.

That is why we decide to use the sandwich variance to get the right Cov(β̂).

With this covariance issue, β̂ is still asymptotically unbiased but it is no longer

efficient. Huber (1967) and White (1980) first introduced the sandwich estimator. The
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naive estimate of Cov(β̂) is
(
XTΣ−1X

)−1
, where Σ is the covariance matrix. Essentially,

Bayesian Wilcoxon rank-based estimate is equivalent to the LAD solution based on the

paired data. Thus we replace Σ by the product of τ 2
S and the structure matrix A, where

τ 2
S is a scale parameter that can be estimated from the data (Koul et al., 1987). Thus

Cov(β̂) ≈ τ−2
S

(
XTA−1X

)−1
. More details on τS are given in Section 4.3.

2.3 Real Data Examples

In order to demonstrate the application in linear regression model, we offer two

examples to compare the Bayesian Wilcoxon estimates and the rank-based estimates of

the regression coefficients by using Wilcoxon scores.

We start with a simple set of regression data and proceed to multiple regression

issues. The response to this data set is the number of international telephone calls made

in Belgium from 1950 to 1973 (ten of millions). From year 1964 to 1969, the data was

heavily contaminated because of using a different recording system. The system provided

the total number of minutes of these calls and this is why the values of Y from year 1964

to 1969 are much larger than it should be. Time, the years, is our only variable predictor.

The data are discussed in Rousseeuw and Leroy (1987).

Figure 2.1: LS, Wilcoxon and Bayesian Wilcoxon fits in telephones calls data
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The traditional Wilcoxon rank-based estimates of the intercept and slope can be

found using the R package Rfit. These are −7.13 and 0.145, respectively, while the LS

estimates are −26 and 0.504. In Figure 2.1 we give the scatter-plot of the data overlaid

with the LS, Wilcoxon and Bayesian Wilcoxon fits. It is clear that the years 1964 through

1969 had a profound effect on the LS fit (black line) while the Wilcoxon fit (blue line) and

Bayesian Wilcoxon fit (red line) were much less sensitive to these years, and the Bayesian

Wilcoxon estimate is still unbiased even if we ignore the covariance causing by pairing

the original data. Regarding to the uncertainty, Cov(β̂) is changed from 0.0304 to 0.0273

after using the correction of sandwich variance. We can see that the years 1963 and 1970

were also partially affected by the new recording system, which means about a quarter

to one third of the data are outliers. The robustness of Bayesian Wilcoxon estimate is

well demonstrated by this example.

As a large data set, we consider the data on the salaries of professional baseball

pitchers for the 1987 baseball season. This data set was taken from the data set on

baseball salaries, which was used in the 1988 ASA Graphics Section Poster Session. It

can be obtained at the web site http://lib.stat.cmu.edu/datasets. The dataset

has the salary data of 176 pitchers at the beginning of 1987 as the response variable.

We consider the career summary statistics from 1986 professional baseball season as the

predictors. They are years in professional baseball, average of wins per year, average

of losses per year, earned run average, average of games per year, average innings per

year and average saves per year. It is a well known dataset which contains several large

outliers. There are three identified outliers corresponding to the pitchers Rick Sutcliff,

Phil Niekro and Steve Carlton. They are three outstanding pitchers, but their salaries

are low because they are at the end of careers (more than 20 years of pitching). However,

the number of years should be positively correlated to the salary.

As we can see in Table 2.2, Bayesian Wilcoxon rank-based fit provided similar re-

sults with much smaller standard deviations for all of the coefficients. The corrected

standard deviations (CSD) are showed in the last column. Taking the effect caused by

the covariance into consideration may increase the uncertainty of the estimate, but the
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Estimate
(Rank)

SD
(Rank)

Estimate
(BRank)

SD
(BRank)

CSD
(BRank)

intercept 4.2192 0.3246 4.418 0.2677 0.1995
logYears 0.8391 0.0438 0.8282 0.0054 0.0254
aveWins 0.0451 0.0277 0.0387 0.0030 0.0101
aveLosses -0.0242 0.0263 -0.0305 0.0031 0.0631
era -0.1461 0.0691 -0.1599 0.0078 0.0631
aveGames 0.0061 0.0039 0.0052 0.0004 0.0002
aveInning 0.0042 0.0026 0.0037 0.0003 0.0001
aveSaves 0.0121 0.0113 0.0102 0.0012 0.0017

Table 2.2: Comparison results based on telephone calls data

uncertainty is still smaller than normal rank estimate. In particular, the predictor, years

in professional baseball is the most important factor among others. This is the main

reason why the three players we mentioned before with large values of years but relevant

low salaries should be considered as influential outliers.

Table 2.3 shows the results of a cross-validation study. An eight-fold cross-validation

was performed to compare the predictive performance of the Bayesian Wilcoxon rank-

based estimator (BRank) and the normal rank-based estimator. The average of the

prediction errors for BRank estimate is slightly smaller, but among those eight folds,

BRank estimate provides smaller prediction errors in six folds. In this example, BRank

estimate shows its robustness and efficiency comparing with normal rank-based estimate.

F1 F2 F3 F4 F5 F6 F7 F8 Average
BRank 0.839 0.110 0.367 0.247 0.222 0.147 0.282 0.103 0.290
Rank 0.863 0.104 0.336 0.267 0.226 0.150 0.294 0.110 0.294

Table 2.3: Comparison results based on baseball pitcher data
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Chapter 3

Linear Model with Measurement Error

3.1 Introduction to the measurement error modeling

In many research situations, measurement error can occur and occurs when a variable

of interest cannot be accurately observed, but is observed with error instead. Measure-

ment error, also referred as errors-in-variables (Stefanski, 2000), may occur in a variety

of circumstances, including, but not limited to miscalibration of a measuring instrument,

sampling error, misclassification, modeling of abundance estimates, and whenever the

analyzed responses are estimated. The effects of ignoring measurement error in analyzes

were well documented, including bias in parameter estimation and power loss. (Carroll

et al., 2006). Measurement error may be classified as either Berkson or classical in a

continuous random variable. Berkson measurement error (Berkson, 1950) occurs when

a researcher attempts to achieve a target (Vi) value, but attain a true (Xi) value in-

stead. This work will focus on classical measurement error that occurs when the true

value of the continuous random variable (Xi) is measured with error resulting in an ob-

served value (Vi). The classic additive error measurement model for the wrong random

variable Vi = Xi + Ui, where Ui represents the measurement error, E (Ui|xi) = 0, and

Var (Ui|xi) = σ2
u. As result of mean 0, additive error structure means that V is an un-

biased estimator of X since E (Vi|xi) = xi. Although the focus of this chapter is on

the additive error structure, there are other mechanisms for measurement errors to oc-

cur. For example, the measurement error structure can be linear Vi = θ0 + θ1Xi + Ui or

multiplicative Vi = Xi ∗ Ui.
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In order to capture measurement errors when present, the measurement error vari-

ance σ2
u is known or estimated from replicate data (repeated independent observations on

the same subject at the same time) must be assumed. There exist many ways to correct

measurement errors, however a single method is unlikely to provide the best approach

for every situation.

Moment-based error correcting method is one of the most straightforward methods

that takes a linear transformation of the original estimates of the coefficients in the

models. Buonaccorsi (2010) discussed many moment-based measurement error correction

formulas for different modeling situations, including SLR (Simple Linear Regression). The

moment-based formula for the measurement error corrected estimator of the slope in the

SLR setting is

β̂1,MOM = σ̂XY
σ̂2
V −σ̂2

u
= σ̂XY

σ̂2
X

,

where σ̂XY is the estimated covariance between the observed response and unobserved ex-

planatory variable, σ̂2
v is the estimated variance of the mis-measured explanatory variable

(V ), and σ̂2
u is the estimated measurement error variance, with σ̂2

X = σ̂2
v − σ̂2

u.

Cook and Stefanski (1994) introduced the SIMEX (Simulation-Extrapolation Esti-

mation) measurement error accounting approach when the measurement error variance

is known or reasonably well estimated. This method is a general framework applicable to

many situations and can be found in the R package as ‘simex’ (Lederer and Kchenhoff,

2019). The first step of the SIMEX procedure is to simulate pseudo data with an addi-

tional measurement error than what was actually observed. For instance, we can simulate

additional data with measurement error variance (1 + θ)σ2
u and study the relationship

between regression estimates and θ. The SIMEX corrected estimate is the one at θ = −1.

Bartlett and Keogh (2016) compare a Bayesian regression calibration approach and

conclude that the Bayesian method has several statistical advantages over regression

calibration techniques. Although a number of Bayesian methods exist to correct for

measurement error in the explanatory variable, they all have the same underlying steps.

Chapter 9 of Carroll et al. (2006) focuses on Bayesian error measurement models and

describes five general steps in the development of a Bayesian error measurement model:
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(i) specify the likelihood model as if X were observed, (ii) select the proper measurement

error model (additive, linear, multiplicative, etc.), (iii) form the likelihood function as if

X were observed, (iv) select compatible prior distributions, and (v) compute the complete

conditional distributions.

In a Bayesian analysis where measurement error appears in the explanatory variable,

the true unobserved value (Xi) is treated like a latent variable and given a prior distri-

bution. Carroll et al. (2006) describes the Bayesian SLR measurement error model using

three models: an outcome model, a measurement model, and an prior model.

The outcome model is a model for the outcomes that you would obtain if measure-

ment error was not present and is

Yi ∼ N
(
β0 + β1Xi, σ

2
ε

)
(3.1)

The measurement model can be described for the mis-measured variable given the

true variable and is

Vi |Xi ∼ N (Xi, σ
2
u)

This is a direct result of Equation 3.1, which shows that when classical additive measure-

ment error is part of the explanatory variable, E (Vi|xi) = xi and Var (Vi|xi) = σ2
u.

