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Abstract

Because smartphones are increasingly becoming the mobile computing device of choice,

we are experiencing an increase in the number and sophistication of mobile-computing-based

malware attacks. A lot of these attacks target users’ sensitive information, such as banking

usernames, and passwords. A widespread type of malicious app encrypts user data locking

their devices with passwords and asking money to decrypt it. Moreover, they can illegitimately

collect browsing-related information or install other apps.

Available malware detection techniques can be categorized as dynamic or static based on

the type of features used in the analysis. Using process behavior (as in dynamic analysis) to

detect malware is generally more reliable than examining application files only (as in static

analysis). Nonetheless, dynamic analysis is more time and computationally intensive. Hence,

real-time malware detection is considered a challenging task. The limitations of mobile devices,

such as storage, computing capacity, and battery life, make the task even more challenging.

In this research, we propose a dynamic malware detection approach that identifies mali-

cious behavior using deep learning techniques on Process Control Block (PCB) information

mined over the process execution time. Our mining approach is performed at the kernel level

and synchronized with the process CPU utilization. It precisely tracks changes in PCB parame-

ters over the execution time. It does not only represent the process behavior efficiently but also

all threads created by that process.

We then use the PCB sequence information to train a deep learning model to identify ma-

licious behavior. We validated our approach using 2600 benign and 2500 malware-infested

recent Android applications. Our mining approach successfully captured more than 99% of

context switches for the vast majority of tested applications. Furthermore, our detection model

was able to identify malicious behavior at various points of the process execution time using

12 PCBs only with an F1-score of 95.8%. To the best of our knowledge, no available dynamic

malware detection technique has achieved such minimal detection time. We also introduce a

ii



closed dynamic malware analysis framework for application testing running on multiple An-

droid phones concurrently.
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Chapter 1

Introduction

Today, smartphone users number more than 5.1 billion [28], with smartphone penetration rates

increasing as well. Many smartphone users are unaware of the fact that most of the malicious

smartphone software targets users’ private information without their permission. The majority

of commercial anti-virus tools follow a signature-based malware detection approach (i.e., they

look for specific fingerprints of already discovered malware), and are thus unable to detect new

malware (also known as zero-day malware attacks)[104].

According to StatCounter [57], Android is the most popular operating system worldwide.

It’s also the second most targeted platform after Microsoft Windows. However, only a few An-

droid mobile devices provide effective virus protection, while the majority remaining are poorly

protected. Moreover, the number and sophistication of new malware attacks grew significantly

during the past two years [1], making it harder with time to detect such attacks.

Over 90% of malware targeting Android platforms in 2018 were Trojan attacks [18]. A

Trojan attack is a harmful app that appears as legitimate; however, it performs malicious ac-

tivity unbeknownst to the user [43]. Trojans can be used for stealing confidential information,

creating backdoors, and activating viruses or other malware. Banking and password Trojan

attacks tripled within the first quarter of 2018 alone [18]. The latest state-of-the-art banking

Trojan named Gustuff can steal the login information of over 100 banking apps and 30 cryp-

tocurrency apps. Moreover, it launches other malware to transfer money from the stolen bank

accounts to preconfigured accounts.
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Traditional detection techniques such as static and signature-based detection suffer from

concealment schemes (obfuscation and encryption), which limit or eliminate their effective-

ness. Therefore, using dynamic detection techniques can be the best approach for real-time

malware detection. Available malware detection techniques analyze malware either using sys-

tem activities and hardware utilization or by tracing the information flow through the system.

Recent research efforts proposed mining the Process Control Block (PCB) information to detect

malicious behavior in Android applications [70, 88, 8]. However, available dynamic techniques

are generally time intensive and resource-consuming which makes them unsuitable for detect-

ing malware at run time.

The process control block in an operating system is the data structure used to store all the

information that the kernel needs about a specific running process at any given time. Benign

processes follow the system’s access control policies that are used to specify who can access

information, where and when. In contrast, malicious processes violate them by exploiting a

system vulnerability (i.e., unintended flaw) to steal information, spy, or attack the infected

device. Therefore, some pieces of the information stored in the PCB are likely to reflect the

malicious behavior at occurrence.

In this work, we consider the challenges of detecting malware dynamically on smartphone

systems, as well as the limitation of available techniques and make the following contributions.

In Chapter 3, we propose a novel approach to mining PCB information at the kernel level syn-

chronized with the process CPU utilization. The proposed approach precisely tracks changes

in the PCB parameters over the process execution time. It does not only represent the process

behavior efficiently but also all threads created by that process, which enables detecting drop-

per malware. We also introduce a closed dynamic malware analysis framework for application

testing running on multiple Android phones concurrently. We validated the approach by mining

the PCB information collected from 2615 benign and 2502 malware-infested recent Android

applications, spanning a wide range of application categories and malware families.

In Chapter 4, we propose a novel approach for detecting Android malware using deep

learning techniques on PCB information. Our detection model combines Recurrent Neural

Networks (RNNs) with Convolutional Neural Networks (CNNs) and Deep Neural Networks
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(DNNs) into one model to identify the malicious behavior of a process, given a sequence of 12

PCB records collected during its runtime. To the best of our knowledge, no available malware

detection technique has achieved such minimal detection time. Using the PCB sequence in-

formation of 2615 benign and 2502 malware-infested applications, we show that our approach

was able to identify malicious behavior at various points of the process execution time with a

high F1-score.
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Chapter 2

Literature Review

2.1 Malware Targeting Android Smartphones

Google’s Android has dominated the global smartphone market for several years now [57].

As a consequence, it has become the main target of cybercriminals after Microsoft Windows

[18]. Android platforms can be considered insecure for many reasons. The first reason is

the widespread popularity of Android devices, which makes it more beneficial to attack than

other platforms. Another reason is that Android is an open-source platform [13], which means

anyone can see the source code, modify it, develop and distribute compatible apps for it. More-

over, although Google monthly releases security updates for the Android platforms, it takes

some time before the manufacturers of the Android devices update them [18].

There are a variety of malware attacks targeting Android, including backdoors, ransomware,

spyware, worms, botnets, and trojans [108, 24, 15, 55, 14]. A backdoor [61] is a malicious

program used by the attacker to gain unauthorized remote access to the infected device by ex-

ploiting specific software vulnerabilities. Examples of Android backdoors are the Gingerbreak,

the DroidKungFu, and the BaseBridge [32, 82, 108].

Spyware [17] is malware that appears to be legitimate but monitors the user activities and

steals sensitive information such as bank details, passwords, and much more. In 2009, Mobile

Spy was announced as the first professional spyware for Android phones [24]. This monitoring

app runs in the background without a visible icon to the user tracking the users’ SMS, GPS

locations, photos, and more. In 2017, new spyware apps were detected that are used to analyze

user habits, history, and locations for the customization of pop-up advertising [18].
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Ransomware [79] is a category of malware that blocks the user from accessing their data

by locking the device until a ransom payment is made. In 2014, a significant ransomware

attack known as ScarePackage infected nearly 900 thousand Android phones within 30 days

only [15]. In 2017, the Lockscreen [59] ransomware represented nearly 8% of the overall

Android malware [18]. This ransomware locks out Android phones with a pop-over browser

window that quickly reappears when closing it. To unlock the device, the user has to make

a payment in vouchers or cryptocurrency (e.g., Bitcoin) only, as such transactions cannot be

traced back to the malware developer. Although the lockscreen malware doesn’t encrypt any

data in the phone, removing it requires a factory reset that also removes all installed apps, files,

and settings in the device.

Worms and Botnets [2, 33] are large-scale network attacks targeting Android phones.

Worm [2] apps can replicate themselves and spread through shared website links, email at-

tachments, and peer-to-peer file-sharing networks (i.e., a network of connected devices without

a central server). Sending SMS messages is another way to spread worms, such as the Chinese

worm that infected more than 500K Android devices in 2014 [55]. A botnet [33] is a network

of compromised Android devices controlled by a remote server called Bot-master. Botnets can

be used to perform Distributed Denial of Service attacks (DDoS) [29], such as the WireX botnet

[71], which was hidden in 300 Google Play Store apps and infected more than 100k Android

devices. The vast majority of the Android malware incidents in 2018 were trojan attacks [18],

as shown in Figure 2.1a. A trojan is a harmful app that looks benign, but once activated, can

achieve any number of attacks on the host, such as stealing confidential information, creating

backdoors, and activating viruses or other malware.

Figure 2.1b shows the top five Android malware in 2018 [18]. Shedun, Agent, SMSPay,

and SMS are all trojan malware. SMSReg [65] is a Riskware app that pretends to be a battery

improvement app but collects other information unbeknownst to the user. Agent [14] is a

malicious app, that once downloaded, runs in the background silently waiting for commands

from a Command and Control (C&C) server. Typically, it is given a filename of a legitimate

app, which makes it hard to identify. This trojan can use the infected device as part of a DDoS
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(a) (b)

Figure 2.1: (a) Android Malware distribution in 2018 (b) Top 10 Android malware in 2018.

attack against some target. It can also steal the users’ private information and send them to the

remote server.

Shedun [84] is a family of trojanized adware used to install secondary apps for adver-

tisement purposes. This trojan poses as a legitimate app to trick the user into giving it root

privileges. Such privileges allow it to install additional apps without the users’ permission,

further increasing the author’s ad revenue.

The Android SMS and SMSPay variants [74, 63, 64] are typically repacked or trojanized

apps that are legitimate but have been recompiled and distributed with additional malicious

modules. SMSPay adds the functionality of silently sending premium-rate or spam SMS mes-

sages, which may add extra charges on the phone bill.

2.2 Malware Detection Techniques

Methods proposed to detect Android malware [42, 93, 98, 31, 72, 109, 103, 70] can be catego-

rized either as signature or non-signature based. A malware signature is created by extracting

patterns from a sample (e.g., binary patterns, and MD5/SHA1 hashes) [78]. Signature-based

methods detect malware by examining the application files while looking for signatures of
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known malware [42, 30, 105]. Such methods can only identify existing malware and fail to

identify zero-day malware attacks.

A zero-day exploit [104] uses a heretofore undiscovered software vulnerability (a security

weakness) to perform various types of attacks before a fix is released. The extent of the effects

of the attack depends on the nature of the vulnerability, but can be as significant as a com-

plete takeover of the device resulting in exfiltration of confidential information such as banking

details, usernames, and passwords, or to install other malware.

To overcome the problem of zero-day malware attacks against Android platforms, a num-

ber of non-signature based methods have been proposed [93, 98, 68, 31]. These methods can

be categorized as either static or dynamic. Static techniques treat applications as artifacts that

can be examined for inconsistencies, such as analyzing the accompanying manifest for unusual

permissions [93, 45, 89] or analyzing the application’s bytecode for instructions, that when

executed, could result in an undesired result [5]. Because these techniques examine application

files without actually running them, they are vulnerable to obfuscation techniques and fail to

detect malicious runtime loaded code [33].

