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Abstract 

 

 

The dissertation begins with a brief discussion of the benefits of using an essay style approach 

compared to a traditional opus in chapter one. Chapter two examines the consumers facing the 

implications of energy regulation policies, United States residents, who have increasing control 

over their energy consumption in response to price changes. This chapter paper estimates the 

price elasticity of demand for biomass, distillate fuel oil, hydrocarbon gas liquid, and natural gas 

using the Exact Affine Stone Index (EASI) demand system, while contributing methodologically 

the Differential Exact Affine Stone Index (DEASI) demand system. 

Chapter three extends the asset pricing literature by offering a proprietary index of negative 

investor sentiment linked to carbon monoxide (CO), nitrogen dioxide (NO2), ozone particle 

(O3), 2.5 mm particulate matter (PM2.5), and sulfur dioxide (SO2) levels. Food products and 

wholesale portfolio returns increase with negative investor sentiment, consistent with 

psychological traits linked to binge eating and shopping sprees when individuals experience 

stress. Personal services portfolio returns decrease when negative investor sentiment increases, 

consistent with the behavior isolationism 

Chapter four addresses the issue with OLS estimation in hedonic pricing model literature of not 

accounting for sample selection bias. In broodmare auctions, the purchased decision and whether 

a price is realized or zero is endogenous. This chapter contributes to the hedonic broodmare price 

analysis literature by implementing the Heckman (1976) procedure to control for selection in 

estimating a hedonic pricing model using data comes from the 2020 January Keenland Sale. A 

list of published papers does not accommodate this selection process and has biased coefficients. 
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The sire’s stud fee, domestic status, and the day of the session are significant for broodmare 

prices. This may be implemented within a profit maximizing purchasing and breeding strategy. 
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Chapter 1: A Brief Discussion on Essay-Style Dissertations 

Background 

Stock and Siegfried (2013) provide a thorough analysis of the historical style of economics 

dissertations. They note that until around the 1970’s that dissertations were mostly on one 

general subject rather than a series of essays. The essay format lowers a student’s hurdle in 

publication, as they have already produced journal style manuscripts, potentially at a lower cost 

than deducting separate articles from one composition. Stock and Siegfried (2013) further point 

out that in 2010, around 69 percent of all dissertations in economics were of the essay format, 

ranging from two to four, with three being the most popular essay number.  They note four main 

advantages from applying the essay strategy. They are question identification, opportunity cost 

reduction, career acceleration, practical preparation, and rigorous feedback. Students may be 

more adapt at finding specific questions, particularly in today’s data-rich research environment, 

than at specifying a general hypothesis over a book-length study. Stock and Siegfried (2006) 

found that students who write the essay-style dissertations finish the program around 6 months 

faster on average than those who write in the traditional format. In addition, the time saving 

translates to an earlier launching of the scientist’s career. This style of writing is consistent with 

the manta publish or perish, which the prospect will face in their academic career. Finally, if a 

manuscript is submitted to a journal, it will undergo the peer-review process in addition to 

feedback from the dissertation committee, reinforcing the career practicality benefit, and 

providing a greater scientific rigor to be applied to the studies. Duke and Beck (1999) find that 

one of the essays from a set within the new style of dissertation research is more likely to get 

published than a manuscript derived from a traditionally formatted dissertation. 
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There are arguments to be made against the new approach. One is that PhD programs are meant 

to train scholars in depth of a field, rather than shallower knowledge across a wider breadth of 

areas. This is valid but is complemented by even further benefit. A scholar with a wider range of 

publication areas may attend more meetings, teach more classes, and work with a wider set of 

researchers than one with a narrower focus. For the reasons listed above, this dissertation will 

follow the essay style. 
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Chapter 2: An EASI Model of U.S. Residential Energy Demand 

Abstract 

This paper estimates the price elasticity of demand for fuel oil, hydrocarbon gas liquids (HGL), 

natural gas, and wood using the Exact Affine Stone Index (EASI) demand system, while 

contributing methodologically the Differential Exact Affine Stone Index (DEASI) demand 

system. 

Keywords 

Price elasticity, Retail energy demands, United States, Panel data 

Introduction 

This paper identifies the demand elasticities for four primary energy sources: distillate fuel oil, 

hydrocarbon gas liquids, natural gas, and wood in the United States residential sector using the 

Exact Affine Stone Index (EASI) implicit Marshallian demand system of Lewbel and Pendakur 

(2009).  

According to the EIA, the residential sector is responsible for approximately 7% of the primary 

energy consumption in the United States. Appliances, amenities, geographic characteristics, 

number of residents, and fuel-type used affect the level of energy consumption within each 

household. Space heating and air conditioning account for roughly half of the total household 

energy consumption; while water heating, lighting, and refrigeration together are roughly a 

quarter. The remainder is household cooking and cleaning appliances, as well as personal 

electronic devices. Energy-use efficiency can be increased by improving insulation technology, 

as well as keeping household appliances current. 
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Petroleum consumption is via fuel oil, and hydrocarbon gas liquids (HGL) like kerosene and 

propane. New York, Pennsylvania, Maryland, Connecticut, and Maine were the largest 

consumers of heating oil in 2018. Roughly 85% of residential heating oil sales came from 

Northeastern states in the same year. The sensitivity of heating oil demand to weather makes 

controlling for temperature important. Propane is mostly used for space and water heating, 

cooking, and drying. Natural gas, also commonly used for space and water heating, cooking, and 

drying, is used in over half of the homes in the United States. It accounts for roughly 17% of the 

country’s natural gas consumption. Like heating oil, natural gas demand is nationwide but 

largely consolidated mostly to five states. Texas, California, Louisiana, Florida, and 

Pennsylvania were responsible for roughly 37% of total natural gas consumption in the United 

States. Biomass is consumed via biomass waste, biofuels, wood, and wood waste. It is 

responsible for roughly 45% of the renewable energy consumption in the United States.  

The Renewable Fuel Standard (RFS), enacted into legislation in its current form in 2007, was 

designed to mitigate the economic cost associated with burning hydrocarbons for energy. By 

mandating that certain level of renewable fuel be blended into ethanol, the target of the policy 

was to reduce carbon dioxide emissions. The failure of this policy to accurately forecast energy 

prices due to their vast uncertainty has left the policy in a state of rebuilding. The current “reset” 

period written into the law, effective when mandated levels are inconsistent or fluctuating, calls 

for a thorough evaluation of the characteristics of industries and the benefits and costs involved 

in legislation. Renewable Portfolio Standard is a policy similarly designed to produce more 

renewable electricity and mitigate pollution. Hollingsworth and Rudik (2019) find that a positive 

impact of the policies on welfare. Further, the German Energiewende is designed to cease 

nuclear energy consumption, so further research including nuclear energy may be beneficial in 
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examining its own substitutability of various energy forms in a comparable market. However, 

using a demand system framework in that context may be inappropriate because consumers 

arguably have less control over their level of nuclear energy usage than electricity, natural gas, 

petroleum, or biomass. 

The EASI demand system is desirable because it allows for nonlinear Engel curves. Lewbel and 

Pendakur (2009) and Banks et. al (1997) agree that a restrictive specification of this curvature 

can bias results. Further, the EASI demand system nests the Almost Ideal Demand System of 

Deaton and Muellbauer (1980) as well as the Quadratic AIDS (QUAIDS) model. Labandeira et 

al (2017) examine over 1,700 studies on estimating energy elasticities and fail to mention one 

that employs such a method. Since this recent meta-analysis, Tovar Reaños and Wölfing (2018) 

study German household demand using the EASI framework and Renner et al. (2018) use the 

QUAIDS to analyze Mexican household demand. Therefore, this paper makes a direct 

contribution to a relatively new way of examining energy demand. Woo et al. (2018) recently 

published a paper using a similar data source (monthly panel from Energy Information 

Administration over 2000-2016) analyzing the residential, commercial, and industrial sector with 

a Generalized Leontief (GL) framework. They suggest that a demand system specification is a 

valuable avenue of future research. The present contribution to the literature is applying an EASI 

demand system to analyze the United States residential energy demand using EIA data. A 

feasible extension of this analysis would be to apply the model to similar countries. This paper 

also contributes methodologically employing the Differential Exact Affine Stone Index (DEASI) 

demand system. The flexibility of these systems to allow for demographic characteristics and 

weather make them desirable in the context of analyzing residential energy consumption. 
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Methodology 

Budget shares capture a consumer’s decision-making process. The EASI demand system arose 

out of a need to handle highly non-linear Engel curves, which describes budget shares as a 

function of expenditure. Tovar Reaños and Wölfing (2018) show that Engel curves for energy 

goods fit this description. 