The prior model is the model when the true unobserved variable (xi) and, by cen-

tering the observed variable is

Xi ∼ N (0, σ2
x)

In this model, σ2
u is assumed known and all other parameters (β0, β1, τX = 1

σ2
x
, τε = 1

σ2
ε
) are

given prior distributions, which depend on the particular situation and are often selected

as non-informative.

Jureckova et al. (2016) evaluated the effects of measurement errors on rank-based

estimators of linear model parameters. They showed that the local asymptotic bias of

rank-based estimators does not depend on the rank test score-generating functions se-

lected or on the unknown distribution of the model errors. It only depends on the slope

parameter vector value and the covariance matrix of the regressor error distribution.
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This result gives us the opportunity to introduce desirable properties of non-parametric

methods for measurement error problems. Our goal here is to provide a much simpler ap-

proach for rank-based estimator in the presence of measurement error instead of looking

for the asymptotic distribution for the coefficients. Using Bayesian methodology gives

us a convenient way of getting rank-based inference for different models without figuring

out the specific asymptotic distributions.

3.2 Bayesian Wilcoxon Rank-based Method in Linear Model with Measurement Error

Fortunately, our nonparametric Bayesian method starts from a likelihood function as

well. Even with measurement error presenting, the first step is still specifying a likelihood

model, which is Y ∗ ∼ Laplace (β0 + β1X
∗,Σ∗), where Y ∗ and X∗ represent the pairwise

differenced data. Since we are only focusing on the classical model of measurement error,

given the observable data V , we need to specify a distribution for the unobserved X. In

general Bayesian approach, this will be the same as the measurement error model under

measurement errors. The measurement error Ui is often assumed to follow the normal

distribution with mean zero and a known variance σ2
u

E (Ui|xi) = 0 and Var (Ui|xi) = σ2
u.

Under this setting, the measurement error model is:

Vi|Xi ∼ N (Xi, σ
2
u).

The typical Bayesian approach treats X as missing data, and in effect, by drawing from

X’s conditional distribution given all other variables, it imputes multiple times. Thus,

as if X were available, the likelihood of all the data, including V , is formed. On the

other hand, parameters are treated with probability methods as if they were random,

one of the essential differences. If we are to treat parameters as random, then prior

distributions need to be given. Much of the controversy regarding Bayesian methods

among statisticians revolves around these previous distributions. For example, in this

work, X’s variance has a gamma distribution as a prior.
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3.3 Posterior Inference

Bayesian inference is based on the posterior density which, given the observed data,

is the conditional density of unobserved quantities (parameters and unobserved data),

and summarizes all the information about the unobserved quantities. To calculate the

posterior, we can take the data and parameters’ joint density and integrate out the pa-

rameters, at least in principle, to obtain the data’s marginal density. In order to obtain

the posterior density, we can then divide the joint density by this marginal density. There

are many “textbook examples” where the marginal can be calculated analytically, but

this is often a non-trivial problem requiring high-dimensional numerical integration in

practical applications. Much recent research has focused on the computational prob-

lem. The Gibbs sampler is the method that currently receives the most attention in the

literature.

The Gibbs sampler, often referred to as Markov Chain Monte Carlo (MCMC), gen-

erates a Markov chain, the posterior distribution of which is stationary. The key feature

of the Gibbs sampler is that this chain can be simulated using only the joint density of

the parameters, the non-observed X-values and the observed data, such as the product of

likelihood and prior, and not the unknown posterior density that requires an integral that

is often intractable. If the chain runs long enough, the observations in a chain sample are

distributed approximately the same, with a common distribution equal to the posterior.

Thus it is possible to estimate posterior moments, posterior density and other posterior

quantities from a chain sample. Due to the observed data and other parameters, the

Gibbs sampler ”fills in” or imputes the values of the unobserved X covariates by sam-

pling from their conditional distribution. This kind of imputation differs in two important

ways from the imputation of regression calibration. First, a large number of imputations

are made by the Gibbs sampler from the conditional distribution of X, whereas the re-

gression calibration uses a single imputation, namely the conditional expectation of X

given v. Second, when imputing X values, the Gibbs sampler conditions on both Y and

V , but when imputing X, regression calibration does not use Y information.
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For a simple linear model with the additive classical measurement error, the expres-

sion of three sub-models are as follow

f (Y|X,β): response model with parameters β = (β0, β1, σ
2
ε )

f (V|X,λ): measurement error model with parameters λ = (σ2
u)

f (X|π): prior model with parameters π = (µx, σ
2
x)

An important assumption is that the measurement error is non-differential; that

is, the size of the measurement error is independent of the response. Then the joint

distribution will be

f (Y,X,V,β,λ,π)

= f (β) f (λ) f (π)
n∏
i=1

f (Yi|Xi,β)
n∏
i=1

f (Vi|Xi,λ)
n∏
i=1

f (Xi|π)

Firstly, our job is to derive the full conditional posterior distributions for all the

unknown values in order to utilize the Gibbs sampler. Where we normally have unknown

parameters apriori independent. Given the initial values θ(0) and X(0) based on the Gibbs

sampler, we first draw the samples of the unobserved X from its full conditional posterior

distribution (3.2). The full conditional posterior distributions of unknown data X can be

written as

f (Xi|Yi, Vi,θ) ∝ f (Yi|Xi, β) f (Vi|Xi, λ) f (Xi|π)

= f
(
Yi|Xi, β0, β1, σ

2
ε

)
f
(
Vi|Xi, σ

2
u

)
f
(
Xi|µx, σ2

x

)
(3.2)

where θ = β, λ, π.

Then the samples of the unknown parameters θ can be generated from (3.3) and

(3.4). The full conditional posterior distributions of unknown parameters θ is

f
(
βj|β\j), σ2

ε ,Y,X
)
∝ f (Y|X,β) f

(
βj|X, σ2

ε

)
=

n∏
i=1

f (βj) f
(
Yi|Xi, β0, β1, σ

2
ε

)
(3.3)

f
(
σ2
ε |X,Y,θ

)
∝ f (Y|X,β) f

(
σ2
ε |β,X

)
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=
n∏
i=1

f
(
σ2
ε

)
f
(
Yi|Xi, β0, β1, σ

2
ε

)
(3.4)

After repeating the above procedures repeatedly for a burn-in period, we are fi-

nally able to obtain the desired samples from the posterior distribution (3.5). The joint

posterior densities of the unknown values can be written as

f(X,θ|Y,V) ∝ f (β) f (λ) f (π)
n∏
i=1

f (Xi|π)
n∏
i=1

f (Yi|Xi,β)
n∏
i=1

f (Vi|Xi,λ) (3.5)

We will now derive the Bayesian formulation for the Wilcoxon rank-based estimation

in measurement error linear regression. For obtaining the Bayesian Wilcoxon rank-based

estimation, the joint distribution will depend on distributions of pairwise differences of

random variables and can be written as

f(Y,X,V, β, λ, π)

= f(β)f(λ)f(π)Fi<j ((Yi − Yj)|(Xi −Xj), β)×

Fi<j ((Vi − Vj)|(Xi −Xj), λ)Fi<j ((Xi −Xj)|π)

The full conditional posterior distributions of unknown data X will be

f ((Xi −Xj)|(Yi − Yj), (Vi − Vj), θ)

∝ f ((Yi − Yj)|(Xi −Xj), β) f ((Vi − Vj)|(Xi −Xj), λ) f ((Xi −Xj)|π)

= f
(
(Yi − Yj)|(Xi −Xj), β0, β1, σ

2
ε

)
f
(
(Vi − Vj)|(Xi −Xj), σ

2
u

)
f
(
(Xi −Xj)|µx, σ2

x

)
The full conditional posterior distributions of unknown parameters now becomes

f
(
βk|β\k, σ2

ε ,Y
∗,X∗

)
∝ f (Y∗|X∗,β) f

(
βk|X∗, σ2

ε

)
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=
∏
i<j

f (βk)Fi<j
(
(Yi − Yj)|(Xi −Xj), β0, β1, σ

2
ε

)
f
(
σ2
ε |X∗,Y∗,θ

)
∝ f (Y∗|X∗,β) f

(
σ2
ε |β,X∗

)
=
∏
i<j

f
(
σ2
ε

)
Fi<j

(
(Yi − Yj)|(Xi −Xj), β0, β1, σ

2
ε

)
Finally, the joint posterior densities of the unknown values can be written as

f(X∗,θ|Y∗,V∗)

∝ f (β) f (λ) f (π)Fi<j ((Xi −Xj)|π)×

Fi<j ((Yi − Yj)|(Xi −Xj),β)Fi<j ((Vi − Vj)|(Xi −Xj),λ)

where X∗, Y ∗ and V ∗ are calculated by taking paired differences of the original X, Y

and V , respectively. Here F denotes the joint distribution.

To obtain a joint distribution F (a1, . . . , ap) with full conditionals f1, . . . , fp where

fj is the distribution of aj conditional on (a1, . . . , aj−1, aj+1, . . . , ap), the Gibbs sampler

simulates successively from all conditionals, changing one component of a at a time. The

Gibbs sampler works as follows.

• We begin some initial value a(0) =
(
a

(0)
1 , . . . , a

(0)
p

)
.