Dynamic detection methods work by observing program execution carried out in a con-

trolled environment [98], by monitoring system activities and hardware utilization [68], and

by tracking information flow through the system [31]. Dynamic detection methods have some

significant limitations, such as evasive malware [78], that detect being run on emulated envi-

ronments and modify its behavior accordingly, and limited code coverage (i.e., the ratio of the

application code executed during the analysis) [34]. Dynamic analysis can only reveal mali-

cious behavior once the corresponding code has executed. Apps that trigger malicious behavior

under certain conditions only (e.g., a specific date or command)[40] can appear benign if the

condition is not met. Other challenges facing dynamic mobile malware detection systems are

the additional computation overhead required to monitor execution and the possibility of delays

in detecting issues [17].

A number of machine learning methods have been proposed to detect Android malware

[94, 72, 109, 103, 101, 70, 96, 88]. Wu et al., Narudin et al., and Sheen et al. [94, 72, 56]

have used standard classification algorithms with static-based malware detection methods [94,
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72] and dynamic methods [56]. Wu et al. [94] used dataflow application program interfaces

(APIs) to train the classifiers, while Sheen et al. [72] combined API call-based features with

permission-based features. Narudin et al. [56], on the other hand, has used anomaly-based de-

tection utilizing dynamic network traffic. Although these models have high detection accuracy,

their complexity and resource consumption is high as well [75, 99].

Yousefi-Azar at al. [102] hashed the Dalvik bytecode to extract the static features and

feed them to a neural network model to detect malware. Other research efforts used deep

learning to detect malware [109, 103, 41]. [109] employs static dataflow analysis to detect

Android malware. Dali Zhu et al. [41] statistically extract the API method calls from the

Android .dex file, map them using embedding models, and feed the output to a CNN network.

Although the approach in [103] combines static and dynamic analysis, it is based on binary

features only. Moreover, the majority of these methods were constructed based on outdated

malware samples. Additionally, collected malware datasets may contain a considerable number

of duplicate malware samples under unique file hashes as a minimal modification to the Android

Package (APK) file can produce a unique file hash. Including a large number of duplicate

samples results in biased-datasets and therefore overfitted models.

A novel dynamic detection technique using genetic footprint has been proposed [69, 70] to

detect malware by mining the information in the process control block (PCB), a data structure

maintained by the kernel to represent running processes. Their hypothesis is that the state

diagram of malicious processes must be different from those of benign processes because of

the difference in activities. Benign processes follow system access control policies that specify

the conditions under which information can be accessed, whereas malicious processes violate

policies through stealing information, spying, or attacking the infected device by exploiting

unintended flaws in the system.

TstructDroid in [70] trains a decision-tree-based classifier on a dataset of 110 malware

instances and 110 benign Android apps using a subset (genetic footprint) of 32 out of 99 PCB

features. The method requires a process execution time of 3s, in addition to the overhead of

encoding the PCB features using Discrete Cosine Transforms while extracting their statistical

features. Similar research [96, 88] presents a Spark-based malware detection framework, which
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requires 15 seconds of process execution time prior to the detection process, resulting in a high

detection delay and large computation overhead. Our previous work [8] presented a detection

framework that uses a similar PCB mining approach with an improved detection speed of 100

ms using Back Propagation Neural Network (BPNN). These PCB-based methods trigger the

PCB collection in the user-space, which means they can be delayed or interrupted more fre-

quently leading to a higher chance of missing PCB records. Our proposed mining approach

can overcome these limitations by mining the PCB information at the kernel level triggered by

process context switching.

In short, static malware detection can provide low detection delay, but focuses on ana-

lyzing application code which can be obfuscated. Dynamic detection methods can overcome

this limitation at the cost of more time, resource consumption, and limited code coverage. In

this research, we present a dynamic malware detection method for Android platforms, that is

capable of detecting a variety of malware attacks at various points of process run-time with a

low detection delay and high detection performance.

2.3 Android PCB Features

The Linux kernel stores information of running processes in a circular, doubly linked list called

the task list [73], where each element is a process descriptor of type struct task struct

(the PCB in Linux-based operating systems). The task struct contains all the information

that the kernel needs about a specific process, such as the process’s priority, state, address space,

pending signals, and much more.

In this research, a set of 120 numerical fields were extracted from the kernel PCB. The

PCB contains many pieces of information associated with a specific process and its group.

These parameters represent CPU scheduling, memory management, and signals information.

Table 2.1 lists the sched info struct cumulative counters of the process CPU scheduling. Table

2.2 lists the mm struct parameters accessed by its pointer within the task struct. These memory

management pieces of information are used to trace memory usage, page faults, base and limit

registers, memory resources demand, and their utilization.
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Signals related information including the process and group resource utilization and time

counters and the number of threads can be found in the signal struct struct. The extracted

parameters are listed in Table 2.3. The task struct includes different types of information de-

scribing the exiting state of the process, its parents, its children, and the dead threads in their

group. Table 2.4 lists the numerical features of this struct. Some of these features are used in

conjunction with other parameters within other structs to manage process execution.

Table 2.1: CPU scheduling sched info Features within task struct.

sched info Features
pcount run delay last arrival last queued

Table 2.2: Memory management mm struct Features within task struct.

mm struct Features
tlb flush pending hiwater rss stack vm start stack
map count hiwater vm start code arg start
vmacache seqnum total vm end code arg end
mmap base locked vm start data env start
mmap legacy base pinned vm end data env end
task size shared vm start brk saved auxv[AT VECTOR SIZE]
highest vm end exec vm brk flags

Table 2.3: Signal information signal struct Features within task struct.

signal struct Features
utime cnvcsw cinblock posix timer id
stime cnivcsw coublock leader
cutime min flt maxrss oom score adj
cstime maj flt cmaxrss oom score adj min
gtime cmin flt nr threads flags
cgtime cmaj flt group exit code is child subreaper
nvcsw inblock notify count has child subreaper
nivcsw oublock group stop count sum sched runtime
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Table 2.4: Process information within task struct.

task struct Features
nvcsw utime init load pct exit signal
nivcsw stime vmacache seqnum pdeath signal
wakee flip decay ts utimescaled parent exec id nr dirtied pause
jobctl stimescaled self exec id pagefault disabled
atomic flags gtime on cpu nr dirtied
stack canary acct timexpd wake cpu cpuset slab spread rotor
min flt flags on rq cpuset mem spread rotor
maj flt ptrace prio start time
last switch count wakee flips static prio real start time
sas ss sp rt priority normal prio acct rss mem1
ptrace message btrace seq nr cpus allowed acct vm mem1
dirty paused when policy rcu read lock nesting timer slack ns
trace personality exit state default timer slack ns
trace recursion tgid exit code state
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Chapter 3

Mining PCB information & Building the Application Dataset for Android Malware Detection

3.1 Introduction

Previous research efforts have shown that mining the PCB information can be used to detect

malicious behavior in Android applications [70, 96, 88, 8]. In this chapter, we propose a novel

approach to mining PCB information at the kernel level triggered by process context switches.

The proposed approach guarantees synchronizing the PCB mining with process CPU utiliza-

tion, thus minimizing duplicate and missing PCB records. We also introduce a closed dynamic

malware analysis framework for application testing running on multiple Android phones con-

currently. We validated the approach by mining PCB information collected from 2615 benign

and 2502 malware-infested Android applications, spanning a wide range of application cate-

gories and malware families. We did not rely on available malware datasets [16, 11, 90, 41],

as they were static-based, outdated, unavailable by the time we started the research, or did not

meet our sample selection criteria determined to produce an efficient and reliable sample set.

The rest of this chapter is organized as follows: Section 3.2 describes the criteria for build-

ing the Android (malware-infested and benign) application dataset and discusses its features.

In Section 3.3, we describe the system general architecture including test devices, the input

generation tool, and the testing environment setup. Section 3.4 describes in detail stages of

the PCB mining process and components of the PCB data collector. Section 3.5 evaluates the

collected PCB dataset, followed by discussion in Section 3.6.
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3.2 Application Data Collection

To train a machine learning model to detect malicious behavior, we collected a dataset of 2615

benign and 2502 malware-infested applications. The benign applications were collected from

top-ranked Google Play Store apps, while the malware-infested applications were collected

from the VirusTotal malware dataset. In this section, we explain the process and selection

criteria for collecting both benign and malware samples.

3.2.1 Benign Application Collection

Benign samples were downloaded from the Google Play Store using an open-source tool called

the Raccoon [81], which enabled us to download the apks directly onto the PC. The apps were

selected from the list of the most popular Google Play apps according to the open Android

market data AndroidRank (the oldest service to provide information and statistics on Google

Play store) [49]. The list contains more than 24.5k applications, from which 4020 apk apps

were chosen based on the following criteria: (1) The application was not split into functionally

duplicate apks, each configured to a specific device characteristic; (2) the application had at

least a 4.0 out 5.0 rating; (3) it had been updated since January 2019; (4) it had reached at least

a million installs; (5) it was compatible with Android versions 4.0 and later; (6) it did not rely on

complex real-time interactive input, such as that used in a game. Such apps were also excluded

due to a limitation of the used automated input generation tool [85], which lacks support to

non-deterministic user interface events(such as random swipes or customized gestures).

3.2.2 Malware-infested Application Collection

Malware samples were collected and downloaded from the VirusTotal Private API [86] under

an academic research access license. VirusTotal [37] is an online scanning service that analyzes

files or URLs to detect viruses, trojans, and other types of malware. It aggregates the scanning

results of more than 150 antivirus and malware scan engines [27], such as AhnLab Mobile

Security [44], Avast Mobile Security Software [36], and Kaspersky Lab [3].
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A total of 12060 Android malware samples were downloaded from the VirusTotal malware

database. The collected samples were first seen within the time period of 2010 through 2019.

Included in the malware samples were information on the malware category; MD5 and SHA256

hash values; the first time the malware was seen and scanned; the permissions requested by the

malware-infested app; and the anti-malware engines that scanned the sample and their scanning

results.

For the Android dataset, VirusTotal aggregates the results of 75 different malware detec-

tion engines. Each sample in the database has been scanned by an average of 61 engines.

Because these engines vary in performance and reliability, which impacts the reliability of the

collected dataset, we ranked them based on the number of samples they recognized as malware.

Our top list of malware detection engines consists of 11 sources that scanned and successfully

detected more than 80% of the collected malware samples. Six of these engines were listed

as the best Android Anti-Malware engines according to the AV-Test mobile security products

evaluation of 2019 [80].

To ensure the reliability of the dataset, we collected the malware samples based on the

following criteria: (1) more than 40% of the malware detection engines that have scanned the

sample classified it as malware, and (2) at least 20% of which are from the top engines.