Conditional demand systems rely on the assumption of separability. This implies that a consumer 

makes purchasing decisions about groups of individual goods separate from others. In this case, 

the consumer makes the first stage purchasing decision for all other household goods besides 

primary energy goods, and then decides how to allocate resources among natural gas, petroleum, 

and biomass in the second stage. While this approach is empirically tractable it is flawed in that 

it does not consider all possible goods available to the consumer. Tovar Reaños and Wölfing 

(2018) suggest two specifications that are common. The first is to aggregate all household goods 

into the first stage as well as one unique household energy good. The second is to assume 

separability and have a separate second stage decision for unique primary energy goods. This 

paper adopts the latter. This restriction cannot be tested statistically and is thus maintained. The 

adding up restriction on the budget shares is also maintained. However, symmetry and 

homogeneity are tested and implemented. 

The EASI model has been widely utilized recently in the agricultural and resource economics 

literature. Hovhannisyan and Shanoyan (2018), Hovhannisyan et. al (2019), Boonsaeng and 

Carpio (2019) and examine food demand in China, Russia, and the United States, respectively. 

As mentioned before Tovar Reaños and Wölfing (2018) is the only study to knowledge to 

incorporate the EASI model to energy demand. 
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The derivation of the EASI system begins by assuming the following cost function like Lewbel 

and Pednakur (2009) and Pendakur (2009): 

1) ln[C(𝐩, y)] = y + ∑ mi
I
i=1 (y, 𝐳) ln(pi) +

1

2
∑ ∑ aij ln(pi) ln(pj) + ∑ εi ln(pi)

I
i=1

J
j=1

I
i=1  

where p is an I vector of energy prices and y is log expenditures. The y variable can also be 

interpreted as implicit utility. The z term is a vector of demographic characteristics. 

To specify y according to the EASI system and the m function, which controls the flexible 

parametrization of the model: 

2) ỹ = ln(x) − ∑ wi ln(pi)
I
i=1  

3) mi = ∑ brlnỹrR
r=0 + ∑ dilzl

L
l=1 ln ỹ + ∑ gilzl

L
l=1  

where x is total expenditure for all energy goods, 𝑤𝑖is the budget share of the ith good, 𝑦̃𝑟is the 

polynomial of the Stone Price Index-deflated log expenditures, and 𝑝𝑗 is the price of the jth 

good. Additive demographic shifters and weather are applied to the model through 𝑧𝑖. Further, 

these are interacted with the new expenditure term. Lewbel and Pendakur (2008) find that the 

name “Exact Affine Stone Index” refers the AIDS family of models invoking the Stone Price 

Index as an approximate deflator to the expenditure term. In the EASI systems, this relationship 

is exact. By subtracting ∑ 𝑤𝑖 ln(𝑝𝑖)
𝐼
𝑖=1 , 𝑦̃ can be interpreted as the natural log of real 

expenditure. 

By applying Shephard’s lemma to (1) and plugging in (2) and (3) the EASI model of Lewbel and 

Pendakur (2008) can be written as follows: 

4) wi = b0 + ∑ birlnỹrR
r=1 + ∑ aij

J
j=1 ln pj + ∑ dilzl

L
l=1 ln ỹ + ∑ gilzl

L
l=1 + ei ; i, j = 4 
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This paper uses state dummies and the degree Fahrenheit anomaly from the mean temperature 

for each state every year. There also exists interactions between these variables and the model’s 

expenditure term. Lewbel and Pendakur (2008) and Pendakur (2009) show that the approximate 

model performs consistently well versus a more complex specification. Alston et al. (1994) and 

Pendakur (2009) show how to handle potential endogeneity of budget shares in the Stone price 

index by using an iterated Three Stage Least Squares approach. This paper will adopt a similar 

approach. 

The EASI demand system is subject to theoretical restrictions of symmetry, homogeneity, and 

Engel aggregation. The symmetry restrictions are: 

5) aij = aji  and ∑ akj
I
k=1 = ∑ aih

I
h=1 =   for all i, j, i ≠ j 

The other general restrictions are: 

6) ∑ bir
I
i=1 = 0 for r = 1, … , R ; and ∑ bi0

I
i=1 = 1 

and 

7) ∑ dil =I
i=1 ∑ gil

I
i=1 = 0 for all i 

This paper is only the second, after Tovar Reaños and Wölfing (2018) to implement the EASI 

model to residential energy demand analysis. Testing of the theoretical restrictions provides a 

direct extension to Woo et al. (2018), who call for this type of analysis. Therefore, this paper 

directly fits into the household energy demand literature. The symmetry restrictions are tested, 

and the null hypothesis of theoretical symmetry is rejected for all pairs of goods with a p-value 

of <0.001 except for the natural gas and wood combination. There is failure to reject the null 

hypothesis corresponding to those goods with a p-value of 0.2676. Homogeneity is also rejected 

with a p-value below 0.05. 
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Economic theory provides no ex ante method of determining a correct model between the EASI 

and other choices. As mentioned before, the EASI model and the flexibility in specification of 

the polynomial expenditure term is an advantageous property of the model. Alston and Chalfant 

(1993) propose a compound model of the Rotterdam and LA-AIDS that utilizes likelihood ratio 

tests to develop the appropriate model. The EASI demand system nests the Almost Ideal 

Demand System of Deaton and Muellbauer (1980) as well as the QUAIDS model of Banks et. al 

(1997). A likelihood ratio test can be used to determine the appropriate model. A likelihood ratio 

test of the null hypothesis that the restricted EASI is statistically like the unrestricted case is 

rejected with a p-value of <0.001. A similar test is used to compare the QUAIDS to the restricted 

EASI model. There is failure to reject the null hypothesis that the QUAIDS and restricted EASI 

model are statistically similar with a p-value of 0.3718. This result makes sense because the 

QUAIDS is approximately the EASI model when r=2. Finally, the QUAIDS and the AIDS 

model are compared via the LR test. The null hypothesis that the two models are similar is 

rejected with a p-value of <0.001. Given these results, the restricted EASI will be used for 

coefficient estimation. 

Own price elasticities from this EASI system can be calculated as followed: 

8) ηii = −1 +
aii

wi
− (bi1 + 2bi2+. . . + RbiR  + ∑ dilzl

L
l=1 ) 

Expenditure elasticities are: 

9) Ai =
bi1+2bi2+...+ RbiR +∑ dilzl

L
l=1

wi
+ 1  

Since the price elasticities from this system are Marshallian, the Hicksian price elasticities can be 

obtained by using the Slutsky equation: 
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10) ηij
∗ = ηij + wjAi 

Cross-price elasticities are: 

11) ηij =
aij−(bi1+2bi2+...+ RbiR +∑ dilzl

L
l=1 )wj

wi
 

The formulas for the QAIDS model are given by setting 𝑏𝑖𝑟 = 0 for all r > 2. The AIDS model 

formulas can be derived by further setting 𝑏𝑖𝑟 = 0 for all r > 1. 