• Then we start iteration t: Given
(
a

(t−1)
1 , . . . , a

(t−1)
p

)
, update

1. a
(t)
1 according to π1

(
a1|a(t−1)

2 , . . . , a
(t−1)
p

)
,

2. a
(t)
2 according to π2

(
a2|a(t)

1 , a
(t−1)
3 , . . . , a

(t−1)
p

)
,

...

p. a
(t)
p according to πp

(
ap|a(t)

1 , . . . , a
(t)
p−1

)
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We implemented this in R and JAGS through the package rjags. In the next section we

will use this for conducting Monte Carlo simulation experiments under various measure-

ment error as well as model error distribution scenarios.

3.4 Simulation

For the Bayesian method, JAGS (Plummer, 2003) was used to implement the Gibbs

sampling algorithm (Geman and Geman, 1984), resulting in samples from the joint poste-

rior distribution of the parameters. We ran three independent chains, each with random

starting values. In our study, the number of samples for adaption phase, the number of

samples to discard as burn-in and the number of MCMC steps retained differ from case

to case. The number of iterations and thinning rate were determined by the trace plots

in order to guarantee convergence.

3.4.1 Simulation Scenario 1: Heavy Tails

In the first simulation scenario, we considered the simplest linear model Y = βX,

where the true data are generated as X∼ Unif (-1.5, 1.5) and the true parameter is taken

as β = 1. We will compare our method with classical Bayesian approach, moment-based

error correcting method, and the SIMEX method. Our method required longer adaption

phase and larger size of burn-in in comparison to the classical Bayesian approach. So,

we considered these values to make ensure both approaches gave favorable convergence

results. In order to see the effects caused by different levels of measurement error, we

three different variances for the measurement error distribution (σ2
u = 0.1, 0.3, 0.5) repre-

senting increasing levels of measurement error. As we mentioned in Section 2.2, Bayesian

Wilcoxon rank-based estimate is the LAD solution based on paired data. Thus, the vari-

ance of the new measurement error for the paired x should be two times the original

measurement variance. To see the robustness brought by Bayesian Wilcoxon rank-based,

five different t distribution model errors were considered, with degrees of freedom from 1

to 5 representing decreasing tail-thickness of the model error distribution. These represent

model error distributions from heavy-tailed (Cauchy) to moderate taled. We considered
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a sample of size n = 30 and we conducted 50 repetitions for each case. Table 3.1 gives

the estimated values and estimated variances.

σ2
u DF

MCM
Mean (Var)

SIMEX
Mean (Var)

Bayesian
Mean (Var)

BRank
Mean (Var)

0.1 1 -1.530(200.970) -1.270(152.370) 0.000(23.540) 1.003(0.191)
2 0.912(0.251) 0.913(0.254) 0.920(0.247) 0.908(0.096)
3 0.991(0.099) 0.991(0.100) 0.973(0.085) 1.020(0.070)
4 0.964(0.092) 0.962(0.092) 0.963(0.092) 0.963(0.087)
5 0.946(0.070) 0.947(0.070) 0.960(0.070) 0.933(0.077)

0.3 1 -2.110(324.120) -1.530(188.550) -0.200(31.800) 0.941(0.209)
2 0.898(0.273) 0.887(0.282) 0.903(0.265) 0.890(0.011)
3 0.992(0.122) 0.980(0.126) 0.959(0.105) 1.046(0.105)
4 0.965(0.103) 0.951(0.106) 0.953(0.100) 0.991(0.103)
5 0.958(0.074) 0.957(0.077) 0.970(0.076) 0.971(0.088)

0.5 1 -2.600(460.130) -1.890(256.130) -0.520(63.990) 0.863(0.240)
2 0.893(0.327) 0.830(0.318) 0.886(0.316) 0.883(0.156)
3 0.998(0.177) 0.927(0.161) 0.941(0.146) 1.075(0.118)
4 0.971(0.125) 0.904(0.121) 0.932(0.125) 1.039(0.147)
5 0.978(0.093) 0.946(0.101) 0.983(0.101) 1.055(0.145)

Table 3.1: Mean and variance for β in Simulation 1

From Table 3.1, we observed that Bayesian Wilcoxon rank-based estimate (BRank)

provided reasonable results under heavy-tailed model error distributions as expected.

Compared to moment-based error correcting method and the SIMEX method, our pro-

posed Bayesian Wilcoxon rank-based estimate was closer to the true β with smaller

uncertainty in many cases. Even when the model error distributions are closer to the

normal distribution (df = 5), the Bayesian Wilcoxon rank-based estimate did not lose

much efficiency relative to the other methods. The performance of the SIMEX method

was much worse when the variance of the measurement error increased form 0.1 to 0.5,

while the Bayesian Wilcoxon rank-based estimate was not significantly affected by this

change in measurement error. Moment-based correcting method and normal Bayesian

approach were too sensitive to heavy-tailed model error distributions. When the model

error followed the t-distribution with degree of freedom two, the mean of the estimated β

are close to the true β, but the variance is very large unlike Bayesian Wilcoxon rank-based

estimate. The results of the moment-based method, SIMEX, and the classical Bayesian

approach did not give reasonable results for the t-distribution with 1 degree of freedom.
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This is expected since the mean does not exist for this distribution. However, this high-

lights that our non-parametric approach can be applied in situations where the classical

approaches cannot.

3.4.2 Simulation Scenario 2: Outliers

In the second simulation scenario, we want to demonstrate the robustness of our

method in the presence of gross outliers. For this we created a mixed normal distribution

for the model error. We again considered the simple linear model Y = βX, where the true

data are generated as X∼ Unif (-1.5, 1.5) and the true parameter is taken as β = 1. Once

again, we will compare our method with classical Bayesian approach, moment-based error

correcting method, and SIMEX. The error distribution was created as a Huber mixture

of two normal distributions where 95% of the model errors were generated from N(0, 1)

and 5% of them were generated from N(0, 10). We take a common measurement error

distribution N(0, 0.5) in this study. The sample sizes considered are n = 30 and n = 50

with 50 replications. The results of the simulation experiment are given in Table 3.2.

MCM
Mean (Var)

Simex
Mean (Var)

Bayesian
Mean (Var)

BRank
Mean (Var)

30 0.961 (0.428) 0.887 (0.365) 0.961 (0.393) 1.023 (0.089)
50 0.976 (0.229) 0.922 (0.209) 0.948 (0.218) 0.944 (0.039)

Table 3.2: Mean and variance for β in Simulation 2

Similarly in Table 3.2, for moment-based error correcting method, the SIMEX method,

and normal Bayesian approach, the means of the estimated β are close to the true β,

but the variances are very large unlike the Bayesian Wilcoxon rank-based estimate. The

estimated value of the Bayesian Wilcoxon rank-based estimate is closer to the true value

of 1 for the smaller sample size (n = 30). It performs better than SIMEX but worse than

the moment-based method for the larger sample size (n = 50). This simulation shows the

robustness of Wilcoxon rank-based estimate in the presence of outliers, especially when

the sample sizes are small. Moreover, the efficiency is far superior than the competition.

In applications with real data, the percentage of outliers may be much much larger than
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5%, so we need to study the performances of these methods with different percentage of

outliers.

3.4.3 Simulation Scenario 3: Levels of Contamination

Our third simulation demonstrates the effect of different percentage of outliers on

the performance of measurement error estimators. We again considered the simple linear

model Y = βX, where the true data are generated as X∼ Unif (-1.5, 1.5) and the true

parameter is taken as β = 1. Again, we will compare our method with classical Bayesian

approach, moment-based error correcting method, and SIMEX. The error distribution

was created as a Huber mixture of two normal distributions as discussed in Section 3.4.2.

However, we considered four cases in total with 1%, 5%, 10% and 15% outliers generated

from N(0, 10). The sample size is set to be 50, with 50 runs of simulations. The results

for these four cases are given in Table 3.3.

Contamination
MCM
Mean (Var)

SIMEX
Mean (Var)

Bayesian
Mean (Var)

Bayesian-R
Mean (Var)

1% 0.936 (0.094) 0.879 (0.080) 0.909 (0.085) 0.979 (0.036)
5% 0.976 (0.229) 0.922 (0.209) 0.948 (0.218) 0.944 (0.039)
10% 1.052 (0.538) 0.984 (0.459) 1.022 (0.515) 0.916 (0.035)
15% 1.211 (0.583) 1.149 (0.545) 1.191 (0.589) 0.959 (0.058)

Table 3.3: Mean and variance for β in Simulation 2

Under the assumption that outlier was not a big issue, for example, with the pres-

ence of 1% outliers, the performance of the Bayesian Wilcoxon rank-based estimate is

surprisingly the best among all these four methods. When the percentage of the outliers

increased to 10%, the Bayesian Wilcoxon rank-based estimate is not the best estimate

due to the bias on estimated β, but the variance did not increase as compared to the 1%

outliers case. As expected, Bayesian Wilcoxon rank-based was the best choice when the

data contain 15% outliers, and the biases for the rest three estimations were much larger.

3.4.4 Summary of Simulation Results

The moment-based error correcting method, SIMEX, and the classical Bayesian ap-

proach had noticeable performance issues when the variance of the measurement error
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increased. SIMEX method only provided an estimated β with smallest mean of bias

in the 10% outliers scenario, but the variance was increased substantially compared to

the 1% outliers case. The moment-based error correcting method is only competitive in

the 1% outliers case and the 5% outliers case, while classical Bayesian approach is only

competitive in the 5% outliers case. Otherwise, in all the cases where there is a heavier

tail, a larger amount of contamination, or a smaller sample size, the Bayesian Wilcoxon

rank-based estimator gave superior performance than all the existing methods.

