
DevSecOps of Containerization

by

Pinchen Cui

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 8, 2020

Keywords: Container, Monitoring, Machine Learning, Blockchain

Copyright 2020 by Pinchen Cui

Approved by

David Umphress, Chair, Professor of Computer Science
Anthony Skjellum, Professor of Computer Science

Ujjwal Guin, Assistant Professor of Electrical and Computer Engineering
Tao Shu, Assistant Professor of Computer Science

Abstract

Containerization is a new concept of virtualization, one that has attracted attention and

occupied considerable amount of market size due to its inherent lightweight characteristics.

However, the lightweight advantage is achieved at the price of security. The isolation of con-

tainers cannot be as strong as with traditional hypervisor-based virtualization. Attacks against

weak isolation of the container have been reported, and the use of shared kernel is another

targeted vulnerable point. This work focuses on providing security for the containerization.

We aim to provide secure monitoring of containerized application, which can help the infras-

tructure owner ensure the running application is harmless. The monitoring is non-intrusive

and lightweight with no user data privacy and performance overhead problems being incurred.

We propose use of machine learning techniques combined with container introspection tools to

perform intelligent monitoring. We establish an unique public dataset to provide better emula-

tion of real application behaviors and better coverage of attacks with expanded feature space.

Sufficient related work is surveyed, and a proof-of-concept monitoring system is implemented

and evaluated. In addition, we also investigate the containerization of Hyperledger blockchain

systems. Smart contract is one of the most important and promising feature of blockchain, and

it relies on the use of virtualization. Hyperledger implements its chaincode (smart contract)

based on containerization. Thus, the DevSecOps of containerization also determines the secu-

rity of Hyperledger systems. The potential risk of Hyperledger containerization lifecycle have

been illustrated and discussed.

ii

Contents

Abstract . ii

1 Introduction . 1

2 Background . 7

2.1 Overview of Virtualization . 7

2.1.1 Virtualization . 7

2.1.2 Containerization . 14

2.2 Cloud Computing . 16

2.2.1 Basic Concepts . 16

2.3 Virtualization Security . 18

2.3.1 General Anomaly Detection . 18

2.3.2 Virtual Machine Introspection . 22

2.3.3 Machine Learning based VMI . 25

2.3.4 Container Security . 27

2.4 Machine Learning Based Classification . 28

2.4.1 Fundamentals . 29

2.4.2 General Classifiers and Algorithms . 29

2.4.3 Unsupervised Anomaly Detection and Intelligent VMI 31

2.5 Blockchain . 33

2.5.1 Basic Concepts . 33

2.5.2 Virtualization and Containerization in Blockchain 36

iii

2.5.3 Smart Contract Security . 36

3 Proof of Concept for Intelligent Monitoring . 38

3.1 Out-of-Box Introspection Framework . 39

3.2 Feature Selection . 40

3.3 LSTM based Core Classifier . 41

3.4 Data Collection . 42

3.5 SVM based Labeling . 44

3.6 Evaluation . 46

3.7 Summary . 47

4 Towards Unsupervised Introspection of Containerized Application 48

4.1 Threat Model for Containerized Applications 49

4.2 System Call Based Anomaly Detection Dataset 50

4.2.1 Introspection Tool . 51

4.2.2 Customized Containerized Application 52

4.2.3 Selected Attacks . 52

4.2.4 Collected Dataset in Open Source . 52

4.3 Unsupervised Introspection of Containerized Application 54

4.3.1 Sliding Window . 55

4.3.2 Scaling Factor Normalization . 56

4.3.3 LSTM-based Classifiers . 57

4.3.4 Tunable Threshold . 57

4.4 Evaluation . 58

4.4.1 Evaluation Metric . 58

4.4.2 Experiment Results . 60

4.5 Discussion and Future Work . 61

iv

5 Perturbing Smart Contract Execution through the Underlying Runtime 63

5.1 Case Study: Attack on Hyperledger Fabric . 64

5.1.1 Chaincode Life Cycle . 65

5.1.2 Threat Model . 65

5.1.3 Insecure Communication . 66

5.1.4 Loose Image Management . 68

5.1.5 Risks Behind Docker . 69

5.2 What About Ethereum? . 71

5.3 Lessons Learned . 72

5.3.1 Limitation and Impact of the Proposed Attack 72

5.3.2 Countermeasure to the Proposed Attack 73

5.3.3 Threat Model of Smart Contract Systems 74

6 Conclusion . 76

Bibliography . 79

v

List of Figures

1.1 Architecture of Cloud Computing [1]). 2

2.1 Generalized architectures for Type-I (left) and Type-II (right) Virtual Machine
Monitors (adopt from [2]). 8

2.2 Memory Address Spaces of Virtualized System. 12

2.3 Virtualization of I/O [3] . 13

2.4 Architecture of Containerization [4] . 14

2.5 Isolation in Containerization . 15

2.6 General Methods . 19

2.7 Anomalies Classification (adopted from [5]): (a) Point Anomalies; (b) Contex-
tual Anomalies; (c) Collective Anomalies. 20

2.8 An Example of Virtuoso Usage (Adopted from [6]) 26

2.9 Blockchain Architecture (Based on Bitcoin) 34

3.1 Sample Design of the Prototpye . 39

3.2 System Call Traces Captured by Sysdig . 40

3.3 The Unigrams used in System Call Parameter Transformation 41

3.4 Sample LSTM Model . 42

3.5 Pre-processed Raw Data . 43

3.6 SVM Labeling Procedure . 45

3.7 Labeled Data Samples . 45

3.8 Scored Data Samples . 46

3.9 The Final Implemented Prototype . 47

4.1 Threats in Containerization . 50

vi

4.2 System Call Arguments Comparison of Different Behaviors. (a) The number
of fields used in the arguments. (b) The length of arguments. (c) The value of
arguments. Since all the system calls may have 0 field and 0 length arguments,
the range of each bar is from “average to max”. 54

4.3 Proposed Unsupervised Introspection Framework 55

4.4 Evaluation Results with Different Features . 59

5.1 Chaincode Life Cycle in Hyperledger . 64

5.2 Communication and Handshake between the Peer and Chaincode Containers . . 66

5.3 Unencrypted Key and Certificates stored in Host and Containers 67

5.4 Demonstration of MITM attack on Chaincode Communication 68

5.5 Replace the Hyperledger Baseos Image . 69

5.6 Dev-Chaincode Containers On-the-Fly . 69

5.7 Gain Root Access on Host via Malicious Image: This attack allows the adver-
sary to inject any code in Docker runtime (runc), which will be executed on host
with root privilege. This example simply injects “bash−i > &/dev/tcp/0.0.0.0/23450 >
&1&” into runc, and a reverse shell with root access on victim’s host will be
created. 70

5.8 Threat Model of Smart Contract System . 74

vii

List of Tables

3.1 Implementation Specification . 43

3.2 Evaluation of the Prototype System . 47

4.1 Selected Attacks . 53

4.2 Summary of Collected System Calls . 53

4.3 Training Hyperparameters . 59

4.4 Sample Best Result on Selected Attacks . 60

4.5 Evaluation Results with 99% Confidence and Window Size 50 61

viii

Chapter 1

Introduction

Nowadays, products and services no longer have local installation constraints because

users are able to access their data and applications from anywhere using online cloud services.

The concepts of Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastruc-

ture as a Service (IaaS) have emerged to provide a stratified collection of computing functions

(as shown in Figure 1.1). Collectively referred to cloud computing, they enable the dynamic

resource pooling in a multitenant model, where physical or virtual resources can be assigned

and reassigned according to tenant demand [7]. The development and deployment of cloud

computing technology saw services transferred from offline to online, systems migrated from

physical to virtual, and the environments offering better availability and superior extensibility.

The market has validated the need: almost $260 billion revenue has been made by worldwide

cloud services in 2017 [8].

Although the cloud infrastructure presents a relatively simple concept, overall system com-

plexity is increased, and along with security in such complex system confront significant chal-

lenges. In addition to being subject to common security issues such as Rootkit, Malware, DDoS

attack, and Replay attack, the cloud environment poses specific and distinctive security vulner-

abilities. The virtualized nature of the cloud infrastructure mean, many attacks against virtual

machine (VM) can also be performed in the cloud, e.g., VM escape, VM cloning and VM roll-

back, and Cross-VM attacks [9]. The loss of physical control to the data stored in the cloud

may also cause problems, namely, the data integrity and confidentiality cannot be ensured [10].

The shift away from individually operated system to consolidated centralized architectures re-

quires the service providers guard against of abusive use of cloud resources. For instance, the

1

Figure 1.1: Architecture of Cloud Computing [1]).

2

Amazon cloud service has been used as a launching point for botnet operations, and it also has

be used to host instances of malware [11]. A Microsoft intelligent report indicates cloud-based

attacks increased by 300% in 2017 [12].

The aforementioned security concerns are only the tip of an iceberg since the complexity of

the systems are still increasing day by day. At this point in time, hypervisor-based virtualization

solutions are no longer the only player in the cloud environment; container-based lightweight

virtualization solutions have begun to show their market potential. Recently, many advanced

IT companies have launched container based solutions, e.g., Amazon ECS, Azure Container

Service, and Google Container Engine [13]. The overall market size has increased 40% every

year and revenue will reach $5 billion by 2023 [14, 15]. The key difference between container

and hypervisor architectures is that hypervisor-based systems require full virtualization of an

operating system whereas, in the container-based systems, containers and applications share

an operating system, thus decreasing the cost of deployment. There is a trade off: containers

cannot be run across operating systems (Linux/ Windows) and the isolation cannot be as strong

with hypervisors. Containers are, in short, less portable and less secure than hypervisors [16].

And in fact, attacks against weak isolation of the container have been reported in the past few

years, and the use of shared kernel is another targeted vulnerable point [17, 18].

Though containers are arguably less secure than VMs, their popularity is increasing. This

work focuses on providing security for the containerization. The security problem of the con-

tainerization is twofold: (i) For the infrastructure owner’s perspective, each virtualized instance

or each virtualized layer in the system may belong to different tenants. The service provider/

infrastructure provider should take care of the security for these users in different manners. It

would be non-trivial to develop varies security frameworks for all types of applications, be-

cause do so incurs tremendous cost for data analysis and mechanism design if every single

application needs to concern separately. Reliance on a general security monitoring system may

not be sufficient. (ii) Although customers run their applications/services on remote servers,

they do not want to fully expose the details of their applications/services, choosing, instead,

to ensure data privacy from the infrastructure providers. Meanwhile, developing or providing

security features and frameworks are challenging. This is a tough situation for both sides: the

3

customer cannot afford the cost of re-development and needs security guarantees that prevent

leaking of privacy and data; the service provider needs to develop reliable and available tools

to monitor and secure unknown applications.

We suggest that the dilemma of monitoring cloud environments in a comprehensive, yet

noninvasive, fashion can be unraveled by augmenting virtual machine intelligence (VMI) [19]

tools with computational intelligence. A VMI-based solution may be an optional solution for

the non-cloud systems, but in the cloud scheme, the whole system is built on a virtualized

environment. VMI is no longer an option but an absolute necessity for reliable and secure

monitoring. By adopting intelligent techniques such as machine learning and data mining, a

self-adapting and self-learning program can be trained to automatically monitor a system. We

envision an intelligent based monitoring agent being deployed out of the target system (in the

upper layer), automatically extracting data from the target and using the data to train monitoring

tools how to discern what to monitor and how to monitor for the particular application, and,

ultimately, detecting anomalies. Our goal is to carry out the entire monitoring process in the

absence of the human interaction, meaning, the customer does not need to have the detailed

security knowledge and the service provider cannot gain or reveal any sensitive data from the

monitoring.

In order to provide reliable monitoring data and environment, we built a new open source

system call-based dataset for anomaly detection using state-of-art introspection tools with novel

underlying dataset designs. The traditional and widely used datasets [20–26] have distinct pit-

falls for the objective of anomaly detection (especially for application monitoring, more details

can be found in Section 4). For example, these datasets may be limited to the network traces

(mainly generated with tcpdumps). However, mis-operation, software faults, bad configura-

tions, and errors in the containerization life-cycle (e.g. hypervisor fails, a malicious docker

exec from a compromised user, or docker escape) can all produce anomalies in a monitored

target system. Network traces are sufficient for network-based intrusion detection, but they are

not comprehensive enough for general anomaly detection. Traces based on system calls can

provide more sophisticated and granular behavioral details. Previous work has demonstrated

4

the utility of system call traces [21, 22, 27] but has relied on the system call name accompa-

nied, in some cases, by a timestamp. We extend the feature space with caller process name and

system call arguments to enhance the interpretation of application behaviors.

On the other hand, cloud computing is not the only application that get benefits from

containerization and virtualization. Smart contract and blockchain are rising and promising

techniques that recently attract tremendous public attention. In addition, smart contract systems

are built upon the underlying virtualization and containerization as well, so that the contract

can be securely executed on different platform with guaranteed consistency. The DevSecOp of

containerization determines the security of smart contract system.

Thus, we also investigate the containerization environment of Hyperledger Fabric system

to reveal the potential risks. We aim to perturb the execution of the smart contract system. This

procedure can be achieved by leveraging the flaws of the underlying smart contract life-cycle

or virtualization mechanism (runtime). The Ethereum Virtual Machine in Ethereum, and the

Docker container environment in Hyperledger Fabric are the main target. This attack method

is completely different with state-of-art attack methods. More details are presented in Chapter

5.

The major content of this work can be summarized as follows:

• We introduce the background in Chapter 2. We present an overview of the virtualization,

containerization, machine learning and blockchain. We demonstrate the concepts and

related works of VMI and container security. We also perform a detailed analysis and

discussion on the emerging solutions in this space. Related intelligent algorithms and

works are depicted and compared.

• We verify the proposed concept via a simple Proof-of-Concept (PoC) implementation in

Chapter 3 before further investigation and implementation of the proposed method in real

production environment.

• In Chapter 4, we propose, implement, and evaluate unsupervised introspection approach

over the aforementioned dataset. The evaluation not only demonstrates the efficiency

5

of the proposed methods, but also explains the necessity of an extension of features for

detecting certain classes of anomalies.

• We elicit a new attack vector in the smart contract ecosystem in Chapter 5. Instead of

focusing on the smart contract programming, we propose to perturb the smart contract

execution at the life-cycle and runtime level (containerization or virtualization layer).

• Finally, we conclude the paper in Chapter 6.

6

Chapter 2

Background

2.1 Overview of Virtualization

This chapter introduces the general background in this space. We overview the basic concept of

virtualization and also summarize traditional monitoring and detection methods. Additionally,

we review and introduce the fundamental concepts of VMI and briefly demonstrate the security

of container.

2.1.1 Virtualization

Although it may seem that virtualization is a development of the last decade or so, it

has a history of research of more than 40 years [2]. Virtualization was first introduced by IBM

in 1960’s, and was originally used to partition large mainframe computer into multiple logical

instances. Currently, the term, ”virtualization”, is defined as a resources management technique

that enables the abstraction of computer system resource and allows a user to virtually partition

the computational power, storage space and networking resource. The abstraction of a system

resources is provided by the software abstraction layer, which is also known as the Virtual

Machine Monitor (VMM) or Hypervisor. Each of the sub-system in the partitioned system

is called Virtual Machine (VM). The resource partition and sharing is only the one benefit of

virtualization; another primary advantage is the isolation which makes each of the VMs in the

system work as independent and non-interfering units [28]. A VM is logically equivalent to a

physical machine except it cannot directly execute sensitive system calls, all these privileged

calls would be captured and handled by the VMM.

7

Basic Concepts

Generally, the operating systems work as the abstraction layer of the hardware that offers

the interfaces for interacting and managing hardware resources. Normally, only one single

operating system can be run at any given time in most of the circumstances. The operating

system can be considered as a piece of privileged software and any programs running inside

the operating system are less privileged [2].

A VMM is another privileged software that also provides hardware abstraction. VMMs

fall into two main categories, depending on their location in the abstract computing stack (see

Figure 2.1).

Figure 2.1: Generalized architectures for Type-I (left) and Type-II (right) Virtual Machine Mon-
itors (adopt from [2]).

• Type 1: The VMM runs as the first layer above the bare metal and has no host operating

system, or the host operating system is just a privileged VM. Some notable implementa-

tions are VMWare vSphere/ ESXi, Mircosoft Hyper-V, and XEN.

• Type 2: The VMM either runs alongside or above a host operating system. Depend-

ing on the implementation, instructions may be directly issued to hardware via shared

drivers (with a host OS), or the host OS may handle all the hardware calls. Some notable

implementations are Virtual Box, VMware Workstation and KVM.

8

The advantage of Type 1 virtualization is that the VMM has full control of the system

which equates to better performance and security. And in contrast, Type 2 virtualization is

more usable in that users can install the hypervisor inside their current OS.

Other terms such as Full-Virtualization and Para-Virtualization are also widely used to

classify virtualization. Full-Virtualization solution allows an unmodified operating system to

run as a guest and it provides full and transparent virtualization of hardware and operating sys-

tem. Para-Virtualization requires the modification of guest operating system to accommodate

virtualization. In this case, hardware may not be fully virtualized, requiring specific APIs to the

added into guest operating system. VMs are able to directly use bare metal resources via added

APIs, thus reducing the overhead of the hypervisor. Para-Virtualized VMs are aware they are

running in the virtualized environment since the specific system calls are replaced by API calls.

“Type 1 or 2” and “Full or Para” are two different taxonomies of virtualization technique and

they do not have a mapping relationship. For instance, Type 1 solution XEN support both Full

or Para and Type 2 solution KVM also support both of them∗.