3.2.3 The Android Application Dataset

4020 benign applications spanning 38 categories were selected from the list of 24.5k most

popular Android apps, as shown in Figure 3.1a. The dataset has an average rating of 4.4/5.

The application distribution based on ranking and minimum number of installs is illustrated in

Figures 3.1b and 3.1c.

6724 malware samples were selected from the 12060 samples collected. Upon further

examination of the selected malware samples, we realized that a considerable number of these

samples were different versions of the same set of apps. We only included one version per app

to prevent creating bias toward a certain application behavior. Moreover, the selected samples

included damaged apk files, as well as non-apk format apps (Dalvik format) which we also

excluded from the dataset. The final malware dataset consists of 3562 unique malware-infested
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(a)

(b) (c)

Figure 3.1: Summary statistics of the benign dataset: applications are distributed by (a) cate-
gory, (b) application rating, and (c) minimum number of installs.
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apps. Figure 3.2 illustrates how the majority of the collected dataset belongs to the set of newly

developed malware.

Figure 3.2: The distribution of the malware samples based on the year the malware sample was
first seen

Selected malware samples are categorized as Trojan, Riskware, Spyware, Backdoor, Ad-

ware, Ransomware, and Exploit [18, 62, 17, 61, 7, 79] and were distributed among 195 malware

families. Figure 3.3 presents the distribution of the malware families within the dataset, where

the trojanized-Agent, the Adware-Shedun, and the Spyware-SMSSpy represent more than 50%

of the collected samples [14, 84, 83]. According to the AV-Test security report, these malware

families represented more than 42% of Android malware in 2018 alone.

3.3 Data Collection Architecture

3.3.1 Android Test Devices: Phone, Android, and Kernel Versions

All tests were performed using OnePlus 5t phones running Android version 8.1. A custom

modified kernel (4.4.78) was utilized to enable module insertion and root the phone. The kernel

was also modified to store PCB information triggered by context switching. When we modified

the official Android kernel for OnePlus 5t phones, the Wifi stopped functioning. After further

investigation, we found out that the wifi driver is not part of its kernel tree. Although we

successfully built the wifi module with the available kernel configuration, we failed to load the
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Figure 3.3: Distribution of malware families within the malware dataset

module into the kernel. Alternatively, we have used the LineageOS [48], which is an open-

source operating system based on the Android platform. The LineageOS officially supports the

OnePlus 5t phones, and their wifi module is part of its kernel tree.

3.3.2 Automated Input Generation for Android Application Testing

Goals of using mobile application testing include detecting bugs, vulnerabilities, and security

problems. Manual testing requires significant human resources. Therefore, a considerable

amount of effort has and still is being devoted to automating input generation for application

testing. Test inputs for mobile applications can be represented by possible interactions with

their graphical user interface (GUI), such as clicks, touches, or gestures. An input generation

tool produces a sequence of such actions to mimic human interaction. The efficiency of these

tools can be measured by code coverage (i.e., the ratio of application code executed during the

analysis).

Available techniques can be categorized based on their exploration strategy into random,

model-based, and systematic. monkeyrunner [85] is the most common tool for testing Android

devices by generating a sequence of random interactions. Additionally, several research studies
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have been proposed to optimize the random approach [51, 21, 107]. Model-based techniques

extract a GUI interaction model for each application [9, 106, 25] or a more general model to

exercise different Android applications [39, 23, 47, 22, 46]. Systematic testing uses various

algorithms to trigger application behaviors that can only be revealed with specific test inputs,

such as symbolic execution, data flow analysis, and evolutionary algorithms [10, 19, 52, 54,

53].

A number of empirical studies have been conducted to compare input generation tools.

The authors in [26] used 68 benchmark apps to evaluate the main existing tools by the amount

of code coverage achieved given the same time period. Their results show that monkeyrunner

[85] achieved the best code coverage on average compared to the other tools [51, 10, 9, 39, 19].

It is also easy to use and has wide platform compatibility.

Another study [87] has compared the following tools [85, 107, 54, 47, 19, 77], using

real-world industrial apps. They have collected 68 apps of different categories from the top-

recommended Google Play Store apps (at that time). Based on their study, monkeyrunner

accomplished the highest number of covered activities and methods on average. Other main

tools were excluded from consideration due to unavailability, limited testing space, version

incompatibility, or failure to function on real Android devices or industrial apps [25, 100, 52,

23].

More recent efforts have used machine learning techniques to simulate human behavior

while interacting with Android applications (Humanoid)[46]. They used 68 open-source apps

and 200 popular Google play store apps to evaluate a number of state-of-the-art test generation

tools [85, 39, 77, 21, 47, 54]. Their result confirms that monkeyrunner outperforms other

test generation tools except for Humanoid. However, the interactive speed of monkeyrunner

is 10 times faster than Humanoid, and in our research, we try to expose the most application

behavior in the least time frame possible. Hence, we have chosen monkeyrunner [85] as an

input generation tool to automate our application testing as it is easy to use, compatible with

all Android versions, outperformed most of the available generation tools, and has the highest

interactive speed.
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3.3.3 Network Configuration for Application Testing

Orchestrating the sample apps to obtain PCB information required that we also execute them

in an environment that appeared as real as possible. The vast majority of the collected applica-

tions (both malware-infested and benign) required an internet connection to function properly.

Hence, providing internet connection improves the efficiency and correctness of the dynamic

analysis. However, providing real internet connection required previous knowledge of the mal-

ware behavior to avoid participating in online attacks, such as DDoS attacks [12]. The malware

could also reproduce and spread to other devices on the same network, or even through SMS

[92].

Monitoring and controlling network traffic for a large number of applications requires a

significant amount of time and effort. Therefore, we have used the internet services simulation

tool INetSim [91] as in [97, 60, 20] to trick the target apps into believing they are connected

online. The INetSim tool simulates several internet services, such as HTTP/HTTPS, DNS,

FTP, and IRC. It fabricates responses to the network requests made by the connected devices,

spurring applications to expose more functionality.

To simulate both WiFi and an internet connection, we set up a closed network, as shown

in Figure 3.4. The network consisted of an ASUS RT-AC66U router running DD-WRT, test

Android devices, and a Raspberry Pi 3 running the internet simulation tool INetSim. The

router was used as an internet gateway and had the AP-isolation setting enabled [6]. The

AP-isolation prevented devices connected through the wireless network from communicating

directly to each other, preventing malware from spreading through the network. The Android

devices were connected to the network through the router. The router was connected to the

Raspberry Pi through an Ethernet cable and was configured to use it as a DNS server.

3.4 Mining PCB Information

The first stage of the PCB data collection process was task management and preparation, where

the main management unit assigned the tasks to the connected devices and managed them

concurrently. The second stage was application testing and PCB data collection, in which the
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Figure 3.4: The network setup for malware dynamic analysis

target application was exercised using monkeyrunner, and its PCB information was collected

over the application interaction time. The last stage was storing, analysis, and feedback, where

the resulting PCB sequence was stored and analyzed, and the termination state of the process

was reported back to the main manager.

3.4.1 Tasks Management & Preparation

The main manager running on a Linux machine was responsible for assigning tasks to the

connected Android devices. It used a separate thread (task manager) to concurrently manage

all connected devices, as shown in Figure 3.5. The task manager was responsible for ensuring

the device was on and ready for use prior to starting a task. It monitored the battery level of the

testing device, assigning new tasks if the battery level was above 40%, otherwise it postponed

the new task until the battery level was above 90%. The task manager also checked if the user

issued a request to terminate or suspend the execution prior to starting a new task or while the

phone was charging.

Figure 3.6 illustrates the sequence diagram of managing the tasks performed on each de-

vice. The task manager starts by extracting the package name (which uniquely identifies the

app on the device) from the target apk file. It then installs the target apk and grants requested
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permissions by the installed application. Upon installation completion, the manager inserts the

data collection modules into the device to prepare for the application testing and PCB mining

process. Then, it passes the package name to the application testing unit (ATU) to start the

application testing and PCB mining process. The task manager keeps track of the termination

state of each task-stage, reports task success or failure, and finally assigns a new task to the

device.

Figure 3.5: Main manager running tasks concurrently on all connected devices

3.4.2 Application Testing & PCB Data Collection

Application Testing & PCB Data Collection Components

The operation of application testing and PCB data collection was performed on the Android

device. The system components responsible for the operation were the application testing unit

(ATU), the PCB buffer reader, the data collector, and the modified CPU scheduler. The first

two components operated in userspace, whereas the second two operated in kernel space.

The ATU was responsible for initiating the PCB buffer reader, sending the target package

name (pname), and starting the application exerciser (monkeyrunner). After monkeyrunner fin-

ished execution, the ATU sent a null package name as a signal to the data collector to terminate
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Figure 3.6: Sequence diagram of task management and preparation
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the data collection process. It also terminated the PCB buffer reader. The PCB buffer reader

was responsible for transferring the collected PCB records from kernel to userspace.

The data collector component was implemented as a kernel module [4] that was loaded at

run-time to extend the functionality of the kernel. It created communication channels between

the kernel and userspace to exchange required information for the data collection process. The

data collector had another major role, that is guiding the modified CPU scheduler to collect the

PCB records of all processes running the target application only.

The CPU scheduler [50] is a major part of any complex operating system. It is responsible

for optimizing the utilization of the CPU by managing when and for how long each thread can

occupy a CPU core. When a new task is selected, the scheduler performs the context switching

operation, that is, switching from one task to another.

In order to collect PCB information for a running application, we modified the scheduler

(including the context switch function) to identify any process running the target application. At

each context switch, the scheduler compared the previously running thread with the target set of

threads and if a match is found, it appended its PCB information to a predefined buffer. Ideally,

the PCB sequence that represented the exact behavior of the application at run-time would

capture PCB information after each instruction was executed. However, it was infeasible to

rapidly transfer a large amount of data from the kernel to user-space without highly degrading

the system performance. To overcome this problem, we considered the PCB record of a process

that was being switched out to estimate process behavior during its CPU-time slice, and the

PCB sequence to represent the overall behavior of the process.

Application Testing & PCB Mining Workflow

The application testing and PCB data collection process was triggered by the main manage-

ment unit sending the target package name to the ATU through an Android Debug Bridge

(ADB) connection. Figure 3.7 illustrates the sequence of events between the on-device system

components to perform the operation of testing the target application and collecting its PCB

sequence.
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Figure 3.7: The sequence diagram of the application testing and PCB data collection workflow
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The first step of application testing and PCB mining was activating the PCB buffer reader,

which attempted to read the PCB buffer every 1 second until its termination. Secondly, the

ATU passed the target package name to the data collector (using the write /proc file), which

forwarded it to the CPU scheduler. The ATU activated the monkeyrunner, which launched the

target app and simulated user interactions for n seconds.