To conclude, our method showed its advantage when dealing with heavy tailed model

error distributions and data that containing outliers with extreme large values. If the

outliers play an important role in the data, the Bayesian Wilcoxon rank-based estimate

provided robust and efficient estimates. Compared to the regular R-estimate proposed

by Jureckova et al. (2016), our method is much more computationally efficient and

flexible. This is achieved by utilizing a Bayesian estimation framework. Problems caused

by measurement error were resolved in the Bayesian iterations not after a preliminary fit

and the scale parameter for rank-based estimate is also estimated directly in the MCMC

iteration. This is an added advantage of the Bayesian formulation and more details about

the scale parameter will be discussed in Section 4.3.
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Chapter 4

Single Index Model

4.1 Introduction to the Single Index Model

Utilizing a potential lower-dimensional structure of a linear regression function holds

the way to important derivation for many studies where the assumptions of traditional

linear regression are failed. Single index model (SIM) is an exceptionally well known

semi-parametric model to give a basic and interpretable system for understanding an

intricate connection between a response variable Yi and its (p× 1) dimensional covariate

vector Xi, for p > 1. Single-index models offer adaptable option in contrast to standard

linear regression, with the conditional expectation for the reaction of Yi allowed to be

an discretionary link function of a finite linear combination of predictors: E (Yi|Xi) =

g (X ′iβ), i = 1, ..., n. The vector of regression coefficients β, also called index vector, is

recognizable up to a steady of proportionality. The link function g is viewed as an infinite-

dimensional irritation parameter. Such models emerge in Friedman and Stuetzle’s (1981)

projection pursuit regression, and they have broad applications in econometrics.

A SIM obviously provides a pragmatic compromise between a fully nonparametric

regression and a completely parametric multiple linear regression. It significantly renovate

from a linear model to oblige both non-linear main effects and higher order interactions of

the covariate effects. In addition, different from the completely nonparametric multiple

regression function, SIM provides a distinct understanding of the overall significance of

the predictor effects via the magnitudes of the index coefficients, β = (β1, β2, · · · , βp).

This is exceptionally needful in biomedical studies to comprehend the complex effectors

of predictors and to try and assess the locally linear effects.
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During the past decades, there were numbers of remarkable literatures for SIM

method. The rapid development during the last decade. Antoniadis et al. (2004) wrote

an prominent reviews of these methods. There are two categories of existing methods.

The first one is Average derivative method, e.g., Powell et al. (1989); the method uses

weighted gradient (∂/∂x)g(x) = βg′ (β′x) to estimate β. In any case, they require excep-

tionally restrictions conditions to accomplish the consistency of the estimator of α. This

method uses kernel smoothing to estimate g(·), which will lead to the curse of dimension-

ality even when the number of predictors p is only moderately high. The other category

of methods is M-estimation, e.g., Hardle et al. (1993); M-estimation based approaches

have good asymptotic properties. Nevertheless, regardless of good hypothetical prop-

erties, the semiparametric approach regularly prompts computational difficulties when

attempting to evaluate the estimate of the index vector, to which requires the solution

to a high-dimensional optimization problems. Producing point estimates of β and the

link function g(·) with great empirical and asymptotic properties has been discussed a

lot in existing literature on SIM. However, in most cases, it is hard to find out a realistic

evaluation of the uncertainty under the predictions and the estimates in real applications.

Even in moderate number of dimension cases, frequentist approaches may fail to capture

the uncertainty.

Bayesian inference has been successful with many nonlinear regression models. For

the application In SIM, it was first mentioned by Antoniadis et al. (2004). The link

function g(·) is usually treated as a non-parametric function, however, the frequentist

approaches are not. A basis representation, wavelets and Gaussian process prior on g(·)

are the three popular methods to model the link function. For example, Antoniadis et

al. (2004) uses B-splines which is a basis representation, Park et al. (2005) proposed a

wavelets related method and Choi et al. (2011) modeled g(·) by using a Gaussian process

prior. All these three ways have their own problems. Selecting the best number of the

knots poses computational issues while using splines, because cross-validation is the only

way we can ensure the optimal solution. Similarly, choosing the number of basis functions

will cause a lot of computation in wavelets related method. In the meanwhile, Gaussian
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process prior on g(·) will make the Markov Chain Monte Carlo (MCMC) computationally

intensive even when the sample size is not very large because calculating the inversion of

(n×n) covariance matrix is required in every MCMC iteration if we set Gaussian process

prior on g(·).

In this chapter, we propose the Bayesian Wilcoxon rank-based estimate for SIM by

using the same framework introduced in Section 2.1.

4.2 Model Formulation

We consider the single-index model

Yi = g (X ′iβ) + εi, i = 1, . . . , n

where the Xi are predictors, and the Yi are response variables. εi are independent random

errors which follows N (0, σ2). To ensure identifiability of the model, the unknown index-

ing coefficient β is normalized to have unit Euclidean norm and its first element restricted

to be positive. The variance σ2 is also unknown. The function g(·) is an unknown smooth

link function.

Since modeling the link function is not the priority we are interested here, we simply

apply regression splines to approximate the conditional distribution of g(·) given β and σ2.

The basis functions for estimation the link function g(·) must be computed inside JAGS

because the single index depends on parameter values. We use the following truncated

line model

g(s) = α0 + α1s+
∑K

k=1 uk (s− κk)+ , uk i.i.d. N (0, σ2
u)

with priors α0, α1
ind∼ N (0, 108) and σu ∼ Half-Cauchy (25), where s = X ′iβ. To ensure

the identifiability in JAGS, we use the following spherical coordinates to impose the

restriction ‖β‖ = 1 and β1 > 0. This is achieved by reparametrizing the model using the

polar coordinate system

β1 = r cos (ϕ1)
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β2 = r sin (ϕ1) cos (ϕ2)

β3 = r sin (ϕ1) sin (ϕ2) cos (ϕ3)

. . .

βn−1 = r sin (ϕ1) · · · sin (ϕn−2) cos (ϕn−1)

βn = r sin (ϕ1) · · · sin (ϕn−2) sin (ϕn−1)

Based on the same framework we used in Chapter 2 and 3, we set the likelihood for

Bayesian Wilcoxon estimate to be

Yi − Yj ∼ Laplace
(
g (X ′iβ)− g(X ′jβ),Σ

)
As we mentioned in section 2.2, we need to figure out a way to deal with the cor-

relation caused by pairing the data. Based on the same idea of sandwich variance, we

propose a standard error correction for the SIM using working correlation matrix ap-

proach. Since our method is based on a Bayesian representation of the least absolute

deviations method, we will give a brief description of the method in the next section.

4.3 Bayesian Least Absolute Deviations Method

Instead of using least-squares method, least absolute deviations (LAD) is one of

the alternative methods that can provide robust estimators. We have discussed that

the Bayesian Wilcoxon estimate is obtained by calculating the LAD estimator on paired

data. It is not difficult to see that if the likelihood is set to be Yi ∼ Laplace(g(X ′iβ),Σ) in

JAGS, the LAD estimator based on the original data under Bayesian framework can be

obtained directly. Bayesian LAD estimate may not be as efficient as Bayesian Wilcoxon

estimate, but it is still robust and it does not have the covariance issue caused by pairing

the data.

It is well known that if the errors follow a Laplace distribution in regression modeling,

LAD is also the maximum likelihood estimate. This optimality is equivalent to that the

least squares estimator has when the errors follow a normal distribution. This can be

easily proved from the density function of the Laplace distribution which includes a term
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for the mean absolute deviation rather than the squared deviation that features in the

normal distribution.

A least squares estimated line will be affected by all of the data points, while LAD

regression is robust because outliers do not have a large effect on the regression line.

This is also why it lacks efficiency. If there exists an outlier, since a LAD line must cross

two data points, that outlier will not be one of those two points because that will not

minimize the sum of absolute deviations. The least squares estimated line always adjusts

itself when a data point is changed. However the LAD line may not move at all unless

the added data points are central in the sense of residual distributions.

Definition 4.3.1. Let T (H) be a functional defined on the set of distribution functions.

We will say that T (H) is a location functional if the following three conditions hold:

First, T (HaX+b) = aT (HX) + b, a > 0 (location-scale equivariance).

Second, T (H−X) = −T (HX) (symmetry).

Third, if G is stochastically larger than F (ie.G(x) ≤ F (x)), which means ∀ x, we have

T (G) ≥ T (F ) (stochastic order).

Then θ = T (H) is called a location parameter of H.

Definition 4.3.2. Let S(θ) be a gradient function and n is the sample size. We say an

estimating function S(θ) is Pitman Regular if

1. S(θ) is nonincreasing against θ.

2. Assume S̄(θ) = S(θ)/nγ, ∃ γ > 0 and a function µ(θ), such that µ(0) = 0, µ′(θ) is

continuous at 0, µ′(0) > 0 and either Eθ(S̄(0) = µ(θ) or S̄(0)
Pθ→ µ(θ);

3. ∀ B > 0,

sup
|b|≤B

∣∣∣∣√nS̄ ( b√
n

)
−
√
nS̄(0) + µ′(0)b

∣∣∣∣ P→ 0

4. ∃ a constant σ(0) such that

√
n

{
S̄(0)

σ(0)

}
D0→ N(0, 1)
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so that

k = µ′(0)/σ(0)

is called the efficacy of S(θ).