Note that Type 1 or Type 2 are only used to describe general system virtualization which

offers hardware abstraction and operating system virtualization. Other types of virtualization

include the Java Virtual Machine (JVM) for application-level virtualization and WINE as a

library-level virtualization of Windows features. Containers can be considered as a special case

of Type 2 which only virtualized the operating system level. Generally, there are five levels of

virtualization: Application level, Library level, Operating System level, Hardware Abstraction

level and Instruction Set level. In this work only the hardware level and operating system level

virtualization will be discussed.

System and Hardware Virtualization

The VMM or hypervisor is the middleware between the VM and the hardware that controls

access to the hardware. How the actual hardware is virtualized and then monitored by VMM is

∗KVM does not support para-virtualization for CPU but may support para-virtualization for device drivers to
improve I/O performance [29].

9

another question. The hardware layer consists which can be grouped into three main categories:

CPU, Memory and I/O [30]. ∗

• CPU Virtualization: As the most important component of the hardware, the CPU handles

all the instruction executions. There is little need to fake or emulate a CPU to execute

instructions for each of the VMs. Since the instructions will be ultimately executed by

the real physical CPU, adding layers of virtualization or emulation above CPU introduce

the execution delay. In practice, CPU virtualization is the mechanism that VMM uses to

allocate CPU resources to the VMs. The VMM time-slices physical processors across all

VMs so each VM runs as if it has its specified number of virtual processors. If multiple

VMs run above the same hypervisor, they have to share the physical resources based

on the hypervisor scheduler. Computing can be allocated such that each VM receive an

equal share of CPU per virtual CPU, or it can be proportional to user based priority.

VM instructions are typically executed in two ways:

1. Software-Based: The unprivileged application codes is run directly on the physical

CPU with all the privileged calls intercepted by the hypervisor for further translation

or processing before being executed by the CPU. The drawback is slower execution

time for all privileged calls.

2. Hardware-Assisted: In 2005 and 2006, Intel and AMD announced their processor

extensions to support x86 architecture virtualization. The Intel-VT and AMD-V

(also called AMD-SVM) provide hardware assistance for CPU virtualization [32,

33]. With the hardware assistance, the hypervisor runs in a special CPU mode

(e.g., VMX Root Mode) thus, eliminating the need to translate privileged calls and

slowing performance.
∗Note that, the detailed virtualization concepts and procedures of these three are based on the white paper (or

guideline) of the specific virtualization solutions in the market, i.e., KVM [29], XEN [30] and VMware vSphere 4
- ESX and vCenter Server [31]. And all the virtualization mentioned in this work are based on x86 architecture. It
is also worth mentioning that x86 architecture is not designed for full virtualization [2, 30], and the virtualization
of x86 based system had difficulty before the hardware assistance been introduced. Software-Based virtualization
† of CPU, Memory and I/O have been used to overcome the difficulty of x86 architecture virtualization, but the
performance cannot be as well as native; And Hardware-Assisted virtualization reduces the performance overhead
and solves series of security problems [32, 33]. However, the detailed information of either Software-Based or
Hardware-Assisted is not the main interest of this work. This section will only introduce the fundamental concept
of the hardware virtualization.

10

• Memory Virtualization: Virtual memory enhances the system performance by providing

memory capacity without adding more main memory and has been the main story of

modern operating system. Memory virtualization is the technique by which the VMM

provides and manages memory space for VMs, as opposed to virtual memory which

maps disk space as memory.

A guest OS inside a VM has both physical and virtual memory, as does the host OS,

if it exists. The hypervisor handles memory resource allocation in a similar fashion to

CPU virtualization. Memory overcommitment can be achieved by some hypervisors in

cases where the total assigned memory size is larger than the total physical memory the

machine has. For example, user can have a host with 4GB memory and run four virtual

machines with 2GB memory each. This can be done only when some VMs are lightly

loaded while others are heavily loaded, and the relative activity levels may vary over

time. Some of the VMMs also support memory sharing, e.g., several VMs running the

same applications, housing the same components, holding common data, might share

memory in an effort to eliminate redundant copies.

Allocation of memory is only one part of memory virtualization; the most important

parts are the memory management and memory address translation. Suppose a guest

OS is running on top of a host. There are three types memory addresses in this system:

Guest Virtual Address (GVA), Guest Physical Address (GPA), and Host Physical Ad-

dress (HPA). Figure 2.2 shows this virtualized memory space architecture. The guest OS

considers the GPA as a real consistent address space, however, the address space allo-

cated to guest could not be always consistent in the HPA. Although the guest holds its

own page table which maps GVA to GPA, the GPA cannot be understood by the CPU.

The hypervisor is needed to provide the functionality which translates the memory ac-

cess inside the guest correctly and efficiently. Implementation falls into two categories,

software-based and hardware-assisted.

An example of a software-based implementation is the KVM Shadow-Page-Table (SPT),

which is used to translate GVA to HPA. Every guest OS process has its own SPT. Since

11

Process Process

Process Process

Process Process

Guest OS

Figure 2.2: Memory Address Spaces of Virtualized System.

different processes have different virtual address spaces, the KVM hypervisor maintains

a hash table to record and manage all the SPTs. When a guest OS needs to write an entry

into its page table or anytime it raises a page fault, the operation/exception is captured

by the KVM hypervisor. The hypervisor checks the guest page table and updates corre-

sponding SPT to map the GVA to HPA. And finally, the SPT is then pushed back to the

CPU. The drawbacks of the SPT are: (i) It incurs a large amount of page faults; (ii) The

hypervisor needs to maintain large amount of SPTs; (iii) Walking the guest page table

requires considerable overhead.

In contrast to the software-based approach, hardware-assisted solution translates GPA

to HPA using the Extended-Page-Table (EPT), a feature built into the Intel hardware for

memory virtualization. A hypervisor using EPT only needs to maintain one EPT for each

VM because it contains the mapping between GPA to HPA.

• I/O Virtualization: Virtualization of I/O is one of the most complicated part of system

virtualization, because each I/O device type has specific characteristics and needs to be

controlled in its own way [34]. Overall, as shown in figure 2.3, there are three types of

I/O virtualization strategies [3]: virtual devices, virtual drivers, and passthrough I/O.

12

Virtual Device is the most straightforward strategy in that it entails constructing a virtual

device inside VM and virtualization of I/O activity through the device [34]. When the

guest requests the use of a virtual device, the request is intercepted by the hypervisor

and then converted to an equivalent request to the actual physical hardware. Virtual

Driver (as known as Paravirtualization) has the guest calling the virtual device instead

of the real hardware. The VMM provides particular virtual drivers inside the guest OS

(which are also called front-end drivers in paravirtualization). Any I/O request made

by the guest OS is not handled locally but is forwarded by the front-end driver to the

VMM. Passthrough I/O allows the guest to directly use the real hardware. This is based

on providing multiple hardware I/O devices, i.e., multiple disks, several NICs, and the

VMM provides the scheduling for the I/O devices. Passthrough I/O requires hardware

assistance (Intel-VT or AMD-V).

Guest OSGuest OS

KernelKernel

HardwareHardware

Guest Device Driver

VMM

Virtual Device

I/O Stack

 Physical Device

Driver

Guest OS

Kernel

Hardware

Guest Device Driver

VMM

Virtual Device

I/O Stack

 Physical Device

Driver

Guest OSGuest OS

HardwareHardware

Guest Device Driver

VMM

 Physical Device

Scheduler

Virtual Device Virtual Driver Passthrough

Guest OSGuest OS

KernelKernel

HardwareHardware

Front-end Driver

VMM

Back-end Driver

I/O Stack

 Physical Device

Driver

Guest OS

Kernel

Hardware

Front-end Driver

VMM

Back-end Driver

I/O Stack

 Physical Device

Driver

Figure 2.3: Virtualization of I/O [3]

13

2.1.2 Containerization

Hardware virtualization provides isolation and resource management at the hardware

level. Operating system level virtualization provides abstraction of the bare metal and resource

management inside a particular operating system environment. Operating system virtualiza-

tion, also known as the containerization it allows multiple applications (different OS-based

apps, Figure 2.4) to operate on top of a single kernel [16]. The root of containerization can be

traced back to 1979 when the Unix chroot command was introduced as a part of Unix version

7 to provide the isolation functionalities. Twenty years later, FreeBSD implemented Jail as an

extended-version of chroot. Finally, the container, was introduced by Solaris 11 in 2010. The

idea of containerization is still originated with Linux, but has been recently extended with the

Windows arena∗. The concepts, though, still remain Linux-centric.

Figure 2.4: Architecture of Containerization [4]

Over the past decade, notable implementations of containerization emerged, including

Linux Containers (LXC), Linux-VServer, Warden Containers, Docker, OpenVZ, and Google

lmctfy. All the solutions share the same characteristics: the isolation in containerization is

achieved using inherent Linux system features such as chroot, cgroup, namespace, iptable, and

mount [16, 18, 35]. Figure 2.5 describes the isolation environment in containerization. Process

isolation is achieved by utilizing namespace. In particular the PID namespace provides process

isolation by allowing each container to has its own process id. Cgroup is the underlying mech-

anism of container resource isolation, which also controls the resource management. Cgroup

ensures that each container obtains a fair share of the resources, and preventing any container

from consuming all resources. Filesystem isolation relies on Chroot , mount, and namespace
∗https://www.docker.com/microsoft

14

which enable the processes in different mount namespaces can have a different view of the file

system, achieving isolation. In addition, a root file system (rootfs) is created as the underlying

file system for containers by mounting specific directories from host system. The virtualization

or the isolation of a network is based on the namespace, virtual network , and iptable. Different

network namespaces are created to host the containers. Each container holds a private IP and

a virtual eth interface connected to the bridge. The bridge acts as a “shim” between the con-

tainer and underlying operating system, and a layer which can translate, filter, or block network

communication can be formed with the help of iptable.

Container Manager

Host

Kernel Space

Container

Namespace

cgroup

mount

eth0init /rootfs/

Process

Network

File System

chroot

iptable

resource

CPU/Memory

/bin/bash

PID 1

container

runtime

PID x

vethxxxx

eth0
/dev

/sys

/proc

../cgroup/

cpu/docker/..

Linux Features

Figure 2.5: Isolation in Containerization

Different containerization solutions have their own specific features, however, such differ-

entiated features are out of the scope of this work. Overall, the performance of containerization

has been proved to be better than virtualization, although it still cannot fully reach the native

non-virtualized performance [36].

15

2.2 Cloud Computing

The World Wide Web allowed services and business to be launched online and enabled users

to remotely access and share data via network. Virtualization techniques advanced computing

further by giving users the means to share computing resources. The Amazon Elastic Compute

Cloud service launched in 2006 introduced customers to renting a fraction of a remote physical

machine inside cloud. The combination of virtualization, resource management and tenant

service mode thus launched a new era: cloud computing [37].

2.2.1 Basic Concepts

The US National Institute of Standards and Technology (NIST), which defines cloud

computing as “a model for enabling convenient, on-demand network access to a shared pool

of configurable computing resources that can be rapidly provisioned and released with mini-

mal management effort or service provider interaction.” [7]. This definition emphasizes five

essential characteristics, three service models and four deployment models [7, 38].

Characteristics [7, 38]

• On-demand self-service: The cloud resource could be registered and used without human

association to the cloud administration supplier.

• Broad network access: Resources can be accessed and utilized by any type of network-

enabled device such as tablets, smart phones or laptops.

• Resource pooling: The resources of a physical machine or a physical cluster can be

shared by multiple tenants.

• Rapid elasticity: A tenant can easily and rapidly rent more resource or return unneeded

resource.

• Measured service: Resource utilization is measured by monitoring CPU use, storage

consumption and network usage, etc.

16

The attraction to cloud computing is due to the ability of a user to finish a hard and heavy

computational e without having to know or address all the detailed IT knowledge.

Service Model

Contemporary, cloud service can be roughly divided into three types: Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS).

• Software as a Service (SaaS) provides hosted application services for customers which

mainly are accessed by a web browser or an API. The users do not have the control of

all the underlying framework. Notable examples are Google Doc [39] and Salesforces

CRM [40].

• Platform as a Service (PaaS) provides a platform for the customers to run their own appli-

cations. Customers create and produce an application from among a set of programming

languages and tools that are supported by the PaaS provider. As with SaaS, PaaS users

do not have the control of the whole framework. Prominent examples are Google App

Engine [41] and Microsoft Azure [42].

• Infrastructure as a Service (IaaS) provides customers with control over low-level the

capabilities of processing power and storage space. It also allows the customers to run

any type of software and including operating systems. Customers typically launch their

own VMs and gain full control of the guest OS. The Amazon Web Service EC2 [43] is a

well known example.

Deployment Model

In contrast to the service model, which defines how the cloud provides service to its user,

the deployment model describes how the cloud is being managed by its owner and how can the

customers access the cloud. NIST enumerates four different cloud deployment models: public

cloud, private cloud, community cloud, and hybrid cloud [7].

• A Public Cloud is owned, managed and operated by all organizations and is available

to a broad audience. Public cloud is often used by large corporations to offer services,

17

that extend beyond the boundaries of the company. Public clouds are marked by their

openness and inclusiveness but are subject to security concerns.

• A Private Cloud is permissioned cloud that is exclusively used by a specific organization,

company or individual.

• A Community Cloud is a cloud shared by several trusted organizations. Community

clouds are still permissioned but used by a group of users that have shared concern, such

as schools within a university [38].

• A Hybrid Cloud is comprised of a combination of public cloud, private cloud or commu-

nity cloud. Hybrid cloud is usually used to provide different levels of data privacy.

2.3 Virtualization Security

2.3.1 General Anomaly Detection

Security threats generally fall into two types: internal threats and external threats. Internal

threats usually refer to the anomalous or malicious behaviors originated from native internal

components and applications. Key to detecting such threats is defining normal/abnormal be-

haviors. Anomaly detection examines behaviors and compares them to find what is deemed

”normal”. Behaviors that exceed the threshold of normal are classified as ”abnormal”. Al-

ternatively, ”abnormal” behaviors can be characterized with all unknown events that are not

abnormal considered as normal. This method is known as misuse detection. Misuse detection

is effective in detecting known attacks with low errors, however, it cannot detect newly created

attacks that do not have similar properties to the known attacks [44]. Anomaly detection can

identify new attacks but is not effective as misuse detection. The comprehensive solution for

internal security includes leveraging both of the anomaly detection and misuse detection.

A system also can be attacked or compromised by a remote attacker, making the threat

an external one. Intrusion detection is a frequently used to address such threats. Note that the

overlaps exist in the three basic detection methods as shown in the 2.6. Figure 2.6 illustrates

the relationship among threats. It should be noted that dealing with threats does not have clear

18

cut boundaries. For example, anomalous behaviors caused by intrusion or misuse, or intrusion

detection relies on the underlying idea of anomaly detection or misuse detection.

Misuse
Detection

Anomaly
Detection

Intrusion
DetectionVirtual Machine

Introspection
Container

Security Solutions

Figure 2.6: General Methods

This research focuses on anomaly detection. The basic idea of anomaly detection is to

find and detect the patterns or traces in data that do not conform to defined normal behav-

iors. These abnormal behaviors are known as anomalies or outliers and the anomaly detection

problem starts with the definition of anomaly. The following are conventional perspective of

anomalies [45]:

1. Point Anomalies: An individual data instance that deviates from the majority (normal

behaviors) is considered a point anomaly. As shown in Figure 2.7.(a) N1 and N2 are

defined regions of normal behaviors, points o1 and o2 as well as the points in the points

cluster, O3, are classified as anomalies.

2. Contextual Anomalies: Also known as conditional anomalies, contextual refers anoma-

lies to behaviors that is unwanted or unexpected based on the surrounding context. Fig-

ure 2.7.(b) shows an instance of a contextual anomaly, where data in a time interval

differs from the data in preceding and succeeding intervals.

3. Collective Anomalies: A collection of data instances that appears to be abnormal with

respect to entire data set is considered a collective anomaly. Individual data instances in

the collection may not be anomalous when considered individually, but the data when

19

(a) (c)

(b)

Figure 2.7: Anomalies Classification (adopted from [5]): (a) Point Anomalies; (b) Contextual
Anomalies; (c) Collective Anomalies.

taken as a whole represents an anomaly. Figure 2.7.(c) illustrates a example of the col-

lective anomalies where the data in the highlighted area is anomalous since it contains

normal inconsistent low values.

Classifying the normal and abnormal behavior is complicated by a number of factors [5]:

• It maybe infeasible to define all the normal behaviors due to the system or application

complexity;

• Normal behaviors may evolve overtime;

• Behaviors can be masked to make the anomalous observations appear normal;

• The boundary or scope of an anomaly may differ among domains.

Numerous solutions have been proposed to bypass these issues and provide usable and

reliable anomaly detection for the computer systems. They generally consist of activities: Input

Data, Detection Technique, and Output Result [5].

20

1. Input Data: A collection of data instances is used to generate a baseline profile of anoma-

lies. The input data has two main attributes:

• Natural data type. There are different types of input data, e.g., sequence data, spatial

data, and graph data. Understanding how input data is consumed shapes the creation

of anomalies and effects the accuracy of the whole method.

• Data Label. The input data can be pre-processed manually by labeling each of the

data instances. If both normal and abnormal classes are labeled, then the detec-

tion is supervised detection. If only normal instances are labeled, then it is semi-

supervised. If no data is labeled, then it becomes unsupervised. Obtaining labeled

data that representative of all types of behaviors is expensive but it is necessary and

required, since an unsupervised detection typically suffers from a high false alarm

rate.

2. Detection Technique: Using input data as training data, the actual detection techniques

are the approaches that can classify and detect the anomalies in the runtime (online) data.

Common examples of detection techniques include:

• Classification-based: Classification-based approaches use labeled input data to gen-

erate a classifier categorizes data having similar properties. Notable example tech-

niques are Neural Networks, Bayesian Networks, and Support Vector Machines.

These techniques are effective, yet need accurately labeled data for training.