Data and Descriptive Statistics 

Energy data comes via The United States Energy Information Administration for the years 1980 

until 2017 for the 48 lower United States on prices and expenditures in the residential sector for 

natural gas, distillate fuel oil, hydrocarbon gas liquid, and wood. Electricity is not included in 

this analysis due to its classification by EIA as a secondary energy good. Using this data, 

variables for budget shares, and Stone (1954) Price Index are calculated. Price is in dollars per 

million Btu. According to the EIA there is no deflation of the prices. Since the expenditure data 

is at the aggregate state level, population data for the same time horizon is obtained from the 

Federal Reserve Economics Database (FRED) to convert it to per capita. The weather data is 

from the National Oceanic and Atmospheric Administration and includes temperature in degrees 

Fahrenheit, degrees Fahrenheit abnormality from mean, and ranking of years by warmth. Table 1 

provides summary statistics for the data. 

No paper to knowledge has implement a differential version of the EASI demand system. A 

Differential Exact Affine Stone Index (DEASI) demand system is identified to examine the 

robustness of elasticities. The nearest departures of the baseline model to this paper are 
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Hovhannisyan and Vardan (2017) and Hovhannisyan and Shanoyan (2019) who use a 

Generalized Exact Affine Stone Index (GEASI) demand system. 

Figure 1 says since the 1980’s, the natural gas and hydrocarbon gas liquid shares of budget have 

increased. Distillate fuel oil shares have declined, while wood shares have remained relatively 

unchanged.  

Figure 2 shows the mean budget shares for the selected forms of energy. Natural gas dominates 

with an average budget share of 65.11%, followed by hydrocarbon gas liquids at 16.49%, 

distillate fuel oil at 15.66%, and wood at 2.74%. These figures may be sensitive to the time 

horizon of the data, as major global events such as the OPEC energy crisis in the 1970’s and 

1980’s, financial crisis of 2008, and regulatory action. Dixit and Pindyck (1998), Postali and 

Picchetti (2006), and Ghoshray and Johnson (2010) claim that large sample sizes in time-series 

data (over 100 years) are less likely to yield fruitful insight about the post OPEC energy demand. 

The DEASI specification will allow for the modelling of a consumer taste or preference trend 

over time. 

Results and Discussion 

All estimations were performed using iterated 3 Stage Least Squares in Stata 15. The model is 

semi-log. Table 2 shows the results from the restricted EASI model with r=3. The own price 

coefficients for natural gas, distillate fuel oil, and wood are all positive and statistically 

significant. This makes intuitive sense. As prices go up, the expected budget share for that good 

increases as well. This is not the case for hydrocarbon gas liquid, whose sign is negative. 

The estimates for the DEASI are reported in Tables 3 to analyze the robustness of the 

coefficients to the model specification. The estimates appear stable to parameterization. 
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Table 4 is list of model specifications and Marshallian own price elasticity estimates for the 

energy goods. It says that a one percent increase in the price of natural gas will correspond with a 

0.32% decrease in quantity demanded for natural gas. A one percent increase in the price of 

distillate fuel will correspond with a 0.62% decrease in its own quantity demanded. A one 

percent increase in the price of hydrocarbon gas liquids will correspond with a 1.3% decrease in 

its own quantity demanded. A one percent increase in the price of wood will correspond with a 

3.4% increase in quantity demanded of wood. 

Elasticities in Table 6 appear relatively stable to parameterization of the EASI and DEASI 

models. Balestra and Nerlove (1966) find natural gas price elasticity to be -.06 for entire country 

demand. Berndt and Watkins’ (1997) also find a similar result for Canadian residential and 

industrial natural gas price elasticity of -.7. Alberini and Filippini (2011) offer a price elasticity 

of demand of -.6 for residential sector in the United States.  Some estimates may be biased 

towards zero due to not accounting for exogenous weather. Labandeira et al (2017) find the 

natural gas own price elasticities to be between -.184 and -.566. Petroleum price elasticity has 

been examined in numerous meta-analyses; Espey (2008), Graham and Glaister (2002), and 

Hanly et al. (2002).  Brons et al. (2008) examine over 40 studies and find a distribution of 

elasticities through the literature. 

Table 5 is list of model specifications and expenditure elasticity estimates for the energy goods. 

It says that a one percent increase in the expenditure will correspond with a 0.75% increase in 

quantity demanded for natural gas. A one percent increase in expenditure will correspond with a 

1.6% increase in quantity demanded for hydrocarbon gas liquids. A one percent increase in 

expenditure will correspond with a 1.61% increase in quantity demanded for distillate fuel oil. A 

one percent increase in expenditure will correspond with a 0.2% decrease in quantity demanded 
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for wood. All elasticities in Table 5 appear relatively stable to parameterization of the models, 

like the Marshallian own price elasticities. Burke and Yang (2016) in a meta-analysis find the 

average natural gas income elasticity in the literature to be greater than 1. Csereklyei et al. (2016) 

and Burke and Csereklyei (2016) find the natural gas “GDP elasticity” to be .7. While this differs 

mechanically from the expenditure elasticity, the authors suggest the importance of including 

weather into the model, further validation of this framework. 

Table 6 is list of model specifications and Hicksian own price elasticity estimates for the energy 

goods. It says that a one percent increase in the price of natural gas will correspond with a 0.16% 

increase in quantity demanded for natural gas. A one percent increase in the price of hydrocarbon 

gas liquid will correspond with a 1.01% decrease in its quantity demanded. A one percent 

increase in the price of distillate fuel will correspond with a 0.37% decrease in quantity 

demanded for it. A one percent increase in the price of wood will correspond with a 3.4% 

increase in the quantity demanded for wood. Each elasticity sign make sense according to 

demand theory except for natural gas and wood.  The elasticities in Table 6 appear relatively 

stable to parameterization. 

Table 7 shows elasticity of substitution estimates for the pairs of energy goods for each 

specification, respectively.  

The sign for the distillate fuel/hydrocarbon liquid elasticity is negative, implying that the goods 

are complements. This makes sense, as both products are derivatives of petroleum. Natural gas is 

a substitute for each of the energy goods in the system. If regulators were interested in 

substituting away from petroleum-based products, there is evidence to suggest that a tax on them 

would lead to consumer substitution towards natural gas. Further research should be conducted 
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into the substitutability of residential energy goods before energy transition policy can be 

definitively implemented. 

Conclusion 

Further research into the area of energy economics requires an understanding of the determinants 

shifting consumer and producer landscape. This paper contributes to the literature by being the 

first to provide elasticity estimates for energy demand in the United States residential sector 

using the EASI demand model controlling for weather. Not controlling for weather may bias 

estimates towards zero. Energy goods at the residential level in the United States are relatively 

price inelastic. 

This paper also contributes methodologically to the literature by being the first to implement the 

Differential Exact Affine Stone Index (DEASI) demand system. Further research can be done to 

compare elasticity estimates from this specification to the EASI and GEASI systems. 

A similar analysis can be performed on the transportation sector data from the EIA. The 

transportation sector may be of interest as it is responsible for approximately 27% of the carbon 

dioxide emissions in the United States. An extension of this paper’s analysis to the commercial, 

industrial, and transportation sectors would fully address the Woo et al. (2018) suggestion to 

extend their analysis with demand systems. 

American policymakers and researchers can use elasticities in Regulatory Impact Analysis for 

future environmental work. Based on the results, natural gas and wood are both substitutes for 

petroleum-based hydrocarbon gas liquids and distillate fuel oil. The petroleum-based products 

are found to be complements, which is not surprising. Due to the inconclusiveness of the 
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literature regarding the complementarity and substitutability of various energy inputs, further 

research should be undertaken before committing tax dollars to policy implementation. 

 



24 
 

References 

Alberini, Anna, and Massimo Filippini. "Response of residential electricity demand to price: The 

effect of measurement error." Energy economics 33.5 (2011): 889-895. 

Alston, Julian M., and James A. Chalfant. "The silence of the lambdas: A test of the almost ideal 

and Rotterdam models." American Journal of Agricultural Economics 75.2 (1993): 304-313. 

