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Abstract 
 

 

Reliability of the electrical contact or interface is one of the major concerns in many 

applications such as batteries, solar cells, electrical connectors, MEMS based sensors for hybrid 

and electric vehicles, electronic devices, employment in mechatronics and so on. Different factors 

affect the reliability and efficiency of the electrical interface and also vary depending on the 

application. Electrical contact resistance is one of the most important factors. Electrical contact 

resistance value is affected by surface imperfection, cold welding or adhesion, vibration, hot-

welding, material properties and contact behavior of the interface, organic contaminants, wear 

debris, various kinds of oxides or thin films and other features as well. Contact mechanics models 

are widely used to analyze the electrical contact behavior. This dissertation focuses on the 

development and validation of the contact models to determine the electrical contact resistance, 

which will be discussed subsequently in the next few paragraphs. 

 

Closed-form finite-element empirical models are available for elastic and elastic-plastic 

cylindrical, spherical and sinusoidal shaped surfaces in contact. However, some of these models 

do not consider the effect of interaction with adjacent asperities or require extensive numerical 

resources because they employ a full 3-D model. Therefore, in this dissertation, a single asperity 

contact model has been developed, which is more realistic and computationally less expensive.  

To develop the asperity model, the behavior of an elastic and elastic- perfectly plastic 

axisymmetric sinusoidal surface in contact with a rigid flat has been analyzed and quantified for a 

wide range of material properties and asperity sharpness from initial to complete contact (high 

load). The numerical results agreed well with the Hertz model and the Jackson-Green elastic-

plastic spherical contact model at low loads. Empirical equations for elastic and also elastic-
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perfectly plastic cases are formulated for the contact pressure, contact area, and surface separation. 

From the current analysis, it is found that it is not any single parameter, but different combinations 

of material properties and surface geometry that govern the whole contact behavior. The critical 

value of the amplitude of the sinusoidal asperity below which it will deform completely elastically 

from initial to complete contact is established. At low values of amplitude normalized by the 

critical amplitude, it was found that the contact behaved similar to a spherical contact, with the 

average pressure (hardness) always remaining lower than three times the yield strength. However, 

at higher values the average pressure increased toward a value as high as six times the yield 

strength at complete contact. This is a very significant finding as it differs from the conventional 

theory of hardness. The developed empirical equations are a function of surface roughness and 

material properties. Therefore, if temperature and scale-dependent material properties are known, 

these equations should be able to predict temperature and scale-dependent contact behavior.  

 

Greenwood and Williamson (GW model) first developed a rough surface contact model to 

solve the problem of electrical contact. The original GW model used the Hertz single asperity 

model and Gaussian distribution of the surface roughness. However, in many of the electrical 

contact cases, contact deformation surpasses the Hertz small deformation assumtion. For medium 

to complete contact cases, asperity lateral interactions become very important, and the Hertz model 

cannot predict this behavior. Besides asperity lateral interaction, the probability distribution 

function of the surface roughness is critical as not all the surfaces are Gaussian in nature. This 

work has shown the effect of asperity models to predict asperity interaction behavior. Then the 

asperity models are applied with different probability distributions of the surface roughness in the 

framework of the statistical rough surface model. For the elastic case, the newly proposed rough 
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surface models are compared with the Boundary Element Method (BEM) and Persson model that 

well predicted many of the practical applications. For the elastic-plastic case, electrical contact 

resistance has been measured between two rough surfaces using a four-wire resistance method. 

Then the newly proposed rough surface models are compared with the experimental results. 

Comparisons show that proper choice of the asperity model and the probability distribution 

function of the surface roughness can effectively model the contact behavior from the very small 

deformation region to the large deformation region.   

 

Electrical contacts behave in a complicated way, and the effect of temperature makes the 

contact behavior more complicated. To analyze the temperature-dependent contact behavior, an 

axisymmetric sinusoidal asperity model of tin has been developed using Finite Element Method 

(FEM). The axisymmetric sinusoidal model reduces computational expenses and can effectively 

consider the asperity interaction, which is an important factor for large elastic-plastic deformation. 

The model considers the temperature-dependent yield strength, thermal conductivity, and 

resistivity. The effect of the thermal expansion coefficient is also included. For material modeling, 

the Johnson-Cook material model is employed, which can model the temperature-dependent 

material behavior from room temperature to melting temperature. Results show that temperature-

dependent yield strength has a negligible effect on the electrical contact behavior for the cases 

analyzed. This work finds that temperature dependent resistivity and thermal conductivity are the 

key factors that govern the contact mechanism. The present work also confirmed the previous 

findings that Holm’s electrical contact resistance equation does not work for high-temperature 

cases. The finite element results have been validated by comparing the results with the voltage-

temperature relation provided by the Wiedemann-Franz law. Finally, an equation has been 
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suggested for the electrical contact resistance determination, modifying the equation derived by 

Greenwood. The equation should be able to predict the contact resistance from room temperature 

to high-temperature cases. This equation is a function of contact area. This contact area can be 

determined from the previously developed empirical equation for the contact area of an elastic-

plastic axisymmetric wavy asperity. 
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Chapter 1 

Introduction 

Contact mechanics is an important factor in many applications, for example- electrical connectors, 

micro and nano electro-mechanical switches, bio-implants, mechanical seals, bearings, weapon 

systems and in many other cases. The analysis of the contact behavior has become more significant 

with the increasing importance of the energy industry. Due to the eventual shortage of fossil fuel 

and to reduce the greenhouse gas emissions, automobile industries are putting great efforts to shift 

towards hybrid and electrical vehicles. In the case of electric vehicles alone, there are many 

components such as, motor, transmission, steering system, tires, wheel bearings, constant-velocity 

joints, kinematic energy recovery system, comfort and safety devices, suspension and Micro-

Electro-mechanical System (MEMS), which cause considerable amount of friction losses and 

wear, as a result decreases the overall efficiency of the EV [1]. With the increased research and 

usage of EV, the number of high-powered electrical connectors, connectors in printed circuit 

boards, integrated circuit packages have also increased. Besides EV, there are many applications 

of mechatronics and soldering in electronic devices where electrical connector can provide better 

solution and factors affecting the electrical contact are one of the major concerns there.  

Battery is now at the core of many modern electronics applications, starting from hybrid/ EV to 

many other electronic applications. There are different agents that affect the reliability of a battery, 

two of the major agents are electrical contact resistance (ECR) and thermal contact resistance 

(TCR) generated due to the surface imperfection, and contact/interface behavior, which 

significantly affects the amount of heat generation and distribution, eventually controls the 

reliability of the battery [2]. The applications that require large collection of batteries, power loss 
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due to ECR and TCR can be significant. Literature shows that for a particular Li-ion battery, energy 

losses due to ECR can be as high as 20% of the total energy flow in and out of the battery under 

normal operating conditions. However, ECR losses can be reduced to 6%, applying proper contact 

pressure and surface treatment [3]. 

MEMS switches are popular in many of the electronics applications, including high frequency 

wireless communication systems, medical imaging, automotive, automated testing equipment, 

spectrum and signal analyzers and so on. They are getting more popular as they provide high 

isolation and figure of merit, low resistance and insertion loss compared to their competitors, i.e. 

PIN diodes and GaAs FET switches [4]. The power consumption in both electrostatic and 

piezoelectric MEMS switches is almost zero. Moreover, extremely high linearity of the RF MEMS 

switches separate it from the others [4]. Although these MEMS switches have immense 

advantages, the lower durability and reliability have limited its application and a better 

understanding of the surface science and contact mechanics of the electrical contact can play an 

important role in this case. Besides the above-mentioned applications, there are solar cell [5] and 

many other applications where the electrical contact plays a major role on the overall efficiency 

and reliability. 

While studying electrical contact, electrical and thermal contact resistance (ECR and TCR) are 

two of the most important factors to consider. No matter how carefully the contacting metal 

surfaces are prepared they always have some irregularities. As a result, whenever the surfaces are 

brought into contact, their surfaces first touch at those points where the tips of the asperities on 

one surface meet the tips of the asperities on the opposing surface. If electric current passes through 

the metal-to-metal contact, current will pass through the asperities only. So only a very small 

fraction of the surfaces will be in electrical contact. This constriction in the current flow will create 
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additional resistance in the electric circuit and is known as electrical contact resistance. The 

phenomena of contact resistance is illustrated in Fig.1.1 [6]. Like electrical current, when the heat 

passes through the contact interface, heat also flows mostly through the asperities and the 

constriction induced on the heat flow can be defined as the thermal contact resistance. If the 

electrical contact resistance is high, then there could be lots of heat generation and due to high 

thermal contact resistance, if heat cannot flow through the contact, then the heat may get trapped 

locally at the contact and can cause thermal softening and even in some cases melting. In this 

dissertation, focus is given to electrical contact resistance and the factors that affect the electrical 

contact resistance will be discussed subsequently.  

 

 

 

 

 

Fig. 1.1: Schematic representation of an electrical contact, Angadi, S. V., Wilson, W. E., Jackson, 

R. L., Flowers, G. T., & Rickett, B. I. (2008, October). A multi-physics finite element model of an 

electrical connector considering rough surface contact. In 2008 Proceedings of the 54th IEEE 

Holm Conference on Electrical Contacts (pp. 168-177), reprinted taking the permission from 

IEEE. 
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Cold-welding or adhesion is one of the key factors responsible for the degradation of the electrical 

contact in electrical connectors and MEMS switches [4]. In the case of electrical connectors, high 

contact normal forces between the connector pin and mated part autonomously generate cold 

welded interconnections, especially if the material used for the contacting parts have high adhesion 

energy between them. Due to the formation of this cold-welded intermetallic connection, the 

contact resistance value significantly reduces and in some cases also provides mechanical stability. 

This cold-welding is beneficial if the connection is permanent or does not require a large number 

of cycles to perform. However, in many cases where the connection is not permanent, sticking of 

one surface to the other causes failure to open and the system permanently stops working. Even if 

the system works, high adhesion may cause high surface wear.  

Vibration induced fretting corrosion is another major concern for the surface degradation of the 

electrical connector [7]. The presence of organic contaminants during vibration can increase the 

abrasion and fretting degradation of the electrical connector interface, which may dramatically 

increase the ECR and cause surface failure. Besides organic contaminants and dirts, exposure of 

the electrical contact to vibration induced dynamic load for a long time, can cause higher electrical 

contact resistance [8]. The effect of the vibration direction on the electrical contact resistance is 

also investigated, and result shows that vibration direction has an important influence on the 

electrical contact resistance [8]. 

In many of the electrical contact applications, resistance generated due to organic contaminants is 

an important factor that affects the overall efficiency. Due to Au’s low affinity to organic 

contaminants, it is popular as the electrical contact material. However, as Au is a very soft material 

and applications which need to withstand large number of cycles during their lifetime, for example-

different MEMS switches, softness of Au leads to adhesion between the contacting surfaces [9-
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11] and results in switches prone to failure by sticking.  If we consider MEMS switch as an 

application, lots of research have been done using different alloys of Au, Pt, Ir, [12-14], oxygen 

plasma cleaned Ru [4] and different types of coatings [15] to improve the contact properties. One 

of the main reasons of using Au was it’s high resistance to contamination. However, research 

shows that contamination in a MEMS switch can be reasonably prevented by hermetic packaging 

[4]. Ma et al. [16] showed that switch performance can be significantly affected by the package 

type and method. A comparison in their paper shows that while insertion loss of unpackaged 

switches tested in air typically increased after several million cycles, switches that were carefully 

packaged in an inert ambient like- clean and hermitic cavity reached several hundred million to 

billion cycles with little or no contact resistance change. These factors led researchers to 

concentrate more on adhesion and to design switches that do not fail by stiction. Although adhesion 

may cause surface wear, at the same time it helps to make good contact between the mating parts 

that decreases contact resistance. Therefore, an optimum value of adhesion is important for the 

efficient and reliable performance and the choice of material is very crucial for this.  

In the electrical connector industry also, Au is widely used as the coating material. Extensive 

research projects are going on to replace Au, as it is a very expensive material. Sn is another 

popular coating material, however vibration induced fretting corrosion, oxidation and the Sn 

whisker, are major concerns when applied as a coated material. Sn whisker are electrically 

conductive and single crystal eruptions, grows very easily from surfaces where tin is deposited as 

a coating material. They may create short circuit that decreases the reliability of the connector 

significantly. Fig. 1.2 shows Sn whisker formations in different Sn plated applications. Different 

factors like- residual stress, externally-imposed stress, intermetallic formation, Sn diffusion, 

scratches, corrosion, coefficient of thermal expansion mismatches, etc. are responsible for whisker 
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growth; however, Crandall [17] specified intermetallic formation and diffusion as the main 

reasons. Crandall [17] also addressed that whisker growth can be prevented using topside metal 

films of Ni or Pt. When shorted current passes through the whisker, the temperature of the whisker 

increases due to heat generation and eventually the whisker melts. Jackson et al. [18] found the 

condition at which this melting happens in the whisker and provided an equation to predict the 

maximum current that the whisker can withstand before it melts. 

 

 

 

 

 

Fig. 1.2 Sn whisker formations in different Sn plated applications (a) Sn-plated connector pins (b) 

Exterior surface of Sn-plated electromagnetic relays, Crandall, E. R. (2013). Introduction: 

Whiskers and Their Role in Component Reliability. In Factors Governing Tin Whisker Growth 

(pp. 1-24). Springer, Cham, reprinted taking the permission from Springer. 

Hot welding is another major factor that affects and causes significant damage to the electrical 

contact. During the transition from off to on or on to off state of an electronic device, if the whole 

voltage applies across the electrical contact, the possibility of hot welding increases significantly. 

The gaps at the contact interface or improper contact is responsible for thermal arcing which causes 

local thermal run away or melting at the electrical contact. Bose et al. [4] studied a Ru-Ru micro 

(a) (b) 
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contact using AFM based test set up to understand the effect of hot-welding on the micro contact 

damage and failure. This AFM based test setup is basically a clamped-clamped beam structure 

with a contact bump at the center and a flat topped mating pillar formed the other end of the contact. 

The contact opening and closing replicated switching were controlled by mounting the pillar on a 

piezoactuator. Microcontacts were examined under a variety of hot switching conditions, ranging 

from different voltages, different polarities and different approach and separation rates. At the end, 

it was concluded that material transfer which leads to removal of contact material from one side 

of the contact to the other is the primary cause for contact failure in the DC hot switching condition 

as material transfer causes contact resistance to increase [4]. Small surface separation or improper 

contact (contact only via a molten metal bridge), field emission and evaporation, Thompson’s 

effect and electromigration were specified as responsible for the material transfer. Bowden and 

Williamson [19] observed the response of an Au-Au cone shaped indenter against a rectangular 

block for different currents and found that the contact starts to collapse before it reaches the melting 

point of Au. Another later paper [20] explained this observation that for every material there is a 

critical or super temperature, when the surface reaches that temperature, thermal stability at that 

electrical contact is not possible anymore. Bansal et al. [21] investigates the behavior of electrical 

contact resistance for Cu-Cu and Al-Al sphere on flat contacts for a wide range of currents, loads 

and surface roughnesses. The analysis shows that the voltage drop across the contact initially 

increases with current until a certain voltage is reached. Beyond this critical point, any increase in 

the current causes essentially no change in voltage, which is known as saturation voltage and 

viscoplastic creep causes this voltage saturation. It is shown in the paper that, at high temperature 

a small increase in temperature causes a large increase in the strain rate. As a result, with the 

increase of voltage across the contact, current increases. Increase of current causes temperature 
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rise and with the temperature rise contact area increases and when the temperature at the contact 

gets high enough, a small increase in temperature causes high strain in the contact area. With the 

increase of the contact area, contact resistance continuously decreases and it would continue to 

decrease with increasing current only to the point where there is complete contact over the 

available area. Despite the rapid strain rate, contact resistance cannot decrease anymore at this 

point, and further increase in current would increase the voltage continuously upto the melting 

point. Besides viscoplastic creep, electroplasticity and electromigration have also held responsible 

for the electrical contact resistance behavior. Rezvanian et al. [22] used diffusion based creep 

equation in conjunction with an idealized single-asperity model to account for the reduction in the 

resistance of Au ohmic switches over time under the conditions of low voltage and current and the 

result shows that the increase in the contact radius is proportional to the strain rate. Bennett et al. 

developed a numerical simulation of the growth rate of a typical contact radius of the asperity as 

well as the rate of change of voltage based on the electromigration mechanism.  

Gap or surface separation are the major source of electrical arcing. Electrical arcing occurs when 

an electric current flows through the air, from one conductive point to another. Arcing is associated 

with a flaw in an electrical circuit that causes the electrical current to cease travelling along its 

intended path and to instead jump across a shorter path, from one conductor to another. Electrical 

arcing causes the formation of oxides, nitrides, sulphides, carbonates and carbonaceous 

compounds [4] due to the high temperature generation at the contact. These formulated compounds 

at the electrical contact is another important factor that affects electrical contact behavior 

significantly. These compounds generally act as current insulators and are very thin. Tunneling 

current may pass through this thin film and oxides due to quantum electrical conduction. Formation 

of compounds at the contact increases the contact resistance, however due to tunneling contact 
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resistance may continuously decrease and makes it very difficult to get a consistent and reliable 

contact resistance measurement.  Jackson et al. [23] modeled the electrical contact resistance 

between two surfaces separated by an anisotropic conductive film. The film consists of an epoxy 

with conductive spherical metallic particles dispersed within. This work shows that, without the 

consideration of the thin insulating film (in this case epoxy) between the metallic particles and the 

surfaces, theoretical results significantly underpredict the electrical contact resistance when 

compared with the experimental results. However, consideration of the thin insulating film using 

electron tunneling theory improves the electrical contact resistance value by a large extent.  

The above discussion shows that different factors affect the electrical contact resistance. However, 

hot welding leads to more damage and reduced lifetime than cold-welding [4]. Surface oxides and 

contamination,  improper contact or surface separation are the major source of hot welding and 

direct in-situ determination of the contact area due to thermal induced softening of the metal-metal 

contact is somewhat impossible. Besides that, during experiment, all the factors that affect the 

whole phenomenon act simultaneously which makes it difficult to understand which factor is 

affecting the most. Therefore, in this dissertation numerical technique has applied to analyze the 

contact behavior and determine the electrical contact resistance. Research has been done on 

electrical contact using numerical techniques [18, 20 and 24] considering temperature dependent 

properties of electrical resistivity and thermal conductivity. However, very few investigations have 

been done that also include temperature dependent yield strength properties of the material. Yield 

strength of any metal continuously decreases with temperature and at the melting temperature, the 

yield strength approaches zero. Therefore, the objective of this dissertation is to analyze the contact 

behavior such as-contact area, contact pressure, surface separation as a function of surface 

roughness and material properties. Therefore, if the temperature at the contact and the temperature 
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dependent material properties are known, the contact behavior can be predicted. There are different 

numerical techniques to model the contact behavior that will be discussed afterward.  

All surfaces, whether natural or synthetic, have different degrees of roughness. Hertz probably first 

began the application of solid mechanics to contact problems by solving the problem of elastic 

deformation between two contacting parabolic asperities [25-26]. Since then, many researchers 

have applied this for modelling contact between elastic rough surfaces. Among them, the works of 

Archard [27] and Greenwood and Williamson [28] are noteworthy. The main idea of asperity based 

rough surface contact modeling is that depending on the application an asperity model can be 

developed for that particular application. The developed asperity model should be able to capture 

the contact behavior and parameters such as, contact area, contact pressure, contact gap, surface 

delamination etc. Then those asperity models are applied into different rough surface contact 

models. Surfaces are very random and multiscale in nature. Based on the Nayak’s random process 

theory, Greenwood and Williamson [28] developed a rough surface contact model. Although the 

original Greenwood and Williamson model (GW model) was developed for an elastic and surface 

with asperities following a Gaussian distribution, this model has been expanded later [29-33] by 

developing more advanced asperity models and surface probability distribution functions. Another 

popular asperity based model is the multiscale model. Surface roughness varies over many scales, 

starting from the macroscale down to the atomic level and the multiscale model considers the 

multiscale nature of the surface during rough surface contact modeling. Archard [27] first 

developed a multiscale model based on the concept of “protuberance upon protuberance” where 

smaller spherical asperities protruded from the larger spherical asperities. However, real surfaces 

barely look like this. Later Majumdar and Bhushan [34] and Ciavarella [35] developed fractal 

surface based models to consider the multiscale nature of the surfaces. However, not all the 
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surfaces are fractal in nature. In 2006, Jackson and Streator [36] performed a Fast Fourier 

Transform on the surface profile to characterize the spectrum of the surface. Then based on the 

spectral analysis and single asperity model developed a multiscale model for contact between two 

rough surfaces. 

Persson [37] developed a rough surface model that does not use the idea of the single asperity and 

relies on the relation between surface heights and contact pressure distributions. The developed 

model by Persson is extremely simple and predicts reasonably well the trend of contact behavior 

in many applications of tribology- viscoelastic rubber against a rigid flat [37], mechanical seals 

[38-41], lubricated rough surface contact [42-45], heat transfer between rough surfaces [43], 

adhesive contact [46-49], rubber friction [37, 50] and so on. However, the model assumes that the 

rough surfaces are perfectly fractal in nature, which is not true as showed in many later works [51-

52].   

There is another method called the deterministic model to analyze the rough surface contact 

behavior. In this method, the interface is designed as exactly as the surface is measured using the 

surface measuring instrument. The Finite Element Method (FEM) and Boundary Element Method 

(BEM) are generally used for the deterministic modeling. Deterministic models are generally used 

for the validation of the other rough surface contact models but are difficult to use for design 

problems, as they are computationally very expensive.  

BEM is a numerical tool that solves the approximated solutions on the boundary of a specific 

problem. To solve the problem, BEM forms a boundary Integral equation (BIE) utilizing Betti’s 

reciprocal theorem in conjunction with the Kelvin solution [53] or Boussinesq solution [54] or 

other solutions depending on the case. Then applying the Karush-Kuhn-Tucker condition as the 



12 
 

boundary condition, the problem is solved iteratively. To solve many of the tribological problems, 

the Boussinesq solution has been widely used with BEM. However, the Boussinesq solution 

provides a solution only for the cases where a flexible half-space is loaded with a point load.  So 

for the rough surface contact problems, only the cases where contact area is several orders of 

magnitude less than the dimensions of the contact bodies, the Boussinesq solution can be applied. 

However, the Kelvin solution can be used with BEM to solve problems that involve complicated 

geometries. In Kelvin’s problem, a concentrated force acts at an interior point of an infinite elastic 

body. The problem does not consider any length scale and the stress field is self-similar [55]. Xu 

[31] showed that BEM solved using the Boussinesq solution can be derived from the general 

purpose BEM that use the Kelvin solution. BEM in conjunction with the Kelvin solution is known 

as conventional or general purpose BEM, whereas BEM with all the other solutions is known as 

the special purpose BEM. If the problem involves contact, BEM generally uses the first Penalty 

method to solve the contact problem. The disadvantage of BEM is that, as BEM connects the 

surface displacement and traction at the boundary of the current problem to a special problem to 

form the BIE, the solution for stress and displacement must have to be known for the special 

problem. That’s why in most of the cases it’s application is limited to linear elastic problems.  

FEM is a numerical method to solve boundary value problems using partial differential equations. 

FEM can solve most of the complicated problems that includes complicated material properties, 

contact, and complicated geometry. To solve the problem, FEM discretizes the whole 

computational domain into lots of small elements and develops a set of algebraic equations for 

each element depending on the application. Then combining the equations and boundary 

conditions for each element, equations for the whole geometry are developed. FEM uses 

variational principles or weighted integrals of partial differential equations to approximate a 
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solution by minimizing an associated error function. As a result, in many cases it generates 

impractical numbers of elements and sets of equations that make FEM computationally very 

expensive. However, with the development of computational methods and technologies, the ability 

of FEM is also increasing. Although FEM is a very computationally expensive method to solve, 

lots of research have been done on deterministic FEM to solve elastic [56] and elastic-plastic [57-

62] rough surface contact problems as this can be used as the validation tool for the other rough 

surface models. However, surface resolution is a major hindrance in this case. As surface 

roughness varies over a wide range of scale, very fine mesh resolution can create millions of 

elements. Recently, Wang et al. [62] performed an analysis on the effect of resolution on the 

deterministic FE elastic-plastic rough surface contact under combined normal and tangential 

loading. The employed harmonic or spectral interpolation to refine the mesh resolution. The 

developed methodology for rough surface contact analysis in that paper may help to push the FE 

simulation results closer to reality. 

Therefore, the objectives of this dissertation are the following: 

1. To develop and validate rough surface contact models that can predict contact behavior from 

very small contact (Hertz contact region) to complete contact. Later these rough surface contact 

models will be used to predict the electrical contact resistance of the surface. For this purpose: 

 A Finite Element Models (FEM) of an elastic and elastic-perfectly plastic axisymmetric 

sinusoidal asperity have been developed for a wide range of material properties and surface 

sharpness. Analyzing the FE results, empirical equations have been formulated to predict 

the contact behavior as a function of geometrical parameters and material properties from 

the Hertz contact region to complete contact region. So if the temperature and scale 
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dependent material properties are known, then these equations should be used to predict 

the contact evolution with the change of temperature and scale.  

 Statistical or multi-asperity models are developed for elastic and elastic-perfectly plastic 

cases based on Nayak’s random process model. The rough surface contact methodology 

both for real and generated fractal surfaces are discussed.  

 For the validation of the elastic rough surface contact model, the developed rough surface 

contact models are compared with the Boundary Element Method (BEM) and Persson’s 

model. 

2. Electrical contact resistance has been measured between two Aluminum surface using the four-

wire resistance method and then the experimental results are compared with the electrical 

contact resistance determined using the rough surface contact models developed for the elastic-

perfectly plastic rough surfaces.  

3. A FE model of a coupled electro-thermo-mechanical axisymmetric sinusoidal asperity has 

been developed considering temperature dependent electrical, thermal and mechanical 

properties to observe the effect of the temperature dependent properties on the contact 

behavior. Both the frictionless and perfectly bonded contact cases are analyzed. Then an 

equation for the electrical contact resistance has been suggested by modifying the equation of 

Greenwood [63]. The suggested electrical contact resistance equation should be applicable for 

room to high temperature cases. 
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Chapter 2 

Literature Review on Elastic and Elastic-Plastic Asperity Models 

2.1 Introduction 

Contact behavior is a complicated phenomenon. Depending on the surface roughness, material and 

application, the contact response varies a lot. Hertz [1] first developed the solution of the contact 

between two elastic parabolic structures. The solution also provides a precise approximation of the 

elastic contact between spheres. The Hertz model assumes that the interference is small so that the 

geometry of the asperity does not change significantly; also, the surface interactions are frictionless 

and only repulsive. The model works well in early contact. Later other elastic asperity models [2-

9] have been developed, which can predict contact behavior near complete contact or the entire 

range of contact from early contact to complete contact and will be discussed afterward. Before 

describing different asperity models, a few parameters are introduced that will be later used to 

describe the asperities. One way, an asperity can be described by three different parameters, 

asperity height, 𝜉ℎ, and principle curvatures 𝑘1
ℎand 𝑘2

ℎ at a particular point. Superscript h denotes 

the asperity of a rough surface. The radius of curvature at a point on the curve is given by the 

following expression: 

  𝑅 =
[1+(𝑦′(𝑥))2]

3/2

|𝑦′′(𝑥)|
                                                         (2.1) 

In Eq. (2.1), the term (𝑦′(𝑥))2 is very small compared to 1 for any value of x on the surface so 

that is often neglected. Therefore, the radius of curvature of an asperity along two principal 

directions can be expressed by the following two equations: 
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     𝑅1 =
1

𝑘1
=

1

|𝑦′′(𝑥)|
=

1

|
𝑑2𝑦

𝑑𝑥2|
 , 𝑅2 =

1

𝑘2
=

1

|𝑦′′(𝑥)|
=

1

|
𝑑2𝑥

𝑑𝑦2|
                                                 (2.2) 

Instead of principle curvatures, asperities can also be described by mean, geometric, or semi-

difference curvature of the summit of the asperity. Fig. 2.1 shows different ways of defining single 

asperity, and the definition of different asperity curvatures are given below [3, 10-11]: 

1. Mean curvature, 𝑘𝑚
ℎ  [3,10]: 

  𝑘𝑚
ℎ = −

(
𝜕2𝜉ℎ

𝜕𝑥2 +
𝜕2𝜉ℎ

𝜕𝑦2 )

2
= −(

𝑘1
ℎ+𝑘2

ℎ

2
)                                              (2.3) 

2. Geometric curvature, 𝑘𝑔
ℎ [3,11]: 

𝑘𝑔
ℎ = [

𝜕2𝜉ℎ

𝜕𝑥2  
𝜕2𝜉ℎ

𝜕𝑦2 − (
𝜕2𝜉ℎ

𝜕𝑥𝜕𝑦
)
2

]

1/2

= √𝑘1
ℎ 𝑘2

ℎ                                          (2.4) 

3. Semi-difference curvature of the summit, 𝑘𝑑
ℎ [3, 11]: 

𝑘𝑑
ℎ=√(𝑘𝑚

ℎ )
2
− (𝑘𝑔

ℎ)
2

= [
1

4
(
𝜕2𝜉ℎ

𝜕𝑥2 −
𝜕2𝜉ℎ

𝜕𝑦2 )
2

+ (
𝜕2𝜉ℎ

𝜕𝑥𝜕𝑦
)
2

]

1/2

= |𝑘1
ℎ − 𝑘2

ℎ|/2               (2.5) 

The geometry of the contact pressure distribution, which is generally referred to as the “pressure 

surface,” plays an important role to model the nearly complete contact. When a nominally flat 

rough surface, ℎ(𝑥, 𝑦), is completely flattened by a rigid flat due to purely normal contact; the 

corresponding contact pressure can be determined using the following equation [3, 7 and 12]: 

                                𝑝𝑐(𝑥, 𝑦) = ℱ−1[𝜋𝐸′𝑘ℱ[ℎ](𝑘𝑥𝑘𝑦)]                                                (2.6) 

where 𝑘 = √𝑘𝑥
2 + 𝑘𝑦

2, 𝑘𝑥 and 𝑘𝑦 are wave number in the x and y directions. ℱ denotes the Fourier 
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transform of a function and ℱ−1denotes the inverse Fourier transform of a function. There are 

various forms of Fourier transform pair. The following ones are adapted in this dissertation: 

                        ℱ[𝑓](𝑘𝑥, 𝑘𝑦) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒𝑥𝑝[−𝑖2𝜋(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]𝑑𝑥𝑑𝑦,
∞

−∞

∞

−∞
                      (2.7) 

       𝑓(𝑥, 𝑦) = ℱ−1[ℱ[𝑓]](𝑥, 𝑦) = ∫ ∫ ℱ[𝑓](𝑘𝑥, 𝑘𝑦)𝑒𝑥𝑝
∞

−∞

∞

−∞
[𝑖2𝜋(𝑘𝑥𝑥 + 𝑘𝑦𝑦)]𝑑𝑘𝑥𝑑𝑘𝑦      (2.8) 

 𝐸′ is the equivalent elastic modulus which can be calculated using the following equation: 

                                                       
1

𝐸′ =
1−𝜐1

2

𝐸1
+

1−𝜐2
2

𝐸2
                                                                  (2.9) 

In Eq. (2.9), Ei and νi are Young’s modulus and Poisson’s ratio respectively of two contacting 

bodies and i=1, 2. For the “pressure surface” 〈𝑝𝑐〉 = 0 since 〈ℎ〉 = 0.  〈∙〉 denotes the ensemble 

average of the rough surfaces analyzed. “Pressure surface” can be analyzed in a very similar way 

as the rough surface, see Fig. 2.3(b). The statistical nature of a “pressure surface” is isotropic and 

Gaussian if the corresponding rough surface is an isotropic and Gaussian process. Xu [3] provided 

a proof to check the validity of this statement. Therefore, like the asperity of a rough surface, the 

asperity of a pressure surface can be expressed by asperity height, 𝜉𝑝, and the absolute 

maximum, 𝑘1
𝑝
  and minimum, 𝑘2

𝑝
 principal curvatures of the summit of the asperity. Superscript p 

denotes the asperity of a “pressure surface.” 

2.2 Elastic Asperity Models 

2.2.1 Hertz Elliptical Contact Model 

Hertz originally developed an elliptical contact model for linear elastic parabolic asperities [6, 7]. 

Now if a parabolic asperity is brought into contact with a flat surface or two parabolic asperities  
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Fig. 2.1 Schematic representation of different single asperity, (a) Elliptical asperity (b) Mildly 

elliptical asperity with geometric curvature (c) Mildly elliptical asperity with mean curvature (d) 

Spherical asperity with circular contact (e) Cylindrical contact.      

(a) (b) 

(c) (d) 

(e) 



27 
 

are brought into contact, and the geometry of the contact is elliptical, then the contact area and 

force can be expressed by the following two equations [6, 7]. Fig. 2.1 (a) is showing the schematic 

depiction of an elliptical asperity. 

    𝐴𝑖(𝛿, 𝑘1
ℎ , 𝑘2

ℎ) = 𝜋(𝑘𝑔
ℎ)

−1
𝛿𝐹1

2(𝑒)/𝐹2(𝑒)                                          (2.10) 

                                        𝐹𝑖(𝛿, 𝑘1
ℎ, 𝑘2

ℎ) =
4

3
𝐸′(𝑘𝑔

ℎ)
−1/2

𝛿3/2𝐹2(𝑒)
−3/2                                   (2.11) 

In Eq. (2.10) and (2.11), 𝛿 is the penetration depth that is the amount by which one surface is 

displaced to another surface, 𝐹1(𝑒) and 𝐹2(𝑒) are a function of the eccentricity of the ellipse, 𝑒 =

√1 − 𝑏2 𝑎2,⁄  where a>b and can be expressed by the following formulas [6,7]: 

                           𝐹1
3(𝑒) =

4

𝜋
𝑒−2(1 − 𝑒2)3/4 {[

𝐸(𝑒)

(1−𝑒2)
− 𝐾(𝑒)] [𝐾(𝑒) − 𝐸(𝑒)]}

1/2

                 (2.12) 

𝐹2(𝑒) =
2

𝜋
(1 − 𝑒2)1/4[𝐹1(𝑒)]

−1𝐾(𝑒)                                      (2.13) 

where K(.) and E(.) are the complete elliptic integrals of the first and second kind respectively: 

                     𝐾(𝑒) = ∫
𝑑𝜃

√1−𝑒2sin (𝜃)

𝜋/2

0
,                                                (2.14) 

  𝐸(𝑒) = ∫ √1 − 𝑒2sin (𝜃)𝑑𝜃
𝜋/2

0
                                            (2.15) 

Curve fitting the plot of the closed-form solution provided by Johnson [7], Xu [3] obtained the 

following equation for e, which makes it more convenient to calculate contact area and force for 

the elliptical contact. 

                            √1 − 𝑒2 = 𝑒𝑥𝑝[0.006709 × 𝑙𝑜𝑔2(𝑘1
ℎ 𝑘2

ℎ⁄ ) + 0.6692 × 𝑙𝑜𝑔(𝑘1
ℎ 𝑘2

ℎ⁄ )]     (2.16) 



28 
 

2.2.2 Hertzian Circular Contact Model 

If the contacting parabolic asperities are axisymmetric, then 𝑘1
ℎ = 𝑘2

ℎ = 𝑘ℎ and elliptical contact 

will turn into a circular contact. For circular contact, contact area and force can be expressed by 

the following two formulas [7]: 

𝐴𝑖(𝛿, 𝑘ℎ) = 𝜋(𝑘ℎ)−1𝛿                                                              (2.17) 

𝐹𝑖(𝛿, 𝑘ℎ) =
4

3
𝐸′(𝑘ℎ)−1/2𝛿3/2                                                   (2.18)                                                                                                                                               

The equivalent radius of curvature, R=1/𝑘ℎ and can be calculated from the following formula: 

1

𝑅
=

1

𝑅1
+

1

𝑅2
                                                                   (2.19) 

In Eq. (2.19), R1 and R2 are the radii of the curvature of the contacting bodies. If one of the 

contacting surfaces is concave and another one is convex in shape, for example, contact between 

a shaft and bearing bore in a journal bearing or contact between rolling elements and inner race in 

the rolling element bearing, for those cases, the equivalent radius of curvature can be calculated 

by making the sign of the curvature of the concave asperity negative. Fig. 2.1(d) is showing the 

diagrammatic representation of a spherical asperity with circular contact. 

2.2.3 Hertzian Mildly Elliptical Contact Models with Geometric Curvature/ Mean Curvature 

Hertzian mildly elliptical contact models with geometric curvature, 𝑘𝑔
ℎ, and mean curvature, 𝑘𝑚

ℎ , 

are equivalent to the Hertzian circular contact model if  𝑘ℎ in Eq. (2.17) and (2.18) are replaced 

by 𝑘𝑔
ℎ = √𝑘1

ℎ 𝑘2
ℎ [3, 11] and 𝑘𝑚

ℎ = (𝑘1
ℎ + 𝑘2

ℎ) 2⁄  [3, 10], respectively. Elliptical contact model, 

i.e., Eq. (2.10) and (2.11) are a function of 𝐹1(𝑒) and 𝐹2(𝑒). For Hertzian mildly elliptical contact 
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with geometric curvature, 𝐹1(𝑒) and 𝐹2(𝑒) in Eqs. (2.12) and (2.13) decay slowly from unity as 

√𝑘1
ℎ/ 𝑘2

ℎ is increased (see Fig. 4.4 in [7]). For Hertzian mildly elliptical contact with mean 

curvature (
𝑘2

ℎ

𝑘1
ℎ → 1+), the model is expected to be valid when the principal curvatures are mildly 

different. Fig. 2.1(b) and 2.1(c) are showing a graphical rendition of a mildly elliptical asperity 

with geometric and mean curvature respectively. 

2.2.4 Cylindrical Contact 

Cylindrical contacts are not that commonly used to model rough surface contact; however, in some 

of the plane-strain and plane-stress applications, for instance-wheel contacts, gear teeth interaction, 

cylindrical roller bearings, and lubricated gear and cams, cylindrical contact models can predict 

the behavior well [13]. When a rigid flat is in contact with a cylinder, the contact area is initially a 

line. That is why cylindrical contact is often referred to as line contact. With the application of 

force, line contact gradually turns into a rectangle [8]. The same phenomena is observed when two 

cylinders come into contact, and their axis of symmetry is parallel. A schematic depiction of a 

cylindrical contact has shown in Fig. 2.1(e). Although the elastic solution of cylindrical contact is 

often attributed to Hertz, it is not clear who originally derived the solutions. However, Johnson [7] 

and Hamrock [14] provided explicit solutions for elastic cylindrical contact in their texts. Hamrock 

provided the following solution to calculate the deflection of an elastic cylindrical contact in his 

text: 

𝛿 =
𝐹

𝜋𝐸′𝐿
[𝑙𝑛 (

4𝜋𝐸′𝑅𝐿

𝐹
) − 1]                                                       (2.20) 

In the above equation, F is the applied contact force, L is the length of the contact, 𝐸′is the 

equivalent elastic modulus, and R is the equivalent radius of curvature. For the plane-strain 
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condition, Eq. (2.9) can be used to determine the equivalent elastic modulus; however, for the 

plane-stress condition, Eq. (2.9) needs to be modified into the following form, setting 𝜐1 = 𝜐2 = 0 

[15-16]:  

                                                                   
1

𝐸′
=

1

𝐸1
+

1

𝐸2
                                                           (2.21) 

The cylindrical contact area can be calculated using the following formula: 

                A=2bL                                                                      (2.22) 

According to Johnson [7], the following equation can be used to calculate the contact width: 

           𝑏 = (
4𝐹𝑅

𝜋𝐿𝐸′)
1/2

                                                                (2.23) 

The contact pressure at the cylindrical contact is parabolic in shape, maximum at the center point 

of the contact, and zero at the edge of the contact. The maximum contact pressure at the cylindrical 

contact can be calculated using the following equation: 

                                                          𝑝𝑚𝑎𝑥 =
2𝐹

𝜋𝑏𝐿
   (2.24) 

2.2.5 Westergaard One-dimensional Wavy Surface Model: 

In 1939, Westergaard [4] analyzed the contact of a one-dimensional wavy surface with an elastic 

half-space for the plane-strain condition. The geometry of the one-dimensional wavy surface is 

given by: 

  ℎ(𝑥) = ∆ (1 + cos (
2𝜋𝑥

𝜆
))                                                     (2.25)                                                                                        
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In the above equation, Δ is the amplitude, and λ is the wavelength of the sinusoidal surface. The 

one-dimensional wavy surface creates a line contact with the flat surface at the beginning of the 

contact, and with the increase of applied force gradually becomes a strip of width 2a. The stress 

distribution within the elastic solids is two-dimensional. Fig. 2.2 is showing the schematic 

representation of the contact response of the problem analyzed by Westergaard. The contact 

pressure distribution for such contact can be expressed by the following equation [4]: 

                                   𝑝(𝑥) =
2𝑝̅cos (

𝜋𝑥

𝜆
)

𝑠𝑖𝑛2(
𝜋𝑎

𝜆
)

{𝑠𝑖𝑛2(
𝜋𝑎

𝜆
) − 𝑠𝑖𝑛2(

𝜋𝑥

𝜆
)}

1/2

                                          (2.26) 

In the above equation, a is the half of the contact width (see Fig. 2.2), 𝑝̅ is the average nominal 

pressure and for |𝑥| ≤ 𝑎, 

                               𝑝̅ = (𝜋𝐸′∆/𝜆)𝑠𝑖𝑛2(
𝜋𝑎

𝜆
)                                                     (2.27) 

The pressure required to flatten this elastic wavy surface completely is: 

                               𝑝∗ = 𝜋𝐸′ ∆

𝜆
                                                             (2.28) 

When 𝑝̅ ≪ 𝑝∗ that is 2𝑎 ≪ 𝜆, the contact areas are very small and can be treated as isolated contact 

or asperities. Now if load F is applied on the summit of each asperity, then the average nominal 

pressure is, 𝑝̅ =
𝐹

𝜆
. From Eq. (2.2), the radius of curvature of the sinusoidal asperity is: 

𝑅 =
𝜆2

4𝜋2∆
                                                           (2.29) 

Substituting the value of F and R into the Hertz equation for line contact the contact area is: 

                                                                 
2𝑎

𝜆
= (

2

𝜋
) (

𝑝̅

 𝑝∗
)
1/2

                                                     (2.30) 
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Similarly, near the complete contact that is, 𝑝̅ → 𝑝∗ a small strip of width, 2𝑏 ≪ 𝜆 remains out of 

contact and can be treated as isolated cracks, which do no interact with each other. The contact 

area of these non-contact regions can be determined by superimposing two contact problems using 

the superposition principle of fracture mechanics. One of the problems is if the surface reaches 

complete contact due to sufficient adhesion where tensile forces are acting at the non-contact 

region. Another problem is an equal and opposite value of tensile forces, the same as the first 

problem is acting on the crack surface. Fig. 2.3 shows the decomposition of the nearly complete 

contact problem into complete contact and pressurized cracks problem. For the Westergaard 

problem, it is assumed that the following equation of pressure is acting on the crack surface [4]: 

𝑝(𝑥′) ≈ 2𝜋2 (
𝑥′

𝜆
)
2

𝑝∗ − (𝑝∗ − 𝑝̅)                                            (2.31) 

where 𝑥′ = 𝑥 − 𝜆/2 and 𝑎 ≤ 𝑥 ≤ (𝜆 − 𝑎) and the stress intensity factor at the end of the 

pressurized crack is [17]: 

                               𝐾𝐼 = (𝜋𝑏)−1/2 ∫ 𝑝(𝑥′𝑏

−𝑏
){(𝑏 + 𝑥′)/(𝑏 − 𝑥′)}1/2𝑑𝑥′                                (2.32) 

As the cracks have no strength, the stress intensity factor at the end of the crack will be zero, 𝐾𝐼 =

0. Using this boundary condition and substituting Eq. (2.31) into Eq. (2.32), the following equation 

for the non-contact area has been determined [4]: 

                                                            
2𝑏

𝜆
=

2

𝜋
(1 −

𝑝̅

𝑃∗)
1/2

                                                        (2.33) 

Subtracting the non-contact area from the contact area, the equation of contact area near complete 

contact can be determined. The contact area from initial to complete contact can be expressed by 

the following equation [4]: 
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2𝑎

𝜆
= (

2

𝜋
) 𝑠𝑖𝑛−1 (

𝑝̅

 𝑝∗)
1/2

                                                (2.34) 

In Eq. (2.34), 2a is the real and λ is the apparent area of contact, 𝑝̅ is the average nominal pressure 

and  𝑝∗ is the average pressure at complete contact. Eq. (2.34), when compared with the early 

contact equation, Eq. (2.30), and near complete contact equation, Eq. (2.33), Eq. (2.34) matched 

well at the beginning and the end of the contact.  

 

 

 

 

 

 

 

 

 

Fig. 2.2 Schematic representation of the contact of a one-dimensional wavy surface with a rigid 

flat at different contact conditions. 
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Fig. 2.3 Schematic representation of the decomposition of (a) partial contact problem into (b) 

complete contact and (c) pressurized crack problem. 

(c) 

(a) 

(b) 
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Johnson et al. [5] derived an equation to calculate the change in surface separation for this problem 

from early contact to complete contact. According to Johnson et al., the change in surface 

separation can be expressed by the following equation: 

𝐺 =
𝑔̅

∆
= 1 −

𝛿′

∆
= 1 − ∑ (𝐴𝑖/𝑖)

𝑛
𝑖=1                                            (2.35) 

where,  𝑔̅ is the current surface separation and ∆ is the separation at the beginning of the contact. 

Johnson et al. used a quadratic programming method to determine 𝐴𝑖, minimizing the 

complementary energy function (Eq. (1) in [5]). For the same problem, Kuznetsov [18] gave the 

following expression to calculate the change in surface separation: 

𝐺 =
𝑔̅

∆
= 1 − (

𝑝̅

 𝑝∗) [1 − 𝑙𝑛 (
𝑝̅

 𝑝∗)]                                              (2.36) 

Johnson et al. [7] showed that Eq. (2.35) and (2.36) matched very well with each other.  

2.2.6 Johnson, Greenwood, and Higginson (JGH) Two-dimensional Wavy Surface Problem 

Johnson et al. [5, 7] analyzed the contact of a two-dimensional periodic elastic wavy surface in 

contact with a smooth flat surface. The waviness height is given by the following equation: 

                                                     ℎ(𝑥, 𝑦) = ∆ (1 − 𝑐𝑜𝑠 (
2𝜋𝑥

𝜆
) 𝑐𝑜𝑠 (

2𝜋𝑦

𝜆
))                                        (2.37)  

The contact pressure distribution within elastic solids is three-dimensional. Change in the shape of 

contact with contact pressure is complicated (see Fig. 13.4 in [7]). At the beginning of the contact, 

the contact area is circular, and then gradually turns into the square shape of the contact area,  
𝜆

√2
×

𝜆

√2
 with the increase of force. That is why it is very difficult to obtain a continuous solution from 

the early contact to complete contact for this problem. If load F is applied on the crest of the wavy 
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surface, then the average nominal pressure is, 𝑝̅ =
2𝐹

𝜆2
  and the radius of curvature at the tip of the 

asperity is, 𝑅 =
𝜆2

4𝜋2∆
. Substituting the value of F and R into the Hertz equation of circular contact, 

Johnson gave the following asymptotic solution for the early contact of a wavy surface [5]: 

     
𝐴𝑟

𝐴𝑛
=

2𝜋𝑎2

𝜆2 = 𝜋 {
3

8𝜋

𝑝̅

𝑝∗}
2/3

                                                     (2.38) 

In the above equation, 𝐴𝑟 is the real contact area, 𝐴𝑛 is the nominal contact area and a is the contact 

radius of a single wave. Johnson gave another asymptotic solution for the near-complete contact 

region, assuming the non-contact region as the pressurized “Penny-shaped” cracks of radius b. 

Therefore, the contact area near the complete contact regime is [5]: 

   
𝐴𝑟

𝐴𝑛
= 1 −

2𝜋𝑏2

𝜆2 = 1 −
3

2𝜋
{1 −

𝑝̅

𝑝∗}                                          (2.39) 

For this contact problem, Johnson et al. [5] also gave two asymptotic equations for early contact 

and near the complete contact, to calculate the change in the surface separation. When 𝑝̅ → 0, the 

normalized surface separation between two surfaces is [5]: 

       𝐺 =
𝑔̅

∆
= 1 −

1

2
(3𝜋2 𝑝̅

𝑝∗)

2

3
+ [[4 ln(√2 + 1)] (

𝑝̅

𝑝∗)]                                    (2.40) 

When 𝑝̅ → 𝑝∗, the normalized surface separation is [5]: 

𝐺 =
16

15𝜋2 (
3

2
)
3/2

(1 −
𝑝̅

𝑝∗)
5/2

                                                     (2.41) 

In Eq. (2.40) and (2.41), 𝐺 is the normalized surface separation that is the ratio of current surface 

separation, 𝑔,̅ and initial surface separation, Δ. The change in surface separation from initial to 

complete contact can be determined using the following equation [5]: 
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                                           𝐺 = 1 − √2∑ ∑
𝐴𝑖𝑗

(𝑖2+𝑗2)1/2

𝑛
𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔

𝑗=0

𝑛
𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔

𝑖=0

                                 (2.42) 

Like the one-dimensional wavy surface, for this case Johnson et al. also used a quadratic 

programming method to determine 𝐴𝑖𝑗 by minimizing the complementary energy function (Eq. (1) 

in [5]). Johnson et al. [5] also experimented with two two-dimensional wavy surfaces made of 

Perspex and Silicon rubber, and the experimental results showed excellent agreement with the 

numerical results. 

2.2.7 Jackson and Streator Two-dimensional Wavy Surface Model 

It has been discussed before that Johnson, Greenwood and Higginson (JGH model) [5] developed 

a model to predict the contact behavior of a two-dimensional wavy surface in contact with a flat 

surface. Johnson et al. [5] gave asymptotic solutions only for the early and nearly complete contact, 

although performed an experiment to observe the gradual change in contact behavior from early 

to the complete contact. Jackson and Streator provided a solution for the whole range by curve 

fitting to the experimental data collected by Johnson et al. and the solution matches well both with 

the experiment and asymptotic solutions derived by Johnson et al. The pressure required to 

completely flatten the two-dimensional wave can be calculated using the following equation [5]: 

         𝑝𝑒
∗ = √2𝜋𝐸′ ∆

𝜆
                                                                  (2.43) 

When average contact pressure, 𝑝̅ ≪ 𝑝𝑒
∗ according to the JGH model, 

(𝐴̅𝐽𝐺𝐻)1 = 𝜋𝜆2 [
3

8𝜋

𝑝̅

𝑝𝑒
∗]

2/3

                                              (2.44) 

when 𝑝̅ ≫ 𝑝𝑒
∗, according to the JGH model, 
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  (𝐴̅𝐽𝐺𝐻)2 = 𝜆2 (1 −
3

2𝜋
[1 −

𝑝̅

𝑝𝑒
∗])                                             (2.45) 

Jackson and Streator [9] provided the following equation linking equation (2.44) and (2.45): 

For 
𝑝̅

𝑝𝑒
∗ < 0.8, 

         𝐴̅ = (𝐴̅𝐽𝐺𝐻)
1
(1 − [

𝑝̅

𝑝𝑒
∗]

1.51

) + (𝐴̅𝐽𝐺𝐻)2 [
𝑝̅

𝑝𝑒
∗]

1.04

                          (2.46) 

For 
𝑝̅

𝑝𝑒
∗ ≥ 0.8, 

𝐴̅ = (𝐴̅𝐽𝐺𝐻)
2
                                                     (2.47) 

To observe the change in surface separation with the applied force, Johnson et al. [5] derived 

asymptotic solutions for this problem that is Eq. (2.40) for the early contact and (2.41) for the 

nearly complete contact. Rostami and Jackson [19] performed FEA and gave the following 

equation for the whole range of the contact, which also matches well with the asymptotic solutions 

derived by Johnson et al. [5] and FEM predictions:  

         𝐺 = (1 − √𝑃𝑒)
5/2

                                                           (2.48) 

In the above equation, 𝑃𝑒 =
𝑝̅

𝑝𝑒
∗ and 𝐺 =

𝑔̅

∆
, where 𝑔̅ is the current surface separation. 

2.2.8 Xu Elliptical Crack Model for Nearly Complete Contact 

At the beginning of this chapter, it has been discussed that when two surfaces reach complete 

contact, contact pressure distribution that is the “pressure surface” can be treated in a very similar 

way as the rough surface. Many researchers before [20-23] have solved the elliptical crack 
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problem. However, it is Xu et al. [2, 3] who gave an elliptical crack model suitable for the statistical 

model with different pressure distribution functions. If the asperity of the “pressure surface” can 

be described using asperity height, 𝜉𝑝 and principle curvatures, 𝑘1
𝑝
 and 𝑘2

𝑝
 where 𝑘1

𝑝 < 𝑘2
𝑝, then 

according to Xu [3], the contact area of the elliptical crack can be determined using the following 

equation: 

𝐴𝑖(𝑝0, 𝑘1
𝑝, 𝑘2

𝑝 ) = 3𝜋(𝑘𝑔
𝑝)

−1
𝑝0𝐹1(𝑒)                                                   (2.49) 

where 

𝑒 = √1 − (
𝑏

𝑎
)
2

, where e is the eccentricity, b is the semi-minor and a is the semi-major radius of 

the elliptical crack                  

𝐹1(𝑒) = 5 [
3

2
+

𝐼00
𝑐 (𝑒)𝐼22

𝑐 (𝑒)

𝛺(𝑒)
− 𝐼02

𝑐 (𝑒)]
−1

[√
𝑘1

𝑝

𝑘2
𝑝 + √

𝑘2
𝑝

𝑘1
𝑝 (1 − 𝑒2)]

−1

,                    (2.50) 

𝐼00
𝑐 (𝑒) = 2𝑬(𝑒), 

𝐼22
𝑐 (𝑒)={

1

15𝑒4
[(14𝑒4 + 16𝑒2 − 16)𝑬(𝑒) + 8(2 − 𝑒2)(1 − 𝑒2)𝑲(𝑒)]         where 𝑒 ∈ (0,1]

𝜋

2
                                                                                                               where 𝑒 = 0 

, 

𝐼02
𝑐 (𝑒) = 𝐼20

𝑐 (𝑒) = {
2

3𝑒2
[(2 − 𝑒2)𝑬(𝑒) − 2(1 − 𝑒2)𝑲(𝑒)]                 where 𝑒 ∈ (0,1]

0                                                                                where 𝑒 = 0
  ,         

        
𝑘1

𝑝

𝑘2
𝑝 = (1 − 𝑒2)[(2𝑒2 − 1)𝑬(𝑒) + (1 − 𝑒2)𝑲(𝑒)]/[(1 + 𝑒2)𝑬(𝑒) − (1 − 𝑒2)𝑲(𝑒)],    (2.51) 

√1 − 𝑒2 = exp [−0.00681 × 𝑙𝑜𝑔2 (
𝑘1

𝑝

𝑘2
𝑝) + 0.3953 × log (

𝑘1
𝑝

𝑘2
𝑝)],                    (2.52) 

𝛺 = 𝐼00
𝑐 (𝑒)𝐼22

𝑐 (𝑒) − 𝐼02
𝑐 (𝑒)𝐼20

𝑐 (𝑒), 
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        𝑝0 = 𝜉𝑝 − 𝑝̅, 𝑝̅ is the average of the “pressure surface” height                                        

𝑲(𝑒) and 𝑬(𝑒) can be determined from Eq. (2.14) and Eq. (2.15) respectively. The volume of the 

crack or non-contact region can be determined using the following equation: 

    𝑉𝑖(𝑝0, 𝑘1
𝑝, 𝑘2

𝑝) =
16√3

5𝐸′ (𝑘𝑔
𝑝)

−3/2
𝑝0

5/2
𝐹2(𝑒)                                       (2.53) 

where  

         𝐹2(𝑒) =
5

2
(1 − 𝑒2)1/4𝐹1(𝑒)

3/2 {1 −
3

10
𝐹1(𝑒)(1 − 𝑒2)−1/2 [√

𝑘1
𝑝

𝑘2
𝑝 + √

𝑘2
𝑝

𝑘1
𝑝 (1 − 𝑒2)]}     (2.54) 

In Eq. (2.49) and (2.53), 𝑘𝑔
𝑝
 is the geometric curvature of the “pressure surface” and can be 

determined in a similar way as described in Eq. (2.4), only instead of superscript h, superscript p 

needs to be used that are parameters for the “pressure surface.”  