• Clustering-based or cluster-based techniques are a form of unsupervised detection

which groups data based on similarity. Clustering logic varies. Normal data may

belong to clusters, whereas anomalies do not fall outside clusters; normal data is

close to the cluster centroid while anomalies are far away from the centroid; or

normal data belongs to large and high density clusters and anomalies lie in either

small or sparse clusters. Clustering-based methods have the advantages of work-

ing in unsupervised mode, but performance is highly dependent on what clustering

algorithm is deployed and how the data is structured.

21

• Statistical-based: Statistical techniques identify anomalies by assuming that nor-

mal data occurs in high probability region while anomalies occur in low probability

regions. These techniques rely on the assumption that the data conforms to a par-

ticular distribution. If the assumption is true, statistical based methods can provide

a confidence interval that can be used to provide additional information for mak-

ing decisions. Absent a distribution, which is often the case for high dimensional

datasets, these techniques are not effective. Some well-known methods are Gaus-

sian Model and Regression Model.

• Information Theory based: Information theory contends that anomalies manifest

on irregularities in the information content of the data. Detection is carried out

by analyzing information content of data using techniques such as: Kolomogorov

Complexity, entropy, and relative entropy.

3. Output Result: A label or score is output as a result of the detection technique. The label

can be as simple as an indicator that each data instance is normal or abnormal, or an

anomaly score can be assigned to each data instance to show the degree to which has

been deemed abnormal.

An anomaly detection system usually goes through an initial offline training procedure that

includes above three main activities before it can be used to handle real data. Over time, the

detection method needs to be revised and improved by retraining to improve accuracy. It could

be nontrivial to provide a comprehensive and elaborate training set, since the initial definition

of normal region and the labeling of data are challenging and expensive. Inadequate offline

training, on the other hand, comes at a price of inaccurate result.

2.3.2 Virtual Machine Introspection

The ultimate goal of computer system monitoring is to have a comprehensive view of the

system, including the monitor system itself. Virtualization assists with this because each VM

is fully managed by the hypervisor. Monitoring or detection approaches can take place using

22

virtual machine introspection (VMI), meaning “inspecting a virtual machine from the outside

for the purpose of analyzing the software running inside it” [19].

VMI works in one of two ways: from the VM or outside the VM. An in-VM monitoring

is similar to HIDS (Host-based Intrusion detection, see Section 2.2.3), since the monitoring

module is inside the monitored system. It extracts the OS and process states natively, providing

fast and effective monitoring with rich abstractions. Its fundamental limitation is that it can

be attacked because it is executing at the same privilege level as the system it is protecting.

The predefined policies/profiles and the security enforcing mechanism can be tampered with

by malwares, rootkits, and/or attacks. The out-of-VM monitoring, by contrast, is more tamper

resistant, since the monitoring module is located outside the VM and is running on a separate

level. The out-of-VM approach is easy to deploy because it eliminates the need of installation

monitoring modules inside each VMs. It provides a more complete and elaborate view of the

monitored VMs than in-VM based approaches because the hypervisor has full access to all of

the memory, register, and disk state.

The primary advantage of in-VM systems is their direct access to OS level abstractions.

Out-of-VM solutions offer reliability and accessibility at the price of losing the rich semantic

abstractions inside the OS. They have to reconstruct information based on the access of raw

data provided through the hypervisor. This results in a semantic gap. To effectively monitor

behavior, we need the OS state, resource usage, and kernel events in a human understandable

form, thus, the out-of-VM solutions have to bridge the semantic gap. In-VM and out-of-VM

based solution can still use the same underlying detection approaches with intrusion detection

(anomaly detection and misuse detection), so we will not focus on the in-VM based solutions

since they are out-performed by the out-of-VM approaches.

Approaches to bridge the semantic gap fall into five major categories [46]: Manual,

Debugger-Assisted, Compiler-Assisted, Binary Analysis-Assisted, and Guest-Assisted.

1. Manual Approach: This approach relies on knowing advance the structure of the guest

OS and filling in the structure with data from hypervisor. This is labor-intensive and error

prone because it depends on manual analysis of the documentation, debug information,

source code, or binary code of a guest OS. For example, the Linux kernel task structure

23

(i.e., task struct) is organized in a double-linked list that contains all running processes.

We can retrieve all running processes in a system by traversing the list. The limitation of

this approach is that manual interpretation is needed for every single data structure and

every different OS.

2. Debugger-Assisted Approach: Instead of manually analyzing data structures and trans-

lating the information, a debugger-assisted approach uses data structure knowledge avail-

able in debugging information. The semantic gap is thus bridged by leveraging debug-

gers. The debugger becomes a analysis mechanism using kernel dumps or live memory

to derive the needed abstractions. The limitation of this approach is similar to manual

approach: using debugger is specific to a particular OS. Moreover, the monitored guest

OS needs to be recompiled so that it produces debug information, which has an effort on

system performance.

3. Compiler-Assisted Approach: In a compiler-assisted approach, the compiler is used to

automate the process of finding abstractions in the source code of the guest kernel. For

example, the kernel integrity can be dynamically monitored by extracting global variables

and creating a graph of kernel variable types from the kernel source code [47]. While this

allows monitoring mechanisms to be tailored to specific needs, it also requires that kernel

modules be recompiled or modified.

4. Binary Analysis-Assisted Approach: Kernel source code is not always available, so the

previous solutions may not work. The Binary Analysis-Assisted Approach is a sophisti-

cated, yet practical solution, that only uses the compiled binary of the guest OS. It is a

dynamic analysis approach that dynamically access and analyze registers, memory and

instructions to generate the final abstraction. This analysis procedure can be done offline

or online. An offline analysis is based on inspecting the kernel state of a trusted OS

and then a training VMI tool provides the monitoring. An online analysis, sets up the

abstraction by dynamically retrieving information from a live monitored system.

24

5. Guest-Assisted Approach: The Guest-Assisted Approach retains the hypervisor-level

view of the guest OS and avoids the semantic gap problem by waiving part of the secu-

rity advantages. This approach installs an agent program inside the guest OS from which

the hypervisor can retrieve desired information. The advantages of the Guest-Assisted

approach is that the internal agent can be customized to yield useful information, but that

agent suffers from being a potential security vulnerability.

VMI has matured as a research area since the first VMI based solution is proposed in 2003.

Solutions in the early stage were limited to certain versions of hypervisor or kernel, until the

binary analysis approach emerged in 2011 [46]. At that point, VMI based monitoring become

more flexible, effective, and practical. The capability of VMI systems is extended beyond de-

tection and pioneered attack prevention and recovery functionality. By leveraging the power of

VMI, we can reduce the need of human intervention whenever there is a problem [46]. Further

discovery and research on methods or mechanisms to monitor, filter, and analyze the interaction

between the virtualized host and the underlying virtual or physical hardware is still needed [48].

Beyond the semantic gap problem, more work is needed to effectively and accurately monitor

the VM’s internal state, which returns to the initial research question of detection or monitoring,

that is what to monitor, how to build a profile of what to monitor and how to refine monitoring

overtime.

2.3.3 Machine Learning based VMI

Recently, training based monitoring has become a popular method because of its effi-

ciency and automated features. Many intelligent monitoring approaches and works are briefly

introduced in [5,46,49,50], however, here we only interested in the intelligent virtual machine

introspection solutions.

Virtuoso [6] is the first training based introspection solution proposed in 2011, this project

aims to migrate Linux native command to hypervisor level (such like ps, lsmod, etc.). By de-

ploying an agent program inside the monitored guest system, the instruction sequence traces

can be obtained to train out a common VMI tool which enables the capability of performing

introspection on the hypervisor level. As the first training based methods, Virtuoso depicted

25

the feasibility of automatic introspection, however, it needs an reliable offline training proce-

dure and the training itself based on the understanding of the underlying security information

of the specific application. And the introspection only focuses on the system calls. Moreover,

the generated VMI tool indeed bridge the semantic gap and also can provide meaningful in-

formation at hypervisor level, but it still need the human-interaction to understand and use the

information.

Figure 2.8: An Example of Virtuoso Usage (Adopted from [6])

Another follow up work proposed by the same authors of Virtuoso is the Tappan Zee

Bridge (TZB) [51], which introduces the memory access mining into the picture. Instead of

only focusing on the system calls, by examining the memory space of the guest system, tap

points can be found out to provide active monitoring of applications or operating systems. A

tap point is a point in a system used to capture a series of memory accesses for introspection

purposes. In the TZB system, the trained program is able to automatically locate the candidate

tap points, and after further information processing, the user could be notified when certain

system events occur. Generally, the TZB already provides a baseline intelligent monitoring,

though the searching, clustering and using of tap point still needs some manual examinations.

TZB may also confront the overhead limitations, since it keeps tracking an arbitrary number of

callers for each process to extract the callstack information.

Combining the concepts of Virtuoso and TZB is promising, it would be ideal if an program

can be trained out to examine both system calls and memory forensics on a live system. How-

ever, even the combined system would be constructed, the problem is still not fully solved. The

26

requirements of the monitoring we need is multitude: First, the semantic gap needs to be auto-

matically bridged; second, the monitor must automatically extract the needed information from

the system; and third, the system needs to provide an intelligent anomaly detection that does

not need the user to have a understanding of anomaly. Though many other works like Virtuoso

and TZB have been proposed in the past few years and some open source VMI frameworks like

LibVMI [52] are also available, the latter two problems are not completely solved.

It is non-trivial and meaningful to enable the capability of automatic semantic bridging,

like by using LibVMI where all the system calls and memory space activities can be observed.

However, it is not practical and nor necessary to keep monitoring everything, since the overhead

and processing delay cannot be tolerated. Therefore, the problem is twofold: First, the data

should be extracted and translated automatically and efficiently. Second, it is also needed to

perform a monitoring metrics selection to achieve better accuracy and performance.

2.3.4 Container Security

Containerization is a lightweight form of virtualization with thinner isolation and arguably

weaker security. Container introspection and monitoring is a relatively new research area and

the security of the most of container-based systems relies on the security mechanisms provided

by the specific container implementation. The underlying mechanisms that provide isolation for

containerization, such as cgroup and Chroot, also enable a baseline security guarantee. Since

the majority of containers are based on Linux systems, some of the Linux kernel features are

also available to help enhance the container security. One notable Linux features is the secure

computing (seccomp), which is designed to eliminate system calls from a contained application.

This allows software deployers to reduce the footprint of Linux kernel through software and

tailor it to each deployed application. Seccomp uses a whitelist, allowing users to list only

system calls permitted for a specific application. It bars applications access to knowingly flawed

and obsolete Linux features and helps ensure that applications only use system calls that are

needed to operate [53].

Containerization also supports multiple forms of mandatory access control which are pro-

vided by the native Linux system. Notable examples are SELinux [54] and AppArmor [55].

27

Originally, Linux system used standard Discretionary Access Control (DAC) to manage the

ownership and permission settings of an object. The DAC mechanism allowed users to have

full control of their objects. This gave an attacker access and control all the owner’s objects, if

compromised. SELinux countered this problem by providing an additional layer of permission

checking by labeling objects. SELinux is an enhancement to the security Linux kernel mod-

ule which defines the access policies for users, applications, and objects. If a process or user

attempts to access an object, SELinux co-operates with the kernel to check the access vector

cache (AVC) where policies are defined and stored [13]. AppArmor is also a mandatory access

control solution similar to SELinux, however, it restricts its scope to individual applications.

Each application has an associated policy profile which limits the capability of this application.

The profile defines the files and resource that the application could access and use. AppAr-

mor can run in enforcement mode or complain mode. The former enforces policy and reports

violation, whereas only logs the violation [16].

Other built-in monitoring modules are available in cloud management systems, such as,

Observability Metrics in Mesos and Ceilometer in Openstack [56,57]. Practical out-of-container

monitoring has been proposed and achieved by many other researchers and organizations [58–

61]. Technically, container introspection is not the same as VMI. In containerization, each con-

tainer still shares the same kernel with the host OS, which means that monitoring a container, if

done outside the container, is just monitoring a part of the host OS. In short, there is no actual

semantic gap which makes container monitoring of container more practical or effective than

traditional VMI. On the contrary, container monitoring needs to take into account the kernel

exploits (privilege escalation) because the shared kernel not only provides convenience but also

potential risks.

2.4 Machine Learning Based Classification

Machine Learning [62] , Neural Networks (NN) [63], and Deep Learning [64] contribute

significantly to solutions that involve classification of data. A number of well-known methods

such like Support Vector Machine (SVM) [65], Nearest Neighbours [66], Naive Bayes [67], and

28

Linear Discriminant Analysis [68] have been applied in many solutions. This section briefly

introduce the fundamentals of Machine Learning based classification techniques.

2.4.1 Fundamentals

Machine learning is a computational technique that optimizes or solves a problem by

using example data or past experience [69]. Machine learning relies on the theory of statistics

to build a mathematical model for making interference. The learning of the data and the proce-

dure of the model building are known as training. Training falls into two categories: supervised

and unsupervised. Supervised learning techniques use known correct and incorrect samples as

training, whereas unsupervised learning techniques aim to discover relationships and regulari-

ties without knowing in advance the nature of the data. Supervised learning is, thus, similar to

calculating a statistical regression and unsupervised learning is akin to density estimation [69].

Machine learning can traced back to the early 1950s. Alan Turing proposed his “learning

machine” in 1950 and the first neural network machine was introduced by Marvin Minsky in

1951 [70]. Although research suffered from “AI Winters” ∗, the enthusiasm in machine learning

never died. Decades of development and investigation have matured machine learning to the

pint where it has been applied in speech recognition, program generation, auto-driving, data

mining, and etc.

2.4.2 General Classifiers and Algorithms

Several general categories of machine learning are applicable to anomaly detection: Sup-

port vector machine (SVM), K Nearest Neighbors (KNN), General Regression Neural Network

(GRNN), and etc.

Support Vector Machines (SVM)

Support vector machine (SVM) were originally designed for binary classification [72]. The

goal being to find a suitable hyperplane which separates the training data into two categories.

Because not all the real-world problems can be simplified into two class problems, multi-class
∗“An AI winter is a period of reduced funding and interest in artificial intelligence research, which first ap-

peared in 1984 as the topic of a public debate at the annual meeting of AAAI [71].

29

classification usually required. The most widely known and applied schemes used to transform

binary SVM into multi-class forms are one-vs-all and one-vs-one [73]. The one-vs-all method

generates a SVM sub-model for each class, where each of model labels the samples in current

class as positive and labels all the other samples as negative. The final decision is made by

passing the sample into all the models and selecting the one with highest confidence score. The

one-vs-one scheme creates k(k−1)
2

binary models, where k is the number of classes. In this case,

each of the sub-model classifies a pair of the classes of the training set. A sample is passed into

all the trained sub-models with the class with most votes picked as the final decision.

K Nearest Neighbors (KNN)

KNN classification is a fundamental and well-known classification method, having

been first mentioned in an unpublished US Air Force School of Aviation Medicine report in

1951 [74]. After several decades development, the native KNN follows a straight-forward

strategy of identifying items in a data set that are closest to a specific instance, where “closest”

is qualified by a measure such as Euclidean Distance [75]. Variety of refinements on KNN

have been proposed: new rejection approaches, distance weighted approaches, soft computing

methods and fuzzy methods [74].

General Regression Neural Network (GRNN)

GRNN is a variation of the Radial Based Neural Network (RBNN) proposed by Specht in

1991 [76]. It is a one-pass algorithm with a highly parallel structure and is suitable for a wide

range of the regression problems.

A general mathematical expression of the GRNN is described as following:

dq =

∑N
i=1 hfi(tq, ti)di∑N
i=1 hfi(tq, ti)

.

hfi(tq, ti) = e−
||tq−ti||

2

2σ2 .

Gaussian kernel function hf with Squared Euclidean Distance metrics is used to perform

the prediction (other distance metrics can be used as well). The dq is the predicted output vector

30

of data instance tq, where the ti and di are the training instance and its corresponding desired

output.

Long Short Term Memory (LSTM)

Recurrent neural networks (RNN) with long short-term memory (LSTM) have emerged

as an effective and scalable model for several learning problems related to sequential data [77].

LSTM is a variant of RNN which generally solves the problem of input memorization. Unlike

human-being, it is hard for machines to understand a sentence or predict a following word while

it needs a long-term memorization of previous inputs.

LSTM achieves long-term input tendencies by dividing its neural network cells into layers:

forget gate layer, input gate layer, and output gate layer. Upon a new input is received by the

neural cell, forget layer decides the information needs to be removed from the cell, input gate

layer decides what could be added into cell and update cell state, and finally a output gate layer

output the result based on the current cell state.

2.4.3 Unsupervised Anomaly Detection and Intelligent VMI

Traditional anomaly detection and intrusion detection systems require either certain prior knowl-

edge of the system, or identical signatures of previously seen attacks, thus the data used for

classification profile generation can be labeled. This labeling procedure is expensive and not

always feasible. Detecting the unknown without knowledge is a challenging task. Several un-

supervised detection systems have been proposed and evaluated in the past decades. Casas et

al. [78] introduces an unsupervised intrusion detection system with using clustering techniques.

The authors proved that even without any knowledge, the unsupervised detection system can

still achieve satisfied detection accuracy on KDD99 dataset [20]. Amer et al. [79] leverages one

class support vector machine (SVM) to achieve unsupervised anomaly detection, and the pro-

posed enhanced SVM outperforms the clustering-based methods. In addition, neural network

based auto-encoder is used in unsupervised anomaly detection on KPI dataset [80], which out-

performs the traditional supervised methods. Self Organizing Maps (SOM) [81] is used in [82]

31

for unsupervised detection, SOM ensures the traces of the transformation from benign to mali-

cious to be recorded, interpreted, and further analyzed. Dromard et al. [83] use a grid clustering

algorithm combines with the concept of sliding window, which provides detailed prediction and

reliable classification on the streamed data. Hierarchical Temporal Memory (HTM) algorithm

is used in [84] for robust unsupervised detection on streaming data, which can memorize the

data over time and provide reliable classification for collection anomalies.