The LAD estimation method has been around for couple of centuries but rigorous

methods of computing it were only introduced beginning in the 1950’s and notably by

Gentle in 1977 (Gentle 1977). The associated dispersion for LAD is given by

D1(θ) =
n∑
i=1

|Xi − θ|

while the negative gradient function is given by

S1(θ) =
n∑
i=1

sgn (Xi − θ)

since the L1 norm is defined as

‖x‖L1 =
n∑
i=1

|xi|

We need to estimate the following equation

0 = n−1

n∑
i=1

sgn (xi − θ) =

∫
sgn(x− θ)dFn(x)

where Fn is the empirical cumulative distribution function. It can be seen that the solu-

tion is the median of the observation. By replacing the empirical cumulative distribution

function (cdf) by the true underlying cdf F , the above equation can be rewrite as

0 =

∫
sgn(x− T (F ))dF (x) = −

∫ T (F )

−∞
dF (x) +

∫ ∞
T (F )

dF (x)

where T (F ) is a location functional, and θ = T (F ) is a location parameter of F . Then,

we can find T (F ) = F−1(1/2) as expected since we know that F (T (F )) = 1/2.

θ̂ has an asymptotic N (θ, τ 2
S/n) distribution where τs = 1/(2f(θ)). Assume that

f(0) > 0, it was showed in Hettmansperger (2010) that the efficacy of the L1 is 2f0 since

L1 gradient process is Pitman regular.
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LAD regression does not have an analytical solving method unlike least squares

regression though the ideas of these two are both straightforward, hence an iterative

approach like simplex method can be applied. There are a lot of linear programming

approach(including the simplex method) can be applied here because the problem is a

linear program. According to William (William 2002), simplex-based methods are the

preferred method. It is known that at least one LAD line cross at least two points in the

data. Simplex method chooses the line by comparing the smallest absolute error over all

of the data points of each line. However, there will be multiple solutions if multiple lines

have the same smallest absolute error. Using Bayesian approach allows us to obtain LAD

estimate through Markov chain Monte Carlo (MCMC) methods without any additional

computational cost comparing with Bayesian least square estimate.

Another appealing feature of Bayesian LAD is that the scale parameter is esti-

mated in the Bayesian interactions without having to use a preliminary fit. This makes

Bayesian LAD more efficient than normal LAD method. Similarly, our Bayesian Wilcoxon

rank-based estimate has the same feature. This estimated scale parameter is then

used on obtaining the corrected standard errors of the model parameter as Cov(β̂) ≈

τ−2
S

(
XTA−1X

)−1
, where A is the covariance structure given in Chapter 2. In Zhan

(2009), they estimated the scale parameter in a frequentist perspective, and they did not

integrate its estimation into the Bayesian inference machinery.

In Chapter 3, we showed that Bayesian Wilcoxon rank-based estimate is feasible in

linear model with measurement error. Identifiability issues make this quite complicated

for single index model with the measurement error in the predictor. As we mentioned

in Chapter 3, Bayesian analysis treat the true unobserved value as a latent variable.

By adding the measurement error model Vi|Xi ∼ N (Xi, σ
2
u) into the single index model

derived in this chapter, one expects that it is possible to obtain a Bayesian Wilcoxon

rank-based estimate for SIM with measurement error in the regressor variable. However,

according to simulation studies we performed, the Bayesian Wilcoxon rank-based ap-

proach based on paired differences suffers from unidentifiability issues. This can be seen

by noting that the dependence of g (X ′iβ)−g
(
X ′jβ

)
on Xi−Xj is not clearly discernible.
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We conclude that if the model is too complicated like the SIM with measurement

error case, pairing the data will cause identifiablity issues. Hence our Bayesian Wilcoxon

rank-based estimate may fail. Meanwhile, the Bayesian LAD estimate is an alternative

method which is also robust and is not affected by identifiabiltiy issues caused by dif-

ferencing. Moreover, the computational costs associated with Bayesian LAD estimation

is far lower than the Bayesian Wilcoxon estimate. This prompts us to explore this ap-

proach for more complex semiparametric models including those with measurement error

in their regressor variables. That said, we still expect the Bayesian Wilcoxon estimator

to provide favorable performance in the single index model without measurement error

in its regressor variables.

4.4 Standard Error Correction for Single Index Model

As we mentioned in Section 2.2, β̂ is still asymptotically unbiased but it is no longer

efficient with this covariance issue. We use working correlation structures to correct

Cov(β̂) like what we did with linear model. Unlike the linear model case, the derivative

of E(Yi) with respect to β needs to be calculated before the correction. In linear model,

∇β
(
XT

i β
)

= Xi, but in SIM, ∇β
(
gβ
(
XT

i β
))

= Xi∇(XT
i β)

(
g
(
XT

i β
))

. Since we used

regression splines to approximate the link function g, the derivative of the link function

can be obtained through JAGS directly. The approximated function is presented as n

points. If the sample size is large, we can use
(
g
(
XT

i+1β
)
− g

(
XT

i β
))
/
(
XT

i+1β −XT
i β
)

to calculate the derivative. To be more accurate, the following truncated model is used to

calculate the derivative because the derivatives of spline functions can be simply expressed

in terms of lower order spline functions.

g(s) = α0 + α1s+
K−1∑
k=1

u
′

k (s− κk−1)+ , uk i.i.d. N
(
0, σ2

u

)
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where u
′

k = (uk+1 − uk)/(κk+1 − κk). The covariance matrix can be obtained in the

following form

Σ = E
{
IΓ(Xi)∇β

(
gβ
(
XT
i β
)) [
∇β
(
gβ
(
XT
i β
))]T}

where IΓ(Xi) is trimming device to keep the estimator away from zero. Thus, Cov(β̂) =((
gβ
(
XT
i β
))T

Σ−1
(
gβ
(
XT
i β
)))−1

.

4.5 Simulation and Real Data Example

4.5.1 Simulation

We compare three underlying models to show the finite samples performance among

the least squares (LS), the least absolute deviation (LAD), and our rank (Rank) estima-

tors under Bayesian Framework.

Case 1: Y = 1.5 sin ((β′0X) π) + ε, β0 = (1, 2, 0, 2)/3,X ∼ (U [−1, 1])⊗4

Case 2: Y = 4
√
|(β′0X) + 1|+ (β′0X) + ε, β0 = (2,−2, 4,−1)/5,X ∼ (U [−2, 2])⊗4

Case 3: Y = 2 (β′0X)+10 exp
(
− (β′0X)2 /5

)
+ε, β0 = (2,−2, 4,−1)/5,X ∼ (U [−2, 2])⊗4

As an oscillating function, Case 1 is commonly used in SIM study (Liu et al. , 2013).

Case 2 and 3 were first studied by Zeng et al. (2012). For case 2, the function g(·) is

a non-differentiable function with a corner point which is usually difficult to capture.

The model errors are generated from three different distributions to study the robustness

of the proposed estimator. We used standard normal distribution, t-distribution with

degrees of freedom 3, and contaminated normal distribution. The t-distribution with

degrees of freedom 3 has a thick tail and contaminated normal distribution contains a

few extreme large outliers (about 5 %). The setting of this simulation is similar to the

simulation in Abebe et al. (in press).

In table 4.1, we report the angle between the true β and the estimated β. We use

MSE to describe the performance of estimating g(·). Figure 4.1 shows the estimated

functions for all three cases.

36



Figure 4.1: Estimated functions for Case 1
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Figure 4.2: Estimated functions for Case 2
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Figure 4.3: Estimated functions for Case 3

39



ε BLS BLAD BRank
Mean SD MSE(g) Mean SD MSE(g) Mean SD MSE(g)

Case 1 N(0, 1) 5.96 2.85 7.79 6.64 4.19 9.32 6.37 6.54 12.15
t3 17.80 10.22 48.69 9.18 6.27 18.46 8.59 5.97 22.94
CN 25.15 10.60 79.55 9.39 6.55 19.70 7.47 6.57 23.74

Case 2 N(0, 1) 3.00 1.29 13.83 3.41 1.52 14.97 3.33 1.46 13.76
t3 5.36 5.29 36.90 4.13 1.98 24.57 4.31 2.29 23.26
CN 8.14 4.18 67.49 3.72 1.74 21.88 3.85 1.83 28.05

Case 3 N(0, 1) 2.71 1.20 6.20 2.91 1.33 7.65 2.84 1.25 9.76
t3 4.09 2.20 15.83 3.34 1.59 10.40 3.57 1.64 18.17
CN 6.42 4.14 41.65 2.98 1.38 8.28 3.19 2.11 22.84

Table 4.1: The Mean and SD of the angle and the MSE of the function for all Cases

The Bayesian LS (BLS) method only gives better performance than the Bayesian

LAD (BLAD) and the Bayesian Wilcoxon rank (BRank) methods in all three cases for

normal errors and the BRank method provides better performance than BLAD under

normal errors as expected. For Case 1, when considering the t3 and the contaminated

normal error distribution, BRank method provides a better estimator on β, but BLAD

method has a better performance on estimating the function g(·). In Case 2, BLAD and

the BRank methods provide similar results under t3 and the contaminated normal error

distribution, but BLAD estimator performs better than BRank estimator in Case 3. In

terms of modeling the function g(·), the BLAD method performs as well as the BRank

method. BLAD method has the least MSE in many scenarios regarding the function g(·),

but Bayesian rank method shows the best ability to capture the shape of the function in

the middle part (Figure 4.1). Especially in case 2, BRank method fit much better around

the corner point than the others. Comparing the result with the frequentist approach

given in Abebe et al. (in press), all of these three methods perform better under the

proposed Bayesian framework.

4.5.2 Real Data Example

In this section, we use the Boston Housing Dataset, which has been used extensively

throughout the literature to demonstrate the performance of our method. This dataset

reports the median value of owner-occupied homes in 506 U.S. census tracts in the Boston
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area, together with 14 variables which may be useful to explain the variation in median

value of owner-occupied homes in USD 1000’s. In our study, we only use rm, log(tax),

ptratio and log(lstat) as the variables. rm means average number of rooms per dwelling,

tax is full-value property-tax rate per $10,000, ptratio represents student-teacher ratio

by town, and lstat indicates lower status of the population (percent).