When the first thread to run the application was created, the scheduler identified it by

comparing its package name to the target pname. It then used its pid (thread group id tgid) to

identify any child threads. Whenever the scheduler was switching out one of the app threads, it

appended its PCB record to the PCB’s buffer before activating another task. On the other hand,

the data collector resets the PCB counter after the buffer reader reads its content (using the read

/proc file). Appending a PCB record and resetting the PCB counter were both non-preemptive

operations (i.e., they could not be interrupted by other threads), which ensured synchronization

between the app threads and prevented overwriting the PCB buffer.

After monkeyrunner finished execution, the ATU sent an empty package name to the data

collector to terminate the data collection process. The latter signaled the scheduler to destruct

its pname and switch off its PCB data collection functionality. Finally, the ATU terminated

the PCB buffer reader, the target application, and monkeyrunner. By the end of this process, a

sequence of PCB records was stored as a text file on the sdcard of the device.

3.4.3 Storing & Analyzing Results

Upon successful completion of the application testing and data collection process, the manager

pulled out the resulting PCB file, stored, and ran a preliminary analysis on it. The analysis

provided information about the target application threads and the PCB sequence collected.

For each thread, it reported the number of voluntary and involuntary context switches

performed. Voluntary context switches occurred when the running thread blocked as it waited

for unavailable resources, while involuntary ones occurred when the thread used its CPU-time

slice or a higher priority thread requested the CPU. The analysis also reported the occurrence of

missed PCB records (if any) and its ratio to the actual number of context switches performed.
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Figure 3.8: Sequence diagram of post application testing and data collection process

We found that PCB misses could occur during the execution of the compare package name

function and before the scheduler identified the target tgid.

The task manager kept track of the termination state of each task in case of success, as

well as its cause in case of failure. If the task failed due to a monkeyrunner crash or an error

in the analysis process, the manager re-ran the same task for r maximum times, otherwise, it

continued to the next task. Regardless of the success or failure of the task, the manager reset

the device back to a clean state (repeated if needed) before starting (or re-starting) a new task.

3.5 The PCB Dataset

We selected 3562 malware-infested and 4020 benign apps to perform the analysis and PCB

mining. We successfully ran the analysis and stored the results of 2615 benign and 2502

malware-infested apps. A large number of malware-infested apps either failed to install or

to complete the analysis correctly, compared to benign apps. The PCB dataset comprised N

PCB sequences collected for each application, where N is the number of threads used by the ap-

plication during the analysis. Figure 3.9 shows the distribution of benign and malware-infested
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applications based on the number of threads. The figure shows only a minority of applications

used more than 200 threads during the application runtime. More than 63% of benign apps

used 50-150 threads, while 46% of malware-infested apps tended to use less than 50 threads

only.

Figure 3.9: The distribution of app tests based on the number of threads running each app

Each application was executed with 15k interactions for an average time of 25 seconds.

An average of 18430 and 19068 context switches occurred during the analysis for benign and

malware-infested apps, respectively. Figure 3.10a illustrates how application tests were dis-

tributed based on the ratio of PCB misses for each application. The PCB miss ratio represents

the number of PCB records that were not captured to the total number of context switches that

occurred during the application test for all running threads. The figure shows that our approach

successfully captured more than 99.5% of context switches for 70% of the tested applications,

and more than 99% of context switches for 90% of the tested applications.

Figure 3.10b shows the distribution of app tests based on PCB miss ratio for the main

thread running the application (first thread). We can see that the PCB miss rate for the main

thread is slightly higher than its value for all threads combined. As discusses earlier (in Sub-

section 3.4.3) misses can likely happen before the scheduler identifies the tgid of the main

thread.
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(a) (b)

Figure 3.10: Distribution of app tests for malware-infested and benign based on (a) the PCB
miss ratio for all threads during the application test (b) the PCB miss ratio of the main thread
during the application test

Figure 3.11 shows the distribution of malware-infested and benign apps based on the total

number of context switches that occurred during the application test. Figure 3.11a shows that

malware-infested applications were distributed over a wider range of total context switches

compared to benign applications that tend to have similar total number of context switches over

all. Figure 3.11b shows that the main thread in benign applications was more active (performed

more context switches) than in malware-infested applications.

3.6 Discussion

Several research efforts have been directed toward mining PCB information to detect Android

malware [70, 96, 88, 8]. In [70], the author used customized system calls to extract PCB

information from the target process at a rate of 1ms. The target process is determined by

matching the process name of the target application with the list of currently running processes.

The research in [96, 88] proposed a similar approach of using kernel modules to transfer PCB

information from kernel to user-space. They run the application and find the target process

by matching its pid with the list of currently running processing. Mining PCB information
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Figure 3.11: Distribution of app tests for malware-infested and benign based on (a) the number
of context switches for all threads combined (b) the number of context switches of the main
thread that occurred during the application test

in [70, 96, 88] is requested by the user-space every 1 ms, after finding the target process.

However, userspace processes have a lower priority than kernel processes, which means they

can be delayed or interrupted more frequently, leading to a higher chance of missing PCB

records. Additionally, the timely manner of collecting PCB information can lead to reading

duplicate records. Moreover, their approach tracks the behavior of a single thread (the main

process) only, whereas Android applications can use hundreds of threads during application

runtime. Our proposed approach can overcome these limitations by mining PCB information at

the kernel level triggered by process context switching. The high priority of the CPU scheduler

guarantees that the PCB data mining is synchronized with process CPU time. It also allows us

to collect the PCB information of all threads running the application.Table 3.2 compares our

mining approach to currently available methods [70, 96, 88].

We obtained access to the dataset collected by [96] and used it to statically compare the

performance of their mining approach (also followed in [88]) with our proposed mining ap-

proach, as shown in Table 3.3. Our approach successfully collected the PCB information for an

average of 113 threads per application, while their approach focused on the main thread only.
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Table 3.1: Comparing statistics of our proposed approach with a previous method.

Shahzad et al. [70] Xinning et al. [88, 96] Our Approach

Android Version Android 2.3.6 - Android 8.1

Kernel Version 2.6.35.7 3.4.0 4.4.78

Data Collection
Scope Main process Main process

Main process &
all children

Requires Kernel
Modification Yes No Yes

Data Collection is
Requested by

Userspace
Reading Loop

Userspace
Reading Loop

Kernel CPU-Scheduler
Context Switching

Data Collection is
Triggered by

Target process name
found

Target pid found
Launching the matching
target process name/ tgid

Data Collection
& Transfer Rate Every 1ms Every 0.75ms

Every context switching
\variable transfer rate

Data Collection
& Transfer Size Single PCB record Single PCB record PCB patches

User & Kernel-space
Communication Channel System calls Kernel module Kernel module

Table 3.2: Comparing the proposed mining approach with the available methods [70, 88, 96]
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Table 3.3: Comparing statistics of the datasets collected using our proposed mining approach
and another available method.

Xinning et al. [96] Our Dataset

Number of Samples 2550 5117

AVG Number of
Threads 1 113

AVG Performed
Context Switches (Main) 5647 5578

AVG Performed
Context Switches (All) 5647 18431

AVG Miss Ratio 53% 0.57%

Standard Deviation
of Miss Ratio 7.8 0.01

AVG Duplication Ratio 82% 0%

Standard Deviation of
Duplication Ratio 8.1 0

The average number of context switches performed by the main thread in both datasets is simi-

lar. Given our PCB dataset, the main thread context switches on average represented only 40%

of the total context switches performed by an application at runtime. The table shows the huge

improvement achieved in capturing unique PCB records with minimal miss and duplication

rates.

3.7 Conclusion

Building a reliable and efficient machine learning model highly depends on the efficiency of its

dataset. Therefore, we have put great efforts into building an Android application dataset to be

recent, realistic, diverse, and non-biased. We have successfully tested and collected the PCB

information of 2615 and 2502 unique benign and malware-infested apps, respectively. The be-

nign apps were collected from the top-ranked Google Play Store apps, spanning 38 categories.

Selected apps were updated since January 2019, have a minimum of 1M installs, and have
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an average ranking of 4.4/5. Malware-infested apps were collected from the VirusTotal Pri-

vate API [37] and classified by a total of 75 Android malware detection engines. The selected

samples are categorized as Trojan, Riskware, Spyware, Backdoor, Adware, Ransomware, and

Exploit, and were distributed among 195 malware families, where the majority were recently

discovered (in 2018, and later).

We introduce a closed dynamic malware analysis framework for testing different applica-

tions concurrently on multiple physical Android phones. The framework employs monkeyrun-

ner to exercise applications. It also provides a simulated internet connection over WiFi to

ensure the security of local and online resources. We used the framework to test and collect the

PCB information of the selected apps.

We proposed a novel approach to mine PCB information over process execution time

triggered by process context switches. Our results show that the proposed approach was capable

of precisely tracking the application PCB information at runtime, and can potentially represent

its behavior efficiently. For the collected samples, we were able to track an average of 112

threads per application performing an average of 18430 context switches with an average miss

ratio of 0.57%.The proposed approach mined PCB information at the kernel level, synchronized

with CPU utilization to minimize data collection overhead, as well as duplicate or missed PCB

records. Lastly, it is worth mentioning that synchronizing PCB mining with CPU utilization

requires modifying the Android kernel.
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Chapter 4

Android Malware Detection using Deep Learning on PCB Information

4.1 Introduction

In this chapter, we propose a novel approach for detecting Android malware using deep learn-

ing techniques on PCB information. The proposed detection model uses Recurrent Neural

Networks (RNNs) to identify the malicious behavior of a process, given a sequence of n PCB

records collected during its runtime. The model was trained and tested using the PCB dataset

collected in Chapter 3 of 2502 malware and 2615 benign samples. Our results show that the

proposed detection model was able to correctly identify a large percentage of malware and

benign samples at various points of their execution time using 12 PCBs only with an average

F1-score of 95.8%. We used an RNN architecture for modeling sequence data similar to the

one proposed in [95]. The architecture combines RNNs with Convolutional Neural Network

(CNNs) and Deep Neural Networks (DNNs) into one model.

CNN, Long short-term memory (LSTM), and DNN models have been widely used in

combination to solve machine learning problems with complex data, like sequences, time se-

ries, videos, and 2D-maps [66, 58, 67]. There are a number of advantages to combining these

models. CNNs have the ability to learn and extract important features without the need for

hand-crafted feature selection. RNNs are capable of learning the temporal correlations of such

complex data. Finally, DNNs abstract data at each layer, allowing the model to learn complex

data hierarchically and produce accurate predictions.

Identifying the malicious behavior of applications at execution time can be challenging.

The variable starting point and nature of malicious behavior among different malware, as well
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as a large number of features to consider, increase the complexity of the problem. To deal

with this complexity, we introduce a combination of CNNs, LSTM, and DNNs into a classifier

model to detect Android malware using PCB information collected over the process execution

time.