Different unsupervised techniques such as clustering algorithms, one class support vector

machine (SVM), neural network based auto-encoder, Self Organizing Maps (SOM), and Hi-

erarchical Temporal Memory (HTM) algorithm have been all investigated for anomaly detec-

tion [78–80, 82–84]. The integration of unsupervised learning algorithms and virtual machine

introspection techniques have also been investigated. Tappan Zee Bridge (TZB) [85] monitors

the memory space of the guest system and uses tap points (points in a system used to capture a

series of memory accesses for introspection purposes) to provide active monitoring of applica-

tions or operating systems. TZB employs an unsupervised clustering-based trained program to

automatically locate the candidate tap points, and after further information processing, the user

could be notified when certain system events occur. TZB already provides a baseline intelligent

monitoring, though the searching, clustering, and using of tap point still needs some manual

examinations. Li et al. [86] proposed to use SOM to characterize the malicious behaviors of

VMs, and strace is used to provide system call trace dumps. Although the proposed framework

can detect specific attacks, the experiments were performed on the Windows NT systems using

out-of-date attack approaches. EyeCloud [87] uses unsupervised clustering algorithms with

LibVMI [52] and Volatility framework to perform botcloud detection. The violation of secu-

rity rules and modification of security configurations can be detected by the EyeCloud. The

proposed system works in a misuse detection style, which is tailored to prevent the adversary

from abusing cloud resources.

For the containerization perspective, researchers introduce several prototype anomaly de-

tection frameworks [88–91] but the majority of these methods still use supervised algorithms or

statistical models to classify the behaviors. Although a Hierarchical Hidden Markov Model [90]

based approach achieves the anomaly detection in a semi-unsupervised manner, the framework

32

only works for overload detection and the general anomaly detection beyond the resource man-

agement cannot be accomplished. The comprehensive and unsupervised VMI still needs further

investigation, and the introspection of containerization is yet in its infancy.

2.5 Blockchain

Blockchain was first introduced by Bitcoin [92] and is now widely used by the cryp-

tocurrencies. Blockchain is known as a distributed and shared digital ledger, where all the

transactions and records are hashed and stored in the chain to provide both integrity and trans-

parency. Certain blockchains also support a concept known as smart contract [93,94], allowing

the user to run Turing-complete scripts on the chain. Using a smart contract (also known as

chaincode in HyperLedger) enables the user to store and manage data inside of the blockchain.

Various applications such as Filecoins [95] and Storj [96] have been proposed.

2.5.1 Basic Concepts

The basic idea of blockchain is to collaborate on recording information in such a way that

the participants in the network do not trust each other [92]. A public, auditable ledger helps

provide verification and accountability for data [97]. Whenever an entity initiates a transaction,

a group of “volunteer recorders” start to write down this new transaction in their individual

local ledger. And after a period of time, a selected ledger from these recorders, which contains

a set of transactions, will be verified and attached to the public ledger [98]. The recorders

are known as miners in the blockchain systems. The local ledgers owned by the recorders are

known as data blocks. The algorithm used to select a block to attach to the main public ledger

is called a consensus algorithm, and the public ledger formed by these selected data blocks is

called the blockchain [98].

This whole procedure is protected by digital signatures; that is, each transaction is dig-

itally signed using the private key of the sender [92]. As a result, the validity and integrity

of a single transaction are guaranteed. The integrity of the entire blockchain is ensured with

hash computations. To encourage miners, coins are assigned to them as a reward once they

successfully append a block to the ledger [99].

33

nth Block

Transactions

Timestamp

Nonce

Merkle Root

Header

(n+1)th Block

Transactions

Timestamp

Nonce

Merkle Root

Header

(n-1)th Block

Transactions

Timestamp

Nonce

Merkle Root

Header

Merkle Tree
ith Transaction

15vsuLJxBgm63Qy1Xb

So8qbPM5jonKNdh8

Alice’s

address

Bob’s

Address

Previous
Header Hash

Previous
Header Hash

Previous
Header Hash

Bn-1 Bn Bn+1

Transaction-1

Transaction-2

…

Transaction-K

Transactions

1PWmzbh74uksiQSab1

2SVakKwXTQNPx947

Merkle Root
H12345678

H1234

H1 H2

H12

H3 H4

H34

H5678

H5 H6

H56

H7 H8

H78

Merkle Root
H12345678

H1234

H1 H2

H12

H3 H4

H34

H5678

H5 H6

H56

H7 H8

H78

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Tx8

Merkle Root
H12345678

H1234

H1 H2

H12

H3 H4

H34

H5678

H5 H6

H56

H7 H8

H78

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Tx8

Figure 2.9: Blockchain Architecture (Based on Bitcoin)

To initiate a transaction, the participant needs to associate the transaction with the cryp-

tography credentials. Each participant in the blockchain network holds a pair of public and

private keys. By applying a series of hashing and encoding functions on the public key, a

short and unique address is generated as the public address of the participant (as depicted in

Figure 2.9). Normally, the transaction contains the address of the sender and receiver, and is

signed by the sender’s private key. Once a participant initiates a transaction, this participant

needs to broadcast the transaction to its connected peers, and the peers that receive this trans-

action will continuously relay the transaction to subsequent peers [100]. Each transaction and

the block that contains all transactions are verified by the miners, and a valid transaction is not

approved and executed until specific requirements are satisfied (Requirements vary depending

on the blockchain. Examples include computation of a certain amount of proof of work in Bit-

coin, the transaction is approved until 6 blocks are appended which is a countermeasure to the

double spending) [101].

34

In order to ensure fairness and security of the transaction appending in the blockchain sys-

tem, the consensus algorithms are proposed and applied. The consensus algorithm is a required

verification step for adding transaction records to the public ledger. As mentioned above, a

new generated block is actually a selected ledger from all the miners; thus, a mechanism is

needed to make all the miners reach the consensus about the selection. Key to this process is

be unbiased. In an ideal model, every miner’s ledger (in the processing block) should have the

same chance to be selected. However, one could run multiple nodes to increase the possibility

to be picked in the case of random selection. An attacker that controls a large number of nodes

can practically manipulate the selection procedure. Some notable consensus algorithms are:

• Proof-of-Work (PoW): In the PoW system, all miners compete to finish a computational

resource–intensive task, and the first one solves the task can append the current block to

the public ledger. For example, the PoW in the Bitcoin system requires finding a nonce

such that the hash of the current block header (including the nonce) is less than a specific

value.

• Proof-of-Stake (PoS): The PoS is an alternative consensus algorithm that requires less

computational power than the PoW does. Instead of proving a certain amount of work has

been done, miners must prove ownership of a certain amount of stake in the blockchain

system.

• Byzantine Fault Tolerance (BFT): The Byzantine Generals Problem [102] describes a

conceptual situation that needs to reach a consensus among several generals. And the

solutions of the BGP can be used as the consensus algorithm in blockchain. For instance,

Practical Byzantine Fault Tolerance (PBFT) [103] can be used in blockchain, where each

new block is selected when it is supported by more than 2/3 of nodes.

The development and evolution of blockchain never stops, and now several variants of

blockchain have been proposed. The new blockchains have various structures and attractive

features, ensuring that the fundamental concept will endure for sometime to come.

35

2.5.2 Virtualization and Containerization in Blockchain

Certain blockchain implementations support Turing-complete scripts running on the chain,

namely the smart contract. All the nodes run a particular script and obtain a same output re-

gardless what operating system and platform are using in these nodes. This capability relies on

the use of virtualization. The blockchain virtualization implementation styles can be generally

divided into two types: application-level virtualization based, and containerization based.

Well-known application-level virtualization examples are Java Virtual Machine (JVM) and

Lua Virtual Machine. This type of virtual machine runs as a normal application inside a host

OS to provide a platform independent runtime for programming languages. Similar to JVM,

Ethereum implements its own Ethereum Virtual Machine (EVM), which is also a stack based

virtual machine. EVM has its own instruction set and opcodes (e.g., MOV, ADD, MUL, etc),

and each smart contract is executed in its own instance of EVM [104].

Containerization is used as another style in Hyperledger. Instead of using a application-

level virtual machine, all the services (orderer, chaincode execution, data recording) of Hyper-

ledger are run in Docker containers. Each chaincode also has its own instance of container.

More details are elaborated in Chapter 5.

2.5.3 Smart Contract Security

A “smart contract” is a computation that is performed on a blockchain. The term is an oblique

reference to the traditional notion of a legal contract in that it signifies signatories entering into

some binding agreement regarding something. “Smart” signifies that software automatically

triggered by the agreement carries out a series of actions that define the terms of the agreement;

“contract” signifies that the results of the actions are recorded onto an indelible transaction

ledger, such as a blockchain. The transactions themselves, once stored onto a blockchain, are

considered, for the most part, secure. Executing the smart contract, on the other hand, raises

questions. How open to vulnerabilities is the “smart” part of “smart contracts”?

Several attacks and flaws in smart contract systems have been observed and reported in the

past a few years. The majority of the attacks used the internal programming vulnerabilities in

36

smart contracts, such as call to the unknown, exception disorder, re-entrancy, and etc [105,106].

One of the most infamous attacks was on a decentralized autonomous organization (DAO) plat-

form [107] using the unchecked fallback functions in the underlying infrastructure. The vul-

nerability allowed attackers to recursively withdraw coins from the smart contract in a single

transaction, enabling the attacker to steal the majority of the cryptocoins. Other attacks ex-

ploited the gas mechanism of Ethereum. By only including a small amount of gas in a refund

transaction, the transaction can be intentionally made to fail [108]. A similar exploit involved

continuously storing data in the array of the smart contract so as to increase the cost of contract

storage operations to the point where normal operations of the smart contract fail [105, 106].

Intentional backdoors in smart contract can also cause tremendous financial losses. A

trade between Australian company Byte Power Party and Singaporean company Soar Labs was

tricked by the Soar Labs in 2017. Soar Lab purchased a stake of Byte Power Party via a smart

contract. However, the payment of $6.6 million worth of Soarcoins reported to be withdrawn

from the contract by a backdoor after the stake has been transferred [109]. Other reported

backdoors allow the caller to generate and destroy tokens after the Initial Coin Offering (ICO)

stage [110]. Because the total number of token should be considered as fixed after the ICO

process, thus attackers can manipulate the market price of this particular token and/ or gain

profits from it.

From one point of view, the security of a smart contract significantly relies on how for-

mal and secure the contract has been programmed. Since the smart contract is designed to

be a public application, any internal programming vulnerabilities can incur enormous influ-

ence on all the contract users. Therefore, several evaluation and verification frameworks at the

programming level [111–117] have been proposed. These frameworks and tools evaluate the

validity and security of the smart contracts at the programming level by creating certain rules

and boundaries for smart contract programming. With the examination of smart contract code

context, the smart contract can be converted, compiled, and regulated to a secure form. These

frameworks focus on the security of the smart contract only in the Ethereum platform [93].

While there exists another platform, Hyperledger [94], which provides competitive smart con-

tract functionalities, no similar smart contract security investigation is evident.

37

Chapter 3

Proof of Concept for Intelligent Monitoring

Before further investigation on the proposed method, we implemented a proof-of-concept

prototype to evaluate the feasibility of the proposed intelligent monitoring. A sample program

was created as the data source. It was able to perform both predefined normal and abnormal

behaviors. All the behaviors were captured by a monitoring framework and analyzed. The

normal behaviors were defined as sequence of operations allowed by the system e.g., read

specific file, communicate with specific server, running in a specific usage range. The abnormal

behaviors were defined as:

• Abnormal System call: A single system call which is not allowed. e.g., SSH is not

allowed in the container.

• Abnormal System call parameters: A set of abnormal parameters that be used in a valid

system call. e.g., Read sensitive directory.

• Abnormal Collection of System Calls: A illegitimate or malicious collection of system

calls which is consist of a specific sequence of valid system calls.

• Abnormal Resource Usage: Abnormal memory and cpu usage spikes.

The sample program was packaged into a container and run as the only non-kernel proce-

dure when the container is booted. The details of the sample program is shown below:

38

Sample Program Functionality

• Normal: (i) Read a file in location L1. (ii) Access google.com.

(iii) Simple integer addition.

• Abnormal: (i) Access Bing.com (ii) Access google.com 10 times. (iii) Chmod a file.

(iv) Read a file in location L2. (v) Raising usage (By using hash matching).

• Random: Randomly performs normal or abnormal behaviors.

3.1 Out-of-Box Introspection Framework

We used Sysdig [61] as the monitoring tool to provide comprehensive and real-time

container monitoring. Sysdig is an open source container monitoring framework, which pro-

vides detailed real-time information of the target container, such as system calls, I/O usage, and

network traces.

Sample

Program

Analysis

Figure 3.1: Sample Design of the Prototpye

In this proof of concept system, we used Sysdig to capture only system call traces, which

provided the evidence of network communications and I/O requests. Although the raw data

captured by the Sysdig is well-organized, readable and easy to understand, it includes unrelated

39

and unnecessary information (see Figure 3.2). We felt, it would be non-trivial and impractical

to use the entire raw trace as the training sample in the later learning procedure. Instead, we

extracted the most significant metrics.

Figure 3.2: System Call Traces Captured by Sysdig

3.2 Feature Selection

Figure 3.2 shows that the raw traces from Sysdig contains useful metrics such as count,

timestamp, container name, process name, process ID, system call name and system call pa-

rameters. The system call names are the most valuable metric because they directly indicate

the type and goal of a single operation. They should be always a selected feature in the training

procedure. In addition. The timestamp of the system call is useful as well because it relays

information on sequence and relationship to other system calls. Therefore, it is also reasonable

to include timestamp as a feature. As the sample program is a single process application, the

process name and process ID are not relevant to the behavior classification, so they are not be

used in the later training.

40

It is questionable whether to include the system call parameters into the training. The pa-

rameters contain unpredictable content, and introducing them as a training metric is expensive

and challenging. A certain way of representing all the possible parameters is needed, while

the specific knowledge of the application is assumed to be missing. There are many ways of

achieving such purpose, and we use the unigram to perform the the system call parameters

transformation. The used 95 ungrams are shown in Figure 3.3. Each system call is transformed

to a frequency array based on this unigram transformer.

Figure 3.3: The Unigrams used in System Call Parameter Transformation

3.3 LSTM based Core Classifier

Even when features are selected and the data is well preprocessed, may not be possible

to label a single system call as being benign or malicious. Determining intent is more likely

to require observing a number of system calls that, collectively, reveal benign or malicious

behavior. The classifier must track the internal relationships and overall history of sequential

data.

We used an LSTM based model as the core classifier of the prototype system to maintain

the knowledge in the sequential system call data flows. The sample model is shown in the

Figure 3.4.

41

Figure 3.4: Sample LSTM Model

3.4 Data Collection

All the data in this proof of concept system was generated from the python sample program

running in a Ubuntu docker container launched in a Ubuntu desktop. Table 3.1 describes the

environment. A series of python and shell scripts processed the raw data by translating system

call names to numerical form by using Linux system call references. A sample result is shown

in the Figure 3.5. Only translated system call names, timestamps, and system call parameters

were included in the processed file. Each line in this file, is referred to system call trace.

We collected 300 files, with each files containing 10 second trace data obtained from the

running sample program. 150 files were collected by running the sample program with pre-

defined benign behaviours, and the rest collected from the malicious behaviors.

42

Name Specification

Host Machine Ubuntu 16.04 System with 2.20Ghz Xeon E5-2650

cpu and 64GB memory.

Container Ubuntu 16.04 Docker Container

Sample Program A program written in Python 2.7 with 277 SLOC.

Monitor Sysdig Monitor.

Sample commands:

sysdig -M 10 -pc container.name=name >> file-

name.txt

Table 3.1: Implementation Specification

Figure 3.5: Pre-processed Raw Data

43

3.5 SVM based Labeling

The ultimate goal of the framework is to provide secure monitoring around a black-

box application. We used knowledge of the sample program to demonstrate the feasibility of

differentiation normal from abnormal behavior, however, we recognize such a priori knowledge

is not always available in real world scenarios. A automatic mechanism of labeling the collected

data must be implemented. We propose to use a SVM based labeling system.

Instead of labeling the system call with only labels, we assign each of the system call an

additional confidence score. A statistical model would be created first based on the collected

data. Each of the system calls would be labeled based on this model (calls that fall within

the model thresholds would be deemed “nomral” and calls falling outside the thresholds as

“abnormal”). The detailed procedure is described in Figure 3.6.

Assume a black-box application is running in a secure and trusted environment while

the monitoring framework keep monitoring it for a period of time. Since the collected data

are the traces of the benign behaviors of the application, a statistic model could be created

by computing the distances of the traces. For example, each of the system call trace could

be considered as a string and for each different character found in two strings is a counted

distance (i.e., 10 character difference results a 10 distance). The overall variance V of all the

traces is calculated, and the max distance M and min distance m of traces are calculated as

well. For each subsequent system call trace, the distances to all the traces in the model would

be calculated, the max distance M ′ and min distance m′ would be also calculated. If m′ ≤ m,

then this trace would be labeled as benign. If m < m′ < M −m− V , then it would be labeled

as suspect. Otherwise, this trace would be labeled as malicious.

After the first step labeling, all the traces associate with a label, and all the parameters

would be transformed to unigram form for further processing. An example result of the current

step is shown in Figure 3.7.