Similar to the previous simulation, we compare the least squares (BLS), the least

absolute deviation (BLAD), and our rank (BRank) estimators under the Bayesian frame-

work in a cross-validation study. We randomly select 20% of the data to be test data and

the remaining 80% as the training data. The cross-validation results are as follows:

MSE Variance
BLS 143.2768 116.1255
BLAD 146.9098 103.5769
BRank 145.6380 104.1171

Table 4.2: Cross validation result of Boston housing Data

According to the MSE, our method provides a close result to Bayesian least squares es-

timator. Like the Bayesian LAD estimator, the Bayesian rank estimator is quite robust.

Sample Size: 300
BLS BLAD BRank

rm 0.692 (0.048) 0.722 (0.036) 0.682 (0.003)
log(tax) -0.495 (0.068) -0.422 (0.070) -0.519 (0.005)
ptratio -0.069 (0.008) -0.068 (0.010) -0.069 (0.001)
log(lstat) -0.513 (0.045) -0.536 (0.048) -0.511 (0.003)
MSE 7.456 7.525 7.383

Sample Size: 500
rm 0.424 (0.049) 0.573 (0.039) 0.516 (0.002)
log(tax) -0.283 (0.081) -0.474 (0.051) -0.498 (0.003)
ptratio -0.075 (0.012) -0.080 (0.009) -0.077 (0.001)
log(lstat) -0.850 (0.041) -0.659 (0.044) -0.692 (0.003)
MSE 19.312 20.287 19.773

Table 4.3: Fitting result of Boston Housing Data with different sample sizes

Table 4.3 shows the fitting results based on the same data using different sample

sizes. When we use the whole data set, BLS estimator is the best and BLAD estimator
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is the worst as expected. After decreasing the sample size from 500 to 300, BRank method

performs best among these three. The reason is that when sample size is relatively small,

outliers will affect the result heavily. Figure 4.4 is a QQ-plot of the residuals. The right

tail for the BRank estimate is closer to the expected line compared to the BLS estimate

which shows the robustness of the BRank estimate. Comparing with the BLAD estimate,

the BRank estimate is closer to the expected line on the left tail and the main part in

the middle which indicates that the BRank estimate is more efficient than the BLAD

estimate.

42



Figure 4.4: QQ-plot of the residuals
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Chapter 5

Single-Index Varying Coefficient Models

5.1 Varying Coefficient Model

To deal with the “curse of dimensionality” in high-dimensional data, many powerful

approaches have been developed. One of those approaches, the varying coefficient (VC)

model, is an extension of simple linear models in which the regression coefficients are taken

to be unknown smooth functions that change as a function of another variable. Suppose

Yi is the response variable, Xi = (x0i, . . . , xpi)
′, and Ui = (u1i, . . . , uqi)

′ are predictor

variables. In order to allow a varying intercept term in the model, we set x0i = 1. The

vary coefficient model (VCM) is defined as

Yi = {g (Ui)}′Xi + εi i = 1, . . . , n

where g(·) = (g0(·), . . . , gp(·))′ is a p-vector of unknown coefficient functions.

The “curse of dimensionality” can be avoided in varying coefficient models because

the unknown coefficient functions g(·) = (g0(·), . . . , gp(·))′ are dependent on U . Inter-

pretability is the other big advantage of using the varying coefficient model. When

someone is trying to explore the situation that the regression coefficients change over

time or other variables, this model will be more flexible.

We use the same approach we used in the case of single index models to capture the

unknown function g(·), and we set the likelihood in JAGS to be

Yi ∼ Laplace
(
{g (Ui)}′Xi,Σ

)
so that the BLAD estimate can be obtained directly.

Similarly, by setting the likelihood to be
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Yi − Yj ∼ Laplace
(
{g (Ui)}′Xi − {g (Uj)}′Xj,Σ

)
we can obtain the Bayesian Wilcoxon rank-based estimate.

5.2 Single Index Varying Coefficient Models

Because of its interpretability and flexibility, the single index varying coefficient

model (SIVCM) is studied by a lot of researchers in public health, ecology and other

fields. The SIVCM model has a similar set up as the VC model but it allows for the

coefficient functions to depend on high dimensional variables using SIM type projection

pursuit. Since it is a combination of SIM and VC model, SIVCM inherits the ability

to overcome the ”curse of dimensionality” from VC model. This makes SIVCM vary

attractive to those who are using nonparametric models with multivariate data. The

SIVCM has the following form:

yi =
{
g
(
βT0 Zi

)}T
Xi + εi i = 1, . . . , n

where β0 is a vector of unknown regression parameters representing the single-index

part, g(·) = (g0(·), . . . , gp(·))′ is a unknown coefficient functions and are random errors.

To ensure the identifiability, we assume that ‖β0‖ = 1 and β01 > 0. SIVCM can be

reduced to VC model if the dimension of the regression parameters is 1. Similarly, it can

be reduced to SIM as well if the dimension of the coefficient functions is 1. There are

many existing approaches for SIVCM based on least squares methods.

The estimator of β0 in SIVCM based on least squares method was first introduced

by Xia and Li (1999). They proved that their proposed estimator was
√
n-consistent and

asymptotically normally distributed under some regularity conditions. Another estimate

based on a profile least squares local linear regression was proposed by Fan et al. (2003).

It is more computationally efficient because they selected locally significant variables

based on the Akaike information criterion (AIC). Xue and Pang (2013) proposed the

estimations of both the regression parameters and the coefficient functions using the

“remove-one-component” idea.
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For the purpose of dealing with outliers, model error with heavy-tail distributions,

and model contamination, some robust estimation procedures were proposed recently.

Yao et al. (2012) introduced a local modal estimation procedure using EM algorithm for

nonparametric regression models. They showed that their estimator was asymptotically

as efficient as other least squares based estimators if the model errors follow the normal

distribution or there are no outliers. The idea of using local modal estimation has been

extended to VC model, SIM, and SIVCMs. All of the approaches were shown to have

some advantages like robustness.

Sun (2017) and Sun et al. (2019) proposed a rank-based estimation procedure for

SIVCM. He used local linear estimation for estimating the coefficient functions with

bandwidth selection, and a backfitting type algorithm for computing the regression coef-

ficient. The computational cost is relevantly expensive since the procedure heavily relied

on cross-validation.

Like we mentioned in Section 5.1, in order to get the BLAD estimate for SIVCM,

we need to set the likelihood to be

Yi ∼ Laplace
({
g
(
βT0 Zi

)}′
Xi,Σ

)
Similarly, by setting the likelihood to be

Yi − Yj ∼ Laplace
({
g
(
βT0 Zi

)}′
Xi −

{
g
(
βT0 Zi

)}′
Xj,Σ

)
we can obtain the Bayesian Wilcoxon estimate. Unlike the SIM with measurement error

case, Bayesian Wilcoxon estimate is not unfeasible in SIVCM but it is not efficient. To

the best of our knowledge, a large size of sample will be needed in order to get a result as

expected for a simple SIVCM with low dimensions. For example, in order to guarantee a

proper result on a SIVCM with 2 regression parameters and 2 coefficient functions, the

sample size has to be at least 200. More discussion can be found in section 5.4.

5.3 Simulation for VC Model

In this simulation, we consider the easiest VC model:
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Yi = g0 (ui) + g1 (ui)X1i + εi

where we set g0 (u) to be 1 + 3u2, and g1 (u) to be 3 exp(−u2). We used 150 as the

sample size with 100 simulation runs to show the performance of the same three methods

(BLS, BLAD and BRank). The number of knots we use is determined by cross-validation

to minimize the prediction errors. Since we want to show the robustness of BLAD and

Bayesian Wilcoxon rank-based method (BRank), we created a mixed normal distribution

for the model error in the same manner as what we did in Section 3.4.2. Recall that this

distribution is a mixture of two normal distributions where 95% of the model errors were

generated from N(0, 1) and 5% of them were generated from N(0, 10).

BLS BLAD BRank
N(0, 1) 0.92 (0.0109) 0.93 (0.0113) 0.89 (0.0103)
t3 2.97 (7.94) 2.99 (7.76) 2.86 (7.64)
CN 5.87 (9.42) 5.81 (9.09) 5.64 (8.67)

Table 5.1: Mean and Variance of MSE of three methods

In Table 5.1, we calculated the mean and the variance of the MSEs of the estimated

functions to compare the performances. Since modeling the functions g(·) is the only thing

which will affect the MSE in VC model, we can see that BRank method provides the best

result in all three different situations. When the model error distribution is standard

normal, all the results are close to each other. However, BRank method preformed much

better than the other two methods in the presence of outliers or model errors follows a

heavy-tailed distribution.

Figure 5.1 shows the estimated functions for all three cases. Based on Figure 5.1, we

can clearly see that BLS method is not robust because it can be easily affected by a thick

tailed error distribution like t3, and some large value outliers. BLAD has better result

than BLS method since most of the estimated curves have similar shapes, but the variation

is very large. That explains why BLAD result is only slightly better than BLS result in

contaminated normal error distribution setting. The estimated curves provided by BRank

were not as smooth, but we can see that the estimations are relevantly consistent unlike

BLS estimation and the variations are the smallest among all these three methods. For
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Figure 5.1: Estimated g0 and g1 for 3 error distributions
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this specific simulation setting, 150 is the smallest sample size which can guarantee the

convergence of BRank estimate. We infer that if the dimension of the model increases,

we will need more data to perform BRank estimate.