2.2.9 Xu “Penny-shaped” Crack for Near Complete Contact 

When the semi-major and semi-minor radius of the elliptical crack is almost the same, that is 𝑎 →

𝑏 and 𝑒 → 0; the elliptical crack becomes like a “Penny-shaped” crack. Therefore, using  𝑘1
𝑝 =

𝑘1
𝑝 = 𝑘𝑝 and 𝑒 = 0, Xu et al. [3] gave the following two equations for the contact area and volume 

of “Penny-shaped” crack: 

      𝐴𝑖(𝑝0, 𝑘
𝑝) = 3𝜋(𝑘𝑝)−1𝑝0                                                  (2.55) 

  𝑉𝑖(𝑝0, 𝑘
𝑝) =

16√3

5𝐸′
(𝑘𝑝)−3/2𝑝0

5/2                                            (2.56) 

The curvature of the asperity, 𝑘𝑝 of “pressure surface”.         
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2.2.10 Xu Mildly Elliptical Crack with Geometric Curvature/ Mean curvature for Near 

Complete Contact 

The main difference between the elliptical crack and “Penny-shaped” crack contact area and 

volume is the term 𝐹1(𝑒) and 𝐹2(𝑒). With the decrease of the ratio, 
𝑘1

𝑝

𝑘2
𝑝 from unity, values of 𝐹1(𝑒) 

and 𝐹2(𝑒) gradually deviate from unity. Using the same approximation as used for the Hertzian 

mildly elliptical contact with geometric curvature/ mean curvature, Xu et al. [3] gave equations for 

the contact area and volume of the mildly elliptical crack with geometric/ mean curvature. 

Therefore, the non-contact area and volume for the mildly elliptical crack with geometric/mean 

curvature can be easily determined by only replacing 𝑘𝑝 in Eq. (2.55) and (2.56) by 𝑘𝑔
𝑝
 from Eq. 

(2.4) for geometric curvature and 𝑘𝑚
𝑝

 from Eq. (2.3) for mean curvature. 

2.3 Elastic-plastic asperity models 

One of the earliest contact mechanics models is the truncation model that has been widely used to 

predict the fully plastic behavior of the material. Literature traditionally attributes this full plastic 

truncation model to Abbott and Firestone [24], who never made any suggestions about load or 

mean pressure. The Abbott and Firestone model was originally developed to describe the wear 

process rather than the deformation process. Perhaps the truncation model has been extracted 

unsuitably from the work of Abbott and Firestone. According to the truncation model, the 

deformation of an asperity against a flat surface is equivalent to the geometrical truncation of the 

undeformed asperity at its intersection with the flat. So if the flat surface displaces to the asperity 

by an amount 𝛿 or ω, then the contact area of a spherical asperity can be calculated using the 

following equation: 
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     𝐴 = 2𝜋𝑅𝜔                                                               (2.57) 

R is the radius of the curvature of the asperity. Since the contact is assumed to be fully plastic in 

the truncation model, the contact force can be determined simply by multiplying the contact area 

by the average contact pressure, that is hardness. Thus the approximated fully plastic contact force 

is: 

                                         𝐹 = 2𝜋𝑅𝜔𝐻                                                            (2.58) 

Later experimental [25-27] and many numerical models [28-31] have been developed to improve 

the prediction of the contact for the elastic-perfectly plastic cases. One of them is the model 

developed by Chang, Etsion and Boggy (CEB model) which is worth mentioning. Chang et al. 

[32] approximated an elastic-perfectly plastic contact based on the volume conservation of a 

certain control volume of plastically deformed asperities. Elastic-perfectly plastic means no 

hardening is included in the model. In addition, the contact is considered frictionless. According 

to this model, hardness, 𝐻 = 2.8𝑆𝑦, suggested by Tabor [33]. However, later research [34-36] 

shows that the hardness and yield strength relation provided by Tabor is not always true. Besides 

that, the model cannot predict the elastic-plastic contact behavior as it assumes that the contact is 

either elastic or fully plastic. Zhao et al. [37] worked on the shortcomings of the CEB model and 

developed a semi-analytical model interpolating the elastic Hertz model and fully plastic 

truncation model but was later shown to contain significant pitfalls. Kogut and Etsion [38] 

developed a more realistic elastic-perfectly plastic model investigating the contact area, force, and 

average pressure in detail using the Finite Element Method (FEM) and also provided empirical 

equations for them. However, in their analysis also it was assumed that 𝐻 = 2.8𝑆𝑦, although the 

slope of  
𝑝̅

𝑆𝑦
 is not zero at the point where full plasticity is assumed, it was increasing monotonically. 
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Besides that, the empirical equations provided by Kogut and Etsion are not continuous throughout 

the contact region, which can cause problems while applying this model to the rough surface 

contact modeling. Jackson and Green [34] analyzed a similar elastic-perfectly plastic model using 

FEM. However, several improvements are included, which have made the model applicable for a 

wide range of elastic-perfectly plastic problems. Later, other elastic-perfectly plastic asperity 

models [13] have been developed, which will be discussed subsequently. 

2.3.1 Jackson-Green (JG) Elastic-perfectly plastic Spherical Asperity Model  

One of the important improvements made in the Jackson-Green model (JG model) [34] is that the 

work clearly showed that Tabor’s relation for hardness is not true and provided semi-analytical 

equations for interference, contact area, and force at the initiation of yielding. Also, empirical 

equations for hardness to yield strength ratio, contact area, and contact force were developed. 

Several other improvements were made by Jackson-Green model. One of them is the mesh used 

in Jackson-Green model is at least an order of magnitude finer than that used by Kogut and Etsion 

model as necessitated by mesh convergence. JG model is continuous throughout the range of 

deformation and can predict more than twice deformation magnitude than that predicted by Kogut 

and Etsion model.  Using the equations for stress within the deformed sphere provided by Johnson 

(resulted from the Hertz solution) [7,34] and von Mises yield criterion, Jackson et al. [34] showed 

that maximum contact pressure, 𝑝𝑜𝑐 at the initiation of yielding to the yield strength can be 

expressed using the following equation [34]: 

  
𝑝𝑜𝑐

𝑆𝑦
= 𝐶 = 1.295exp (0.736𝜐)                                              (2.59) 

Using the Hertz elastic solution, Johnson [7] gave the following equation for interference, 𝜔 as a 

function of 𝑝𝑜𝑐:  
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𝜔 = (
𝜋𝑝𝑜𝑐

2𝐸′ )
2

𝑅                                                              (2.60) 

Now using Eq. (2.59) in Eq. (2.60), Jackson et al. obtained the following solution for critical 

interference: 

𝜔𝑐 = (
𝜋𝐶𝑆𝑦

2𝐸′
)
2

𝑅                                                            (2.61) 

Substituting Eq. (2.61), into the equation of Hertz circular contact area and force, the following 

equations for contact area and contact force at the initiation of yielding can be determined: 

𝐴𝑐 = 𝜋3 (
𝐶𝑆𝑦𝑅

2𝐸′ )
2

                                                           (2.62) 

           𝐹𝑐 =
4

3
(

𝑅

𝐸′)
2

(
𝐶

2
𝜋𝑆𝑦)

3

                                                    (2.63) 

To make the solutions applicable for both macro and microcontact, Jackson et al. normalized all 

the parameters used for the analysis. Displacement, contact area, and contact force have been 

normalized by Eq. (2.61), (2.62) and (2.63) respectively as, 

𝐴∗ = 𝐴
𝐴𝑐

⁄ , 𝐹∗ = 𝐹
𝐹𝑐

⁄ , 𝜔∗ = 𝜔
𝜔𝑐⁄                                         (2.64) 

According to the Jackson-Green model, when the contact is effectively elastic (0 ≤ 𝜔∗ ≤ 1.9) the 

normalized contact area and force from Hertz contact can be simplified to, 

𝐴∗ = 𝜔∗, 𝐹∗ = (𝜔∗)3/2                                                 (2.65) 

Eq. (2.65) is actually the Hertz model; the only change that is made is Eq. (2.65) has been expressed 

into normalized form. Once the initial yielding becomes significant (1.9 ≤ 𝜔∗) the formula for 

normalized contact area and contact force can be expressed by the following equations: 



45 
 

𝐴∗ = 𝜔∗ (
𝜔∗

1.9
)
𝐵

                                                              (2.66) 

𝐵 = 0.14exp (23.
𝑆𝑦

𝐸´
) 

𝐹∗ = [𝑒𝑥𝑝 (−
1

4
(𝜔∗)

5

12)] (𝜔∗)3/2 +
4𝐻

𝐶𝑆𝑦
[1 − 𝑒𝑥𝑝 (−

1

25
(𝜔∗)

5

9)]𝜔∗                           (2.67) 

𝐻

𝑆𝑦
 in the above equation can be expressed by the following equation, 

                                    
𝐻

𝑆𝑦
= 2.84 − (1 − 𝑒𝑥𝑝 (−0.82 (

𝑎

𝑅
)
−0.7

))                                            (2.68) 

In the above equation, a is the contact radius. This equation clearly shows that 
𝐻

𝑆𝑦
 is not a constant 

ratio and changes continuously with 
𝑎

𝑅
 which can be calculated using the following equation: 

                                                    
𝑎

𝑅
=

𝜋𝐶𝑆𝑦

2𝐸′ [𝜔∗ (
𝜔∗

1.9
)
𝐵

]
1/2

                                                        (2.69) 

Eq. (2.69) is only applicable when 𝜔∗ ≥ 1.9 and Eq. (2.68) is valid only when 0 <
𝑎

𝑅
≤ 0.412. 

However, during elastic-plastic rough surface modeling, the 
𝑎

𝑅
 ratio for an asperity may exceed the 

value 0.412. For such cases, Jackson, Green and Marghitu [39] modified the Eq. (2.68) and 

provided the following equation which is valid from 0 <
𝑎

𝑅
< 1: 

                                           (
𝐻𝐺

𝑆𝑦
) = 2.84 − 0.92 (1 − 𝑐𝑜𝑠 (𝜋

𝑎

𝑅
))                                           (2.70) 

Jackson-Green model was also compared with the test performed by Johnson [7] and Chaudhuri 

et al. [40], the predictions of the Jackson-Green model compared well with the experimental 

results. Quicksall et al. [41] performed a detail investigation for the same model for a wide range 
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of metallic materials by varying Young’s modulus, E, yield strength, Sy and Poisson ratio, υ and 

concluded that the previously developed Jackson-Green and Kogut-Etsion model give fairly good 

prediction as the models compared well with the detail parametric study performed by them. 

2.3.2 Wadwalkar, Jackson and Kogut Elastic-perfectly plastic Heavily Deformed Spherical 

Contact 

Although Jackson, Green and Marghitu [39] provided an equation for large 
𝑎

𝑅
 ratio value, JG model 

does not consider the change in the radius of curvature of the asperity with deformation.  Therefore, 

for the heavily deformed spherical contact cases, JG spherical contact model [34] must needs to 

be modified. Wadwalkar et al. [42] improved this limitation, performing FEA, and developing 

analytical equations. To consider the change in radius of curvature due to geometry deformation, 

the volume conservation approach is adopted in their work for an elastic-perfectly plastic 

axisymmetric sphere in contact with a rigid flat. To develop a fully plastic spherical flattening 

model, two different boundary conditions have considered during the modeling, namely the 

deformable base case where the base of the sphere is allowed to move in the radial direction but is 

held stationary in the direction perpendicular to the base, and the rigid base case where the base of 

the sphere is fixed in all directions. Fig. 2.4 is showing the schematic representation of two such 

cases. The first case is equivalent to the case where a sphere is being compressed between two 

parallel surfaces and can be applied to the study of the flattening of wear debris, an anisotropic 

conductive film with metallic particles dispersed within, etc. [43-44] and the second case can be 

applied to model a stiffer rough surface [42]. There is not that much difference between these two 

cases at the beginning of the contact, that is 𝑎 ≪ 𝑅; however, with deformation, they gradually 

diverge from each other. Applying the conservation of volume, for the first boundary condition 

the following equation for radius of curvature is obtained [42]: 
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       𝑅1 = √
2𝑅3

3(𝑅−𝜔)
+

(𝑅−𝜔)2

3
                                                     (2.71) 

and for the second boundary condition, the radius of curvature is [42]: 

𝑅2 = √
𝑅3

𝛿(𝑅−𝜔)
−

𝑎2

2
                                                       (2.72) 

In Eq. (2.71) and (2.72), R is the initial radius of curvature, and 𝛿 is a constant that equals 0.76. 

Then using the radius of curvature equation, the following contact area equations for these two 

boundary conditions are formulated by Wadwalker et al. [42]: 

For the deformable base, 

                                     (
𝑎

𝑅
)
𝑛𝑒𝑤

= (
𝑎

𝑅
)
𝐽𝐺

+ 𝐴1 (
𝜔

𝜔𝑐
)
2

− 𝐴2 (
𝜔

𝜔𝑐
)                                              (2.73) 

In the above equation, 𝐴1 = 0.0826 (
𝑆𝑦

𝐸′)
3.148

 and  𝐴2 = 0.3805 (
𝑆𝑦

𝐸′)
1.545

  

For the rigid base, 

                                     (
𝑎

𝑅
)
𝑛𝑒𝑤

= (
𝑎

𝑅
)
𝐽𝐺

− 𝐴3 (
𝜔

𝜔𝑐
)
2

− 𝐴4 (
𝜔

𝜔𝑐
)                                              (2.74) 

In the above equation, 𝐴3 = 158393 (
𝑆𝑦

𝐸′)
5.605

 and  𝐴2 = 0.0034 (
𝑆𝑦

𝐸′)
0.8939

  

Contact pressure in the fully plastic regime or the hardness to yield strength ratio, 
𝑝

𝑆𝑦
 or 

𝐻

𝑆𝑦
 can be 

determined by substituting the 𝑅1 and 𝑅2 value from Eq. (2.71) and (2.72) to Eq. (2.70). For both 

boundary conditions, the following equation is developed for contact force [42]: 

𝐹

𝐹𝑐
= {𝑒𝑥𝑝 [−

1

4
(

𝜔

𝜔𝑐
)
5/12

]} (
𝜔

𝜔𝑐
)
3/2

+
𝑝

𝐹𝑐
𝜋𝑅2 (

𝑎

𝑅
)
𝑛𝑒𝑤

2

{1 − 𝑒𝑥𝑝 [−
1

25
(

𝜔

𝜔𝑐
)
5/9

]}           (2.75) 
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The analytical equations developed by Wadwalkar et al. [42] were also compared with the FEA 

result, and the experiment performed by Chaudhuri et al. [40]. Very good agreement is found with 

all the results. 

 

 

 

 

 

Fig. 2.4 Schematic representation of spherical flattening (a) for the deformable base (b) for the 

rigid base.  

2.3.3 Elastic-plastic Cylindrical Contact 

Very few works have been done on the elastic-plastic cylindrical contact [15-16, 45-49]. Although 

some of them analyzed contact behavior using FEM, very few of them provided analytical or 

empirical equations to predict the behavior of elastic-plastic cylindrical contact. Using the equation 

of stress resulted from the Hertz equation and provided by Johnson [7] and using the von Mises 

yield criterion, Green [49] derived the following equations to predict the interference, contact area, 

and force for the cylindrical contact at the initiation of yielding: 

                                                   𝛿𝑐 = 𝑅 (
𝐶1𝑆𝑦

𝐸′ )
2

[2𝑙𝑛 (
2𝐸′

𝐶1𝑆𝑦
) − 1]                                           (2.76) 

      
𝐹𝑐

𝐿
= 𝜋𝑅

(𝐶1𝑆𝑦)
2

𝐸′                                                         (2.77) 

(a) (b) 
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    𝐴𝑐 = 4𝐿𝑅
𝐶1𝑆𝑦

𝐸′                                                           (2.78) 

In Eq. (2.76), (2.77) and (2.78), 𝑆𝑦 is typically assumed to equal the yield strength of the material 

with the lower value of 𝑆𝑦. For the plane stress condition, 𝐶1 = 1, and for the plane strain condition, 

        𝐶1 =
1

√1+4(𝜐−1)𝜐
,                𝜐 ≤ 0.1938                                         (2.79) 

                           𝐶1 = 1.164 + 2.975𝜐 − 2.906𝜐2, 𝜐 > 0.1938                               (2.80) 

Recently, Sharma and Jackson [15-16] analyzed the elastic-plastic cylindrical contact for a wide 

range of material properties and plane-stress conditions. Analyzing the FEM results, Sharma et al. 

[15] provided the following equations to predict the contact area when the material model includes 

only 1% bilinear hardening:      

                                                           
𝐴

𝐴𝐻𝑒𝑟𝑡𝑧
= 2(

𝐹

𝐹𝑐
)
5/18

− 1                                                  (2.81) 

                                 
𝐴

𝐴𝐻𝑒𝑟𝑡𝑧
= 4.8 (

𝑆𝑦

𝐸′)
−1/25

(
𝛿

𝛿𝑐
)
0.106

− 4.8 (
𝑆𝑦

𝐸′)
−

1

25
+ 1                                (2.82) 

The above two equations are valid when half-width of the contact to the initial radius of the 

cylinder ratio, 𝑏 𝑅⁄ < 0.4.  

To analyze the effect of different amounts of hardening and material properties, Sharma et al. [16] 

provided the following equation for the effective yield strength: 

                                                𝑆𝑒 = 𝑆𝑦 + 0.4𝐸𝑡 (
𝛿−𝛿𝑐

𝑅
)
0.62(

𝐸𝑡
𝐸

)
0.09

                                            (2.83) 
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In the above equation, 𝑆𝑦 is the virgin yield strength and 𝐸𝑡is the tangential modulus. The equation 

can be used for all the analyzed cases except when 𝐸𝑡 ≤ 0.0001𝐸. The half contact width, b can 

be calculated as a function of applied force, F from the following equation: 

                                                           
𝑏

𝑏𝐻𝑒𝑟𝑡𝑧
= (

𝐹

𝐹𝑐
)
0.463

                                                           (2.84) 

During the calculation of 𝐹𝑐 for the above equation, effective yield strength needs to be used in Eq. 

(2.77) to account for variations in hardening and 𝑏𝐻𝑒𝑟𝑡𝑧 can be calculated from Eq. (2.23). 

However, to predict the initiation of yielding, virgin yield strength has to be used in Eq. (2.76)-

(2.78). The half contact width, b as a function of applied displacement, 𝜔 is given by the following 

formula: 

                                    
𝑏

𝑏𝐻𝑒𝑟𝑡𝑧
= 7.1 (

𝐸′

𝑆𝑒
)
0.01

[(
𝜔

𝜔𝑐
)
0.1

− 1] + 1                                                (2.85) 

In the above equation also, during the calculation of 𝜔𝑐, effective yield strength has to be used. 

Eq. (2.84) and (2.85) are applicable when 
𝑏

𝑅
≤ 0.5. During the curve fitting of Eq. (2.85), the cases 

that are effectively in the elastic regime (
𝜔

𝜔𝑐
< 2) has been omitted. The equations should only be 

used in the range of material properties (0.001 ≤
𝑆𝑦

𝐸
≤ 0.128, 0.0001𝐸 ≤ 𝐸𝑡 ≤ 0.1𝐸) and 

deformations considered in this work.  Average contact pressure normalized by the yield strength 

has also been analyzed as a function of normalized contact half-width in [49], however, no 

empirical equation has been provided. Their analysis shows that, maximum value of  
𝑃̅

𝑆𝑦
 ratio varies 

from 1.8 to 2 with the change in 
𝑏

𝑅
 ratio. Cinar and Sinclair [50] found that, for the cylindrical 

contact at the plane-strain condition, hardness or pressure was approximately 2.24𝑆𝑦. Therefore 
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both for the plane strain and plane stress condition of the cylindrical contact, hardness to yield 

strength ratio is a lot smaller than spherical case. Using slip-line theory, recently Jackson [51] 

provided the following equation for 
𝑝̅

𝑆𝑦
 for the case of indentation of a rigid cylinder into a flat 

surafce where 𝑝̅ is the average pressure during fully plastic plane strain contact. 

𝑝̅

𝑆𝑦
=

𝐹

2𝑏𝐿𝑆𝑦
 

                       =
1

2√3
(

𝑏

𝑅
)
−1

[

𝜋2

4
+ 𝜋 − (𝑐𝑜𝑠−1 (

𝑏

𝑅
))

2

− 2𝑐𝑜𝑠−1 (
𝑏

𝑅
)

+ {𝑐𝑜𝑠−1 (
𝑏

𝑅
) + 1} sin (2𝑐𝑜𝑠−1 (

𝑏

𝑅
)) + (

𝑏

𝑅
)
2
]                           (2.86) 

2.3.4 Gao et al. Elastic-perfectly plastic Sinusoidal Surface Model for 2D Plain Strain 

Inspired by the fractal rough surface model developed by Ciavarella [52], and using Westergaard 

wavy surface model for 2D elastic plain strain [4], Gao et al. [53] performed a detailed analysis of 

the contact between a 2D elastic-perfectly plastic sinusoidal asperity and a rigid flat for the plane 

strain case. The work gives a broader look of the elastic-plastic contact behavior for a wide range 

of material properties and surface roughness. According to their analysis, two parameters: 𝛼 =
𝑎

𝜆
, 

where a is the contact area and λ is the wavelength of the sinusoidal asperity and  𝜓 =
𝐸′

𝑆𝑦

∆

𝜆
 can be 

used to characterize the behavior of contact deformation. Analyzing the results based on these two 

parameters, it has been concluded in the paper that there are eight general types of behavior for the 

asperity contacts: elastic, elastic-plastic or fully plastic isolated Hertz type contacts; elastic or 

elastic-plastic non-Hertzian isolated contact; elastic, elastic-plastic or fully plastic, interacting 

contacts. Change in mean asperity contact pressure, contact pressure to yield strength ratio, 

residual stress in these eight-contact regions with indentation depth, contact fraction, and 𝜓 have 
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also been observed for different material properties and loading conditions. Like the Jackson-

Green model, their analysis shows that the hardness to yield strength ratio is not a constant as 

suggested by Tabor and also shows that depending on the material properties, geometry, and 

loading condition, the ratio may increase up to around 5.6. Curve fitting the FEA results, they 

provided empirical equations for contact pressure distribution, contact size, the total area of 

contact, number of contacts and average pressure to yield strength ratio [54]. 

2.3.5 Manner rigid-perfectly plastic sinusoidal surface model 

Manner [35] theoretically analyzed the flattening of a sinusoidal wavy surface using rigid- 

perfectly plastic material behavior. Rigid-perfectly plastic means the effect of elastic behavior or 

elastic-plastic interaction has been neglected; only fully plastic behavior has been considered 

during material modeling. Both the mechanisms for isolated and interacting contacts have been 

investigated. In this work, analysis using rigid-perfectly plastic modeling has been defined as upper 

bound analysis and analysis employing perfectly elastic modeling has been defined as lower bound 

analysis. Although in this work, the contact behavior has been analyzed using the upper bound 

analysis; however, to check the upper limit of the pressure to yield strength ratio, both upper and 

lower bound analysis have been done. From the upper bound analysis, Manner provided the 

following formula for average and mean contact pressure: 

           𝑝̅ = 𝑘 (2 −
2𝑎

𝜆
) [

𝑑

(1−
2𝑎

𝜆
)
−

2𝑎

𝜆

𝑑
]                                                    (2.87) 

                             𝑝𝑚 =
2𝑘(2−

2𝑎

𝜆
)

√
2𝑎

𝜆
(1−

2𝑎

𝜆
)

                                                        (2.88) 

When 𝑑 = √
2𝑎

𝜆
(1 −

2𝑎

𝜆
) , Eq. (2.87) becomes maximum, 
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                                                             𝑝̅ = 𝑘 (2 −
2𝑎

𝜆
) [

2𝑎

𝜆

(1−
2𝑎

𝜆
)
]                                           (2.89)                                                                                                  

Both Eq. (2.88) and (2.89) show that, with the increase of contact area fraction,  𝑝̅ and 𝑝𝑚 gradually 

increases, and at complete contact when 2𝑎 = 𝜆, they become infinite. 𝑘 is the shear yield stress. 

Performing a lower bound analysis for an axisymmetric cylinder, Manner showed that for the 

lower bound analysis also average pressure can become infinite and concluded that elastic-plastic 

interaction and boundary conditions are the most possible reason of the finite value of pressure to 

yield strength ratio for the cases analyzed by Gao et al. [53].  

2.3.6 Krithivasan and Jackson 3D Elastic-perfectly plastic Sinusoidal Asperity Model 

Krithivasan and Jackson [55] analyzed the contact of a 3D elastic-perfectly plastic wavy surface 

in contact with a rigid flat. The geometry of this problem is similar to that used by Johnson, 

Greenwood, and Higginson model [5] for the elastic wavy surface contact modeling; however, the 

material model is elastic-perfectly plastic. To analyze the contact behavior and to formulate 

empirical equations, a parametric study has been performed in their work varying Young’s 

modulus from 150 GPa to 350 GPa, yield strength from 0.75 GPa to 2.25 GPa and amplitude to 

wavelength ratios of the sinusoidal asperity, 
∆

𝜆
,  from 0.01 to 0.04. The range of parametric analysis 

was limited to the mentioned range due to convergence difficulties at higher values of 
∆

𝜆
 ratios. 

Analyzing all the results, empirical equations have been formulated for average contact pressure 

at complete contact and contact area from early contact all the way up to complete contact. Later, 

Jackson et al. [34] derived an equation for the critical value of amplitude below which a wavy 

surface will behave elastically over the entire range of contact using the analytical solution for 

stress derived by Tripp et al. [56] and the von Mises yield criterion. However, recently a 
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discrepancy was found in the equation provided by Jackson et al. for the critical value of amplitude. 

Ghaednia et al. [13] has corrected the equation for the critical value of amplitude and extended the 

analysis performed by Krithivasan et al. [55] for a broader range of material properties and surface 

roughness. In the extended model, yield strength is varied from 0.1 GPa to 2.5 GPa, Young’s 

modulus varied from 50 GPa to 400 GPa, Poisson ratio varied from 0.01 to 0.49 and the amplitude 

to wavelength ratio is considered over the range of  
∆

𝜆
 from 0.001 to 0.05. At the beginning of the 

contact, spherical and sinusoidal asperities behave in a very similar way. Hence, the equations 

formulated by the Jackson-Green model to determine the interference, contact area, and force 

during the initiation of yielding can be modified for sinusoidal asperity contact using the radius of 

curvature of a sinusoidal asperity. Now substituting the equation of radius of curvature at the tip 

of a 3D sinusoidal asperity, 𝑅 =
𝜆2

4𝜋2∆
 into Eq. (2.61)-(2.63), the following equations for critical 

interference, contact area and force for 3D sinusoidal contact can be obtained: 

   𝜔𝑐 = (
𝜋𝐶𝑆𝑦

2𝐸′ )
2 𝜆2

4𝜋2∆
                                                     (2.90) 

C is the same as used in the Jackson-Green model (see Eq. (2.59)). 

                                                            𝐴𝑐 =
2

𝜋
(
𝐶𝑆𝑦𝜆2

8∆𝐸′ )
2

                                                           (2.91) 

         𝐹𝑐 =
1

6𝜋
(

𝜆2

∆𝐸′)
2

(
𝐶

2
𝑆𝑦)

3

                                                     (2.92) 

According to the modified model, the critical value of amplitude can be expressed by the following 

equation [13]: 

                                                 ∆𝑐=
√2𝑆𝑦𝜆

𝜋𝐸′[3𝑒−2(𝜐+1)/3+2(
1−2𝜐

1−𝜐
)]

                                                      (2.93) 
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Using the above equation instead of using the equation provided in [36], a new equation for 

average contact pressure required to react at complete contact for the elastic-perfectly plastic case 

has been obtained as [13]: 

   
𝑝𝑒𝑝

∗

𝑝𝑒
∗ = 0.992

[{(
∆

∆𝑐
)
(
10
3

(
∆
∆𝑐

)
−0.39

+
9
4
𝜐4+0.64)

}−1]

                                           (2.94) 

In the above equation, when ∆= ∆𝑐, 𝑝𝑒𝑝
∗ = 𝑝𝑒

∗ and the pressure required to reach complete contact 

for the elastic-plastic case cannot be greater than the elastic case. Therefore, when ∆≤ ∆𝑐, all the 

cases become elastic. Using Eq. (2.80) and (2.81), the modified model obtained the following 

equation for contact area [13]: 

                         𝐴 = 𝐴𝑝 [1 − (
𝑝̅

𝑝𝑒𝑝
∗ )

1.51

] + (𝐴𝐽𝐺𝐻)
2
(

𝑝̅

𝑝𝑒𝑝
∗ )

1.04

                                      (2.95) 

where 

      𝐴𝑝 = 2(
𝐴𝑐

2
)

1

(1+𝑑)
(

3𝑝̅𝜆2

4𝐶2𝑆𝑦
)

𝑑

(1+𝑑)
                                              (2.96) 

𝑑 = 3.8 (
𝐸′

𝑆𝑦

∆

𝜆
)
0.11

                                                         (2.97) 

(𝐴𝐽𝐺𝐻)2 = 𝜆2 (1 −
3

2𝜋
[1 −

𝑝̅

𝑝𝑒𝑝
∗ ])                                             (2.98) 

For the same contact problem, Rostami and Jackson [19] provided the following equations to 

predict the change in surface separation as a function of contact pressure from early contact to the 

complete contact: 



56 
 

     𝐺 = (1 − (𝑝𝑒𝑝)
𝐴1𝑃𝑒𝑝+𝐴2

)
5/2

                                              (2.99) 

where 

𝐴1 = −0.08𝑙𝑛(𝐵∗) 

𝐴2 =
1

15
(𝐵∗ − 1)0.44 + 0.990.41(𝐵∗−1) −

1

2
 

In Eq. (2.99), 𝑝𝑒𝑝 =
𝑝̅

𝑝𝑒𝑝
∗  , 𝐵∗ =

𝐵

𝐵𝑐
, and 𝐵 =

∆

𝜆
. 

2.3.7 Axisymmetric Sinusoidal Asperity Model 

Liu, and Liu and Proudhon studied axisymmetric sinusoidal asperity in contact with a rigid flat 

with linear strain hardening [57] and power-law hardening [58]. In [57], aspect ratios of the 

sinusoidal asperity were varied; however, the analysis was performed only for gold. An equation 

for the contact area modifying the truncation model and contact pressure to yield strength ratio has 

also been provided. However, as the analysis did not consider the change in material properties, 

the derived equations work only for gold and a narrow range of surface roughness which will be 

shown later in Chapter 3. Besides that, a large domain has been considered around the 

axisymmetric sinusoidal asperity, which reduces the asperity interaction effect in the model. In 

another study of Liu et al. [58], the ratio of yield strength to Young’s modulus ratio was varied; 

however, the asperity aspect ratio was held constant at 0.1. No empirical equation was derived in 

that work; although, the work showed the effect of the variation of yield strength to Young’s 

modulus ratio on the evolution of contact deformation. It has been shown later in Chapter 3 that 

elastic-plastic contact deformation is not only a function of material properties or surface 
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roughness, rather a combined effect of surface roughness and material properties govern the whole 

contact behavior. 

2.4 Summary 

A comprehensive literature review has been performed on elastic and elastic-plastic asperity 

models in this chapter. The literature review shows that: 

 Elastic asperity models for elliptical or mildly elliptical contact is available; however, only 

for the early contact and near the complete contact. No elliptical or mildly-elliptical contact 

models are available for the whole range of contact. 

 Details investigation has been done on the spherical asperity model with circular contact. 

Empirical equations are available for the contact area and force for the early contact, 

average pressure or hardness to yield strength ratio, which should be useful in rough surface 

modeling. Besides these, complete spherical flattening, change in radius of curvature with 

the geometric deformation, change in hardness to yield strength ratio for heavily deformed 

spherical asperities at different boundary conditions have also been analyzed, which should 

be helpful to model particle flattening modeling and so on. 

 Cylindrical contacts are generally not used for rough surface contact modeling. However, 

there are many plane strain and plane stress cases for example, wheel-road contacts,  

cylindrical roller bearings, lubricated gear and cams, and so on where cylindrical contact 

modeling should be very useful. Empirical equations to analyze elastic cylindrical contact 

and to predict the initiation of yielding are available. Detail investigation has been done 

and empirical equations have been formulated for elastic-plastic cylindrical contact (plane 

stress boundary conditions) for wide range of material properties, hardening and loading 
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conditions. Analysis has also been performed on how the average pressure to yield strength 

ratio changes for the plane strain and plane stress boundary conditions. 

 Research has been done on 2D elastic and elastic-perfectly plastic plane-strain wavy 

asperity. Empirical equations to predict the elastic contact behavior are available for the 

whole range of contact. A detailed investigation has been done on the elastic-perfectly 

plastic contact and the parameters that control the contact behavior; however, no empirical 

equations are provided for the elastic-perfectly plastic case. Like the spherical asperity 

model, the 2D plane strain sinusoidal asperity case also shows that hardness to yield 

strength ratio is not a constant, and rise continuously with the increase in the contact area. 

 A detailed examination has also been done on the 3D elastic and elastic-perfectly plastic 

sinusoidal asperity contact. Empirical equations to predict the contact area, pressure, and 

surface separation, as a function of contact pressure are available both for the elastic and 

elastic-perfectly plastic cases. An empirical equation has also been provided for the critical 

value of amplitude below which an asperity will deform elastically from initial to complete 

contact. 

 Analysis has been done on the axisymmetric sinusoidal asperity model with hardening; 

however, none of the analysis gives a clear idea about which parameters are controlling the 

contact behavior. Empirical equations are available for contact area, and average pressure 

to yield strength ratio, although their application is limited as the analysis did not perform 

a thorough investigation of the material properties, surface roughness, and their combined 

effect on the evolution of the contact behavior. 
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 Chapter 3 

Elastic and Elastic-perfectly plastic Analysis of an Axisymmetric Sinusoidal 

Asperity Contact 

3.1 Introduction 

This chapter will discuss the importance, implication, and implementation of an axisymmetric 

sinusoidal asperity model. There are many asperity models available, as discussed in the previous 

chapter, and different asperity models work well in different applications. Although, in many 

cases, spherical asperity models work well; however, to model the multiscale nature of the rough 

surface, a separate asperity model is necessary because real surface barely looks like sphere upon 

another sphere. Besides that, the spherical asperity model works well with rough surface models 

when the applied force is small, or deformation of the asperity is limited to the tip of the asperity. 

The developed spherical asperity models also do not consider the effect of the substrate at the base 

of the asperity, and the effect of the substrate becomes important during large deformation of the 

asperity. Several researchers [1-6] suggested that sinusoidal shapes may be a more realistic 

depiction of surface asperity contact, than spherical ones, especially when the asperity interaction 

gets important due to large deformation of the surface. Stanley and Kato[7], Ciavarella et al. [1], 

Jackson [2], and also some other works [3-6, 8-12] considered multiple scales of roughness and 

represented the rough surfaces by either a Fourier series (taking the FFT of the rough surface data) 

or the Weierstrass-Mandelbrot fractal function. Fig. 3.1 is showing the formation of the rough 

surface superimposing sine waves. Besides this, intuitively, the asperities on surfaces would be 

more like rolling hills that do not meet their base at right angles, as is the case with sphere models 

(See Fig. 2.4 (a) and (b) in chapter 2). In contrast to the spheres, the slope of the sinusoidal or wavy 
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asperity decreases gradually at the base to conform to the supporting surface. A detailed 

description of the changes in the shape of the sinusoidal asperity models with load found from the 

FEA has shown later in Fig. 3.5. Also, when the deformation of the asperity is limited to the tip of 

the asperity, spherical and sinusoidal models act in a very similar way. Therefore, using a 

sinusoidal (wavy) model seems more applicable than a spherical one. In 2016, Greenwood [13] 

proposed a model that would extend the Greenwood-Williamson rough surface model (GW model) 

[14] by replacing Hertz contact with a model of a quartic bump asperity. The quartic bump is 

similar to the sinusoidal wave geometry developed in this dissertation. 

 

 

 

 

 

 

 

 

Fig. 3.1 Formation of rough surface superimposing sine waves. 

As discussed in the previous chapter, research has been done on 3D periodic or bi-sinusoidal 

asperity models [4-5, 15-19]; however, these 3D models are computationally very expensive, 

especially if other mechanisms such as adhesion or coupled electro-thermo-mechanical analysis 

are included.  Analysis has also been done on the 2D sinusoidal asperity [6, 20-21] at the plane-

strain condition; however, it is pertinent for specific applications only. Therefore, the following 

aspects are considered during the new asperity modeling: 
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 Consider interaction with adjacent asperities,  

 Consider the effect of the substrate at the base of the asperity,  

 Reduce the computational expense of bi-sinusoidal models and also provide a 3D analysis 

of the asperity.  

Besides that, the aim of the present work are: 

1) To quantify the transition from elastic to elastic-perfectly plastic behavior,  

2) Validation of the model comparing all the cases analyzed with the Hertz elastic and Jackson 

Green elastic-plastic model,  

3) To analyze and discern the parameters that govern the contact behavior from low load to very 

high load that causes complete contact, 

 4) To formulate equations for the contact pressure, contact area and contact pressure as a function 

of surface separation both for elastic and elastic-perfectly plastic cases at which two surfaces reach 

complete contact for a wide range of material properties and surface roughness, 

 5) Characterize the relation of the nominal pressure (i.e., hardness) to the yield strength for all the 

cases considered in the present work from initial to complete contact. 
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3.2 Methodology 

3.2.1 Axisymmetric Sinusoidal Geometry: 

In the current study, the profile of the axisymmetric sinusoidal surface is described using the 

following equation, 

 ℎ(𝑟) = 𝛥 (1 + 𝑐𝑜𝑠 (
2𝜋𝑟

𝜆
)) ,  𝑟 ≤

𝜆

2
                   (3.1) 

where h is the surface height, and r is the radial location from the axis of symmetry of the sinusoidal 

surface (see Fig.3.2 (a)). A three-dimensional view of this geometry is shown in Fig. 3.2(b). The 

amplitude of the asperity has been magnified for clarity. 

 

 

 

 

 

 

 

 

 

Fig. 3.2 (a) 2D plot and (b) 3D surface of the sinusoidal asperity. 

3.2.2 Finite Element Model (FEM): 

To model the axisymmetric sinusoidal asperity contact, one sinusoidal asperity in contact with a 

rigid flat is considered by using the following equation for the equivalent elastic modulus: 

(a) (b) 
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1

𝐸′ =
(1−𝜐1

2)

𝐸1
+

(1−𝜐2 
2 )

𝐸2
                                                          (3.2) 

where Ei and νi are the Young’ modulus and Poisson’s ratio respectively of two contacting bodies 

and i =1, 2.  

The cross-section of the axisymmetric sinusoidal surface loaded against a rigid flat is shown in 

Fig. 3.3. Fig. 3.4 is showing the schematic of the asperity before and after deformation. As it is an 

axisymmetric model, only the right half of the axis is considered in the FEA. The commercial FEM 

software ANSYS is used in this work. During modeling, the following assumptions have been 

made: 

1) When there is a gap between the two surfaces, no contact will be established and vice versa. 

2) For elastic cases, a linear elastic isotropic material is assumed, and for the elastic-plastic 

cases, a nonlinear isotropic elastic-perfectly plastic material model is assumed. Elastic-

perfectly plastic means no strain hardening is included in the model. The elastic-perfectly 

plastic model will be helpful in modeling elastic-plastic cases with different amounts of 

hardening in future works. 

3) The von Mises criteria is used to predict yielding. 

4) The large deformation effect is included during the analysis to include the effect of 

geometric non-linearity.  

5) The contact is assumed to be frictionless and without adhesion. 

For meshing the entire sinusoidal surface and its substrate, PLANE183, an 8 node plane element 

with mid-nodes, is used. CONTA 172, a 3-node contact element with a mid-node and TARGE 

169, a 2-node target element are used to model the contact between the sinusoidal surface and the 

rigid flat. The Augmented Lagrange method is used as the contact algorithm. Two other common 
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methods are the Normal Lagrange method, which has a chattering problem, often making 

convergence difficult, and the Multi-Point Constraint method, which is best suited for a bonded 

and unseparated contact. Besides this, the Augmented Lagrange method results in more detection 

points at the contact than the Normal Lagrange and Multi-Point Constraint method. Essentially, it 

is effective at restricting interference at the contact, while still converging relatively easily. The 

other boundary conditions that are considered in the present study are: 

 The axisymmetric boundary condition is applied at the axis of symmetry, which is Ur (0, 

z) =0. Boundary conditions that consider interaction with adjacent asperities are applied to 

the displacement in the radial direction along the side surface, L2, such that Ur (0, z) =Ur 

(λ/2, z) = 0 and to the value of shear stress which is zero at λ/2 (σrz (λ/2, z) = 0). This is 

very similar to a periodic boundary condition (see Fig.3.3). 

 The nodes at the base of the substrate (z=0) are fixed in all directions.  

 Only displacement in the negative z-direction is allowed on the rigid flat. 
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Fig. 3.3 Schematic of an axisymmetric sinusoidal asperity loaded with a rigid flat. 

 

 

 

 

 

 

Fig. 3.4 Schematic of a sinusoidal asperity before and after deformation. (ω= Displacement, 

F=Reaction force). 
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Although the asperity contact considered in this work is not perfectly periodic, it does effectively 

include interactions with adjacent asperities by having a confined boundary at the outer radius of 

the base. This is drastically different from a single spherical asperity model, which does not have 

this confinement and lateral interaction and also from the ‘non-axisymmetric’ bi-sinusoidal 

models. In the present analysis, a parametric study has been performed for the modeling of the 

elastic and elastic-perfectly plastic axisymmetric sinusoidal surface, varying both the geometry 

and the material properties. 

From the spectral analysis of different rough surfaces, it has been found that the Δ/λ ratio generally 

varies in the range of approximately 10-7 to 0.1 [22-24]. For the elastic case, five different values 

of amplitude to wavelength ratios (Δ/λ) are considered in the range of 0.00005 < Δ/λ < 0.025. In 

the current model, λ is set to 1 mm throughout the calculation. Then the analysis is performed for 

three different values of Young’s modulus (E= 50 GPa, 200 GPa, and 400 GPa) at each Δ/λ ratio. 

For each Young’s modulus case, three different values of Poisson’s ratio (0.20, 0.33, and 0.45) 

have also been considered. During the simulation, only one parameter is varied at a time while 

keeping the other two parameters constant. A total of 45 cases are performed for the elastic case. 

For the elastic-perfectly plastic case, six different values of amplitude to wavelength ratios (Δ/λ) 

are considered in the range of 0.00005 < Δ/λ < 0.025 and three different values of Young’s modulus 

(E= 50 GPa, 200 GPa, and 400 GPa) are considered at each Δ/λ ratio. For each Young’s modulus 

case, six different values of Young’s Modulus (E) to yield strength (Sy) ratios (E/Sy = 10, 50, 200, 

500, 1000 and 2000) are considered i.e. Sy is varying. This results in eighteen different values of 

yield strength in the range 25MPa < Sy < 40000 MPa for each Δ/λ case. As mentioned before, it is 

important to consider this wide range of E/Sy because yield strength changes with scale and 

asperities can change over many length scales. During the simulation of the elastic-perfectly plastic 
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case also, only one parameter is varied at a time, keeping the other parameters constant. Since six 

different values of Δ/λ are considered, in total, 108 cases are performed for the elastic-perfectly 

plastic analysis. Poisson’s ratio has been kept constant at 0.33 for all the elastic-perfectly plastic 

cases. 

To confirm the FE model contact stiffness and penetration tolerance values are acceptable, FE 

simulations have performed for three different Δ/λ ratios (0.025, 0.005, and 0.00005) at E/Sy=10 

and E/Sy=2000. Contact element stiffness is the stiffness of the numerical contact elements. Contact 

elements act like spring between two contacting surfaces. To enforce zero penetration at the 

contact, the stiffness of the contact elements have to be very high, and that can cause convergence 

difficulties. Based on the applied stiffness factor, the bulk modulus of the contact material, and 

some other parameters, ANSYS makes an initial guess for the contact stiffness. The contact 

element stiffness is updated during each substep of the FE simulation based on the current mean 

stress of the underlying element. If a small stiffness factor is assumed, then the contact stiffness 

will be small, and there will be larger penetrations at the contact, and the FEM will give inaccurate 

results. Different values of the contact stiffness factor have been tried, and from the simulation 

results, it was found that an ANSYS contact stiffness factor equal to 1.0 and a penetration tolerance 

factor equal to 0.01 are adequate to make the solution independent of contact element stiffness and 

to enforce almost zero penetration at the contact for the cases considered in this work.  

To observe the effect of substrate length or to make the model applicable for the semi-infinite solid 

case (half-space), simulations have performed for the same cases as the contact stiffness test. From 

the results, it is found that the results are independent of the length of geometry at the base of the 

asperities when L2 ≤ 3λ. The cases where the asperity deforms easily, i.e., more plasticity is 

observed, a higher substrate length is necessary to mitigate the effect of the generated high stress. 
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In the plane strain model of Gao et al. [21], it is found that the substrate will act as a semi-infinite 

solid when L2 ≥ 3λ while noting that in their study, the Δ/λ ratio varied from 0.01 to 0.1. 

The mesh convergence test has been performed for the same cases as the contact stiffness, and 

substrate depth tests to check the validity of the FEM model used. Simulations have performed for 

different element sizes, and it has found that depending on the Δ/λ ratio and substrate depth, 

106,963–153,466 elements are enough to capture the results accurately. 

3.2.3 Validation of the FEM Model: 

At low load and at the beginning of the contact, when the deformation is limited to the tip of the 

asperity, the contact behavior of spherical and sinusoidal asperities are very similar. At these low 

loads, the axisymmetric sinusoidal asperity model is compared with the spherical contact models. 

Besides that, material generally deforms elastically at the beginning of the contact, and plastic 

deformation may be confined to an insignificant volume. That’s why both elastic and elastic-

perfectly plastic cases of the FEM results have been compared with the Hertz model [16, 25-26], 

i.e., Eq. (2.17) and Eq. (2.18). The elastic-perfectly plastic cases have also been compared with the 

Jackson-Green (JG) elastic-plastic spherical contact model [27], i.e., Eq. (2.66)-(2.69). In the JG 

model, equations are formulated such that in the elastic region, it uses the Hertz solution, while 

the transition from elastic to elastic-plastic behavior is continuous in nature and considered by 

another equation. To adapt the formulas for spherical contact to sinusoidal contact at low load, the 

curvature at the tip of the axisymmetric sinusoidal surface needs to be replaced by the following 

equation, 

                    𝑅 =
𝜆2

4𝜋2∆
                                                               (3.3) 
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where Δ is the amplitude of the sinusoidal asperity, and λ is the wavelength of the sinusoidal 

surface. A comparison of the current results with the Hertz elastic spherical contact model shows 

that all the cases, whether elastic or elastic-perfectly plastic, match well at the beginning of the 

contact, except for a few elastic-perfectly plastic cases. For those cases, the value of initial 

interference was greater than the value of critical interference. Critical interference means the 

interference that causes initial yielding at the surface. However, all of the elastic-perfectly plastic 

cases agreed very well with the JG elastic-plastic spherical contact model [27]. Fig 3.5 (a) shows 

the comparison of the elastic sinusoidal asperity with the Hertz equation and Fig. 3.5(b) and 3.4(c) 

show the comparison of the elastic-perfectly plastic sinusoidal asperity model with Hertz and JG 

model, respectively. These three figures have magnified at the low load region to make the 

comparison clear. From the figures, it is clear that at the beginning of the contact, sinusoidal and 

spherical asperity model matches reasonably well; however, with the increase of load, they behave 

differently. Fig. 3.6(a) describes the overall phenomena more clearly. An isolated spherical contact 

(Hertz and JG model) will evolve with deformation to more of a column or barrel shape, which 

has been analyzed and shown in detail by Wadwalkar et al. [28], See Fig. 2.4(a) and (b) in chapter 

2. However, a sinusoidal asperity will not follow this trend, as the geometry and boundary 

conditions are different. Fig. 3.6(b) is showing the gradual change in the behavior of the sinusoidal 

asperity with loading found from the FEA.  
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Fig. 3.5(a) Comparison of the elastic case Δ/λ=0.00005, E=200 and υ=0.33 with the Hertz model, 

(b) Comparison of elastic-perfectly plastic case Δ/λ=0.01, E=200, E/Sy=500 and υ=0.33 with the 

Hertz model, (c) Comparison of elastic-perfectly plastic case Δ/λ=0.005, E=200, E/Sy=1000 and 

υ=0.33 with the JG model. (In the figures, 𝑅 =
𝜆

2
 and 𝑝̅ is the nominal pressure i.e.𝑝̅ =

𝐹

𝜋𝑅2).    

 

(c) (b) 

(a) 
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Fig.3.6 (a) An approximate conceptual depiction is showing the gradual change with loading for 

spherical and sinusoidal asperities in contact with a rigid flat (b) Change in the shape of the 

sinusoidal asperity from very low load to high load (Complete flattening of the sinusoidal asperity). 

(b1)  𝛿=0.65𝜇𝑚, (b2) 𝛿=0.013𝑚𝑚, (b3) 𝛿=0.026𝑚𝑚 and (b4) 𝛿=0.065𝑚𝑚. 

 

(a) 

(b1) (b2) 

(b3) (b4) 

(b) 

(a) 
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3.3 Results and Discussion 

3.3.1. Elastic Sinusoidal Asperity Model 

3.3.1.1 Empirical Equation for Average Pressure at Complete Contact 

As described in the methodology section, a parametric study has performed to predict the contact 

behavior of the elastic sinusoidal asperity in contact with a rigid flat. Figure 3.7(a) presents the 

effect of Young’s modulus on the relation between the average contact pressure, 𝑝̅, and the contact 

area, 𝐴. The Young’s modulus spans an order of magnitude, ranging from E=50GPa to E= 400 

GPa, while the amplitude to wavelength ratio is held constant at 
∆

𝜆
= 0.025 and Poisson’s ratio is 

υ=0.33. As shown in Fig. 3.7(a), the different values of Young’s modulus result in different curves 

for the contact area as a function of the average contact pressure. The required average contact 

pressure to reach the state of complete contact increases proportionally with the increase of 

Young’s modulus. Figure 3.7(b) shows the average contact pressure–area curves for different 

Poisson’s ratios at E=200GPa and 
∆

𝜆
= 0.025. Higher values of Poisson’s ratio result in higher 

average contact pressures required to reach complete contact. Figure 3.7(c) shows several 

examples of the average contact pressure–area curves for the different amplitude to wavelength 

ratios, 
∆

𝜆
 at 𝐸 = 200GPa and υ=0.33. Higher value of 

∆

𝜆
 results in a higher pressure required to 

reach complete contact. Normalizing 𝐴 by 𝜋 (
𝜆

2
)
2

and 𝑝̅ by 𝐸′ ∆

𝜆
, the corresponding dimensionless 

relation becomes independent of the material properties and geometrical parameters. Figures 

3.8(a)–3.8(c) represent the dimensionless average contact pressure–area curve for the same three 

cases described above and shown in Figs. 3.7(a)–3.7(c). In each of the figures, the normalized 

results are consolidated into a single curve. For the other cases also, Young’s modulus, Poisson’s 
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ratio, and amplitude to wavelength ratio showed the same effect on the dimensional and 

dimensionless contact pressure-area relation; that is why all the cases have not shown here. From 

all the numerical simulations, performed over the entire range of the input parameters, the value 

of pressure at which the two surfaces reach complete contact, 𝑝𝑒
∗ has found, which can be expressed 

by the following equation: 

                                                 𝑝𝑒
∗ = 1.85𝐸′ ((

𝛥

𝜆
)
(0.93(

𝛥

𝜆
)
−0.005

)

)                                       (3.4) 

The average difference between the FEM results and Eq. (3.4) is 1.43%, and the maximum 

difference is 2.84%. 

3.3.1.2. Empirical Equation for Contact Area: 

Equation (3.4) is now used to normalize the nominal pressure, 𝑝̅. By curve fitting the normalized 

contact pressure-area plots found from the FEA, an equation is derived empirically for the contact 

area. The fitted equation for contact area is, 

                       
𝐴

𝜋(
𝜆

2
)
2 = 0.425 (

𝑝̅

𝑝𝑒
∗)

2/3

(1 −
𝑝̅

𝑝𝑒
∗)

1.4

+ (0.8 + (1 − 0.8) (
𝑝̅

𝑝𝑒
∗)

𝑎

) (
𝑝̅

𝑝𝑒
∗)

1.6

          (3.5) 

where, 

𝑎 = 10 (
∆

𝜆
)
0.7

+ 10.75 

 

The difference between the FEM results and Eq. (3.5) is 1.73% on average, and the maximum 

error is 8.81%. The equation is applicable for the wide range of material properties and 
∆

𝜆
 ratios 
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considered in this work. As an example, Fig. 3.9 shows the comparison of the fitted equation with 

the results of two FEM cases. 

 

 

 

 

 

 

 

Fig.3.7 (a) Dimensional contact pressure-area relation for different Young’s modulus at a Δ/λ of 

0.025 and Poisson’s ratio of 0.33. (b) Dimensional contact pressure-area relation for different 

Poisson’s ratio at Δ/λ of 0.025 and Young’s modulus of 200 GPa (c) Dimensional contact pressure-

area relation for different amplitude to wavelength ratios (Δ/λ) at a Young’s Modulus of 200 GPa 

and Poisson’s ratio 0.33.  