The SVM grading procedure is then performed on these traces. The underlying idea is

simple in that we know during the classification of a sample, the decision function of the SVM

classifier generates out distances (scores) to all the categories. The one with the least distance

44

Data Statistic

Model
Labeling Grading

Distance

Variance Confidence Score

SVM

Figure 3.6: SVM Labeling Procedure

Figure 3.7: Labeled Data Samples

45

would be picked as the final predicted category. Instead of using the final prediction, we utilize

the corresponding decision function output DF . The 1
DF

would be applied as the score of

the trace, since it also provides a baseline confidence. The larger the score the more SVM

confidence on it belonging to current category. In addition, if the category is benign (good),

the score is positive, otherwise it is negative. An additional weight could be used to bias the

score system, such as multiplying, all the scores in the malicious category by 10. In this way,

the difference of the suspect and malicious would be enlarged. An example scored data sample

is shown in Figure 3.8.

Figure 3.8: Scored Data Samples

3.6 Evaluation

We ran our classification system in three phases. First, we ran it with only system call names

as features resulting in 57.41% of the samples being correctly classified. The low accuracy was

due to the inability to confidently link calls to some forms of malicious behavior. For example,

downloading a file from Google is benign, however, downloading for 1000 times in a row is

46

not. We added a timestamp to the classifier to provide a temporal context. Doing so resulted

in 70.43% accuracy. The disappointed accuracy showed still undetected malicious behaviours.

Using system call name and timestamp ignores such events are attempting to access protected

files. This indicates the need to include information that accompanies system calls.

We fed the classifier with all three features and combined it with labeling. The final result

shows that 100% of the samples are classified correctly.

Training Result

Only System Call Names 57.41%

With Timestamp 70.43%

With Feature and Labeling 100%

Table 3.2: Evaluation of the Prototype System

3.7 Summary

As shown in the Figure 3.9, this system consists of a sample program, a sysdig monitor,

several preprocessing scripts, a SVM based labeling and grading module, and a LSTM based

classifier. By using this framework, all the behaviours of the sample program running in the

container could be correctly classified. The monitoring is performed in an out-of-box manner,

and the knowledge of the program could be eliminated.

Sample

Program
LSTM-

based

Classifier

Processing SVM-

based

Labeling

Figure 3.9: The Final Implemented Prototype

47

Chapter 4

Towards Unsupervised Introspection of Containerized Application

Based on the success of the proof of concept, we moved to unsupervised introspection of

containerized application in a real production environment. In this chapter, we aim to provide

secure monitoring of containerized application, which can help i) the cloud infrastructure owner

to ensure the running application is harmless, ii) the application owner to detect the anomaly

behaviours. We use unsupervised introspection tool to perform the non-intrusive monitoring,

which leverages the system call traces to classify the anomalies. Since the traditional dataset

used for anomaly detection either only focuses on network traces or limited to few attributes of

system calls, we crafted and collected various normal and abnormal behaviours of containerized

application, and an optimized and open source system call based dataset has been built. Un-

supervised machine learning classifiers are trained over the proposed dataset, a comprehensive

case study has been performed and analyzed. The results show the feasibility of unsupervised

introspection of containerized applications.

The major content of this chapter are summarized as follows:

• We propose using non-intrusive introspection tools to provide system call level monitor-

ing on containerized applications, as opposed to previous work focusing on using Linux

security features to regulate the security boundary of containers [13, 16, 17, 118, 119].

While monitoring behavior by observing system calls has been widely investigated, the

approach bears revisiting from the perspective of containers.

48

• We built a new open-source system call based dataset for system call based monitoring

using state-of-art introspection tools with novel underlying dataset designs. The tradi-

tional and widely used datasets [20–26] have distinct pitfalls for the objective of system

call based detection. The problems of the previous dataset have been comprehensively

analyzed in [120]. Therefore, we aim to optimize the dataset with extended feature space

and application behaviors. Note that, we provide a baseline dataset in this work, but the

further optimization of the proposed dataset will be performed in the near future.

• We also created a public repository for sharing the container image and the code used in

the data generation, one could use these materials to reproduce/scale/customize the data.

• We proposed, implemented, and evaluated unsupervised introspection approach over the

aforementioned dataset. The proposed LSTM-based framework comprises a scaling fac-

tor normalization module and a tunable threshold module, which enables the framework

to achieve accurate classification on unseen behaviors within the unsupervised manner.

The evaluation result not only demonstrates the efficiency of the proposed methods, but

also explains the necessity of an extension of features for detecting certain classes of

anomalies.

4.1 Threat Model for Containerized Applications

A general containerization threat model is defined in [119], where the threats in containerization

can be summarized and depicted as Figure 4.1. The containerized application can intentionally

perform malicious behaviors such as remote code execution and privilege escalation, or the

application/ image can be embedded with malware and rootkits. The application running in

the container may lead to unauthorized access and intrusions. The adversary can also use one

container to scan other containers in the system or even Denial of Service (DoS) and spoof-

ing other containers. In addition, the container escape attack enables the adversary to access

and tamper the data in the host environment. If the adversary has access to the upper level

49

(host/VM), he/she can profile the in-container application behaviors and manipulate the con-

tainer life-cycle. In the past few years, several notable vulnerabilities have been reported, the

corresponding CVE entries are also listed in Figure ??.

Privilege Escalation:

CVE-2017-5123

Remote Code Execution

CVE-2014-9357,

CVE-2014-6407

Container Escape:

CVE-2017-5123,

CVE-2016-5195

③ Container to Host

- Container Escape

- DoS

- Data Tampering

④ Host to container

- Profiling in-container application

- Unauthorized Data Access

- Unauthorized Control Flow

② Inter-container

- DoS other containers

- ARP spoofing & MAC flooding

- Port Scanning

- Remote Code Execution

① Application to container

- Remote code execution

- Unauthorized access

- Network-based Intrusions

- Embedded Malware

- Privilege Escalation

Containerized

Application

Host / VM

Containerized

Application

Figure 4.1: Threats in Containerization

4.2 System Call Based Anomaly Detection Dataset

Publically available datasets are available for computer system anomaly detection [20–26].

These datasets are limited in a number of ways:

• Some of the datasets are created with network traces. Although it may seem the ma-

jority of the attacks need the involvement of network communications, it still leads the

dataset to be more intrusion-oriented. Internal abnormal behaviors in the monitored sys-

tem related to the running process, memory access, and file system operations cannot be

provided by the network traces.

50

• Several system call based datasets are introduced by other researchers, but the scale and

coverage of the datasets are limited [120]. These proposed datasets consider only the

system call itself, other information such as the caller and the arguments are missing. In

addition, the attack types that the covered by the previous attacks are limited as well.

• A notable problem of the previous dataset is that benign behaviors are limited or un-

known. The benign behaviors can be just simple login or system commands, such as,

ps, and scp. Although the attacks used in these datasets are clearly demonstrated, benign

behaviors are not always clearly described. In addition, it is hard to know whether the

monitored application/machine is idle or not. The majority of the previous system call

based dataset [22, 27] does not indicate any evidence of polling/listening, an approach

commonly used in real-world applications

• None of the datasets is container-oriented. From the system call traces perspective, the

major difference between a native host system and the containerized system is that not

all the kernel modules are also directly running in the container, thus the traces generated

from a container is significantly less noisy. This also provides a favorable foundation for

further introspection and analysis.

To overcome these shortfalls, we generated a new dataset that is tailored for container-

oriented system call based anomaly detection. We use Docker [121] as the containerization

platform, the docker version is 18.03.1-ce, build 9ee9f40. The details of the dataset are demon-

strated in the following subsections.

4.2.1 Introspection Tool

Traditional system call based solutions use system call capture tools such as strace or BSM

[21,86,88]. These tools are limited in that they can only generate basic level system call traces

in a summary style, where only the counts of different system calls are recorded, or they can

only generate system call traces for the overall system or a single process, while the filtering of

noises (system calls generated by other irrelevant process or kernel modules) and collection of

all processes running in a container need to be further implemented. We employed the container

51

introspection tool, Sysdig [61]. Sysdig is an open-source container monitoring framework,

which provides detailed and comprehensive real-time information of the monitored container,

such as system calls, resource usages, and network traces. Instead of only providing a summary

of all the calls, the system call name, caller process, timestamp, and passed arguments of each

system call can be recorded independently in Sysdig. In addition, all the processes and system

calls in the same container can be monitored together without including any other noises.

4.2.2 Customized Containerized Application

In order to simulate the real-world application behaviors and generate benign data for train-

ing, we first created a sample application. The sample application needed to cover reasonable

operations as well as initiate network commutations and file system operations. We selected

the containerized MySQL server as the sample application. Random user and password pairs

were generated, inserted, and updated within random tables in this MySQL database server

by a remote MySQL client. The creation of the tables/entries in the MySQL container would

trigger the modifications to the file system. All the behaviors occurred at random intervals,

with MySQL polling regularly for incoming SQL commands. Note that, this sample applica-

tion may not be representative for all production environment applications, but it can provide a

baseline data flow with needed operation traces. In addition, the backend database containers

are widely deployed as the components in the production environment.

4.2.3 Selected Attacks

Aiming to provide comprehensive malicious behavior of the containerized MySQL server, we

selected and performed eight attacks during data generation, the details are demonstrated in

Table 4.1.

4.2.4 Collected Dataset in Open Source

The collected dataset, customized and containerized data generation container image, and sam-

ple data generation scripts are all included in the Github repository. The formats of the captured

raw data are shown in Figure 4.3. A basic preprocessing procedure has been performed on the

52

Attack Description

Brute Force Login

Straightforward brute force login attack onto the MySQL server using Hy-
dra. The attack comes with random attack duration but will continue the
attack with previous progress in the last attack session. The attack progress
will be reset for each data collection period.

Simple Remote Shell A simple remote shell implementation using Netcat. Additional openssh and
Netcat packages are installed in the MySQL container

Meterpreter
A malicious executable file is created with Metasploit and it is pre-loaded
into the MySQL container. Upon the running of the file, the adversary can
send a particular payload to activate the remote shell.

Malicious Python Script
A sample python script that downloads and runs an executable in an in-
memory manner, and no artifacts leaves in the file system. Python related
packages are installed in the MySQL container.

SQL Misbehavior

The normal behaviors only include INSERT and UPDATE, however, if the
client tries to DELETE entries from the database then the operation would be
considered as abnormal. Maintaining the database without using DELETE
is more reasonable.

SQL Injection A SQL injection attack is simulated by SELECT out all the tables and entries
stored in the database.

Docker Escape
Implementation of CVE-2019-5736 [122, 123]. This attack requires the
docker version older than 18.03.1-ce, build 9ee9f40. Note that, this attack
modifies the underlying docker runtime (runc).

Selected Malwares

40 malware samples were selected from the 10K ELF malware collection
(VirusShare ELF 20190212 [124]). We validate all the malware samples
using VirusTotal as well [125]. The malware collection including back-
door, DDoS agent, Trojan, Worm, Ransomware, and cryptocurrency miners.
More details will be described in the Github repo. These malware samples
can be used to generate real malicious behaviors in the container. All the
malware samples are pre-loaded into the MySQL container or can be down-
loaded from the host via ftp.

Table 4.1: Selected Attacks

XXXXXXXXMetric
Category Benign Remote

Shell &
Meterpreter

Malicious
Script

Brute Force
Login

Docker
Escape

SQL
Attacks

Different calls used 56 52 59 62 40 56

Calls not used in benign 0 20 22 29 25 0

Number of calls captured 7,144,780 595,630 819,692 172,156 546,191 123,565

Table 4.2: Summary of Collected System Calls
raw data, where all the data values are transformed into training-ready numerical values. The

Table 4.2 describes the captured system calls of different behaviors (Note that, the malicious

behaviors are performed along with the benign behaviors, but the Table 4.2 summarizes benign

and malicious behaviors separately for better interpretation). The benign behaviors used for

unsupervised training include 56 different types of system calls, whereas most of the malicious

behaviors will use around 20 other system calls that are not used by the benign behaviors. The

SQL-based attacks only generate different SQL workflows thus no additional system calls are

involved. Some of the representative system calls used by the malicious behaviors are bind,

chdir, chroot, getpid, statfs, socketpair, readlink, recvmsg, seccomp, and etc. The detailed sys-

tem calls used by different behaviors are not fully listed here due to the limited space.

53

(a) (b) (c)

Figure 4.2: System Call Arguments Comparison of Different Behaviors. (a) The number of
fields used in the arguments. (b) The length of arguments. (c) The value of arguments. Since
all the system calls may have 0 field and 0 length arguments, the range of each bar is from
“average to max”.

The system call arguments used by different behaviors are compared in Figure 4.2. Since

all the behaviors (benign and all the attacks) may use system call with 0 fields and 0 length

arguments, the range of each bar is from “average to max” instead of “min to max”. As shown

in Figure 4.2, benign behaviors have an average of 1.36 fields in the arguments with 25.4

characters average length. Most of the attacks use more fields in the system call arguments and

also result in a larger argument length. For example, the Docker Escape attack has an average

of 3.58 fields in each system call arguments with an average of 62.85 characters. In addition,

the values of arguments (accumulated ASCII value of all the characters) in different behaviors

have similar trends, which are depicted in Figure 4.2-c as well.

4.3 Unsupervised Introspection of Containerized Application

Crafting a new machine learning technique for unsupervised introspection was not the main

objective of this paper, instead, we leveraged the state-of-art techniques to investigate the fea-

sibility of reliable introspection. The goal of the introspection was to accurately classify the

benign and malicious (or suspect) behaviors using discrete system call traces. We believe that

after a certain time of monitoring on the application (ensured to be secure during this period

of time), an unsupervised classifier can be generated to automatically infer the boundary be-

tween benign and malicious. System call based detection is subject to be a collective anomaly

detection problem. It is inappropriate to directly mark all the system calls with a fixed score or

label. Therefore, the anomaly detection should not be performed in a single system call level

54

Containerized

Application

Introspection

Tool

Host / VM

ClassifierClassifier

Temporalized Data with

Sliding Window

12336546 20:22:33.3306 0 Container-1 (727ba3f20dd6) python (32080:7) > read fd=3(<f>/etc/nsswitch.conf) size=1024
……

Raw System Call Data

12336546 20:22:33.3306 0 Container-1 (727ba3f20dd6) python (32080:7) > read fd=3(<f>/etc/nsswitch.conf) size=1024
……

Raw System Call Data

Scaling Factor

Normalization

Preprocessing

Input

Data

LSTM

Encoder
LSTM

Decoder

Internal

Compressed

Representation

Reconstructed

Data

-
Tunable

Threshold

Anomaly

Figure 4.3: Proposed Unsupervised Introspection Framework

but achieved by classifying a batch of system calls. The overall design of the proposed frame-

work is described in Figure 4.3, and the framework consists of a sliding window mechanism, a

scaling normalization algorithm, an autoencoder-based classifier, and tunable thresholds.

4.3.1 Sliding Window

Normally, a sliding window is equivalent to a time-slot, with all the data captured in the time-

slot aggregated as one data instance for further training or classification. The random behavior

of applications generates an inconsistent number of system calls in a given time-slot. Although

data padding may alleviate data streams of different lengths, it cannot solve the problem when

the malicious data has an unknown number of system calls. This requires the original training

data to be padded with a fixed larger size (to ensure all the incoming malicious data can be

padded to the same size) or the incoming validation data to be compressed to the same size

55

of training data. This increases the overall size of the data and also violates the unsupervised

motivation. We used the sliding window on a system call series, where a fixed number system

calls are aggregated together as one window of data. The entire training data is temporalized

with this fixed window size to achieve the sliding of the window.

4.3.2 Scaling Factor Normalization

The data distribution and extreme values of malicious data are unknown. In this unsupervised

introspection procedure, if historical trained extreme values are used for the Min-Max normal-

ization of new data, the normalized data may be negative or greater than one; if the Min-Max

Normalization is carried out on new data itself, though the normalization returns the data with

the range zero to one, the normalized data represents different actual values. Therefore, we

adopt and modify the Scaling Factor Normalization (SFN) method [126] to enable the data

normalization scaling on the new unknown data.

The traditional min-max normalization can be described as equation 1, and the SFN intro-

duced in [126] can be described as equation 2.

x′ij =
xij −min(xj)

max(xj)−min(xj)
(1)

x′ij =
xij −min(xij ∗ (1− aj), xj)

max(xij ∗ (1 + aj), xj)−min(xij ∗ (1− aj), xj)
(2)

The value aj is the scaling factor that influences the effectiveness of normalization with the range:

0 < aj <
max(xj)−min(xj)

max(xj) +min(xj)
(3)

This method works with the assumption that all the data values are positive [126]. If the minimum

value of any feature is zero, this method cannot scale the normalization anymore. Unfortunately, the

system call traces data may generate zero values as the arguments of the system call can be empty.

Therefore, we modify the original SFN to the following form:

x′ij =
xij −min(xij ∗ (1− bj), x

+
j)

max(xij ∗ (1 + bj), x
+
j)−min(xij ∗ (1− bj), x

+
j)

(4)

56

The x+j is all the positive values of xj and bj is max(xj)−min(xj)
2∗(max(xj)+min(xj)) . The value of bj is equal to

the half of aj maximum value, this ensures the validity and certain effectiveness of the normalization

scaling.

4.3.3 LSTM-based Classifiers

A variety of options can be used to accomplish the unsupervised classification task. Traditional cluster-

ing algorithms, self-organizing maps, one-class SVM, and autoencoders are all tested and evaluated by

the other researchers. Since the data in our model is in the form of system call batches, we wanted the

classifier to have the capability of memorizing and utilizing the knowledge of previous batches. We se-

lected the classic LSTM autoencoder [127,128] as the baseline classifier. As illustrated in Figure 4.3, the

LSTM autoencoder is formed by an encoder and a decoder. The encoder transforms the input data into

the internal compressed representations, then the decoder reconstructs the data from the internal state.

We simply adopt the classic LSTM architecture, more details can be found at [127,128]. We noticed that

the classifier can be further optimized and the competitiveness of other classifiers is also well-known.