5.4 Real Data Example for SIVCM

In this section, we consider a fisheries data from the Gulf of Alaska which were

obtained to study the interactions between groundfish predator species. Sun (2017) orig-

inally did a research on this data. There are three species in the data, Pacific halibut,

Pacific cod and sablefish. They chose the response to be the CPUE of Pacific halibut,

where CPUE is determined for each species based on a catch rate defined by geograph-

ical area scale. They were interested in discovering prime attraction among these three

predators while also taking into account the role of Pacific halibut as a predator on Pacific

cod and sablefish. There are seven environmental variables which are supposed to have

an impact on the response for all of these three species as well. They are wind direction,

wind speed, significant wave height, dominant wave period, average wave period, sea level

pressure and sea surface temperature. According to Sun (2017) and Sun et al. (2019),

Pacific cod and sablefish’s relationship with Pacific halibut depends on the environment

because they prefer different habitats. Plus, two outliers were identified in the CPUE of

Pacific halibut, while the sample size was 52. These are the main reasons that we should

perform a BLAD estimation on the following SIVCM

yi = g0

(
βTZ

)
+ g1

(
βTZ

)
x1i + g2

(
βTZ

)
x2i + εi

where yi is the CPUE of Pacific halibut, x1 is the CPUE of pacific cod, x2 is the CPUE

of sablefish and the matrix Z contains the environmental variables.

In this section, we only demonstrated a comparison between BLS estimation and

BLAD estimation using the same SIVCM. As we mentioned in section 5.2, our BRank

method is not efficient in this case since the sample size is too small which can cause

several problems like huge bias and serious uncertainty. Even if the BRank estimate is
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obtained, the process of fixing the problem caused by the covariance after pairing the

data in SIVCM is more complicated than SIM case.

We performed a 10-fold cross-validation to compare the BLS estimate with the BLAD

estimate. In Table 5.2, BLAD estimate provided a result with smaller prediction error.

Among these 10 folds (F1 to F10), F1 and F7 caught our attention. In F7, the prediction

errors were all very large since both of the outliers were in the validation set. BLS

estimate performed slightly better than BLAD estimate as expected. In F1, only one of

the outliers was in the validation set. Even if BLAD estimate did not get affected by the

outlier in the training set, the prediction error was seriously affected by the outlier in the

validation set. Since these two outliers are close to each other, the prediction error for

BLS estimate was not very large. Figure 5.2 is a QQ-plot of the residials. According to

this QQ-plot, we can clearly see the two apparent outliers mentioned before. Unlike the

BLAD result, from the top part of Figure 5.2 we can see that the residuals for those two

outliers in BLS result are smaller than the residuals in BLAD result, which means the

line fitted by BLS was significantly pulled towards those two outliers. This makes the

BLS analysis inefficient.

The estimated coefficient functions were shown in Figure 5.3. Comparing to the

result in Sun et al. (2019), all of these estimated coefficient functions are close to the

expected shapes. Even if we can not tell whether the estimation of the functions are

close to the true functions or not (because they are unknown), it is not difficult to find

out that the estimated coefficient functions provided by BLAD method are better than

the result using BLS method. The estimated values of β are shown in Table 5.3. The

absolute values of β̂4 and β̂5 are much larger than the rest, and we can tell that some

of the regression parameters are not significant, but the variable selection topic is not

our concern in this dissertation. From this angle, BLAD estimate catches the regression

parameters better than BLS estimate. This is one of the reasons that why BLAD method

is able to estimate the coefficient functions better.
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Figure 5.2: QQ-plot of the residuals

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean
BLS 0.668 0.417 0.593 0.527 1.201 0.768 3.202 0.649 1.003 1.412 1.044
BLAD 1.542 0.486 0.320 0.627 0.610 0.561 3.674 0.535 0.697 0.592 0.964

Table 5.2: 10-fold cross-validation result based on prediction errors
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Figure 5.3: Estimated g0, g1 and g2

β̂ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7

BLS -0.011 0.090 -0.026 -0.180 0.282 0.047 -0.011
BRank -0.047 0.202 0.054 -0.566 0.494 0.018 -0.056

Table 5.3: Mean of the estimated β
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Chapter 6

Discussion

The purpose of this work was to provide an adaptable Bayesian approach for rank-

based estimation. This has the advantage of estimating the uncertainty within the

Bayesian framework avoiding a complicated density fitting approach used for estimat-

ing scale parameters in rank-regression. We also wanted the approach to be independent

of the model specification so that it is flexible enough to apply for various types of model

specifications including semi- and non-parametric models.

An application of this newly proposed approach for linear models with measurement

error showed some favorable results in cases where the error distribution is contaminated

or heavy-tailed. This is in comparison to the classic methods of handling measurement

error like the SIMEX and moment-based error correction.

While our Bayesian Wilcoxon rank-based estimator has several attractive properties,

there are some important issues that need to be further studied. For example, we used

regression splines to approximate the link function in SIM and SIVCM. This is known

to be inefficient. We made this choice because this was not a priority for our study and

there is vast literature on this topic. Another big issue is that the computation cost of

our Bayesian Wilcoxon rank-based estimate is too high since pairing the data makes the

sample size increase to approximately O(n2). Dealing with the standard error correction

issue coursed by pairing the data will also increase this cost. There is certainly a need

to devise a new Bayesian sampling scheme to make the proposed approach practical for

a wide range of problems.
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As an alternative choice, the BLAD method provides similar result as Bayesian

Wilcoxon rank-based estimate. To our knowledge, this is also the first application of this

approach for semiparametric model estimation. There is always a trade off among many

attractive properties, and we have explored that BLAD estimate is a robust Bayesian

method which is feasible for a wide range of problems and relevantly efficient on many

models. Combining Bayesian inference with other robust nonparametric methods brings

advantages from both parts. However, BLAD estimate does not perform well if the model

is not contaminated. This problem is inherited from LAD method, and it was not solved

by combining with Bayesian inference. In practice, we think this problem may be relieved

by utilizing better prior information.
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Appendix A

R Codes

In this appendix we provide two example R codes. The first R code is one of the

cases in simulation 3.4.1 which is the linear model with measurement error. The second

R code is the main part of simulation 4.4.1 which is the SIM.

1 #R code 1: Simulation 3.4.1#

2

3 library(rjags)

4 library(jagsUI)

5

6 #Sample size is 30#

7 N1 <- 30

8 N2 <- N1*(N1 -1)/2

9

10 #True Beta is 1#

11 beta <- 1

12

13 #Conduct 50 repetitions#

14 N.sim <- 50

15 nonbayesian.mean.results <- numeric (0)

16 nonbayesian.median.results <- numeric (0)

17

18 nonbayesian.mean.results2 <- numeric (0)

19 nonbayesian.median.results2 <- numeric (0)

20

21 bayesian.mean.results <- numeric (0)

22 bayesian.median.results <- numeric (0)

23 naive.results <- numeric (0)

24

25 for(k in 1:N.sim)

26 {

27

28 #Simulation data#

29 u <- rnorm(N1, 0, 1)

30 modelerror <- rt(N1, 3)

31 observed.sig.ux <- 0.1

32 x <- runif(N1 ,-1.5, 1.5)

33 y.obs <- beta*x + modelerror

34 x.obs <- x + u

35
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36 #Function used to pair up the data#

37 pairup = function(x,type = "less") {

38 x = as.matrix(x)

39 n = dim(x)[1]

40 a = rep(1:n, rep(n, n))

41 b = rep(1:n, n)

42 c1 = apply(x, 2,

43 function(y){rep(y, rep(length(y), length(y)))})

44 c2 = apply(x, 2, function(y){rep(y, length(y))})

45 ans = cbind(c1 , c2)

46 ans = switch(type , less = ans[(a < b), ],

47 leq = ans[a <= b, ], neq = ans)

48 ans

49 }

50

51 x.non <- pairup(x.obs)

52 x.non <- x.non[,2]

53 y.non <- pairup(y.obs)

54 y.non <- y.non[,2]

55

56 w.obs <- as.matrix(x.obs)

57 w.non <- as.matrix(x.non)

58

59 #Use JAGS to get BRank estimate#

60 data.jags <- list(N2 = N2 , Nrep = 1, Y = y.non , W = w.non ,

61 tauu = (1/(observed.sig.ux^2)))

62 params <- c("beta", "sigmaeps", "sigmax")

63

64

65 #Model_string.txt#

66

67 for(i in 1:N2){

68 Y[i] ~ ddexp(meanY[i], taueps)

69 meanY[i] <- beta*X[i]

70

71 W[i] ~ ddexp(X[i], tauu)

72

73 X[i] ~ dnorm(0, taux)

74 }

75 taueps ~ dgen.gamma (0.5, 0.5, 1)

76 taux ~ dgamma (0.5, 2)

77 beta ~ dnorm(0, .000001)

78 sigmaeps <- 1/sqrt(taueps)

79 sigmax <- 1/sqrt(taux)

80

81 #End of model_string.txt#

82

83 modfile <- "model_string.txt"

84 jags.pre <- jags(model.file = modfile , data = data.jags ,

85 parameters.to.save = params , n.adapt = 100000 ,

86 n.chains = 3, n.burnin = 50000 ,

87 n.iter = 200000 , n.thin = 50, parallel = TRUE)

88

89 nonbayesian.mean.results[k] <- jags.pre$mean$beta

90 nonbayesian.median.results[k] <- jags.pre$q50$beta

91

92 #Use JAGS to get Bayesian estimate#

93 data.jags2 <- list(N1 = N1 , Nrep = 1, Y = y.obs , W = w.obs ,
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94 tauu = (1/(observed.sig.ux^2)))