(c) 

(a) (b) 
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Fig. 3.8 (a) Dimensionless contact pressure-area relation for different Young’s modulus at a Δ/λ 

of 0.025 and Poisson’s ratio of 0.33. (b) Dimensionless contact pressure-area relation for different 

Poisson’s ratio at Δ/λ of 0.025 and Young’s modulus of 200 GPa (c) Dimensionless contact 

pressure-area relation for different amplitude to wavelength ratios (Δ/λ) at a Young’s Modulus of 

200 GPa and Poisson’s ratio 0.33. (In the figures, 𝑅 =
𝜆

2
 and 𝑝̅ is the nominal pressure i.e.𝑝̅ =

𝐹

𝜋𝑅2). 

 

(c) 

(b) (a) 
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Fig. 3.9 Comparison of the FEM data with the fitted Eq. (3.5). 

3.3.1.3. Empirical Equation for Nominal Pressure as a Function of Surface Separation: 

The gap between the axisymmetric sinusoidal asperity considered in this work and rigid flat at zero 

load can be calculated from the following equation: 

𝑔 = 2∆ − ∆(1 + 𝑐𝑜𝑠 (
2𝜋𝑟

𝜆
)                                         (3.6) 

The average gap at zero displacement or at the beginning is defined by 𝑔𝑜̅̅ ̅ and the average gap at 

any displacement is defined by 𝑔̅. The average contact gap at zero displacement, 𝑔𝑜̅̅ ̅  is calculated 

from the following equation: 

𝑔𝑜̅̅ ̅ =
∫ ∫ 𝑔𝑟𝑑𝜃𝑑𝑟

2𝜋
0

𝜆/2
0

𝜋(
𝜆

2
)
2                                                  (3.7) 

Substituting Eq. (3.6) into Eq. (3.7), the following equation for the average gap at zero load is 

obtained: 
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           𝑔𝑜̅̅ ̅ = ∆ (1 +
4

𝜋2)                                                     (3.8) 

To observe the effect of different parameters on the gap, the predictions of average surface 

separation, 𝑔̅ versus nominal pressure,  𝑝̅  are plotted in Fig. 3.10 (a), (b) and (c). Fig. 3.10 (a) 

shows that with the increase of the Δ/λ ratio more contact pressure is required to fill the gap 

between the contacting surfaces. The same behavior is observed with the increase of Poisson’s 

ratio and Young’s modulus as shown in Fig. 3.10(b) and 3.10(c), respectively.  

Then the nominal pressure and average surface separation is normalized by 𝑝𝑒
∗ and 𝑔𝑜̅̅ ̅  respectively 

and the same cases shown in Fig. 3.10 are plotted in Fig. 3.11(a), 3.11(b) and 3.11(c). It is found 

that like the contact area, this normalization collapses the data onto one curve. Considering all of 

the cases, the following empirical equation for nominal pressure as a function of surface separation 

is found:  

                          
𝑝̅

𝑝𝑒
∗ = [1 − 𝐺𝑛

(1.77(
∆

𝜆
)
2.46

+0.045𝐺𝑛+0.384)
]

(1.525(𝐺𝑛)0.21−0.0029)

                          (3.9) 

In the above equation, 𝐺𝑛 =
𝑔̅

𝑔𝑜̅̅ ̅̅
. The difference between the FEM results and Eq. (3.9) is 1.29% 

on average and maximum error is 5.86%. 
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Fig.3.10 (a) Nominal pressure vs. average surface separation for E=200 GPa, υ=0.33 at different 

values of Δ/λ ratio (b) Nominal pressure vs. average surface separation for E=50 GPa, Δ/λ =0.025 

at different values of Poisson’s ratio (c) Nominal pressure vs. average surface separation for Δ/λ 

=0.01, υ=0.33 at different values of Young’s modulus. (In the figures, 𝑅 =
𝜆

2
 and 𝑝̅ is the nominal 

pressure i.e.𝑝̅ =
𝐹

𝜋𝑅2
). 

 

(a) (b) 

(c) 
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Fig.3.11 (a) Normalized nominal pressure vs. normalized surface separation for E=200 GPa, 

υ=0.33 at different values of Δ/λ ratio (b) Normalized nominal pressure vs. normalized surface 

separation for E=50 GPa, Δ/λ =0.025 at different values of Poisson’s ratio (c) Normalized nominal 

pressure vs. normalized surface separation for Δ/λ =0.01, υ=0.33 at different values of Young’s 

modulus. (In the figures, 𝑅 =
𝜆

2
 and 𝑝̅ is the nominal pressure i.e.𝑝̅ =

𝐹

𝜋𝑅2). 

 

(a) (b) 

(c) 
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3.3.2. Elastic-perfectly plastic Sinusoidal Asperity Model 

3.3.2.1. Empirical Equation for Average Pressure at Complete Contact,  𝒑𝒆𝒑
∗  and Critical 

Amplitude, Δc 

For the analysis of the elastic-perfectly plastic behavior, the effect of different parameters (E, E/Sy, 

and Δ/λ ratio) on the contact pressure-area relation is examined. Poisson’s ratio is constant 

throughout this analysis. 

Similar to elastic asperity contact, in elastic-perfectly plastic asperity contact, an increase of 

Young’s modulus also increases the amount of pressure required to reach complete contact, as 

shown in Fig. 3.12(a). Contact area is normalized by 𝜋 (
𝜆

2
)
2

and nominal pressure by 𝐸′
∆

𝜆
. Again 

note that nominal pressure is contact force divided by the nominal contact area. After 

normalization, at a constant value of E/Sy and Δ/λ ratio, curves for different Young’s moduli 

collapse into a single curve. Therefore, the dimensionless contact pressure-area relation for a 

constant value of E/Sy and Δ/λ ratio does not depend on Young’s modulus, E. This normalization 

is demonstrated in Fig. 3.12(b) for E/Sy=50 and Δ/λ=0.005. 

Next, the effect of E/Sy and the Δ/λ ratio on the normalized contact pressure-area relation is 

analyzed. For different Δ/λ ratios, the effect of E/Sy is shown in Fig. 3.13. The Young’s modulus 

is now held constant at 200 GPa, as the normalized contact pressure-area relation doesn’t depend 

on Young’s modulus. Some interesting results are found from the analysis. Fig. 3.13(a) shows the 

effect of E/Sy ratios on the normalized contact area to pressure relation for Δ/λ = 0.025. From Fig. 

3.13 (a), it is observed that the higher the value of E/Sy ratio (that means lower yield strength 

values) the lower the force required to reach complete contact.  
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Fig.3.12 (a) Dimensional nominal pressure-area relation (b) Dimensionless nominal pressure-area 

relation for different values of Young’s modulus at Δ/λ equal to 0.005 and υ=0.33. (In the figures, 

𝑅 =
𝜆

2
 and 𝑝̅ is the nominal pressure i.e.𝑝̅ =

𝐹

𝜋𝑅2). 

For the same E/Sy ratios, when Δ/λ equals to 0.01, higher values of contact pressure are required 

to reach complete contact, as shown in Fig. 3.13(b). In Fig. 3.13(c), for the same cases, further 

decrease in the Δ/λ ratio causes the curves for E/Sy=10 and E/Sy=50 to coincide with each other 

and require more contact pressure to reach complete contact. The same trend is observed for the 

case in Fig. 3.13(d). Additional decreases in the Δ/λ ratios cause the curves for E/Sy=10, 50, 200, 

and 500 to coincide with each other, as shown in Fig. 3.13(e). In Fig. 3.13(f), and when Δ/λ ratio 

equals to 0.00005, the curves for all the ratios of E/Sy coincide with each other. This means that 

the effect of E/Sy is decreasing with the decrease of the Δ/λ ratio. This is because the cases are 

becoming more and more elastic with the decrease in the Δ/λ ratio. 

 

 

(a) (b) 
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Fig. 3.13 Dimensionless contact pressure-area relation for different values of E/Sy at Young’s 

modulus 200, Poisson’s ratio 0.33 and (a) Δ/λ = 0.025, (b) Δ/λ = 0.01, (c) Δ/λ = 0.005, (d) Δ/λ = 

(a) (b) 

(e) (f) 

(d) (c) 
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0.0025, (e) ∆/λ=0.0005(f) ∆/λ=0.00005. (In the figures, R=λ/2 and 𝑝̅ is the nominal contact 

pressure). 

To investigate the reason, the average pressure, 𝑝𝑒𝑝
∗ , that causes complete contact, is evaluated 

from the finite element model data for each of the considered cases. This value corresponds to the 

average pressure when the area ratio, 
𝐴

𝜋(
𝜆

2
)
2 is equal to 1. 𝑝𝑒𝑝

∗ /𝑝𝑒
∗ , for all the considered cases, is 

then plotted against 
𝐸′∆

𝑆𝑦𝜆
 in Fig 3.14. This plot seems very useful, as it is successful at collapsing all 

of the data into a single curve.  

 

 

 

 

  

 

 

Fig. 3.14 Relation between 𝑝𝑒𝑝
∗ /𝑝𝑒

∗  with 
𝐸∗∆

𝑆𝑦𝜆
 for all the cases analyzed. 

From Fig.3.14, it is observed that there is a cluster of points near 𝑝𝑒𝑝
∗ /𝑝𝑒

∗ =  1. To investigate the 

transition from the elastic regime to the elastic-plastic regime, a magnified view of that region is 

examined in Fig.3.15, and it is found that at low values of  
𝐸∗∆

𝑆𝑦𝜆
  , the values of 𝑝𝑒𝑝

∗ /𝑝∗ approach 1. 
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The cases where  𝑝𝑒𝑝
∗ /𝑝𝑒

∗ is equal to 1 are elastic because the pressure required to cause complete 

contact for the elastic-plastic case cannot be equal to or greater than the pressure required for the 

elastic case[5]. Therefore, it is important to characterize the transition point. To find out the 

transition point below which all cases will be elastic, additional cases are run near the cluster, and 

then extrapolation is made of the points approaching 1, which results in an approximate value 

of  
𝐸′

𝑆𝑦

∆

𝜆
 at the transition. The approximate value is, 

  
𝐸′

𝑆𝑦

∆

𝜆
= 0.23        (3.10) 

 

 

 

 

 

 

 

Fig. 3.15 Magnified view of the region near  𝑝𝑒𝑝
∗ /𝑝𝑒

∗equals 1. 

Defining Δ= Δc at the transition point, as when 𝑝𝑒𝑝
∗ ≈ 𝑝𝑒

∗ then the value of Δc (the critical 

amplitude) can be written as, 

∆𝑐= 0.23
𝑆𝑦𝜆

𝐸′                       (3.11) 
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Therefore, when the value of Δ is less than Δc, the contact is considered to be perfectly elastic. The 

cases that are found elastic using Eq. (3.11) are confirmed by observing the von Mises stress from 

the finite element data following the distortion energy yield criterion. Based on Eq. (3.11), 

separating the elastic data from the elastic-plastic data, the elastic-perfectly plastic complete 

contact pressure curve is effectively fitted by the following equation, 

                   
𝑝𝑒𝑝

∗

𝑝𝑒
∗ = [

1.009

(2.634
∆

∆𝑐
)
(0.25

∆
𝜆
+0.7307)

−0.925

+(0.0118
∆

∆𝑐
)
(0.155(

∆
∆𝑐

)
−0.789

+0.106
∆
𝜆
)

]

(1.605
∆

∆𝑐
−0.28)

        (3.12) 

The difference between the FEM result and Eq. (3.12) is 1.21% in average and maximum error is  

5.93%.  

Figure 3.16(a) shows the data of all the cases, which are elastic, based on eq. (3.11). For these 

cases, empirical equations for the elastic case can be used to predict the contact behavior. As an 

example, Fig. 3.16(b) is showing the comparison of a few of the elastic cases that have been 

separated based on Eq. (3.11) with the elastic contact area empirical equation, i.e., Eq. (3.5). 
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Fig. 3.16 (a) Dimensionless area as a function of dimensionless contact force for all the elastic 

cases, (b) Comparison among Eq. (3.5) and a few of the elastic cases that have been separated 

based on Eq. (3.11) 

 3.3.2.2. Empirical Equation for Contact Area 

Figure 3.17(a) shows the behavior of the normalized area as a function of normalized contact force 

for all the elastic-perfectly plastic cases. For the elastic-perfectly plastic cases analyzed, the value 

of Δ/Δc  or 

𝐸′

𝑆𝑦

𝛥

𝜆

0.23
⁄  varies in the range of 1.0 to 243.96.  From the figure, it is visible that, with 

the increase in loading, all the curves gradually diverge due to plastic deformation. However, they 

converge again near the complete contact. The difference might be due to the tendency of elastic 

contact to compress while contacts dominated by plastic deformation tend to expand laterally. 

From Fig. 3.17(a), it seems that all the cases are almost on the same curve at low load while it is 

not. The magnified view at low load is shown in Fig. 3.17(b). When 
∆

∆𝑐
 equals 1.0, the shape of the 

(a) (b) 
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curve is similar to Hertz contact at low load. Then, with the increase of 
∆

∆𝑐
 values, the range where 

the Hertz model works decreases, and the normalized contact pressure-area relation also becomes 

more and more linear. From Fig. 3.17(b), it is clear that when 
∆

∆𝑐
 Equals to 243.96, the normalized 

contact-pressure area relation is almost linear in behavior at the beginning of the contact. Again 

from Fig. 3.17(a), when Δ/Δc equals to 1.0, i.e., just at the transition point from elastic to elastic-

perfectly plastic contact, the normalized contact pressure-area behavior is very similar to the 

normalized elastic contact pressure-area behavior. Then, when Δ/Δc becomes 12.2, an almost linear 

relationship is observed. With the increase of Δ/Δc ratios, the cases are becoming more and more 

plastic, and more and more area is coming into contact at the same amount of applied contact force. 

To investigate this behavior in detail, 
𝑤𝑐

∆𝑐
 has been plotted against 

∆

∆𝑐
, 𝑤𝑐 is the critical value of 

interference at which initial yielding starts (see Fig. 3.17(c)). When 
∆

∆𝑐
 is close to 1.0, a high value 

of displacement is required for initial yielding. At the small value of 
∆

∆𝑐
, the required value of initial 

yielding changes very dramatically with little change in 
∆

∆𝑐
. From Fig. 3.17(c) it is clear that, the 

data point for  
∆

∆𝑐
 equal to 12.2 is situated at this dramatic change or transition. When 

∆

∆𝑐
 is greater 

than 12.2, very small values of displacement can cause initial yielding. Based on the observed 

transitions in Fig. 3.17(a-c), equations are fit into two different ranges of data. One is for 1 ≤
∆

∆𝑐
≤

12.2 and another is for 12.2 ≤
∆

∆𝑐
≤ 243.96. 
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 Fig. 3.17 (a) Dimensionless area as a function of dimensionless contact force for all the elastic-

plastic cases. (In the figures, 𝑅 =
𝜆

2
 and 𝑝̅ is the nominal pressure i.e.𝑝̅ =

𝐹

𝜋𝑅2), (b) Magnified view 

of Fig.14(a) at low load, (c) Dimensionless interference as a function of dimensionless amplitude 

for all the elastic-perfectly plastic cases. 

 

 

(a) (b) 

(c) 
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The fit equations are: 

Contact pressure-area relation when 𝟏 ≤
∆

∆𝒄
≤ 𝟏𝟐. 𝟐: 

            
𝐴

𝜋(
𝜆

2
)
2 = 0.4 (

𝑝̅

𝑝𝑒𝑝
∗ )

(2/3+𝑎)

(1 −
𝑝̅

𝑝𝑒𝑝
∗ )

(1.4+𝑏)

+ (0.8 + (1 − 0.8) (
𝑝̅

𝑝𝑒𝑝
∗ )

𝑐

) (
𝑝̅

𝑝𝑒𝑝
∗ )

(1.6+𝑑)

    (3.13) 

where, 

𝑎 = 0.007 (
∆

∆𝑐
) − 0.007 

𝑏 = 0.1 − 0.1 (
∆

∆𝑐
) 

𝑐 = 11 (
∆

∆𝑐
)
−0.42

(
∆

𝜆
)
−0.1

+ 2.0 

𝑑 = 0.03 − 0.03 (
∆

∆𝑐
) 

The average difference between Eq. (3.13) and the FEM results is 2.55%, and the maximum error 

is 9.96%. The format of Eq.(3.13) is very similar to the equation of the contact area for the elastic 

cases when  
∆

∆𝑐
 equal to 1.0. The equation is valid from initial contact up to the complete contact. 

When 
𝑝̅

𝑝𝑒
∗ < 0.0005, the spherical Hertz equation for the contact area can be used. 

 Contact pressure-area relation when 𝟏𝟐. 𝟐 ≤
∆

∆𝒄
≤ 𝟐𝟒𝟑. 𝟗𝟔: 

              
𝐴

𝜋(
𝜆

2
)
2 = 0.908 (

𝑝̅

𝑝𝑒𝑝
∗ )

(0.33+𝑎)

(1 −
𝑝̅

𝑝𝑒𝑝
∗ )

𝑏

+ (
𝑝̅

𝑝𝑒𝑝
∗ )

𝑐−0.24

                      (3.14) 
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In Eq. (3.14),     

𝑎 = 0.5185 (
∆

∆𝑐
)
(0.9(

∆
𝜆
)
2.1

+0.018)

 

𝑏 = 0.26 (
∆

𝜆
)
−0.03

+ 0.95 

𝑐 =

(

 
 

(5.5(
𝑝̅

𝑆𝑦
)

−1.06

− 0.072)
𝑝̅

𝑝𝑒𝑝
∗

+ 0.00006
(0.014(

𝑝̅
𝑆𝑦

)
(3.3+1.5

𝛥
𝜆
+0.125)

)

)

 
 

 

The difference between Eq. (3.14) and the FEM results is 1.54%  on average, and the maximum 

error is 10.6%. Equation (3.14) is valid when 
𝑝̅

𝑝𝑒
∗ ≥ 0.001. The data below 

𝑝̅

𝑝𝑒
∗ < 0.001 agrees well 

with the JG model. So when 
𝑝̅

𝑝𝑒
∗ < 0.001, the JG model can be used.  

3.3.2.3. Empirical Equation for Nominal Pressure as a Function of Surface Separation 

In addition to determining the contact area, it is important to predict pressure as a function of 

surface separation. Therefore, the effect of different parameters (
𝐸′

𝑆𝑦
  and

∆

 𝜆
) have been observed. 

Fig. 3.18(a) shows that, for increasing E/Sy ratios, the average contact pressure required to reach 

complete contact gradually decreases. The same trend is also observed with the decrease in 
𝛥

𝜆
 ratios, 

as shown in Fig. 3.18(b). In Fig. 3.18(b), the curves for E/Sy=10, 50, 200 and 500, 
𝛥

𝜆
= 0.025 

coincide with each other as those cases are elastic. All the cases considered are not shown or 

discussed here because they show the same trends, i.e., with the decrease in 
𝛥

𝜆
 ratio, the effect of 

E/Sy decreases, and at Δ/λ =0.00005, the curves for all the E/Sy cases collapse into a single curve 

and are completely elastic (according to the Eq. (3.11)). 



97 
 

  

Fig. 3.18 (a) Nominal pressure vs. average surface separation for E=200 GPa, υ=0.33, for different 

values of E/Sy ratio at Δ/λ=0.025 (b) Nominal pressure vs. average surface separation for E=200 

GPa, υ=0.33, for different values of E/Sy ratio at Δ/λ=0.0005. (In the figures, 𝑅 =
𝜆

2
 and 𝑝̅ is the 

nominal pressure i.e. 𝑝̅ =
𝐹

𝜋𝑅2). 

After normalizing the nominal pressure, 𝑝̅ and average surface separation, 𝑔̅ by 𝑝𝑒𝑝
∗  and 𝑔𝑜̅̅ ̅ 

respectively, the same cases shown in Fig. 3.18(a) and (b) are shown in Fig. 3.19(a) and 3.19(b). 

The normalized curves do not coincide with each other, as found for the elastic cases (see sec. 

3.3.1.3). As with the contact area for elastic-plastic cases, the normalized surface separation 

doesn’t depend on only the normalized contact pressure.  

 

 

 

 

(a) (b) 
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Fig. 3.19 (a) Normalized nominal pressure vs. normalized surface separation for E=200 GPa, 

υ=0.33, for different values of E/Sy ratio at Δ/λ=0.025 (b) Normalized nominal pressure vs. 

normalized surface separation for E=200 GPa, υ=0.33, for different values of E/Sy ratio at 

Δ/λ=0.0005. 

To quantify the surface separation so that it can be applied to rough surface contact modeling for 

solving practical engineering problems, three empirical equations have been found. The results are 

divided into three ranges. One is for 1 ≤
∆

∆𝑐
≤ 12.2, another one is for 12.2 <

∆

∆𝑐
≤ 48.8 and 

48.8 <
∆

∆𝑐
≤ 243.96 

When 𝟏 ≤
∆

∆𝒄
≤ 𝟏𝟐. 𝟐: 

𝑝̅

𝑝𝑒𝑝
∗ = (1 − 𝐺𝑛

𝑎)𝑏                                                                 (3.15) 

where, 

(a) (b) 
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𝑎 = 0.185 (
𝐸′

𝑆𝑦

∆

𝜆
)

(1.03𝐺𝑛
2)

+ 1.28 (
∆

∆𝑐
)

(0.72(
∆
𝜆
)
1.4

)

− 0.91 

𝑏 = [0.027 (
∆

∆𝑐
− 1)

0.44

] 𝐺𝑛+1.5 

The average difference between Eq. (3.15) and the FEM results is 2.75% on average, and the 

maximum difference is 9.49%. The equation is valid from initial contact to complete contact. 

When 𝟏𝟐. 𝟐 <
∆

∆𝒄
≤ 𝟒𝟖. 𝟖: 

𝑝̅

𝑝𝑒𝑝
∗ = (1 − 𝐺𝑛

𝑎)𝑏                                                     (3.16) 

where, 

𝑎 = 0.75𝐺𝑛

(−0.039(
∆
∆𝑐

)
0.12

)
 

𝑏 = 𝑐𝐺𝑛

(−0.9(
∆
𝜆
)
0.012

)
+ 7.17 (

∆

∆𝑐
)
−0.051

− 5.066 

In the above expression, 

𝑐 = [64.401 (
𝐸′

𝑆𝑦

𝛥

𝜆
)

(0.0044(
𝐸′
𝑆𝑦

)
−0.0476

)

− 64.338] 

The average difference between Eq. (3.16) and the FEM results is 3.14%, and the maximum error 

is 10.6%. The above equation is valid when
𝑝̅

𝑝𝑒𝑝
∗ ≥ 0.0004. Below that it behaves elastically, which 

is confirmed by comparing with Eq. (3.9). Therefore when 
𝑝̅

𝑝𝑒𝑝
∗ ≤ 0.0004, Eq. (3.9) can be used. 
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When 𝟒𝟖. 𝟖 <
∆

∆𝒄
≤ 𝟐𝟒𝟑. 𝟗𝟔: 

𝑝̅

𝑝𝑒𝑝
∗ = (1 − 𝐺𝑛

𝑎)𝑏                                             (3.17) 

where, 

𝑎 = 0.781𝐺𝑛

(−0.03(
∆
∆𝑐

)
0.13

)
 

𝑏 = 𝑐𝐺𝑛

(−0.92(
∆
𝜆
)
0.017

)
+ 7.01 (

∆

∆𝑐
)
−0.052

− 4.912 

In the above expression, 

𝒄 = [68.745 (
𝐸′

𝑆𝑦

𝛥

𝜆
)

(0.004(
𝐸′
𝑆𝑦

)
−0.0405

)

− 68.675] 

The difference between the above equation and the FEM results is 3.70% on average, and the 

maximum difference is 9.94%. For almost the entire range of pressure, the behavior is elastic-

plastic. 

3.3.3. The Nominal Pressure to Yield Strength Ratio 

Analyzing all the elastic-perfectly plastic results, it is found that, Δ/Δc and 
𝑎

𝜆
2⁄
, actually, control 

how the behavior of the nominal pressure to yield strength changes. In Fig. 3.20(a), i.e., when 1 ≤

∆

∆𝑐
≤ 12.2, for all the cases 

𝑝̅

𝑆𝑦
 reaches a maximum value but then decreases with 

𝑎

𝜆
2⁄
. With the 

increase of Δ/Δc, this maximum value of 
𝑝̅

𝑆𝑦
 gradually increases. When Δ/Δc equals 12.2, 

𝑝̅

𝑆𝑦
 reaches 
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a maximum value of about 2.9 and then changes very little. This is the case where an almost linear 

contact pressure-area relationship is observed. With a further increase in Δ/Δc values, i.e., 

when 12.2 <
∆

∆𝑐
≤ 243.96, 

𝑝̅

𝑆𝑦
 increases linearly and then become nearly constant with the increase 

of 
𝑎

𝜆
2⁄
, until increasing again at a high value of 

𝑎

𝜆
2⁄
. Then with further increases in 

𝑎

 𝜆
2⁄
, 

𝑝̅

𝑆𝑦
 

continuously increases up to values above 3. Both of these trends are shown in Fig. 3.20(a) and 

3.20(b), have also been observed in the work of Gao et al. [21] for 2D plain-strain sinusoidal 

contact. Although in their work more concentration was given to higher Δ/λ ratios (0.01 ≤
∆

𝜆
≤

0.1), the maximum value of  
 𝐸′

𝑆𝑦

𝛥

𝜆
 was 54.95 whereas the maximum value of  

𝐸′

𝑆𝑦

𝛥

𝜆
 for the current 

research is 56.11 (0.00005 ≤
∆

𝜆
≤ 0.025). The maximum value of 

𝑝̅

𝑆𝑦
 in their research was about 

5.9. Liu model [29] has given a general expression for average contact pressure to yield strength 

ratio, which is only a function of 
∆

𝜆
 and normalized interference, 

 𝜔

∆
. However, the current analysis 

clearly shows that the nominal pressure to yield strength ratio depends on Δ/Δc and 
𝑎

𝜆
2⁄
. In the work 

of Krithivasan et al. [4], the maximum observed value of 
𝑝̅

𝑆𝑦
 was approximately 6.0 at the maximum 

value of 
𝐸′

𝑆𝑦

𝛥

𝜆
 =20.51. The work of Manners [6] showed that both for the upper and lower bound 

analysis the value of 
𝑝̅

𝑆𝑦
 may rise to infinity; however, it was concluded that elastic-plastic 

interaction and boundary conditions are responsible for the finite value in the analysis of Gao et 

al. [21]. To investigate this upper limit of 
𝑝̅

𝑆𝑦
, a simulation is performed at a very high value of 

𝐸′

𝑆𝑦

𝛥

𝜆
 

=280.55, i.e., ≈ 1220 and the value of 
𝑝̅

𝑆𝑦
 at complete contact is 5.8 for this case. So it seems that 

although with the increase of  
𝐸′

𝑆𝑦

𝛥

𝜆
 , the value of 

𝑝̅

𝑆𝑦
 at complete contact has increased, for most of 
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the materials the value of 
𝑝̅

𝑆𝑦
 at complete contact will be less than 6. Change of 

𝑝̅

𝑆𝑦
 at complete 

contact with 
𝐸′

𝑆𝑦

𝛥

𝜆
 has shown in Fig. 3.21. 

 

 

 

 

Fig. 3.20(a)  
𝑝̅

𝑆𝑦
  vs.  

𝑎

𝜆
2⁄
  for 1 ≤

∆

∆𝑐
≤ 12.2, (b) 

𝑝̅

𝑆𝑦
  vs.  

𝑎

𝜆
2⁄
 for 12.2 ≤

∆

∆𝑐
≤ 243.96 

(a) 

(b) 
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Fig. 3.21 Change of 
𝑝̅

𝑆𝑦
 at complete contact with 

𝐸′

𝑆𝑦

𝛥

𝜆
. 

3.3.4. Comparison with the Available 2D Axisymmetric Sinusoidal Asperity Models: 

As discussed in chapter 2, Liu [29] has performed an analysis on elastic-plastic axisymmetric 

sinusoidal asperity contact with linear hardening (less than 2%E bilinear hardening, E is Young’s 

modulus). Previous research [30] shows that isotropic material with upto 5%E bilinear hardening 

has a negligible hardening effect on the contact behavior. Therefore, the results of this chapter will 

be compared with the Liu model. In the Liu model, the surface asperity height to width ratio was 

varied in the range of 0.01 to 0.4, and the analysis was done only for gold. However, they provided 

a general expression for the normalized contact radius. The equation for the contact radius is the 

following: 

𝑎𝜆 =
arccos (1−𝑘𝑎𝑑𝑔)

𝜋
                                                      (3.18) 

where, 
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 𝑎𝜆 =
𝑎

𝜆
2⁄
, (a is the contact radius, and λ is the wavelength of the sinusoidal asperity) 

𝑑𝑔 =
𝑑

𝑔
, (d is the interference, and g is the amplitude of the sinusoidal asperity) 

𝑘𝑎 =
2.15𝑔𝜆

(0.008+𝑔𝜆)
 ,(𝑔𝜆 =

𝑔

𝜆
). 

According to Liu [29], when 𝑘𝑎 is 2.0, Eq. (3.18) represents the truncation model [31]. Truncation 

model [31] cannot predict elastic-plastic behavior properly. That’s why Liu [29] proposed the 

modified truncation model (Eq. (3.18)). The Liu model agrees well with the ZMC model [32], 

which also cannot predict the elastic-plastic behavior properly, as discussed in chapter 2.  Later in 

2016, Liu et al. [33] showed that the 
𝑆𝑦

𝐸
 ratio has a significant effect on the elastic-plastic behavior. 

Therefore, the modified truncation model given by Liu [29] will not work for all the cases. This 

has shown in this chapter in Fig. 3.22.  

Actually, in 2016, the author showed in one of the published works [34] that, it is not only 
𝐸

𝑆𝑦
 ratio 

but the combined effect of 
𝐸

𝑆𝑦
 and surface asperity height and width ratio, 

∆

𝜆
 govern the elastic-

perfectly plastic behavior. Later, in another published work [18] (2017), the author provided the 

following empirical equation to predict the contact area of the axisymmetric elastic-plastic 

axisymmetric sinusoidal asperity contact: 

                            
𝐴

𝜋𝑅2
=

𝐴

𝜋(
𝜆

2
)
2 =

2

𝜋
(

𝑃̅

𝑃𝑒𝑝
∗ )

𝐶2
′(𝑃̅/𝑃𝑒𝑝

∗ )

{𝑠𝑖𝑛−1 [(
𝑃̅

𝑃𝑒𝑝
∗ )

0.16

]}

𝐶3
′

                                  (3.19) 

𝐶2
′ = 0.64 + [1.14 −

1

1.25
(
𝐸′

𝑆𝑦

∆

𝜆
)

0.32

] 



105 
 

𝐶3
′ = 1 +

1

200
(
𝐸′

𝑆𝑦

∆

𝜆
) 

In the above equation, 𝑃̅ is the nominal pressure and 𝑃𝑒𝑝
∗  can be calculated using the following 

expression: 

                                                        
𝑃𝑒𝑝

∗

𝑃∗ =
0.67

0.653(
𝐸′

𝑆𝑦

∆

𝜆
)
0.0027

+0.22(
𝐸′

𝑆𝑦

∆

𝜆
)
𝑠                                          (3.20) 

𝑠 = 1.6 (
𝐸′

𝑆𝑦

∆

𝜆
)

−0.141

 

    𝑃∗ =
3

4
𝜋𝐸′ ∆

𝜆
                                                              (3.21) 

P* is the equation of contact pressure at complete contact for the elastic case. Although the above 

contact area equation (Eq. (3.19)) is a lot simpler compared to the contact area equations described 

in this chapter, a significant amount of improvements have been made in the current model. 

Following improvements have been made in the current work, which is also published in 2020 

[35]: 

 In [18 and 34] the value of 
∆

∆𝑐
 varied in the range of 1 to 80.16 whereas in the model 

described in this chapter, 
∆

∆𝑐
 varied in the range of 1 to 243.96, which covers almost all the 

metallic materials.  

 The model described in this chapter is continuous from the elastic to the elastic-plastic 

regime and also for the whole range of 
∆

∆𝑐
 considered in this work. For example, when 

∆

∆𝑐
 is 

less than 1.0,  the cases are elastic and empirical equations for the elastic contact model 
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can be used. When 
∆

∆𝑐
≥ 1.0, the cases are elastic-perfectly plastic in nature, and separate 

equations have provided. However, this continuity from elastic to elastic-plastic regime 

has not confirmed in Ref. [19].  

 The equations developed in the current work are applicable from very low load to complete 

contact, as all the cases match with either the Hertz model or the Jackson-Green model at 

low load. The lower limit has been clearly defined below which the spherical contact model 

can be applied. These have not shown and confirmed in Ref. [19]. 

 A stiffness test has been performed for the current model so that there is no effect of contact 

stiffness on the model, which was not confirmed in [19] and [34]. 

 Besides these, the number of elements in the current model is higher than [19, 34], and the 

number of elements has been selected such that it agrees with either Hertz or Jackson-

Green model at low load.  

 Empirical equations for contact pressure as a function of surface separation have provided 

both for elastic and elastic-perfectly plastic cases in this chapter and in [35].  

Figure 3.22 (a), (b), (c) and (d) are showing the normalized contact pressure-area relation for 

different values of 
∆

∆𝑐
. When 

∆

∆𝑐
 equals 1.22 and 6.10 i.e. the effect of elastic behavior is dominant, 

FEM data of the current analysis matches well with Ref. [19]. From the previous discussion, with 

the increase of 
∆

∆𝑐
, the effect of plasticity becomes dominant. As the model published in [19] has 

1%E bilinear hardening, with the increase of 
∆

  ∆𝑐
, the current FEM data shows a deviation from the 

Ref. [19] because the current model is elastic perfectly plastic. 
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The Liu model [29] was developed by modifying the truncation or Abbott and Firestone model 

[31]. So when 
∆

∆𝑐
 is less than 12.2, i.e. the effect of elastic behavior is dominant, the FEM data  

 

 

 

 

 Fig. 3.22 Comparison of the normalized nominal pressure-contact area relation with Liu model 

and Ghaednia et al. model when (a) 
∆

∆𝑐
 equal to 1.22 (b) 

∆

∆𝑐
 equal to 6.10 (c) 

∆

∆𝑐
 equal to 12.2 (d) 

∆

∆𝑐
 

equal to 243.96. 

(a) (a) 

(d) (c) 
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doesn’t match with the Liu model. When 
∆

∆𝑐
 equals 12.2, that is when small deformation can cause 

yielding in the material, the FEM data matches with the Liu model [29] to some extent. However, 

in the Liu model [29], the effect of change in material properties has been completely disregarded. 

That is why with the increase of 
∆

∆𝑐
 , when the effect of yield strength becomes important, the 

current analysis does not agree with the Liu model [29].  

3.4. Summary 

 An axisymmetric sinusoidal asperity model for the elastic and elastic-perfectly plastic cases 

is developed which reduces computational time to a great extent. Interaction with adjacent 

asperities and the effect of the substrate below the asperity have also been considered. 

Interaction with adjacent asperities becomes very important for medium to high load 

ranges. 

 The model matches well with the spherical Hertz and JG model at low loads. The transition 

point from spherical to sinusoidal asperity model has been quantified and specified. 

 Although a few works on the axisymmetric sinusoidal asperity contact have been 

performed, none of those works properly quantified the parameters that govern the 

behavior of the elastic and elastic-perfectly plastic axisymmetric sinusoidal asperity 

behavior. The current analysis shows that not any single parameter but different 

combinations of material properties and surface roughness govern the whole contact 

behavior. 

 In this work, the transition from elastic to elastic-perfectly plastic behavior has been 

quantified, and empirical equations for the average contact pressure, contact area, surface 

separation are formulated for a wide range of material properties and Δ/λ ratios. These 
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empirical equations are applicable from low load to complete contact and should be useful 

for complex rough surface modeling and analysis. 

 Besides these, an investigation has been done on the average contact pressure to yield 

strength ratio which is actually controlled by two parameters, Δ/Δc (

𝐸′

𝑆𝑦

𝛥

𝜆

0.23
⁄ ) and contact 

width ratio, 
𝑎

𝜆
2⁄
 . When Δ/Δc is equal to or close to one, i.e. at the transition from elastic to 

elastic-perfectly plastic behavior, the maximum value of  
𝑝̅

𝑆𝑦
 is less than 1, as there is no 

yielding at the contact surface. Yielding occurs below the surface for those cases. When 

Δ/Δc is less than 12.2, 
𝑝̅

𝑆𝑦
actually increases with contact width and reaches a maximum value 

and then reduces with further increases in contact width (which is similar to spherical 

asperity behavior). At Δ/Δc=12.2, 
𝑝̅

𝑆𝑦
 reaches a maximum value of three and then changes 

little. With further increases in Δ/Δc,  
𝑝̅

𝑆𝑦
 increases continuously. However, for most of the 

metallic materials, the value does not appear to exceed the value 6.0 at complete contact. 
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Chapter 4 

Literature Review on Rough Surface Contact Models and Determination of 

Electrical Contact Resistance  

4.1 Introduction 

Whether natural or synthetic, one surface varies from the other a lot depending on their formation, 

finishing, and the requirement for any particular application. As already discussed in Chapter 1, 

there are different numerical and analytical methods available to predict the behavior of rough 

surfaces in contact. This chapter will describe the previous research works on the rough surface 

contact models. However, before reviewing the literature, the terminologies that are generally used 

to explain the rough surface contact models will be described.  

4.2 Characterization of Rough Surface 

4.2.1 Moment Calculation of the Real Rough Surface 

Based on the Longuet-Higgins random process model [1], Nayak [2] developed a random process 

model for the isotropic rough surface. According to Nayak’s random theory, the spectral moments 

of a rough surface can be calculated using the following equation [2-4]: 

𝑚𝑝𝑞
ℎ = ∬ 𝜔𝑥

𝑝𝜔𝑦
𝑞𝑆ℎ(𝑘𝑥, 𝑘𝑦)

∞

−∞
𝑑𝑘𝑥𝑑𝑘𝑦                                      (4.1) 

where, 𝜔𝑥and 𝜔𝑦 are angular frequency components in the x and y-direction and 𝜔𝑥 = 2𝜋𝑘𝑥, 𝜔𝑦 =

2𝜋𝑘𝑦. 𝑘𝑥 and 𝑘𝑦 are frequency components or wavenumbers. 𝑆ℎ(𝑘𝑥, 𝑘𝑦) represents the power 
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spectral density (PSD) of a rough surface that can be determined by employing the following 

formula: 

𝑆ℎ(𝑘𝑥, 𝑘𝑦) = |
𝑓𝑓𝑡2(ℎ(𝑥,𝑦))

(
𝑁𝑥
𝐿𝑥

∗
𝑁𝑦

𝐿𝑦
)

|

2

(𝐿𝑥 ∗ 𝐿𝑦)⁄                                      (4.2) 

In the above equation, 𝑓𝑓𝑡2(ℎ(𝑥, 𝑦)) represents the 2D Fast Fourier Transform (FFT) of the rough 

surface data. Nx and Ny represent the number of data points, and Lx and Ly are the scan lengths 

along the x and y-directions, respectively. Spectral moments can also be calculated using the 

following equation [3-4]: 

𝑚𝑝𝑞
ℎ = 0, if p or q is odd 

       𝑚𝑝𝑞
ℎ = 〈(

𝜕
(
𝑝
2
+

𝑞
2
)
ℎ

𝜕𝑥
(
𝑝
2
)
𝜕𝑦

𝑞
2

)

2

〉 , p and q are even                                         (4.3) 

〈∙〉 represents the ensemble average. Xu [4] showed proof that Eq. (4.1) and (4.3) are equal to each 

other. Xu and Jackson [3] also performed a rough surface analysis using both of the methods, and 

the results showed that the difference between the two methods is negligible. In this dissertation, 

Eq. (4.3) has been used for all the rough surface contact analysis. If the rough surface is isotropic, 

then the spectral moments are independent of the direction of measurement. There are infinite 

possibilities of this direction; therefore, two orthogonal directions parallel to the x and y-axes are 

considered in this study. According to Eq. (4.3), spectral moments in the x and y-directions can be 

written as [3]: 

𝑚𝑛0
ℎ =

1

𝑁𝑥𝑁𝑦
∑ ∑ [

𝑑ℎ𝑛/2(𝑥𝑘,𝑦𝑙)

𝑑𝑥𝑛/2
]
2

, 𝑛 = 0,2,4⋯ (for 𝑥 direction)
𝑁𝑦

𝑙=1
𝑁𝑥
𝑘=1                                       (4.4) 

𝑚0𝑛
ℎ =

1

𝑁𝑥𝑁𝑦
∑ ∑ [

𝑑ℎ𝑛/2(𝑥𝑘,𝑦𝑙)

𝑑𝑦𝑛/2 ]
2

, 𝑛 = 0,2,4⋯ (for 𝑦 direction)
𝑁𝑦

𝑙=1
𝑁𝑥
𝑘=1                                       (4.5) 



116 
 

Taking an average of the Eq. (4.4) and (4.5), the spectral moment of the rough surface, 𝑚𝑛
ℎ can be 

determined. Using these averages, the Nayak bandwidth parameter, 𝛼ℎ is [2]: 

          𝛼ℎ = 𝑚0
ℎ𝑚4

ℎ/(𝑚2
ℎ)

2
                                                        (4.6) 

A “pressure surface” has been defined at the beginning of Chapter 2, and it is useful for the near-

complete contact analysis. To calculate the spectral moments of a “pressure surface” Ciavarella 

[5] and Xu and Jackson [3-4] gave the following equation: 

                                              𝑚𝑛
𝑝 =

𝑛+2

4(𝑛+1)
(𝐸′)2𝑚𝑛+2

ℎ    𝑛 = 0,2,4⋯                                        (4.7) 

The Nayak bandwidth parameter for the “pressure surface” is [3-4]: 

            𝛼𝑝 = 𝑚0
𝑝𝑚4

𝑝/(𝑚2
𝑝)

2
                                                      (4.8) 

According to Eq. (4.7) the first three non-zero moments are: 

                                 𝑚0
𝑝 =

1

2
(𝐸′)2𝑚2

ℎ, 𝑚2
𝑝 =

1

3
(𝐸′)2𝑚4

ℎ,𝑚4
𝑝 =

3

10
(𝐸′)2𝑚6

ℎ                            (4.9) 

4.2.2 Moment Calculation for the Fractal Rough Surface 

Two methods are widely used to generate the fractal surface. One of them is that for a given Power 

Spectral Density (PSD), the surface can be reconstructed by taking the inverse FFT of the PSD [6-

7]. Another method is using the Weierstrass-Mandelbrot (W-M) function [8-11]. Here the surface 

parameter calculation for the first method of surface generation will be discussed. Hu and Tonder 

[12] proposed a Fourier based filtering algorithm, which allows generating topographies with PSD 

approximately given by the following equations and, as shown in Fig. 4.1[3-4, 14]: 

     𝑆ℎ(𝑘) = {     
𝐶𝑘−2(1+𝐻)              𝑘 ∈ [𝑘𝑟 , 𝑘𝑠],

𝐶𝑘𝑟
−2(1+𝐻)

            𝑘 ∈ [𝑘𝑙 , 𝑘𝑟),
0                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

                                  (4.10) 
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where C is the constant determining the roughness amplitude, 𝑘𝑠 and 𝑘𝑙  are the cut-off 

wavenumbers associated with the shortest (λs) and the longest (λl) wavelengths, respectively. 𝑘𝑟 is 

the roll-off wavenumber, and H is the Hurst exponent. Rough surfaces generated using this PSD 

are self-affine, which means the surface geometry is not scaled uniformly in the x, y, and z-

directions with the decrease of scale. During fractal surface generation, the linear part with 

continuous decreasing slope of Fig. 4.1 has been used because for the PSD of many measured 

rough surfaces, the 𝑘𝑟 and 𝑘𝑙 are almost identical [13]. Therefore, the plateau is not present 

and 𝑘𝑟 = 𝑘𝑙. Spectral moments for this type of fractal rough surface can be calculated using the 

following equation [3-4]: 

             𝑚𝑛
ℎ = (2𝜋)𝑛+1 ∏ (2𝑘−1)𝐶

𝑛/2
𝑘=1

∏ (2𝑘)𝑛/2
𝑘=1

[
𝑘𝑟

−2(1+𝐻)

𝑛+2
(𝑘𝑟

𝑛+2 − 𝑘𝑙
𝑛+2) +

1

𝑛−2𝐻
(𝑘𝑠

𝑛−2𝐻 − 𝑘𝑟
𝑛−2𝐻)]       (4.11) 

where ∏ (∙) = 10
𝑘=1  and 𝑛 = 0,2,4,6⋯ 

Now if we assume 𝑘𝑟 = 𝑘𝑙, Eq. (4.11) reduces to the following [4, 14]: 

𝑚𝑛
ℎ =

∏ (2𝑘−1)𝑛/2
𝑘=1

∏ (2𝑘)𝑛/2
𝑘=1

(2𝜋)𝑛+1𝐶

𝑛−2𝐻
(𝑘𝑠

𝑛−2𝐻 − 𝑘𝑟
𝑛−2𝐻)                                        (4.12) 

Therefore, the first four spectral moments can be written as: 

          𝑚0
ℎ =

𝜋𝐶

𝐻
(𝑘𝑙

−2𝐻 − 𝑘𝑠
−2𝐻)                                                (4.13) 

                                                 𝑚2
ℎ =

1

4

(2𝜋)3𝐶

(1−𝐻)
(𝑘𝑠

2−2𝐻 − 𝑘𝑙
2−2𝐻)                                              (4.14) 

                                                𝑚4
ℎ =

3

16

(2𝜋)5𝐶

(2−𝐻)
(𝑘𝑠

4−2𝐻 − 𝑘𝑙
4−2𝐻)                                             (4.15) 

                                                𝑚6
ℎ =

5

32

(2𝜋)7𝐶

(3−𝐻)
(𝑘𝑠

6−2𝐻 − 𝑘𝑙
6−2𝐻)                                             (4.16) 

For this fractal surface, the spectral moments for the “pressure surface” is [3-4]: 

   𝑚𝑛
𝑝 = (𝐸′)2 ∏ (2𝑘−1)

𝑛/2
𝑘=1

∏ (2𝑘)
𝑛/2
𝑘=1

(2𝜋)𝑛+3𝐶

4(𝑛+2−2𝐻)
(𝑘𝑠

𝑛+2−2𝐻 − 𝑘𝑙
𝑛+2−2𝐻)                             (4.17) 



118 
 

According to Eq. (4.17), the first three non-zero moments are [4]: 

      𝑚0
𝑝 = (𝐸′)2 1

8

(2𝜋)3𝐶

(1−𝐻)
(𝑘𝑠

2−2𝐻 − 𝑘𝑙
2−2𝐻)                                           (4.18) 

      𝑚2
𝑝 = (𝐸′)2 1

16

(2𝜋)5𝐶

(2−𝐻)
(𝑘𝑠

4−2𝐻 − 𝑘𝑙
4−2𝐻)                                         (4.19) 

            𝑚4
𝑝 = (𝐸′)2 3

64

(2𝜋)7𝐶

(3−𝐻)
(𝑘𝑠

6−2𝐻 − 𝑘𝑙
6−2𝐻)                                         (4.20)                                   

 

 

 

 

 

 

 

Fig. 4.1 Schematic representation of the PSD of a self-affine rough surface as a function of 

wavenumber, 𝑘 (wavenumber=1/wavelength). 

4.2.3 Probability Distribution Function (PDF) for the Rough Surface and “pressure surface” 

Nayak [2] developed a radical random process model for an isotropic rough surface and provided 

a probability distribution function (PDF) for the summit of an asperity on the rough surface. The 

PDF is such that it can be modified to use with different shaped asperity models. According to 

Nayak, the probability that an arbitrary point on the surface will be a stationary point is [2]: 

𝑃𝑠𝑢𝑚(𝜉ℎ∗, 𝑡1, 𝑡2, 𝑡3, (𝑠𝑡𝑎𝑡. 𝑝𝑡)) = (
𝑚4

𝑚2
)
[𝐶1𝛼

ℎ]
1
2

3(2𝜋)3
𝑒𝑥𝑝 [−𝐶1𝜉

ℎ∗2
]∭ |𝑡1

2 − 𝑡2
2 − 𝑡3

2|
𝑉′
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× 𝑒𝑥𝑝 {−
1

2
[𝐶1𝑡1

2 + 𝑡2
2 + 𝑡3

2 + 𝐶2𝑡1𝜉
ℎ∗]} 𝑑𝑡1𝑑𝑡2𝑑𝑡3                                                               (4.21) 

In the above equation,  

𝜉ℎ∗ =
𝜉ℎ

𝜎
 , 𝜎 is the standard deviation of the probability distribution function and 𝜎 = √𝑚0

ℎ 

𝑡1 = = √
3

𝑚4
ℎ

(
𝜕2𝜉ℎ

𝜕𝑥2 +
𝜕2𝜉ℎ

𝜕𝑦2 )

2
, 𝑡2 = √

3

𝑚4
ℎ

𝜕2𝜉ℎ

𝜕𝑥𝜕𝑦
 and 𝑡3 = √

3

𝑚4
ℎ

(
𝜕2𝜉ℎ

𝜕𝑥2 −
𝜕2𝜉ℎ

𝜕𝑦2 )

2
, the domain of integration 𝑉′ is 

defined by, 𝑡1 < 0 and  𝑡2
2 + 𝑡3

2 ≤ 𝑡1
2 

𝐶1 = 𝛼ℎ/(2𝛼ℎ − 3), 𝐶2 = 𝐶1(12 𝛼⁄ )1 2⁄ , 𝛼ℎ is known as the Nayak parameter or bandwidth 

parameter. Using Eq. (4.21) and integrating the following equation, Nayak obtained the 

mathematical expression for area asperity density [2]: 

𝐷𝑠𝑢𝑚 = 𝜂 = ∫ 𝑃𝑠𝑢𝑚(𝜉ℎ∗, 𝑡1, 𝑡2, 𝑡3, (𝑠𝑡𝑎𝑡. 𝑝𝑡))
∞

−∞

𝑑𝜉ℎ∗𝑑𝑡1𝑑𝑡2𝑑𝑡3 

Substituting Eq. (4.21) in the above integration and solving, 

                     𝜂 =
1

6𝜋√3
(
𝑚4

ℎ

𝑚2
ℎ)                                                                (4.22) 

Dividing Eq. (4.21) by Eq. (4.22), the PDF equation for the summit of an asperity on the rough 

surface can be obtained. Employing Eq. (4.21) and (4.22), Nayak obtained the following two PDF 

for the summit of the asperity [2]: 

PDF as a function of only the surface asperity height, 𝝃𝒉∗ 

∅ℎ(𝜉ℎ∗) =
3

2𝜋

√2𝛼ℎ − 3

𝛼ℎ
𝜉ℎ∗ exp[−𝐶1(𝜉

ℎ∗)2] +
3√3

2√2𝜋
 
1

𝛼ℎ
[(𝜉ℎ∗)2 − 1]  × 
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𝑒𝑥𝑝 [−
1

2
(𝜉ℎ∗)2] [1 + 𝑒𝑟𝑓(𝛽)] + √

𝛼ℎ

2𝜋(𝛼ℎ−1)
 × 𝑒𝑥𝑝 [

−𝛼ℎ (𝜉ℎ∗)
2
 

2(𝛼ℎ−1)
] [1 + 𝑒𝑟𝑓(𝛾)]          (4.23) 

where 𝛽 = 𝜉ℎ∗√
3

2(2𝛼ℎ−3)
 , 𝛾 = 𝜉ℎ∗√

𝛼ℎ

2(𝛼ℎ−1)(2𝛼ℎ−3)
, erf (𝑥) =

2

√𝜋
∫ 𝑒−𝑡2𝑥

0
𝑑𝑡 

PDF as a function of the surface asperity height, 𝝃𝒉∗ and asperity mean curvature, 𝒌𝒎
𝒉∗ 

∅ℎ(𝜉ℎ∗, 𝑘𝑚
ℎ∗) =

3√𝐶1

2𝜋
𝑒𝑥𝑝[−𝐶1(𝜉

ℎ∗)2] {3(𝑘𝑚
ℎ∗)2 − 2 + 2𝑒𝑥𝑝 [−

3

2
 (𝑘𝑚

ℎ∗)2]} × 

𝑒𝑥𝑝 {−
1

2
[3𝐶1(𝑘𝑚

ℎ∗)2 − √3𝐶2𝑘𝑚
ℎ∗𝜉ℎ∗ ]}                                                            (4.24) 

where 𝐶1 = 𝛼ℎ/(2𝛼ℎ − 3) and 𝐶2 = 𝐶1√12/𝛼ℎ. 

Gaussian distribution 

In Eq. (4.23), when 𝛼ℎ → ∞, the surface asperity distribution becomes Gaussian [2]. Jackson and 

Green provided the following equation for the normalized Gaussian distribution [15]: 

                                      ∅ℎ(𝜉ℎ∗) =
1

√2𝜋
(

𝜎

𝜎𝑠
) 𝑒𝑥𝑝 [−0.5 (

𝜎

𝜎𝑠
)
2
(𝜉ℎ∗)2]                                     (4.25) 

In the above equation, 𝜎 is the standard deviation of the surface heights, 𝜎𝑠 is the standard deviation 

of the asperity heights. Adopting Nayak’s random process model, Bush et al. [16] provided the 

equation of the mean summit curvature, 𝑅 and the standard deviation of the summit heights, 

𝜎𝑠 about the summit mean height: 

                                                                      𝑅 =
8

3
√

𝑚4

𝜋
                                                          (4.26) 
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                                                             𝜎𝑠
2 = 𝜎2 −

3.717.10−4

𝜂2𝑅2
                                                    (4.27) 

                                                                   𝜎 = √𝑚0
ℎ                                                               (4.28) 

Bush et al. [16, 17] gave the following equation for the distance between the mean asperity height 

and the mean surface height: 

   𝑦𝑠 =
0.045944

𝜂𝑅
                                                              (4.29) 

Eq. (4.26)-(4.29) are generally used to employ the original statistical or GW model. McCool [18] 

organized all these parameters together to analytically express the inputs for the GW model. That 

is why these parameters are also known as McCool’s parameter. Jackson and Green [15] provided 

an exact closed-form solution for the original GW model employing McCool’s parameters. Fig. 

4.2(b) is showing the schematic representation of a rough surface with Gaussian distribution and 

McCool’s parameters. 