4.2 Using Deep Learning & PCB information to Identify Android Malware Attacks

4.2.1 Data Preprocessing

Data preprocessing prepares the dataset to train the classifier. We have collected PCB informa-

tion of 2502 malware and 2615 benign samples. Each sample activated between 10 and 250

threads, resulting in a large number of PCB sequences over the entire sample set. For training

the classifier, only the main thread PCB sequence per sample was considered. The number of

collected PCB records per thread was variable and depends on the lifetime of the thread.

The dataset used to train the classifier was formatted such that each sample has a sequence

of n records, and each record consists of m features. Features of zero variance (i.e., obser-

vations that have no value to the learning process) were eliminated, reducing the number of

features from X to Y. The final step was data normalization, where all features were scaled

from their original range to have values between 0 and 1. For each feature x, we determined its

minimum and maximum values and normalized each value as follows.

x́ =
x−min(x)

max(x)−min(x)
(4.1)

4.2.2 Model Architecture

Figure 4.1 depicts the architecture of the proposed Android malware detection model. As

illustrated, the main sequence of n PCBs is divided into s consecutive blocks [X1, X2, ..Xs] of

length n/s and m PCB features. Each of these blocks is fed into one-dimensional convolutional

layers for feature extraction, providing better representation of their features. Specifically, we

use two CNN layers with a kernel size of two sliding along the temporal dimension of the data
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Figure 4.1: The network architecture for detecting Android malware

with padding. The activation unit used in the CNN layers is ReLU activation[38]. For each

block, the CNN layers produce 64 and 32 feature maps, respectively.

It is common to use two CNN layers, followed by a dropout and a pooling layer. The

dropout layer is used to prevent outfitting by randomly eliminating output links from one layer

to the next during training [76]. The dropout rate used is 50% of CNN output is ignored.

A one-dimensional max-pooling layer is used to downsample the sequence while maintain-

ing structural information to prevent learning the exact position of feature values within the

sequence. This is important as the starting point of the malicious behavior differs from one

sample to another. A window size of two and stride of zero are used, halving the size of the

CNN feature maps. These feature maps are then flattened into a single feature vector for each

block.

The LSTM layer processes the sequence of s blocks and produces a single output of 100

cells (many to one). The ReLU activation was also used in the LSTM layer. Another dropout

layer is used after the LSTM layer to reduce overfitting to the training data. Finally, a fully

connected layer is used to interpret features extracted from the LSTM, followed by the output

layer that is used to make the prediction.
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4.3 Experiments & Results

This section discusses the experiments conducted to evaluate the proposed solution and produce

the best detection model possible. First, we experiment with different dataset designs and

compare the performance of their models. Then we study the PCB features, their distribution

among malware and benign processes, and their importance.

4.3.1 Dataset Design Impact on Classifier Performance

To maximize detection performance, we followed different techniques to construct the dataset

and compare corresponding performance experimentally. We used the PCB dataset collected

in Chapter 3 to create three different versions, as follows. In the first dataset, the PCB se-

quences were truncated at n PCBs (zero-starting point dataset). The second dataset was built

by selecting a sub-sequence of n PCBs at a random point of the process execution (random-

starting point dataset). The third dataset was constructed by slicing each of the PCB sequences

collected during the analysis into sub-sequences of n PCBs and making them into separate

samples (expanded dataset).

When constructing the datasets, zero paddings were used to extend sub-sequences of less

than n PCB records. For simplicity, the PCB sub-sequences were labeled by their original

sample label. The datasets were shuffled then randomly split into 60% training and 40% test

sets and finally normalized before use. The third dataset was shuffled and split into training and

test sets before expanding it to evaluate the model on data samples it has not seen before. The

training set was then shuffled again before training.

As noted previously, each data sample (sequence of n PCBs) was divided into s blocks for

feature extraction using the CNN layers before being fed into the LSTM layer. The sequence

length n and number of blocks s were determined experimentally. Five classifier models were

trained for each n, such that n ∈ {12, 100, 200, 300, 400, 500, 1000} PCBs for the smaller

datasets, while n ∈ {12, 100, 300} PCBs for the larger dataset. The number of blocks s = 4 for

n < 500 PCBs, and s = 10 otherwise. The F1-score of the test set (i.e., the weighted average

of precision and recall) was used to evaluate all models.
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Figure 4.2 shows the F1-score average and variation of the five classifier models trained

using the zero-starting point and random-starting point datasets. The x- and y-axes correspond

to PCB sequence size and F1-score, respectively. The bar color represents the starting point of

the PCB sub-sequence.

Figure 4.2: The F1-scores and their variations of the classifier models trained with the following
PCB sequence setting: zero or random starting point and a sequence size of n PCBs.

Figure 4.2 shows that when training the model to identify malicious behavior using the

first n PCBs of its CPU-time, the performance significantly improved by increasing sequence

length. The model was able to detect some samples as early as 12 PCBs, and a sequence

size of 1k PCBs improved the average F1-score to 95%. When training the classifier using

the random-starting point dataset, the model was able to achieve an F1-score of 93.3% with a

sequence length of 12 PCBs. Although increasing the sequence size generally did not improve

classifier performance, using a much larger sequence size of 1k PCBs improved the average

F1-score to 94.7%, performing similarly to 1k zero-starting point models.

Figure 4.2 also shows that random models with 100-500 PCBs had the highest variance

among all models. On the other hand, the 12PCBs random classifier had higher stability at
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nearly 0.4% of variance. The classifier was able to generalize better in detecting malicious

behavior at different points of process execution time. This can be explained by the rich diver-

sity of the random-starting point dataset, as well as the higher divergence between its classes,

compared to the zero-starting point dataset that is limited to the first n PCBs of the process

execution time only.

To further evaluate the generalizability of the random models, we trained them using the

random-starting point training set and evaluated them using the expanded test set. Table 4.1

illustrates that the random models produced close results when evaluated on the expanded

dataset, compared to their results on the random-starting point dataset. Moreover, classifier

models trained using 12 PCBs performed slightly better (more stable and with higher F1-score)

than the other models when tested on the expanded dataset. We believe this finding could be

caused by the labeling approach. All sub-sequences are labeled by their original sample la-

bel, instead of labeling only sub-sequences of malicious behavior as malware. Therefore, the

chance of creating false-labeled samples is higher when the PCB sequence is larger, where the

actual malicious behavior can be contained in a lower number of samples which are correctly

classified as malware, and the rest will be falsely labeled. Therefore, random models were able

to generalize better on the expanded dataset with shorter PCB sequences.

Table 4.1: Evaluating the random models on the random-starting point versus on the expanded
test set.

PCB Sequence Size F1-Score On
Random Test Set

Random
Test Set Size

F1-Score On
Expanded Test Set

Expanded
Test Set Size

12 PCBs 93.3% ± 0.42% 2046 92.5% ± 0.29% 943670
100 PCBs 93.6% ± 0.83% 2046 92% ± 0.32% 113229
300 PCBs 94.5% ± 0.82% 2046 92.3% ± 0.71% 37787

Table 4.2 presents the average and standard deviation of the F1-score of the five classifier

models trained and tested using the expanded dataset. The resulting models outperformed other

classifiers trained using zero-starting point and random starting point datasets.

Although malware samples generally tend to hide or limit their malicious behavior, the

proposed detection model was able to detect a high percent of the collected malware samples

at various points of their execution time. Conducted experiments show that the RNN classifier
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Table 4.2: Evaluating the classifier models trained and tested using the expanded dataset.

PCB Sequence Size Training Set Size Test Set Size F1-Score
12 PCBs 1421709 943670 95.8% ± 0.2%
100 PCBs 170543 113229 95.5% ± 0.3%
300 PCBs 56901 37787 95.6% ± 0.4%

performed the best with an average F1-score of 95.8% when trained using the expanded dataset

with a sequence length of 12 PCBs.

4.3.2 Measuring Features Importance

To evaluate the PCB feature importance (i.e., their contribution toward model performance),

we used the Permutation Feature Importance algorithm [35]. The algorithm simply measures

the increase in the prediction loss after permuting feature vector j. First, we trained a classifier

model using the original feature set on the expanded dataset of 12 PCBs. Then we used the

test data to obtain the prediction error of the model errororg . To measure the importance score

of feature j, we permutated the feature vector by randomizing its values (within [0-1)). Then,

we evaluated the same classifier model using the modified test set and recorded the prediction

score errorj . The Feature Importance score FIj = errorj − errororg. Finally, we measured

the importance score of all non-constant features and sorted them in a descending order.

Figure 4.3 shows the four groups into which PCB features were divided based on the dis-

tribution of their FI score. The sig str is a pointer to the signal handling information struct

(signal struct) within the process task struct. The curr mm is a pointer to the memory man-

agement information struct (mm struct), and the sched str pointer points to the CPU schedul-

ing information struct (sched info). Features with no pointer belongs to the task struct itself. It

is worth mentioning that some features had common names across different structs, but did not

have the same values.

Figure 4.4 illustrates two-dimensional histogram plots of malware and benign processes

for the top 10% of the PCB features ranked by their FI score. Samples within the dataset had

variable sequence length. Therefore, we have randomly selected a subset of a 1000 malware

and a 1000 benign samples with a PCB sequence size larger than 4000 PCBs (smaller than both
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Figure 4.3: PCBs Features categories based on the Feature Importance Score (FI)
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medians 4807 for the malware and 5666 for benign). All PCB sequences were then truncated

to 4000 PCBs. The number of bins for the x-axis is set to the PCB sequence size to compare

the PCB sequences of both groups. The y-axis is shared between the subplots for each feature.

Therefore, some of the sub-figures have blank area, where one class has a wider range of values

than the other.

Figure 4.4a illustrates the value of sig str-nr threads (number of threads) over time for

malware and benign processes. The figure shows that malware tended to have fewer threads

than benign applications throughout their execution time. The sig str-oublock in figure 4.4d is

the process counter for block output operations. Malware processes have shown much smaller

overall values compared to benign processes.

The acct rss mem1 in figure 4.4c is the cumulative counter for the Resident Set Size (RSS)

that shows how much memory is allocated for the process. The figure shows that benign pro-

cesses generally allocated more memory over time than malware processes. Figure 4.4e repre-

sents the mvacache seqnum, that is the per-thread virtual-memory areas (VMA) cache sequence

number. This task struct feature is used in conjunction with another VMA sequence number

within the mm struct to ensure the validity of cache results. The wakee flip decay ts in figure

4.4g represents the decay amount on switching-in (flipping) the thread to use the CPU. The

variable is CPU-scheduling related and is used to prevent starvation.

The curr mm-locked vm in figure 4.4b shows the number of pages with the PG flag set.

This flag is used to ensure exclusive access to pages involved in I\O operations. The curr mm-

hiwater rss in figure 4.4f is the thread’s peak value of the RSS, for which benign processes had

a larger and a wider range of values. Finally, the curr mm-arg end feature in figure 4.4h along

with the curr mm-arg start feature are used to find command-line arguments of a process.