However, this unsupervised prototype mainly aims to prove the feasibility of the proposed system call

based introspection. A detailed and comprehensive comparison of classifiers will be performed as the

future work, more discussions are elaborated in Section 4.5.

4.3.4 Tunable Threshold

The LSTM autoencoder is trained with only the benign data, thus the reconstructed data would be sig-

nificantly heterogeneous whenever the malicious data is passed. The loss value between the real data

and the reconstructed data can indicate the anomalies. The problem then becomes one of determin-

ing the loss threshold. Some of the solutions adopt user-selected values as thresholds [82–84], or add

a semi-unsupervised or supervised classifier/algorithm for final inferences [78, 129]. However, these

methods violate the unsupervised assumption. We employ a tunable threshold mechanism to provide

unsupervised and tunable anomaly detection and it is described in Algorithm 1.

The underlying concept of the proposed tunable threshold is simple and straightforward. As it is

not possible and appropriate to ask the users to decide the threshold value, then we make the classifier

itself to be embedded with a tunable thresholds pool. So the user can adjust the sensitivity of the

classifier in the future. The threshold pool is created after the training procedure. During the validation

of the training, a set of confidence levels: [100%, 99.5%, 99%, 95%, 90%, 85%, etc.] is used to

57

Algorithm 1: Tunable Thresholds
Input : Classifier (C), Validation Dataset (VD), Confidence Levels (L)
Output: Tunable Thresholds (T)

Tunable Thresholds T ← [];
Reconstructed Data (RD)← C.predict(V D);
Loss Matrix (M)← |V D −RD|;
Max threshold (tm)←M.max();
for Confidence level (l) in L do

current threshold tc ← tm;
while (M < tc).count / M.count > l do

tc ← tc ∗ 0.99
end
T.append(tc)

end
Output T ;

generate the thresholds. The algorithm will automatically find the appropriate thresholds which make

the classifier generate validation accuracy that equal to corresponding confidence levels. For example,

100% confidence makes the classifier has a 100% classification accuracy in validation by using the

maximum loss value in the reconstructed data as the threshold. Note that, the higher the confidence level

the classifier has, the less sensitive the classifier would be, because the high confidence level also leads

to a high threshold value.

4.4 Evaluation

In this section, we perform the evaluation of the framework on the introduced dataset. We mainly aim

to investigate the feasibility and performance with different configurations. The LSTM classifier is

implemented in Keras and trained with an Nvidia Telsa K40c graphic card. Adam optimizer is adopted.

Dropout and early stopping are enabled to avoid overfitting. We trained and evaluated the classifier with

different features, sliding window sizes, and confidence levels. The detailed hyperparameters are listed

in Table 4.3.

4.4.1 Evaluation Metric

We adopt three metrics in the evaluation procedure: negative predictive value (NPV), accuracy, and

coverage (specificity). These three metrics are described in Equation 5, 6, and 7, respectively. NPV and

Accuracy indicate the percentage of the windows are classified correctly, where the former provides the

accuracy with only negative part and the later provides the overall accuracy. The Coverage metric can

provide an overview of the amount of the negative values that are correctly classified. In order to have

an overall measurement of the performance, a score metric is adopted as well, which is simply derived

by averaging the three metrics.

58

Hyperparameter Value

Adam γ
β1
β2
ε

0.001
0.9

0.999
10−8

Features F [call, time],
[call, time, process, value],

[call, time, process, length, fields, value]

Sliding Window Size S [10, 20, 30, 40, 50, 60, 70]

Confidence Level C [1.0, 0.995, 0.99, 0.95, 0.90, 0.85]

LSTM units
activation function

dropout
batch size

loss function

[128, 16, 16, 128]
relu
0.2

[30, 300, 3000]
MAE

Table 4.3: Training Hyperparameters

NPV =
TN

TN + FN
(5)

Accuracy(ACC) =
TN + TP

TN + FN + TP + FN
(6)

Coverage(COV) =
TN

TN + FP
(7)

Score =
NPV +ACC + COV

3
(8)

Figure 4.4: Evaluation Results with Different Features

59

4.4.2 Experiment Results

With using different configuration combinations, a total of 42 models are trained in this experiment (7

window sizes, 3 feature sets, and 2 normalization methods). In addition, 6 confidence levels are applied,

and 7 attacks are evaluated (malware are not evaluated in this paper, more details can be found in Future

Work section), which results in a total of 1764 entries. Here, for demonstration, we performed the

discussion using confidence level 99% with window size 50. A detailed result of all the attacks with

confidence level 99% and window size 50 is presented in Table 4.5. In addition, the best results of all the

attacks are also summarized in Table 4.4, which proves the prototype system can provide an acceptable

accurate detection for most of the attacks.

Attack Results
Model

(norm-feature-window
size-confidence)

NPV. ACC. COV. Max Model
Loss

Brute Force Login SFN-prop.-70-99% 74.51% 95.82% 99.77% 0.096
Remote Shell SFN-opt.-50-100% 84.71% 93.81% 92.01% 0.089
Meterpreter SFN-prop.-70-99% 24.39% 95.24% 54.85% 0.096

Malicious Script SFN-opt.-70-99% 84.88% 90.64% 83.68% 0.084
Docker Escape SFN-prop.-60-99% 89.35% 76.27% 84.75% 0.101

Table 4.4: Sample Best Result on Selected Attacks

By leveraging the advantage of the additional features such as caller process name and system

call parameter values, the proposed framework (proposed version, with SFN enabled) can significantly

increase the detection accuracy compares to traditional methods that only use system call name and

timestamps (baseline version, with no SFN). This is depicted in Figure 4.4. However, more is not

always better. With including length and fields of system call parameters into the training (as (optional

version), the results do not always outperform the proposed version. The Figure 4.4 also describes this

situation.

The SFN always increases the accuracy of the classification regardless of what other configurations

are set except for the Docker Escape attack, the detailed results can be found in Table 4.5. The window

size defines the amount of the system calls the classier can memorize and process, which significantly

determines the accuracy and performance. However, the relationship between the window size and

classification accuracy is still attack related, but a fixed window size can also provide an acceptable

detection accuracy. Note that, we only evaluated the window size with maximum size 70, as the training

cost of higher window size is not trivial. Meanwhile, the tunable threshold can also determine the

classification sensitivity and accuracy. When the lower thresholds are applied, the higher coverage

60

Model Brute Force Login Remote Shell
NPV. ACC. COV. NPV. ACC. COV.

MinMax-base 16.77% 86.55% 10.54% 64.88% 83.95% 34.33%
SFN-base 14.52% 85.42% 13.85% 63.86% 84.54% 37.93%

MinMax-prop 0.05% 84.47% 0.09% 62.5% 84.27% 31.34%
SFN-prop 67.19% 94.12% 99.57% 49.97% 84.35% 99.98%

MinMax-opt 1.95% 80.96% 2.08% 57.30% 84.39% 46.47%
SFN-opt 67.85% 92.09% 81.95% 49.37% 82.49% 99.36%

Model Meterpreter Malicious Script
NPV. ACC. COV. NPV. ACC. COV.

MinMax-base 1.19% 95.88% 7.14% 0% 75.19% 0%
SFN-base 3.21% 91.27% 31.83% 0.11% 74.57% 0.12%

MinMax-prop 14.35% 96.2% 16.81% 36.73% 75.45% 4.25%
SFN-prop 13.73% 91.95% 42.04% 77.22% 84.73% 68.36%

MinMax-opt 12.91% 94.57% 15.81% 56.72% 77.14% 25.44%
SFN-opt 10.01% 95.39% 18.62% 67.62% 79.95% 48.41%

Model Docker Escape SQL Injection
NPV. ACC. COV. NPV. ACC. COV.

MinMax-base 5.18% 41.28% 0.39% 6.66% 0.44% 0%
SFN-base 7.48% 42.02% 0.5% 5.55% 0.34% 0%

MinMax-prop 86.13% 71.45% 75.32% 8.14% 0.87% 0%
SFN-prop 6.06% 33.39% 0.6% 5.24% 1.16% 0%

MinMax-opt 77.6% 52.58% 24.31% 7.7% 1.01% 0%
SFN-opt 81.87% 75.91% 75.67% 7.00% 0.93% 0%

Table 4.5: Evaluation Results with 99% Confidence and Window Size 50

would be achieved but the price is the accuracy. We observed this situation in the evaluation results as

we expected.

We notice that the classifier fails to detect SQL injection and SQL misbehavior attacks. These two

attacks generate almost the same operation flows in the system call traces except the keywords passed

in the parameters are different. Since all the benign behavioral data of the containerized application

used for training are randomly generated, a simple change on a keyword cannot lead to a significant

variation or make this operation to be an outlier. It may be possible to detect such variation if all the

other parameters of all the SQL behaviors are fixed while these attacks use different keywords. However,

these violate the motivation of real-world application simulation. This also indicates the vulnerabilities

in the functionality level should be better regulated and concerned at the application level.

4.5 Discussion and Future Work

The malware embedded container and data are available in the dataset and repository, however, it is

non-trivial to present a detailed analysis on a large number of malware samples with this limited space.

It would be meaningful to extend the investigation on the detection of different malware behaviors in the

future. This work provides a proof-of-concept on the unsupervised introspection of the containerized

application, and we noticed that the proposed framework is only evaluated with an offline dataset with a

61

single application. For the evaluation perspective, we aim to provide a comprehensive online evaluation

as our future work. On the other hand, we plan to scale the proposed dataset with different applications

to provide more generalized coverage of application behaviors.

In addition, data of other application architectures will be collected and included as well, such as

multi-container applications where a service is formed by a collection of containers. An introspection

on this type of service requires the monitoring system to have an overview of all the containers and

meanwhile having the capability to understand and interpret the relationships between the containers.

We can investigate the feasibility and efficiency of introspection in such a clustering environment with

our updated dataset in the future.

62

Chapter 5

Perturbing Smart Contract Execution through the Underlying Runtime

The virtualization and containerization have been adopted in many other applications besides cloud

computing. Smart contract is one of the most promising techniques that also relies on the virtualiza-

tion and containerization. Smart contract is a piece of code publicly stored in the blockchain and can

be triggered by different nodes in blockchain network, these nodes can be different architecture-based

and operating system-based. Ethereum and Hyperledger use different methods to ensure the smart con-

tract can be run on all nodes and generate the same result. However, the core concept is the same:

via virtualization. Ethereum adopts a virtual machine mechanism similar to the Java Virtual Machine,

named Ethereum Virtual Machine (EVM). EVM is a stack machine that executes bytecode [130] trans-

formed from a high-level smart contract programming language (Solidity and Vyper [131]). EVM is

an embedded component of an Ethereum node client, which automatically runs in memory. In contrast,

Hyperledger uses a Docker container to execute the smart contract. The smart contract in Hyperledger

can be written in Go, Java, or NodeJS. The code is packaged and instantiated as a Docker container in

the Hyperledger node’s system. Each smart contract runs as a container, more details are described in

Section 5.1.

In this chapter, we aim to attack the smart contract system beyond any one smart contract program-

ming platform. Although the mainstream handles the smart contract security at programming level, we

propose to review the smart contract security in a different view. We take the perspective of an adversary

that does not care how the smart contract is programmed, as long as we can interfere or manipulate the

output of smart contract execution and thus bypass any verification and protection frameworks that might

be in place. We attempt to illustrate the flaws of the underlying smart contract life-cycle or virtualiza-

tion mechanism (runtime) namely, the Ethereum Virtual Machine in Ethereum and the Docker container

environment in Hyperledger Fabric. Since the smart contract installation and execution in Ethereum and

63

Fabric are different, we mainly focus to investigate the potential security risks in the Hyperledger Fabric

system.

The remainder of this chapter is organized as follows. We perform a case study on Hyperledger

Fabric in Section 5.1. The discussion of migrating this attack to Ethereum has been performed in Section

5.2. The findings, limitations, and countermeasures are demonstrated in Section 5.3.

Chaincode

package main

import (…)

type SimpleAsset struct {}

func (…) Init(…) peer.Response {…}

func (…) Invoke(…) peer.Response {…}

func set(…) (…) {…}

func get(…) (…) {…}

func main(…) {…}

① Packaging

baseosPeer

② Install

ccenv

Active Container

On-call Image

Channel

③ Approve

④ Commit
Orderer

Chaincode

⑤ Instantiate

⑥ Operations

Figure 5.1: Chaincode Life Cycle in Hyperledger

5.1 Case Study: Attack on Hyperledger Fabric

In this section, we perform a case study on the Hyperledger Fabric platform to investigate the feasibility

of perturbing the smart contract execution via runtime vulnerabilities. The entire case study is based on

the official Hyperledger network test example, Byfn network. We demonstrate the chaincode (the alias

for the smart contract in Fabric) life-cycle and Docker environment of Hyperledger Fabric system before

introducing the vulnerability itself.

64

5.1.1 Chaincode Life Cycle

Figure 5.1 illustrates the life-cycle of chaincode in the Docker containers that Hyperledger uses as its

runtime environment. The following steps transpire when a Hyperledger blockchain peer tries to launch

and test a piece of chaincode (starting in the top left corner of Figure 5.1):

1. Packaging: The Peer first packages the chaincode into a tar format file.

2. Install: The compressed package is delivered to all the peers that need to run/endorse the chain-

code. These peers build, compile, and install the chaincode locally.

3. Definition Approve: Corresponding channel members vote on and approve the definition of the

chaincode, which includes such information as name, version, and endorsement policy (i.e., who

can execute and validate).

4. Commit: Upon a success approval, a commit transaction proposal is submitted to the Orderer,

which then commits the chaincode definition to the channel.

5. Instantiate: The chaincode is initialized as active containers for all the peers.

6. Operations: Chaincode operations are carried out by the communication between the peer con-

tainer and chaincode container.

Throughout this procedure, the Orderer and Peer container are active all the time. The ccenv

container, which is the chaincode environment container provides the functionalities of installation and

instantiation. The ccenv is an offline docker image that only becomes an active container when there is a

chaincode that needs to be processed. The complied chaincode is added into a base image to create the

real instance of chaincode container. The baseos image is always offline; the chaincode image becomes

active after the compiled binary is loaded into baseos image.

5.1.2 Threat Model

In this case study, we assume the potential attacks originate from the Docker perspective. We therefore

assume the adversary has access to the Docker network, images, and containers. The adversary may

not have root privilege on the host machine, but he/she can access the host file system and alter the user

space data via a pre-planted backdoor and/or remote control. The communication can be eavesdropped,

65

intercepted, and modified by the adversary. The adversary can be an unrelated third party or an insider.

The prerequisites of the these attacks may enable the adversary to damage the system in a more severe

and obvious way, but the major motivation of the adversary is to bias, perturb, and stop the service of

the chaincode.

Figure 5.2: Communication and Handshake between the Peer and Chaincode Containers

5.1.3 Insecure Communication

The operations to an instantiated chaincode in Hyperledger are based on the communication between the

Peer container and Chaincode container. However, this additional communication was not as secure as

we expected. We sniffed the communication traffic between these two containers while a query operation

was taking place. As shown in Figure 5.2, the communication was TLS v1.2 enabled, the encryption

of the communication was based on ECDH Key Exchange, and the authentication was provided by

mutual certificate verification. Normally, the story would just end here and presume the communication

is secure and reliable. However, the vulnerability came from a permissioned blockchain and Docker

container.

The permissioned blockchain requires the network to be a designated group of organizations and

entities, and the enforcement of the network regulation relies on authentication. In other words, all the

entities need to have corresponding certificates and keys for further verification. All these cryptographic

66

materials are pre-generated and shared in the entire network by loading them into the container at the

point the container is created. This creates a problem: all the keys and certificates are stored in the user

space of both host and container. Figure 5.3 shows the accessible keys and certificates stored in host and

container, which are also stored in an unencrypted manner.

Key and certificate stored in container

Key and certificate stored in host

Figure 5.3: Unencrypted Key and Certificates stored in Host and Containers

The Hyperledger project provides a Cryptogen binary to help users tailor their cryptographic ma-

terials. Users can change the location of the keystore, change the key format and length, and create

encrypted keys and certificates, but such information has to be loaded and stored into containers so that

the containers can communicate with the blockchain network. Hyperledger containers come with root

privileges, which provides access to keys. As long as an adversary has access to any container, he/she

has access to this material.

Because ECDH Key Exchange is known to be vulnerable to Man-in-the-Middle (MITM) attack

[132–134], thus mutual verification is needed. Traffic redirection tools (e.g. iptables and ARP spoofing)

and TLS interception tools (e.g., SSLProxy ∗) make it relatively easy for an adversary to redirect the

duo-direction communication between the Peer and Chaincode containers to a MITM agent. All the

operations to the chaincode can be then manipulated by the adversary. An example attack scheme

is described in Figure 5.4. Note that, besides the Peer-Chaincode communication, there is another

vulnerable point. The communication between the Client (user command line tool/ container that

used to send the requests to Peer) and Peer can be the target of MITM attack as well.
∗https://github.com/sonertari/SSLproxy

67

Peer ChaincodeMITM

- Payload Sniffing: Eavesdrop on

confidential information.

- Payload Modification: Change the

value of chaincode invoke and query.

- Packet Drop: Denial of Services.

① Server Hello

① Client Hello

① Get/ replace client/ server

random number

② Certificate

②Key Exchange

② Certificate

②Key Exchange

② Use certificates to bypass

authentication &

exchange fake session keys

Server hello,

certificate, and key

exchange can be

combined into one

single message.

Later communication

will be encrypted with

fake session keys.

Figure 5.4: Demonstration of MITM attack on Chaincode Communication

After this stage, the attack becomes an engineering task of forging all the malicious packets. This

is obviously nontrivial, but feasible.