PDF as a function of surface asperity height, 𝝃𝒉∗ and principal curvatures, 𝒌𝟏
𝒉∗ 𝒂𝒏𝒅 𝒌𝟐

𝒉∗ 

Based on Nayak’s random theory, Bush et al. obtained a PDF for elliptical asperity model, which 

is a function of asperity height, 𝜉ℎ∗ and two principal curvatures of the asperity, 𝑘1
ℎ∗ and 𝑘2

ℎ∗[16]: 

∅ℎ(𝜉ℎ∗, 𝑘1
ℎ∗, 𝑘2

ℎ∗) =
27

8𝜋
√𝐶1𝑒𝑥𝑝 [−𝐶1 (𝜉ℎ∗ −

3(𝑘1
ℎ∗ + 𝑘2

ℎ∗)

4√𝛼ℎ
)

2

] 𝑘1
ℎ∗𝑘2

ℎ∗(𝑘2
ℎ∗ − 𝑘1

ℎ∗) 

                × 𝑒𝑥𝑝 {−
9

16
[(𝑘1

ℎ∗)
2
+ (𝑘2

ℎ∗)
2
−

2

3
𝑘1

ℎ∗𝑘2
ℎ∗]}                                   (4.30) 

 



122 
 

PDF as a function of surface asperity height, 𝝃𝒉∗ and asperity geometric curvature, 𝒌𝒈
𝒉∗ 

Greenwood gave the following PDF using Nayak’s random theory, which varies as a function of 

summit height, 𝜉ℎ∗ and summit geometric curvature, 𝑘𝑔
ℎ∗ [19]: 

∅ℎ(𝜉ℎ∗, 𝑘𝑔
ℎ∗) =

9

2√2𝜋
√ 𝛼ℎ

𝛼ℎ−1
(𝑘𝑔

ℎ∗)
3
𝑒𝑟𝑓𝑐 [𝜇 (3𝑘𝑔

ℎ∗ −
𝜉ℎ∗√𝛼ℎ

𝛼ℎ−1
)] 𝑒𝑥𝑝 [

−𝛼ℎ(𝜉ℎ∗)
2

2(𝛼ℎ−1)
+

3(𝑘𝑔
ℎ∗)

2

2
]        (4.31) 

where 𝜇 = √1

2 

𝛼ℎ−1

2𝛼ℎ−3
 

The above PDF is derived from Eq. (4.21) so only valid for isotropic surfaces. The PDFs for the 

asperity of the “pressure surface” are the same as the PDFs of the asperity of the rough surface. 

Only superscript p has to be used, instead of using superscript h, i.e., the parameters for the 

“pressure surface” [3-4].                                          

4.2.4 Surface Parameter Calculation for an Equivalent or Composite Rough Surface 

Barber showed that [20], purely normal elastic contact between two rough surfaces is identical to 

the contact of a rigid and imaginary equivalent rough sum surface. Greenwood and Tripp [21] also 

investigated it mathematically for misaligned asperities with a Gaussian distribution, and 

O’Callaghan and Cameron [22] numerically examined by using Longuet-Higgins two-dimensional 

Gaussian random surface model. Francis [23] obtained the relations that correlate the roughness 

parameters of the equivalent rough surface to the values of individual surfaces. So based on the 

previous research works, if ℎ1(𝑥, 𝑦)and ℎ2(𝑥, 𝑦) define the surface roughness of the two 

contacting surfaces then the rough surface contact problem can be simplified to a composite rough 

surface with surface roughness,  ℎ(𝑥, 𝑦) = ℎ1(𝑥, 𝑦) + ℎ2(𝑥, 𝑦) in purely normal contact with a 

rigid flat, as shown in Fig. 4.2(a). The equivalent elastic modulus and radius of curvature of the 
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composite surface can be calculated using Eq. (2.9) and (2.19), respectively. The spectral moments 

of the composite rough surface are: 

(𝑚𝑖
ℎ)𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = (𝑚𝑖

ℎ)𝑠𝑢𝑟𝑓𝑎𝑐𝑒1 + (𝑚𝑖
ℎ)𝑠𝑢𝑟𝑓𝑎𝑐𝑒2, i= 0, 2, 4⋯                         (4.32) 

Root Mean Square (RMS) surface roughness or standard deviation, 𝜎,  surface slope, 𝜎′, and 

surface curvature, 𝜎′′ of the composite surface can be calculated from the following formula [24]: 

𝜎𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = √(𝑚0
ℎ)

𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒
= √(𝜎𝑠𝑢𝑟𝑓𝑎𝑐𝑒1)

2
+ (𝜎𝑠𝑢𝑟𝑓𝑎𝑐𝑒2)

2
 

𝜎′
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = √(𝑚2

ℎ)𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = √(𝜎′
𝑠𝑢𝑟𝑓𝑎𝑐𝑒1)

2
+ (𝜎′

𝑠𝑢𝑟𝑓𝑎𝑐𝑒2)
2
 

  𝜎′′
𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = √(𝑚4

ℎ)𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡_𝑠𝑢𝑟𝑎𝑓𝑐𝑒 = √(𝜎′′
𝑠𝑢𝑟𝑓𝑎𝑐𝑒1)

2
+ (𝜎′′

𝑠𝑢𝑟𝑓𝑎𝑐𝑒2)
2
  (4.33) 

To get an idea about the different scales of the rough surface, spectral analysis is a useful method. 

For the spectral analysis, rough surface data can be converted into a series of stacked sine waves 

by performing an FFT on the rough surface data. Then amplitude and wavelength can be calculated 

from the FFT. For 2D rough surface data or a line scan by a profilometer, amplitude can be 

calculated from the following formula: 

𝛽𝑖 = |
𝑓𝑓𝑡(ℎ(𝑥))

𝑁
| 

where N is the total number of points along the scan length. The measured data points using a 

profilometer are evenly spaced. The above operation will create a 𝑁 × 1 matrix of amplitudes. To 

prevent aliasing in the analyzed data, amplitude, 𝛥𝑖 and wavelength, 𝜆𝑖 at each scale will be 
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considered only up to the Nyquist frequency. Therefore, only half of the scanned data will be 

considered, and the equation for ∆𝑖 and 𝜆𝑖 at each scale, i will be: 

                 ∆𝑖= {
2𝛽𝑖, for 𝑖 = 2 𝑡𝑜

𝑁

2

      𝛽𝑖, for 𝑖 = 1,
𝑁

2
+ 1

                                               (4.34) 

                                                    𝜆𝑖 =
𝐿

𝑖
, 𝑖 = 1,⋯

𝑁

2
,                                                                (4.35) 

For the 3D rough surface data, amplitude can be calculated from the following formula: 

   ∆𝑖,𝑗= √
𝑆ℎ(𝑘𝑥,𝑘𝑦)

𝐿𝑥𝐿𝑦
=

1

√𝐿𝑥𝐿𝑦
× (|

𝑓𝑓𝑡2(ℎ(𝑥,𝑦))

(
𝑁𝑥
𝐿𝑥

∗
𝑁𝑦

𝐿𝑦
)

|

2

(𝐿𝑥 ∗ 𝐿𝑦)⁄ )

0.5

= |
𝑓𝑓𝑡2(ℎ(𝑥,𝑦))

𝑁𝑥𝑁𝑦
|                            (4.36) 

where 𝑁𝑥 and 𝑁𝑦 are the number of data points along x and y-direction. Eq. (4.36) will generate a 

𝑁𝑥 × 𝑁𝑦 matrix of amplitudes. However, most of the developed asperity models need a single 

amplitude for a particular frequency. Therefore, it is important to accurately represent the 

amplitude information from a 2D FFT to a 1D representation. The following relations can be used 

to obtain the signal amplitude at a given frequency level, 𝑖 [25-26]:  

                 𝛽𝑖 =
1

2
√∑ |(∆(𝑖, 𝑗))|2

𝑁𝑦

𝑗=1
+ ∑ |(∆(𝑘, 𝑖))|2

𝑁𝑥
𝑘=1                       (4.37) 

   ∆𝑖= 2𝛽𝑖, when 1 < 𝑖 <
𝑁𝑥

2
+ 1 and ∆𝑖= 𝛽𝑖 when 𝑖 = 1,

𝑁𝑥

2
+ 1                   (4.38) 

𝜆𝑖 can be calculated using Eq. (4.35) and for the 3D rough surface data also all the measured data 

points are evenly spaced. Now if 𝑁𝑥 = 𝑁𝑦, the amplitude for the composite rough surface is: 

    (∆𝑖)𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = (∆𝑖)𝑆𝑢𝑟𝑓𝑎𝑐𝑒_1 + (∆𝑖)𝑆𝑢𝑟𝑓𝑎𝑐𝑒_2                               (4.39) 
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If the number of the sampling points are the same on the contacting surfaces, the wavelength of 

the composite surface will be the same as the contacting surfaces, i.e., (𝜆𝑖)𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒_𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =

(𝜆𝑖)𝑆𝑢𝑟𝑓𝑎𝑐𝑒_1 = (𝜆𝑖)𝑆𝑢𝑟𝑓𝑎𝑐𝑒_2. However, if the number of the sampling points is different on the 

individual contacting surfaces, then 𝜆𝑖 of the individual and composite surfaces will be different 

and have not been discussed here. 

4.3 Rough Surface Models 

4.3.1 Rough Surface Models for the Elastic Contact 

4.3.1.1 Statistical Models for the Early Contact 

In 1966, Greenwood and Williamson [27] (GW model) developed a model to predict the rough 

surface contact behavior based on the statistical characterization of the surface. Surfaces are 

generally random in nature, so it seems logical to model the surface statistically. The model 

predicts the real contact area and contact force using the following equations: 

                             𝐴∗ = 𝜂 ∫ 𝐴𝑖̅𝜑
ℎ∞

𝑑
(𝜉ℎ)𝑑𝜉,    𝑃∗ = 𝜂 ∫ 𝑃𝑖̅𝜑

ℎ∞

𝑑
(𝜉ℎ)𝑑𝜉                                    (4.40) 

In the above equation, 𝐴∗ denotes the normalized contact area i.e. 
𝐴𝑟

𝐴𝑛
 where Ar is the real contact 

area, and An is the nominal contact area. P* denotes the average pressure i.e. 
𝐹

𝐴𝑛
 where F is the 

contact force, and An is the nominal contact area. d specifies the surface separation between the 

mean plane of the contacting rough surfaces (see Fig. 4.2(b)) and 𝜉ℎ > 𝑑. 𝐴𝑖̅ and 𝑃𝑖̅ denote the 

single asperity contact area and contact force model. The original GW model adopted the Hertz 

single asperity model with circular contact (Eq. (2.17) and (2.18)) and made the following 

assumptions during the rough surface modeling: 

 Surface height follows either an exponential or Gaussian distribution 
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Fig. 4.2 Schematic representation of (a) the contact between two rough surfaces, the contact 

between an equivalent rough sum surface and smooth surface or rigid flat for (b) GW model with 

McCool’s parameter (c) all other models.                                                                                                  

 

(c) 

(b) 

(a) 
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 The radius of curvature of the asperities are constant, only the surface height varies 

 Does not consider the effect of the substrate at the base of the asperities 

 Does not consider interaction with adjacent asperities 

The surface parameters for the Greenwood and Williamson model can be determined from the 

McCool’s parameters, i.e. Eq. (4.26) - Eq. (4.29) and Gaussian distribution is given in Eq. (4.25). 

Although there are many real surfaces that follow a Gaussian distribution [13], however, there are 

many other surface distributions, for instance, the Weibull distribution [28-29], asymmetric 

distribution as a function of skewness and kurtosis [30], etc. Therefore, the first assumption is not 

always correct. Surface roughness varies over many scales. At the finest scale, the radius of 

curvature is a lot smaller than the curvature at the larger scales [31]. Therefore, the second 

assumption is wrong. The third and fourth assumptions are valid only if the applied load is very 

small, and the amount of deformation is limited to the tip of the asperity.  

In 1970, Whitehouse and Archard [31] derived a PDF as a function of asperity height and radius 

of curvature. Later, Onions and Archard [32] used this probability distribution function in the 

framework of the GW model. As described in sec. 4.2.3, in 1971, Nayak developed equation, Eq. 

(4.21) and Eq. (4.22) to describe the surface asperity distribution of the rough surface, which can 

be adapted for different shaped asperity models to employ the statistical model. Nayak and later 

others [2, 3-4, 16, 19] used this equation to obtain different PDFs for the rough surface (sec. 4.2.3). 

The following conventions have been applied to normalize the parameters used in the rough 

surface models [3-4]: 
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 To normalize surface height, 𝜉ℎ, surface separation, 𝑑 or interfacial gap, g and 

interference, 𝛿, parameters have been divided by √𝑚0
ℎ and curvature has been divided by 

√𝑚4
ℎ. For instance, 𝑑∗ =

𝑑

√𝑚0
ℎ
, 𝑘𝑚

ℎ∗ =
𝑘𝑚

ℎ

√𝑚4
ℎ
. 

 To normalize average pressure, 𝑝,̅ it has been divided by√𝑚0
𝑝
. For instance, 𝑝̅∗ =

𝑝̅

√𝑚0
𝑝
=

𝑝̅

√
1

2
(𝐸′)2𝑚2

ℎ
.   

Adapted Greenwood-Williamson Model: 

It has been mentioned before in sec. 4.2.3 that, Nayak [2] provided two probability distribution 

functions. One of them varies only as a function of surface asperity height, 𝜉ℎ∗ (Eq. (4.23)). 

Gaussian distribution is also a function of only surface asperity height; however, Gaussian 

distribution is a special case of Eq. (4.23) (see sec. 4.2.3 for details). Nayak [2] showed that 

bandwidth parameter, 𝛼 controls whether a surface asperity distribution will be Gaussian or 

another asymmetric distribution with different skewness and kurtosis. When 𝛼 is small, the Power 

Spectral Density (PSD) of a rough surface has a narrow band of wavelengths, however with the 

increase of 𝛼, the range of wavelengths in the PSD also increases. Therefore, instead of using 

Gaussian distribution in Eq. (4.40), it seems more accurate to use Eq. (4.23) for the probability 

distribution function. Using Eq. (4.23), areal asperity density (Eq. 4.22), and Hertzian circular 

contact with constant radius of curvature (Eq. (2.17), (2.18) and (4.26)), original GW model (Eq. 

4.40) can be modified to the following as a function of 𝛼 [4]: 

                                 𝐴∗(𝑑∗) =
√𝜋

16√3
√𝛼ℎ ∫ (𝜉ℎ∗ − 𝑑∗)∅ℎ∞

𝑑∗ (𝜉ℎ∗)𝑑𝜉ℎ∗                                     (4.41)  
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                            𝑝̅∗(𝑑∗) =
1

9(𝜋)3/4
(𝛼ℎ)3/4 ∫ (𝜉ℎ∗ − 𝑑∗)3/2∅ℎ∞

𝑑∗ (𝜉ℎ∗)𝑑𝜉ℎ∗                          (4.42) 

Expressing equations as a function of 𝛼ℎ helps to observe the effect of 𝛼ℎon the rough surface 

contact modeling. 

Bush, Gibson, and Thomas model (BGT model) 

In 1975, Bush, Gibson, and Thomas (BGT model) proposed the most complete random process 

model for the linear elastic Gaussian rough surface model. BGT model was developed based on 

the assumption that each asperity in the GW model will be replaced by a paraboloid asperity with 

elliptical contact and Gaussian or exponential PDF will be replaced by a PDF, which is a function 

of the surface asperity heights, 𝜉ℎ∗ and principal curvatures, 𝑘1
ℎ∗ and 𝑘2

ℎ∗ i.e. Eq. (4.30). Fig. 4.2(c) 

is showing the conventions used to model the contact between a rigid flat and the equivalent sum 

surface. Employing the PDF from Eq. (4.30) and utilizing the Hertz asperity model with elliptical 

contact (Eq. (2.10) and (2.11)) under the framework of the GW model, Bush et al. proposed the 

following two equations to the determine the real contact area and contact force [16, 33]: 

                 𝐴∗(𝑑∗) = 𝜂ℎ ∫ ∫ ∫ 𝐴𝑖
∞

0

𝑘2
ℎ∗

0

∞

𝑑∗ (𝜉ℎ, 𝑘1
ℎ, 𝑘2

ℎ)∅(𝜉ℎ∗, 𝑘1
ℎ∗, 𝑘2

ℎ∗)𝑑𝜉ℎ∗𝑑𝑘1
ℎ∗𝑑𝑘2

ℎ∗              (4.43) 

                 𝑝̅(𝑑∗) = 𝜂ℎ ∫ ∫ ∫ 𝑃𝑖
∞

0

𝑘2
ℎ∗

0

∞

𝑑∗ (𝜉ℎ, 𝑘1
ℎ, 𝑘2

ℎ)∅(𝜉ℎ∗, 𝑘1
ℎ∗, 𝑘2

ℎ∗)𝑑𝜉ℎ∗𝑑𝑘1
ℎ∗𝑑𝑘2

ℎ∗                (4.44) 

In the above equations, 𝑘1
ℎ∗ < 𝑘2

ℎ∗.  

Substituting the equation of area asperity density (Eq. (4.22)) into the BGT model, Eq. (4.43) and 

Eq. (4.44) can be modified to the following two equations [4]: 
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𝐴∗(𝑑∗) =
1

6√3
√𝛼ℎ ∫ ∫ ∫ (𝜉ℎ∗ − 𝑑∗)

∞

0

𝑘2
ℎ∗

0

∞

𝑑∗ (𝑘1
ℎ∗𝑘2

ℎ∗)
−

1

2 𝐹1
2(𝑒)

𝐹2(𝑒)
∅ℎ(𝜉ℎ∗, 𝑘1

ℎ∗, 𝑘2
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘1

ℎ∗𝑑𝑘2
ℎ∗                                                                    

              (4.45) 

𝑃̅∗(𝑑∗) =
2√2

9√3𝜋
(𝛼ℎ)

3
4 ∫ ∫ ∫ (𝜉ℎ∗ − 𝑑∗)

3
2

∞

0

𝑘2
ℎ∗

0

∞

𝑑∗

(𝑘1
ℎ∗𝑘2

ℎ∗)
−

1
4𝐹2

(−
3
2
)(𝑒) 

             × ∅ℎ(𝜉ℎ∗, 𝑘1
ℎ∗, 𝑘2

ℎ∗)𝑑𝜉ℎ∗𝑑𝑘1
ℎ∗𝑑𝑘2

ℎ∗                                                   (4.46)                                   

The equations expressed as a function of 𝛼ℎ (Eq. (4.45) and (4.46)) and the main equations (Eq. 

(4.43) and (4.44)) are the same equations but different forms.  

Nayak and Bush model 

Bush [34] developed another multi-asperity model using mean curvature, 𝑘𝑚
ℎ∗ in the Hertz spherical 

asperity model with circular contact (Eq. (2.17) and (2.18)), in conjunction with the PDF 

developed by Nayak (Eq. (4.24)), which is a function of surface asperity height, 𝜉ℎ∗and mean 

curvature, 𝑘𝑚
ℎ∗:  

                                               𝐴∗(𝑑∗) = 𝜂ℎ ∫ ∫ 𝐴𝑖(𝜉
ℎ, 𝑘𝑚

ℎ )∅(𝜉ℎ∗, 𝑘𝑚
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑚

ℎ∗∞

0

∞

𝑑∗               (4.47) 

                                               𝑝̅(𝑑∗) = 𝜂ℎ ∫ ∫ 𝑃𝑖(𝜉
ℎ, 𝑘𝑚

ℎ )∅(𝜉ℎ∗, 𝑘𝑚
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑚

ℎ∗∞

0

∞

𝑑∗                 (4.48) 

Representing 𝜂ℎ by Eq. (4.22), Eq. (4.47) and (4.48) can be modified to the following equations 

as a function of 𝛼 [4]: 

            𝐴∗(𝑑∗) =
1

6√3
√𝛼ℎ ∫ ∫ (𝜉ℎ∗ − 𝑑∗)(𝑘𝑚

ℎ∗)−1∅ℎ(𝜉ℎ∗, 𝑘𝑚
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑚

ℎ∗∞

0

∞

𝑑∗                           (4.49) 

            𝑝̅∗(𝑑∗) =
2√2

9√3𝜋
(𝛼ℎ)3/4 ∫ ∫ (𝜉ℎ∗ − 𝑑∗)(𝑘𝑚

ℎ∗)−1/2∅ℎ(𝜉ℎ∗, 𝑘𝑚
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑚

ℎ∗∞

0

∞

𝑑∗                 (4.50) 
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Bush, Gibson and Thomas asymptotic solution 

Bush et al. [16, 33] also provided an extremely simple asymptotic solution to their complete model 

(BGT model) for very large surface separations, 𝑑∗: 

                                                            𝐴∗ =
1

4
𝑒𝑟𝑓𝑐 (

𝑑∗

√2
)                                                          (4.51) 

      𝑝̅∗ =
1

2√2√𝜋
𝑒𝑟𝑓𝑐 (

𝑑∗

√2
)                                                   (4.52) 

                     𝐴∗ = √
𝜋

2
𝑝̅∗                                                                (4.53) 

Asymptotic relations show that the contact area is related solely to the elastic properties and the 

RMS slope of the surface. However, recently this has been questioned by Jackson et al. [35], and 

also some other researchers found that this not always true [35-37], which will be discussed later 

in this chapter. To calculate the normalized average pressure, 𝑝̅∗, the convention showed in Fig. 

4.2(c) has been used. 

Greenwood model: 

Although the BGT model provides a more realistic implementation of the statistical model than 

the other statistical models available, the triple integration makes the model very complex and 

computationally expensive. To simplify the BGT model, Greenwood developed a PDF (Eq. (4.31)) 

which is a function of  surface asperity height, 𝜉ℎ∗ and geometric curvature, 𝑘𝑔
ℎ∗. Employing this 

PDF and using geometric curvature, 𝑘𝑔
ℎ∗ in the Hertz spherical asperity model with circular contact 

(Eq. (2.17) and (2.18)), Greenwood developed the following statistical model [19]:  
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                                               𝐴∗(𝑑∗) = 𝜂ℎ ∫ ∫ 𝐴𝑖(𝜉
ℎ, 𝑘𝑔

ℎ)∅(𝜉ℎ∗, 𝑘𝑔
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑔

ℎ∗∞

0

∞

𝑑∗               (4.54) 

                                               𝑝̅(𝑑∗) = 𝜂ℎ ∫ ∫ 𝑃𝑖(𝜉
ℎ, 𝑘𝑔

ℎ)∅(𝜉ℎ∗, 𝑘𝑔
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑔

ℎ∗∞

0

∞

𝑑∗                 (4.55) 

Representing 𝜂ℎ by Eq. (4.22) and substituting the equations for asperity models 

(𝐴𝑖(𝜉
ℎ, 𝑘𝑔

ℎ) and 𝑃𝑖(𝜉
ℎ, 𝑘𝑔

ℎ))and PDF (∅(𝜉ℎ∗, 𝑘𝑔
ℎ∗)), the above two equations, i.e. Eq. (4.54) and 

(4.55) can be expressed as a function of 𝛼 [4]: 

                       𝐴∗(𝑑∗) =
1

6√3
√𝛼ℎ ∫ ∫ (𝜉ℎ∗ − 𝑑∗)(𝑘𝑔

ℎ∗)
−1

∅ℎ(𝜉ℎ∗, 𝑘𝑔
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑔

ℎ∗∞

0

∞

𝑑∗               (4.56) 

      𝑝̅∗(𝑑∗) =
2√2

9√3𝜋
(𝛼ℎ)3/4 ∫ ∫ (𝜉ℎ∗ − 𝑑∗)3/2(𝑘𝑔

ℎ∗)
−1/2

∅ℎ(𝜉ℎ∗, 𝑘𝑔
ℎ∗)𝑑𝜉ℎ∗𝑑𝑘𝑔

ℎ∗∞

0

∞

𝑑∗                 (4.57) 

For this model, the convention shown in Fig. 4.2 (c) has also been used. 

Carbone and Bottiglione model: 

In 2008, Carbone and Bottiglione [33] performed a detailed investigation comparing the Persson 

model (see sec.4.3.1.4) with different multi-asperity models (i.e., BGT models [16], Nayak-Bush 

model [34] and the GW model [27] in conjunction with McCool’s parameters [18] for the early 

contact). It was concluded in their work that all the multi-asperity contact models that take into 

account the statistical distribution of the summit curvatures give similar results, and all of them 

have the same asymptotic solution when surface separation is very large. Recently, Xu performed 

a very similar study [4] and showed that 
𝑘1

ℎ

𝑘2
ℎ has a significant effect on multi-asperity model 

behavior, and the more this ratio decreases from unity, Hertzian mildly elliptical model with 

geometric/mean curvature show more deviation from the elliptical model (see sec. 2.2.3). 

However, both Xu [4] and Greenwood [19] found from their analysis that, statistical model with 
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geometric curvature gives better rough surface contact approximation than the statistical model 

with mean curvature. In 2009, to simplify the BGT model, Carbone proposed a new model [39]. 

Carbone defined this model as the GW-modified model. According to this model, instead of having 

a wide range of curvatures for a particular height, there will be a single curvature for a particular 

height. Carbone [39] developed this multi-asperity model by employing the PDF derived by 

Nayak, which is a function of surface height only, 𝜉ℎ∗ (Eq. (4.23)). The Hertz asperity model with 

a circular cross section (Eq. (2.17) and Eq. (2.18)) has been used instead of an asperity with an 

elliptical cross section. For each asperity height, the following equation for the radius of curvature 

has been suggested: 

𝑘̅𝐴
∗(𝜉) = −

𝜉ℎ∗ 

√𝛼ℎ
+

1

∅ℎ(𝜉ℎ∗ )

3√3

√2𝜋
𝑒𝑥𝑝 [−

(𝜉ℎ∗) 2

2
] 

× {−
2

3√3

1

√2𝜋

1

𝐶1√𝐶1(1 + 𝐶1)
𝑒𝑥𝑝 (−

3𝐶1

2

(𝜉ℎ∗) 2

𝛼ℎ
) −

1

3𝐶1

𝜉ℎ∗ 

√𝛼ℎ
[1 + 𝑒𝑟𝑓 (√

3𝐶1

2

𝜉ℎ∗ 

√𝛼ℎ
)] 

                         +
√𝐶1

3√(1+𝐶1)3

𝜉ℎ∗ 

√𝛼ℎ
[1 + 𝑒𝑟𝑓 (√

𝐶1

2(𝛼ℎ−1)
𝜉ℎ∗ ) 𝑒𝑥𝑝 (−

1

2

(𝜉ℎ∗) 2

𝛼ℎ−1
)]}                         (4.58) 

∅ℎ(𝜉ℎ∗ ) can be obtained from Eq. (4.23). The GW-modified [33] model showed the same 

behavior as the asymptotic BGT model for large surface separation, 𝑑∗. For this model, the 

convention showed in Fig. 4.2(c) has also been used. 
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4.3.1.2 Jackson, Saha and Xu Statistical Model from Early Contact to Complete Contact: 

It has been discussed in Chapter 2 that Jackson and Streator [40] obtained a solution to predict the 

contact area-pressure relation for the elastic sinusoidal asperity model, which is valid from early 

contact to complete contact. Jackson et al. [41] employed this sinusoidal asperity model (Eq. (2.46) 

and (2.47)) and Gaussian surface distribution in conjunction with McCool’s parameters in the 

structure of the GW model (Eq. (4.40)) to predict the elastic rough surface contact behavior. The 

original GW model was developed for low load or early contact where the real contact area is very 

small compared to the nominal contact area. Therefore, all the contact areas are isolated and do 

not interact with each other. However, the concept of the Jackson et al. model [41] is that as the 

boundary conditions of the 3D sinusoidal asperity is such that it considers interaction with adjacent 

asperities and also consider the effect of the substrate at the base of the asperity, therefore, early 

contact to complete contact can be effectively modeled by replacing the Hertz asperity model with 

the sinusoidal asperity model in the framework of the GW model. Jackson et al. [41] employed 

three different methods to apply the sinusoidal asperity model in the GW model: 

1. Method-1: The amplitude of the sinusoidal asperity is equal to the surface height, and the 

wavelength is constant based on the asperity density. It has been assumed that asperities 

are evenly spaced. Therefore, according to this method, ∆= 𝜉ℎ and 𝜆 = 2 (
𝐿

𝜂
)
1/2

where L 

is the scan length of the sample. Substituting the value of Δ and λ, the radius of curvature 

at the summit of the asperity can be calculated from 𝑅 =
𝜆2

4𝜋2∆
. The gap between the 

contacting surface is, g=?                                         

2. Method-2: For this method, amplitude of the sinusoidal asperity is also equal to the surface 

height; however, R is constant and can be calculated according to the McCool’s equation 
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(Eq. (4.26)). Therefore, ∆= 𝜉ℎ, 𝑅 =
8

3
√

𝑚4

𝜋
 and λ can be calculated from 𝑅 =

𝜆2

4𝜋2∆
. For this 

method, the interfacial gap, 𝑔 = 𝑑. 

3. Method-3: According to this method, the radius of curvature, R, is constant and can be 

calculated from McCool’s equation (Eq. (4.26)). Just as with method 1, the wavelength can 

be calculated from, 𝜆 = 2 (
𝐿

𝜂
)
1/2

. Then substituting R and λ in the equation, 𝑅 =
𝜆2

4𝜋2∆
 the 

value of Δ can be calculated. This method does not work well unless the asperity level 

surface separation is 𝑔 = 𝑑 − 𝛿, 𝛿 is interference. 

Jackson et al. [41] performed a comparison of these three methods with the other analytical models 

available and concluded at the end of the analysis that the results using the second method gives a 

closer prediction with the original GW model. For these models, the convention showed in Fig. 

4.2(b) has been used to model the contact between the equivalent sum surface and rigid flat. 

4.3.1.3 Statistical Model at Nearly Complete Contact 

Xu and Jackson [3] first proposed several statistical models near the complete contact based on 

single asperity models, which were developed for nearly complete contact using the fracture 

mechanics approach (see sec.2.2.8-2.2.10). The concept of the statistical models for nearly 

complete contact is very similar to the statistical models for early contact. It has been assumed in 

their models that near the complete contact at the contact interface, there are numerous non-contact 

regions, which can be treated as cracks. These cracks are generally circular or elliptical in shape 

and surrounded by the contact area. Like contact area at the early contact, non-contact area at the 

nearly complete contact are also isolated and do not interact with each other, and therefore, can be 
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expressed as the superposition of the corresponding results of the non-contact area for a single 

crack. The statistical models for the nearly complete contact have been discussed below. 

Xu and Jackson Modified Greenwood-Williamson Model: 

This model [3-4] is very similar to the GW model employing McCool’s parameters for the early 

contact. However, instead of using the Hertzian asperity model, a penny shaped crack model (Eq. 

(2.55) and (2.56)) is used. A Gaussian distribution for the pressure surface, ∅𝑝 (Eq. (4.25)) is 

assumed. According to this model, the non-contact region and average interfacial gap can be 

calculated from the following two equations [3-4]: 

                                    1 − 𝐴∗(𝑝̅∗) = 𝜂𝑝 ∫ 𝐴𝑖(𝜉
𝑝 − 𝑝,̅ 𝑘𝑝)

∞

𝑝̅∗ ∅𝑝(𝜉𝑝∗)𝑑𝜉𝑝∗                              (4.59) 

                                         𝑔̅(𝑝̅∗) = 𝜂𝑝 ∫ 𝑉𝑖(𝜉
𝑝 − 𝑝,̅ 𝑘𝑝)

∞

𝑝̅∗ ∅𝑝(𝜉𝑝∗)𝑑𝜉𝑝∗                                  (4.60) 

𝜂𝑝 and 𝑘 𝑝 =
1

𝑅𝑝, can be determined from Eq. (4.22) and Eq. (4.26). Please note that, it has been 

mentioned before, the PDF for the “pressure surface” will be the same as the PDF for the summit 

of the asperity of the rough surface (see at the end of the sec. 4.2.3) and 𝑝̅∗ is analogous to the 𝑑̅∗ 

in the statistical early rough surface model. Eq. (4.59) and (4.60) can also be expressed as a 

function of 𝛼𝑝 using the following two equations: 

          1 − 𝐴∗(𝑝̅∗) =
√3

16
√𝜋√𝛼𝑝 ∫ (𝜉𝑝∗ − 𝑝̅∗)

∞

𝑝̅∗ ∅𝑝(𝜉𝑝∗)𝑑𝜉𝑝∗                              (4.61) 

𝑔̅∗(𝑝̅∗) =
3

20√2
(𝜋)−1/4(𝛼𝑝)1/4(𝛼ℎ)−1/2 ∫ (𝜉𝑝∗ − 𝑝̅∗)5/2∞

𝑝̅∗ ∅𝑝(𝜉𝑝∗)𝑑𝜉𝑝∗        (4.62) 
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Xu and Jackson Modified Nayak-Bush Model: 

This model is very similar to the previously discussed Nayak-Bush model for early contact. Instead 

of Hertzian mildly elliptical contact with mean curvature, a mildly elliptical crack model with 

mean curvature (see sec. 2.2.10) has been used in this model. According to this model, the non-

contact area and average interfacial gap are [3-4]: 

              1 − 𝐴∗(𝑝̅∗) = 𝜂𝑝 ∫ ∫ 𝐴𝑖(𝜉
𝑝 − 𝑝,̅ 𝑘𝑚

𝑝) ∅𝑝(𝜉𝑝∗, 𝑘𝑚
𝑝∗)𝑑𝑘𝑚

𝑝∗𝑑𝜉𝑝∗∞

0

∞

𝑝̅∗                        (4.63) 

                      𝑔̅(𝑝̅∗) = 𝜂𝑝 ∫ ∫ 𝑉𝑖(𝜉
𝑝 − 𝑝,̅ 𝑘𝑚

𝑝)
∞

0

∞

𝑝̅∗ ∅𝑝(𝜉𝑝∗, 𝑘𝑚
𝑝∗)𝑑𝑘𝑚

𝑝∗𝑑𝜉𝑝∗                        (4.64) 

The above two equations as a function of 𝛼𝑝 can be expressed by the following two equations: 

         1 − 𝐴∗(𝑝̅∗) =
1

2√3
√𝛼𝑝 ∫ ∫ (𝜉𝑝∗ − 𝑝̅∗) (𝑘𝑚

𝑝∗)−1∅𝑝(𝜉𝑝∗, 𝑘𝑚
𝑝∗)𝑑𝑘𝑚

𝑝∗𝑑𝜉𝑝∗∞

0

∞

𝑝̅∗              (4.65) 

     𝑔̅∗(𝑝̅∗) =
4√3

15𝜋
(𝛼𝑝)1/4(𝛼ℎ)−1/2 ∫ ∫ (𝜉𝑝∗ − 𝑝∗̅̅ ̅)5/2∞

0

∞

𝑝̅∗ ∅𝑝∗(𝜉𝑝∗, 𝑘𝑚
𝑝∗)𝑑𝑘𝑚

𝑝∗𝑑𝜉𝑝∗              (4.66) 

For the above equations, 𝜂𝑝, ∅𝑝, 𝛼𝑝 and 𝛼ℎ can be determined using Eq. (4.22), (4.24), (4.8), and 

(4.6), respectively. 

Xu and Jackson Modified Greenwood Model: 

This model has been developed by modifying the PDF developed by Greenwood [19] for the 

asperity of the rough surface, which is a function of surface height and geometric curvature [3-4]. 

For the asperity model, the mildly elliptical crack model with geometric curvature (see sec. 2.2.10) 

has been used. Therefore, the non-contact area and gap are [3-4]: 

              1 − 𝐴∗(𝑝̅∗) = 𝜂𝑝 ∫ ∫ 𝐴𝑖(𝜉
𝑝 − 𝑝,̅ 𝑘𝑔

𝑝) ∅𝑝(𝜉𝑝∗, 𝑘𝑔
𝑝∗)𝑑𝑘𝑔

𝑝∗𝑑𝜉𝑝∗∞

0

∞

𝑝̅∗                        (4.67) 
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                      𝑔̅(𝑝̅∗) = 𝜂𝑝 ∫ ∫ 𝑉𝑖(𝜉
𝑝 − 𝑝,̅ 𝑘𝑔

𝑝)
∞

0

∞

𝑝̅∗ ∅𝑝(𝜉𝑝∗, 𝑘𝑔
𝑝∗)𝑑𝑘𝑔

𝑝∗𝑑𝜉𝑝∗                        (4.68) 

The non-contact area and gap as a function of 𝛼𝑝 is: 

            1 − 𝐴∗(𝑝̅∗) =
1

2√3
√𝛼𝑝 ∫ ∫ (𝜉𝑝∗ − 𝑝̅∗) (𝑘𝑔

𝑝∗)
−1

∅𝑝(𝜉𝑝∗, 𝑘𝑔
𝑝∗)𝑑𝑘𝑔

𝑝∗𝑑𝜉𝑝∗∞

0

∞

𝑝̅∗              (4.69) 

     𝑔̅∗(𝑝̅∗) =
4√3

15𝜋
(𝛼𝑝)1/4(𝛼ℎ)−1/2 ∫ ∫ (𝜉𝑝∗ − 𝑝∗̅̅ ̅)5/2∞

0

∞

𝑝̅∗ ∅𝑝∗(𝜉𝑝∗, 𝑘𝑔
𝑝∗)𝑑𝑘𝑔

𝑝∗𝑑𝜉𝑝∗              (4.70) 

For the above equations, 𝜂𝑝, ∅𝑝, 𝛼𝑝 and 𝛼ℎ can be determined using Eq. (4.22), (4.31), (4.8), and 

(4.6), respectively. 

Greenwood Nearly Complete Contact Analysis for Different Pressure Distributions: 

Xu and Jackson [3-4] developed the statistical model for nearly complete contact based on their 

asperity models developed for nearly complete contact [4, 42]. They developed both parabolic 

pressure asperity with an elliptical cross-section and parabolic pressure asperity with a penny-

shaped or mildly elliptical cross-section. For the elliptical cross-section, it has been shown that 

when 
 𝑘1

𝑝

𝑘2
𝑝 → 0, where 𝑘1

𝑝 < 𝑘2
𝑝
, the parabolic pressure asperity with an elliptical cross-section 

becomes ill defined. That is why they proposed statistical models near-complete contact using only 

penny-shaped crack with different curvatures. They also concluded that when 
 𝑘1

𝑝

𝑘2
𝑝 → 0, the contact 

pressure distribution is not parabolic anymore, but becomes something very complicated. Inspired 

from this conclusion, Greenwood [43] analyzed the nearly complete contact region for different 

shaped-pressure distributions, for instance, parabolic shape, cosine shape, quartic, and a wavy 

pressure distribution extending Sneddon’s equations [44]. It has been inferred in the paper that 

different shaped pressure distributions applied to the tensile region does not alter the total pressure 
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distribution. However, to keep the total pressure distribution unaltered, the non-contact area is 

always greater than the tensile pressure contact area. The amount of increase depends on the 

pressure that is acting on the tensile area. For the cases analyzed by Greenwood [43], this increase 

varies from ~17% to ~40.76%. Xu et al. [42] provided a simple relation between the non-contact 

area and the tensile area of a single crack: 

𝐴𝑛𝑜𝑛−𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
3

2
𝐴𝑡𝑒𝑛𝑠𝑖𝑙𝑒−𝑎𝑟𝑒𝑎 =

3

2
𝜋𝑅(𝑝 − 𝑝̅) 

𝜋𝑅(𝑝 − 𝑝̅) is very similar to the Hertz contact area equation, 𝜋𝑅(𝜉ℎ − 𝑑), however, for the above 

equation (𝑝 − 𝑝̅) is for the “pressure surface” asperity, and the definition of R is also different. 

Greenwood showed that multiplying the above equation by a factor of  
4

3
 and using Eq.(4.63) an 

excellent agreement can be obtained with the Persson’s model provided that 𝑝̅∗is very large, or the 

non-contact area is about 0.01𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 or less, where 𝐴𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal contact area.  

Ciavarella Asymptotic Model for Nearly Complete Contact: 

Ciavarella [45] proposed the following asymptotic solution for the nearly complete contact when 

𝑝̅∗is very large: 

                    𝐴∗(𝑝̅∗) = 1 −
3

4
𝑒𝑟𝑓𝑐 (

𝑝̅∗

√2
)                                                   (4.71) 

Using a different approach Xu [4] found the similar result as Ciavarella [45]. Xu [4] derived the 

following asymptotic solution for the interfacial gap when 𝑝̅∗is very large: 

           𝑔̅∗(𝑝̅∗) =
12

5√2(𝜋)3/2
(𝛼ℎ)−1/2 ∫ (𝜉𝑝∗)1/2(𝜉𝑝∗ − 𝑝̅∗)5/2𝑒𝑥𝑝 [−

(𝜉𝑝∗)2

2
] 𝑑𝜉𝑝∗∞

𝑝̅∗                  (4.72) 
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4.3.1.4 Multiscale Model: 

Archard [46] was the probably first who developed a rough surface contact model in 1957. The 

Archard model considers the multiscale nature of the surface, i.e., with the magnification of the 

rough surface from the macro scale to the atomic level, roughness will be observed at all the scales. 

Figure 4.3 is showing an Archard type multiscale rough surface. Archard described his model as 

“protuberance upon protuberance” and employed the Hertz spherical asperity model, whereas real 

surfaces under scanning or tunneling microscope barely look like one sphere upon another sphere. 

The developed model by Archard is self-similar in nature. Self-similar means scaling ratio of the 

asperities is the same in all directions of the surface. The model shows a linear relationship between 

contact pressure and the real contact area. However, the Hertz model shows a non-linear behavior 

between contact pressure and the real contact area. There are several different ways to model the 

multiscale nature of the surface, which will also be discussed subsequently. 

Stacked Multiscale Modeling Method 

Jackson and Streator [40] developed a multiscale rough surface model based on the surface 

spectrum and asperity models. The Fast Fourier Transform (FFT) was applied to determine the 

amplitude and wavelength of the rough surfaces (see sec. 4.2.4) and asperity models [47-49] were 

used to determine the contact area and pressure. The FFT of the rough surfaces is a reliable way 

to characterize them. This multiscale model was also developed based on Archard’s idea of 

“protuberance upon protuberance.” To develop an elastic rough surface contact model, Jackson 

and Streator employed both the Hertz elastic spherical contact model (Eq. 2.17 and 2.18) and the 

extended version of the JGH model (Eq. (2.46) and (2.47)) and observed the effect of asperity 

models on the rough surface contact modeling. To develop an elastic-plastic rough surface contact 
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model Jackson et al. [40] used the Jackson-Green elastic-plastic spherical contact model [49]. It 

will be discussed in detail later in the elastic-plastic rough surface literature review (see 

sec.4.3.2.2). Later the Jackson-Streator model has been expanded using elastic-plastic sinusoidal 

asperity models (see sec. 4.3.2.2) and applied to many different applications [50-52]. See Fig. 3.1 

in Chapter 3, which shows the formation of surface profile superimposing sine waves of different 

amplitudes and wavelengths at different scales. The following assumptions were made in the 

Jackson-Streator model to consider the multiscale nature of the surface contact. 

 Asperities of smaller cross-sectional surface areas are located at the top of the larger 

asperities. 

 Each scale carries the same total load. 

 The load is shared equally among all the asperities at each scale. 

 At a particular scale, each asperity will deform according to an elastic or elastic-plastic 

asperity contact model, irrespective of the presence of asperities with a smaller wavelength 

upon it. 

 The area at a particular scale cannot be greater than the area at a smaller frequency domain 

or larger wavelength scale. 

Jackson et al. [40] proposed the following equations to describe the multiscale contact model: 

                                                 
𝐴𝑟

𝐴𝑛
= (∏ 𝐴𝑖̅𝜂𝑖

𝑖𝑚𝑎𝑥
𝑖=1 )                                                                   (4.73) 

                                                   𝐹 = 𝐹̅𝑖𝜂𝑖𝐴𝑖−1                       (4.74) 

In Eq. (4.73) and Eq. (4.74), 𝐴𝑖̅ and 𝐹̅𝑖 are single asperity contact area and force for a particular 

frequency level, i represents the frequency level and 𝜂𝑖 represents the asperity density at a 

particular frequency level.  
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Fig. 4.3 (a) Contact between a rigid flat and spherical asperity, (b) Contact between a rough surface 

and rigid flat (c-f) Archard proposed model to represent multiscale nature of rough surafce. 

Archard, J.F., Elastic deformation and the laws of friction. Proceedings of the Royal Society of 

London A: Mathematical, Physical and Engineering Sciences, 1957, 243(1233), pp. 193, by 

permission of the Royal Society. 
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Fractal Method  

Surfaces can be easily generated using the fractal methods, and the effect of different surface 

parameters for any specific application can be determined without lots of sample preparation and 

surface measurement. That is why fractal curves are widely used to describe the multiscale nature 

of surfaces. A rough surface following a repeating pattern over many scales is fractal. Weierstrass 

and Mandelbrot (W-M) proposed a 2D fractal geometry [53]. Later Ausloos and Berman [54] and 

Yan and Komvoupolous [55] proposed a 3D fractal geometry. Fractal surfaces can be 

characterized by two parameters, the fractal dimension, D and fractal roughness, G. There are two 

kinds of geometry, Euclidean and Non-Euclidean. Euclidean geometries are used to describe the 

geometry with integer dimensions, i.e., 1D, 2D and 3D geometry. Non-Euclidean geometries are 

used to describe geometry with non-integer dimensions such as, the Koch curve shown in Falconer 

[56], the Sierpinski fractal shown in Karplus [57] and so on. The fractal dimension, D, can describe 

both the Euclidean geometry, i.e., a fractal dimension with integer numbers only, and also Non-

Euclidean geometry, i.e., a fractal dimension with non-integer values. Fractal dimension, D, equals 

one for a perfect line, D equals two for a surface, and D equals three for space. Therefore, fractal 

surface can characterize “rough” phenomena in both natural and artificial worlds. Fractal surfaces 

are either self-similar or self-affine in nature. Persson [13] described self-similar and self-affine 

surfaces nicely. “If 𝑧 = ℎ(𝑥, 𝑦)is the equation of a self-similar surface, then its magnified version 

𝑧 = 𝜆ℎ(
𝑥

𝜆
,
𝑦

𝜆
) cannot be distinguished from the original. A self-affine surface is analogous, except 

that the magnification factor along the z-direction differs from the in-plane magnification factor λ. 

The transformed surface 𝜆𝐻ℎ(
𝑥

𝜆
,
𝑦

𝜆
) looks exactly like the original one, 𝑧 = ℎ(𝑥, 𝑦).” λ defines the 

wavelengths found from the surface spectrum. The calculation of the surface spectrum is different 

depending on the method used for the fractal surface generation [6-7, 10]. Two popular methods 
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of fractal rough surface generation are- the Weierstrass-Mandelbrot fractal function [6, 8-10, 53] 

and the inverse FFT of the PSD where PSD, where the PSD of the rough surface is known [3, 4, 

7, 13-14]. 

Majumdar and Bhusan [8] first proposed a rough surface contact model using fractal geometry to 

represent the multiscale nature of the surface. According to this method, the contact area can be 

calculated by truncating an interfering flat surface with the fractal rough surface, and contact force 

can be determined using the Hertz asperity model along with a fully plastic contact model in the 

truncated areas. The results showed that the number of contact spot sizes follow a power-law 

behavior and can be characterized by the fractal dimension of the surface. This model was 

criticized by other researchers [58] because this model assumes that surfaces will deform 

plastically at smaller scales and will deform elastically at larger scales; as a result, with the increase 

of the load, plastic deformation will decrease. Besides this, the model used truncation theory to 

predict the contact area, and it has been mentioned before that truncation theory cannot predict the 

contact behavior properly as it does not consider the gradual loading and deformation of the 

asperities in calculating the contact area.  

Later, Ciavarella et al. [9] developed a 2D rough surface model using the W-M function using 

Archard’s “protuberance upon protuberance” concept (see Fig. 4.3). The W-M function can be 

decomposed into sine waves with different frequencies, where higher frequencies are located at 

the top of smaller frequencies. To derive the contact pressure relation between successive scales, 

the Westergaard 2D sinusoidal wavy surface model developed for the plane strain case [59] was 

employed. Then performing recursive numerical integration of this relation obtained contact area 

as a function of scale. According to this model, with the decrease of the scale, the contact area 

decreases. As a result, when an infinite number of scales are included, the contact area will 
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approach zero. Therefore, two surfaces will never reach complete contact, or it will take infinite 

pressure to reach complete contact.  

Jackson [10] performed a detail investigation and provided a closed-form analytical solution for 

contact area as a function of pressure to fractal contact based on the concept of stacked asperities 

presented by Archard. However, instead of using spheres, this work assumed that asperities can be 

modeled by sinusoidal asperities as fractal surfaces are a superimposition of the sine waves with 

different amplitudes and wavelengths. According to the Archard model, the smaller scale of 

asperities will be on the top of larger asperities. As the successive scales are included, the contact 

area gradually decreases, and contact pressure increases. Contact pressure and contact area at each 

scale will be: 

                                                                𝑝𝑖 =
𝐹

(𝐴𝑟)𝑖
                                                                   (4.75) 

                                                              (𝐴𝑟)𝑖 =
𝐹

𝑝𝑖
                                                                   (4.76) 

According to the analysis, for some surfaces, with the increase of the asperity aspect ratios, contact 

pressure continuously increases, and it will require infinite pressure to reach at complete contact. 

All self-affine fractal surafce show this behavior. This case is very similar to the previously 

described Ciavarella model [9]. On the other hand, there could also be some cases where the aspect 

ratio continuously decreases or is constant or behave randomly with the increase of the frequency 

i.e. at the smaller scale. For such cases, it is possible to obtain a value of pressure at which surface 

will reach complete contact. The analytical derivation in the paper shows that the pressure profile 

for complete contact of a surface is: 
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𝑝(𝑥) = max[𝑝1
∗, 𝑝2

∗, ⋯⋯𝑝∞
∗ ] + ∑ 𝑝𝑛

∗cos (2𝜋𝑛
𝑥

𝜆
+ ∅𝑛)

∞

𝑛=1

 

Only the first part of the above equation i.e. the average contact pressure contributes to the 

calculation of the real area of contact between surfaces. Therefore from the above equation, the 

average contact pressure of the surface is: 

𝑝𝑎𝑣𝑒 = 𝑚𝑎𝑥[𝑝1
∗, 𝑝2

∗, ⋯⋯𝑝∞
∗ ] 

Now, using FFT or W-M fractal surface, surface can be reduced to a series of superimposed 

sinusoidal surfaces. By assuming elastic contact and using superposition the pressure required to 

flatten all of these sinusoidal asperities can be obtained from the following equation: 

𝑝𝑒
∗ = 𝑚𝑎𝑥[𝑝1

∗, 𝑝2
∗, ⋯⋯𝑝∞

∗ ] = 𝑝∗(𝐵𝑚𝑎𝑥)  

In the above equation, 𝑝∗(𝐵𝑚𝑎𝑥) means the average pressure required for complete flattening of 

the scale whose aspect ratio, B is maximum. Then employing the equation of 𝑝𝑒
∗, derived by 

Westergaard for 2D plane strain [59] the following approximate equation for total real contact area 

for the multiscale fractal surface can be obtained: 

                                                         𝐴𝑟 =
𝐹

𝑝𝑒
∗ =

𝐹

𝜋𝐸′𝐵𝑚𝑎𝑥
                                                           (4.77) 

and for 3D elasto-static case, the formula for average pressure required for complete flattening of 

3D sinusoidal wavy surface derived by Johnson, Greenwood, and Higginson [47] can be used to 

determine the real contact area: 

                                                     𝐴𝑟 =
𝐹

𝑝𝑒
∗ =

𝐹

√2𝜋𝐸′𝐵𝑚𝑎𝑥
                                                           (4.78) 
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These closed-form solutions derived by Jackson are also known as the simplified multiscale model. 

Recently, Zhang et al. [6-7, 60] thoroughly investigated the characterization of fractal rough 

surfaces and tried to reconstruct real surfaces using fractal methods. However, results show that 

different methods for fractal surface characterization do not give a consistent result, and for a small 

change in the fractal dimension, D, the fractal roughness, G changes over several orders of 

magnitude. After analyzing all the results, it was concluded that fractal surfaces need to be used 

with great care.   

Persson Model  

Persson developed a diffusion model based on the probability distribution of the contact pressure 

to describe the contact behavior between a viscoelastic rubber against a rough rigid flat [61]. Later 

this model has been successfully applied to many other applications [62-69]. However, many 

researchers have found the model difficult to understand. In 2006, Manner and Greenwood [70] 

simplified the Persson model and provided the following diffusion equation, which is equivalent 

to the Persson’s model: 

                      
𝜕𝑃

𝜕(𝑚0
𝑝
)
=

1

2

𝜕2𝑃

𝜕𝑝2
                                                          (4.79) 

In the above equation, 𝑃 is the probability distribution of the contact pressure, p, √𝑚0
𝑝
 is the Root 

Mean Square (RMS) surface roughness of the “pressure surface” and 𝑚0
𝑝 =

1

2
(𝐸′)2𝑚2

ℎ. The above 

equation describes how the PDF of the contact pressure evolves with the Power Spectral Density 

(PSD), which includes a wide range of frequencies. To employ the above equation to solve the 

rough surface contact problem, the following two boundary conditions were applied [70]: 
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 When 𝑚0
𝑝 → ∞, contact pressure, 𝑝 = 0, that is at the beginning of the contact 

 When 𝑚0
𝑝 → 0, contact pressure, 𝑝 → ∞, that means the rough surface has been completely 

flattened 

Applying the above two boundary conditions, the following solution for the diffusion equation 

was derived [70]: 

              𝑃(𝑝,𝑚0
𝑝) =

1

√2𝜋𝑚0
𝑝
{𝑒𝑥𝑝 [−

(𝑝−𝑝̅)2

2𝑚0
𝑝 ] − 𝑒𝑥𝑝 [−

(𝑝+𝑝̅)2

2𝑚0
𝑝 ]}                             (4.80) 

Integrating the above equation from [0,∞], the following equation for contact ratio, 𝐴∗ was 

obtained [70]: 

                                                𝐴∗ =
𝐴𝑟

𝐴𝑛
= 1 − 𝑒𝑟𝑓𝑐 (

𝑝̅∗

√2
)                                                         (4.81) 

The above equation is applicable from early contact to complete contact. When 𝑝̅∗ → 0, i.e., for 

light contacts, Eq. (4.80) becomes [70]: 

                                          𝑃(𝑝,𝑚0
𝑝) =

1

√2𝜋𝑚0
𝑝
(

2𝑝𝑝̅

𝑚0
𝑝 ) {𝑒𝑥𝑝 [−

(𝑝)2

2𝑚0
𝑝]}                                        (4.82) 

and contact area for small 𝑝̅∗ is [70]: 

                                                            
𝐴𝑟

𝐴𝑛
≈ 1 −

2

√𝜋
(

𝑝̅∗

√2
)                                                          (4.83) 

According to Persson and some other models [16], real contact area is only a function of the 

average pressure normalized by the equivalent elastic modulus and the Root Mean Square (RMS) 

slope. McGhee et al. [71] showed the same kind of behavior performing in situ contact 

measurement for 3D printed self-affine fractal rough surface. However, Jackson et al. [35] recently 
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performed BEM analysis employing several real rough surfaces, and found that for real rough 

surfaces the above statement is not always true and discussed possible reasons. One of the reasons 

mentioned in the paper is that real surfaces are not always a perfectly self-affine fractal as assumed 

in the Persson model; especially with the increase of wavelength, they showed significant 

deviation from the self-affine fractal surface behavior. Also, for some cases, the spectrum of the 

rough surface showed a combination of self-similar and self-affine fractal surface behavior. 