PCB features contributed differently toward making the classification decision. The top

ranked features belonged to different categories: memory management, signal information,

scheduling information, and others. As can be seen in figure 4.4, the most contributing features

have shown differences in the overall behavior between malware and benign processes. Nev-

ertheless, these features alone could not achieve the same performance as the model with the
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Figure 4.4: Heatmap of malware and benign processes for the top 10% features ranked by FI
score.
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full feature set. When training a model using the top 42 features, the model had an average F1-

score of 94.5%, while training the model using the top 22 features only produced an F1-score

of 94%.

4.4 Conclusion

In this chapter, we proposed a novel approach to detect Android malware using deep learning

techniques on PCB information. The detection model combines CNN, LSTM, and DNN to

extract important features, learn temporal correlations, and further abstract deep network find-

ings, respectively. The structure of the detection model can be utilized with different detection

window sizes, as well as PCB feature sets from other versions or other Linux-based operating

systems.

The proposed detection model was able to correctly identify a large percentage of malware

and benign samples at various points of their execution time using 12 PCBs only with an aver-

age F1-score of 95.8%. To the best of our knowledge, no available dynamic malware detection

technique has achieved such minimal detection time. We validated our approach by training

and testing the model using the PCB dataset of 2615 benign and 2502 malware infested apps.

For each setting, we have trained and tested five classifier models and reported the average

F1-score.

Three different dataset versions were constructed to train the detection model, the zero-

starting point dataset, the random-starting point dataset, and the expanded dataset. The de-

tection model was improved by increasing sequence size when using the zero-starting point

dataset, as the behavior of malware and benign processes tend to diverge over time. The

random-starting point dataset provided a higher diversity of behaviors, enabling the detection

model to perform better using short PCB sequences, as well as detecting malicious behavior

at various points of process execution time. The expanded dataset models achieved the best

performance, with an average F1-score of 95.8% using 12 PCBs.

When building the datasets, all PCB sub-sequences were labeled based on their original

sample label. However, malware may act maliciously for a limited time during their execution.

We believe that our detection approach can be further improved by training the model using a
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PCB dataset in which only malicious behaviors are labeled as malware, and otherwise benign,

which can be costly to do.

Finally, we evaluated PCB feature importance using the Permutation Feature Importance

algorithm. The feature set contained 120 features and was divided into four groups based on

their score distribution. The top 10% included memory management, signals, and scheduling

information. However, a classifier model trained using the top feature set was not able to im-

prove upon the full-feature set classifier, implying that the PCB features contributed differently

toward detecting malware.

44



Chapter 5

Conclusion & Future Work

The number and sophistication of new malware attacks targeting Android phones are continu-

ously growing. However, the majority of Android phones are poorly or not protected against

such attacks. Static malware detection techniques can provide low detection delay, but only

analyze the application code and thus are vulnerable to obfuscation techniques. While dynamic

detection methods can cover these limitations, they are generally time intensive and resource

consuming. In this research, we propose a novel approach to detect Android malware dynami-

cally using deep learning techniques on Process Control Block (PCB) information.

5.1 Conclusion

Employing PCB information to detect Android malware has been previously explored, where

mining PCB information was triggered in the user-space, and performed for a minimum of three

seconds at runtime to produce the prediction. The purpose of this dissertation was to propose a

malware detection approach that can detect malicious behavior with minimal detection delay,

minimal false alarms, and maximal true positives. It needs to be easily maintained and should

be able to detect known malware, as well as new attacks from a variety of malware.

The efficiency and reliability of any machine learning (ML) model depends highly on the

efficiency of its dataset (training and testing). Therefore, the ML model needs to be evaluated

using a recent, realistic, diverse, and non-biased dataset. We did not rely on available malware

datasets [16, 11, 90, 41] as they were outdated, static-based, unavailable by the time we started

the research, or did not meet our sample selection criteria to produce an efficient and non-biased
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sample set. Moreover, we could not directly compare our model with the work of others due to

the same reasons.

To minimize detection overhead, our proposed mining approach is performed at the kernel

level. To ensure the efficiency of extracted PCB sequence to represent process behavior, PCB

information mining is triggered by the process context switches, and thus, is synchronized with

process CPU utilization. While an average of 5577 context switches were performed by the

main thread during the application runtime (25 seconds), our detection method required only

12 PCBs to perform the detection. We validated our approach using 2600 benign and 2500

malware samples and achieved an average F1-score of 95.8%.

To build an efficient, reliable, and diverse dataset, we determined criteria to select malware

and benign samples. Benign samples were downloaded from the Google App Store and selected

from the list of most popular Android apps across 38 categories. The chosen applications have

a minimum rating score of 4.0 out of 5, have reached at least five million installs, have been

updated since January 2019, and are compatible with Android versions 4.0 and later. Malware

samples were collected from the VirusTotal Private API under an academic research access

license. Samples were chosen if more than 40% of the malware detection engines scanned

them as malware, and at least 20% of which are from the top engines. Selected samples are

categorized as Trojan, Riskware, Spyware, Backdoor, Adware, Ransomware, and Exploit, and

were distributed among 195 malware families.

We introduce a closed dynamic malware analysis framework to facilitate the testing of dif-

ferent applications concurrently on multiple physical Android phones. The framework employs

monkeyrunner to exercise applications. It also provides a simulated internet connection over

WiFi to ensure the security of local and online resources. We have used the framework to test

4020 benign and 3562 malware apps and collect their PCB information over application exe-

cution time. We have successfully completed the analysis for 2600 benign and 2500 malware

samples.

The core aims of designing the PCB information mining approach were to minimize data

collection overhead, as well as duplicate or missed PCB records. Additionally, collecting the

PCB information of all threads running the application and not only the main thread to enable

46



detecting dropper malware. We implemented the PCB information mining approach using

four system components. The application testing unit (UTA) and the PCB buffer reader were

operating in userspace while the data collector and CPU scheduler were operating in kernel

space. Mining PCB information for an application starts with passing its package name from

the UTA through to the CPU scheduler. Once the application starts, the CPU scheduler appends

the PCB information of all group threads to the data collector buffer at each context switch. The

buffer is occasionally read by the PCB buffer reader and emptied by the data collector. At the

end of application execution, the data collector destructs the package name to terminate data

collection. Although the proposed approach was tested on Android phones, it can be utilized

for any Linux-based operating system.

The PCB dataset comprised T PCB sequences per application, collecting a PCB sequence

per thread. The average number of threads used by an application during its run time is 112

threads performing an average total of 18430 context switches. Results show that our mining

approach successfully captured more than 99% of context switches for the vast majority of

tested applications.

To maximize the detection performance, We introduced a detection model that combines

CNN, LSTM, and DNN. The model used the PCB information of the main thread over ap-

plication execution time to detect Android malware. The CNN extracts important features,

eliminating the need for feature selection. The LSTM processes the data sequence and learns

its temporal features. The DNN interprets the LSTM output and produces the final prediction.

The structure of the detection model can be utilized with different detection window sizes, as

well as PCB feature sets from other versions or other Linux-based operating systems. To train

the model, we constructed three different versions from the PCB dataset; the zero-starting point

dataset (sequences were truncated at n PCBs), the random-starting point dataset (sequences of

n PCB starting from a random point), and the expanded dataset (slicing PCB sequences into

subsequences of size n). The classifier built using the expanded dataset produced the best aver-

age F1-score of 95.8% using 12 PCBs. The second best F1-score of 94.7% was achieved using

the random starting point dataset with 1000 PCBs.
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To understand PCB features contribution toward detecting Android malware, we evaluated

PCB feature importance using the Permutation Feature Importance algorithm. The feature set

was divided into four groups based on their score distribution. The top 10% of features include

the number of threads, block output operations counter, peak RSS value, and others. The

top 42 features represent memory management, signals, and scheduling information. Using

top-ranked features to train the classifier produced an average F1-score of 94.5% compared to

95.8% for the full-feature set classifier.

5.2 Future Work

Detecting Android malware is an ongoing race, and employing PCB information to perform

the detection is a promising approach. Throughout the course of our work, we have come to

believe that this approach has the potential to be improved further. Below, we briefly discuss

exciting directions for future work.

Porting the solution into a stand alone Android service

In Chapter 3, we proposed a novel approach to mine PCB information over process execution

time triggered by process context switches. We employed the proposed approach to collect the

PCB sequences of 2600 benign and 2500 malware. In Chapter 4, we used the PCB dataset

to train a classifier model to detect Android malware. Although the mining approach was

performed on physical Android phones, training and testing the classifier was performed on a

separate machine. Future work would be to port the detection model to run completely on the

Android platform and integrate it with the proposed mining approach.

Labeling malicious behavior

In Chapter 4, we represented a new Android malware detection model that employed the time

sequence of PCB information to identify malicious behavior. The best model was achieved

using the expanded dataset, where PCB sequences were sliced into subsequences labeled by

their original sample label (due to limited time and resources). Generally, malware does not

act maliciously through its execution time. Therefore, the labeling approach can mislead the
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classifier. It would be thus interesting to train the detection model using a dataset that only

labels malicious behavior as malware, otherwise the sequence is labeled as benign. One pos-

sible approach is to dynamically analyze the machine code of malware samples to identify the

starting and ending point of the malicious behavior (using manual or automated techniques).