5.1.4 Loose Image Management

As shown in Figure 5.1, the chaincode container is created by loading chaincode binary file into the

baseos image. One potential strategy to circumventing the integrity of the chaincode would be to poison

the base image, thus ensuring subsequent chaincode containers would be vulnerable if the baseos image

were modified or replaced. The baseos image, along with other Hyperledger container images, are ill

protected. Containers are called via tags instead of hashes. This means that a benign image can be

modified or replaced and still appear to be valid if it has a tag that corresponds with the original.

Figure 5.5 illustrates a simple example of such an image alteration. The original on Hyperledger

v2.1 baseos image was Linux Alpine based, with an image size of 6.94 MB. We replaced all the versions

of baseos image to a Ubuntu-based image of 73.9 MB. In addition, we modified the clean Ubuntu

image with Python and some other libraries installed, which also has been committed to baseos image

68

Figure 5.5: Replace the Hyperledger Baseos Image

version 2.1. We observed that all the chaincode containers created after this image alteration were

installed with Python and additional libraries.

In this case, if the adversary can either redirect the user to download a malicious image or somehow

modify/ replace the image, the entire system can be corrupted. The adversary can load customized code,

autorun rootkit, revert channel backdoor, and cryptocurrency miner program into the malicious image.

These malicious images can lead to denial of services, abuse of resources, unauthorized access, and

information leaking. One can also use the malicious image to launch the aforementioned MITM attacks.

Figure 5.6: Dev-Chaincode Containers On-the-Fly

This naive attack can work because the Hyperledger container life-cycle environment calls all the

images with tags. Although the hashes are inherently provided by Docker engine, it is apparently more

convenient, albeit incautious, to use the human-readable tags. Moreover, besides the baseos image, all

the other Hyperledger images are vulnerable as well. The orderer, CA, and peer images are all free

for modification and replacement. Each installed and instantiated chaincode will be mapped with a

container image (shown in Figure 5.6). These images that generated on-the-fly can be also modified and

replaced.

5.1.5 Risks Behind Docker

Hyperledger outsources Docker as the chaincode runtime, and its security is then bounded with Docker

container security, which basically doubles the attack surface. The adversary can utilize the vulnerability

of Docker to perform much more severe attacks. For example, one can combine a malicious image with

reverse shell and Docker escape attack to gain the root access of the host system [122, 135]. This can

69

Terminal 1

Listen for the reverse shell

The malicious image that overwrites Docker runtime

Docker runtime runc has been successfully overwritten

Upon the invocation of malicious image, the root privilege is

gained via runtime escape.

Terminal 2

Figure 5.7: Gain Root Access on Host via Malicious Image: This attack allows the adversary
to inject any code in Docker runtime (runc), which will be executed on host with root privilege.
This example simply injects “bash− i > &/dev/tcp/0.0.0.0/23450 > &1&” into runc, and a
reverse shell with root access on victim’s host will be created.

lead the attacker to have the full control of the entire system. An example set up is shown and described

in Figure 5.7, where upon the invocation of the malicious image, a reverse shell establishes and returns

with the root access of the victim’s host. If the adversary replaces the baseos image with this malicious

one, the entire chaincode system is disrupted. Note that the malicious docker images problem has been

of concern for some time. By uploading malicious images into Docker Hub, an unscrupulous actor can

generate $90,000 dollars from the million downloads and deployments of these malicious images in 10

months [136].

Complicating things further, Docker and Docker Compose are normally configured to be user-

space applications. Since it is not practical, efficient, and secure in a production environment to ask

all the persistent container operations for root privileges, the Docker environment can be significantly

manipulated even without root access on the host system. Issuing Docker commands on the host can

be another threat to the chaincode system. One can stop and re-run a chaincode container to break the

established TLS connection with Peer container, thus, the sniffing and MITM can be launched at any

70

time. One can run the containers with privileged mode, so the iptables and all the other kernel-related

system calls are enabled in the container for further malicious objectives (e.g., setup network forwarding

rules and divert channels, and load malicious kernel modules).

5.2 What About Ethereum?

Ethereum achieves the cross-platform smart contract execution via EVM but several problems have been

found in the underlying EVM mechanism, one notable vulnerability being the stack size limit [105,106].

Ethereum’s smart contract can invoke another contract (including itself), and each invocation increases

the size of the stack in EVM by one frame. It was possible to exceed the limit and cause an internal

exception. [105, 106] demonstrated that an attacker could not have to pay coins by intentionally failing

the payment fallback function by overflowing the EVM stack. This vulnerability was been fixed by a

hard fork of Ethereum in 2016.

[137] observed that running particular smart contracts on different implementations of EVMs

resulted in inconsistent gas (i.e., fees) and opcode sequences. This led to an EVM testing tool, EVM-

Fuzzer, which can be used to detect potential vulnerabilities of EVM [138]. The tool revealed that

Py-EVM version v0.2.0-alpha.33 allows attackers to make a malicious call to inject illegal values in

stack (CVE-2018-18920 [139]). CVE-2018-19183 [140] and CVE-2018-19184 [141] documented two

EVM vulnerabilities that enable the adversary to cause a denial of services. Two additional vulnerabil-

ities CVE-2018-19330 [142] and CVE-2019-7710 [143] remain confidential to the public until they are

repaired.

Generally, it may seem that Ethereum is more secure than Hyperledger since its runtime, EVM, is a

customized in-memory stack machine. We focus on Hyperledger is not only because it is less discussed

or arguably less secure, but also due to fact that EVM has already been attacked in a similar form. Both

EVM stack overflow attacks [105,106] and CVE-2018-18920 [139] attacks perturb the normal execution

of smart contract based on the vulnerabilities in EVM implementation. These two attacks can infinitely

trigger the smart contract functions without corresponding gas and payments, which also do not rely

on any programming faults in the smart contract. Although these two vulnerabilities have been already

fixed, the concept of our proposed attack is verified.

A research question is whether it is possible to attack the EVM without a zero-day vulnerability.

Because EVM is a program running in the local system, it can be perturbed if the system owner (or

71

the adversary with the same privilege) decides to do so. Indeed, any program and applications can be

attacked in this manner as well, this type of attack is beyond the scope of “attack on the runtime”. A

smart contract is different from the other application scenarios. Since the contracts are immutable and

reliable hardcoded programs in the blockchain, altering the execution or the result of smart contracts

even in a more general manner would still be interesting. One potential direction is to locate the EVM

stack and memory locations in physical memory space and use the process vm writev() system call to

transfer and inject data into that memory location, thus altering execution.

5.3 Lessons Learned

5.3.1 Limitation and Impact of the Proposed Attack

Altering smart contract execution requires access to the runtime environment and/or certain vulnerabili-

ties present at runtime. Access to the runtime environment may lead to other security concerns and make

the perturbation unnecessary. For example, the adversary can simply remove the Docker engine from the

victim’s system, thus achieving DoS. Similarly, one can block the EVM implementation and Ethereum

client from normal functioning by setting up certain network rules or checkpoints (via debugger). We

notice that the assumption of having partial access to the system is a strong assumption, but note that all

the aforementioned attacks in Hyperledger can still be performed without access to the system, as long

as a malicious image is delivered.

Besides the prerequisites of the attacks, the impact of the attack is another question. The attack

impact can be categorized into two types based on the smart contract function types: either read-only

(R) or read and write (R/W). The R type functions will not assign miners for further smart contract

execution, and the results will be locally read (from the current state database of blockchain), generated,

and returned to the user. If this part has been perturbed, the query to the blockchain is altered or stopped.

From the user’s point of view, it is hard to know the real value stored in blockchain unless the transaction

histories have been examined. On the other hand, R/W type functions create additional data in the

blockchain, then miners (or endorsers in Hyperledger) have to be involved. From the Peer-Chaincode

communication side, it may be hard for the adversary to manipulate the data stored in the blockchain,

since it requires to break the consensus on chaincode execution result. However, if the adversary MITM

the Client-Peer communication, then he/she can change the original parameters sent to the chaincode

72

and blockchain. Therefore, the final data upload into blockchain can be manipulated, though it will be

in an obvious way – the user can easily find out that the client sent a different value.

5.3.2 Countermeasure to the Proposed Attack

If the Hyperledger community were to develop a standalone runtime instead of adopting Docker, the

problems of runtime can be eliminated. Meanwhile, these problems can be solved in the following way:

• Malicious Image: It is not practical to forbid the user from changing the tag of images, however,

the Hyperledger system should regulate all the invocation of containers to be bound with hashes

instead of tags. Each time a container image is called, the hash needs to be compared, including

the on-the-fly generated chaincode images.

• Access Control: If it is not necessary, all the Hyperledger containers should be run in root-less

mode. This may need additional libraries installed on the host and further supports from Docker

community [144]. This can limit the adversary from performing harmful operations that need

root privileges in containers, for example, access the private keys.

• Communication Security: The problem of communication security is twofold, the confidential

cryptographic material loaded into containers, and the use of containers adds an additional com-

munication layer between the peer and installed chaincode. For the first issue, if one malicious

image is loaded during any execution of chaincode in a blockchain, the adversary can obtain

the access to the private keys for further communication manipulation. This problem is a side-

effect of malicious image and loose access control, and the problem can be fixed only if the

previous two are properly handled. However, communication between Peer and chaincode can

be different. Note that, the chaincode is installed locally per Peer, which means the Chaincode

container and Peer container are running in the same machine. The communication between any

peer and orderers may be remote network connections, but for the local system data exchanging

between Chaincode container and Peer container, the network-based communication is not the

only option. Docker supports shared memory (inter-process communication (IPC) namespace)

for inter-container data exchange. Instead of using network communication, using IPC between

Chaincode container and Peer container can eliminate the risk in TLS based communication.

73

5.3.3 Threat Model of Smart Contract Systems

Smart Contract

Smart Contract Programming Level

- Programming Flaws: External

dependence, Improper validation,

Inadequate authentication or

authorization.

- Backdoors: Intentionally planted

backdoor functions.

Hyperledger Ethereum

Runtime Level:

- Image Security: Integrity and

availability of Hyperledger images.

- Access Control: Limitation and

regulation of privileges in containers

and Docker commands.

- Communication Security:

Compromised certificates and keys.

PC

Available

Gas

Stack Memory

Storage

PC

Available

Gas

Stack Memory

Storage

EVM

Runtime Level:

- Diversified Implementation :

Consistency and security of EVMs.

- Potential Risks and Vulnerabilities.

Figure 5.8: Threat Model of Smart Contract System

Based on the findings in this paper, a new threat model of smart contract system is established

and shown in Figure 5.8. Generally, the threats can be divided into two levels, smart contract program-

ming level [106], and runtime level. The threats in smart contract programming level are either caused

by programming flaws or backdoors. The programming flaws including external dependence (e.g., re-

entrancy, delegatecall injection), improper validations (e.g., integer overflow and underflow), and inad-

equate authentication or authorization (e.g., erroneous visibility, unprotected suicide). The backdoors

are intentionally planted malicious functions, they may not violate any programming rules or fall in

any programming flaw definitions. However, they can be used to trigger blockchain operations that can

potentially prejudice the interests of others.

74

The runtime level threats in Hyperledger-based blockchain are bound to Docker container security.

The integrity and availability of Hyperledger images significantly determine the security of the chain-

code system. In addition, if the access control in Docker environment is not appropriately configured,

the confidential information, such as, keys and certificates can be accessed without authorization. The

Docker commands that can be issued as a non-root user can also harm the chaincode system. For ex-

ample, an evil insider can easily stop the containers to perturb and even DoS the blockchain system

(endorsement fail, ordering service fail). Nevertheless, the communication between Peer and chaincode

container leaves an open window for the adversary. The chaincode system can be manipulated if the

keys and certificates are compromised and the communication under the control of the MITM.

On the other hand, the Ethereum-based smart contract system suffers from the diversified EVM

implementations. Hyperledger adopts a single standardized runtime Docker as the universal chaincode

runtime, whereas Ethereum provides a different implementation of EVMs. As stated in [137], the gas

and opcode consistency problem have been already found in different EVM implementations. Moreover,

maintaining and ensuring the security of all the EVM implementations are non-trivial and challenge task.

The attack in CVE-2018-18920 just utilizes the flaws in the Python version of EVM implementation.

Some of the other potential risks are also indicated in the work [138]. As the development and mainte-

nance of EVM continue, the security of Ethereum runtime needs more concern.

75

Chapter 6

Conclusion

Containerization is one of the emerging techniques with increasing popularity in many applica-

tion domains due to the customizable, manageable, and lightweight features. However, the dark side

of containerization is the arguable weak security. The DevSecOps of containerization environment sig-

nificantly determines the overall security of cloud computing systems and some of the blockchains. A

malicious container in the cloud system can be used as the attack launching point for DDoS attack, and

the underlying containerization vulnerabilities such as Docker escape can lead to more severe system

damages. Meanwhile, the loose management of Docker containers in Hyperledger blockchains make

the system more vulnerable.

We present a comprehensive literature review on virtualization and containerization techniques.

The anomaly detection and secure monitoring of virtualization and containerization environment has

been discussed and analyzed as well. In order to provide secure and noninvasive monitoring of con-

tainerized applications in the cloud environment, we propose to use unsupervised machine learning

based monitoring with containerization introspection tools. A proof of concept (PoC) system is im-

plemented as the baseline to verify the proposed concept. A detailed design and implementation of

the monitoring framework is established based on the success of PoC. The implementation includes a

novel containerization-oriented and system call traces based dataset with multiple different attacks in-

volved. Our proposed framework provides reliable monitoring and anomaly detection capability for the

containerized application.

In addition, we elaborate the background of blockchain and smart contract systems, and we also

illustrate the basic concepts and life cycles of containerization based smart contract systems. We conduct

a case study on Hyperledger Farbic blockchain to reveal the potential vulnerabilities in the smart contract

runtime level, whereas the mainstream only considers the security of smart contract at the programming

76

level. We proved that the underlying Docker environment of Hyperledger system may be vulnerable

to certain attacks. The additional communication between containers and the loaded cryptographic

materials in containers leave a hole for the adversary to launch MITM attacks. The loose management

of Docker images can further interfere the entire smart contract system as well. Therefore, we also

demonstrate the countermeasures and create a new threat model of smart contract systems to thwart the

threats.

As the future work, we will extend the secure monitoring framework with more features and eval-

uate the framework in online mode. We aim to evaluate the contribution of each features in the security

monitoring goal, which can help the framework to automatically determine what to monitor in an un-

supervised fashion. We also plan to scale the dataset with different application architectures such as

multi-containers applications where a service is formed by a collection of containers. Introspection

on this type of services require the monitoring system to have an overview of all the containers and

meanwhile having the capability to understand and interpret the relationships between the containers.

In addition, distributed monitoring in Docker Swarm with different monitoring tools and features is

interested as well.

77

Acknowledgment

This research was supported in part by Progeny Systems, Inc. (Grant G0001080, Progeny-Psc-0342

Navy-N00253-16-C-0007 COTS Approach To Information Security).

78

Bibliography

[1] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm, “What’s inside the cloud? an architectural

map of the cloud landscape,” in Proceedings of the 2009 ICSE Workshop on Software Engineering

Challenges of Cloud Computing, ser. CLOUD ’09. Washington, DC, USA: IEEE Computer

Society, 2009, pp. 23–31. [Online]. Available: https://doi.org/10.1109/CLOUD.2009.5071529

[2] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security threats, and solutions,”

ACM Comput. Surv., vol. 45, no. 2, pp. 17:1–17:39, Mar. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2431211.2431216

[3] “I/o architectures for virtualization - vmware.” [Online]. Available: http://download3.vmware.

com/vmworld/2006/tac0080.pdf

[4] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2, no. 3, pp. 24–31,

May 2015.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv.,

vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[6] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso: Narrowing the semantic

gap in virtual machine introspection,” in 2011 IEEE Symposium on Security and Privacy, May

2011, pp. 297–312.

[7] P. Mell and T. Grance, “The nist definition of cloud computing: Recommendations of the

national institute of standards and technology,” NIST Special Publication, 2011. [Online].

Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

[8] Gartner Research, “Gartner forecasts worldwide public cloud services revenue to reach $260

billion in 2017,” 2017, https://www.gartner.com/newsroom/id/3815165.

79

[9] A. Singh and K. Chatterjee, “Cloud security issues and challenges: A survey,” Journal of Network

and Computer Applications, vol. 79, pp. 88 – 115, 2017.

[10] Z. Xiao and Y. Xiao, “Security and privacy in cloud computing,” IEEE Communications Surveys

Tutorials, vol. 15, no. 2, pp. 843–859, Second 2013.

[11] R. Cogranne, G. Doyen, N. Ghadban, and B. Hammi, “Detecting botclouds at large scale: A de-

centralized and robust detection method for multi-tenant virtualized environments,” IEEE Trans-

actions on Network and Service Management, vol. 15, no. 1, pp. 68–82, March 2018.

[12] Microsoft, “The identity security and protection team has seen a 300 percent increase in

user accounts attacked over the past year,” 2017, https://www.microsoft.com/en-us/security/

Intelligence-report.

[13] B. Tak, C. Isci, S. Duri, N. Bila, S. Nadgowda, and J. Doran, “Understanding security implications

of using containers in the cloud,” in 2017 USENIX Annual Technical Conference (USENIX ATC

17). Santa Clara, CA: USENIX Association, 2017, pp. 313–319.

[14] “Container market will reach 2.7 billion in 2020.” [Online]. Available: https://451research.com/

images/Marketing/press releases/Application-container-market-will-reach-2-7bn-in-2020 final

graphic.pdf

[15] “Application container market.” [Online]. Available: https://www.marketsandmarkets.

com/Market-Reports/application-container-market-182079587.html#:∼:text=Application%

20containers%20usually%20work%20on,32.9%25%20during%20the%20forecast%20period

[16] T. Bui, “Analysis of docker security,” CoRR, vol. abs/1501.02967, 2015.

[17] T. Combe, A. Martin, and R. D. Pietro, “To docker or not to docker: A security perspective,”

IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62, Sept 2016.