Another reason mentioned in the paper that contact behavior only depends on the RMS slope of 

the part of the surface that is really in contact. They have defined the RMS slope of the real contact 

area as the effective RMS slope. For the surfaces analyzed in their work, effective RMS slope was 

plotted as a function of truncation height, ℎ. For a certain truncation height, ℎ only the surface 

heights, which were taller than the truncation heights, were used to calculate the effective RMS 

slope. The plot shows that at the beginning of the contact, the effective RMS slope is higher than 

the entire surface RMS slope. With the decrease of the truncation height, i.e., with the increase of 

the load, effective RMS slope continuously decreases and approaches the RMS slope of the entire 

surface at a h value of approximately –𝜎 or – 2𝜎 which is just after passing the mean height of the 

surface. Besides Jackson et al., Yastrebov [38], Campana and Muser [36], Putignano [37] also 

showed that in addition to RMS slope, other factors govern the real contact area. 

4.3.1.5 Analysis of the Elastic Contact Behavior using BEM: 

BEM is a computationally expensive method and difficult to implement. However, due to its high 

computational accuracy, especially for the linear elastic material contact behavior analysis, it can 

be used as the validation tool for the other contact mechanics models. In Chapter 1, the basic 

working principle of BEM has already been described. It has been mentioned that BEM estimates 

the solution by solving the Boundary Integral Equation (BIE) over the elements on the boundary 
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using different solutions, such as the Kelvin solution [72-74], Boussinesq-Cerutti [75-76], Flamant 

[77-78], Westergaard solution [59], etc. depending on the applications. The BEM that solves the 

problem using the Kelvin or Mindlin solution [72-74] are known as general-purpose BEM, and 

the BEM that uses any of the other solutions [59, 75-78] to solve the problem are known as Special 

BEM. Anderson et al. [79] first applied the BEM to solve the contact mechanics problems. Most 

of the works in tribology using BEM [80-81] are based on the special BEM that means the 

equations that are used to solve the BIE over the elements on the boundary were developed for the 

half-space or half-plane problems. Recently, Li showed the difference between the sub-surface 

stress with and without the half-space assumption [82], and Xu and Jackson proved that BEM can 

not only be applied to the half-space/half-plane problem but also be applied successfully to the 

rough surface contact problem [74]. To solve the rough surface contact problem, Xu et al. [74] 

used the Kelvin solution to solve the BIE. Xu et al. [74] also showed that the widely used 

Boussinesq-Cerutti solution [75-76] for the 3D linear elasto-static problem and the Flamant 

solution [77-78] for the 2D plane strain/stress problem can be derived from the Kelvin solution, 

and that means these two cases are special cases of the Kelvin solution. However, still, BEM using 

the Boussinesq-Cerutti solution or the Flamant solution are a good approximations for the rough 

surface contact problem if the contact area is very small compared to the nominal area, or the 

surface slope is really very small so that it can be assumed as a half-space problem. 

To compare different rough surface models, Xu and Jackson [3-4] generated a surface that is 

fractal, isotropic, and Gaussian at the same time so that the analytical models whether developed 

for fractal or isotropic-Gaussian surfaces can be compared. Xu [4] performed a BEM analysis on 

the generated fractal, isotropic-Gaussian surface for different surface properties and also provided 

a curve-fitted solution to predict the contact behavior for the surfaces analyzed. The surface 
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generated by Xu et al. [3-4] and the curve-fitted solution will be used in this dissertation for the 

rough surface model development and validation purpose and have been described in detail below. 

Xu and Jackson [3-4] developed the rough surface model based on the algorithms proposed by Hu 

and Tonder [83] and Wu [84]. For fractal surface generation Eq. (4.10) has been used. To ensure 

the isotropy of the surface it has been assumed that 𝑘𝑟 = 𝑘𝑙 , so the rough surface has an 

axisymmetric power spectral density (PSD). The surface slope  𝑚2
ℎ has been assumed to be very 

small so that the surface can be considered as half-space. This assumption is very important as the 

fundamental assumption of the BEM implemented by Xu [4] is that the surface domain needs to 

be a half-space. The roughness amplitude in Eq. (4.10) can be determined using the following 

equation: 

                           𝐶 =
4(1−𝐻)𝑚2

ℎ

(2𝜋)3[𝑘𝑠
2−2𝐻−𝑘𝑙

2−2𝐻]
                                                  (4.84) 

In order to ensure that the generated surface is Gaussian, the following convolution has been 

applied: 

            ℎ(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑥 − 𝑥′, 𝑦 − 𝑦′)ℎ0(𝑥
′, 𝑦′)𝑑𝑥′𝑑𝑦′∞

−∞

∞

−∞
                       (4.85) 

In Eq. (4.85), ℎ0(𝑥
′, 𝑦′) is a Gaussian surface of size m x n. Due to the applied convolution, ℎ(𝑥, 𝑦) 

is also Gaussian [81]. Now using a Fourier transform, Eq. (4.85) can be written as: 

                                                ℱ[ℎ](𝑘𝑥, 𝑘𝑦) = ℱ[𝑓](𝑘𝑥, 𝑘𝑦)ℱ[ℎ0](𝑘𝑥, 𝑘𝑦)                          (4.86) 

In the above equation, ℱ[𝑓](𝑘𝑥, 𝑘𝑦) is a transfer function. The absolute value of the transfer 

function can be determined using the following relation: 
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                                                |ℱ[𝑓](𝑘𝑥, 𝑘𝑦)| = √𝑆ℎ(𝑘𝑥, 𝑘𝑦)/𝑆[ℎ0](𝑘𝑥, 𝑘𝑦)                        (4.87) 

where, 𝑆ℎ(𝑘𝑥, 𝑘𝑦)can be calculated from Eq. (4.10). During the PSD calculation, it has been 

assumed that the rough surface is equally spaced along the x and y-directions. Therefore, the 

wavelength of the rough surface, 𝜆𝑥(𝑦) =
𝐿𝑥(𝑦)

𝑖
, 𝑖 = 1,2,⋯𝑚(𝑛)/2, the wavenumber is, 𝑘𝑥(𝑦) =

1

𝜆𝑥(𝑦)
, and the size of the generated PSD will be 

𝑚

2
×

𝑛

2
. To calculate the transfer function from Eq. 

(4.87), the PSD of the Gaussian surface, ℎ0(𝑥
′, 𝑦′), has also been calculated and only 1/4th of the 

m x n matrix, that is  
𝑚

2
×

𝑛

2
, is considered when using Eq. (4.87). Then using the following 

equation, ℱ[𝑓](𝑘𝑥, 𝑘𝑦) can be obtained from its absolute value: 

                        ℱ[𝑓](𝑘𝑥, 𝑘𝑦) = |ℱ[𝑓](𝑘𝑥, 𝑘𝑦)|[cos(𝜃) + 𝑖𝑠𝑖𝑛(𝜃)]                                        (4.88) 

where, 𝜃 is the random phase varied between 0 and 2𝜋. Since ℎ(𝑥, 𝑦) is real, using the following 

Hermitian symmetry the complete m x n sized ℱ[𝑓](𝑘𝑥, 𝑘𝑦) has been constructed.  

                                                ℱ[𝑓](−𝑘𝑥, −𝑘𝑦) = 𝑐𝑜𝑛𝑗 (ℱ[𝑓](𝑘𝑥, 𝑘𝑦))                               (4.89) 

Now, from the inverse Fourier transform of ℱ[ℎ](𝑘𝑥, 𝑘𝑦), the surface, ℎ(𝑥, 𝑦) can be constructed, 

which is isotropic, Gaussian, and fractal at the same time. To ensure the isotropy and Gaussianity 

of the fractal surface, Xu [4] enforced the following conditions: 

                                                        𝑘𝑙 ≫
1

𝐿𝑥(𝑦)
 and 𝑘𝑠 ≪

𝑁𝑥(𝑦)

𝐿𝑥(𝑦)
                                                 (4.90) 

In the above equation, Lx and Ly are the length of the generated surfaces along x and y direction, 

Nx and Ny are the numbers of sampling points in the x and y-direction. Yastrebov et al. [14] 
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performed a very similar analysis; however, they did not provide any conditions to make the 

surface isotropic and Gaussian. Xu [4] performed BEM analysis on several groups of surfaces 

varying lower cut off wavenumber, 𝑘𝑙 , upper cut off wavenumber, 𝑘𝑠, and Hurst exponent, H, 

However, the surface slope, √𝑚2
ℎ and equivalent elastic modulus, 𝐸′ were kept constant. Plots of 

the normalized contact area and contact pressure for different rough surfaces found from the BEM 

analysis fall onto one master curve, which means normalized contact area is only a function of 

surface slope and equivalent elastic modulus. Some other researchers also found the similar result 

[16]. Xu obtained the following curve-fitted equation for the analyzed surfaces: 

                                  𝐴∗(𝑝̅∗) = {
𝐼(𝑝̅∗)𝑓(𝑝̅∗)                 𝑝̅∗ ∈ [0,2] 

𝐼(𝑝̅∗)                             𝑝̅∗ ∈ (2,∞)
                                         (4.91) 

In the above equation, 𝐼(𝑝̅∗) represents the contact ratio predicted from the Xu and Jackson [3] 

modified Greenwood model: 

𝐼(𝑝̅∗) = 𝐴∗(𝑝̅∗) = 1 −
1

2√3
√𝛼𝑝 ∫ ∫ (𝜉𝑝∗ − 𝑝̅∗) (𝑘𝑔

𝑝∗)
−1

∅𝑝(𝜉𝑝∗, 𝑘𝑔
𝑝∗)𝑑𝑘𝑔

𝑝∗𝑑𝜉𝑝∗
∞

0

∞

𝑝̅∗

 

and 𝑓(𝑝̅∗) can be determined using the following equation: 

𝑓(𝑝̅∗) = 𝑎 ∙ 𝑒𝑥𝑝(𝑏𝑝̅∗) + 𝑐 ∙ 𝑒𝑥𝑝(𝑑𝑝̅∗)                                               

Where, a = -c. The value of a, b, c, and d vary from surface to surface and will be discussed later 

in Chapter 5. In Chapter 5, Eq. (4.91) has been used for the validation of the newly developed 

rough surface models. 
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4.3.2 Rough Surface Models for the Elastic-plastic Contact and Contact Resistance 

Determination 

4.3.2.1 Statistical Model or Multi-asperity Model  

The statistical model was originally developed to model the low load elastic rough surface contact 

cases. However, this rough surface model was developed based on the statistical characterization 

of the rough surface and single asperity. Therefore, any single asperity model that represents the 

particular application should be able to predict the contact behavior when employed in the 

statistical or multi-asperity rough surface model. Based on this idea, the GW statistical model has 

been applied to model other contact cases [85-89]. However, as the development of the statistical 

model depends on the asperity model, if the asperity model has pitfall, it inherently transfers to the 

asperity based statistical model. That is why the rough surface models developed to predict the 

elastic-plastic contact behavior using the truncation, ZMC, CEB and other single asperity models 

have serious limitations (see sec 2.3). Later Kogut and Etsion [89] and Jackson and Green [87] 

developed elastic-plastic rough surface contact models using the KE and JG single asperity models 

respectively (see sec 2.3 and 2.3.1). When the deformation is small, or the plasticity index of a 

rough surface is less than 10, the KE and JG models predict almost the same contact behavior. 

Greenwood and Williamson [27] defined the plasticity index from the surface properties and 

critical interference of the material, which is given as [27, 87]: 

                                                                 𝜓 = √
𝜎𝑠

𝑤𝑐
                                                                  (4.92) 

In the above equation, 𝜎𝑠 is the standard deviation of the asperity heights and 𝑤𝑐 is the critical 

interference of the average asperity i.e. the amount of interference that causes initial yielding in 
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the material. When this plasticity index value is greater than 10, KE and JG elastic-plastic rough 

surface models do not behave in the same way. Reasons that cause the difference between these 

two models have been discussed in detail in sec. 2.3.1. At the beginning of the contact, JG and KE 

asperity models predict almost the same result with a very negligible amount of difference; 

however, for the large deformation JG model is more suitable than the KE model. The JG elastic-

plastic rough surface model has been developed such that when interference, ω, is less than the 

critical value of interference, 𝜔𝑐, the rough surface model uses Hertz single asperity model (i.e. 

Eq. (2.65)) to predict the contact area and contact force. However, when interference, ω, is greater 

than the critical value of interference, 𝜔𝑐, rough surafce model uses Eq. (2.66) to (2.69) to predict 

the elastic-plastic contact behavior. When employing this single asperity model in the framework 

of the statistical model, it needs to be applied with caution as the JG single asperity model can 

predict contact behavior only when 
𝑎

𝑅
≤ 0.41, where a and R are the contact radius and radius of 

curvature of the single asperity respectively. Although this limitation has been eliminated later by 

Jackson, Green and Marghitu [90] and Wadwalkar and Jackson [91]. 

Wilson, Angadi and Jackson [88] applied the JG rough surface model to determine the electrical 

contact resistance between two rough surafce. Electrical contact resistance has already been 

defined in Chapter 1. When two surfaces come into contact, the electricity passes only through the 

real contact area. If the contact pressure is infinitesimally small, the total real contact area can be 

assumed as the summation of isolated “a-spots” distributed randomly at the interface of the mating 

parts as shown in Fig. 4.4. In 1958, Holm [93] obtained an equation to determine the electrical 

contact resistance of these “a-spots.” If the mating parts are made of different materials, the 

electrical contact resistance will be: 
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                                                     𝑅𝐻𝑜𝑙𝑚 =
𝜌1+𝜌2

4𝑎
                                                                     (4.93) 

where, 𝜌1 and 𝜌2 are the electrical resistivity of the contacting surfaces and a is the contact radius. 

However if the matting parts are made of the same materials, then the above equation reduces to 

the following: 

                                                             𝑅𝐻𝑜𝑙𝑚 =
𝜌

2𝑎
                                                                  (4.94) 

Later in 1966, Greenwood and Williamson (GW model) [27] employed the Holm equation in their 

statistical rough surface model to determine the electrical contact resistance between two rough 

surfaces. According to the GW model, the total contact resistance at the interface will be: 

                                                    
1

𝐸𝑟
= 𝐴𝑛𝜂 ∫

2𝑎

𝜌

∞

𝑑
𝜑ℎ(𝑧)𝑑𝑧                                                   (4.95) 

In the above equation, 𝐸𝑟 is the total contact resistance, 𝐴𝑛 is the nominal contact area, 𝜂 is the 

areal asperity density, 𝑎 is the contact radius of the “a-spots” and can be calculated using a single 

asperity model, 𝜑ℎ(𝑧) is the probability distribution function of the asperity of the rough surface 

and d is the separation distance between the mean height of the contacting surfaces. The above 

described contact resistance model works well when the contact pressure is small. The model 

assumes that as the “a-spots” are sufficiently separated to be mechanically independent and 

therefore current flow through them is also independent. However, due to heat generation or with 

the increase of applied pressure, the effect of asperity interaction becomes important. To consider 

the effect of the adjacent asperity interactions, Wilson et al. [88] modified Eq. (4.95) to the 

following equation: 

                                                     
1

𝐸𝑟
=

𝐴𝑛𝜂

𝜓
∫

2𝑎𝑒𝑝

𝜌

∞

𝑑
𝜑ℎ(𝑧)𝑑𝑧                                                   (4.96) 
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Where, 𝜓 is the alleviation factor and considers the effect of the asperity interaction in the electrical 

contact. There are various ways to calculate this alleviation factor [94], however, Wilson and 

Jackson used the following simplified version offered by Copper et al. [95]: 

                                                            𝜓 = (1 − √
𝐴𝑟

𝐴𝑛
)
1.5

                                                        (4.97) 

𝐴𝑟 is the real contact area and 𝐴𝑛 is the nominal contact area. Wilson et al. [88] also developed a 

multi-asperity model for the elastic contact to determine the electrical contact resistance employing 

Hertz single asperity model for the contact area and contact force, i.e., Eq. (2.17) and (2.18). 

 

 

Fig. 4.4 (a) Schematic of the current flow through the constriction between the contacting surfaces, 

reprinted from “Taheri, P., Hsieh, S., & Bahrami, M. (2011). Investigating electrical contact 

resistance losses in lithium-ion battery assemblies for hybrid and electric vehicles. Journal of 

Power Sources, 196(15), 6525-6533”, taking permission from Elsevier, (b) Schematic of the “a-

spots” at the contact. 

 

(a) (b) 
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4.3.2.2 Multiscale Model  

Stacked Multiscale Modeling Method 

Archard [46] first developed the concept of stacked multiscale rough surface modeling. Archard 

rough surface contact model and multiscale elastic rough surface modeling based on Archard’s 

concept have been discussed in detail in sec 4.3.1.4. Research works that have been done on the 

development of the stacked multiscale elastic-plastic rough surface contact modeling and 

determination of the electrical contact resistance will be discussed in the next few paragraphs.  

Jackson and Streator [40] first developed multiscale rough surface contact model based on the FFT 

of the rough surface. Jackson et al. [40] used Jackson and Green (JG model) single asperity model 

[49] to analyze the elastic-plastic multiscale rough surface contact. With the increase of load, the 

stresses in the asperity at each scale gradually increases. When the interference, ω due to the 

applied load is less than the critical value of interference, 𝜔𝑐, Jackson-Streator model used Hertz 

equation (Eq. (2.65)) in the framework of the multiscale model (Eq. (4.73) and (4.74)). When the 

interference, ω is greater than the critical value of interference, 𝜔𝑐, Eq. (2.66) to (2.69) have been 

employed for the asperity model in the multiscale model. However, Eq. (2.68) and (2.69) are valid 

only when 
𝑎

𝑅
≤ 0.41. Depending on the degree of loading and the details of the frequency spectrum, 

in many cases 
𝑎

𝑅
 may exceed the value of 0.41. For such cases, when 

𝑎

𝑅
> 0.41, Jackson and Streator 

provided the following equation [40]: 

                              (
𝐻𝐺

𝑆𝑦
)
𝑒𝑥𝑡

= 7.32 (
𝑎

𝑅
)
3

− 14.1 (
𝑎

𝑅
)
2

+ 6.28 (
𝑎

𝑅
) + 1.52                               (4.98) 
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The above equation has some limitation, that is why later Jackson, Green and Marghitu [90] 

provided another equation for 
𝐻𝐺

𝑆𝑦
  which is valid from 0 <

𝑎

𝑅
< 1 and also Wadwalkar and Jackson 

[91] provided empirical equations for heavily deformed spherical contact which are discussed in 

detail in Chapter 2 (see sec. 2.3.1 and sec. 2.3.2). Almeida, Ramadoss, Jackson, Ishikawa and Yu 

[96] investigated a laterally actuated multicontact MEMS relay experimentally and compared the 

experimental results with the theoretical electrical contact resistance calculated by employing the 

Jackson-Streator multiscale model [40]. The multiscale model showed good qualitative agreement 

with the experimental measurement. The author showed that for that particular electrical contact 

case, there were also other factors such as, liquid meniscus adhesion, scale dependent material 

properties etc. that were important to obtain good quantitative agreement.  

Wilson, Angadi and Jackson [88] performed an elastic-plastic rough surface contact analysis based 

on the Jackson-Streator multiscale model [40]. However, different asperity models have been used 

in the structure of the multiscale model. Wilson et al. [88] employed the empirical equations for 

the 3D elastic-plastic sinusoidal asperity model developed by Krithivasan et al. [97] and Jackson 

et al. [98]. The empirical equations developed by [97] and [98] (Eq. (4.99)-Eq. (4.101)) have not 

been described in Chapter 2, as Ghaednia et al. [99] have refined the 3D elastic-plastic sinusoidal 

asperity model later. According to Wilson et al., for the multiscale rough surface contact model, 

when the average contact pressure, 𝑝̅ is less than the average pressure during initial yielding, 𝑝𝑐, the 

JGH elastic 3D sinusoidal asperity model i.e. Eq. (2.46) and Eq. (2.47) can be employed in the 

multiscale modeling. When the average contact pressure, 𝑝̅ is greater than 𝑝𝑐, the following 

equations developed for the 3D elastic-plastic asperity model have been employed [97, 98]. For 

the 3D sinusoidal asperity model, the radius of curvature at the tip of the asperity is, 𝑅 =
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𝜆2

4𝜋2∆
. Substituting the equation for radius of curvature in Eq. (2.62) and (2.63), the average contact 

area and contact pressure at the initiation of yielding can be obtained: 

𝐴𝑐 =
2

𝜋
(
𝐶𝑆𝑦𝜆2

8∆𝐸′
)

2

 

𝑝𝑐 =
1

6𝜋
(

𝜆2

𝛥𝐸′
)

2

(
𝐶

2
𝑆𝑦)

3

 

The contact area from initial to complete contact at any scale, i, is: 

                            𝐴𝑖̅ = (𝐴𝑝) (1 − [
𝑝̅

𝑝𝑒𝑝
∗ ]

1.51

) + (𝐴𝐽𝐺𝐻)
2
[

𝑝̅

𝑝𝑒𝑝
∗ ]

1.04

                                           (4.99) 

where, 

   𝐴𝑝 = 2(
𝐴𝑐

2
)

1

1+𝑑
(

3𝑝̅𝜆2

4𝐶𝑆𝑦
)

𝑑

1+𝑑
                                                  

𝑑 = 3.8 (
𝐸′

𝑆𝑦

∆

𝜆
)

0.11

 

The pressure to cause complete contact during the elastic-plastic deformation is [97]: 

                                                         
𝑝𝑒𝑝

∗

𝑝𝑒
∗ = (

11

4
∆

∆𝑐
+7

)

3/5

                                                           (4.100) 

where, 

                                                           ∆𝑐=
√2𝑆𝑦𝜆

3𝜋𝐸′ 𝑒𝑥𝑝 (
2𝜈

3
)                                                     (4.101) 
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𝑝𝑒
∗ can be calculated from Eq. (2.43) and  ∆𝑐 is the amplitude below which 3D sinusoidal asperity 

will deform elastically from early contact to complete contact. As mentioned before, Eq. (4.99)-

4.101 have been refined by Ghaednia et al. [99] (Eq. (2.93)-(2.98)), therefore, to improve the above 

discussed rough surface model, instead of Eq. (4.99-4.101), Eq. (2.93)-(2.98) have to be used. 

Wilson et al. also calculated electrical contact resistance considering the multiscale nature of the 

surface. If the asperities distributed on each scale are 3D sinusoidal in shape then the contact area 

for each of the asperities will be: 

                                                
𝐴𝑖

𝐴𝑖−1
=

2𝜋𝑎𝑖
2

𝜆𝑖
2  =≫ 𝑎𝑖 = √

𝜆𝑖
2𝐴𝑖

2𝜋𝐴𝑖−1
                                               (4.102) 

Now the total contact resistance at each scale, i can be calculated by summing the reciprocal of the 

resistance of each individual asperity on each scale as this multiscale model assumes that the 

asperities are electrically in parallel.  

1

𝑅𝑐
= ∑

1

𝑅𝑎𝑠𝑝

𝑁

𝑛=1

 

Since according to the assumption of the multiscale model, all the asperities at this frequency will 

be identical, the above equation reduces to the following equation: 

𝑅𝑐 =
𝑅𝑎𝑠𝑝

𝑁𝑖
=

𝑅𝑎𝑠𝑝

𝜂𝑖𝐴𝑖−1
 

𝑁𝑖 is the number of asperities at scale, i and 𝐴𝑖−1 is the contact area at the previous scale, i-1. Then 

summing over all the considered scales the total resistance for the entire surface in contact can be 

calculated.  
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                                                𝐸𝑟 = ∑
𝑅𝑎𝑠𝑝

𝑁𝑖
𝜓𝑖

𝑖𝑚𝑎𝑥
𝑖=1 = ∑

𝜌

2𝑎

1

𝑁𝑖
𝜓𝑖

𝑖𝑚𝑎𝑥
𝑖=1                                       (4.103) 

                                                         𝑁𝑖 = 2
𝐴𝑖−1

𝜆𝑖
2                                                                      (4.104) 

𝜓𝑖 is the alleviation factor. For the multiscale rough surface contact model, alleviation factor has 

to be calculated using the following formula: 

                                                         𝜓𝑖 = (1 − √
𝐴𝑖

𝐴𝑖−1
)
1.5

                                                      (4.105) 

For 3D periodic sinusoidal elastic-plastic model, the contact area and pressure equation considers 

the factor 2 (two asperity) that is why when employing Eq. (4.104) in the multiscale model, the 

factor 2 in the numerator does not need to be considered. Using the same empirical equations and 

multiscale model as described above [88], Zhang and Jackson [100] analyzed surfaces with 

different finishes which represent different manufacturing processes and observed the effect of 

surface finishes on the contact pressure-area relation and contact resistance behavior. They have 

also compared their result with the conventional method of dividing the contact force by the 

hardness (2.8 times the yield strength, 𝑆𝑦) to calculate the electrical contact resistance. The 

conventional method did not show a good qualitative agreement with the multiscale model.  

To determine the electrical contact resistance, Holm’s equation is widely used. However, when 

the size of the “a-spots” become less than the electron mean free path length, l, the electrical 

conduction mechanism changes from a diffusive mechanism (Maxwell) to a ballistic mechanism 

(Sharvin). Jackson, Crandall and Bozack [101] developed the previously described Wilson et al. 

[88] multiscale electrical contact resistance model considering the quantum and size-dependent 
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contact and electrical conduction mechanisms. To model size dependent contact, scale dependent 

mechanical and electrical properties have been considered.  

Fractal Method 

Gao and Bower [102] developed an elastic-perfectly plastic rough surface contact model for the 

2D plane-strain condition. To develop the model they analyzed the contact between a rigid 

cylindrical indenter and an elastic-perfectly plastic solid with a fractal surface roughness. The 

fractal surface roughness was idealized by a Weierstrass profile, which can be described by the 

following equation: 

                                             ℎ(𝑥) = 𝐺0 ∑ 𝛾(𝐷−2)𝑚∞
𝑚=0 cos (

2𝜋𝑥𝛾𝑚

𝜆0
)                                      (4.106) 

In the above equation, ℎ(𝑥) is the surface profile height, 𝐺0 is the fractal roughness, m is the fractal 

scale index, 𝛾 is the fractal scaling parameter, D is the fractal dimension and 𝜆0 is the wavelength 

at the largest scale. In the analysis, it has been assumed that, 𝛾 ≫ 1 so that the successive scales 

are decoupled or widely separated from each other. In this condition, each scale can be considered 

as a sinusoidal surface, indented by a rigid flat. Although it is not an actual representation of the 

rough surface, it can still represent the multiscale nature of the rough surafce. To couple the 

successive scales, it has been assumed that nominal pressure acting on scale i is equal to the true 

pressure acting on scale i-1. According to their analysis, the following three dimensionless 

functions control the elastic-perfectly plastic contact behavior at the plane-strain condition: 

                                                ∑ = √
𝑃𝐸′

𝑅𝑆𝑦
2 , 𝜓 = (

𝐺0𝐸′

𝜆0𝑆𝑦
), 𝐾 = (

𝛾𝜆0
2

𝐺0𝑅
)                                        (4.107) 
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In the above equation, ∑ 𝑖𝑠 the dimensionless load parameter, ψ and K together characterize the 

surface roughness and its resistance to the plastic flow, P is the load per unit length out of plane, 

R is the radius of the cylinder. The parameter 𝜓𝐷𝐾𝐷−1is the plasticity index for the fractal rough 

surface. When the value of 𝜓𝐷𝐾𝐷−1is small, most of the surface scales remain elastic and with the 

increase of 𝜓𝐷𝐾𝐷−1the number of plastic roughness scales and the depth of the plastically 

deformed layer gradually increases. Curve fitting the FEA results, they provided empirical 

equations for contact pressure distribution, contact size, the total area of contact and number of 

contacts for each scale of roughness. Also analyzed the change in nominal pressure to yield 

strength ratio and mean pressure to yield strength ratio with the change in contact fraction and 

provided empirical equations by curve fitting to the FEA results. Their results show that when the 

contact fraction is close to 1.0, both the nominal and mean pressure reach a value of 5.8 times the 

yield strength. Like the previously described Ciavarella elastic fractal rough surface contact model 

[9] this mode also provided an unphysical prediction of the true contact size and the number of 

contact spots when 𝑚 → ∞. It has been suggested in the paper that when 𝑚 → ∞, by considering 

the effect of adhesion and the deviation of the real surface from the fractal behavior at the smaller 

scales, may be a finite contact area or logical result can be obtained. Although the model developed 

by Gao and Bower was for the Weierstress fractal rough surface, the empirical equations provided 

in their paper are applicable to any discrete approximation to a Power Spectral Density, provided 

that successive scales are widely separated from each other. 

In section 4.3.1.4, the simplified multiscale model for elastic contact developed by Jackson [10] 

has been discussed in detail. Although the model was developed using fractal rough surface 

profiles, the model is applicable to both fractal and real surfaces. Simplified multiscale model was 

approximated using the elastic superposition principal; apparently, it seems that this model should 
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not work for the elastic-plastic cases. However, the result found from the 3D elastic-plastic model 

developed by Krithivasan et al. [97] and Jackson et al. [98] show that for the elastic-plastic 

sinusoidal surfaces in complete contact the deformation appears to effectively revert to elastic 

deformation. Actually, the stress becomes hydrostatic at complete contact and theoretically, there 

will be no further plastic deformation there. Therefore, the elastic superposition principal may be 

applicable to the complete contact for the 3D elastic-plastic case also. Now employing the equation 

of 𝑝𝑒𝑝
∗  derived by Jackson et al. for 3D elastic-plastic case [98], the following approximate equation 

for total real contact area can be obtained: 

                                                         (𝐴𝑟)𝑒𝑙𝑎𝑠𝑡𝑖𝑐−𝑝𝑙𝑎𝑠𝑡𝑖𝑐 =
𝐹

𝑝𝑒𝑝
∗                                                 (4.108) 

Substituting the value of 𝑝𝑒𝑝
∗ from Eq. (4.100), the real contact area for elastic-perfectly plastic case 

can be obtained. 

                            (𝐴𝑟)𝑒𝑙𝑎𝑠𝑡𝑖𝑐−𝑝𝑙𝑎𝑠𝑡𝑖𝑐 =
𝐹

√2𝜋𝐸′𝐵𝑚𝑎𝑥
(

12𝜋𝐸′

√2𝑆𝑦𝑒
2
3
𝜐
𝐵𝑚𝑎𝑥+7

11
)

3/5

                                 (4.109) 

Eq. (4.109) has been formulated using Eq. (4.100) and (4.101) which have been improved by 

Ghaednia et al. [99]. Therefore, to employ this simplified elastic-perfectly plastic asperity model 

instead of Eq. (4.100) and (4.101), Eq. (2.93) and Eq. (2.94) have to be used in Eq. (4.116). Using 

this simplified multiscale model, Jackson, Malucci, Angadi and Polchow [103] obtained a 

simplified model of multiscale electrical contact resistance. For this model, the real contact area 

equation for 3D elastic and elastic-perfectly plastic model have been modified to the following: 

                                             (𝑃𝑟)𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = √2𝜋𝐸′𝐶𝐵𝑚𝑎𝑥 =
𝐹

𝐴𝑟
                                              (4.110) 
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                          (𝑃𝑟)𝑒𝑙𝑎𝑠𝑡𝑖𝑐−𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = √2𝜋𝐸′𝐶𝐵𝑚𝑎𝑥 (
11

12𝜋𝐸′

√2𝑆𝑦𝑒
2
3
𝜐
𝐵𝑚𝑎𝑥+7

)

3/5

                             (4.111) 

In the above two equation, the value of C is 0.8. To make these two equations applicable from 

early contact to complete contact, the following equation has been suggested: 

                 (𝑃𝑟)𝑒𝑓𝑓 = 𝑃𝑟(𝐶𝐵𝑚𝑎𝑥) + [𝑃𝑟(𝐵𝑚𝑎𝑥) − 𝑃𝑟(𝐶𝐵𝑚𝑎𝑥)] (
𝐹

𝐴𝑟𝑃𝑟(𝐵𝑚𝑎𝑥)
)
𝛽

                       (4.112) 

For elastic contact, 𝛽=2 and for the elastic-perfectly plastic contact 𝛽 = 4. Therefore, the new 

equation for real contact area will be: 

𝐴𝑟 =
𝐹

(𝑃𝑟)𝑒𝑓𝑓
 

The electrical contact resistance according to the simplified multiscale electrical contact resistance 

model is given by: 

                                                   𝑅 = √
𝜋

8
(
𝜌𝜆𝑚𝑎𝑥

𝐹
) (𝑃𝑟)𝑒𝑓𝑓                                                      (4.113) 

If for a particular scale, the value of amplitude, Δ, is less than ∆𝑐 it will deform elastically, 

otherwise it will deform elastic-perfect plastically. Jackson et al. [103] compared the simplified 

multiscale electrical contact resistance model with the “Fully Plastic” model given by Malucci 

[104] and the GW perfectly elastic model [27]. However, in the GW perfectly elastic model instead 

of a Gaussian distribution, an exponential distribution suggested by Greenwood and Williamson 

has been used so that equations can be solved analytically. The comparison shows that the 

simplified electrical contact resistance model matches well with “Fully plastic” model given by 
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Malucci [104]. According to Holm [93] and Greenwood [105], electrical contact resistance 

between rough surfaces is: 

                                                              𝑅 =
𝜌

2𝑛𝑎
+

𝜌

𝐷
                                                              (4.114) 

In the above equation, n is the number of asperity contacts in the diameter of ‘macro’ contact, D. 

According to the “Fully plastic” model derived by Malucci [104], the micro-scale multi-spot 

contact resistance is given by the following equations: 

                                        𝑛 = 196𝐹 (
0.24×10−6

𝜎
)
2

(1 +
𝐹

2.84𝑆𝑦𝐴𝑛
)
−1

                                       (4.115) 

                                               𝑛𝑎 = [
3𝑛𝐹

2.84𝑆𝑦𝜋
(1 +

𝐹

2.84𝑆𝑦𝐴𝑛
)
−1

]

1/2

                                         (4.116) 

                                   𝐴 =
𝐹

𝐻
(1 +

𝐹

2.84𝑆𝑦𝐴𝑛
)
−1

=
𝐹

2.84𝑆𝑦
(1 +

𝐹

2.84𝑆𝑦𝐴𝑛
)

−1

                             (4.117) 

𝜎 is the standard deviation or RMS surface roughness and A is the contact area. Substituting Eq. 

(4.116) into Eq. (4.114), electrical contact resistance can be determined. Using an exponential 

distribution instead of Gaussian distribution in the GW perfectly elastic model, the following 

equation for ECR has been obtained [103]: 

                                                              𝑅 =
𝜌𝜎𝐸′

𝐹
                                                                   (4.118) 

Persson Model 

Persson [106] developed both an elastic and elastic-plastic contact model for fractal rough surfaces 

based on the following diffusion type of equation:  
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𝜕𝑃

𝜕ζ
= 𝐺′(𝜁)𝜎0

2 𝜕2𝑃

𝜕σ2
                                                                   (4.119) 

In the above diffusion type of equation, time is replaced by the magnification, 𝜁, and the spatial 

co-ordinate by stress, 𝜎. 𝑃(ζ ) =
𝐴(𝜆)

𝐴(𝐿)
 denotes the relative fraction of the surface where contact 

occurs. 𝐴(𝐿) is the macroscopic contact area and 𝐴(𝜆) is the real contact area if the surface is 

flattened on all length scales shorter than λ. 𝜆 =
𝐿

𝜁
 where 𝜁 ≥ 1 and L is the largest wavelength of 

the rough surface spectrum. 𝐺′(𝜁) denotes the 𝜁 derivative of the function: 

                                                𝐺(𝜁) =
𝜋

4
[

𝐸

(1−𝜈2)𝜎0
]
2

∫ 𝑑𝑘 𝑘3𝑆(𝑘)
𝜁𝑘𝐿

𝑘𝐿
                                     (4.120) 

If F is the applied force on the rough surface, then 𝜎0 =
𝐹

𝐴0
, 𝐴0 is the nominal contact area. 𝑘𝐿 is 

the wavenumber at the smallest length scale or upper cut off wavenumber and 𝑘𝐿 =
2𝜋

𝐿
. 𝑆(𝑘) is the 

Power Spectral Density (PSD) of the rough surface. The developed model by Persson is only valid 

for the self-affine fractal rough surface. To generate the self-affine rough surface, Persson 

employed the following definition of PSD: 

                                            𝑆(𝑘) = 𝐶0 (
𝑘

𝑘0
)
−2(1+𝐻)

when 𝑘 > 𝑘0 

                                           𝑆(𝑘) = 𝐶0                    when 𝑘 < 𝑘0                                           (4.121) 

where, H is the Hurst exponent and related to the fractal dimension, D by D=3-H. 𝐶0 can be 

determined from the following equation: 

                                                               𝐶0 = 𝛼 (
ℎ0

𝑘0
)
2 𝐻

2𝜋
                                                       (4.122) 
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where, ℎ0
2 = 〈ℎ2〉, and 〈ℎ2〉 is the RMS surface roughness or amplitude. 𝛼 can be calculated using 

the following equation: 

                                                            𝛼 =
1

1+𝐻−(
𝑘𝐿
𝑘0

)
2
𝐻

                                                           (4.123) 

𝑘0 is the lower cutoff wavenumber. Substituting Eq. (4.121) into Eq. (4.120), defining 𝑘 = 𝑘𝐿𝜁 

and assuming 𝑘 ≫ 𝑘0 gives, 

                                         𝐺(𝜁) ≈ (
𝑘0ℎ0

4(1−𝜈2))
2 𝛼𝐻

(1−𝐻)
(

𝐸

𝜎0
)
2

(
𝑘

𝑘0
)
2(1−𝐻)

                                     (4.124) 

For the elastic case, two boundary conditions have been applied:  

1. Detachment will occur when local stress, 𝜎 → 0, i.e. 𝑃(0, 𝜁) = 0. No adhesion is 

considered in the model. 

2. Yield will occur only when 𝜎 → ∞, i.e. 𝑃(∞, 𝜁) = 0 

Applying these two boundary conditions in Eq. (4.119), the area of contact on the length scale, 

𝜆 =
2𝜋

𝑘
 is: 

                                            𝐴(𝜆) =
4(1−𝜈2)

𝑘0ℎ0
(
1−𝐻

𝜋𝛼𝐻
)
1/2 𝐹

𝐸′ (
𝜆

𝜆0
)
1−𝐻

                                           (4.125) 

If, 𝜆0 = 𝐿 𝑎𝑛𝑑 𝑘0 =
2𝜋

𝐿
, then the above equations becomes: 

                                             𝐴(𝜆) =
2𝐿(1−𝜈2)

𝜋ℎ0
(
1−𝐻

𝜋𝛼𝐻
)
1/2 𝐹

𝐸′
(
𝜆

𝐿
)
1−𝐻

                                          (4.126) 

To consider plasticity in the rough surface model, Persson provided the following equation: 
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                                                    𝑃𝑒𝑙(𝜁) + 𝑃𝑛𝑜𝑛(𝜁) + 𝑃𝑝𝑙(𝜁) = 1                                          (4.127) 

In the above equation, 𝑃𝑒𝑙(𝜁), 𝑃𝑝𝑙(𝜁) 𝑎𝑛𝑑 𝑃𝑛𝑜𝑛(𝜁) are the fraction of the contact area that is elastic, 

plastic and not in contact respectively. To solve Eq. (4.119) for the elastic-plastic case Persson 

considered the following two boundary conditions: 

1. 𝑃(0, 𝜁) = 0, and 2. 𝑃(∞, 𝜁) = 0  

𝑃𝑝𝑙(𝜁) 𝑎𝑛𝑑 𝑃𝑛𝑜𝑛(𝜁) can be calculated using the following equations: 

                                        𝑃𝑛𝑜𝑛 =
2

𝜋
∑

𝑠𝑖𝑛𝛼𝑛

𝑛
∞
𝑛=1 {1 − 𝑒𝑥𝑝[−𝛼𝑛

2𝐺(𝜁)]}                                    (4.128) 

                                   𝑃𝑝𝑙 = −
2

𝜋
∑ (−1)𝑛 𝑠𝑖𝑛𝛼𝑛

𝑛
∞
𝑛=1 {1 − 𝑒𝑥𝑝[−𝛼𝑛

2𝐺(𝜁)]}                             (4.129) 

Where 𝛼𝑛 =
𝑛𝜋𝜎0

𝑆𝑦
 and 𝐺(𝜁) is given by Eq. (4.120). The fraction of the macro-contact area where 

elastic contact occurs can be determined by substituting 𝑃𝑛𝑜𝑛 and 𝑃𝑝𝑙 in Eq. (4.127).  

4.3.2.3 Analysis of the Elastic-plastic Contact Using FEM/ Deterministic Modeling: 

The previously described rough surface contact models (statistical model, multiscale rough surface 

models); all were developed based on different assumptions to simplify the rough surface model 

and to reduce the computational expenses. Therefore, it is important to validate these idealized 

theoretical rough surface models and Deterministic modeling can serve this purpose. For 

Deterministic rough surface contact modeling, generally all the data points measured using a 

surface measurement instrument are directly used in the model. In 2007. Thompson [107] showed 

that it is possible to import measured surface data into ANSYS and to analyze rough surface 

contact using FEM. Later in 2010, Thompson et al. [108] performed another rough surface contact 
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analysis using FEM and introduced different factors that may help to develop rough surface contact 

modeling using the directly measured rough surface data. According to their analysis, identifying 

“representative” surfaces, shape of surface geometry i.e. whether to connect the sampling points 

by a simple straight line or spline interpolation, surface layers and impurities, mesh density, 

incorporating material non-linearity, effect of different contact parameters, boundary conditions, 

and solving method, etc. are noteworthy and may improve the FEA. The largest model solved by 

Thompson et al. in 2010 consists of 377,556 elements and the computational time was 105 hr.  

Liu et al. [109] performed a Deterministic FEA of a microswitch contact by scanning the contact 

surface using AFM. They used different resolution for their FEA and analyzed force-displacement, 

force-contact area, force-contact resistance and different other contact behavior. It has been 

mentioned in their paper that for proper determination of the contact spot it will require a very fine 

mesh, which needs an outrageous solving duration. Jackson et al. [110] employed a multiscale 

model (similar to previously described Wilson, Angadi and Jackson multiscale elastic-plastic 

rough surface model) to determine contact area, pressure to yield strength ratio, number of contact 

spots  and compared the results with the deterministic result of Liu et al. [109]. Good qualitative 

agreement has been found for all the contact parameters, however, the contact area-pressure and 

real contact pressure to yield strength ratio were almost identical to the Deterministic FEA result. 

 Jackson and his research group [111-113] recently have also done detailed analysis on rough 

surface contact modeling using FEA and compared the FEA results with the available theoretical 

models. They have analyzed the effect of different parameters, such as- smoothing of the surface 

data points using linear  and spectral/ harmonic interpolation, number of total elements and contact 

elements, contact modeling using the Gauss and Nodal point method, effect of normal load, both 

normal and tangential load, plasticity index, and different amounts of hardening. They showed the 
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effect of these parameters on the contact pressure-area relation, static friction co-efficient, average 

gap, average contact pressure to yield strength ratio, von Mises stress, and other contact 

parameters. Their results show that sampling resolution has a significant effect on the contact 

behavior. The smallest resolution they have tried in their analysis is 0.25 𝜇𝑚. Using this resolution 

the model has in total 868,806 elements and the computational time was 20 days using a 20-

processor high performance cluster. For low load or at the beginning of contact it requires very 

fine elements to capture the contact behavior and very fine elements will increase the number of 

elements and computational time significantly. That is why the theoretical models in their analysis 

match better with the FEA at high load or large contact region. Although during their analysis, 

they did not reach mesh convergence; their study provides methodology to the FEA of rough 

surface contact that may push the simulation results closer to the reality.  

4.3.2.4 Determination of the Electrical Contact Resistance (ECR) if Thin Films/Oxides are 

Present at the Interface: 

Due to surface roughness, current flows through the asperity peaks, as a result current will 

effectively be “bottlenecked” and causes in contact resistance (See Fig. 1.1 and 4.4(a)). Previous 

research shows that the presence of thin film /oxides is also a common phenomenon in the 

electrical contact [114-116]. Therefore, total ECR at each microcontact consists of constriction 

resistance due to convergence and divergence of the current flow and tunnel resistance due to the 

presence of an insulating film. If two electrodes are separated by a sufficiently thin insulating film, 

current can flow between the electrodes by means of the tunneling effect. Sommerfield and Bethe 

[117] were the first who investigated it theoretically for very low and high voltages and Holm 

[118] extended their study for the intermediate voltages. Sommerfield and Bethe [117] and Holm 

and Kirschstein [119] assumed a symmetric parabola shaped potential barrier to simplify the 
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analysis and to derive analytical equations. However, this assumption limits the range and 

applicability of their models. Simmons [120] derived current-voltage formulas for electric 

tunneling through an arbitrary shape or generalized potential barrier, existing in a thin insulating 

film that separates two similar electrodes. Then Simmons applied the generalized barrier formulas 

to the rectangular shape potential barrier with and without the image forces effect. These formulas 

are applicable for true image force problems for all voltage ranges. Image force reduces the area 

of the potential barrier by rounding off the corners of its distribution; as a result, this reduces the 

thickness of the barrier and increases the current flow between the electrodes. Now, if we consider 

a single microcontact of area 𝐴𝑖, covered by a thin insulating film of thickness 𝑡, dielectric 

constant, K, and energy height above the Fermi level of the conductive surfaces,∅0, then for a 

rectangular shaped potential barrier with the image force effect, the current through the 

microcontacts for different voltage drop are given by the following formulas [120]: 

When 𝑉𝑖 ≅ 0, 

                      𝐼𝑖 = (3.16 × 1010/∆𝑆)∅𝐿
1/2

× 𝑒𝑥𝑝(−1.025∆𝑆∅𝐿
1/2

)𝑉𝑖𝐴𝑖                               (4.130) 

∅𝐿 is the mean barrier height and is given by: 

∅𝐿 = ∅0 − [
5.75

𝐾∆𝑆
] 𝑙𝑛 [

𝑆2(𝑡 − 𝑆1)

𝑆1(𝑡 − 𝑆2)
] 

∆𝑆 = 𝑆2 − 𝑆1 

𝑆2 and 𝑆1 are the limits of the barrier at Fermi level and can be calculated using the following 

formula: 
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𝑆1 =
6

𝐾∅0
 and 𝑆2 = 𝑡 −

6

𝐾∅0
 

The tunnel resistance, 𝑅𝑡𝑖 when 𝑉𝑖 ≅ 0 will be: 

                                            𝑅𝑡𝑖 =
𝑉𝑖

𝐼𝑖
=

∆𝑆𝑒𝑥𝑝(1.025∆𝑆∅𝐿
1/2

)

3.16×1010∅𝐿
1/2

1

𝐴𝑖
                                                   (4.131) 

If the voltage drop across the microcontact is not very small then: 

 𝐼𝑖 =
6.2×1010

(∆𝑆)2
{𝜑𝐿𝑒𝑥𝑝(−1.025∆𝑆∅𝐿

1/2
) − (∅𝐿 + 𝑉𝑖)𝑒𝑥𝑝[−1.025∆𝑆(∅𝐿 + 𝑉𝑖)

1/2]}𝐴𝑖         (4.132) 

where, 

∅𝐿 = ∅0 − [
𝑉𝑖

2𝑡
] (𝑆1 + 𝑆2) − [

5.75

𝐾∆𝑆
] 𝑙𝑛 [

𝑆2(𝑡 − 𝑆1)

𝑆1(𝑡 − 𝑆2)
] 

If 𝑉𝑖 < ∅0, 

𝑆1 =
6

𝐾∅0
 and 𝑆2 = 𝑡 [1 −

46

(3∅0𝐾𝑡+20−2𝑉𝑖𝐾𝑡)
] +

6

𝐾∅0
    

 

If 𝑉𝑖 > ∅0, 

𝑆1 =
6

𝐾∅0
 and 𝑆2 =

(∅0𝐾𝑡−28)

𝐾𝑉𝑖
 

So the tunneling resistance will be: 

                                                              𝑅𝑡𝑖 =
𝑉𝑖

𝐼𝑖
                                                                     (4.133) 
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Now substituting the value of 𝐼𝑖  from Eq. (4.130) and the value of 𝑉𝑖 into Eq. (4.131) the tunneling 

resistance can be determined.  

Jackson and Kogut [121] analyzed and modeled the electrical contact resistance between two 

surfaces separated by an anisotropic conductive film, which is made up of an epoxy with 

conductive spherical metallic particles dispersed within. For the metallic particle flattening they 

used the extended version of the JG single asperity model which can model the cases when 
𝑎

𝑅
≥

0.41(Eq. (2.66-2.67, 2.70)). To model the ultra-thin insulating film between the particles and the 

surfaces they applied the above-discussed tunneling theory. Their analysis shows that including 

the effect of tunneling current through the thin film at the electrical contact significantly improves 

the prediction of the theoretical model when compared with the experimental results. Jackson et 

al. [116] performed another analysis to observe the effect of repeated initial connector insertions 

and roughness on electrical contact resistance. Their analysis showed that multiscale ECR 

theoretical model shows good agreement with the experimental measurements after the inclusion 

of the oxide resistance in the theoretical model.  

4.4 Summary 

1. Archard is probably the first who developed a rough surface contact model based on the 

“protuberance upon protuberance” concept, which considers the multiscale nature of the 

surface. However, Archard employed spherical asperities to model the multiscale rough 

surface (i.e. smaller sphere upon another sphere) which is not realistic. That is why lots of 

research has been done to develop the multiscale rough surafce model. Among them, the 

fractal method, and FFT method are noteworthy. These methods consider the wide range 

of frequency spectrum of the rough surface and then employing different elastic and elastic-
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plastic asperity models with different boundary conditions to predict the contact behavior. 

Persson’s model also considers the multiscale nature of the surface. However, Persson’s 

model has been developed based on the diffusion type of equation, not the asperity models. 

2. Greenwood and Williamson (GW model) developed a rough surface contact model based 

on the statistical characterization of rough surfaces. This model is known as the statistical 

or multiasperity model. The statistical model assumes that surfaces are random in nature. 

Greenwood and Williamson employed the Hertz spherical asperity model and assumed a 

Gaussian distribution to model the rough surface contact behavior. Several other 

assumptions that have been made in the GW model are that the radius of curvature of the 

asperity is constant and the rough surface model is applicable when the load is very small. 

Later research has been done to alleviate these assumptions. Among them employing 

different elastic asperity models in conjunction with different probability distribution 

functions are noteworthy, which can model different surface and radius of curvature 

distribution of the asperities. Models have also been developed by employing elastic 

asperity models, with adhesion, elastic-plastic asperity models, and 3D elastic wavy 

asperity models in the framework of the statistical model. Recently, the statistical model 

has also been formulated for near the complete contact regime using the fracture mechanics 

approach. The statistical model for infinitesimally small contact and near complete contact 

both were validated using the Boundary Element Method. However, no statistical rough 

surface model is available which works over the whole range of the contact.  

3. Both the Statistical and Multiscale rough surface contact models have been developed 

based on several assumptions. The advantage of these models are that they reduce the 

computational expense to a great extent. However, these models need to be validated and 
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BEM/FEM can serve this purpose.  BEM are generally used for the validation of the elastic 

models and are computationally less expensive than the FEM. Recently works have been 

done to validate the elastic-plastic rough surface contact models using FEM. No mesh 

convergence has been obtained in those works as rough surface contact analysis employing 

FEM are computationally very expensive and may take months or even years.  

4. Electrical contact behavior is a very complicated phenomenon. The presence of different 

kinds of oxides, impurities or wear debris make the electrical contact behavior more 

complicated. Experimental and theoretical work have been done to determine electrical 

contact resistance employing statistical and multiscale rough surface models. Previous 

research work show that depending on the applications and surface roughness, 

consideration of the oxides, quantum and size dependent electrical conduction mechanism 

and adhesion may improve the prediction of the theoretical electrical contact resistance 

models. 
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Chapter 5 

Development and Validation of the Elastic and Elastic-perfectly Plastic Rough 

Surface Contact Models and Determination of the Electrical Contact 

Resistance 

5.1 Introduction 

This chapter focuses on the development of the asperity based rough surface contact modeling and 

validation. Previous research works on the rough surface contact modeling have been discussed in 

detail in Chapter 4. For asperity based rough surafce contact modeling, statistical (Section 4.3.1.1, 

4.3.1.2, 4.3.1.3, 4.3.2.1) and multiscale (4.3.1.4, 4.3.2.2) rough surafce contact models are widely 

used. However, several assumptions have been made when these models are formulated. Xu [1] 

performed an elastic rough surface contact analysis using the Boundary Element Method (BEM) 

and for the first time compared the results with the statistical models for early contact and nearly 

complete contact. The comparison shows that statistical model developed by Greenwood (see 

Section 4.3.1.1) shows excellent agreement with the BEM results when the deformation is small. 

Near the complete contact, the modified Greenwood model developed by Xu and Jackson (Section 

4.3.1.3) showed very good match with the BEM results. To perform the BEM simulation, Xu [1, 

2] developed rough surfaces, which are isotropic, fractal and Gaussian. The motivation behind 

developing such surfaces was to compare different rough surface contact models. Works have also 

been done to predict the elastic-plastic rough surface contact behavior employing statistical models 

(Section 4.3.2.1). Original statistical model assumes the Gaussian distribution of the rough surface; 

however, later research has been done on rough surface contact modeling using both Gaussian and 

Non-Gaussian probability distribution function (PDF) of the asperity of the rough surface [3-8]. 
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Very few works have been done to extend the statistical model for the whole range of contact 

(Section 4.3.1.2 and [9-10]) and these models assume a Gaussian distribution of the asperity of the 

rough surface while modeling the rough surface contact. However, it is well proven that surfaces 

are not always Gaussian. Therefore, the objective of this chapter are the following: 

1. To develop and validate elastic rough surface contact models with the models that worked 

well in many practical applications. The objective of the development of the rough surface 

contact models is to reduce the computational expenses and to make the models applicable 

for a wide range of surfaces. For the development of the rough surface contact model, the 

surface generated by Xu [1, 2] will be used which is isotropic, fractal and Gaussian in 

nature. The purpose of using this rough surface is to compare the newly developed rough 

surface contact models with the curve fit solution of the BEM results provided by Xu (Eq. 

4.91) and also with Persson’s model (Eq. 4.81). For the development of the rough surface 

contact model, following steps have been performed: 

 To observe the effect of different probability distribution functions (PDF) of the 

asperities of the rough surface on the rough surface contact modeling. 

 To observe the effect of the single asperity contact models on the contact behavior 

when employed with different PDFs of the asperity of the rough surface in the 

statistical model. 

 To compare the newly developed rough surface contact models with the curve fit 

solution of the BEM results provided by Xu, Xu nearly complete contact statistical 

models, Persson’s model and multiscale model. 