Utilizing child threads in detecting dropper malware

Our proposed mining approach collects the PCB information of all threads running the Android

application. We have only used PCB information on the main thread to perform the detection

and did not take into consideration the possibility of malware spawning threads to carry out

malicious actions. For instance, dropper malware installs and launches other types of malware

to the target system. Therefore, utilizing the PCB information of the other threads in per-

forming the detection could be interesting; however, this approach would significantly increase

processing overhead due to the large number of threads used by Android applications.
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Appendix A

The Kernel-Space System Components Pseudocode

A.1 The Data Collector Pseudocode

# d e f i n e P C B s l i m i t

# d e f i n e P C B b u f f l i m i t

/ / e x t e r n a l f u n c t i o n s a r e implemented i n c o r e . c

e x t e r n ∗ package name ;

e x t e r n i n i t p a c k a g e n a m e ( buf , c o u n t ) ;

e x t e r n d i s t r u c t p a c k a g e n a m e ( ) ;

e x t e r n compare package name ( p t a s k s t r u c ) ;

/ / used t o c o n t r o l b u f f e r r e a d i n g / empty ing

PCB cnt = 0 , PCB read =0;

PCBs [ P C B s l i m i t ] [ P C B b u f f l i m i t ] ; / / PCBs b u f f e r

/ / non−p r e e m t i v e l o c k i s used t o manage r e a d / w r i t e o p e r a t i o n s

d e f i n e l o c k ( s l o c k ) ;

/ / used f o r p roc communica t ion

d e f i n e r e a d p r o c ( ) ;

d e f i n e w r i t e p r o c ( ) ;
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/ / make i t r e a c h a b l e from o t h e r p a r t s o f t h e k e r n e l

e x p o r t append PCB record (∗ p t a s k s t r u c t ) ;

append PCB record (∗ p t a s k s t r u c t ){

m m s t r u c t ∗ curr mm ; / / memory managment i n f o

s i g n a l s t r u c t ∗ s i g s t r ; / / s i g n a l h a n d l i n g i n f o

s c h e d i n f o s c h e d s t r ; / / CPU s c h e d i n g r e l a t e d

PCB record [ P C B b u f f l i m i t ] ;

/ / i f b u f f e r i s f u l l , w a i t

w h i l e ( PCB cnt >= P C B s l i m i t ) ;

/ / c r i t i c a l r e g i o n t o append a PCB r e c o r d

a c t i v a t e l o c k ( s l o c k ) ;

/ / r e a d PCB p a r a m e t e r s

r e a d t a s k s t r u c t ( PCB record , p t a s k s t r u c t )

r e a d m m s t r u c t ( PCB record , curr mm ) ;

r e a d s i g n a l s t r u c t ( PCB record , s i g s t r ) ;

r e a d s c h e d i n f o ( PCB record , s c h e d s t r ) ;

/ / a p p e n d r e c o r d t o PCB b u f f e r

a p p e n d t o P C B s b u f f e r ( PCB record ) ;

PCB cnt += 1 ;

d e a c t i v a t e l o c k ( s l o c k ) ;

}

s e n d P C B b u f f e r ( ) {

c o u n t e r = 0 ;

/ / i f b u f f e r i s empty r e t u r n NULL

i f ( PCB cnt ==0)

send NULL buffe r ( ) ;
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w h i l e ( c o u n t e r < PCB cnt )

r e a d r e c o r d ( PCBs [ c o u n t e r ] )

PCB read +=1;

c o u n t e r += 1 ;

}

e m p t y b u f f e r ( ) {

c n t =0;

/ / c r i t i c a l r e g i o n t o empty b u f f e r ;

a c t i v a t e l o c k ( s l o c k ) ;

/ / Lock empty ing t h e b u f f e r n o t t h e whole r e a d i n g p r o c e s s .

/ / Add PCBs appended w h i l e r e a d i n g

i f ( PCB read != PCB cnt )

c n t = a p p e n d m i s s e d r e c o r d s ( PCB read , PCB cnt )

PCB cnt = c n t ;

d e a c t i v a t e l o c k ( s l o c k ) ;

}

r e c e i v e p a c k a g e n a m e ( ∗ubuf , c o u n t ){

buf [ P C B b u f f l i m i t ] ;

/ / map t h e d a t a from use r−s p a c e t o k e r n e l−s p a c e .

c o p y f r o m u s e r ( buf , ubuf , c o u n t ) ;

/ / An empty package name i s a s i g n a l

/ / t o t e r m i n a t e t h e d a t a c o l l e c t i o n p r o c e s s

i f ( c o u n t == 1)

d i s t r u c t p a c k a g e n a m e ( ) ;

r e t u r n s t r l e n ( buf ) ;
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/ / o t h e r w i s e s i g n a l t o s t a r t c o l l e c t i n g PCBs

i n i t p a c k a g e n a m e ( buf , c o u n t ) ;

r e t u r n s t r l e n ( buf ) ;

}

i n i t ( ) {

c r e a t e r e a d p r o c (&readOp ) ;

c r e a t e w r i t e p r o c (& wr i teOp ) ;

}

c l e a n u p ( ) {

r e m o v e r e a d p r o c (&readOp ) ;

r e m o v e w r i t e p r o c (& wr i teOp ) ;

}

A.2 The modified CPU Scheduler Pseudocode

# d e f i n e MAXSIZE

∗ package name [MAXSIZE] = NULL;

/ / make i t a c c e s s i b l e f o r o t h e r k e r n e l module

EXPORT SYMBOL( package name ) ;

boo l f i r s t T i m e = True ;

p i d t m a i n p i d = NULL;

i n t i n i t p a c k a g e n a m e ( rece ived pname , c o u n t ){

i n t i =0 ;

/ / make s u r e t h e l o c a l buf i s b i g enough

i f ( c o u n t > MAXSIZE)

r e t u r n −1;

package name = r e c e i v e d p n a m e ;

r e t u r n 0 ;

}

EXPORT SYMBOL( i n i t p a c k a g e n a m e ) ;
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vo id d i s t r u c t p a c k a g e n a m e ( ) {

package name = NULL;

}

EXPORT SYMBOL( d i s t r u c t p a c k a g e n a m e ) ;

boo l compare package name (∗ p t a s k s t r u c t ){

/ / compare t h e t a s k package name wi th t h e r e c e i v e d one

/ / i f ma tch ing s e t i t s p i d as t h e main p i d

ge t t a sk comm (comm , p t a s k s t r u c t ) ;

i f comm == package name [ 0 : l e n (comm ) ] {

i f f i r s t T i m e {

m a i n p i d = p t a s k s t r u c t −>p i d ;

f i r s t T i m e = F a l s e ;

}

r e t u r n 1 ;}

r e t u r n 0 ;

}

EXPORT SYMBOL( compare package name ) ;

c o n t e x t s w i t c h ( rq ∗ rq , t a s k s t r u c t ∗ prev , t a s k s t r u c t ∗ n e x t ){

/ / p r e p a r e t o s w i t c h t h e CPU

p r e p a r e t a s k s w i t c h ( rq , prev , n e x t ) ;

a r c h s t a r t c o n t e x t s w i t c h ( p r ev ) ;

/ / / / more p r e p a r a t i o n

/ / i f package name i s s e t

/ / −−> t h e a p p l i c a t i o n i s b e i n g e x e c u t e d

i f ( package name != NULL){
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i f m a i n p i d != NULL:

i f ( m a i n p i d == prev−> t g i d )

append PCB record ( p rev ) ;

e l s e i f ( compare package name ( p rev ) )

append PCB record ( p rev ) ;

}

/ / s w i t c h memory s p a c e

switch mm ( prev , n e x t ) ;

/∗ Here we j u s t s w i t c h t h e r e g i s t e r s t a t e and t h e s t a c k . ∗ /

s w i t c h t o ( prev , nex t , p r ev ) ;

/ / more s w i t c h i n g

r e t u r n f i n i s h t a s k s w i t c h ( p rev ) ;

}
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Appendix B

Struct task struct

s t r u c t t a s k s t r u c t {

v o l a t i l e l ong s t a t e ; /∗ −1 un runnab l e , 0 r u n n a b l e , >0 s t o p p e d ∗ /

vo id ∗ s t a c k ;

a t o m i c t usage ;

u n s i g n e d i n t f l a g s ; /∗ p e r p r o c e s s f l a g s , d e f i n e d below ∗ /

u n s i g n e d i n t p t r a c e ;

# i f d e f CONFIG SMP

s t r u c t l l i s t n o d e w a k e e n t r y ;

i n t on cpu ;

u n s i g n e d i n t w a k e e f l i p s ;

u n s i g n e d long w a k e e f l i p d e c a y t s ;

s t r u c t t a s k s t r u c t ∗ l a s t w a k e e ;

i n t wake cpu ;

# e n d i f

i n t o n r q ;

i n t p r i o , s t a t i c p r i o , n o r m a l p r i o ;

u n s i g n e d i n t r t p r i o r i t y ;

c o n s t s t r u c t s c h e d c l a s s ∗ s c h e d c l a s s ;

s t r u c t s c h e d e n t i t y se ;

s t r u c t s c h e d r t e n t i t y r t ;

57



# i f d e f CONFIG SCHED HMP

s t r u c t r avg ravg ;

/∗ ’ i n i t l o a d p c t ’ r e p r e s e n t s t h e i n i t i a l

t a s k l o a d a s s i g n e d t o c h i l d r e n o f t h i s t a s k ∗ /

u32 i n i t l o a d p c t ;

u64 l a s t w a k e t s ;

u64 l a s t s w i t c h o u t t s ;

u64 l a s t c p u s e l e c t e d t s ;

s t r u c t r e l a t e d t h r e a d g r o u p ∗ grp ;

s t r u c t l i s t h e a d g r p l i s t ;

u64 c p u c y c l e s ;

# e n d i f

s t r u c t s c h e d d l e n t i t y d l ;

# i f d e f CONFIG BLK DEV IO TRACE

u n s i g n e d i n t b t r a c e s e q ;

# e n d i f

u n s i g n e d i n t p o l i c y ;

i n t n r c p u s a l l o w e d ;

cpumask t c p u s a l l o w e d ;

# i f d e f CONFIG PREEMPT RCU

i n t r c u r e a d l o c k n e s t i n g ;

un ion r c u s p e c i a l r c u r e a d u n l o c k s p e c i a l ;

s t r u c t l i s t h e a d r c u n o d e e n t r y ;

s t r u c t r c u n o d e ∗ r c u b l o c k e d n o d e ;

# e n d i f /∗ # i f d e f CONFIG PREEMPT RCU ∗ /

# i f d e f CONFIG SCHED INFO

s t r u c t s c h e d i n f o s c h e d i n f o ;
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# e n d i f

s t r u c t l i s t h e a d t a s k s ;

s t r u c t m m s t r u c t ∗mm, ∗ ac t ive mm ;

/∗ per−t h r e a d vma c a c h i n g ∗ /

u32 vmacache seqnum ;

s t r u c t v m a r e a s t r u c t ∗vmacache [VMACACHE SIZE ] ;

/∗ t a s k s t a t e ∗ /

i n t e x i t s t a t e ;

i n t e x i t c o d e , e x i t s i g n a l ;

i n t p d e a t h s i g n a l ; / ∗ The s i g n a l s e n t when t h e p a r e n t d i e s ∗ /

u n s i g n e d long j o b c t l ; / ∗ JOBCTL ∗ , s i g l o c k p r o t e c t e d ∗ /

/∗Used f o r e m u l a t i n g ABI b e h a v i o r o f p r e v i o u s Linux v e r s i o n s ∗ /

u n s i g n e d i n t p e r s o n a l i t y ;

/∗ s c h e d u l e r b i t s , s e r i a l i z e d by s c h e d u l e r l o c k s ∗ /

u n s i g n e d s c h e d r e s e t o n f o r k : 1 ;

u n s i g n e d s c h e d c o n t r i b u t e s t o l o a d : 1 ;

u n s i g n e d s c h e d m i g r a t e d : 1 ;

u n s i g n e d : 0 ; /∗ f o r c e a l i g n m e n t t o t h e n e x t boundary ∗ /

/∗ u n s e r i a l i z e d , s t r i c t l y ’ c u r r e n t ’ ∗ /

u n s i g n e d i n e x e c v e : 1 ; /∗ b i t t o t e l l LSMs we ’ r e i n execve ∗ /

u n s i g n e d i n i o w a i t : 1 ;

u n s i g n e d long a t o m i c f l a g s ; /∗ F l a g s n e e d i n g a t omi c a c c e s s . ∗ /

s t r u c t r e s t a r t b l o c k r e s t a r t b l o c k ;

p i d t p i d ;

p i d t t g i d ;

# i f d e f CONFIG CC STACKPROTECTOR

/∗ Canary v a l u e f o r t h e −f s t a c k−p r o t e c t o r gcc f e a t u r e ∗ /

! u n s i g n e d long s t a c k c a n a r y ;
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# e n d i f

/∗ p o i n t e r s t o ( o r i g i n a l ) p a r e n t p r o c e s s , y o u n g e s t c h i l d ,

younger s i b l i n g , o l d e r s i b l i n g , r e s p e c t i v e l y .