Alston, Julian M., Kenneth A. Foster, and Richard D. Green. "Estimating elasticities with the 

linear approximate almost ideal demand system: some Monte Carlo results." The review of 

Economics and Statistics (1994): 351-356. 

Balestra, Pietro, and Marc Nerlove. "Pooling cross section and time series data in the estimation 

of a dynamic model: The demand for natural gas." Econometrica: Journal of the Econometric 

Society (1966): 585-612. 

Banks, James, Richard Blundell, and Arthur Lewbel. "Quadratic Engel curves and consumer 

demand." Review of Economics and statistics 79, no. 4 (1997): 527-539. 

Barnett, William A. "Theoretical foundations for the Rotterdam model." The Review of 

Economic Studies 46.1 (1979): 109-130. 

Barten, Anton P. "Consumer demand functions under conditions of almost additive preferences." 

Econometrica: Journal of the Econometric Society (1964): 1-38. 

Barten, Anton P. "Consumer allocation models: choice of functional form." Empirical 

Economics 18, no. 1 (1993): 129-158. 



25 
 

Berndt, Ernst R., and Gordon Campbell Watkins. Energy prices and productivity trends in the 

Canadian manufacturing sector, 1957-76: some exploratory results. Economic Council of 

Canada], 1981. 

Boonsaeng, Tullaya, and Carlos E. Carpio. "A comparison of food demand estimation from 

Homescan and Consumer Expenditure Survey data." Journal of Agricultural and Resource 

Economics 44, no. 1835-2019-066 (2019): 117-140. 

Brons, Martijn, et al. "A meta-analysis of the price elasticity of gasoline demand. A SUR 

approach." Energy Economics 30.5 (2008): 2105-2122. 

Burke, Paul J., and Zsuzsanna Csereklyei. "Understanding the energy-GDP elasticity: A sectoral 

approach." Energy Economics 58 (2016): 199-210. 

Burke, Paul J., and Hewen Yang. "The price and income elasticities of natural gas demand: 

International evidence." Energy Economics 59 (2016): 466-474. 

Csereklyei, Zsuzsanna, et al. "The effect of economic growth, oil prices, and the benefits of 

reactor standardization: Duration of nuclear power plant construction revisited." Energy Policy 

91 (2016): 49-59. 

Deaton, Angus, and John Muellbauer. Economics and consumer behavior. Cambridge university 

press, 1980. 

Deaton, Angus, and John Muellbauer. "An almost ideal demand system." The American 

economic review 70.3 (1980): 312-326. 

Dixit, Avinash K., and Robert S. Pindyck. Expandability, reversibility, and optimal capacity 

choice. No. w6373. National Bureau of Economic Research, 1998. 



26 
 

Espey, Molly. "Gasoline demand revisited: an international meta-analysis of elasticities." Energy 

Economics 20.3 (1998): 273-295. 

Fousekis, Panos, and Brian J. Revell. "Meat demand in the UK: A differential approach." 

Journal of Agricultural and Applied Economics 32, no. 1 (2000): 11-19. 

Ghoshray, Atanu, and Ben Johnson. "Trends in world energy prices." Energy Economics 32.5 

(2010): 1147-1156. 

Goodwin, P. and Dargay, J. and Hanly, M. (2004) Elasticities of road traffic and fuel 

consumption with respect to price and income: a review. Transport Reviews, 24 (3). pp. 275-292. 

ISSN 01441647 

Graham, D., and S. Glaister. "Review of income and price elasticities of demand for road traffic 

(Contract number PPAD 9/65/93)." Centre for Transport Studies, Imperial College of Science, 

Technology and Medicine, Imperial College, Final Report 18 (2002). 

Hollingsworth, Alex, and Ivan Rudik. "External impacts of local energy policy: The case of 

renewable portfolio standards." Journal of the Association of Environmental and Resource 

Economists 6, no. 1 (2019): 187-213. 

Hovhannisyan, Vardges, and Aleksan Shanoyan. "Addressing Pre-Commitment Bias with a 

Generalized EASI Model: An Application to Food Demand in Russia." Journal of Agricultural 

and Resource Economics 44, no. 1835-2019-064 (2019): 80-97. 

Hovhannisyan, Vardges, Sachintha Mendis, and Chris Bastian. "An econometric analysis of 

demand for food quantity and quality in urban China." Agricultural economics 50, no. 1 (2019): 

3-13. 



27 
 

Hovhannisyan, Vardges, and Vardan Urutyan. "A Structural Model of Pre-committed Demand: 

The Case of Food Demand in China." (2017). 

https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php 

https://www.eia.gov/energyexplained/oil-and-petroleum-products/use-of-oil.php 

https://www.eia.gov/energyexplained/renewable-sources/ 

https://www.eia.gov/energyexplained/us-energy-facts/ 

https://www.eia.gov/energyexplained/use-of-energy/homes.php 

Huntington, Hillard G., James J. Barrios, and Vipin Arora. "Review of key international demand 

elasticities for major industrializing economies." Energy Policy 133 (2019): 110878 

Labandeira, Xavier, José M. Labeaga, and Xiral López-Otero. "A meta-analysis on the price 

elasticity of energy demand." Energy Policy 102 (2017): 549-568. 

Lade, Gabriel E., C. Y. Cynthia Lin Lawell, and Aaron Smith. "Designing climate policy: 

Lessons from the Renewable Fuel Standard and the blend wall." American Journal of 

Agricultural Economics 100.2 (2018): 585-599. 

Lee, Chien-Chiang, and Yi-Bin Chiu. "Nuclear energy consumption, oil prices, and economic 

growth: Evidence from highly industrialized countries." Energy Economics 33, no. 2 (2011): 

236-248. 

Lewbel, Arthur, and Krishna Pendakur. "Tricks with Hicks: The EASI demand system." 

American Economic Review 99, no. 3 (2009): 827-63. 

https://www.eia.gov/energyexplained/natural-gas/use-of-natural-gas.php
https://www.eia.gov/energyexplained/oil-and-petroleum-products/use-of-oil.php
https://www.eia.gov/energyexplained/us-energy-facts/
https://www.eia.gov/energyexplained/use-of-energy/homes.php


28 
 

Lewbel, Arthur, and Krishna Pendakur. "Tricks with Hicks: The EASI implicit Marshallian 

demand system for unobserved heterogeneity and flexible Engel curves." American Economic 

Review, forthcoming (2008). 

Keller, Wouter Jacques, and Jan Van Driel. "Differential consumer demand systems." European 

Economic Review 27, no. 3 (1985): 375-390. 

Maynard, Leigh J., and Venkat N. Veeramani. "Price sensitivities for US frozen dairy products." 

Journal of Agricultural and Applied Economics 35, no. 3 (2003): 599-609. 

Mountain, Dean, and Cheng Hsiao. "A combined structural and flexible functional approach for 

modeling energy substitution." Journal of the American Statistical Association 84.405 (1989): 

76-87. 

Neves, Pedro Duarte. "A class of differential demand systems." Economics Letters 44, no. 1-2 

(1994): 83-86. 

Pendakur, Krishna. "Chapter 7 EASI Made Easier." In Quantifying Consumer Preferences, pp. 

179-206. Emerald Group Publishing Limited, 2009. 

Postali, Fernando AS, and Paulo Picchetti. "Geometric Brownian motion and structural breaks in 

oil prices: a quantitative analysis." Energy Economics 28.4 (2006): 506-522. 

Renner, Sebastian, Jann Lay, and Hannes Greve. "Household welfare and CO2 emission impacts 

of energy and carbon taxes in Mexico." Energy Economics 72 (2018): 222-235.  

Schmalensee, Richard, and Robert Stavins. Lessons learned from three decades of experience 

with cap-and-trade. No. w21742. National Bureau of Economic Research, 2015. 



29 
 

Stone, Richard. "Linear expenditure systems and demand analysis: an application to the pattern 

of British demand." The Economic Journal 64.255 (1954): 511-527. 

Theil, Henri. "The information approach to demand analysis." Econometrica: Journal of the 

Econometric Society (1965): 67-87. 