2. To perform the same analysis for the real surface and to compare with the Persson’s model 

and multiscale model. 
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3. To develop elastic-perfectly plastic rough surface contact models using statistical models. 

The statistical models that show good agreement with the BEM results/ Persson model 

when performed objective-1, will be used to formulate elastic-perfectly plastic rough 

surface contact models. For asperity models, elastic-perfectly plastic asperity models will 

be used.  

4. To compare the results found from the elastic-perfectly plastic statistical models with the 

multiscale models. 

5. To determine the electrical contact resistance. 

6. To determine electrical contact resistance between two aluminum surfaces using a four-

wire resistance method and to compare the experimental results with the results found from 

objective 5. 

5.2 Development and Validation of the Elastic Rough Surface Contact Models (Generated 

Surface) 

For the development and validation of the elastic rough surface contact models, one of the surfaces 

generated by Xu [1] has been used, which has the properties listed in Table-5.1. The surface 

generation method has been discussed in detail in Chapter 4. (see Section 4.3.1.5).   

Table 5.1 Fractal, isotropic and Gaussian surface properties 

 

 

 

For the surface properties shown in Table 5.1, 50 rough surfaces are generated. The mean of the 

roughness of each of the surfaces has been determined taking the average of the rows and columns 

𝑘𝑙[1/m] 𝑘𝑠[1/m] H 𝑁𝑥 × 𝑁𝑦 𝐿𝑥, 𝐿𝑦(m) 𝑚2
ℎ 

16 64 0.1 1024 × 1024 1 2.00×10-4 
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of that 1024 × 1024 matrix. For example- the mean of a single column of a 𝑚 × 𝑛 matrix of 

surface roughness can be calculated using the following formula: 

𝑀𝑒𝑎𝑛 =
1

𝑚
∑ 𝜉ℎ𝑚

𝑖=1                                                         (5.1) 

Then the mean of the surface roughness has been subtracted from the original rough surface 

height. For each of the surface, all the surface properties have been calculated using the 

methodology described in Section 4.2.1(numerical method) and 4.2.4. However, the 

methodology described in Section 4.2.2 (analytical solution) can also be used to calculate surface 

properties. Later taking an average of these 50 surfaces, the final value of the surface properties 

are calculated. Average properties of the rough surface and the corresponding “pressure surface” 

are shown in Table-5.2 and Table-5.3, respectively. 

 Table-5.2: Average moments, RMS surface roughness and bandwidth parameter for the rough 

surface 

 

 Table-5.3: Average moments and bandwidth parameter of the corresponding “pressure surface” 

 

 

 

𝑚0
ℎ  

(𝑚2) 

𝜎 or𝑅𝑞 

(𝜇𝑚) 

𝑚2
ℎ 

 

𝑚4
ℎ 

(𝑚−2) 

𝑚6
ℎ 

(𝑚−4) 

𝛼ℎ 

7.7946

× 10−9 

88 1.9572

× 10−4 

12.2030 1.0635× 106 2.48 

𝑚0
𝑝∗

 𝑚2
𝑝∗(𝑚−2) 𝑚4

𝑝∗(𝑚−4) 𝛼𝑝 
𝑚𝑛

𝑝∗ =
𝑚𝑛

𝑝

(𝐸′)2
 

where, 

𝑛 = 0,2,4,6… 

0.98×

10−4 

4.068 3.19× 105 1.89 
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For the improvement of the statistical rough surface contact model, all the possible combinations 

of the following PDFs and asperity models have been formulated and analyzed. 

Probability Distribution Functions (PDFs) 

1. PDF is a function of asperity height only (PDF = 𝑓(𝜉ℎ∗))  

2. PDF is a function of asperity height only (PDF = 𝑓(𝜉ℎ∗)), however Gaussian in nature 

3. PDF is a function of the asperity height and geometric curvature (PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗)  

4. PDF is a function of the asperity height and mean curvature (PDF = 𝑓(𝜉ℎ∗, 𝑘𝑚
ℎ∗)  

Asperity Models 

1. Hertz elastic asperity model (Mildly elliptical contact with mean curvature or geometric 

curvature, circular contact with constant radius of curvature) 

2. Extended Johnson, Greenwood and Higginson model (Extended JGH model- 3D periodic 

sinusoidal asperity model) 

3. New elastic asperity model (developed and described in Chapter 3- elastic axisymmetric 

sinusoidal asperity model) 

5.2.1 Methodology 

5.2.1.1 Statistical model (Hertz Asperity Models+ Different PDFs) 

The methodology to generate statistical models employing Hertz asperity models (Hertzian 

circular contact with constant radius of curvature, mildly elliptical contact with geometric/ mean 

curvature) and different probability distribution functions (Gaussian distribution, PDF =

𝑓(𝜉ℎ∗), PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗), PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔

ℎ∗)) have been described in detail in the literature 

review (Section 4.3.1.1). For these models, the surface separation d has been varied from -6σ to 
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+6σ and the radius of curvature is varied from 10−4√𝑚0
ℎ to 10√𝑚0

ℎ to perform the numerical 

integration. An increase in surface separation from +/- 6σ to +/- 9σ does not cause any change in 

the results. Here, negative d does not necessarily mean surface penetration. This is because the 

surfaces are deforming and the asperity distribution does not consider that. In actuality, the 

distribution would change with deformation and the average height would lower since the taller 

peaks are smashed down. In the original statistical model the mean height and distribution are held 

constant, which is not true. It is very difficult to account for that. To the author’s knowledge, it is 

Wilson et al. [10] who performed an investigation on this. 

5.2.1.2 Statistical model (3D Periodic Sinusoidal Asperity Model + Different PDFs)  

Greenwood-Williamson 3D Sinusoidal Model (GW 3D Sinusoidal Model)  

This statistical model has already been developed before (see Section 4.3.1.2). The authors did not 

provide any name for their model. To keep similarity with the other newly developed statistical 

models in this section, the statistical model developed by Jackson et al. (Section 4.3.1.2) has been 

named as the Greenwood-Williamson 3D sinusoidal model. To develop this statistical model, 

extended JGH model (see Section 2.2.7) has been employed into the framework of the statistical 

model with a Gaussian PDF, which is a function of surface asperity height only (PDF = 𝑓(𝜉ℎ∗)). 

To predict the rough surface contact area and force, the following two equations have been used: 

      
𝐴𝑟

𝐴𝑛
 = 

𝜂ℎ

√𝑚0
ℎ
∫ 𝐴

∞

𝑑
(𝜉ℎ)∅(𝜉ℎ∗)𝑑𝜉ℎ                                                         (5.2) 

     
𝐹

𝐴𝑛
=

𝜂ℎ

√𝑚0
ℎ
∫ 𝐹(𝜉ℎ)

∞

𝑑
∅(𝜉ℎ∗)𝑑𝜉ℎ                                                         (5.3) 
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𝐴(𝜉ℎ) and 𝐹(𝜉ℎ) are the single asperity contact area and contact force. ∅(𝜉ℎ∗) is the probability 

distribution function of the asperity of the rough surface. 𝐴(𝜉ℎ) is determined from Eqs. (2.46) 

and (2.47) and  ∅(𝜉ℎ∗) will be determined using Eq. (4.25). Using Eqs. (2.1) and (2.37), the radius 

of curvature at the tip of this asperity is, 𝑅 =
𝜆2

4𝜋2∆
. Therefore, 𝜆 = √𝑅 × 4𝜋2∆ where ∆= 𝜉ℎ. For 

this rough surface contact model, the radius of curvature of the asperity, R, is assumed constant 

and is determined using Eq. (4.26).  𝐹(𝜉ℎ) is calculated by modifying Eq. (2.48) to the following: 

             
𝑝̅

𝑝∗ = (1 − (𝐺𝑛)2/5)
2

=≫ 𝑝̅ = (1 − (𝐺𝑛)2/5)
2
× 𝑝∗                                         

𝐹 = 𝑝̅
𝜆2

2
=

𝜆2

2
(1 − (𝐺𝑛)2/5)

2
× 𝑝∗                    

where, normalized surface separation,  𝐺𝑛 = 𝑑/𝜉ℎ. d is the gap between the mean of the rough 

surfaces or mean of the composite rough surface and rigid flat. 𝑝∗can be calculated from Eq. (2.43). 

If 
𝑝̅

𝑝∗ > 1, it has been set to 1. This is also true for the other models developed in this chapter. The 

nominal area for the asperity model is 𝜆2 and there are two asperities in 𝜆2. 𝜂ℎ (Number of 

asperity/unit area) can be calculated from Eq. (4.22). Now substituting the equation for contact 

force, 𝐹(𝜉ℎ) on a single asperity and probability distribution function of the asperity of the rough 

surface,∅(𝜉ℎ∗), Eq. (5.3) becomes: 

                
𝐹

𝐴𝑛
=

𝜂ℎ

√𝑚0
ℎ

∫
𝜆2

2
(1 − (𝐺𝑛)2/5)

2
× 𝑝∗

∞

𝑑

×
1

√2𝜋
(
𝜎

𝜎𝑠
) 𝑒𝑥𝑝

[
 
 
 

−0.5 (
𝜎

𝜎𝑠
)
2

(

 
𝜉ℎ

√𝑚0
ℎ

)

 

2

]
 
 
 

𝑑𝜉ℎ 

Substituting the equations ((2.46) and (2.47)) for single asperity contact area, 𝐴(𝜉ℎ) and 

probability distribution function of the asperity of the rough surface,∅(𝜉ℎ∗)in Eq. (5.2),  
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When 
𝑝̅

𝑝∗
< 0.8, 

𝐴𝑟

𝐴𝑛
=

𝜂ℎ

2√𝑚0
ℎ

∫ [𝜆2𝜋 {
3

8𝜋

𝑝̅

𝑝∗
}
2/3

× (1 − (
𝑝̅

𝑝∗
)
1.51

) + 𝜆2 (1 −
3

2𝜋
(1 −

𝑝̅

𝑝∗
)) (

𝑝̅

𝑝∗
)
1.04

]
∞

𝑑

×
1

√2𝜋
(
𝜎

𝜎𝑠
) 𝑒𝑥𝑝

[
 
 
 

−0.5 (
𝜎

𝜎𝑠
)
2

(

 
𝜉ℎ

√𝑚0
ℎ

)

 

2

]
 
 
 

𝑑𝜉ℎ 

When 
𝑝̅

𝑝∗ > 0.8, 

𝐴𝑟

𝐴𝑛
= 

𝜂ℎ

2√𝑚0
ℎ
∫ 𝜆2 (1 −

3

2𝜋
(1 −

𝑝̅

𝑝∗))
∞

𝑑
×

1

√2𝜋
(

𝜎

𝜎𝑠
) 𝑒𝑥𝑝 [−0.5 (

𝜎

𝜎𝑠
)
2

(
𝜉ℎ

√𝑚0
ℎ
)

2

] 𝑑𝜉ℎ 

A factor of 2 has been used outside of the integral to divide the total result by 2 because the 

extended JGH asperity contact equations ((2.46) and (2.47)) are for two asperities. Including this 

model, for all the statistical models developed in this chapter using 3D sinusoidal model and 

axisymmetric sinusoidal model, the values of 𝑑 have been varied from 10−4√𝑚0
ℎ to 6√𝑚0

ℎ and 

the Composite Simpson’s rule has been used for numerical integration. Depending on the rough 

surface contact models, the integration interval has been divided into different subintervals, until 

the number of subintervals does not have any impact on the integration results. For the 3D 

sinusoidal and axisymmetric sinusoidal model, the integration limit of d is always considered 

positive. Because for both sinusoidal asperity models, ∆= 𝜉ℎ and 𝜆 = √𝑅 × 4𝜋2∆ for a negative 

value of d, Δ becomes negative, then λ will become a complex or imaginary number. That is why 
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only positive values of d have been considered when employing sinusoidal asperity models in the 

rough surface contact models. 

Adapted Greenwood-Williamson 3D Sinusoidal Model (Adapted GW 3D Sinusoidal Model) 

This rough surface contact model has been developed in the same way as the previously described 

GW 3D sinusoidal model. However, for PDF, instead of using Gaussian distribution, the PDF 

given by Eq. (4.23) has been used.  

Greenwood 3D Sinusoidal Model  

To develop this rough surface contact model, the extended JGH wavy asperity model (see Section 

2.2.7) and the PDF that varies as a function of asperity height and geometric curvature 

(PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗)) have been employed in the framework of the statistical model. The 

geometric curvature at the tip of the 3D periodic sinusoidal asperity has been determined using Eq. 

(2.4) and (2.37): 

                        𝑘𝑔
ℎ =

1

𝑅
= [

𝜕2𝜉ℎ

𝜕𝑥2

𝜕2𝜉ℎ

𝜕𝑦2 − (
𝜕2𝜉ℎ

𝜕𝑥𝜕𝑦
)
2

]

1/2

= [
4𝜋2∆

𝜆2 ∙
4𝜋2∆

𝜆2 − 0]
1/2

=
4𝜋2∆

𝜆2                     (5.4) 

As 
2𝜋𝑥

𝜆
 and 

2𝜋𝑦

𝜆
 in Eq. (2.37) are equal that is why geometric curvature (Eq. (2.4)), mean curvature 

(Eq. (2.3)) and radius of curvature (Eq. (2.2)) of the 3D periodic sinusoidal model give the same 

result. The above equation is used to calculate the wavelength, λ for a particular asperity height, ∆=

𝜉ℎ. However, when employed the asperity model and PDF into the statistical model, the geometric 

curvature, 𝑘𝑔
ℎ in the asperity model and PDF will vary over the integration limit of the statistical 

model. Therefore, in this statistical model for a particular asperity height, the statistical distribution 
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of the summit geometric curvature has been considered. To predict the rough surface contact area 

and force using this statistical model, the following two equations are used: 

                                       
𝐴𝑟

𝐴𝑛
=

𝜂ℎ

√𝑚0
ℎ𝑚4

ℎ
∫ ∫ 𝐴(𝜉ℎ, 𝑘𝑔

ℎ)
∞

0
∅(𝜉ℎ∗, 𝑘𝑔

ℎ∗)𝑑𝑘𝑔
ℎ𝑑𝜉ℎ∞

𝑑
                            (5.5) 

                                       
𝐹

𝐴𝑛
=

𝜂ℎ

√𝑚0
ℎ𝑚4

ℎ
∫ ∫ 𝐹(𝜉ℎ, 𝑘𝑔

ℎ)
∞

0
∅(𝜉ℎ∗, 𝑘𝑔

ℎ∗)𝑑𝑘𝑔
ℎ𝑑𝜉ℎ∞

𝑑
                            (5.6) 

𝐴(𝜉ℎ, 𝑘𝑔
ℎ) has been determined using (2.46) and (2.47). Wavelength of the asperity, λ is calculated 

from 𝑅 = 1/𝑘𝑔
ℎ =

𝜆2

4𝜋2∆
=> 𝜆 = √

1

𝑘𝑔
ℎ × 4𝜋2∆, where, ∆= 𝜉ℎ. Substituting the equations 

for 𝐴(𝜉ℎ, 𝑘𝑔
ℎ) and probability distribution function for the asperity of the rough surface, 

∅(𝜉ℎ∗, 𝑘𝑔
ℎ∗) ((Eq. 4.31)), Eq. (5.5) becomes, 

When 
𝑝̅

𝑝∗ < 0.8, 

𝐴𝑟

𝐴𝑛
=

𝜂ℎ

2√𝑚0
ℎ𝑚4

ℎ

∫ ∫ ([
𝜋

𝑘𝑔
ℎ × 4𝜋2∆ × {

3

8𝜋

𝑝̅

𝑝∗
}

2
3
] × (1 − (

𝑝̅

𝑝∗
)
1.51

) +
1

𝑘𝑔
ℎ

∞

0

∞

𝑑

× 4𝜋2∆(1 −
3

2𝜋
(1 −

𝑝̅

𝑝∗
)) (

𝑝̅

𝑝∗
)
1.04

)  ×
9

2√2𝜋
√

𝛼ℎ

𝛼ℎ − 1

(

 
𝑘𝑔

ℎ

√𝑚4
ℎ

)

 

3

                

× 𝑒𝑟𝑓𝑐

[
 
 
 

𝜇

(

 3
𝑘𝑔

ℎ

√𝑚4
ℎ

−
𝜉ℎ√𝛼ℎ

√𝑚0
ℎ(𝛼ℎ − 1)

)

 

]
 
 
 

𝑒𝑥𝑝

[
 
 
 
 
 
 
 
 

−𝛼ℎ

(

 𝜉ℎ

√𝑚0
ℎ

)

 

2

2(𝛼ℎ − 1)
+

3

(

 
𝑘𝑔

ℎ

√𝑚4
ℎ

)

 

2

2

]
 
 
 
 
 
 
 
 

𝑑𝜉ℎ𝑑𝑘𝑔
ℎ 
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When 
𝑝̅

𝑝∗
> 0.8, 

𝐴𝑟

𝐴𝑛
=

𝜂ℎ

2√𝑚0
ℎ𝑚4

ℎ

∫ ∫ (
1

𝑘𝑔
ℎ × 4𝜋2∆ × (1 −

3

2𝜋
(1 −

𝑝̅

𝑝∗
)))

∞

0

∞

𝑑

×
9

2√2𝜋
√

𝛼ℎ

𝛼ℎ − 1

(

 
𝑘𝑔

ℎ

√𝑚4
ℎ

)

 

3

 

× 𝑒𝑟𝑓𝑐

[
 
 
 

𝜇

(

 3
𝑘𝑔

ℎ

√𝑚4
ℎ

−
𝜉ℎ√𝛼ℎ

√𝑚0
ℎ(𝛼ℎ − 1)

)

 

]
 
 
 

× 𝑒𝑥𝑝

[
 
 
 
 
 
 
 
 

−𝛼ℎ

(

 𝜉ℎ

√𝑚0
ℎ

)

 

2

2(𝛼ℎ − 1)
+

3

(

 
𝑘𝑔

ℎ

√𝑚4
ℎ

)

 

2

2

]
 
 
 
 
 
 
 
 

𝑑𝜉ℎ𝑑𝑘𝑔
ℎ 

𝐹(𝜉ℎ∗, 𝑘𝑔
ℎ∗) has been calculated using the same methodology as described for the GW 3D 

sinusoidal model. Substituting the equations for 𝐹(𝜉ℎ, 𝑘𝑔
ℎ) and probability distribution function 

for the asperity of the rough surface, ∅(𝜉ℎ∗, 𝑘𝑔
ℎ∗) ((Eq. 4.31)) in Eq. (5.6),  

𝐹

𝐴𝑛
=

𝜂ℎ

2√𝑚0
ℎ𝑚4

ℎ

∫ ∫ (
1

𝑘𝑔
ℎ × 4𝜋2∆) × (1 − (𝐺𝑛)2/5)

2
× 𝑝∗

∞

0

∞

𝑑

×
9

2√2𝜋
√

𝛼ℎ

𝛼ℎ − 1

(

 
𝑘𝑔

ℎ

√𝑚4
ℎ

)

 

3

 

     × 𝑒𝑟𝑓𝑐

[
 
 
 

𝜇

(

 3
𝑘𝑔

ℎ

√𝑚4
ℎ

−
𝜉ℎ√𝛼ℎ

√𝑚0
ℎ(𝛼ℎ − 1)

)

 

]
 
 
 

× 𝑒𝑥𝑝

[
 
 
 
 
 
 
 
 

−𝛼ℎ

(

 𝜉ℎ

√𝑚0
ℎ

)

 

2

2(𝛼ℎ − 1)
+

3

(

 
𝑘𝑔

ℎ

√𝑚4
ℎ

)

 

2

2

]
 
 
 
 
 
 
 
 

𝑑𝜉ℎ𝑑𝑘𝑔
ℎ 
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Including this rough surface model, for all the statistical models that will consider the change in 

geometric curvature, the value of 𝑘𝑔
ℎ in the numerical integration is varied from 10−4√𝑚4

ℎ 

to 10√𝑚4
ℎ. 

Nayak-Bush 3D Sinusoidal Model  

This model has been developed using a similar methodology as the previously described 

Greenwood 3D sinusoidal model. Total contact area and contact force at the interface of the rough 

surfaces are calculated using the following two equations: 

                                      
𝐴𝑟

𝐴𝑛
=

𝜂ℎ

√𝑚0
ℎ𝑚4

ℎ
∫ ∫ 𝐴(𝜉ℎ, 𝑘𝑚

ℎ )
∞

0
∅(𝜉ℎ∗, 𝑘𝑚

ℎ∗)𝑑𝑘𝑚
ℎ 𝑑𝜉ℎ∞

𝑑
                            (5.7) 

                                      
𝐹

𝐴𝑛
 =

𝜂ℎ

√𝑚0
ℎ𝑚4

ℎ
∫ ∫ 𝐹(𝜉ℎ, 𝑘𝑚

ℎ )
∞

0
∅(𝜉ℎ∗, 𝑘𝑚

ℎ∗)𝑑𝑘𝑚
ℎ 𝑑𝜉ℎ∞

𝑑
                           (5.8) 

Instead of radius of geometric curvature, radius of mean curvature, 𝑅 = 1/𝑘𝑚
ℎ  has been used in 

the extended JGH model. The value of mean curvature, 𝑘𝑚
ℎ  in the asperity model and in the PDF 

will vary over the integration limit of the statistical model. For PDF, ∅(𝜉ℎ∗, 𝑘𝑚
ℎ∗), Eq. (4.24) has 

been used. The mean curvature at the tip of a 3D periodic sinusoidal asperity will be, 𝑘𝑚
ℎ =

1

𝑅
=

4𝜋2∆

𝜆2 . Besides this model, all the statistical models that will consider the change in mean curvature, 

the value of 𝑘𝑚
ℎ  in the numerical integration is varied from 10−4√𝑚4

ℎ to 10√𝑚4
ℎ. 
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5.2.1.3 Statistical model (Axisymmetric Sinusoidal Asperity model + Different PDFs)  

Greenwood-Williamson Axisymmetric Sinusoidal Model (GW Axisymmetric Sinusoidal 

Model)  

To develop this statistical model, the axisymmetric sinusoidal asperity model developed by Saha 

and Jackson (Chapter 3) has been employed into the framework of the statistical model with 

Gaussian PDF. To predict the rough surface contact area and contact force, Eq. (5.2) and (5.3) 

have been used. For this model, ∆= 𝜉ℎ, interference, 𝛿 = 𝜉ℎ − 𝑑, d is the gap between the mean 

of the rough surfaces or mean of the composite rough surface and rigid flat. The radius of curvature 

at the tip of an axisymmetric sinusoidal asperity is, 𝑅 =
𝜆2

4𝜋2∆
 (from Eq. (2.1) and (3.1)). For this 

rough surface contact model, the average radius of curvature of the asperity, R is assumed constant 

and is determined using Eq. (4.26). Therefore, the wavelength of the asperity, 𝜆 = √𝑅 × 4𝜋2∆. 

𝐹(𝜉ℎ) has been calculated from Eq. (3.9), multiplying by 𝜋 (
𝜆

2
)
2

. In Eq. (3.9), the normalized 

surface separation is,  𝐺𝑛 = 𝑑/𝜉ℎ. The normalized contact pressure, 
𝑝̅

𝑝𝑒
∗ is also calculated from Eq. 

(3.9) which has been used to calculate the contact area. If  
𝑝̅

𝑝𝑒
∗ < 10−5, Hertz model i.e. Eq. (2.17) 

is used to calculate the contact area and if  
𝑝̅

𝑝𝑒
∗ > 10−5, Eq. (3.5) is used to calculate the contact 

area. Nominal area for the single asperity model is 𝜋 (
𝜆

2
)
2

.  𝜂ℎ, 𝑎𝑛𝑑 ∅(𝜉ℎ∗) can be calculated from 

Eq. (4.22) and (4.25) respectively.  
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Adapted Greenwood-Williamson Axisymmetric Sinusoidal Model (Adapted GW 

Axisymmetric Sinusoidal Model) 

This statistical model has been developed using the same methodology as described for the GW 

axisymmetric sinusoidal model. However, for the PDF, instead of Eq. (4.25), Eq. (4.23) has been 

used.  

Greenwood Axisymmetric Sinusoidal Model  

To develop this model, axisymmetric sinusoidal asperity model (Chapter 3) and PDF that varies 

as a function of asperity height and geometric curvature (PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗)), have been employed 

in the framework of the statistical model. Rough surface contact area and force area are calculated 

using Eq. (5.5) and (5.6). The radius of curvature, 𝑅 in the axisymmetric sinusoidal asperity model 

will be the inverse of the geometric curvature, 𝑘𝑔
ℎ. The value of the geometric curvature in the 

asperity model and in the PDF will vary over the integration limit of the statistical models. The 

geometric curvature at the tip of the axisymmetric sinusoidal asperity is  𝑘𝑔
ℎ =

1

𝑅
=

4𝜋2∆

𝜆2  (using Eq. 

(2.4) and (3.1)). This asperity wavelength, λ can be calculated from 𝑅 = 1/𝑘𝑔
ℎ =

𝜆2

4𝜋2∆
=> 𝜆 =

√
1

𝑘𝑔
ℎ × 4𝜋2∆. 𝐹(𝜉ℎ, 𝑘𝑔

ℎ∗) is calculated multiplying Eq. (3.9) by 𝜋 (
𝜆

2
)
2

. For this model, ∆= 𝜉ℎ, 

interference, 𝛿 = 𝜉ℎ − 𝑑, and normalized surface separation,  𝐺𝑛 = 𝑑/𝜉ℎ. d is the gap between the 

mean of the rough surfaces. The normalized contact pressure, 
𝑝̅

𝑝𝑒
∗ is also calculated from Eq. (3.9). 

When 
𝑝̅

𝑝𝑒
∗ < 10−5, Hertz model, i.e. Eq. (2.17) is used to calculate contact area, otherwise Eq. (3.5) 

is used.  
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Nayak-Bush Axisymmetric Sinusoidal Model (Nayak-Bush Axisymmetric Sinusoidal Model) 

This model has been developed using the same methodology as the previously described 

Greenwood axisymmetric sinusoidal model. To determine rough surface contact area and force, 

Eq. (5.7) and (5.8) have been used. 𝑅 = 1/𝑘𝑚
ℎ  in the axisymmetric sinusoidal asperity model. The 

mean curvature for the axisymmetric sinusoidal asperity is 𝑘𝑚
ℎ =

1

𝑅
=

4𝜋2∆

𝜆2  (using Eq. (2.3) and 

(3.1)) that is used to calculate wavelength, λ. For PDF, ∅(𝜉ℎ∗, 𝑘𝑚
ℎ∗), Eq. (4.24) has been used.  

5.2.1.4 Curve Fit Solution for the BEM Result 

Xu [1] performed a BEM analysis to predict the contact behavior of a nominally flat, linear elastic 

rough surface and also provided a curve fitted solution of the results found from the analysis. The 

equation is valid only for the surfaces analyzed in his dissertation. The curve fitted equation, i.e. 

Eq. (4.91) has several constants, which varies from surface to surface. For the surface properties, 

described in Table-5.1, the constants are, a = -1.160, b = -1.923, c = 1.160 and d = -0.062. 

5.2.1.5 Multiscale model 

Many research works have been done on the multiscale modeling of rough surface contact and 

there are different ways to develop multiscale models (see Section 4.3.1.4). In this chapter, the 

newly developed statistical models are compared with the stacked multiscale model developed by 

Jackson and Streator (JS model, see Section 4.3.1.4). The multiscale model formulated by Jackson 

and Streator is an asperity-based model. The model assumes that the asperities on each scale have 

the same height and radius of curvature, however it also considers wide range of scales found from 

the spectral analysis of the rough surface. For the multiscale elastic rough surface contact analysis, 

Jackson and Streator employed the Hertz (Section 2.2.2) and extended JGH asperity models 

(Section 2.2.7). In this chapter, besides the Hertz and extended JGH asperity models, the newly 
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developed axisymmetric sinusoidal asperity model has been employed in the framework of the JS 

multiscale model to compare with the statistical models developed and discussed in this chapter. 

A flowchart has been given in Fig. 5.1 to describe the iterative asperity based JS multiscale contact 

model.  

Multiscale Axisymmetric Sinusoidal Model  

It has already been described in Section 4.3.1.4 that, Jackson and Streator multiscale model 

converts the rough surface data into the frequency domain by performing FFT on the rough surface 

data. From the FFT of the rough surface, the amplitude, Δ, and wavelength, λ, of the asperities of 

the rough surface can be determined. The 
∆

𝜆
 ratio gives an idea about the sharpness and bluntness 

of the surface roughness. The method to calculate Δ and λ have been described in Section 4.2.4. 

Radius of curvature of the asperities at each scale can be calculated using, 𝑅𝑖 =
𝜆𝑖

2

4𝜋2∆𝑖
, where 𝑖 

indicates the number of frequency scale. For the multiscale model, the force on each asperity can 

be calculated using Eq. (4.74), based on the total force. For axisymmetric sinusoidal asperity 

model, nominal contact area is 𝜋 (
𝜆𝑖

2
)
2

. So from the force, nominal contact area, and the equation 

for pressure required to completely flatten the single asperity for the elastic case, 𝑝𝑒
∗, (Eq. (3.4)), 

𝑝̅

𝑝𝑒
∗ can be calculated. For this asperity model, if 

𝑝̅

𝑝𝑒
∗ > 1, the ratio has to be assumed as 1, i.e. 

𝑝̅

𝑝𝑒
∗ =

1. If 
𝑝̅

𝑝𝑒
∗ < 10−5, the Hertz equation for contact area (Eq. (2.17) and (2.18)) is used, otherwise Eq. 

(3.5) has been used. The areal asperity density at each scale is: 

                                                                       𝜂𝑖 =
1

𝜋(
𝜆𝑖
2
)
2                                                            (5.9) 
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Multiscale elastic rough surface contact using the Hertz (Section 2.2.2) and extended JGH model 

(Section 2.2.7) can be modeled using the same methodology as described in the flow chart (Fig. 

5.1). However, for the Hertz and extended JGH model, the nominal contact area for asperity 

models are 𝜋 (
𝜆𝑖

2
)
2

 and (𝜆𝑖)
2 respectively. In this work, the areal asperity density for the Hertz 

single asperity model has been assumed the same as the axisymmetric sinusoidal asperity model 

i.e. Eq. (5.9). For the extended JGH model, areal asperity density is: 

                                                                       𝜂𝑖 =
2

(𝜆𝑖)
2                                                            (5.10) 

In the extended JGH model, there are two asperities in the nominal area, (𝜆𝑖)
2, that is why factor 

2 has been used in Eq. (5.10). For the Hertz model, Jackson and Streator model used the same 

nominal area and areal asperity density as the JGH model.  
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Fig. 5.1 Flowchart of iterative asperity based multiscale contact model 

Scan the desired surface location 

Perform 2D FFT and calculate Δ, λ and maximum number of scales, imax 

Choose the applied force, F on the surface 

Set nominal contact area for i=1 as 𝐴𝑛 = 𝐿𝑥𝐿𝑦 and for other scale, i, nominal contact 

area, 𝐴𝑖 = Real contact area of previous scale that is 𝐴𝑖−1 

Compute ηi, Ri and number of asperities, N for scale i, Ni = ηi 𝐴𝑖−1 

Calculate contact force on each asperity at level i, 𝐹𝑖̅ = 𝐹/𝑁𝑖  

Compute contact area of each individual asperity at scale, i, 𝐴𝑖̅ =

𝑓(𝐹𝑖) 

 

Compute total contact area for each scale, i, from Eq. (4.73) and Eq. (4.74) 

 

If  
𝐴𝑟

𝐴𝑛
> 1, set 

𝐴𝑟

𝐴𝑛
= 1 and if 𝐴𝑖 > 𝐴𝑖−1, set 𝐴𝑖 = 𝐴𝑖−1 

and 

i=imax? 

Done 

Yes 

No 
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5.2.2 Results and Discussions for the Generated Rough Surface 

5.2.2.1 Effect of the PDFs When Employed with the Hertz Model 

Fig. 5.2(a) shows the effect of different PDFs on the contact behavior when the asperity model is 

the same i.e. Hertz model in all the statistical models. At the early contact (~15-20% of the total 

contact), it seems that all the contact models have coincided with each other except the case when 

the probability distribution function is a function of surface asperity height, 𝜉ℎ∗ (PDF = 𝑓(𝜉ℎ∗)) 

and not Gaussian. However, the rough surface contact models gradually diverge from each other 

when contact area is greater than ~20% of the total contact. Xu [1] compared the Greenwood 

statistical model with BEM results for the same surface used in this analysis and the result shows 

that Greenwood model cannot produce results more than ~ 20% of the total contact. This is because 

in the analysis the surface separation, d was limited to the positive value. It has been mentioned 

before in Section 5.2.1.1 that in this chapter for all the statistical models developed using Hertz 

asperity models (Section 2.2.2, and 2.2.3), the surface separation value has been varied from -6σ 

to +6σ, so that the statistical models consider the change in surface mean height with the 

deformation. As a result, the contact area surpasses the early contact region and produces results 

up to the complete contact or near the complete contact region. However, all these models show 

large deviations with each other, with the BEM fit and the Persson model when the contact pressure 

is high. This is because the Hertz model was developed to model the small elastic deformation 

region. Fig. 5.2(b-d) show a detailed view of the early contact. From these figures, it is clear that 

although it seems that all the statistical models have coincided with each other at the low pressure 

region actually they are not. BEM is generally used as the validation tool for the elastic contact 

models, however for the small deformation region, it requires a very fine mesh to capture the 

contact behavior. 
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Fig. 5.2 Effect of different PDFs on the rough surface contact behavior when employed with the 

Hertz elastic single asperity models in the statistical model and comparison with the BEM result 

and Persson’s model, (a) full scale plot (b) log-log plot (c) plot at the small deformation region (d) 

plot at the very small deformation region compared to Fig. 5.2(c). 

 

 

 

(a) 

(c) (d) 

(b) 
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Fig. 5.3 (a) is showing the number of asperities in contact vs. the normalized contact area. From 

the figure, it is clear that when the normalized contact area is 0.1, there are about 200 asperities in 

contact (total asperities is about 1909) and Fig. 5.3(b) shows that each of the asperities have a far 

fewer number of nodes, which may not be enough to predict the initial contact behavior. Therefore, 

for the early contact the prediction that BEM shows is not that accurate. According to the previous 

research works [1, 11], the Greenwood model shows better agreement with the statistical model 

generated using the elliptical contact model, i.e. BGT model (Bush, Gibson and Thomas model, 

Section 4.3.1.1). When the deformation is small, the BGT model is more realistic than the other 

statistical models. Fig. 5.2 (c-d) shows that the difference between the Greenwood and Nayak-

Bush model is very small when the contact area is less than 15% of the total contact. In this small 

deformation region, although the GW and adapted GW models show very good agreement with 

each other at the beginning (Fig. 5.2(d)), with the increase of pressure the GW model shows good 

agreement with the Nayak-Bush model. None of the models shows good agreement with the 

Persson model. Therefore, it can be concluded that,  

 The PDF has an important effect when employing with the Hertz asperity models in the 

statistical model. The statistical model developed using a Gaussian PDF, i.e. GW model 

does not consider the statistical distribution of the asperity radius of curvature, still shows 

a similar trend and close agreement with the Greenwood and Nayak-Bush statistical models 

when the contact area is less than 20% of the total contact.  

 The adapted GW model does not consider the statistical distribution of the asperity radius 

of curvature and the PDF is not Gaussian. This model can predict contact behavior only 

when the deformation is very small. 

 All the statistical models and BEM result fit show large differences with the Persson model. 
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Fig. 5.3 (a) Number of asperities vs. contact ratio for BEM analysis, (b) Number of nodes vs. 

number of asperities for the same BEM analysis. 

5.2.2.2 Effect of the PDFs When Employed with the 3D Periodic Sinusoidal Model 

Original statistical or Greenwood-Williamson model (GW model) was developed using the Hertz 

asperity model (Section. 2.2.2 and Section 4.3.1.1) for the early contact. The model assumes that 

when the deformation is small, all the contact spots are isolated and do not interact with each other. 

However, with the increase of the pressure the effect of interactions among adjacent asperities 

become important. To consider the effect of the asperity interaction, sinusoidal asperity models 

have been developed. Extended JGH model is a 3D sinusoidal asperity model which is periodic 

both in x and y direction if the distance along z direction indicates the height (Section 2.2.7). 

Statistical models developed using the extended JGH asperity model and different PDFs have been 

plotted in Fig. 5.4. All the surface parameters and applied interference for the plotted curves in 

Fig. 5.4 are the same. Fig. 5.4(b-d) show that, GW 3D sinusoidal and adapted GW 3D sinusoidal 

rough surface contact model under predict the contact area and pressure (both of these two models   

(a) (b) 
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Fig. 5.4 Effect of different PDFs on the rough surface contact behavior when employed with the 

extended JGH elastic single asperity in the statistical model and comparison with the BEM result 

and Persson’s model, (a) full scale plot (b) log-log plot (c) plot at the small deformation region (d) 

plot at the very small deformation region compared to Fig. 5.4(c). 

 

 

(a) (b) 

(c) (d) 
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assume a constant radius of curvature in the asperity model and PDF). At the low load (Fig. 5.4(d)),  

they also show large differences with the BEM result compared to the other models. However, 

from Fig. 5.4(a), the Nayak-Bush 3D sinusoidal and Greenwood 3D sinusoidal rough surface 

contact model show a similar trend as the BEM and Persson model and can predict the gradual 

change in the contact area from low to very high pressure. The Greenwood 3D sinusoidal model 

matches well with the BEM fit from the small deformation region to more than 80% of the total 

area with an error not more than 12%. When compared with the Persson model, the Greenwood 

3D sinusoidal model shows less than 10% error when contact area is about 28-90% of the total 

area (Fig. 5.5(a)) and the Nayak-Bush 3D sinusoidal model shows less than 10% error when 

contact area is approximately 12-90% of the total area (Fig. 5.5(b)). The Nayak-Bush 3D 

sinusoidal model although shows a similar trend as the BEM fit up to near the complete contact, 

but shows a large difference quantitatively. Therefore, it can be concluded that: 

 Similar to the statistical models developed using Hertz asperity models, PDFs have a 

significant effect on the contact behavior prediction when employed with 3D periodic 

sinusoidal asperity models in the statistical model. 

 For the same surface properties and applied displacement, the GW 3D sinusoidal and 

adapted GW 3D sinusoidal rough surface models cannot predict the high-pressure contact 

area, however, the Nayak-Bush 3D sinusoidal model and Greenwood 3D sinusoidal model 

can. 

 The Nayak-Bush 3D sinusoidal and Greenwood models show a very similar trend as the 

BEM result and Persson model. The Greenwood 3D sinusoidal model shows closer 

agreement with the BEM fit and the Nayak-Bush 3D sinusoidal model shows a closer 

agreement with the Persson model. 



216 
 

 

 

 

 

 

 

Fig. 5.5 (a) Percentage of error vs. normalized contact area for Greenwood 3D sinusoidal model, 

(b) percentage of error vs. normalized contact area for Nayak-Bush 3D sinusoidal model. 

5.2.2.3 Effect of the PDFs When Employed with Axisymmetric Sinusoidal Asperity Model 

Two important features of the axisymmetric sinusoidal asperity model are (Chapter 3, [12]) are (a) 

it is computationally less expensive compared to the 3D sinusoidal asperity model, and (b) 

although the model is not exactly periodic like JGH or the extended JGH model, it effectively 

considers interaction with the adjacent asperities by having a confined boundary at the outer radius 

of the base of the asperity. Besides that, as it is a sinusoidal asperity model it considers contact 

behavior from the low load to the complete contact region.  

Fig. 5.6(a) shows that PDFs have an important effect on rough surface contact models when 

employed with the axisymmetric sinusoidal asperity model. If a PDF is Gaussian or only a function 

of surface asperity height (PDF = 𝑓(𝜉ℎ∗)), i.e. GW axisymmetric sinusoidal model and adapted 

GW axisymmetric sinusoidal model, the rough surface contact models cannot predict the contact  

 

(a) (b) 
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Fig. 5.6 Effect of different PDFs when employed with the axisymmetric sinusoidal single asperity 

model in the statistical model and comparison with the BEM result and Persson’s model, (a) full 

scale plot (b) log-log plot (c) plot at the small deformation region (d) plot at the very small 

deformation region compared to Fig. 5.6(c). 

 

(a) (b) 

(c) (d) 
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behavior when the contact pressure is high. The same behavior was also observed in Section 

5.2.2.2. Employment of the PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗) with the axisymmetric sinusoidal asperity model 

i.e. Greenwood axisymmetric sinusoidal model shows good agreement with the Persson model 

from 0.01% to about 70% of the total contact area with an error less than 10%. However, near 

complete contact it does not agree with the Persson model or BEM result and shows a different 

trend. Fig. 5.6(c) shows that at the small deformation region, both the Nayak-Bush axisymmetric 

sinusoidal and Greenwood axisymmetric sinusoidal models match well with the Persson model. 

With the increase of pressure, the Greenwood axisymmetric sinusoidal model matches better with 

the Persson model than the Nayak-Bush axisymmetric sinusoidal model. Fig. 5.7(a) and (b) are 

showing the difference in contact area when the Greenwood axisymmetric model and Nayak-Bush 

axisymmetric model have been compared with the Persson model. 

The possible reasons that are causing the difference between the statistical models developed using 

the 3D periodic sinusoidal asperity model and axisymmetric sinusoidal asperity model will be 

discussed later in Section 5.2.2.4. From the results of this section, it can be concluded that: 

 Like statistical models developed using the 3D periodic sinusoidal asperity model 

(extended JGH asperity model), the statistical models developed employing an 

axisymmetric sinusoidal asperity also show that PDFs with constant radius of curvature 

cannot predict contact behavior at the higher pressure. 

 The Greenwood axisymmetric sinusoidal model shows good agreement with the Persson 

model from the 0.01% to about 70% of the total contact area with less than 10% error. The 

Nayak-Bush axisymmetric sinusoidal model shows less than 16% error with the Persson 

model for 0.001-70% of the total contact. 
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Fig. 5.7 (a) Percentage of error vs. normalized contact area for Greenwood axisymmetric 

sinusoidal model, (b) percentage of error vs. normalized contact area for Nayak-Bush 

axisymmetric sinusoidal model. 

 Both the Greenwood and Nayak-Bush axisymmetric sinusoidal models do not show good 

agreement with the BEM results.  

5.2.2.4 Effect of Asperity Models on the Rough Surface Contact Modeling 

The previous sections-5.2.2.1, 5.2.2.2 and 5.2.2.3, give an idea about how the asperity models are 

affecting the rough surface contact behavior. However, to understand the effect of the various 

asperity models on the rough surface clearly, the statistical models with different asperity models 

have been compared, while keeping the PDF same for each of them. Then the probable reasons for 

the difference among the rough surface models due to the asperity models will be discussed. As 

the PDFs, which do not consider the change in the asperity radius of curvature under predict the 

contact area and contact pressure; therefore, the statistical models using those PDFs (Gaussian and 

(PDF = 𝑓(𝜉ℎ∗)) will not be used in this section. Fig. 5.8 is showing the effect of different asperity 

(a) (b) 
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models on the rough surface contact behavior when PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗). For all the statistical 

rough surface contact models plotted in Fig. 5.8, the geometric curvature has been varied in the 

asperity models and in the PDF. These statistical models have been compared with the BEM results 

and the Persson’s model for the purpose of validation. As mentioned before, the main purpose of 

developing sinusoidal asperity models is to model the asperity interaction at the higher pressures. 

Although, no validation work has been done before for the statistical models using sinusoidal 

asperity models for the whole range of contact. Fig. 5.8(a) and (c) are showing the validity of this 

approximation. Fig. 5.8(a) is showing that for the applied displacement, the Greenwood model, 

Greenwood 3D sinusoidal model and Greenwood axisymmetric sinusoidal model produce results 

from the very small deformation region to the complete contact. The Greenwood 3D sinusoidal 

model matches well with the BEM fit from the very small deformation region to more than 80% 

of the total contact with an error less than 12% and with the Persson model shows less than 10% 

error when real contact area is ~28%-90% of the total area (see Fig. 5.5(a)). The Greenwood 

axisymmetric sinusoidal model shows good agreement with the Persson model from 0.01% to 

about 70% of the total contact  area with less than 10% error (see Fig. 5.7(a)). Although the 

Greenwood model produces results from small deformation region to the complete contact it only 

shows very good agreement with the Greenwood 3D sinusoidal model up to 30% of the total 

contact. Then it gradually diverges, as the Hertz mildly elliptical contact model with geometric 

curvature is not developed to model the heavy deformation region. 
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Fig. 5.8 (a) Comparison among the Greenwood, Greenwood 3D sinusoidal, Greenwood 

axisymmetric sinusoidal rough surface model, BEM fit and Persson’s model, (a) full-scale plot (b) 

log-log plot c) plot at the small deformation region (d) plot at the very small deformation region 

compared to Fig. 5.8(c). 
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(c) (d) 
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Several important facts can be noted from Fig. 5.8 and the above discussion: 

 Qualitatively, the single asperity contact pressure-area relation is very similar to the rough 

surface contact result. The contact pressure-area plot near the complete contact region is 

slightly convex upward for the Greenwood 3D sinusoidal model and slightly concave 

upward for the Greenwood axisymmetric sinusoidal model, which are very similar to the 

extended JGH (3D periodic sinusoidal asperity model, see Fig. 2 in [13]), and Saha and 

Jackson single asperity model (axisymmetric sinusoidal asperity model, see Fig. 3.9 in 

Chapter 3 [12]) respectively.  

 The Greenwood axisymmetric sinusoidal model predicts smaller contact area than the 

Greenwood 3D sinusoidal model from the small deformation region to the heavy 

deformation region (from the beginning of the contact to about 70% of the total area for 

the plot shown in Fig. 5.8). However, then the Greenwood axisymmetric sinusoidal model 

predicts a larger contact area than the Greenwood 3D sinusoidal model.   

 From the small contact area to the intermediate region, the Greenwood 3D sinusoidal and 

Greenwood axisymmetric sinusoidal model are qualitatively similar. However, from the 

intermediate to the complete contact, the contact pressure-area trends are different. For the 

Greenwood 3D sinusoidal model, the contact pressure is continuously increasing even after 

reaching the complete contact. Therefore, the Greenwood 3D sinusoidal model is 

hydrostatic in nature at the complete contact. However, the Greenwood axisymmetric 

sinusoidal model behaves differently near the complete contact. After the intermediate 

region, although the area is increasing however the pressure is increasing at a very small 

rate.  
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Now the probable reasons that are causing the difference between the Greenwood axisymmetric 

sinusoidal and Greenwood 3D sinusoidal statistical models will be discussed:  

For the nearly complete contact analysis, the Johnson, Greenwood and Higginson (JGH model) 

provided an analytical solution for the 3D periodic sinusoidal asperity (see Section 2.2.6) using a 

fracture mechanics approach. They also performed an experiment to validate the analytical 

solution. Their experiment shows that when the 
𝑝̅

𝑝𝑒
∗ (𝑝̅ is the nominal pressure and 𝑝𝑒

∗ is the pressure 

required to flatten the 3D elastic periodic sinusoidal asperity) is approximately 0.6, the non-contact 

region becomes circular. Johnson et al. defined that non-contact region as a “penny-shaped” crack 

and derived the analytical solution for the non-contact area using a fracture mechanics approach 

(Section 2.2.6). Xu and Jackson also provided a solution for the non-contact area of the “penny-

shaped” crack such that the solution can be applied to the statistical model for the nearly complete 

contact (see Section 2.2.8, 2.2.9, 2.2.10, and 4.3.1.3). Both Johnson et al. (Section 2.2.6, (Eq. 

(2.39))) and Xu et al. [1-2] assumed that the parabolic pressure distribution is acting on the crack. 

According to Greenwood [14], for the surfaces like periodic wavy surface, maybe the assumption 

of the parabolic pressure on the circular non-contact area is valid. However, if the surface is like a 

fractal or random in nature, the pressure distribution is very complicated and pressure distribution 

on the concentric ring shape non-contact area (if not more complicated) will be closer to the reality.  

For the axisymmetric sinusoidal asperity model, the non-contact area is like a concentric ring shape 

(non-periodic wavy pressure distribution will be created at the interface).  

Besides that for the same material and 
∆

𝜆
 value, the pressure required to reach at complete contact 

for the 3D sinusoidal model is higher than the pressure required to reach at complete contact for 

the axisymmetric sinusoidal asperity. This is why when employing this axisymmetric sinusoidal 
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asperity model to predict rough surface contact behavior it is predicting a contact area larger than 

the statistical model developed using extended JGH model near the complete contact.  

Now, in an average sense it can be assumed that the stress intensity factor (SIF) for the concentric 

ring shaped crack and circular crack are the same [14]. Then the non-contact area equation for 

JGH model should be also applicable to the axisymmetric sinusoidal asperity model, however the 

pressure distribution in the non-contact area equation will be different. The analytical equation for 

non-contact area developed by Johnson et al. (Section 2.2.6, (Eq. (2.39))) is a function of pressure. 

Therefore, in that equation if the pressure distribution for the axisymmetric case is applied, the 

non-contact area for the axisymmetric case and 3D sinusoidal wavy asperity (JGH) should match 

with each other. The non-contact area equation provided by Johnson et al. (Eq. (2.39)) is: 

Normalized non-contact area =
3

2𝜋
{1 −

𝑝̅

𝑝𝑒
∗} 

Fig. 5.9 is showing that, when the pressure distribution for the axisymmetric case has been applied 

to the above equation, both asperity models almost coincided with each other from the intermediate 

region to the complete contact. Therefore, it can be said with confidence now that it is the pressure 

distribution on the non-contact area that is causing the difference between the axisymmetric 

sinusoidal model, and the 3D periodic sinusoidal asperity model. As a result, this reason is also 

causing a difference in the rough surface models that have been developed employing these two 

asperity models.  
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Fig. 5.9 Comparison between axisymmetric sinusoidal asperity model and Johnson et al. [15] 

nearly complete contact solution (3D periodic sinusoidal asperity model). 

The statistical models developed employing mean curvature at the asperity and the PDF, behave 

in a very similar way as the statistical models developed employing geometric curvature at the 

asperity and PDF. The statistical models developed using mean curvature i.e. the Nayak-Bush 

model, Nayak-Bush 3D sinusoidal model and Nayak-Bush axisymmetric sinusoidal model have 

been shown in Fig. 5.10. Fig. 5.10(a) and (b) show that, employment of the sinusoidal asperity 

model in the statistical model helps to predict contact behavior from small contact area to the 

complete contact. The Nayak-Bush 3D sinusoidal model shows a similar trend to the Persson 

model and BEM fit, but actually shows good agreement with the Persson model from 12% to about 

90% of the total contact with less than 10% error. The Nayak-Bush axisymmetric sinusoidal model 

is qualitatively the same as the Nayak-Bush 3D sinusoidal model, the BEM fit and the Persson 

model from low load to the intermediate region (more than 60% of the total area). After that, the 

contact pressure-area curve trend is different. The reason is the same as described for the statistical 
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models plotted in Fig. 5.8. The comparison between the Nayak-Bush axisymmetric sinusoidal 

model and the Persson model shows that the difference between the two models is less than 16% 

when the real contact area is 0.001% to 70% of the total contact. When the pressure is small (Fig. 

5.10(c-d), contact area is less than 20% of the total contact), both the Nayak-Bush and Nayak-

Bush 3D sinusoidal model match well with each other. These two models show better agreement 

with the BEM fit at the small pressure region. Therefore, the following points can be concluded: 

 The Nayak-Bush model and Nayak-Bush 3D sinusoidal model almost coincide with each 

other at the small deformation region when the contact area is less than 20% of the total 

contact. When the deformation is very small, these two models also match well with the 

BEM fit and with the increase of deformation gradually diverge from BEM fit and from 

each other.  

 The Nayak-Bush 3D sinusoidal model shows good qualitative agreement with the BEM fit 

and the Persson model, but shows good quantitative agreement with the Persson model 

(when real contact area is 12-90% of the total area, error is less than 10%).  

 The Nayak-Bush axisymmetric sinusoidal model does not show good qualitative 

agreement with the BEM fit. At the beginning of the contact, when the deformation is very 

small, the model matches very well with the Persson model. However, with the increase in 

deformation these two models do not match well qualitatively and after the intermediate 

contact region, gradually show different trends in the contact behavior. The comparison 

between these two models shows that the difference between these two models is less than 

16% when the contact area is 0.001%-70% of the total contact.  
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Fig. 5.10 (a) Comparison among Nayak-Bush, Nayak-Bush 3D sinusoidal, Nayak-Bush 

axisymmetric sinusoidal, BEM fit and Persson’s model, (a) full scale plot (b) log-log plot (c) small 

deformation region (d) very small deformation compared to Fig. 5.10 (c). 
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(c) (d) 
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5.2.2.5 Comparison of the Newly Developed Statistical Models with the Nearly Complete 

Contact Statistical Models 

In this section, the statistical models developed using 3D periodic sinusoidal asperity model will 

be plotted together with the statistical models that were developed for the nearly complete contact 

region using the fracture mechanics approach (see Section 4.3.1.3). The objective is to observe 

whether the statistical models developed using 3D periodic sinusoidal asperity model and 

statistical models for the nearly complete contact models together can predict the contact behavior 

for the whole range of contact. Statistical models developed using axisymmetric sinusoidal 

asperity model will not be discussed here. Because the nearly complete contact statistical models 

have been developed assuming parabolic pressure distribution over the circular non-contact area, 

however, for the axisymmetric sinusoidal asperity case, wavy pressure distribution has been 

observed on the concentric ring shaped non-contact area.  

Fig. 5.11 shows the comparison of the newly proposed statistical models developed employing 3D 

periodic sinusoidal asperity model with the Greenwood crack model, Nayak-Bush crack model, 

BEM fit and the Persson model. The Greenwood-crack model is the Xu and Jackson modified 

Greenwood model, and the Nayak-Bush crack model is the Xu and Jackson modified Nayak-Bush 

model (see Section 4.3.1.3). The nearly complete contact statistical models show good agreement 

with the BEM and fit both qualitatively and quantitatively near the complete contact, and shows 

good qualitative agreement with the Persson model. As mentioned before, Fig. 5.11(a) and Fig. 

5.11(b) show that the Greenwood 3D sinusoidal model agrees well with the BEM fit from the very 

small deformation region (0.1% of the total area) to the heavy deformation region (more than 80% 

of the total contact). Therefore, the Greenwood 3D sinusoidal model in conjunction with the 

Greenwood crack model can predict the whole range of contact (assuming the BEM result is 



229 
 

absolutely correct). The amount of error for the whole range of contact is less than 12% when 

compared with the BEM fit and the normalized contact area is greater than 0.001. The Nayak-Bush 

3D sinusoidal model qualitatively shows good agreement with both the Persson model and BEM 

fit from the small deformation region to the heavy deformation region (more than 90% of the total 

area for the plot shown in Fig. 5.11(a)), does not show good quantitative agreement with the BEM 

fit and also cannot predict the complete contact area). To clearly show the combined plot of the 

Greenwood 3D sinusoidal model, the Greenwood crack model, and the BEM fit, these three results 

have been plotted together again in Fig. 5.11 (b). 