95 params2 <- c("beta", "sigmaeps", "sigmax")

96

97 #Model_string2.txt#

98 for(i in 1:N1){

99 Y[i] ~ dnorm(meanY[i], taueps)

100 meanY[i] <- beta*X[i]

101

102 W[i] ~ dnorm(X[i], tauu)

103

104 X[i] ~ dnorm(0, taux)

105 }

106 taueps ~ dgamma (0.5, 2)

107 taux ~ dgamma (0.5, 2)

108 beta ~ dnorm(0, .000001)

109 sigmaeps <- 1/sqrt(taueps)

110 sigmax <- 1/sqrt(taux)

111 #End of model_string2.txt#

112

113 modfile2 <- "model_string2.txt"

114 jags.pre2 <- jags(model.file = modfile2 , data = data.jags2 ,

115 parameters.to.save = params2 , n.adapt = 30000 ,

116 n.chains = 3, n.burnin = 5000, n.iter = 60000 ,

117 n.thin = 10, parallel = TRUE)

118

119 bayesian.mean.results[k] <- jags.pre2$mean$beta

120 bayesian.median.results[k] <- jags.pre2$q50$beta

121

122 #MCM Estimate#

123 fit.naive <- lm(y.obs ~ x.obs ,x = TRUE)

124 fit.naive$coef [2]

125 naive.results[k] <-

126 fit.naive$coef [2]*(var(x.obs)/(var(x.obs) - var(u)))

127

128 #SIMEX Estimate#

129 fit.simexQ <- simex(fit.naive ,SIMEXvariable = c("x.obs"),

130 observed.sig.ux, fitting.method = "quadratic")

131 simex.resultsQ[k] <- fit.simexQ$coef [2]

132 #fit.simexNL <- refit(fit.simexQ , "nonl")

133 #simex.resultsNL[k] <- fit.simexNL$coef [2]

134 }

135

136 #End of R code 1#

137

138 #R code 2: Simulation 4.4.1#

139

140 library(rjags)

141 library(jagsUI)

142 library(parallel)

143 library(foreach)

144 library(doParallel)

145

146 N1 <- 200

147 p <- 4

148 numKnots <- 6

149 nsim <- 50

150 set.seed (7)

151
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152 #Create a cluster with # cores available#

153 cl <- makeCluster(detectCores ())

154

155 #Register the cluster#

156 registerDoParallel(cl)

157

158 res = foreach(h = 1:nsim ,

159 .combine = "rbind",

160 .packages = c("rjags","jagsUI")) %dopar% {

161

162 x <- matrix(runif(N1*p, -2, 2), N1, p)

163 theta0 <- c(2,2,4,1)/5

164 z <- x%*%theta0

165 y.obs <- 1.5 * sin(pi*z) + rnorm(N1)

166

167 YY <- matrix(0, N1 , N1)

168 for (i in 1:(N1 - 1)){

169 for (j in (i + 1):N1){

170 YY[j,i] <- y.obs[j,1] - y.obs[i,1]

171 }

172 }

173

174 data.jags <- list(N1 = N1 , numKnots = numKnots ,

175 Y = y.obs[,1], X1 = x[,1],

176 X2 = x[,2], X3 = x[,3],

177 X4 = x[,4])

178 params <- c("phi1","phi2", "phi3", "f", "beta0")

179

180 #Model_string1.txt#

181 for (i in 1:N1)

182 {

183 s[i] <- cos(phi1)*X1[i]

184 + (sin(phi1)*cos(phi2))*X2[i]

185 + (sin(phi1)*sin(phi2)*cos(phi3))*X3[i]

186 + (sin(phi1)*sin(phi2)*sin(phi3))*X4[i]

187

188 f[i] <- beta0 + betas*s[i]

189 + inprod(u[], q[i,])

190

191 Y[i] ~ dnorm(f[i], taueps)

192 }

193

194 for (k in 1: numKnots){

195 knot[k] <- (( numKnots+1-k) * min(s[])

196 + k * max(s[]))/(numKnots +1)

197

198 u[k] ~ dnorm(0,tauU)

199 for (i in 1:N1){

200 q[i,k] <- (s[i] - knot[k])

201 * step(s[i] - knot[k])

202

203 }

204 }

205

206 phiMin <- 0

207 phiMax <- 3.141593/2

208

209 phi1 ~ dunif(phiMin , phiMax)
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210 phi2 ~ dunif(phiMin , phiMax)

211 phi3 ~ dunif(phiMin , phiMax)

212

213 betas ~ dnorm(0, 1.0E-8)

214 beta0 ~ dnorm(0, 1.0E-8)

215

216 tauU ~ dt(0, 1/(25^2) , 1)I(0,)

217 taueps ~ dgamma (0.5, 2)

218

219 #End of model_string1.txt#

220

221 modfile <- "model_string1.txt"

222 jags.pre1 <- jags(model.file = modfile ,

223 data = data.jags ,

224 parameters.to.save = params ,

225 n.adapt =5000 , n.chains=3,

226 n.burnin = 5000,

227 n.iter = 20000 ,

228 n.thin = 50,

229 parallel = TRUE)

230

231

232 data.jags <- list(N1 = N1 , numKnots = numKnots ,

233 Y = y.obs[,1],

234 X1 = x[,1], X2 = x[,2],

235 X3 = x[,3], X4 = x[,4])

236 params <- c("phi1","phi2", "phi3", "f","beta0")

237

238 #Model_string2.txt#

239 for (i in 1:N1)

240 {

241 s[i] <- cos(phi1)*X1[i]

242 + (sin(phi1)*cos(phi2))*X2[i]

243 + (sin(phi1)*sin(phi2)*cos(phi3))*X3[i]

244 + (sin(phi1)*sin(phi2)*sin(phi3))*X4[i]

245

246 f[i] <- beta0 + betas*s[i]

247 + inprod(u[],q[i,])

248

249 Y[i] ~ ddexp(f[i], taueps)

250 }

251

252

253 for (k in 1: numKnots){

254 knot[k] <- (( numKnots+1-k)*min(s[]) +

255 k*max(s[]))/(numKnots +1)

256

257 u[k] ~ dnorm(0,tauU)

258 for (i in 1:N1){

259 q[i,k] <- (s[i] - knot[k])

260 * step(s[i] - knot[k])

261

262 }

263 }

264

265 phiMin <- 0

266 phiMax <- 3.141593/2

267
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268 phi1 ~ dunif(phiMin , phiMax)

269 phi2 ~ dunif(phiMin , phiMax)

270 phi3 ~ dunif(phiMin , phiMax)

271

272 betas ~ dnorm(0, 1.0E-8)

273 beta0 ~ dnorm(0, 1.0E-8)

274

275 tauU ~ dt(0, 1/(25^2) ,1)I(0,)

276 taueps ~ dgen.gamma (0.5, 0.5, 1)

277

278 #End of model_string2.txt#

279

280 modfile <- "model_string2.txt"

281 jags.pre2 <- jags(model.file = modfile ,

282 data = data.jags ,

283 parameters.to.save = params ,

284 n.adapt = 5000, n.chains=3,

285 n.burnin = 5000,

286 n.iter = 20000 ,

287 n.thin = 50, parallel = TRUE)

288

289 data.jags <- list(N1 = N1 , numKnots = numKnots ,

290 Y = y.obs[,1], YY=YY, X1=x[,1],

291 X2=x[,2], X3=x[,3], X4=x[,4])

292

293 params <- c("phi1","phi2", "phi3", "f","beta0")

294

295 #model_string3.txt3

296 for (i in 1:N1)

297 {

298 s[i] <- cos(phi1)*X1[i]

299 + (sin(phi1)*cos(phi2))*X2[i]

300 + (sin(phi1)*sin(phi2)*cos(phi3))*X3[i]

301 + (sin(phi1)*sin(phi2)*sin(phi3))*X4[i]

302

303 f[i] <- betas*s[i] + inprod(u[], q[i,])

304 beta0[i] <- Y[i] - f[i]

305 }

306

307 for (i in 1:(N1 - 1)){

308 for (j in (i + 1):N1){

309 ff[j, i] <- f[j] - f[i]

310 YY[j, i] ~ ddexp(ff[j, i], taueps)

311 }

312 }

313

314 for (k in 1: numKnots){

315 knot[k] <- (( numKnots+1-k)*min(s[])

316 + k*max(s[]))/(numKnots +1)

317

318 u[k] ~ dnorm(0, tauU)

319 for (i in 1:N1){

320 q[i, k] <- (s[i] - knot[k])

321 * step(s[i] - knot[k])

322

323 }

324 }

325
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326 phiMin <- 0

327 phiMax <- 3.141593/2

328

329 phi1 ~ dunif(phiMin , phiMax)

330 phi2 ~ dunif(phiMin , phiMax)

331 phi3 ~ dunif(phiMin , phiMax)

332

333 betas ~ dnorm(0, 1.0E-8)

334

335 tauU ~ dt(0, 1/(25^2) , 1)I(0,)

336 taueps ~ dgen.gamma (0.5, 0.5, 1)

337 #End of model_string3.txt#

338

339 modfile <- "model_string3.txt"

340 jags.pre3 <- jags(model.file = modfile ,

341 data = data.jags ,

342 parameters.to.save = params ,

343 n.adapt =5000 , n.chains=3,

344 n.burnin = 5000, n.iter = 20000 ,

345 n.thin = 50, parallel = TRUE)

346 }

347

348 stopCluster(cl) # shut down the cluster

349 folds <- 1:nsim

350 }
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