Tovar Reaños, M.A.T. and Wölfing, N.M., 2018. Household energy prices and inequality: 

Evidence from German microdata based on the EASI demand system. Energy Economics, 70, 

pp.84-97. 

Woo, Chi Keung, et al. "Price elasticities of retail energy demands in the United States: New 

evidence from a panel of monthly data for 2001–2016." Applied energy 222 (2018): 460-474. 

 

 

 

 

 

 

 

 

 

 



30 
 

Appendix 1: Tables 

Table 1: Descriptive Statistics  

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 NG Share 1824 .651 .21 .012 .97 

 HGL Share 1824 .165 .103 .009 .581 

 DFO Share 1824 .157 .206 0 .917 

 Wood Share 1824 .027 .028 .001 .256 

 NG P 1824 8.328 3.447 2.38 20.88 

 Wood P 1824 5.799 3.48 1.75 17.11 

 DFO P 1824 11.909 7.243 0 30.04 

 HGL P 1824 15.975 8.181 2.51 42.51 

 NG PCX 1824 321.845 514.087 2.669 5657.646 

 DFO PCX 1824 88.004 212.557 0 3346.12 

 HGL PCX 1824 65.837 104.15 .375 949.109 

 Wood PCX 1824 11.252 22.577 .085 302.167 

 Temp anom. 1824 .265 1.307 -4.3 4.2 

 Easi Y 1824 4.746 1.338 1.438 8.483 

 
Note: Price is $/million Btu, Per capital expenditure (PCX) is $, Temp anom. is degrees Fahrenheit anomaly 

 

Table 2: Results from Restricted EASI from Equation 2, r=3 

 NG HGL DFO Wood 

ln p NG 0.310*** -0.116*** -0.0712** -0.123*** 

ln p HGL -0.116*** -0.0776* 0.0962***  0.0975*** 

ln p DFO -0.0712**  0.0962***       0.0685* -0.0935*** 

ln p Wood -0.123***  0.0975*** -0.0935*** 0.119*** 

Y 0.00186       0.0905**      -0.0891*      -0.0032 

Y2 0.0123 -0.0260***       0.0124       0.0013 

Y3 -0.00131    0.00189*** -0.000452     -0.000131 

temp from mean -0.00410  0.0126***    - 0.00827***     -0.00021 

Constant 0.754***       0.0628       0.160 0.0234 

AIC -15394.7    

BIC -15130.4    
Note: FERC dummies not displayed but included in model. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 3: Results from DEASI 

 NG HGL DFO Wood 

D ln p NG 0.505*** -0.315*** -0.138*** -0.0515*** 

D ln p HGL -0.369*** 0.407*** -0.0258 -0.0129* 

D ln p DFO -0.107*** -0.0661*** 0.179*** -0.00524 

D ln p Wood -0.0812** -0.0131 -0.00261 0.0969*** 

D Y -0.143** 0.0633 0.0907* -0.0105 

D Y2 0.0194 -0.00426 -0.0170* 0.00183 

D Y3 -0.00113 -0.0000112 0.00126* -0.000125 

D temp from mean -0.00553* 0.00326 0.000675 0.00159** 

Constant 0.00114 0.00307** -0.00441*** 0.00199 

AIC -25187.8    

BIC -25023.4    

R-squared 0.375 0.242 0.184 0.116 
Note: FERC dummies not included due to time-invariance. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

 

Table 4: Marshallian Own-Price Elasticities by Specification 
   Coef.  Std.Err.  P-value  [95%Conf.  Interval] 

EASI Model      

EtaNG  

 

   -0.32     0.26     0.209    -0.82    -0.18 

 

EtaH  

 

   -1.27     0.28     0.000    -1.82    -0.72 

EtaD     -0.62     0.28     0.025    -1.16    -0.08 

 

EtaW      3.42     0.28     0.000     2.87     3.97 

 

 
DEASI Model 

 

     

EtaNG     -0.12     0.06     0.060    -0.24     0.05 

 

EtaH      1.41     0.13     0.000     1.15     1.68 

 

EtaD      0.08     0.09     0.367    -0.09     0.25 

 

EtaW      2.60     0.25     0.000     2.10     3.09 
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Table 5: Expenditure Elasticities by Specification 
   Coef.  Std.Err.  P-value  [95%Conf.  Interval] 

EASI Model      

ANG 

 

    0.75     0.39     0.055    -0.02     1.51 

 

AH      1.60     0.99     0.106    -0.34     3.54 

      

AD  

 

    1.61     1.24     0.194    -0.82     4.05 

AW     -0.20     1.71     0.907    -3.56     3.16 

      

      

DEASI Model 

 

     

ANG      0.94     0.07     0.000     0.80     1.09 

      

AH      2.14     0.23     0.000     1.68     2.59 

 

AD      0.75     0.18     0.000     0.390     1.11 

      

AW      3.86     0.40     0.000     3.05     4.67 

 

  

  

 

Table 6: Hicksian Own-Price Elasticities by Specification 
   Coef.  Std.Err.  P-value  [95%Conf.  Interval] 

EASI Model      

EtaStarNG      0.16     0.06     0.005     0.05     0.28 

 

EtaStarH     -1.01     0.23     0.000    -1.46    -0.56 

      

EtaStarD     -0.37     0.18     0.044    -0.72    -0.01 

 

EtaStarW      3.42     0.28     0.000     2.88     3.96 

      

      

DEASI Model 

 

     

EtaStarNG     -0.68     0.06     0.000    -0.80    -0.56 

      

EtaStarH      0.69     0.13     0.000     0.43     0.95 

      

EtaStarD     -0.64     0.09     0.000    -0.81    -0.47 

      

EtaStarW      1.60     0.25     0.000     1.10     2.09 
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Table 7: Allen Substitution Elasticities by Specification 
   Coef.  Std.Err.  P-value  [95%Conf.  Interval] 

EASI Model      

SigmaNGH      1.00     0.35     0.004     0.32     1.69 

      

SigmaNGD      1.06     0.37     0.004     0.33     1.78 

      

SigmaNGW      6.14     2.14     0.004     1.94     10.34 

      

SigmaHW     -37.34     8.56     0.000    -54.11    -20.57 

 

SigmaHD     -6.42     1.47     0.000    -9.31    -3.54 

 

SigmaDW     -13.60     6.74     0.044    -26.81    -0.38 

      

      

      

DEASI Model 

 

     

SigmaNGH      2.07     0.21     0.000     1.66     2.47 

      

SigmaNGD      2.23     0.21     0.000     1.81     2.66 

      

SigmaNGW     18.89     1.23     0.000    16.47    21.30 

      

SigmaHW     25.49     4.92     0.000    15.85    35.14 

      

SigmaHD      4.38     0.85     0.000     2.73     6.04 

 

SigmaDW    -23.82     3.19     0.000   -30.07   -17.57 
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Appendix 2: Figures 
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Chapter 3: Air Pollution, Investor Sentiment and Excessive Returns 

Abstract 

This paper extends the asset pricing literature by offering a proprietary index of negative investor 

sentiment linked to carbon monoxide (CO), nitrogen dioxide (NO2), ozone particle (O3), 2.5 mm 

particulate matter (PM2.5), and sulfur dioxide (SO2) levels; determining the link between New 

York City air pollution and stock market returns. Food products and wholesale portfolio returns 

on average increase with enhanced negative investor sentiment. This is consistent with behaviors 

associated with psychological stress, like binge eating and shopping sprees. Personal services 

portfolio returns decrease on average with increased negative investor sentiment, consistent with 

behavioral isolationism. 

Keywords 

Asset pricing models, investor sentiment, air pollution 

Introduction 

How does air pollution affect the stock market? The objective of this paper is to assess the 

relationship between pollution, investor sentiment, and stock market returns. The United States 

stock market is the holding choice of over $30 trillion in wealth. A risk averse investor responds 

to uncertainty by his or her willingness to pay for a risk premium to achieve a more certain state. 