 

Fig. 5.11 (a) Comparison of the newly developed statistical models using 3D sinusoidal asperity, 

and PDF = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗) and PDF = 𝑓(𝜉ℎ∗, 𝑘𝑚

ℎ∗) with the nearly complete contact statistical 

models, BEM fit and Persson’s model, (b) Comparison of the Greenwood 3D sinusoidal model 

and Greenwood-crack model with the BEM fit. 

 

(a) (b) 
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5.2.2.6 Comparison of the Statistical Models with Multiscale Models 

In this section, all the statistical model’s predictions developed and discussed so far will be 

compared with the multiscale model. Three different multiscale models have been considered for 

comparison: multiscale model developed employing 1) Hertz spherical asperity model (Eq. (2.17) 

and (2.18)), 2) 3D periodic sinusoidal asperity model (Eq. (2.46), (2.47) and (2.48)), and 3) 

axisymmetric sinusoidal asperity model (Eq. (3.5) and (3.9)), in the framework of the multiscale 

model (Eq. 4.73 and 4.74). Fig. 5.12(a), 5.12(b), and 5.12(c) are showing the spectrum of the 

isotropic, fractal and Gaussian rough surface. The spectrum of the rough surface shows that the 
∆

𝜆
 

values for the surafce area very small and there is not much variation in the 
∆

𝜆
 values.  Fig. 5.13 is 

showing the comparison of the statistical, multiscale, Persson models and BEM fit. Nearly 

complete contact statistical models have not been plotted in Fig. 5.13. The plots show that when 

employing different asperity models in the framework of the multiscale model, the contact models 

show a similar trend as the statistical model, but over predict the contact area compared to all the 

statistical models, BEM fit and Persson model. The multiscale model developed using the 

axisymmetric sinusoidal asperity over predicts the contact area most, then multiscale model 

developed using 3D sinusoidal model and multiscale model developed using Hertz asperity model 

predicts the least contact area at the same pressure among these three multiscale models. 
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Fig. 5.12 (a) Spectrum of the generated surface with surface properties shown in Table-5.1, (b) 

Normalized surface spectrum of the same surface, (c) magnified view of the normalized spectrum 

where 
∆

𝜆
 value is high. 

 

 

(a) 

(c) 

(b) 
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Fig. 5.13 Comparison of the multiscale model with the statistical models and BEM fit, (a) full-

scale model (b) log-log plot (c) at the small deformation region. 

 

 

 

(a) 

(b) (c) 
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5.3 Development of the Elastic Rough Surface Contact Models (Real Surface) 

The main objective of this section is to observe, how the real surface data effects the prediction of 

the same rough surface contact models developed and discussed in Section 5.2. It will also be 

inspected, if there is any difference in the contact behavior trend when these statistical models 

have been employed for the real surface and generated surface contact analysis.  

For real surface analysis, two aluminum alloy cylinders (6061-T6511B) have been chosen, which 

are then used later to measure the contact resistance between them. Contact resistance 

measurement between the two aluminum surfaces will be discussed later in Section 5.5.2. Fig. 5.14 

(a) shows the aluminum surfaces that have been used for real rough surface contact analysis. For 

each of the sample surfaces, roughness has been measured at the north, south, east, west, and at 

the origin as shown in the figure to get an overall idea about the sample surface roughness. Fig. 

5.14(b) shows the Scanning White Light Interferometer (SWLI) that has been used for surface 

roughness measurement. For all the measurements, a 3.429 𝜇𝑚 horizontal resolution has been 

used. After the surface roughness measurement, if there is any missing data, that location has been 

filled by taking an average of the neighboring surface roughness heights. To level the surface, a 

plane has been fitted through the surface data. Then that plane has been subtracted from the original 

surface roughness. The mean has been calculated and subtracted from the roughness heights using 

the same methodology as described for the generated surface (Section 5.2). The surface properties 

have been calculated using the methods described in Section 4.2.1 and 4.2.4. The material and 

surface properties have been shown in Table-5.4, 5.5 and 5.6. The plot of the rough surface, 

probability distribution of the surface asperity heights and spectral analysis of the surfaces have 

been shown in Fig. 5.15(a), 5.15(b), and 5.15(c-d) respectively. As the rough surface contact 
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modeling methodology is the same for both the generated and real surfaces, they is why will not 

be described in this section. 

Table-5.4 Aluminum alloy (6061-T6511B) material properties 

Young’s 

Modulus  

(GPa) 

Yield Strength 

(MPa) 

Poisson’s Ratio Equivalent 

Elastic Modulus 

(GPa) 

Resistivity 

 (Ω∙ 𝑚) 

68.9 276 0.33 38.66 3.99× 10−8 

 

Table-5.5 Average properties of the composite rough surface 

 

Table-5.6 Properties of the corresponding “pressure surface” 

 

 

 

 

 

𝑚0
ℎ  

(𝑚2) 

𝜎 

(𝜇𝑚) 

𝑚2
ℎ 

 

𝑚4
ℎ 

(𝑚−2) 

𝑚6
ℎ 

(𝑚−4) 

𝛼ℎ 

5.0485

× 10−12 

2.25 0.0202 3.7356× 109 8.2979×

1020 

46.22 

𝑚0
𝑝∗

 𝑚2
𝑝∗(𝑚−2) 𝑚4

𝑝∗(𝑚−4) 𝛼𝑝 
𝑚𝑛

𝑝∗ =
𝑚𝑛

𝑝

(𝐸′)2
 

Where, 
𝑛 = 0,2,4,6… 3.18×

10−3 

3.92× 108 7.837×

1019 

1.62 
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Fig. 5.14 (a) Aluminum surfaces used for real rough surface contact analysis and contact resistance 

measurement, (b) Scanning White Light Interferometer (SWLI) used for surface roughness 

measurement. 

 

 

(a) 

(b) 
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Fig. 5.15 (a) Plot of the aluminum rough surface (b) PDF of the rough surface (c) average spectrum 

of the rough surface (d) normalized average spectrum of the rough surface.  

 

 

 

 

(a) (b) 

(c) (d) 
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5.3.1 Results and Discussions for the Real Surface 

5.3.1.1 Effect of PDFs when Employed with the Hertz Model 

Figure 5.16 shows the effect of different PDFs (Gaussian, 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗), 𝑃𝐷𝐹 =

𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗), 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑚

ℎ∗)), when employed with the Hertz models (Circular contact with 

constant radius of curvature, mildly elliptical contact with geometric curvature, mildly elliptical 

contact with mean curvature) in the framework of the statistical model. These statistical models 

have been described in detail in Section 4.3.1.1. For the sample real surface, Nayak’s bandwidth 

parameter, 𝛼ℎ is 46.22 (see Table-5.5). As the value of 𝛼ℎ is very high, so the surface should be 

nearly Gaussian in nature. Fig. 5.15(b) also shows that the sample surface is very close to Gaussian. 

The contact behavior trends observed in Fig. 5.16 for the real surface are very similar to the 

generated elastic surface contact behavior (Fig. 5.2), when the statistical models are the same. For 

the same surface properties and applied displacement, the rough surface model that has been 

developed using a PDF which is not Gaussian and 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗) under predict the contact area 

and pressure compared to the statistical models developed using a Gaussian PDF, 𝑃𝐷𝐹 =

𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗) and 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑚

ℎ∗). Apparently it seems from Fig. 5.16(a-b) that all the models 

show good agreement with one another when the deformation is very small.  However, Fig. 5.16 

(c-d) show a clear view of the small deformation region. When the contact area is less than 20% 

of the total contact, the Nayak-Bush model (𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗)) and Greenwood-Williamson 

model (Gaussian PDF) show best agreement with each other. All the models plotted in Fig. 5.16 

show high deviation from each other after the small deformation region.  
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Fig. 5.16 Effect of different PDFs on the rough surface contact behavior when employed with the 

Hertz elastic single asperity models in the statistical model and comparison with the Persson 

model, (a) full scale plot (b) log-log plot (c) plot at the small deformation region (d) plot at the 

very small deformation region compared to Fig. 5.16(c). 

 

 

 

(a) (b) 

(c) (d) 
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5.3.1.2 Effect of PDFs when Employed with the 3D Periodic Sinusoidal Model 

Figure 5.17 shows the effect of different PDFs when employed with the 3D periodic sinusoidal 

asperity models in the statistical model (these statistical models are described in Section 5.2.1.2). 

For these statistical models, the trend observed in the contact pressure-area curve for the real 

surface and for the generated surface are very similar (see Fig. 5.4). However, there are very few 

differences. 1) When the GW 3D sinusoidal statistical model has been employed to predict the 

contact behavior of the real surface, it shows a similar trend as the Nayak-Bush 3D sinusoidal 

model and Greenwood 3D sinusoidal model and can predict higher contact areas. The real surface 

is Gaussian in nature, therefore the result seems logical. In the case of the generated fractal surface, 

the GW 3D sinusoidal model could not predict the contact behavior after the small deformation 

region although the generated surface was Gaussian. Therefore, it seems that although the 

Gaussian distribution equation is easy to employ. However, PDFs, which consider both surface 

asperity height and mean/geometric curvature are more reliable to predict the contact behavior, 

whether the surface is Gaussian or not, 2) For the generated surface, the Greenwood 3D sinusoidal 

model and Nayak-Bush 3D sinusoidal model both show good agreement with the Persson model 

(For Greenwood 3D sinusoidal, when real contact area is ~30-80% of the total area, error was less 

than 10% and for Nayak-Bush 3D sinusoidal, when real contact area is ~12-90% of the total area 

the error was less than 10%). However, for the real surface, the Nayak-Bush 3D sinusoidal model 

and Greenwood 3D sinusoidal model do not show good agreement with the Persson model. The 

probable reason of this difference is that the Persson model is derived assuming the rough surface 

as a self-affine fractal. However, the real surface analyzed here is not a purely self-affine fractal 

in nature (see Fig. 5.15 (c)-(d)). For pure self-affine fractal rough surfaces, the Δ values will change 

linearly with λ (as Δ and Power Spectral Density, 𝑆ℎ are proportional to each other, see Eq. (4.36)). 
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However, in Fig. 5.15(c-d), the Δ or 
∆

𝜆
 relation with wavelength, λ is not linear for the considered 

frequency spectrum of the rough surface. Like the generated surface, for the real surface analysis, 

the Nayak-Bush 3D sinusoidal and GW 3D sinusoidal model also show a good match with each 

other when the contact area is less than 20% of the total contact. 

 

  

Fig. 5.17 Effect of different PDFs on the rough surface contact behavior when employed with the 

3D periodic sinusoidal single asperity in the statistical model and comparison with the Persson 

(d) 

(a) (b) 

(c) 
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model, (a) full scale plot (b) log-log plot (c) plot at the small deformation region (d) plot at very 

small deformation region compared to Fig. 5.17(c). 

5.3.1.3 Effect of PDFs when Employed with the Axisymmetric Sinusoidal Model 

The predictions of the statistical models developed using different PDFs and the axisymmetric 

sinusoidal asperity are shown in Fig. 5.18 (the statistical models have been described in Section 

5.2.1.3). Several differences have been observed when employing these same models for the 

generated surface. The variations are very similar to the differences as observed in Section 5.3.1.2, 

1) For the generated surface, the GW axisymmetric sinusoidal model under predicts the contact 

area, although the generated surface is Gaussian in nature. However, like the previous Section 

5.3.1.2, when employing the GW axisymmetric sinusoidal model to analyze the real surface 

contact behavior, the contact model can predict higher contact areas and pressure and shows very 

close agreement with the Nayak-Bush model from the small deformation region to near the 

complete contact. 2) For the generated surface, both the Greenwood axisymmetric sinusoidal and 

Nayak-Bush axisymmetric sinusoidal model show very good agreement with the Persson model 

at the small deformation region (see Fig. 5.8(d) and 5.10(d) ). GW axisymmetric sinusoidal model 

also shows good agreement with Persson’s model when contact area is 0.01-70% of the total area 

with less than 10% error (see Fig. 5.6 and Fig. 5.7(a)). However, for the real surface this statistical 

model does not match well with Persson’s model. As mentioned before, the real surface analyzed 

here is not a purely self-affine fractal surface Persson’s model was derived for the self-affine fractal 

rough surface. This is probably the reason causing the difference when employing the same models 

for the generated and real surface.  
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Fig. 5.18 Effect of different PDFs on the rough surface contact behavior when employed with the  

axisymmetric sinusoidal single asperity in the statistical model and comparison with the Persson 

model, (a) full scale plot (b) log-log plot (c) plot at the small deformation region (d) plot at the 

very small deformation region compared to Fig. 5.18(c). 

 

 

 

(a) (b) 

(c) (d) 
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5.3.1.4 Effect of Asperity Models on the Rough Surface Contact Modeling (Real Surface) 

The effect of different asperity models on the rough surface contact behavior have been discussed 

in detail for the generated rough surface (see Section 5.2.2.4). The main difference that has been 

observed between the generated and real surface analysis are the effect of Gaussian PDF and the 

difference with the Persson’s model. During analyzing the effect of PDFs (while keeping the 

asperity model the same) on the real surface contact behavior, it has been found that as the real 

surface is Gaussian the statistical models developed using a Gaussian PDF qualitatively show very 

similar trends as the statistical models developed using  𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗) and 𝑃𝐷𝐹 =

𝑓(𝜉ℎ∗, 𝑘𝑚
ℎ∗), but quantitatively predict different behavior. The investigations of the asperity models 

on the contact behavior show that, when employing a Gaussian PDF, the statistical models 

developed using the 3D periodic sinusoidal asperity model and Hertzian asperity model almost 

coincided with each other (Fig. 5.19(a)). When employing 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗) and 𝑃𝐷𝐹 =

𝑓(𝜉ℎ∗, 𝑘𝑚
ℎ∗), the statistical model developed using the 3D periodic sinusoidal model and Hertzian 

asperity model also show very good agreement (see Fig. 5.20(a) and Fig. 5.21(b)). All the statistical 

models developed using the axisymmetric sinusoidal asperity model always under predict the 

contact area of the statistical models developed using 3D periodic sinusoidal asperity model from 

the small deformation region to the intermediate region/ near the complete contact. However, from 

the intermediate region/ near the complete contact to the complete contact region, these models 

generally over predict the contact area compared to the statistical models developed using the 3D 

sinusoidal model. The reasons have described when analyzing the effect of asperity models on the 

generated surface contact (see Section 5.2.2.4). Fig. 5.19-5.21 are showing the effect of asperity 

models on the real rough surface contact when the PDF is Gaussian, 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗)), and 

 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑚
ℎ∗)),  respectively. 
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Fig. 5.19 (a) Comparison among GW model, GW 3D sinusoidal, GW axisymmetric sinusoidal and 

Persson’s model, (a) full-scale plot (b) log-log plot (c) small deformation region. 
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Fig. 5.20 (a) Comparison among Greenwood model, Greenwood 3D sinusoidal, Greenwood 

axisymmetric sinusoidal and Persson’s model, (a) full-scale plot (b) log-log plot (c) small 

deformation region.  
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Fig. 5.21 (a) Comparison among Nayak-Bush model, Nayak-Bush 3D sinusoidal, Nayak-Bush 

axisymmetric sinusoidal and Persson’s model, (a) full-scale plot (b) log-log plot (c) small 

deformation region. 

 

 

 

 

(a) (b) 

(c) 
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5.3.1.5 Comparison of the Newly Developed Statistical Models with the Nearly Complete 

Contact Statistical Models 

Fig. 5.22 is showing the comparison of the statistical models developed using the 3D periodic 

sinusoidal asperity models with the nearly complete contact statistical models for the real surface. 

During the validation of the generated surface, it has been found that the Greenwood 3D sinusoidal 

model in conjunction with the Greenwood crack model can predict the whole range of contact and 

show good agreement with the BEM. Therefore, it appears better to employ the statistical models 

developed for early to complete contact (Greenwood 3D sinusoidal model) with the statistical 

models for the nearly complete contact (Greenwood crack model) to make sure that statistical 

models developed for early to complete contact are well predicting near the complete contact. For 

the generated surface the Greenwood 3D sinusoidal model could predict from 0.1% to more than 

80% of the total area and the rest of the range has been predicted by the nearly complete contact 

statistical model. However, for the real surface the Greenwood 3D sinusoidal model can predict 

almost the whole range of contact.  

 

 

 

 

 

Fig. 5.22 Comparison among the statistical models developed using 3D periodic sinusoidal 

asperity models and nearly complete contact statistical models. 
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5.3.1.6 Comparison of the Newly Developed Statistical Models with the Multiscale Models 

Figure 5.23 is showing the comparison of the multiscale models with the statistical models for the 

real surface. The real surface shows a very similar behavior as the generated surface. All the 

multiscale models developed using 3D periodic sinusoidal asperity model (Eq. (2.46), (2.47), and 

(2.48)), axisymmetric sinusoidal asperity model (Eq. (3.5), and (3.9)) and Hertz spherical asperity 

model (Eq. (2.17) and (2.18)) over predict the contact area compared to the statistical models. 

Among the three multiscale models, the multiscale model developed using the axisymmetric 

sinusoidal asperity predict the largest contact area, followed by the multiscale model developed 

using the 3D periodic sinusoidal asperity and then the multiscale model developed using the Hertz 

asperity. 

 

Fig. 5.23 Comparison among different statistical and multiscale elastic contact models. 
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5.4 Development and Validation of the Elastic-Plastic Rough Surface Contact  

From the analysis in the previous sections, it has been found that when employing the statistical 

model to predict the contact behavior proper choice of the asperity model and PDF are important. 

Although the Gaussian PDF is widely used for rough surface contact analysis, it is more reliable 

to use the PDFs, which consider the change in both the asperity height and radius of curvature. 

Research work has been done on the elastic-plastic statistical models using Jackson-Green (JG) 

spherical asperity models (see Section 4.3.2.1), and 3D periodic elastic-plastic sinusoidal asperity 

models [12]. However, these statistical models did not consider the statistical distribution of 

asperity radius of curvature with asperity height, and employed the Gaussian distribution as the 

PDF irrespective of the surface nature. In this section, several elastic-plastic statistical rough 

surface contact models have been developed using spherical and sinusoidal asperity models and 

different PDFs. Change in the radius of curvature with the asperity heights have been considered 

both in the asperity models and PDFs. The newly developed statistical models have also been 

compared with the multiscale models. Then electrical contact resistance has been determined using 

these rough surface contact models. Unlike the elastic rough surface contact analysis, for the 

elastic-plastic rough surface contact models no numerical solution is available to validate the 

developed models. That is why an experiment has been performed using a four-wire resistance 

measurement method, and has been compared with the elastic-plastic rough surface contact 

models. The same aluminum surface that was used for the elastic rough surface contact analysis 

has been used for the elastic-plastic rough surface contact analysis. The methods to calculate 

surface properties for this surface have been described while analyzing the elastic rough surface 

contact analysis in Section 5.2. 
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5.4.1 Methodology 

5.4.1.1 Statistical Model (Spherical Asperity Models + Different PDFs) 

Greenwood Distribution and Jackson-Green Elastic-plastic Model (Greenwood Distribution 

and JG Elastic-plastic Model) 

This statistical model has been developed using Jackson-Green spherical asperity model (Eqs. 

(2.64-2.67, and 2.70) and PDF that varies as a function of surface asperity height and geometric 

curvature, 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗) (Eq. (4.31)). When employed this asperity model in the statistical 

model, instead of constant radius of curvature, varying radius of geometric curvature 

(i. e.  𝑅 =
1

𝑘𝑔
) has been used. The value of geometric curvature in the asperity model and in the 

PDF will vary over the integration limit of the statistical model. To predict the rough surface 

contact area and contact force, Eqs. (5.5) and (5.6) have been used. The Jackson-Green single 

asperity model has been developed such that, when normalized interference (Eqs. (2.61) and 

(2.64)) for the single asperity is less than 1.9, the contact is effectively elastic, and Eqs. (2.64) and 

(2.65) have been used to calculate the single asperity contact area and force. When the normalized 

interference is greater than 1.9, the contact is elastic-plastic, and Eqs. (2.64, 2.66-2.67, and 2.70) 

have been used to predict the contact area and force. Then from these single asperity models, rough 

surface contact area and contact force have been calculated. For this statistical model, interference, 

ω or 𝛿 = 𝜉ℎ − 𝑑. 𝜂ℎ and ∅(𝜉ℎ∗) have been calculated using Eqs. (4.22) and (4.31), respectively.  

Nayak-Bush Distribution and Jackson-Green Elastic-plastic Model (Nayak-Bush 

Distribution and JG Elastic-plastic Model) 

This rough surface contact model has been developed using the same methodology as Greenwood 

distribution and JG elastic-plastic model. However, there are very few differences between these 
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two rough surface contact models. For this statistical model, the rough surface contact area and 

force have been determined from Eqs. (5.7) and (5.8). Instead of the radius of geometric curvature, 

the radius of mean curvature (i. e. 𝑅 =
1

𝑘𝑚
 ) has been used in the asperity model. When employed, 

the asperity model and 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑚
ℎ∗) in the statistical model, the integral defines the value 

of mean curvature. For the PDF, Eq. (4.24) has been used.  

5.4.1.2 Statistical Model (3D Periodic Sinusoidal Asperity Models + Different PDFs) 

Greenwood Distribution and 3D Sinusoidal Elastic-plastic Model (Greenwood 3D Sinusoidal 

Elastic-plastic Model) 

This statistical model has been developed using 3D periodic elastic and elastic-plastic sinusoidal 

asperity model (Eqs. (2.43), (2.46-2.48), (2.90-2.99)) and 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗) (Eq. (4.31). The 

rough surface contact area and contact force have been calculated employing Eqs. (5.5) and (5.6). 

Instead of using a constant radius of curvature in the asperity model and PDF, a varying radius of 

geometric curvature (i. e. 𝑅 =
1

𝑘𝑔
 ) has been used. For this statistical model, ∆= 𝜉ℎ, λ is calculated 

from 𝑅 = 1/𝑘𝑔
ℎ =

𝜆2

4𝜋2∆
=> 𝜆 = √

1

𝑘𝑔
ℎ × 4𝜋2∆ (see Eq. (5.4)) and interference is, 𝛿 = 𝜉ℎ − 𝑑. In 

the rough surface contact model, the integral defines the value of geometric curvature. Eq. (2.93) 

has been used to determine whether the surface will deform elastically or elasto-plastically. This 

equation gives the value of critical amplitude, ∆𝑐. If the value of ∆ is less than ∆𝑐, the contact will 

deform elastically and the same method that has been used for the Greenwood 3D sinusoidal elastic 

model (see Section 5.2.1.2) has been applied. When the value of ∆ is greater than ∆𝑐, contact will 

deform elasto-plastically. For the elastic-plastic contact, contact force has been determined using 

Eq. (2.94) and Eq. (2.99). Eq. (2.99) is the equation for surface separation (i.e. gap), which is a 

function of normalized pressure. For the elastic case, it was easy to simplify the equation of contact 
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gap. However, for the elastic-plastic case, normalized pressure cannot be determined from Eq. 

(2.99) algebraically. Therefore, the Bisection method has been used to numerically solve that 

equation and to calculate 
𝑝̅

𝑝𝑒𝑝
∗  (𝑝̅ is the nominal pressure and 𝑝𝑒𝑝

∗ is the pressure required to 

completely flatten the sinusoidal asperity when it deforms elastic-plastically). The surface 

separation for Eq. (2.99) can be calculated using 𝐺 =
𝑑

𝜉ℎ, where d is the separation between the 

mean of the contacting rough surface or separation between the mean of the composite surface and 

rigid flat. Once the value of 
𝑝̅

𝑝𝑒𝑝
∗  is known, contact area for the single asperity is calculated using 

Eqs. (2.95-2.98). 𝜂ℎ and ∅(𝜉ℎ∗, 𝑘𝑔
ℎ∗) have been calculated using Eq. (4.22) and (4.31), 

respectively. 

Nayak-Bush Distribution and 3D Sinusoidal Elastic-plastic Model (Nayak-Bush 3D 

Sinusoidal Elastic-plastic Model) 

This rough surface contact model has been developed using the same methodology as the 

Greenwood 3D sinusoidal elastic-plastic model. However, for this statistical model, rough surface 

contact area and force can be determined from Eqs. (5.7) and (5.8). Instead of the radius of 

geometric curvature in the asperity model and PDF, the radius of mean curvature (i. e. 𝑅 =
1

𝑘𝑚
) has 

been used.  The PDF has been calculated using Eq. (4.24), which is a function of asperity height 

and mean curvature. λ is calculated from 𝑅 = 1/𝑘𝑚
ℎ =

𝜆2

4𝜋2∆
=> 𝜆 = √

1

𝑘𝑚
ℎ × 4𝜋2∆ . 
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5.4.1.3 Statistical Model (Axisymmetric Sinusoidal Asperity Models + Different PDFs) 

Greenwood Distribution and Axisymmetric Sinusoidal Elastic-plastic Model (Greenwood 

Axisymmetric Sinusoidal Elastic-plastic Model) 

This statistical model has been developed using the axisymmetric sinusoidal asperity model (Eqs. 

(3.5, 3.9, (3.13-3.17)) and the Greenwood PDF that is a function of asperity height and geometric 

curvature, 𝑃𝐷𝐹 = 𝑓(𝜉ℎ∗, 𝑘𝑔
ℎ∗). Contact area and force for this rough surface contact model has 

been determined using Eqs. (5.5) and (5.6). These two equations are a function of single asperity 

models for contact area and contact force respectively. To implement the model, it is important to 

determine whether for a particular displacement, 𝛿 = 𝜉ℎ − 𝑑, the contact is in the elastic or in the 

elastic-plastic range. For this purpose, the critical value of amplitude, ∆𝑐 has been determined from 

Eq. (3.11). For this rough surface contact model, ∆= 𝜉ℎ, surface separation, 𝐺 =
𝑑

𝜉ℎ and λ is 

calculated from,  𝑅 = 1/𝑘𝑔
ℎ =

𝜆2

4𝜋2∆
=> 𝜆 = √

1

𝑘𝑔
ℎ × 4𝜋2∆. If the value of 

∆

∆𝑐
 is less than 1, the 

contact is elastic, if greater than 1, the contact is elastic-plastic. For 
∆

∆𝑐
< 1, 1 ≤

∆

∆𝑐
≤ 12.2, 12.2 ≤

∆

∆𝑐
≤ 48.8, and 48.8 ≤

∆

∆𝑐
≤ 243.96, Eqs. (3.9), (3.15), (3.16) and (3.17) have been applied 

respectively, to determine the contact force for the single asperity (see Section 3.3.1.3, and 3.3.2.3 

for detail equations). 𝑝𝑒
∗ and 𝑝𝑒𝑝

∗  have been determined using Eq. (3.4) and Eq. (3.12), respectively. 

From the single asperity contact force, using Eq. (5.6), contact force for the rough surface has been 

determined. Once the value of normalized pressure is known, for 
∆

∆𝑐
< 1,  1 ≤

∆

∆𝑐
≤ 12.2, 

and 12.2 ≤
∆

∆𝑐
≤ 243.96, Eqs. (3.5), (3.13), and (3.14) have been employed, respectively, to 

determine the contact area for the single asperity (see Section 3.3.1.2 and 3.3.2.2 for detail 
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equations). Then from the single asperity contact area, contact area for the rough surface has been 

determined using Eq. (5.5). 

Nayak-Bush Distribution and Axisymmetric Sinusoidal Elastic-plastic Model (Nayak-Bush 

Axisymmetric Sinusoidal Elastic-plastic Model) 

The method to develop this rough surface contact model is similar to the Greenwood axisymmetric 

sinusoidal elastic-plastic model. However, contact area and contact force for the rough surface 

contact model have been determined using Eq. (5.7) and (5.8). In the asperity model and PDF, 

varying radius of mean curvature (i. e. 𝑅 =
1

𝑘𝑚
) has been used and the integral defines the value of 

mean curvature. The PDF ∅(𝜉ℎ∗, 𝑘𝑚
ℎ∗ ), is determined using Eq. (4.24). λ for the asperity model is 

determined from,  𝑅 = 1/𝑘𝑚
ℎ =

𝜆2

4𝜋2∆
=> 𝜆 = √

1

𝑘𝑚
ℎ × 4𝜋2∆. 

5.4.1.4 Elastic-plastic Contact Analysis Using the Multiscale Method 

Multiscale Jackson and Green Elastic-plastic Model (Multiscale JG Elastic-plastic Model) 

Jackson and Streator have developed this multiscale model (see Section 4.3.1.4). However, in their 

model it has been assumed that there are two asperities in the nominal area of the asperity and 

nominal area of the asperity is 𝜆2. In this dissertation, it has been assumed that when employing 

Jackson-Green model in the multiscale model, there is only one asperity in the nominal area of the 

asperity and the nominal area for the asperity is 𝜋 (
𝜆𝑖

2
)
2

, where 𝜆𝑖 is the wavelength at a particular 

scale. This is done to match the methodology of the axisymmetric sinusoidal asperity model. The 

flow chart for multiscale modeling is given in Fig. 5.1. Using the method described in the flow 

chart, after calculating the force on each asperity, 𝐹𝑎𝑠𝑝 , if, 𝐹𝑎𝑠𝑝 < 𝐹𝑐, then Eq. (2.65) has been used 
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to calculate single asperity contact area. If 𝐹𝑎𝑠𝑝 > 𝐹𝑐 then Eqs. (2.66-67, 2.70) have been used to 

calculate the contact area. When using Eq. (2.67), the normalized interference cannot be 

determined algebraically, which is necessary to calculate asperity contact area. Therefore, Eq. 

(2.67) is numerically solved using the Bisection method.  𝐹𝑐 has been calculated using Eq. (2.63). 

Eq. (4.73) is used to calculate total contact area at each scale, i. 

Multiscale Axisymmetric Sinusoidal Elastic-plastic Model 

This multiscale model has been developed using the axisymmetric sinusoidal asperity model. The 

methodology is the same as described in the flow chart (Fig. 5.1). After calculating the contact 

force on each asperity, the nominal pressure on each asperity will be, 𝑝̅ =
𝐹𝑎𝑠𝑝

𝜋(
𝜆𝑖
2
)
2. From this nominal 

pressure, normalized pressure for the elastic contact, 
𝑝̅

𝑝𝑒
∗ (see Eq. (3.4) for 𝑝𝑒

∗) and for the elastic-

plastic contact, 
𝑝̅

𝑝𝑒𝑝
∗  (see Eq. (3.12) for 𝑝𝑒𝑝

∗ ) have been calculated which is necessary to calculate 

contact area.  

 When 
∆

∆𝑐
 is less than 1, the contact is elastic and the multiscale modeling method using  

elastic axisymmetric sinusoidal asperity model described in Section 5.2.1.5 has been used.  

 When   1 ≤
∆

∆𝑐
≤ 12.2, the contact is elastic-plastic. If 

𝑝̅

𝑝𝑒𝑝
∗ < 0.0005, then previously 

described multiscale model using the Jackson-Green asperity model. Otherwise, Eq. (3.13) 

has been used to calculate the contact area and if 
𝑝̅

𝑝𝑒𝑝
∗ > 1, it has been set to 1. 

 When   12.2 ≤
∆

∆𝑐
, if 

𝑝̅

𝑝𝑒𝑝
∗ < 0.001, then the previously described multiscale model using the 

Jackson-Green asperity model. Otherwise, Eq. (3.14) has been used to calculate the contact 
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area and if  
𝑝̅

𝑝𝑒𝑝
∗ > 1, it has been set to 1. (see Section 3.3.1.2 and 3.3.2.2 for details why to 

use different ranges for calculating contact area). 

5.4.2 Results and Discussions for the Elastic-plastic Rough Surface contact Modeling 

Fig. 5.24 shows the contact behavior for different elastic-plastic statistical models. The figure 

shows that, the PDF using either the mean or the geometric curvature do not significantly affect 

the results. All the contact pressure-area curves found from different statistical models 

qualitatively show almost the same behavior; however quantitatively there is large difference (see 

Fig. 5.24).  

Fig. 5.25 shows the comparison of the statistical models (plotted in Fig. 5.24) with the multiscale 

model. Fig. 5.25(a) and (b) show that, the multiscale-axisymmetric sinusoidal elastic-plastic model 

almost coincides with the Greenwood distribution and JG elastic-plastic model and Nayak-Bush 

distribution and JG elastic-plastic model. At the very low load region, as shown in Fig. 5.25(c), 

these three models almost coincide with each other. A linear contact pressure-area relationship has 

been observed for all the multiscale models except the multiscale axisymmetric sinusoidal model. 

Apparently, from Fig. 5.25(a)-(b) it seems that the contact pressure-area relationship for the 

multiscale axisymmetric sinusoidal model is a straight line. When the curve has been plotted 

separately in Fig. 5.26(a), with the increase of the contact pressure, zigzag behavior has been 

observed in the curve. The possible reasons of this phenomenon will be described now. According 

to Chapter 3, 
∆

∆𝑐
 is one of the important parameters, which controls the elastic-plastic contact 

behavior.  
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Fig. 5.24 Comparison among different elastic-plastic statistical models (a) full-scale plot (b) log-

log plot (c) magnified view of Fig. 5.24(a). 

 

 

(a) 

(c) (b) 
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Fig. 3.17(a) clearly shows that how the change in 
∆

∆𝑐
 values change the shape of the contact 

pressure-area relation for the single asperity. When the 
∆

 ∆𝑐
value is small, the contact behavior is 

more like elastic and the shape of the curve is concave upward. With the increase of this value, 

gradually the contact pressure-area curve becomes linear and with further increase of 
∆

 ∆𝑐
, the shape 

of the curve gradually becomes convex upward. This change in shape of the contact pressure-area 

relation for the single asperity has an important effect when this asperity model has been employed 

into the multiscale model. A small numerical experiment has been performed to investigate the 

zigzag behavior. The contact area equations (Eqs. (3.5), (3.13-3.14)) of the axisymmetric involve 

lot of details. That is why to investigate the probable reason of zigzag, a very simple relationship 

has been assumed, 𝐴 = 𝑃𝑎 , where P is the normalized pressure (
𝑝̅

𝑝𝑒
∗ for the elastic case and 

𝑝̅

𝑝𝑒𝑝
∗ for 

the elastic-plastic case) and a is the parameter which is defining the shape of the curve. This 

equation can express approximate similar shape as the contact pressure-area relationship for the 

axisymmetric sinusoidal asperity model. When 𝑎 < 1, the shape of the curve is convex upward, 

when 𝑎 = 1, the shape of the curve is linear and when 𝑎 > 1, the shape of the curve is concave 

upward. Then this simple equation has been employed in the multiscale axisymmetric sinusoidal 

elastic-plastic model (see Section 5.4.1.4). Everything else has been kept same in this rough 

surface contact model. Fig. 5.26(b) shows the multiscale rough surface model plots for different 

values of a in the equation, 𝐴 = 𝑃𝑎. The plot shows the effect of a i.e. the shape of the single 

asperity contact area equation on the contact pressure-area relation of the rough surface contact. 

For both Hertz and 3D periodic sinusoidal asperity model the contact pressure-area curve for single 

asperity is convex upward i.e. in the simplified equation, 𝐴 = 𝑃𝑎 , 𝑎 < 1. That is why when these 

two models have been employed in the multiscale model no zigzag have been observed in the 
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multiscale rough surface contact model. From Fig. 5.15(d), the 
∆

𝜆
 ratio for this rough surface varies 

from approximately 10−3 to 7 × 10−3. Therefore for the properties mentioned in Table-5.4; the 

∆

 ∆𝑐
 value will vary from 0.61 to 4.26 approximately. From Fig. 5.26(b), for these values of 

∆

 ∆𝑐
, the 

shape of the curve is concave upward, i.e. 𝑎 > 1. That is why in the multiscale axisymmetric 

sinusoidal model zigzag has been observed. 

Like elastic rough surface contact model, for the elastic-plastic rough surface contact there is no 

results available for validation (deterministic elastic-plastic rough surface contact modeling can 

work as a validation tool, Section 4.3.2.3). It is therefore difficult to determine which model is 

better predicting the elastic-plastic contact behavior. That is why an experiment has been 

performed to determine the electrical contact resistance. Electrical contact resistance has also been 

determined using the developed statistical and multiscale elastic-plastic contact models. Then 

experimental and numerical models have been compared to predict which elastic-plastic rough 

surface contact model can better predict the elastic-plastic contact behavior. 
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Fig. 5.25 Comparison among different elastic-plastic statistical and multiscale models (a) full-

scale plot (b) log-log plot, (c) magnified view at the low load region. 
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(b) (c) 
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Fig. 5.26 (a) Contact pressure area curve using multiscale axisymmetric sinusoidal elastic-plastic 

model (b) Numerical experiment of the shape of the contact area equation, 𝐴 = 𝑃𝑎 , on the 

multiscale model. 

(a) 

(b) 

(a) 
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5.5 Determination of the Electrical Contact Resistance and Comparison with the Experiment 

5.5.1 Determination of Electrical Contact Resistance Using Numerical Models 

Determination of Electrical Contact Resistance Using Statistical Method 

The electrical contact resistance at the interface of the two mating parts can be determined using 

both statistical and multiscale models. The original GW model was developed to determine the 

electrical contact resistance (Eq. (4.96)). However, the model does not consider the statistical 

distribution of the asperity radius of curvature with the surface asperity height and used Gaussian 

height distribution in the statistical model.  Electrical contact resistance is a function of contact 

radius. Therefore, similar to the statistical models developed to determine the contact area, the 

statistical model to determine the contact resistance, i.e. Eq. (4.96) can be modified to the 

following: 

                               
1

𝐸𝑐𝑟
=

𝐴𝑛𝜂ℎ

𝜓√𝑚0
ℎ𝑚4

ℎ
∫ ∫

2𝑎(𝜉ℎ,𝑘𝑔
ℎ)

𝜌

∞

0
𝜑(𝜉ℎ∗, 𝑘𝑔

ℎ∗)𝑑𝑘𝑔
ℎ∞

𝑑
𝑑𝜉ℎ                                 (5.11) 

                               
1

𝐸𝑐𝑟
=

𝐴𝑛𝜂ℎ

𝜓√𝑚0
ℎ𝑚4

ℎ
∫ ∫

2𝑎(𝜉ℎ,𝑘𝑚
ℎ )

𝜌

∞

0
𝜑(𝜉ℎ∗, 𝑘𝑚

ℎ∗)𝑑𝑘𝑚
ℎ∞

𝑑
𝑑𝜉ℎ                                (5.12) 

The above two equations are valid if the mating parts are made of the same material. 𝜌 is the 

resistivity of the contacting rough surfaces. However, if the mating parts are made of different 

materials, then 
2𝑎(𝜉ℎ,𝑘𝑔

ℎ)

𝜌
 in Eq. (5.11) has to be replaced with 

 4𝑎(𝜉ℎ,𝑘𝑔
ℎ)

𝜌1+𝜌2

, and 
2𝑎(𝜉ℎ,𝑘𝑚

ℎ )

𝜌
 in Eq. (5.12) 

has to be replaced with 
4𝑎(𝜉ℎ,𝑘𝑚

ℎ )

𝜌1+𝜌2

. 𝜌1 and 𝜌2 are the resistivity of the mating parts. For the 

experiment, the contact between two aluminum surfaces have been measured, so 
2𝑎

𝜌
 has been used. 

In Eq. (5.11) and (5.12), 𝐸𝑐𝑟 is the total contact resistance, 𝐴𝑛 is the nominal area. The areal 
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asperity density, 𝜂ℎ  and allevation factor, 𝜓 can be calculated using Eq. (4.22) and (4.97) 

respectively. When using the equation of allevation factor, 𝐴𝑟 is the real rough surface contact area 

for a particular surface separation, d.  𝜑(𝜉ℎ∗, 𝑘𝑔
ℎ∗) and 𝜑(𝜉ℎ∗, 𝑘𝑚

ℎ∗) have been calculated employing 

Eq. (4.31) and (4.24) respectively. a is the contact radius for a single asperity. Using the similar 

methodology as described for the statistical models to calculate contact area, the following steps 

have been performed to calculate asperity contact radius: 

 For JG single asperity model, when employing in either Eq. (5.11) or (5.12), the contact 

resistance for a single asperity is,
1

𝐸𝑎𝑠𝑝
=

2√(
𝑎𝑟𝑒𝑎𝑎𝑠𝑝

𝜋
)

𝜌
. 𝐸𝑎𝑠𝑝 is the contact resistance for the 

single asperity and 𝑎𝑟𝑒𝑎𝑎𝑠𝑝is the area of the single asperity. The nominal area for this 

asperity is, 𝜋 (
𝜆

2
)
2

. There is only one asperity in 𝜋 (
𝜆

2
)
2

. The method to calculate the single 

asperity contact area using the Jackson Green model is described in Section 5.4.1.1. Then 

using the single asperity contact resistance, the total contact resistance at the interface of 

the mating surfaces has been calculated employing Eq. (5.11) or (5.12) at a particular 

surface separation, d. 

 When the 3D periodic sinusoidal elastic-plastic asperity model has been used, whether 

employing in Eq. (5.11) or (5.12), the contact resistance for the asperity is,  
1

𝐸𝑎𝑠𝑝
=

2√(
𝑎𝑟𝑒𝑎𝑎𝑠𝑝

2𝜋
)

𝜌
. The nominal area for this asperity is 𝜆2 and there are two asperities in the 

nominal area. After calculating the asperity contact resistance (see Section 5.4.1.2), the 

total contact resistance has been calculated using Eq. (5.11) or (5.12) at a particular surface 

separation, d. 
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 For the axisymmetric sinusoidal elastic-plastic asperity model, the method to calculate total 

contact resistance at the interface of two contacting surfaces is the same as the JG single 

asperity model. Only the equation to calculate 𝑎𝑟𝑒𝑎𝑎𝑠𝑝 is different and has been calculated 

using the method described in Section 5.4.1.3.  

Determination of Electrical Contact Resistance Using Multiscale Method 

To calculate the contact resistance at the interface of the two mating parts using the multiscale 

method, the following steps have been performed: 

 When employing the JG single asperity model, after calculating the total contact area for 

each scale, i, from Eq. (4.73) and Eq. (4.74) (see the flow chart in Fig. 5.1), the contact 

radius, 𝑎𝑖  for each of the asperities at scale, i, will be, 
𝐴𝑖

𝐴𝑖−1
=

𝑁𝑖 ∙ 𝜋𝑎𝑖
2

𝑁𝑖 ∙𝜋(
𝜆𝑖
2
)
2 =≫ 𝑎𝑖 =

√(
𝜆𝑖

2
)
2

.
𝐴𝑖

𝐴𝑖−1
. Here, 𝐴𝑖 and 𝐴𝑖−1are the total real contact area at scale, i and i-1 respectively. 

The real contact area for scale, i-1 is the nominal contact area for scale, i. In addition, it has 

been assumed that all the asperities at a particular scale are identical. The method to 

calculate the total real contact area for each scale, 𝐴𝑖 has described in Section 5.4.1.4. Now 

summing over all the considered scales (found from spectral analysis), the total resistance 

for the entire surface in contact has been calculated using, 𝐸𝑐𝑟 = ∑
𝜌

2𝑎𝑖

1

𝑁𝑖
𝜓𝑖 ,

𝑖𝑚𝑎𝑥
𝑖=1  where, 

𝑖𝑚𝑎𝑥 is the maximum number of scales found from the spectral analysis, 𝑁𝑖 is the number 

of asperities at each scale and can be calculated using, 𝑁𝑖 = 𝜂𝐴𝑖−1 =
1

𝜋(
𝜆𝑖
2
)
2 𝐴𝑖−1. 𝜓𝑖 has 

been calculated using Eq. (4.105).  
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 Determination of the contact resistance using the multiscale model developed employing 

the 3D periodic sinusoidal asperity model has been described in detail in Section 4.3.2.2.  

 For the axisymmetric sinusoidal elastic-plastic asperity model, the method to calculate the 

total contact resistance at the interface is the same as the JG single asperity model. Only 

the equation to calculate the total real contact area for each scale, 𝐴𝑖 is different and has 

been calculated using the method described in Section 5.4.1.4.  

5.5.2 Experimental determination of the Electrical Contact Resistance  

An experimental study has been performed to measure the contact resistance between two 

aluminum surfaces (aluminum alloy (6061-T6511B)). The material properties of the aluminum 

surface has been given in Table-5.4. The experimental results later will be compared with the 

electrical contact resistance for the same sample contact found from the numerical methods. To 

perform the experiment, two aluminum cylinders (1.75-inch diameter and 3-inch length) of the 

same sizes have been chosen. The surfaces of the samples have been machined such that, the 

surfaces are flat and even everywhere. They are polished so that surface roughness is relatively 

isotropic. The sample surfaces have been made flat to avoid the effect of surface curvature on the 

contact resistance value as much as possible, i.e. the surfaces are considered to be nominally flat. 

Fig. 5.27 is showing the spectral analysis of the rough surfaces. Table 5.7 and Table 5.8 are 

showing the average RMS surface roughness at different locations of the surfaces of the samples. 

From the spectral analysis and the tables, it is clear that both of the surfaces are almost identical. 

According to the spectral analysis of the surface, the maximum 
∆

𝜆
 value for the rough surface is 

less than 0.003. From the analysis of Chapter-3, to mitigate the effect of sample thickness on the 

contact behavior, the substrate length has to be at least 1.2 mm when the 
∆

𝜆
 value is 0.005 (see 
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Section 4.2.4 to see the methodology to calculate 
∆

𝜆
 ). Besides that, the wires are connected to the 

sample using bolts. To avoid the effect of the stress generated by bolt on the contact, the final 

length of both of the samples have been chosen as 3 inches. The main objective of this experiment 

is to observe the change in the contact resistance value with the change in applied force.  

To measure the contact resistance, a high precision digital multimeter-Keithley 2001 has been 

used, shown in Fig. 5.28. The resolution of the multimeter is 1μΩ for resistance measurement, i.e. 

the smallest change the multimeter can detect is 1μΩ. Fig. 5.29(a) is showing the schematic of the 

sample set-up to the multimeter. The four-wire resistance method has been used to measure the 

contact resistance between the aluminum surfaces. If very small resistances or small changes in 

resistance measurement are required, this method is used. Fig. 5.29 (b) is showing how the 

multimeter connects the sample internally, if the sample is connected to the multimeter according 

to the schematic of Fig. 5.29(a). To measure the contact resistance, multimeter passes a very small 

amount of current through the circuit. However, for small currents the voltage drop at the wires 

and connections can be significant with respect to the desired contact resistance value. In the Four-

wire resistance method, two wires are used to create one path and another two wires to create 

another path. One of the paths where contact resistance will be measured, the multimeter connects 

to the voltmeter with high internal resistance. As current always chooses the path which has less 

resistance, the current will not go through the wire that is connected to the internal voltmeter. 

Therefore, there will be little voltage drop across that path. All the voltage drop will be in the path 

through which current is passing. Then, from the known current value and the voltage drop across 

the sample contact, the multimeter measures the contact resistance and it is more accurate. The 

bulk resistance of the aluminum sample is in the range of μΩ (from hand calculation, 𝑅 = 𝜌
𝐿

𝐴
 

where 𝜌 is the resistivity of the material, L is the length and A is the nominal cross-sectional area 
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of the sample) and the measured contact resistance is in the range of mΩ, which is why bulk 

resistance has been neglected during the calculation of the contact resistance.  

The mechanical load has been applied on the sample using a UMT (Universal Material Tester) 

machine, shown in Fig. 5.30. This machine can perform a wide range of tests. However, for this 

experiment it has only been used to control the applied force very precisely according to the pre-

programmed routine. This routine can be written and modified according to the user requirement. 

The load sensor that has been used to apply the force on the sample, can measure force from 0.2 

to 20N with 1 mN resolution. The following steps are performed to measure the contact resistance: 

 At the beginning of the experiment, both of the samples have been cleaned using methanol 

first and then acetone. 

 Then the UMT machine has been centered so that during the experiment, it applies the 

force evenly on the sample. 

 One of the samples is connected to the pin-holder of the UMT-machine using a fixture, 

shown in Fig. 5.30 and another sample is set on the fixed lower stage of the machine. Then 

the sample is connected to the multimeter as shown in the Fig. 5.29(a).  

 To apply force using the UMT machine, the program is set such that, at the beginning of 

the experiment, the UMT machine will bring the two samples in contact and then gradually 

the force will be increased. Five different forces, 12N, 14N, 16N, 18N and 20N have been 

applied using the machine. To get a stable measurement for the contact resistance, each of 

the forces has been kept constant for 10 minutes and before another load step begins, 

contact resistance has been measured.  

 The whole process has been repeated twice and an average of the two measurement is 

calculated to determine the resistance between the aluminum surfaces.  
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Fig. 5.27 Average spectral analysis of Aluminum surfaces. 

Table-5.7 Average RMS surface roughness (𝑅𝑞) of Aluminum surface-1 at different locations 

𝑅𝑞(μm) 

East 

𝑅𝑞(μm) 

North 

𝑅𝑞(μm) 

Origin 

𝑅𝑞(μm) 

South 

𝑅𝑞(μm) 

West 

1.47 1.43 1.72 1.71 2.2 

 

Table-5.8 Average RMS surface roughness (𝑅𝑞) of Aluminum surface-2 at different locations 

𝑅𝑞(μm) 

East 

𝑅𝑞(μm) 

North 

𝑅𝑞(μm) 

Origin 

𝑅𝑞(μm) 

South 

𝑅𝑞(μm) 

West 

1.47 1.25 1.43 1.36 1.63 
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Fig. 5.28 High precision Keithley-2001 digital multimeter. 

 

  

 

 

 

 

 

 

 

 

 

Fig. 5.29(a) Schematic set-up of the sample to the multimeter, (b) Set-up inside the multimeter. 

(b) 

(a) 
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Fig. 5.30 Sample set-up in the UMT machine. 

5.6 Results and Discussion of the Contact Resistance Values Measured Using Numerical 

Method and Experiment 

Fig. 5.31 is showing the comparison of the electrical contact resistance (ECR) values found from 

the experiment (Section 5.5.2) and the numerical models (Section 5.5.1). The comparison shows 

that like the contact area (Fig. (5.24) and (5.25)), for the ECR also when geometric/mean curvature 

have been varied in the asperity model and PDF, the statistical models developed using geometric 

and mean curvature show very similar rough surface contact predictions. The Greenwood 

axisymmetric sinusoidal elastic-plastic model and Nayak-Bush axisymmetric sinusoidal elastic-
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plastic model show the best agreement with the experimental results. The experimental 

measurements and numerical results found from these two statistical models are in the same order 

of magnitude and the amount of error varies from 0% to 25%. All the other statistical models show 

more than one order of magnitude difference with the experimental results. With the increase of 

normalized force, ECR found from the statistical models continuously decreases as expected. 

There are several possible reasons that are causing the difference among the developed analytical 

models and experiment. One of the reasons is, for the developed models the material properties 

are assumed exact, however, material properties are not constant and continuously changing with 

scale. Jackson et al. [16] has performed a detail investigation to observe the effect of scale 

dependent properties on the electrical contact resistance. Another possible reason is the formation 

of oxides when measuring the contact resistance between the aluminum surfaces. Although 

precaution has been taken before performing the experiment, generally oxides form very easily on 

the metal electrical contact. From previous research works it has been found that in many cases, 

oxide formation may increase the electrical contact resistance significantly.  

Like the statistical model, with the increase of the normalized pressure, the ECR found from the 

multiscale model also continuously decreases up to the complete contact. The Multiscale JG 

elastic-plastic model show closer agreement with the experimental results than the statistical 

models developed using JG and 3D periodic sinusoidal elastic-plastic asperity model and the 

multiscale model developed using 3D periodic sinusoidal asperity model and axisymmetric 

sinusoidal elastic-plastic model. However, it still show several orders of magnitude difference with 

the experimental results and the statistical models that show good agreement with the experiment. 

A zigzag behavior has been observed in the ECR values found from the multiscale axisymmetric 

sinusoidal elastic-plastic model. The reason is the same as described for the zigzag behavior 
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observed in the contact pressure-area relation (see Section 5.4.2). Multiscale models developed 

using 3D periodic sinusoidal asperity model and axisymmetric sinusoidal asperity model coincide 

with each other at the small deformation region, however with the increase of pressure gradually 

diverge from each other.  

For the numerical models of the rough surface contact, electrical contact resistance has been 

determined for a wide range of forces. However, the experiment has been performed for a small 

range of forces (10N to 20N). If force is lower than 10 N, it is difficult to establish proper contact 

between the samples and as a result, it is difficult to obtain a stable result. For the higher value of 

forces, contact resistance values decrease. To measure very small values of resistance the 

experiment needs to be designed in a different way. One of the ways can be by passing high current 

through the circuit. However high current will cause high temperature at the contact and will 

enhance the probability of oxide formation. Therefore, contact resistance measurement for a wider 

range of forces requires the consideration of different factors and complicated experimental design, 

which has not been performed here. Few examples of small ECR determination using experimental 

methods have been described briefly in the Chapter 1. Although an extensive experiment has not 

been performed in this dissertation, the performed experiment gives an idea about which model 

better predicts the elastic-plastic contact. However, further experimental or deterministic modeling 

of the elastic-plastic rough surface contact is necessary to confirm which model is better and if any 

modifications are necessary in the developed models to consider the whole range of contact. 

Jackson and his research group [17-19] have performed a detail investigation on the deterministic 

elastic-plastic rough surface contact modeling. Although in none of these two works mesh 

convergence has been obtained, these works show the path of further development of the 
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deterministic models  which could help to validate these elastic-plastic models for a wide range of 

deformation. 

 

Fig. 5.31 Comparison of the contact resistance values (ECR) found from the numerical analysis of 

the rough surface interface and experiment. 

5.7 Summary 

This chapter focuses on the development and validation of the elastic and elastic-perfectly plastic 

rough surface contact models and determination of the electrical contact resistance (ECR) 

employing the developed numerical models. By analyzing the developed models the following 

conclusions can be drawn: 
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 The probability distribution function (PDF) of the asperities of the rough surface has a 

significant effect on the rough surface contact prediction. The Gaussian distribution is very 

popular to use in the rough surface contact models irrespective of the surface nature.  

However, the analysis in this chapter shows that it is more reliable to use the PDFs that 

consider the change in the asperity mean or geometric curvature to predict the contact 

behavior whether the surface is self-affine fractal or Gaussian or both. 

 One of the important assumptions in contact mechanics modeling is that, spherical/ 

elliptical/ mildly elliptical asperity models can predict the contact behavior well at the 

small deformation region and when the asperity interaction becomes important due to the 

large deformation, a sinusoidal asperity model needs to be employed in the rough surface 

contact models. This chapter shows that in several cases statistical models developed using 

spherical/ mildly elliptical model show very close agreement with the statistical models 

developed using 3D periodic sinusoidal asperity. Therefore, the assumption is not 

completely true. However, for the large deformation it is more reliable to use the statistical 

models developed using a sinusoidal asperity model. 