( p−>f a t h e r can be r e p l a c e d wi th p−>r e a l p a r e n t −>p i d ) ∗ /

s t r u c t t a s k s t r u c t r c u ∗ r e a l p a r e n t ; /∗ r e a l p a r e n t p r o c e s s ∗ /

/∗ r e c i p i e n t o f SIGCHLD , w a i t 4 ( ) r e p o r t s ∗ /

s t r u c t t a s k s t r u c t r c u ∗ p a r e n t ;

/∗ c h i l d r e n / s i b l i n g forms t h e l i s t o f my n a t u r a l c h i l d r e n ∗ /

s t r u c t l i s t h e a d c h i l d r e n ; / ∗ l i s t o f my c h i l d r e n ∗ /

s t r u c t l i s t h e a d s i b l i n g ; / ∗ l i n k a g e i n my p a r e n t ’ s c h i l d r e n l i s t ∗ /

s t r u c t t a s k s t r u c t ∗ g r o u p l e a d e r ; / ∗ t h r e a d g r o u p l e a d e r ∗ /

/∗ p t r a c e d i s t h e l i s t o f t a s k s t h i s t a s k i s u s i n g p t r a c e on .

∗ Thi s i n c l u d e s bo th n a t u r a l c h i l d r e n and PTRACE ATTACH t a r g e t s .

∗ p−>p t r a c e e n t r y i s p ’ s l i n k on t h e p−>p a r e n t−>p t r a c e d l i s t . ∗ /

s t r u c t l i s t h e a d p t r a c e d ;

s t r u c t l i s t h e a d p t r a c e e n t r y ;

/∗ PID / PID hash t a b l e l i n k a g e . ∗ /

s t r u c t p i d l i n k p i d s [PIDTYPE MAX ] ;

s t r u c t l i s t h e a d t h r e a d g r o u p ;

s t r u c t l i s t h e a d t h r e a d n o d e ;

s t r u c t c o m p l e t i o n ∗ v f o r k d o n e ; / ∗ f o r v f o r k ( ) ∗ /

i n t u s e r ∗ s e t c h i l d t i d ; / ∗ CLONE CHILD SETTID ∗ /

i n t u s e r ∗ c l e a r c h i l d t i d ; / ∗ CLONE CHILD CLEARTID ∗ /

c p u t i m e t ut ime , s t ime , u t i m e s c a l e d , s t i m e s c a l e d ;

c p u t i m e t g t ime ;

s t r u c t p r e v c p u t i m e p r e v c p u t i m e ;

u n s i g n e d long nvcsw , nivcsw ; /∗ c o n t e x t s w i t c h c o u n t s ∗ /

u64 s t a r t t i m e ; /∗ monotonic t ime i n nsec ∗ /
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u64 r e a l s t a r t t i m e ; / ∗ boo t based t ime i n nsec ∗ /

/∗ mm f a u l t and swap i n f o : t h i s can a r g u a b l y be

seen as e i t h e r mm−s p e c i f i c o r t h r e a d−s p e c i f i c ∗ /

u n s i g n e d long m i n f l t , m a j f l t ;

s t r u c t t a s k c p u t i m e c p u t i m e e x p i r e s ;

s t r u c t l i s t h e a d c p u t i m e r s [ 3 ] ;

/∗ p r o c e s s c r e d e n t i a l s ∗ /

/∗ Trace r ’ s c r e d e n t i a l s a t a t t a c h ∗ /

c o n s t s t r u c t c r e d r c u ∗ p t r a c e r c r e d ;

/∗ o b j e c t i v e and r e a l s u b j e c t i v e t a s k c r e d e n t i a l s (COW) ∗ /

c o n s t s t r u c t c r e d r c u ∗ r e a l c r e d ;

/∗ e f f e c t i v e ( o v e r r i d a b l e ) s u b j e c t i v e t a s k c r e d e n t i a l s (COW) ∗ /

c o n s t s t r u c t c r e d r c u ∗ c r e d ;

c h a r comm[TASK COMM LEN ] ; /∗ e x e c u t a b l e name e x c l u d i n g p a t h

− a c c e s s wi th [ gs ] e t t a s k c o m m ( which l o c k

i t w i th t a s k l o c k ( ) )

− i n i t i a l i z e d n o r m a l l y by s e t u p n e w e x e c ∗ /

/∗ f i l e sys tem i n f o ∗ /

s t r u c t n a m e i d a t a ∗ n a m e i d a t a ;

# i f d e f CONFIG DETECT HUNG TASK

/∗ hung t a s k d e t e c t i o n ∗ /

! u n s i g n e d long l a s t s w i t c h c o u n t ;

# e n d i f

/∗ f i l e s y s t e m i n f o r m a t i o n ∗ /

s t r u c t f s s t r u c t ∗ f s ;

/∗ open f i l e i n f o r m a t i o n ∗ /

s t r u c t f i l e s s t r u c t ∗ f i l e s ;

/∗ namespaces ∗ /
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s t r u c t n sp roxy ∗ nsp roxy ;

/∗ s i g n a l h a n d l e r s ∗ /

s t r u c t s i g n a l s t r u c t ∗ s i g n a l ;

s t r u c t s i g h a n d s t r u c t ∗ s i g h a n d ;

s i g s e t t b locked , r e a l b l o c k e d ;

/∗ r e s t o r e d i f s e t r e s t o r e s i g m a s k ( ) was used ∗ /

s i g s e t t s a v e d s i g m a s k ;

s t r u c t s i g p e n d i n g pend ing ;

u n s i g n e d long s a s s s s p ;

s i z e t s a s s s s i z e ;

s t r u c t c a l l b a c k h e a d ∗ t a s k w o r k s ;

s t r u c t a u d i t c o n t e x t ∗ a u d i t c o n t e x t ;

s t r u c t seccomp seccomp ;

/∗ Thread group t r a c k i n g ∗ /

u32 p a r e n t e x e c i d ;

u32 s e l f e x e c i d ;

/∗ P r o t e c t i o n o f ( de−) a l l o c a t i o n :

mm, f i l e s , f s , t t y , k e y r i n g s , mems allowed , mempolicy ∗ /

s p i n l o c k t a l l o c l o c k ;

/∗ P r o t e c t i o n o f t h e PI d a t a s t r u c t u r e s : ∗ /

r a w s p i n l o c k t p i l o c k ;

s t r u c t wake q node wake q ;

/∗ j o u r n a l l i n g f i l e s y s t e m i n f o ∗ /

vo id ∗ j o u r n a l i n f o ;

/∗ s t a c k e d b l o c k d e v i c e i n f o ∗ /

s t r u c t b i o l i s t ∗ b i o l i s t ;

/∗ VM s t a t e ∗ /

s t r u c t r e c l a i m s t a t e ∗ r e c l a i m s t a t e ;
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s t r u c t b a c k i n g d e v i n f o ∗ b a c k i n g d e v i n f o ;

s t r u c t i o c o n t e x t ∗ i o c o n t e x t ;

u n s i g n e d long p t r a c e m e s s a g e ;

s i g i n f o t ∗ l a s t s i g i n f o ; /∗ For p t r a c e use . ∗ /

s t r u c t t a s k i o a c c o u n t i n g i o a c ;

# i f d e f i n e d (CONFIG TASK XACCT)

u64 a c c t r s s m e m 1 ; / ∗ a c c u m u l a t e d r s s usage ∗ /

u64 acct vm mem1 ; / ∗ a c c u m u l a t e d v i r t u a l memory usage ∗ /

c p u t i m e t a c c t t i m e x p d ; / ∗ s t i m e + u t ime s i n c e l a s t u p d a t e ∗ /

# e n d i f

# i f d e f CONFIG CPUSETS

nodemask t mems al lowed ; / ∗ P r o t e c t e d by a l l o c l o c k ∗ /

s e q c o u n t t mems a l lowed seq ; / ∗ Seqence no t o c a t c h u p d a t e s ∗ /

i n t c p u s e t m e m s p r e a d r o t o r ;

i n t c p u s e t s l a b s p r e a d r o t o r ;

# e n d i f

s t r u c t r c u h e a d r c u ;

/∗ cache l a s t used p i p e f o r s p l i c e ∗ /

s t r u c t p i p e i n o d e i n f o ∗ s p l i c e p i p e ;

s t r u c t p a g e f r a g t a s k f r a g ;

/∗ when ( n r d i r t i e d >= n r d i r t i e d p a u s e ) , i t ’ s t ime t o c a l l

∗ b a l a n c e d i r t y p a g e s ( ) f o r some d i r t y t h r o t t l i n g pause ∗ /

i n t n r d i r t i e d ;

i n t n r d i r t i e d p a u s e ;

/∗ s t a r t o f a w r i t e−and−pause p e r i o d ∗ /

! u n s i g n e d long d i r t y p a u s e d w h e n ;

/∗ t ime s l a c k v a l u e s ; t h e s e a r e used t o round up p o l l ( ) and

∗ s e l e c t ( ) e t c t i m e o u t v a l u e s . These a r e i n nanoseconds . ∗ /
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u64 t i m e r s l a c k n s ;

u64 d e f a u l t t i m e r s l a c k n s ;

# i f d e f CONFIG TRACING

/∗ s t a t e f l a g s f o r use by t r a c e r s ∗ /

u n s i g n e d long t r a c e ;

/∗ b i t m a s k and c o u n t e r o f t r a c e r e c u r s i o n ∗ /

u n s i g n e d long t r a c e r e c u r s i o n ;

# e n d i f /∗ CONFIG TRACING ∗ /

i n t p a g e f a u l t d i s a b l e d ;

/∗ CPU−s p e c i f i c s t a t e o f t h i s t a s k ∗ /

s t r u c t t h r e a d s t r u c t t h r e a d ;

/∗ ∗ WARNING: on x86 , ’ t h r e a d s t r u c t ’ c o n t a i n s a v a r i a b l e−s i z e d

∗ s t r u c t u r e . I t ∗MUST∗ be a t t h e end of ’ t a s k s t r u c t ’ .

∗ Do n o t p u t a n y t h i n g below h e r e ! ∗ / } ;
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