This is the fundamental underlying of the Capital Asset Pricing Model (CAPM) of Sharpe 

(1963). Their model says that the expected return of a risky asset can be explained by a 

composition of the difference between returns and risk-free rate of return plus the risk premium. 

Fama and French (1993) extend this relationship to include the difference between returns of 

portfolios diversified with small stocks and big stocks respectively and the difference between 
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returns on high book-to-market value stocks versus low. Fama and French (2015) continue the 

extension by adding variables for the difference in return between highly profitable and the least 

profitable as well as one for the difference in returns for firms who invest aggressively versus 

conservatively. Investor sentiment may alter asset prices away from their fundamental value if 

only considering the predefined characteristics. This paper contributes a unique set of negative 

investor sentiment components to the asset pricing literature, generated using a principle-

component analysis of New York City’s daily carbon monoxide (CO), nitrogen dioxide (NO2), 

ozone particle (O3), 2.5 mm particulate matter (PM2.5), and sulfur dioxide (SO2) levels. Using 

pollution measures instead of weather variations are desirable because it is more feasible to 

implement a policy of emissions reduction than to control Mother Nature, and thus this paper 

provides an interesting alternative channel to explore in the welfare implications of emission 

reduction policies. The new model adds this index to the Fama and French (2015) five factors 

and is implemented on the 49 industry portfolios provided by Dr. French’s website in order to 

examine if it can adequately explain returns across a wide variety of sectors and securities. The 

results indicate that sentiment based on pollution can further explain stock market returns and 

may be useful to implement into a trading strategy. The rest of the paper is organized as follows: 

a review of the relevant literature relating to stock market return factors, a theoretical derivation 

of the original CAPM of Sharpe (1963) and extension to serve the purpose of the paper, an 

overview of the data and empirical methodology, results, discussion, and conclusion. 

Review of Literature 

Li and Zhang (2019) show a positive impact of air pollution on the disposition effect, which is a 

behavioral anomaly where traders hold onto assets whose prices are dropping and sell those who 

are increasing. They show that the effect is larger when measuring air pollution by 10 or 2.5 mm 



37 
 

inhalable particulate matter (PM10 or PM2.5), further validating the use of PM25 data in this 

study. Levy and Yagil (2011), Lepori (2016), Li and Peng (2016), and An et al. (2018) also study 

the effects of air pollution on the stock market and find negative relationship between air 

pollution and returns in the United States, Italy, and China. Heyes et al. (2016) examine 

primarily PM2.5 and finds a robust negative statistically significant relationship. The China AQI 

in Li and Peng (2016) contains information for carbon monoxide, nitrogen dioxide, ozone 

particle, 2.5 mm particulate matter, and sulfur dioxide. Their study highlights these as five 

associated with negative human health consequences, particularly PM2.5 that can infiltrate 

alveoli and obstruct gas exchange. 

Saunders (1993) examines the relationship between sunny days, investor sentiment and expected 

returns between 1983 and 1989 and finds no significant “sunshine effect.” Hirshleifer and 

Shumway (2003) found that trading decisions made incorporating sunshine information can 

increase a portfolio’s Sharpe ratio, measuring excess returns for a given unit of risk (measured in 

standard deviation of returns). The Britten-Jones test can be used to identify this relationship and 

is conducted by regression of 1’s on the vector of portfolio returns. They do mention however 

that these results are sensitive to the frequency of trades if non-trivial transaction costs exist. 

Their study examines daily market returns in 26 countries from 1982 to 1997. Their use of 

sunshine in the city where the most active financial exchange exists motivates our use of using 

New York City weather data. Chang et al. (2008) conclude that increased cloud cover in New 

York City is associated with increased stock volatility. Their results confirm those of Saunders 

(1993) and Hirshleifer and Shumway (2003) in that there are linkages between daily weather 

patterns and asset returns. Trombley (1997) critiques Saunders (1993) paper by saying the 

distribution of cloudiness in them lends itself to statistically significant results by comparing 
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20% cloudiness to 100%. We address this concern by using widely dispersed pollution data. Cao 

and Wei (2001) examine temperature effects on stock market returns while remaining consistent 

with the trend in the literature to include data from the major market city. Kliger and Levy 

(2003) find that increased cloud cover is related to increased investor perceived probabilities of 

negative events. They find that higher temperatures are associated with apathy and lower returns 

while adjacently lower temperatures imply aggression and more risk seeking and higher returns.  

Dowling and Lucey (2008) and Dowling and Lucey (2008) study wind, precipitation, and 

geomagnetic storms and find that they are relevant drivers of increased volatility of individual 

indices. Loughran and Schultz (2004) find that blizzards and cloudy days in New York are 

associated with marginally lower stock returns. One interesting question arises when considering 

cloud covers studies. How much of the cloud cover can be attributed to air pollution? While the 

literature appears deeper regarding the effects of weather rather than pollution on the stock 

market, the detrimental physical health effects of pollution in addition to the adverse mental 

health effects from clouds that could also be from pollution signal an importance for the field to 

continue to understand these relationships with the goal to improve human welfare across the 

multiple aforementioned avenues. 

Jaffe, Westerfield, and Ma (1989); Wang, Li, and Erickson (1997); and Pettengill (2003) 

examine what is referred to as the Monday effect, which originally said there is a decline in labor 

productivity on this day relative to others. It has been shown to have the reversal effect. Schultz 

(1985), Ariel (1987), Kramer (2000) describes another seasonal effect pervasive in the literature, 

the January effect. This effect says that unusually high returns are observed in January relative to 

other months. 
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Other examples of seasonal occurrences that may explain returns are Kamstra, Kramer, and Levy 

(2000) and Kamstra, Kramer, and Levi (2003) who find that daylight savings time and thus 

shortened days lead to seasonal affective disorder (SAD), associated with depression, which 

causes an increase in risk aversion. This heightened risk aversion thus leads to increased 

variability or volatility in asset returns. Dowling and Lucey (2008) and Dowling and Lucey 

(2008) also examine daylights saving time and lunar phases with similar results. Loughran and 

Schultz (2004) in addition to their weather results find that trading is slowed in cities with high 

Jewish populations on Yom Kippur. Also, Dichey and Janes (2003); Yuan et. al (2001); and Keef 

and Khaled (2011) among others study lunar phases of the moon and stock market returns and 

provide evidence for moon effects. These studies support the findings that returns are higher on 

new moon days but argue that it is difficult to imagine that, the Monday effect, or the turn-of-

the-month effect as significant drivers off inefficient markets. I agree with this sentiment and 

would argue that as more recent technological advances such as algorithmic trading strategies, 

near-zero cost investment platforms and free financial literacy training mobile applications 

continue to progress, the increased financial savvy of investors across investors of all skill levels 

will increasingly diminish these particular inefficiencies and thus do not consider these variables 

in the paper. 

Theoretical Framework 

The theoretical model relies on fundamental equation of the Sharpe (1963) CAPM: 

1) 𝐸(𝑟𝑗) = 𝑎𝑗 + 𝑟 + [𝐸(𝑟𝑚) − 𝑟]𝛽𝑗 , 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗. 

The standard assumption is that if the model adequately explains returns then alpha should be 

zero. The arguments against the efficient market hypothesis can be found in Lee et al. (1991) and 
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Barberis et al. (2005). They find that asset returns are indeed influenced by non-common 

fundamental risk. These deviations from the assumption provide the Fama and French (1992) 

framework and allow for further analysis. 

The Three Factor Model of Fama and French (1993) includes size (SMB)and book-to-market 

value (HML) factors to the original CAPM specification. They find significant explanatory 

power of these factors towards excess return, stating the book-to-market value is positively 

correlated with asset returns. The same holds true for firm size as measured by market equity. 

2) E(rj) − r = aj + [E(rm) − r]βj1  + SMBβj2 + HMLβj3, for each j. 