 Several new elastic rough surface contact models have been developed by modifying the 

previous statistical and multiscale models. For the purpose of validation, these models 

have been compared with the BEM results and Persson’s model. The comparison with the 

BEM result shows that Greenwood 3D sinusoidal elastic model in conjunction with the 

Greenwood crack model (developed for the nearly complete contact by Xu and Jackson 

based on fracture mechanics) can predict the whole range of contact.  

 The Greenwood axisymmetric sinusoidal model and Nayak-Bush 3D sinusoidal model 

show good agreement with the Persson model. The comparison between Greenwood 
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axisymmetric model and Persson’s model shows that Greenwood axisymmetric sinusoidal 

model can predict from very small deformation region to the heavy deformation region 

(0.1-70% of the total area for the analysis shown in this chapter). Nayak-Bush 3D 

sinusoidal model both qualitatively and quantitatively shows very good agreement with 

the Persson model from small area to near the complete contact. For the analysis shown 

in this chapter, when the real contact area is ~12-90% of the total area, the difference 

between the Nayak-Bush 3D sinusoidal and the Persson model is less than %10. Persson’s 

model is derived assuming the self-affine fractal rough surface. However, the Greenwood 

axisymmetric sinusoidal model and the Nayak-Bush 3D sinusoidal model can be applied 

for both the self-affine rough surfaces and real surface contact predictions.  

 Several new elastic-plastic rough surface contact models have been suggested by 

modifying the previous statistical and multiscale models.  

 Electrical contact resistance has been predicted using these newly developed models and 

compared with experimental results. The comparison suggests that, Greenwood 

axisymmetric sinusoidal elastic-plastic model and Nayak-Bush axisymmetric sinusoidal 

elastic-plastic model can better predict the elastic-plastic rough surface contact behavior. 

However, further validation of the elastic-plastic rough surface contact models is 

important to ensure that these two models can predict the whole range of contact. 
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Chapter 6 

Literature Review on Electrical Contact Resistance at the High temperature 

Conditions of the Interface 

6.1 Introduction 

Electrical contact resistance (ECR) models in Chapter 5 have been developed using the Holm [1] 

and Cooper et al. [2] equations. The Holm equation for contact resistance works well when the 

electrical current through the asperity or “a-spot” is sufficiently small so that effect of heat 

generation due to electrical transport does not have a considerable effect on the ECR [3]. However, 

for the cases, when high density current passes through the “a-spots” at the interface, significant 

Joule-heating occurs due to current constriction and as a result a thermal gradient develops across 

the constriction. Holm’s ECR equation does not hold for such cases as the high thermal gradient 

across the constriction complicates the relationship among contact voltage, current, and size of the 

“a-spots”. In this chapter, the previous research works that have been done to analyze the electrical 

contact for high temperature cases are discussed. 

6.2 Analytical, Numerical Models and Experimental Investigation 

Surface roughness exists over a wide range of scales. Therefore, for the same current conditions, 

the current density at different scales of asperities are different. As a result, heat generation due to 

the current constriction may soften or even melt some of the asperities and can cause significant 

damage to the contact. Most of the analytical models developed to consider electrical contact 

behavior for such cases assume that the outer surfaces of the conductors are thermally insulated 

from the external environment [3-4]. Because the phenomena of softening and melting are highly 
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localized and happens so quickly, the heat transfer due to convection and radiation can be simply 

neglected [3-4].Under such circumstances, the electric and thermal current flow lines follow the 

same path. That is why electrical and thermal contact resistance (ECR and TCR) problems are 

very similar. Kohlarausch [3-6] derived the following equation to relate the voltage drop and 

maximum temperature at the contact interface: 

                                      𝑉 = {2∫ 𝜆1𝜌1𝑑𝑇
𝑇𝑚

𝑇1
}
1/2

+ {2∫ 𝜆2𝜌2𝑑𝑇
𝑇𝑚

𝑇2
}
1/2

                                     (6.1) 

In the above equation, 𝑇1 and 𝑇2 are the bulk temperatures, λ and 𝜌 are thermal conductivity and 

electrical resistivity of the conductors. The subscripts 1 and 2 refers to the conductor materials that 

are in contact. 𝑉is the contact voltage and 𝑇𝑚 is the maximum temperature. If the contacting parts 

are made of same materials, the above equation becomes [3]: 

                                                       𝑉 = 2 {2∫ 𝜆𝜌𝑑𝑇
𝑇𝑚

𝑇1
}
1/2

                                                       (6.2) 

Both Eq. (6.1) and (6.2) consider the change in electrical resistivity and thermal conductivity with 

temperature. However, these two equations work well if resistivity and thermal conductivity 

change linearly with temperature. If the change in these two properties with the temperature is very 

small, Eq. (6.2) reduces to the following voltage-temperature relation [3]: 

                                                      𝑉 = {8𝜆𝜌(𝑇𝑚 − 𝑇1)}
1/2                                                       (6.3) 

where, (𝑇𝑚 − 𝑇1) is defined as the super temperature. The amount by which the temperature at 

any point in the region of constricted flow exceeds that of the bulk metal is called the super 

temperature [3-4]. In general, connectors are designed such that super temperature does not exceed 

1℃-3℃ under extreme operating conditions [3].   
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Wiedemann and Franz [3] provided a law, which states that with temperature the variations of the 

thermal conductivity, λ and electrical resistivity, 𝜌 of metals are related by the following 

expression: 

          𝜆𝜌 = 𝐿𝑇                                                                  (6.4) 

where L is the Lorentz constant (2.45 × 10−8 𝑉2𝐾−2) and T is the absolute temperature. Now 

using Eq. (6.4), Eq. (6.2) can be modified to the following relation [3, 7]: 

                                                           𝑉2 = 4𝐿(𝑇𝑚
2 − 𝑇1

2)                                                         (6.5) 

Although the Wiedemann and Franz law is applicable for a wide range of metals and conditions, 

the law is not true universally [3, 8-10].  

Greenwood and Williamson [11] performed an extensive experimental investigation to observe 

the influence of current on the contact between solids. The experiment was performed between 

clean surfaces of gold and for different periods, magnitudes and shapes of current pulses. 

According to the experimental analysis, for a given conductor and current value there is a certain 

critical degree of constriction through which it will just pass without causing any permanent 

change in the contact region. However, if the contact resistance is greater than this critical contact 

resistance, a change will occur and the resistance of the constriction will be lowered until it 

becomes equal to the critical value associated with the current. Results also show that the shape 

and duration of the current pulse (10 μs to 10 ms) does not have any effect on the electrical contact 

behavior. Generally, temperature generated due to current flow at the interface reaches thermal 

equilibrium within a very short period (a few μs or less) [4, 12]. However, if sufficiently high 

current passes through the contact within a short period of time, mechanical collapse may occur. 

Experimental results were also compared with the mathematical formulation provided by 
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Kohlarausch for the voltage drop at the interface and maximum temperature of the conductor (Eq. 

(6.1)). Comparison with the Kohlarausch equation shows that, melting or collapse of the gold 

interface will occur below the melting temperature of gold at 950°C and 0.38 V, although there is 

no evidence of any sudden change in the physical properties of gold near this temperature. 

However, the experiment shows clear evidence that some of the gold had reached the melting 

point, 1063°C at that voltage. As the Kohlarausch law cannot describe the contact behavior 

adequately at high temperatures, Greenwood and Williamson [4] later explained this phenomenon 

and provided an analytical solution for the maximum temperature and the total current passing 

through the contact. According to Greenwood and Williamson, it is more revealing to describe the 

temperature as a function of “cold resistance”, 𝑅𝑐 of the conductor and the total current, 𝐼 than the 

contact voltage and maximum temperature. “Cold resistance” is the resistance presented to a 

current small enough not to cause any appreciable rise in the temperature at any point. According 

to [4], the maximum contact temperature, 𝑇𝑚 and the current, I are related by the following 

expression [3-4]: 

     𝑅𝑐𝐼 = 𝜌1,0 ∫ {2 ∫ 𝜆1𝜌1𝑑𝑇
𝑇𝑚

𝑇
}
−1/2

𝜆1𝑑𝑇 + 𝜌2,0 ∫ {2∫ 𝜆2𝜌2𝑑𝑇
𝑇𝑚

𝑇
}
−1/2

𝜆2𝑑𝑇
𝑇𝑚

𝑇2

𝑇𝑚

𝑇1
                (6.6) 

In the above equation, 𝜌1,0 and 𝜌2,0 are the “cold” resistivities or resistivities at the bulk 

temperature. Temperature dependent thermal conductivity and electrical resistivity can be 

expressed using 𝜌 = 𝜌1,0(1 + 𝛼𝑇) and 𝜆 = 𝜆1,0(1 − 𝛽𝑇). 𝛽 and 𝛼 are temperature co-efficients 

of thermal conductivity and electrical resistivity respectively. According to the analysis, if both 𝛼 

and 𝛽 are positive there is an upper limit of the product 𝑅𝑐𝐼, if the value of  𝑅𝑐𝐼 is less than the 

upper limit, then whatever value of current passes through the contact there will be no permanent 

change of the contact and thermal equilibrium or a steady state condition will be achieved after 
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current passes through the contact. However, if  𝑅𝑐𝐼 is greater than the upper limit of the 

product ( 𝑅𝑐𝐼 ̅̅ ̅̅ ̅̅ ) then no thermal equilibrium is possible anymore and with the increase of current, 

the temperature will continuously rise until the melting and collapse of the interface. The upper 

limit of the  𝑅𝑐𝐼 is given by the following equation [4]: 

                               𝑅𝑐𝐼 ̅̅ ̅̅ ̅̅ = 2 [
𝜆0𝜌0

𝛼
]
1/2

[(1 +
𝛽

𝛼
) 𝑠𝑒𝑐−1 (1 +

𝛼

𝛽
)
1/2

− (
𝛽

𝛼
)
1/2

]                           (6.7) 

When the contact reaches the upper limit, the maximum temperature and voltage at the contact 

will be [4]: 

                                                  𝜃𝑚
̅̅ ̅̅ =

1

𝛼
[(1 +

𝛼

𝛽
)
1/2

− 1]                                                         (6.8) 

                                                                𝑈̅ = 2 [
𝜆0𝜌0

𝛽
]
1/2

                                                           (6.9) 

According to Greenwood and Williamson’s explanation, instead of a melting voltage as assumed 

in the Kohlarausch equation, the collapse ought to have been correlated with the creation of 

potential differences greater than the value, 𝑈̅. The Kohlarausch melting voltage cannot explain 

the experimental phenomena, but 𝑈̅ can as no thermal equilibrium is possible above the voltage , 𝑈̅.  

Employing 𝜌 = 𝜌1,0(1 + 𝛼𝑇) and 𝜆 = 𝜆1,0(1 − 𝛽𝑇) where 𝛽 is sufficiently smaller than 𝛼, Slade 

[3] simplified the equation provided by Greenwood and Williamson [4] and obtained the following 

approximated form of the integral in Eq. (6.6): 

               ∫ {2 ∫ 𝜆𝜌𝑑𝑇
𝑇𝑚

𝑇
}
−1/2

𝜆𝑑𝑇′ = (
𝜆0

{𝛼−𝛽}𝜌0
)
1/2

{
𝛼

𝛼−𝛽
} 𝑐𝑜𝑠−1 (

1+{𝛼−𝛽}𝑇1

1+{𝛼−𝛽}𝑇𝑚
)

𝑇𝑚

𝑇1
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Using the above integration approximation for the monometallic contact and Holm equation for 

the cold contact resistance, 𝑅𝑐 =
𝜌

2𝑎
 , Eq. (6.6) has been further simplified to the following [3]: 

                                  𝐼 = 4𝑎 (
𝜆0

{𝛼−𝛽}𝜌0
)
1/2

{
𝛼

𝛼−𝛽
} 𝑐𝑜𝑠−1 (

1+{𝛼−𝛽}𝑇1

1+{𝛼−𝛽}𝑇𝑚
)                                       (6.10) 

where, a is the contact radius of the “a-spot”. 

If the thermal conductivity and resistivity do not change with temperature much, then Eq. (6.6) for 

total current can be modified to the following [4]: 

                                         𝐼 = 2
𝜌0

𝑅0
[2(𝑇𝑚 − 𝑇𝐵𝑢𝑙𝑘)𝜆0/𝜌0]

1/2                                                  (6.11) 

In the above equation, 𝜆0 and 𝜌0 are the thermal conductivity and electrical resistivity at bulk 

temperature. 𝑅0 is the “cold resistance” and can be calculated as shown previously using the Holm 

equation. Previously described 𝑅𝑐 and 𝑅0 are the same resistance. 

Bansal and Streator [12] performed an experiment to investigate the behavior of electrical contact 

resistance for copper against copper and aluminum against aluminum sphere on flat contacts as a 

function of the current through the interface. According to the experimental results [12], when the 

current passing through the contact is small, voltage gradually increases with the increase of 

current. Due to the increase in voltage, temperature also increases, which increases the resistivity 

of the contact material. However, because of thermal induced softening, the contact area increases 

and as a result the contact resistance decreases. In this way, with the increase of current, the contact 

resistance decreases and contact voltage gradually increases until the voltage saturation zone is 

reached. At the voltage saturation zone, with the increase of current, contact voltage does not 

increase anymore and stays almost constant. During the experiment, the contact force was kept 
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constant. According to the discussion in the paper, the change in temperature at the voltage 

saturation zone was small; therefore, due to temperature the change in hardness was negligible. 

Although the voltage, load and hardness were almost constant at the voltage saturation zone, with 

the increase in current, the contact resistance was continuously decreasing in the experiment. 

Viscoplastic creep has been declared as being responsible for the voltage saturation phenomenon 

and a continuous decrease in the contact resistance in the voltage saturation zone. No quantitative 

model has been developed in the work; however, a semi-quantitative analysis of viscoplastic creep 

has been performed to explain the result at the voltage saturation zone. The semi-quantitative 

analysis shows that once the temperature reaches a sufficiently high value, the strain rate becomes 

exceedingly rapid. Therefore, a small increase in temperature can cause large increases in contact 

area, which reduces contact resistance such that contact voltage does not increase further. The 

contact voltage becomes almost constant because at this temperature, the rate of decrease of 

contact resistance becomes sufficient to overcome the effects of increasing the current [12].  

Gatzsche et al. [13] performed an FEA to investigate the electro-thermal performance of high 

power electrical connector contact elements. The contact points in these high power connectors 

are heated up rapidly when current pulses pass through the contact and thus soften and contact 

resistance drops instantly. The results show that for an accurate measurement of the contact 

temperature and contact resistance drop, a more complex multi-physics model is necessary. Later 

Israel et al. [13] extended the work considering the effect of temperature dependent hardness and 

observed the influence of contact temperature, contact hardness and contact force on the contact 

resistance. However, for the temperature dependent hardening modeling the conventional way to 

model material has not been used. In the work [13], hardness has been expressed as a function of 

contact resistance, contact force and electromagnetic force. Contact resistance has been measured 
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experimentally as a function of current. Electromagnetic force has been calculated analytically for 

different values of current. Later, employing the electromagnetic force, applied contact force and 

experimentally measured contact resistance, temperature dependent hardness has been determined. 

Although, the FEM predicted results were close to the experimental results, however, this method 

of temperature dependent hardening modeling needs further validation to determine the accuracy 

and applicability.  

Bottauscio [14] explored heat generation and thermal diffusion in an electrical contact under short 

circuit condition by solving thermal, electrical and mechanical couple-field contact problem using 

Finite Difference Method (FDM). Temperature dependent resistivity and stress-strain behavior 

were considered in the numerical modeling. Experimentally determined and numerically predicted 

contact voltage were compared and showed good agreement with each other. Monnier et al. [7] 

solved a very similar problem later using FEM. For the analysis of the electrical contact of Cu and 

Ag, temperature dependent Young’s modulus, hardness, electrical and thermal conductivities, 

specific heat, and coefficient of thermal expansion were considered during FE modeling and all 

the multi-physics phenomena were coupled. The influence of the current intensity, the contact 

force, and the duration of the current flow on the potential distribution have been studied in the 

work and comparison of the FEA showed good agreement with experimental results. However, 

this study did not provide any generalize results of the model for use in other applications.  

Hennessy [15] employed the finite element approach to model the coupled thermo-electro-

mechanical contact between an elastic hemisphere pressed against an elastic half-space. Several 

different materials- Au, Pt, Rh, Ru, Ti and OFHC Cu have been investigated in the work to observe 

the effect of electric potential or current values on the contact area. However, plasticity and 

temperature dependent material properties have not been considered during FE modeling. The 



287 
 

results show a distinct difference in contact behavior between force-controlled and displacement-

controlled modeling in the presence of an applied electrical potential. For the force-controlled 

contact, the contact area does not increase significantly and shows good agreement with the Hertz 

model. For the displacement-controlled contact, contact area increases more rapidly and a new 

relationship is provided to accurately predict the behavior of the contact. As the model does not 

consider the temperature dependent material properties, the contact voltage-temperature 

relationship matched well with Eq. (6.3).  

Ghaednia et al. [16] performed a very similar multi-physics analysis as Hennessy [15] between a 

spherical asperity and cylindrical block, however, the plasticity effect has been considered in the 

model and both the materials in contact are deformable in nature. The analysis shows that the 

plasticity and thermal expansion significantly effect on the contact area, temperature and contact 

resistance and must be considered for an accurate estimation of the contact behavior. The effect of 

thermal expansion co-efficient at different values of interference have also been analyzed and it 

has been found that at small interferences, the effect of the thermal expansion is significant. 

Therefore, at small interferences, if high current passes through the contact it may cause softening 

and even melting of the contact. However, with the increase of interference the effect of thermal 

expansion gradually decreases. A non-dimensional parameter has been provided in the work which 

predicts whether thermal expansion is important or not for a given spherical electrical contact. 

6.3 Summary 

 When small current passes through the contact and heat generation due to current is small, 

the Holm equation for contact resistance, 
𝜌

2𝑎
 is applicable and voltage drop across the 

contact will be 
𝜌

2𝑎
𝐼. However, when high current passes through the interface, contact 
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voltage drop, temperature and resistance need to be determined in a different way. This 

chapter discussed the theories and numerical models available to analyze the contact 

behavior for high temperature cases. 

 The Kohlarausch law for contact voltage and maximum temperature cannot explain the 

phenomena for high temperature cases. Greenwood and Williamson elucidated the 

phenomena and provided an analytical solution for total current and maximum temperature 

at the interface.  

 Kohlarausch defined the contact voltage at maximum temperature as the melting voltage. 

From the experiment and theoretical analysis, Greenwood and Williamson showed that it 

is not the melting voltage as defined by Kohlarausch but critical voltage after which any 

increase in current will cause the damage of the surface. For any conductor and particular 

value of current, there is a critical voltage. When current passes through the interface, if 

the generated voltage across the contact is less than the critical voltage there will be no 

permanent change in the contact. However, if the voltage across the contact crosses the 

critical voltage no thermal equilibrium is possible and with the increase of current, the 

contact may collapse. 

 For high temperature electrical contact cases, it is important to consider temperature 

dependent electrical and material properties as electrical and material properties change 

continuously with temperature. 
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Chapter 7 

Coupled Electrical-thermal-mechanical Analysis of the Electrical Contact 

Considering the Temperature Dependent Material Properties  

7.1 Introduction 

Closed form solutions are available to analyze the electrical contact behavior for high temperature 

cases. However, most of these analytical solutions consider only the change in the electrical 

resistivity and thermal conductivity with temperature. Very few works have been done on the 

multi-physics modeling of the electrical contact considering temperature dependent plasticity of 

the material. This chapter will focus on the coupled electro-thermo-mechanical analysis of 

electrical contact considering temperature dependent yield strength, thermal conductivity, and 

resistivity of the material from room temperature to the melting temperature. Coupled electro-

thermo-mechanical analysis means the mechanical, electrical and thermal phenomena are coupled 

during the modeling, as a result, all phenomena will be affected by temperature variations and 

every phenomenon has an effect on all others.  Young’s modulus generally does not change much 

with temperature [1] that is why a constant value of Young’s modulus has been used in the 

multiphysics modeling. The thermal expansion coefficient has also been considered during 

modeling. The objectives of this chapter are the following: 

 To analyze the effect of temperature dependent material properties on the contact behavior 

separately and to compare with the case when all the properties vary with temperature at 

the same time. This comparison will help to evaluate which temperature dependent 

properties are controlling the contact behavior and should be considered during the 

electrical contact behavior analysis. 
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 To validate the developed FEM comparing with the available theories and experimental 

studies. 

 To observe the effect of voltage or current on the contact area, resistance and temperature. 

 To discern the change in contact behavior when contact is frictionless and perfectly bonded 

in nature. Frictionless and perfectly bonded contact are the two limiting traction cases. In 

many of the practical cases, contact either behaves very close to the frictionless case or 

perfectly bonded case and in some cases, contact behavior may fall in between these two 

ideal conditions. That is why both of these cases have analyzed in this Chapter.  

7.2 Methodology 

7.2.1 Finite Element Modeling (FEM) of the Multi-physics Model 

For the multi-physics contact modeling, the contact between two axisymmetric sinusoidal 

asperities with an amplitude equal to 0.004 mm and a wavelength equal to 1 mm has been 

developed and analyzed. Commercial finite element software ANSYS has been used for the 

modeling. According to the analysis of Chapter 3, when the amplitude to wavelength ratio equals 

0.004, if the substrate length at the base of the asperity is 1.2 mm then there will be no effect of 

substrate length on the contact stress distribution and the developed model can be considered as a 

semi-infinite solid. That is why for the electro-thermo-mechanical contact analysis, a substrate 

length of 1.2 mm has been considered at the base of both of the asperity models. Fig. 7.1 is showing 

the schematic diagram of the contact between two sinusoidal asperity models. For meshing the 

entire sinusoidal surface and its substrate, PLANE 223, an 8 node axisymmetric element with mid-

nodes, is used. CONTA 172, a 3-node contact element with a mid-node and TARGE 169, a 2-node 

target element are used to model the contact between the asperities. 
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Fig. 7.1 Schematic diagram and boundary conditions applied on the coupled multi-physics model. 

 

The asperity models have identical geometries, mesh and material properties; and therefore the 

surface of either of them can be chosen as “contact” surface and “target” surface. For the contact 

modeling, the Augmented Lagrangian contact algorithm has been used.  
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Numerical experiments have been performed to determine the suitable values of contact stiffness 

and penetration tolerance for the frictionless and perfectly bonded cases. From the simulation 

results, it has been found that an ANSYS contact stiffness factor equal to 5.0 and a penetration 

tolerance factor equal to 0.1 are adequate to make the solution independent of contact element 

stiffness and to enforce almost zero penetration at the contact for the frictionless cases modeled in 

this work. For the perfectly bonded cases, a stiffness factor equal to 100.0 and penetration tolerance 

equal to 0.1 have been used. Besides that, for both the frictionless and perfectly bonded cases, 

contacts have been modeled such that contact stiffness will be updated during each iteration based 

on the current mean stress of the underlying elements. For the thermal contact conductance (TCC), 

all the models use a value equal to 107 𝑊

𝑚2𝐾
, as further increase in the TCC value showed negligible 

difference in the contact behavior. It has been assumed during modeling that, all the dissipated 

electric energy will convert into Joule heating and the heat will be equally distributed between the 

two contacting surfaces. The boundary conditions that are considered during modeling are: 

 The temperature at the base of the substrate of the asperities is 293°𝐾 i.e. 20℃. 

 Zero voltage has been applied at the base of the substrate of the bottom asperity. The nodes 

at the base of the substrate of the top asperity have been coupled and voltage has been 

gradually changed at these nodes at different load steps to observe the effect of voltage on 

the contact behavior. 

 The nodes at the base of the substrate (𝑧 = 0) of the bottom asperity are fixed in all 

directions.  

 Force, F has been applied at the coupled nodes of the base of the substrate of the top 

asperity. 



295 
 

 The axisymmetric boundary condition is applied at the axis of symmetry, which is Ur (0, 

z) =0. Boundary conditions that consider interaction with adjacent asperities are applied to 

the displacement in the radial direction along the side surfaces, such that Ur (0, z) =Ur (λ/2, 

z) =0 and to the value of shear stress which is zero at x=λ/2, (σrz (λ/2, z) = 0). This is very 

similar to a periodic boundary condition. However, the model is not perfectly periodic. 

Details about periodicity of the axisymmetric model has been described in Chapter 3.  

7.2.2 Governing Equations for Material, Electrical and Thermal Modeling 

For the material modeling, the Johnson-Cook material model has been used. According to the 

Johnson-Cook model, the von Mises flow stress as a function of temperature i.e. thermal softening 

can be calculated using the following expression [1]: 

                                       𝜎 = [𝐴 + 𝐵𝜖𝑛][1 + 𝐶𝑙𝑛 𝜖̇∗][1 − 𝑇∗𝑚]                                               (7.1) 

where, 𝜖 is the equivalent plastic strain, 𝜖̇∗ =
∈̇

∈0̇
 is the dimensionless plastic strain rate for ∈0̇=

1.0 𝑠−1 and 𝑇∗is the homologous temperature. 𝑇∗ =
𝑇−𝑇𝑅𝑜𝑜𝑚

𝑇𝑀𝑒𝑙𝑡−𝑇𝑅𝑜𝑜𝑚
, where T is the temperature at 

which von Mises stress will be calculated, 𝑇𝑀𝑒𝑙𝑡 is the melting temperature of the material and 

𝑇𝑅𝑜𝑜𝑚 is the room temperature. When 𝑇 = 𝑇𝑀𝑒𝑙𝑡, the RHS of the Eq. (7.1) becomes zero, i.e. von 

Mises flow stress becomes zero. When 𝑇∗ = 0 and 𝜖̇∗ = 1, Eq. (7.1) gives the stress as a function 

of strain at room temperature. The second and third sets of brackets represent the effects of strain 

rate and temperature, respectively. A, B, n, C and m are material constants and vary from material 

to material. For the analysis in the current chapter, it has been assumed that von Mises flow stress 

equals to yield stress. 
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Fig. 7.2 Change in (a) yield strength, (b) thermal conductivity and (c) resistivity with temperature 

[2-3]. 
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As in the current analysis, no hardening and transient effects have been considered and that is why 

the strain rate, 𝜖̇∗ = 1.0 𝑠−1 and the strain-hardening exponent, 𝑛 have been assumed zero in the 

Johnson-Cook material model. Tin is one of the most common materials used in the applications 

where electrical contact behavior is a major concern. The temperature dependent yield strength 

properties of Tin [2] have been curve fitted using the Johnson-Cook material model and the 

constants A, B and m are determined, which are (𝐴 + 𝐵)=14.2 
𝑁

(𝑚𝑚)2
 and m=1.9 when the 

temperature is in ℃. Fig. 7.2(a) is showing the change in the yield strength properties of Tin with 

temperature.  Fig. 7.2 (b)-(c) are showing the change in thermal conductivity and resistivity 

properties of Tin with temperature that are used in the material modeling [2]. Fig. 7.2(c) is also 

showing the comparison of the experimental resistivity properties that are used in the material 

modeling with the case when resistivity varies linearly with temperature, 𝜌 = 𝜌0(1 + 𝛼(𝑇 −

𝑇𝐵𝑢𝑙𝑘)), where 𝜌0 is the resistivity at room temperature and 𝛼 is the temperature coefficient of the 

resistivity. For 𝜌0 and 𝛼, 1.09 × 10−4𝛺𝑚𝑚 and 0.0045 𝑘−1have been used, respectively [3]. 

Young’s modulus, Poisson’s ratio and the thermal expansion coefficient have been kept constant 

with temperature and 41.6 × 103 𝑁

𝑚𝑚2 , 0.33 𝑎𝑛𝑑 2.38 × 10−5𝐾−1have been used, respectively 

[2].  

The developed multi-physics model does not consider the transient heat effect. For the steady state 

conditions, the rate of heat production inside the conductor must equal the rate at which heat is 

dissipated from its surafce. Therefore [4],  

                                                          
1

𝜌
(∇𝜑)2 = −𝑑𝑖𝑣(𝜆∇𝜃)                                                     (7.2) 

where, ∅ is the potential and 𝜃 is the temperature. 
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Besides that, for the electrical contact the amount of current entering must has to be equal to the 

amount of current leaving, that is Kirchhoff’s law has to be maintained at every node. The thermal 

field is governed by the following equation [5]: 

                                 
𝜕

𝜕𝑥
(𝜆

𝜕𝜃

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜆

𝜕𝜃

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜆

𝜕𝜃

𝜕𝑧
) + 𝜌𝐽2 = 𝑐

𝜕𝜃

𝜕𝑡
                                        (7.3) 

Where, J is the current density and c is the specific heat. For the steady state condition, 
𝜕𝜃

𝜕𝑡
= 0. 

So, Eq. (7.3) reduces to the following: 

                                       
𝜕

𝜕𝑥
(𝜆

𝜕𝜃

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜆

𝜕𝜃

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜆

𝜕𝜃

𝜕𝑧
) + 𝜌𝐽2 = 0                                      (7.4) 

7.2.3 Cases Analyzed and Solving Procedure 

As mentioned in the previous section, for the material modeling Young’s modulus, Poisson’s ratio, 

thermal expansion coefficient, thermal conductivity, resistivity and yield strength have been 

considered. To observe the effect of applied voltage on the contact area, temperature and resistance 

the following cases are analyzed: 

 FEM has been developed and analyzed applying a constant force rather than a constant 

displacement as most of the electrical contact in practical applications behave as a constant 

force case rather than a constant displacement case. Two different values of constant force, 

1mN and 0.25N have been analyzed. For each of the forces, the following seven cases are 

analyzed: 

1. Frictionless-all properties vary: The contact has been modeled as a frictionless 

contact. Temperature dependent yield strength, thermal conductivity and resistivity 

have been considered. All other material properties have been kept constant with 

temperature. 
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2. Perfectly bonded-all properties vary: This contact modeling is same as the 

frictionless case. However, contact has been modeled as perfectly bonded instead 

of frictionless. 

3. Perfectly bonded-elastic: The contact has been modeled as perfectly bonded. All 

the mechanical and electrical properties have been kept constant with temperature. 

No plasticity has been considered in the model. 

4. Perfectly bonded-elastic plastic: Same as perfectly boned-elastic case; however, 

plasticity has been considered in the model. Yield strength has not been varied with 

temperature and kept constant at room temperature, 293K.  

5. Perfectly bonded-yield strength vary: The contact has been modeled as perfectly 

bonded. Yield strength has been varied with temperature. However, all the other 

thermal, mechanical and electrical properties have been kept constant at room 

temperature, i.e. 293 K.   

6. Perfectly bonded-electrical resistivity vary: The contact has been modeled as 

perfectly bonded. Resistivity has been varied with temperature. All the other 

properties have been kept constant. 

7. Perfectly bonded-thermal conductivity vary: The contact has been modeled as 

perfectly bonded. Thermal conductivity has been varied with temperature. All the 

other properties have been kept constant. 

For 0.25N force, perfectly bonded-elastic case has not been analyzed. For all the cases analyzed, 

the total simulation has been divided into several load steps. At the first load step, only force has 

been applied (either 1 mN or 0.25N). Temperature has been kept constant at room temperature and 

no voltage has been applied. Once the contact has been established between the asperities, from 
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the second load step the force has been kept constant at 1mN or 0.25 N and gradually voltage has 

been increased at each subsequent load step. The large deflection effect has been considered since 

the beginning of the analysis, i.e. the effect of geometric non-linearity (the NLGEOM command 

in ANSYS). The implicit solver (Newton Raphson technique) has been used for solving the FEM.  

In non-linear implicit analysis, solution of each step requires each iteration to establish equilibrium 

within a certain tolerance. There is another method-explicit solver to solve the FEM. However, in 

the explicit analysis, no iteration is required as the problem is solved directly (not iteratively) by 

taking inverse of the diagonal mass matrix times the net nodal force vector where net nodal force 

includes contributions from exterior sources. Explicit analysis handles contact and material 

nonlinearities with relative ease as compared to implicit analysis. The multiphysics simulation is 

computationally very expensive. Using a high performance super computer (128 GB RAM, 20 

processor and single node), for the 1.0 mN force case, when the total number of element was 

153,837 it took about 1.5 months to simulate a single case when voltage was increased from 0 to 

~0.11 volt. When the number of element was 78,933 for the same case it took less than 1 month 

to simulate from 0 voltage to melting voltage, i.e. ~0.13 Volt. 

7.3 Results and Discussions 

7.3.1 Cases Analyzed for Force Equals to 1 mN 

Contact Voltage-Maximum Temperature Relation 

At the beginning of contact, the FEM requires a fine resolution to capture the contact behavior. 

That is why at the tip of the asperity the mesh resolution is very fine and then gradually the element 

size has been increased when away from the contact. Fig. 7.3(a) and (b) are showing the mesh near 

the contact area for 1.0 mN force case. 
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Fig. 7.3 Finite element mesh near the contact region for 1.0 mN force when (a) total number of 

element is, 78,933 and (b) total number of element is 153,837. 

Fig. 7.4 is showing the comparison of the contact voltage and maximum temperature relation for 

two different number of elements. As the plots have coincided with each other, the comparison 

manifests that a total number of 78,933 elements is enough to capture the contact voltage and 

maximum temperature relation. At the beginning of the contact, it requires a highly refined mesh 

to capture the contact behavior. As all the plots have coincided with each other from the beginning 

of the contact to about 0.11 Volt, that is why when the number of elements was 153,837, a 

simulation has not performed up to the melting voltage, i.e. 0.13 Volt. 

From the literature review in Chapter 2 and according to Eq. (2.92), the value of force that will 

cause yielding in the tin asperity at room temperature is 9.8 mN. Therefore, the for the 1 mN force, 

at the first load step the deformation should be in the elastic region. However, as the thermal 

expansion is not zero at the room temperature in the current analysis, due to the combined effect 

of mechanical and thermal strain the contact deforms plastically even at 1 mN or 0.001 N force.  

(b) (a) 
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Fig. 7.4 Comparison of the contact voltage and maximum temperature for different element sizes 

and meshing methods. 

Fig. 7.5 is showing the comparison of the contact voltage and maximum temperature relation at 

the low voltage region for all the cases analyzed when the force is 1mN. When the contact has 

been modeled as frictionless, the results match with all the other cases. However, the frictionless 

simulations did not converge when the contact voltage becomes greater than 0.043 Volt (see red 

circles in Fig. 7.5). Thankfully, for all the other cases when contact has been modeled as perfectly 

bonded, convergence has been obtained from zero voltage to the melting voltage (see Fig. 7.6). 

For the perfectly bonded cases, when the two surfaces are in contact, the stresses are exactly the 

same at the contacting nodes and they are unable to slide in relative motion. However, for the 

frictionless contact, when the two surfaces are in contact the shear stresses are nil at the contacting 

nodes and they can slide on each other. This is probably the reason that the simulation for the 

frictionless contact case did not converge. With the increase of voltage, current gradually 

increases. As a result, heat generates and temperature increases. Due to the increase of temperature, 
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resistivity also increases, which may cause more heat generation. However, at the same time heat 

softens the contact material and increase the contact area. If the increase in contact area is not high 

enough to mitigate the effect of the increase in resistivity, then contact temperature will 

continuously increase and eventually contact will collapse. Therefore, proper contact is important 

for the electrical interfaces. 1mN force is very small for an mm scale analysis. Besides that for 

frictionless contact, the contact is not as stable as perfectly bonded cases. That is why near the 

softening voltage region (0.07 V for Tin), the frictionless contact case did not converge. Several 

important facts have been found from Fig 7.6: 

 From the beginning of the contact to the softening voltage of the Tin (0.07 Volt for Tin), 

curves for all the cases have coincided with each other (see also Fig. 7.5). However, after 

the softening voltage, the cases show deviation from each other.  

 Contact voltage-maximum temperature relation for the perfectly bonded-yield vary, 

perfectly bonded-elastic plastic, and perfectly bonded-elastic have coincided with each 

other from zero voltage to near the melting voltage (0.13 Volt for Tin). However, these 

three cases show deviation from the perfectly bonded-all properties vary, perfectly bonded-

thermal conductivity vary and perfectly bonded-electrical resistivity vary cases, especially 

after the saturation voltage (the voltage after which the thermal softening effect becomes 

significant) and maximum near the melting voltage. This suggests that, temperature 

dependent yield strength does not have a significant effect on the contact behavior; rather 

temperature dependent thermal conductivity and resistivity have an effect that is more 

important for these limited cases. However, to check the validity of this statement further 

analysis is necessary at higher forces.  
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Fig. 7.5 Comparison of the contact voltage and maximum temperature for all the cases performed 

for 1mN force with Eq. (6.5) at the low voltage region 

 

Fig. 7.6 Comparison of the contact voltage and maximum temperature for all the cases performed 

for 1mN force with Eq. (6.5) from low voltage to the melting voltage. 
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 Perfectly bonded-all properties vary and perfectly bonded-electrical resistivity vary almost 

coincided with each other up to 0.1 Volt. After that start to show deviation from each other, 

although the maximum deviation between these two cases is less than 2.6% for the 1mN 

force case. From Fig. 7.2(b), when temperature is greater than 450K (i.e. voltage is about 

0.1 V from Fig. 7.6), thermal conductivity drops sharply up to the melting point. This is 

the reason for the difference between the perfectly bonded-all properties vary and perfectly 

bonded-electrical resistivity vary case. Therefore, it can be said that it is the temperature 

dependent resistivity and thermal conductivity, which are controlling the electrical contact 

behavior most for the cases considered in this work. 

 The contact voltage and maximum temperature relation for the monometallic contact that 

has been obtained by combining the Kohlrausch law and Wiedemann-Franz law i.e. Eq. 

(6.5) show good agreement with almost all the cases up to 0.1 Volt. However, shows the 

best agreement with the perfectly bonded-yield varies, perfectly bonded-elastic plastic, and 

the perfectly bonded-elastic cases from low voltage up to near the melting point. The 

difference that Eq. (6.5) shows with the perfectly bonded-all properties vary case and 

perfectly bonded-electrical resistivity vary case are shown is Fig. 7.7. When compared with 

the perfectly bonded-all properties vary case, Eq. (6.5) shows a maximum of 4.65% error 

and with perfectly bonded-electrical resistivity vary case shows a maximum of 8.97% 

error. Therefore, for the contact voltage-maximum temperature prediction Eq. (6.5) can be 

used. 



306 
 

 

 

 

 

 

 

 

 

Fig. 7.7 Percentage of error that Eq. (6.5) shows with perfectly bonded-all varies and perfectly 

bonded-resistivity varies. 

Change in Contact Area, Contact Resistance and Total Current with Voltage 

The changes in the contact area, resistance and total current have not been analyzed in detail for 

the 1mN force case. Because, at the first load step, a contact has been established between the two 

tin asperities applying 1mN force. However, the temperature is kept constant at room temperature 

and the voltage difference across the contact is zero. From the second load step, when force has 

been kept constant and voltage is gradually increased, the change in contact area was negligible 

approximately up to the softening voltage. After the softening voltage, the effect of increase in 

voltage has been observed on the contact area and resistance. In addition, although 78,933 elements 

were enough to capture the contact voltage and maximum temperature relation, even 153,837 

elements were not enough to capture the change in contact area, resistance and current properly. 

As the change in contact area is very small up to the softening voltage for the 1.0 mN force that is 
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why, to observe the effect of temperature dependent material properties separately, a higher value 

of force is applied which has been discussed later.   

 

 

 

 

Fig. 7.8 Change in (a) total current, (b) contact temperature, (c) contact area, and (d) contact 

resistance with voltage for a mesh with 153,837 elements.  

(b) 

(d) (c) 

(a) 
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Although for the 1.0 mN force case, the change in contact area is negligible before the softening 

voltage (~0.07 Volt for tin), the simulation results give a clear idea about how the temperature 

dependent properties are affecting the overall contact phenomena. Fig. 7.8 is showing that, with 

the increase in the contact voltage, total current through the conductor is increasing. As a result, 

temperature also increases. With the increase in temperature, contact resistivity also increases. 

However, as the contact area is nearly constant up to the softening voltage (~0.07 Volt), with the 

increase in contact voltage, contact resistance continuously increases. After the softening voltage 

(~0.07 𝑉), when the thermal softening is significant, contact area continuously increases with the 

increase in voltage. As a result, contact resistance decreases.  

7.3.2 Cases Analyzed for Force Equals to 0.25 N 

For the 0.25 N case, from the mesh convergence test it has been found that 225,854 elements are 

enough to capture the change in contact current, resistance, area and maximum temperature with 

the change in voltage. Fig. 7.9 is showing the mesh that has been used for this force. 

   

 

 

 

 

 

 

 

Fig. 7.9 Finite element mesh for 0.25N force. 
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Fig. 7.10(a-d) are showing the change in total current, maximum temperature, contact area and 

contact resistance value with the increase in voltage when the force is 0.25N. All the analyzed 

cases show a similar trend with the change in voltage. When the contact voltage across the interface 

increases, the total current through the conductor gradually increases (Fig. 7.10(a)). With the 

increase in current, the temperature continuously rises (Fig. 7.10(b)). Due to the increase in 

temperature, the electrical resistivity increases and thermal conductivity decreases. As thermal 

conductivity decreases, the generated heat gets trapped and softens the interface. As a result, 

contact area increases (Fig. 7.10(c)). For the applied voltage range, the amount of increase in 

contact area is large enough to counter the effect of the increase in resistivity with temperature. 

Therefore, contact resistance continuously decreases with the increase in voltage (Fig. 7.10(d)).  

Similar to the 1.0 mN force case, for 0.25N, the perfectly bonded-all properties vary and perfectly 

bonded- electrical resistivity vary cases coincide with each other. The frictionless-all properties 

vary case also coincides with these two cases. With the increase in force (about 250 times), contact 

area for all the cases have increased several orders of magnitude compared to the 1.0 mN force, 

and that is why the frictionless-all properties vary case has reached a higher temperature for the 

0.25N force. Although contact area has increased with the increase in force, the contact area is still 

very small (see Fig. 7.10(c)). That is why almost no difference has been found between the 

frictionless-all properties vary and perfectly bonded-all properties vary cases. However, as the 

perfectly bonded-electrical resistivity vary case concide with the perfectly bonded-all properties 

vary case, it again confirms that the interaction between the temperature dependent resistivity and 

plasticity is adequate enough to predict the contact behavior if the temperature dependent yield 

strength is not available. This finding could be very benificial for the multiphysics analysis as the 
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temperature dependent yield strength measurement is not trivial and also not readily available for 

all materials.  

For the 0.25N case, no convergence has been found, when the voltage across the interface reaches 

the softening voltage or close to the softening voltage (0.07 Volt). The von Mises stress distribution 

shown in Fig. 7.11 (a-c) describes the probable reason. As the force is constant in the developed 

multiphysics model, the contact stess or pressure is very high at the center of the axisymmetric 

model. When the contact voltage is about 0.07 Volt, contact stress near the axisymmetric line and 

where the force has been applied becomes very high and reaches the yield strength value. That is 

why the simulation did not converge with the further increase in voltage. Fig. 7.11(a) shows that 

for the 1mN force, even when the voltage across the interface is close to the melting voltage, the 

von Mises stress near the center of the axisymmetric line is not high as the force was low. For the 

constant dispacement model, this wouldn’t be a problem as the model will allow the contact force 

to rise continuously and contact area will grow along the radial direction of the interface. 

7.3.3 Comparison of the Multiphysics Contact Resistance with the Analytical Models 

Closed form solutions are available for voltage and current as a function of maximum temperature 

of contacting conductor (see Chapter 6). When high current passes through the conductors, the 

temperature distribution in the conductors is not uniform. Greenwood and Williamson showed that 

resistance at the equipotential surfaces are different and expressed the equation for total current 

(Eq. (6.6)) as a function of equipotential distance and contact area (area at the “cold resistance” 

condition) [4, 7] (see Eq. (13) and (14) in Ref. [4] and Eq. (1.44) in Ref. [7]).  
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Fig. 7.10 Change in (a) total current (b) maximum temperature (c) contact area and (d) contact 

resistance with the change in voltage when the force is 0.25N. 

(a) (b) 

(c) (d) 
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Fig. 7.11 Von Misses stress distribution (units in MPa) for 1mN force when voltage is about 0.13 

Volt, (b) von Misses stress distribution for 1mN force when voltage is about 0.07 Volt, (c) 

magnified view of Fig. 7.11(b). 

(a) 

(b) (c) 
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The total current equation provided by Greenwood and Williamson (Eq. (6.11)) which is a function 

of “cold resistance”, electrical resistivity and thermal conductivity at room temperature is: 

𝐼 = 2
𝜌0

𝑅0

[2(𝑇𝑚 − 𝑇𝐵𝑢𝑙𝑘)𝜆0/𝜌0]
1/2 

In the above equation, according to [4], 𝑅0 is the “cold resistance” and therefore can be determined 

using the Holm equation, 
𝜌0

2𝑎0
. 𝑎0 is the contact area at the “cold resistance” condition, i.e. when 

the current passing through the interface causes negligible temperature rise. In this section, instead 

of using contact area at the “cold resistance” condition, a variable contact area has been used in 

the above equation to determine the total current. The advantage of the above equation is that it is 

not a function of the equipotential distance. Then from the total current and using Eq. (6.5) for the 

voltage, the contact resistance has been determined. Therefore, the contact resistance equation is: 

                                         𝐸𝐶𝑅 =
𝑉

𝐼
=

(4𝐿(𝑇𝑚
2 −𝑇𝐵𝑢𝑙𝑘

2 ))
0.5

4𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒[2(𝑇𝑚−𝑇𝐵𝑢𝑙𝑘)𝜆0/𝜌0]1/2                                          (7.5) 

where, 𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 will change with the change in voltage and has been calculated based on the model 

prediction. 
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Fig. 7.12 Comparison of contact resistance determined from the newly suggested Eq. (7.5), Eq. 

(7.5) using “cold resistance” contact area, i.e. Eq. (6.11) and (a) FEA result for the frictionless-all 

varies, (b) perfectly bonded-all varies and (c) perfectly bonded-resistivity varies. 

 

 

(a) 

(c) 

(b) 
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Fig. 7.12 (a), (b) and (c) show the comparison of Eq. (7.5) with the multiphysics FEA results for 

the frictionless-all properties vary, perfectly bonded-all properties vary and perfectly bonded-

electrical resistivity vary. The various cases comparison manifests that Eq. (7.5) can predict the 

contact resistance reasonably well from low voltage to the saturation voltage. The maximum error 

that Eq. (7.5) shows with perfectly bonded-all properties vary, perfectly bonded-resistivity vary 

and frictionless contact-all properties vary are 6.05%, 6.42% and 6.08% respectively. In this 

Chapter, 𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 in Eq. (7.5) has been determined from the FEA. However, 𝑎𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 can be 

determined from the axisymmetric single asperity model developed in Chapter 3. Further analysis 

is necessary for that to relate temperature with the yield strength of the axisymmetric model. Fig. 

7.12 also shows that if instead of variable area, contact area at the “cold resistance” condition is 

employed in Eq. (7.5); the equation cannot predict the electrical contact resistance values.  

7.4 Summary 

 Thermal softening is a major concern in many of the electrical contact applications. 

Research works have been done to analyze the effect of temperature dependent yield 

strength on the thermal softening. However, it is not clear which electrical, thermal, or 

mechanical properties contributing most on the electrical contact behavior. This chapter 

has performed a detail investigation by varying one parameter at a time with the 

temperature while other properties are constant at room temperature. Then all the analyzed 

cases are compared with the case when all properties are varying with temperature.  

 The investigation shows that, resistivity and thermal conductivity are the most important 

parameters that are controlling the contact behavior. For the cases considered, 

consideration of the interaction between plasticity and the temperature dependent 

resistivity are enough to capture the contact behavior up to the softening voltage. After 
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that, the decrease in thermal conductivity effect becomes important as heat gets trapped at 

the interface and softens the interface. However, if the temperature dependent thermal 

conductivity property is not available, then temperature dependent resistivity can be used 

with other properties (at room temperature), as perfectly bonded-resistivity varies case 

show reasonably good agreement with the perfectly bonded- all properties varies and 

frictionless- all properties varies cases for both of the force. 

 The voltage temperature relation provided by Kohlrausch in combination with 

Wiedemann-Franz law show good agreement with the perfectly bonded-all varies case. For 

1mN force, the maximum difference was less than 4.5% from the low voltage to the melting 

voltage region. 

 Electrical contact applications that behave more likely to the perfectly bonded contact 

provide better contact support than the cases where contact behaves more close to the 

frictionless contact. At low forces the difference is especially prominent. If the contact 

force is high, as thermal softening and melting are highly localized phenomena, much 

difference has not been observed between these two cases.   

 Contact voltage and total current equations are available as a function of maximum 

temperature. In this chapter, the total current equation provided by Greenwood and 

Williamson has been modified so that it can be applied to predict the electrical contact 

resistance from low voltage to the softening voltage. 
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Chapter 8 

Closure 

8.1 Conclusions 

Electrical contact resistance (ECR) is one of the important factors that affect the reliability of the 

electrical contact in different applications. Contact mechanics models are widely used to analyze 

the electrical contact behavior. Analytical and semi-empirical solutions are available to model the 

elastic and elastic-plastic contact behavior. However, to develop a more realistic model and to 

reduce the computational expense, an axisymmetric sinusoidal asperity model has been developed 

both for the elastic and elastic-perfectly plastic material. The developed model is not perfectly 

periodic, however it considers the effect of interaction with adjacent asperities because of the 

boundary conditions. The non-contact area for this asperity model is ring-shaped. As a result, for 

the rough surface models developed using this asperity model, the contact pressure distribution 

will be a non-periodic wavy shape, which seems more realistic for the fractal or real multiscale 

random surfaces. The formulated empirical equations for the single asperity model are a function 

of surface roughness and material properties. Therefore, if the surface roughness and temperature 

dependent material properties are known, the formulated equations can be used to determine the 

ECR. 

Significant improvement has been made on the rough surface contact models. Employing the 

axisymmetric sinusoidal asperity and other asperity models available in the framework of the 

statistical and multiscale rough surface contact models, several new rough surface contact models 

have been proposed both for the elastic and elastic-plastic material. The newly suggested elastic 

models are compared with Boundary Element Method (BEM) predictions and Persson’s model. 
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The comparison shows that the multiscale model does not exhibit close behavior with the BEM or 

the Persson model, however the statistical models do. When employing the statistical model to 

predict contact behavior, results show that the probability distribution function (PDF) of the 

asperity of the rough surface and asperity model have an important effect on the contact behavior 

prediction. Whether the surface asperity distribution is Gaussian in nature or show an asymmetric 

distribution with different skewness and kurtosis, it is more reliable to consider both the statistical 

distribution of the surface asperity height and radius of curvature in the statistical asperity model 

and PDF. When compared the BEM result with the developed statistical models, the comparison 

shows that Greenwood 3D sinusoidal elastic model in conjunction with the Greenwood crack 

model (modified Greenwood model) can predict the whole range of contact with less than 12% 

error when contact area is greater than 0.1% of the total area. The Nayak-Bush 3D sinusoidal 

elastic model and Greenwood axisymmetric sinusoidal elastic model show good agreement with 

the Persson’s model. Greenwood axisymmetric sinusoidal model matches with the Persson model 

from 0.1-70% of the total area with less than 10% error. Nayak-Bush 3D sinusoidal show good 

qualitative and quantitative agreement with the Persson model. The difference between the Persson 

model and Nayak-Bush model is less than 10% when the real contact area is 12-90% of the total 

area. Although in contact mechanics, it is a common assumption that spherical/ mildly elliptical 

model can predict only the small deformation region. Analysis in this dissertation shows that this 

statement is not always true. It depends on the technique used to develop the statistical model and 

also on the surface nature. Therefore, it is always better to consider sinusoidal asperity model to 

predict large deformation. The objective to develop these rough surface contact models are to 

reduce the computation expense of the BEM/ FEM and Persson model is derived by assuming self-
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affine rough surfaces, however the newly developed models are applicable for both self-affine 

fractal and multiscale random surfaces.  

For the validation of the elastic-plastic rough surface contact models, an experiment has been 

performed to determine the ECR between two rough surfaces. Comparison shows that the Nayak-

Bush axisymmetric sinusoidal and Greenwood axisymmetric sinusoidal elastic-plastic model show 

close agreement with the experimental result. The experiment was performed for a small range of 

forces. To validate the newly developed statistical models from small to the heavy deformation 

region further investigation is necessary. 

Surface roughness varies over a wide range of scales and as a result, for the same amount of 

current, the current density is not the same everywhere at the interface. When current density is 

high, heat generates, temperature rises, which may cause eventual softening and melting at the 

interface. Generally, the phenomena of softening and melting are highly localized. In this 

dissertation, two methods of electrical contact resistance determination between two rough 

surfaces have been suggested. As the phenomena of softening and melting are highly localized, 

when the heat/ current flows through the interface, electrical and thermal contact resistance behave 

in a very similar way. That is why based on the newly developed statistical models, Holm ECR 

equation for single asperities and the Cooper et al. thermal contact resistance model, several new 

electrical contact resistance models have been suggested to determine the contact resistance 

between the rough surfaces. 

An electro-thermo-mechanical analysis has also been performed considering the temperature 

dependent material properties (i.e. a fully coupled multi-physics model of a single asperity 

electrical contact). The objective of this analysis is to observe which temperature dependent 



321 
 

properties are affecting the electrical contact behavior most. For the cases considered, which are 

dominated by elastic deformation, show that for the analyzed cases, it is the temperature dependent 

thermal conductivity and resistivity that govern the contact behavior. Other properties and 

temperature dependent yield strength do not have a noticeable effect on the electrical contact 

behavior. However, this finding is limited to the cases considered in this work. Analyzing the 

results, an electrical contact resistance equation for single asperity has been suggested which is 

applicable from low voltage to the softening voltage of the material. The developed ECR equation 

for the asperity is a function of contact radius, which can be determined from the developed 

axisymmetric sinusoidal asperity model. 

8.2 Future Work 

 Comparison of the newly developed statistical models show that there is a model which 

shows good agreement with the BEM and there are also models which show good match 

with the Persson model. That is why finite element analysis of the deterministic elastic 

rough surface contact model can be performed to gain more confidence in the validation of 

the developed elastic statistical contact models as FEM is a versatile numerical method. 

 The developed elastic-plastic contact models have been compared with the experimental 

results. However, the experiment was performed for a small range of forces. To validate 

the developed elastic-plastic statistical models for a wide range of deformation, a finite 

element analysis of the deterministic elastic-plastic rough surface contact model can be 

performed. 

 Electro-thermo-mechanical analysis has been performed only for tin material properties. 

The multi-physics analysis should be extended for higher value of forces to observe 

whether temperature dependent yield strength has any effect for the higher force cases 
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when plastic deformation is more dominant. The analysis should also be extended for other 

materials that are common in electrical contact applications such as-Ag and Au to observe 

whether the same ECR equation and conclusions that have been drawn for the tin material 

are also applicable for other materials or not. 

 The suggested ECR equation for asperity contact from the multi-physics analysis is a 

function of contact radius, which changes with the change of voltage or temperature. An 

analysis can be performed to relate the developed axisymmetric sinusoidal model with 

temperature. 

 