[18] V. V. Sarkale, P. Rad, and W. Lee, “Secure cloud container: Runtime behavior monitoring using

most privileged container (mpc),” in 2017 IEEE 4th International Conference on Cyber Security

and Cloud Computing (CSCloud), June 2017, pp. 351–356.

[19] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based architecture for intrusion

detection,” in In Proc. Network and Distributed Systems Security Symposium, 2003, pp. 191–206.

80

[20] “Kdd cup 1999 data,” http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[21] “1999 darpa intrusion detection evaluation dataset,” https://www.ll.mit.edu/r-d/datasets/

1999-darpa-intrusion-detection-evaluation-dataset.

[22] “Unm sequence-based intrusion detection dataset,” https://www.cs.unm.edu/∼immsec/

systemcalls.htm.

[23] “Intrusion detection evaluation dataset (cicids2017),” https://www.unb.ca/cic/datasets/ids-2017.

html.

[24] “Intrusion detection evaluation dataset (iscxids2012),” https://www.unb.ca/cic/datasets/ids.html.

[25] “Cse-cic-ids2018 on aws,” https://www.unb.ca/cic/datasets/ids-2018.html.

[26] “Intelligence and security informatics data sets,” https://www.azsecure-data.org/other-data.html.

[27] “Adfa-ids-datasets,” https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA-IDS-Datasets/.

[28] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on concepts, taxonomy and as-

sociated security issues,” in 2010 Second International Conference on Computer and Network

Technology, April 2010, pp. 222–226.

[29] “Kvm: Kernel virtual machine.” [Online]. Available: https://www.linux-kvm.org/page/FAQ

[30] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield, “Xen and the art of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp.

164–177, Oct. 2003. [Online]. Available: http://doi.acm.org/10.1145/1165389.945462

[31] “Vmware vsphere 4 - esx and vcenter server documentation center.” [Online]. Available:

https://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp

[32] “Intel virtualization technology processor virtualization extensions and intel trusted execu-

tion technology.” [Online]. Available: https://software.intel.com/sites/default/files/m/0/2/1/b/b/

1024-Virtualization.pdf

[33] “Amd secure virtual machine architecture reference manual.” [Online]. Available: https:

//www.mimuw.edu.pl/∼vincent/lecture6/sources/amd-pacifica-specification.pdf

81

[34] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems and Processes (The

Morgan Kaufmann Series in Computer Architecture and Design). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2005.

[35] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support paas,” in 2014

IEEE International Conference on Cloud Engineering, March 2014.

[36] R. Morabito, J. Kjllman, and M. Komu, “Hypervisors vs. lightweight virtualization: A perfor-

mance comparison,” in 2015 IEEE International Conference on Cloud Engineering, March 2015,

pp. 386–393.

[37] J. Aikat, A. Akella, J. S. Chase, A. Juels, M. Reiter, T. Ristenpart, V. Sekar, and M. Swift,

“Rethinking security in the era of cloud computing,” IEEE Security Privacy, pp. 1–1, 2017.

[38] D. Puthal, B. P. S. Sahoo, S. Mishra, and S. Swain, “Cloud computing features, issues, and

challenges: A big picture,” in 2015 International Conference on Computational Intelligence and

Networks, Jan 2015, pp. 116–123.

[39] Google Doc, https://www.google.com/docs/about/.

[40] Saleforce CRM, https://www.salesforce.com/crm/.

[41] Google App Engine, https://cloud.google.com/appengine/.

[42] Microsoft Azure, https://azure.microsoft.com/en-us/.

[43] Amazon EC2, https://aws.amazon.com/ec2/.

[44] G. Kim, S. Lee, and S. Kim, “A novel hybrid intrusion detection method integrating anomaly

detection with misuse detection,” Expert Systems with Applications, vol. 41, no. 4, Part 2,

pp. 1690 – 1700, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0957417413006878

[45] A. Sari, “A review of anomaly detection systems in cloud networks and survey of cloud security

measures in cloud storage applications,” pp. 142 – 154, 2015.

[46] E. Bauman, G. Ayoade, and Z. Lin, “A survey on hypervisor-based monitoring: Approaches,

applications, and evolutions,” ACM Comput. Surv., vol. 48, no. 1, pp. 10:1–10:33, Aug. 2015.

82

[47] N. L. Petroni, Jr. and M. Hicks, “Automated detection of persistent kernel control-

flow attacks,” in Proceedings of the 14th ACM Conference on Computer and Communications

Security, ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 103–115. [Online]. Available:

http://doi.acm.org/10.1145/1315245.1315260

[48] K. Nance, M. Bishop, and B. Hay, “Virtual machine introspection: Observation or interference?”

IEEE Security Privacy, vol. 6, no. 5, pp. 32–37, Sept 2008.

[49] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A

comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1,

pp. 16 – 24, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1084804512001944

[50] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “Intrusion detection techniques

in cloud environment: A survey,” Journal of Network and Computer Applications, vol. 77,

pp. 18 – 47, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1084804516302417

[51] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan zee (north) bridge: mining memory

accesses for introspection,” in Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security, ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 839–850.

[Online]. Available: http://doi.acm.org/10.1145/2508859.2516697

[52] “Libvmi,” http://libvmi.com/.

[53] C. Ramaswamy, “Security assurance requirements for linux application container deployments,”

2017. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8176.pdf

[54] SELinux, http://www.selinuxproject.org/.

[55] AppAmor, https://help.ubuntu.com/lts/serverguide/apparmor.html.en.

[56] “Mesos.” [Online]. Available: http://mesos.apache.org/documentation/latest/monitoring/

[57] “Ceilometer.” [Online]. Available: http://docs.openstack.org/developer/ceilometer/.

83

[58] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu, “Conmon: An automated container based

network performance monitoring system,” in 2017 IFIP/IEEE Symposium on Integrated Network

and Service Management (IM), May 2017, pp. 54–62.

[59] Y. Zhu, J. Ma, B. An, and D. Cao, “Monitoring and billing of a lightweight cloud system based on

linux container,” in 2017 IEEE 37th International Conference on Distributed Computing Systems

Workshops (ICDCSW), June 2017, pp. 325–329.

[60] “cadvisor.” [Online]. Available: https://github.com/google/cadvisor

[61] “Sysdig,” https://github.com/draios/sysdig/.

[62] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal of electronic imaging,

vol. 16, no. 4, p. 049901, 2007.

[63] D. F. Specht, “A general regression neural network,” IEEE transactions on neural networks,

vol. 2, no. 6, pp. 568–576, 1991.

[64] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.

[65] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,” Neural pro-

cessing letters, vol. 9, no. 3, pp. 293–300, 1999.

[66] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE transactions on information

theory, vol. 13, no. 1, pp. 21–27, 1967.

[67] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI 2001 workshop on

empirical methods in artificial intelligence, vol. 3, no. 22. IBM New York, 2001, pp. 41–46.

[68] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Mullers, “Fisher discriminant analysis

with kernels,” in Neural networks for signal processing IX, 1999. Proceedings of the 1999 IEEE

signal processing society workshop. Ieee, 1999, pp. 41–48.

[69] E. Alpaydin, Introduction to machine learning. MIT press, 2009.

[70] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson

Education Limited,, 2016.

[71] “Ai winter.” [Online]. Available: https://en.wikipedia.org/wiki/AI winter

84

[72] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273–

297, 1995.

[73] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector machines,”

IEEE transactions on Neural Networks, vol. 13, no. 2, pp. 415–425, 2002.

[74] L. E. Peterson, “K-nearest neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.

[75] H. Anton, Elementary Linear Algebra. John Wiley & Sons, 2010. [Online]. Available:

https://books.google.com/books?id=YmcQJoFyZ5gC

[76] D. F. Specht, “A general regression neural network,” IEEE transactions on neural networks,

vol. 2, no. 6, pp. 568–576, 1991.

[77] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmidhuber, “Lstm: A search

space odyssey,” IEEE transactions on neural networks and learning systems, vol. 28, no. 10, pp.

2222–2232, 2017.

[78] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised network intrusion detection systems: Detect-

ing the unknown without knowledge,” Computer Communications, vol. 35, no. 7, pp. 772–783,

2012.

[79] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class support vector machines

for unsupervised anomaly detection,” in Proceedings of the ACM SIGKDD Workshop on Outlier

Detection and Description, 2013, pp. 8–15.

[80] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng et al., “Unsuper-

vised anomaly detection via variational auto-encoder for seasonal kpis in web applications,” in

Proceedings of the 2018 World Wide Web Conference, 2018, pp. 187–196.

[81] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480,

1990.

[82] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: Unsupervised behavior learning for predicting perfor-

mance anomalies in virtualized cloud systems,” in Proceedings of the 9th international conference

on Autonomic computing, 2012, pp. 191–200.

85

[83] J. Dromard, G. Roudière, and P. Owezarski, “Online and scalable unsupervised network anomaly

detection method,” IEEE Transactions on Network and Service Management, vol. 14, no. 1, pp.

34–47, 2016.

[84] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly detection for

streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017.

[85] B. Dolan-Gavitt, T. Leek, J. Hodosh, and W. Lee, “Tappan zee (north) bridge: mining memory

accesses for introspection,” in Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security, 2013, pp. 839–850.

[86] Y.-H. Li, Y.-R. Tzeng, and F. Yu, “Viso: Characterizing malicious behaviors of virtual machines

with unsupervised clustering,” in 2015 iEEE 7th international conference on cloud computing

technology and science (cloudCom). IEEE, 2015, pp. 34–41.

[87] M. R. Memarian, M. Conti, and V. Leppänen, “Eyecloud: A botcloud detection system,” in 2015

IEEE Trustcom/BigDataSE/ISPA, vol. 1. IEEE, 2015, pp. 1067–1072.

[88] A. S. Abed, T. C. Clancy, and D. S. Levy, “Applying bag of system calls for anomalous behavior

detection of applications in linux containers,” in 2015 IEEE Globecom Workshops. IEEE, 2015.

[89] Q. Du, T. Xie, and Y. He, “Anomaly detection and diagnosis for container-based microservices

with performance monitoring,” in International Conference on Algorithms and Architectures for

Parallel Processing. Springer, 2018, pp. 560–572.

[90] A. Samir and C. Pahl, “Anomaly detection and analysis for clustered cloud computing reliability,”

CLOUD COMPUTING 2019, p. 120, 2019.

[91] T. Watts, R. Benton, W. Glisson, and J. Shropshire, “Insight from a docker container introspec-

tion,” in Proceedings of the 52nd Hawaii International Conference on System Sciences, 2019.

[92] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system, http://bitcoin.org/bitcoin.pdf,”

2008.

[93] Anonymous. White paper: Next-generation smart contract and decentralized application plat-

form. https://github.com/ethereum/wiki/wiki/White-Paper.

86

[94] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart, C. Fer-

ris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh,

K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick, “Hyper-

ledger fabric: A distributed operating system for permissioned blockchains,” 2018.

[95] “Filecoin.” [Online]. Available: https://filecoin.io/

[96] “Storj.” [Online]. Available: https://storj.io/

[97] R. Neisse, G. Steri, and I. Nai-Fovino, “A blockchain-based approach for data accountability

and provenance tracking,” in Proceedings of the 12th International Conference on Availability,

Reliability and Security. ACM, 2017, p. 14.

[98] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges and opportunities: A survey,”

Work Pap.–2016, 2016.

[99] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-ng: A scalable blockchain

protocol,” in Proceedings of the 13th Usenix Conference on Networked Systems Design and Im-

plementation, ser. NSDI’16, 2016.

[100] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security of blockchain systems,”

Future Generation Computer Systems, 2017.

[101] “Bitcoin confirmation.” [Online]. Available: https://en.bitcoin.it/wiki/Confirmation

[102] L. Lamport, R. E. Shostak, and M. C. Pease, “The byzantine generals problem,” ACM Trans.

Program. Lang. Syst., 1982.

[103] M. O. T. de Castro, “Practical byzantine fault tolerance,” in OSDI, 1999.

[104] G. Wood. Yellow paper: Ethereum: A secure decentralised generalised transaction ledger.

https://github.com/ethereum/yellowpaper.

[105] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum smart contracts (sok),”

in Principles of Security and Trust, M. Maffei and M. Ryan, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2017, pp. 164–186.

87

[106] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum systems security:

Vulnerabilities, attacks and defenses,” ACM Comput. Surv., vol. 0, no. ja, 2020. [Online].

Available: https://doi.org/10.1145/3391195

[107] “The dao attacked: Code issue leads to $60 million ether theft,” https://www.coindesk.com/dao-

attacked-code-issue-leads-60-million-ether-theft/.

[108] “King of the ether throne refund issue,” http://www.kingoftheether.com/postmortem.html.

[109] “Backdoor flaw sees australian firm lose $6.6 million in cryptocurrency.” [Online]. Available:

{https://finance.yahoo.com/news/backdoor-flaw-sees-australian-firm-115323212.html}

[110] “Bancor unchained: All your token are belong to us.” [Online]. Available: {https://medium.com/

unchained-reports/bancor-unchained-all-your-token-are-belong-to-us-d6bb00871e86}

[111] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M. Vechev, “Securify: Prac-

tical security analysis of smart contracts,” in Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security. ACM, 2018, pp. 67–82.

[112] D. Park, Y. Zhang, M. Saxena, P. Daian, and G. Roşu, “A formal verification tool for ethereum

vm bytecode,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineering. ACM, 2018,

pp. 912–915.

[113] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park,

Y. Zhang, A. Stefanescu et al., “Kevm: A complete formal semantics of the ethereum virtual

machine,” in 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 2018,

pp. 204–217.

[114] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and H. Kurihara, “Security assurance

for smart contract,” in 2018 9th IFIP International Conference on New Technologies, Mobility

and Security (NTMS). IEEE, 2018, pp. 1–5.

[115] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the ethereum ecosystem and solid-

ity,” in 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE).

IEEE, 2018, pp. 2–8.

88

[116] D. Perez and B. Livshits, “Smart contract vulnerabilities: Does anyone care?” arXiv preprint

arXiv:1902.06710, 2019.

[117] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli, R. Holz, and B. Scholz, “Vandal:

A scalable security analysis framework for smart contracts,” 2018.

[118] A. R. Manu, J. K. Patel, S. Akhtar, V. K. Agrawal, and K. N. B. S. Murthy, “Docker container

security via heuristics-based multilateral security-conceptual and pragmatic study,” in 2016 In-

ternational Conference on Circuit, Power and Computing Technologies (ICCPCT), March 2016,

pp. 1–14.

[119] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues, challenges, and the road

ahead,” IEEE Access, vol. 7, pp. 52 976–52 996, 2019.

[120] M. Liu, Z. Xue, X. Xu, C. Zhong, and J. Chen, “Host-based intrusion detection system with

system calls: Review and future trends,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp.

1–36, 2018.

[121] D. Merkel, “Docker: Lightweight linux containers for consistent development and deployment,”

Linux J., vol. 2014, no. 239, Mar. 2014.

[122] “Cve-2019-5736,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736.

[123] “Cve-2019-5736-poc,” https://github.com/Frichetten/CVE-2019-5736-PoC.

[124] “Virusshare,” https://virusshare.com/.

[125] “Virustotal,” https://www.virustotal.com/.

[126] X. Zhang, Y. Zou, S. Li, and S. Xu, “A weighted auto regressive lstm based approach for chemical

processes modeling,” Neurocomputing, vol. 367, pp. 64–74, 2019.

[127] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8,

1997.

[128] A. H. Mirza and S. Cosan, “Computer network intrusion detection using sequential lstm neu-

ral networks autoencoders,” in 2018 26th Signal Processing and Communications Applications

Conference (SIU). IEEE, 2018, pp. 1–4.

89

[129] D. Liu, Y. Zhao, H. Xu, Y. Sun, D. Pei, J. Luo, X. Jing, and M. Feng, “Opprentice: Towards

practical and automatic anomaly detection through machine learning,” in Proceedings of the 2015

Internet Measurement Conference, 2015, pp. 211–224.

[130] “Ethereum virtual machine opcodes.” [Online]. Available: https://ethervm.io/

[131] “Ethereum smart contract languages.” [Online]. Available: https://ethereum.org/developers/

[132] A. P. Sarr, P. Elbaz-Vincent, and J.-C. Bajard, “A secure and efficient authenticated diffie–hellman

protocol,” in European Public Key Infrastructure Workshop. Springer, 2009, pp. 83–98.

[133] N. Li, “Research on diffie-hellman key exchange protocol,” in 2010 2nd International Conference

on Computer Engineering and Technology, vol. 4. IEEE, 2010, pp. V4–634.

[134] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N. Heninger,

D. Springall, E. Thomé, L. Valenta et al., “Imperfect forward secrecy: How diffie-hellman fails

in practice,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-

cations Security, 2015, pp. 5–17.

[135] “Cve-2019-5736-poc-malicious-image.” [Online]. Available: https://github.com/twistlock/

RunC-CVE-2019-5736

[136] “Backdoored images downloaded 5 million times.” [On-

line]. Available: https://arstechnica.com/information-technology/2018/06/

backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/

[137] Y. Fu, M. Ren, F. Ma, Y. Jiang, H. Shi, and J. Sun, “Evmfuzz: Differential fuzz testing of ethereum

virtual machine,” 2019.

[138] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and X. Shi, “Evmfuzzer: detect evm

vulnerabilities via fuzz testing,” in Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software Engineering,

2019, pp. 1110–1114.

[139] “Cve-2018-18920.” [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-18920

90

[140] “Cve-2018-19183.” [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-19183

[141] “Cve-2018-19184.” [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-19184

[142] “Cve-2018-19330.” [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2018-19330

[143] “Cve-2019-7710.” [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2019-7710

[144] “Run the docker daemon as a non-root user (rootless mode).” [Online]. Available:

https://docs.docker.com/engine/security/rootless/

91