Fama and French (2016) extend the model further to the Five Factor Model to include 

profitability (RMW) and an investment aggressiveness (CMA) factor. They also note that when 

implementing this model, the value (book-to-market/HML) may become redundant. As an 

additional avenue of analysis, this paper explores the issue further. 

3) E(rj) − r = aj + [E(rm) − r]βj1  + SMBβj2 + HMLβj3 + RMWβj4 + CMAβj5, for each j. 

By asserting that investor sentiment may further explain excess asset returns, this paper extends 

the theoretical model to include a sixth factor, a unique measure of investor sentiment (SEN). 

4) E(rj) − r = aj + [E(rm) − r]βj1  + SMBβj2 + HMLβj3 + RMWβj4 + CMAβj5 +

SENβj6, for each j. 

The parameters of the model can be estimated using a regression like Fama and McBeth (1973). 
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Data 

Daily air quality index (AQI) data for carbon monoxide, nitrogen dioxide, ozone particle, 2.5 

mm particulate matter, and sulfur dioxide in New York City were obtained from the 

Environmental Protection Agency on trading days from January 4, 2013 until May 7, 2019. Data 

across a similar time horizon on portfolio returns and the Fama and French (2016) factors are 

obtained from Dr. French’s personal website. The number of trading days in this sample is 1,617. 

The period before 2013 is excluded from the analysis to avoid overlap into the financial crisis. 

Table 1 in the appendix describes the summary statistics of the dataset. The portfolios were 

constructed based on the stock’s industry SIC code. The portfolio types are; agriculture, food 

products, candy and soda, beer and liquor, tobacco products, recreation, entertainment, printing 

and publishing, consumer goods, apparel, healthcare, medical equipment, pharmaceutical drugs, 

chemicals, rubber and plastic products, textiles, construction materials, construction, steel works, 

fabricated products, machinery, electrical equipment, automobiles and trucks, aircraft, 

shipbuilding and railroad equipment, defense, precious metals, non-metallic and industrial 

mining metal, coal, petroleum and natural gas, utilities, communication, personal services, 

business services, computer hardware, computer software, electronic equipment, measuring and 

control equipment, business supplies, shipping containers, transportation, wholesale, retail, 

restaurants and hotels/motels, banking, insurance, real estate, trading, and other. Figures 1 

through 5 show the normalized AQI values of various pollutants over time. Visually there is 

sparsity in the data and alleviates the concern pressed in Trombley (1997). 
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Empirical Framework 

Principle component analysis is used to create the sentiment components. A Bartlett test of 

sphericity with a null that the correlation matrix for the given variables is not an identity matrix 

is rejected. The Kaiser-Meyer-Olkin Measure of Sampling Adequacy is .643 which is greater 

than .5. The diagonal on the anti-image correlation coefficient matrix can be interpreted as a 

measuring of sampling adequacy. The values for this diagonal are .66, .6989, .8321, .6487, and 

.8113 respectively. Further, low values along the diagonal of the residual correlation matrix, a 

measure of performance of the components in explaining the variation in the original data. These 

values are all under .0005. These results taken in conjunction imply that a principle component 

analysis of the data may be appropriate. 

The first two principle components have eigenvalues above 1 and represent the points to the left 

of the “bow” of the scree plot (Figure 6), which are two useful criteria in deciding the number of 

components to use. These components explain roughly 67 percent of the variation in the initial 

data and may be adequate for analysis (Table 2). 

This technique is used in the asset pricing literature to develop indices of investor sentiment by 

Baker and Wurgler (2006); Lin, Wang and Cai (2012); Ait-Sahalia and Xiu (2017); Dhaoui an 

Bensalah (2017); and Gerber et al. (2019). Liew and Budavari (2017) use a combination of 

proprietary StockTwits data to construct their index and provide another unique example of how 

to measure sentiment. 

The loading plot (Figure 7) and loading table (Table 3) show the makeup of the individual 

components. Component 1 is as followed (recalling that the input data has been normalized): 

5) COMP1 = .5145CO + .5207NO2 + .0917OZONE + .5256PM2.5 +  .4237SO2 
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Given the theoretical model and the derivation of principle components, the final model to be 

estimated is: 

6) E(rj) − r = aj + [E(rm) − r]βj1  + SMBβj2 + HMLβj3 + RMWβj4 + CMAβj5 +

COMP1βj6, for each j. 

Results and Discussion 

The analysis was performed using Stata 15. The estimated output tables can be found in Table 4. 

The results indicate that the investor sentiment index composition in this paper do indeed help 

explain stock market returns. The 49 industry portfolios examined all display an increase in the 

R-square value because of the implementation. Further, the F-test for the null hypothesis that the 

factors are jointly insignificant is rejected. The portfolios where the first principle component is 

individually statistically significant are food products (positive effect), personal services 

(negative effect), and wholesale (positive). These portfolios correspond to actions in 

psychological and health literature taken in companionship with stress. The psychological link to 

binge eating, isolationism, and shopping sprees are well documented. see Smith et al. (1998); 

Sanders et al. (2000), and Krueger (1998) respectively. It is also of interest that statistically 

significant positive alpha was generated for guns, business services, and insurance portfolios. 

Conclusion 

These results add to the expanding literature on the effects of pollution on stock market returns, 

specifically providing a link between New York City pollution levels and excessive returns. A 

unique measure of negative investor sentiment, generated by using a principle-component 

analysis of New York City’s daily carbon monoxide, nitrogen dioxide, ozone, 2.5 mm particulate 

matter, and sulfur dioxide levels is also contributed. Further research into this subfield may 
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include adding similar pollution variables or investor sentiment data to the index. Finally, this 

paper gives supporting evidence to emission reduction policies, giving an alternative vehicle to 

welfare improvement because of successful implementation. 
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Appendix 1: Tables 

Table 1: Descriptive Statistics  

 Variable  Obs  Mean  Std.Dev.  Min  Max 

 coaqi 1617 8.772 3.603 2 38 

 no2aqi 1617 42.244 13.714 15 131 

 ozoneaqi 1617 47.952 25.719 11 210 

 pm25aqi 1617 50.838 15.93 16 141 

 so2aqi 1617 4.989 5.056 0 59 

 mrf 1617 .051 .832 -4.03 5.06 

 smb 1617 -.007 .493 -1.63 2.52 

 hml 1617 -.014 .494 -1.69 2.38 

 rmw 1617 .004 .324 -1.58 1.63 

 cma 1617 -.009 .316 -1.32 1.96 

 rf 1617 .002 .003 0 .01 

 agric 1617 .022 1.122 -6.43 7.65 

 food 1617 .038 .882 -5.11 4.73 

 soda 1617 .043 .882 -7.3 5.29 

 beer 1617 .058 .825 -4.28 3.04 

 smoke 1617 .038 1.056 -11.46 4.91 

 toys 1617 .04 1.391 -8.15 8.22 

 fun 1617 .088 1.464 -6.75 7.15 

 books 1617 .024 1.128 -8.72 6.91 

 hshld 1617 .043 .806 -3.98 4.55 

 clths 1617 .057 1.156 -6.3 6.36 

 hlth 1617 .045 1.147 -8.86 4.78 

 medeq 1617 .076 .972 -4.45 4.92 

 drugs 1617 .054 1.044 -4.68 6.25 

 chems 1617 .04 1.061 -4.75 5.37 

 rubbr 1617 .053 .987 -5.11 3.81 

 txtls 1617 .048 1.409 -18.31 6.56 

 bldmt 1617 .044 1.129 -5.21 4.17 

 cnstr 1617 .039 1.307 -6.2 5.13 

 steel 1617 .019 1.586 -6.85 8.72 

 fabpr 1617 .035 1.743 -15.45 9.78 

 mach 1617 .045 1.143 -5.93 5.23 

 elceq 1617 .033 1.104 -4.82 4.95 

 autos 1617 .032 1.219 -5.98 5.29 

 aero 1617 .075 1.065 -5.36 5.12 

 ships 1617 .063 1.392 -5.64 7.99 

 guns 1617 .097 1.042 -5.66 6.22 

 gold 1617 .003 2.405 -11.76 10.42 

 mines 1617 .006 1.642 -7.52 10.04 

 coal 1617 -.055 2.799 -18.44 18.08 

 oil 1617 .006 1.326 -7.47 6.71 

 util 1617 .044 .835 -4.44 2.89 

 telcm 1617 .045 .851 -4.42 3.6 

 persv 1617 .045 1.091 -4.47 4.35 

 bussv 1617 .075 .952 -4.4 5.17 

 hardw 1617 .049 1.169 -7 5.11 

 softw 1617 .074 1.092 -4.8 6.33 

 chips 1617 .081 1.17 -7.25 5.91 

 labeq 1617 .076 1.048 -4.56 5.02 

 paper 1617 .044 .925 -7.35 4.15 

 boxes 1617 .05 1.09 -5.55 4.4 
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 trans 1617 .059 1.083 -4.66 5.61 

 whlsl 1617 .041 .894 -4.18 3.85 

 rtail 1617 .063 .93 -4.1 6.88 

 meals 1617 .065 .837 -4.31 3.84 

 banks 1617 .059 1.096 -6.17 5.07 

 insur 1617 .071 .88 -4.37 4.26 

 rlest 1617 .025 1.16 -7.25 6.13 

 fin 1617 .06 1.158 -6.92 5.23 

 other 1617 .036 .887 -5.25 4.65 

 zco 1617 0 1 -1.879 8.112 

 zno2 1617 0 1 -1.987 6.472 

 zozone 1617 0 1 -1.437 6.301 

 zpm25 1617 0 1 -2.187 5.66 

 zso2 1617 0 1 -.987 10.683 

 pc1 1617 0 1.466 -3.377 8.737 

 pc2 1617 0 1.083 -4.123 6.281 

 pc3 1617 0 .841 -4.067 7.986 

 pc4 1617 0 .74 -3.124 5.331 

 pc5 1617 0 .65 -2.022 5.19 

      

 

 

Table 2: Proportion of Variance Explained by Components 

 Component   Eigenvalue  Difference  Proportion  Cumulative 

Comp1      2.148     0.975     0.430     0.430 

Comp2      1.174     0.466     0.235     0.664 

Comp3      0.708     0.161     0.142     0.806 

Comp4      0.547     0.124     0.110     0.915 

Comp5      0.423 .     0.085     1.000 

 

 

Table 3: Loading Table    

Variable   Comp1  Comp2  Comp3  Comp4  Comp5 Unexplained 

zco      0.514    -0.264    -0.436    -0.337     0.602 0 

zno2      0.521     0.098    -0.362     0.721    -0.261 0 

zozone      0.092     0.858     0.176     0.075     0.467 0 

zpm25      0.526     0.277     0.112    -0.564    -0.563 0 

zso2      0.424    -0.328     0.797     0.206     0.186 0 

 

Table 4: Regression Results 
 agric food soda beer smoke toys 

mrf 0.771*** 0.823*** 0.686*** 0.724*** 0.733*** 0.990*** 

smb 0.0684 -0.177*** -0.353*** -0.368*** -0.329*** 0.433*** 

hml 0.0439 -0.266*** -0.284*** -0.303*** -0.319*** -0.217** 

rmw 0.137 0.416*** 0.423*** 0.422*** 0.558*** 0.331*** 

cma 0.178 0.803*** 0.738*** 0.633*** 0.804*** 0.252* 

pc1 0.0280 0.0302** -0.00342 0.00232 0.00774 -0.00390 

_cons -0.0155 -0.00306 0.00659 0.0187 -0.00119 -0.00947 

N 1617 1617 1617 1617 1617 1617 

R2 0.308 0.506 0.373 0.476 0.296 0.375 
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* p < 0.05, ** p < 0.01, *** p < 0.001 

Table 4: Regression Results Continued 

 fun books hshld hlth medeq drugs 

mrf 1.193*** 1.027*** 0.809*** 0.849*** 0.895*** 0.936*** 

smb 0.156** 0.637*** -0.230*** 0.373*** 0.0342 -0.0859** 

hml -0.339*** 0.0959* -0.276*** -0.263*** -0.589*** -0.641*** 

rmw -0.284*** 0.284*** 0.409*** 0.0336 -0.182*** -0.570*** 

cma -0.348*** 0.225** 0.822*** 0.139 0.187*** 0.314*** 

pc1 -0.0218 -0.0101 0.00382 0.00608 0.00123 0.00391 

_cons 0.0211 -0.0218 0.00214 0.00186 0.0250 0.00175 

N 1617 1617 1617 1617 1617 1617 

R2 0.584 0.659 0.587 0.448 0.713 0.716 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 4: Regression Results Continued 

 chems rubbr txtls bldmt cnstr steel 

mrf 1.106*** 0.965*** 1.094*** 1.170*** 1.180*** 1.379*** 

smb 0.145*** 0.389*** 0.363*** 0.587*** 0.647*** 0.758*** 

hml 0.172*** -0.0959** -0.103 0.118*** 0.232*** 0.552*** 

rmw 0.122** 0.236*** 0.391*** 0.292*** 0.246*** 0.0429 

cma 0.287*** 0.278*** -0.00806 0.354*** 0.218** 0.581*** 

pc1 0.00651 0.00375 0.0222 -0.00296 0.0114 -0.00451 

_cons -0.0110 0.00683 -0.00813 -0.00777 -0.0122 -0.0327 

N 1617 1617 1617 1617 1617 1617 

R2 0.725 0.689 0.439 0.801 0.636 0.622 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 4: Regression Results Continued 

 fabpr mach elceq autos aero ships 

mrf 1.234*** 1.222*** 1.162*** 1.159*** 1.077*** 1.198*** 

smb 1.088*** 0.339*** 0.395*** 0.415*** -0.0168 0.686*** 

hml 0.472*** 0.252*** 0.133*** 0.271*** -0.0112 0.232*** 

rmw 0.121 0.206*** 0.151*** 0.229*** 0.308*** 0.197** 

cma 0.181 0.251*** 0.423*** -0.0223 0.302*** 0.435*** 

pc1 0.0145 -0.00198 0.00320 -0.00950 0.00287 0.0212 

_cons -0.0122 -0.00997 -0.0180 -0.0216 0.0208 0.0136 

N 1617 1617 1617 1617 1617 1617 

R2 0.488 0.798 0.781 0.667 0.637 0.580 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 4: Regression Results Continued 

 guns gold mines coal oil util 

mrf 0.836*** 0.448*** 1.332*** 1.368*** 1.151*** 0.616*** 

smb -0.0451 0.193 0.401*** 0.982*** -0.0359 -0.243*** 

hml -0.262*** -0.183 0.519*** 1.054*** 0.514*** -0.220*** 

rmw 0.323*** -0.314 -0.0821 -0.629** -0.755*** 0.214*** 
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cma 0.451*** 1.207*** 0.551*** 0.852*** 0.754*** 0.733*** 

pc1 -0.00557 -0.0239 -0.0120 -0.0133 -0.00600 0.00955 

_cons 0.0531** -0.00829 -0.0465 -0.0926 -0.0358 0.0134 

N 1617 1617 1617 1617 1617 1617 

R2 0.395 0.038 0.497 0.272 0.629 0.324 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 4: Regression Results Continued 

 telcm persv bussv hardw softw chips 

mrf 0.878*** 1.039*** 1.050*** 1.104*** 1.047*** 1.093*** 

smb -0.0551* 0.577*** 0.186*** 0.0597 -0.126*** 0.00641 

hml -0.0347 0.0882* -0.170*** -0.0661 -0.288*** -0.0998* 

rmw 0.272*** 0.240*** 0.0752** 0.0737 -0.137*** 0.310*** 

cma 0.441*** 0.191** -0.0158 -0.189* -0.729*** -0.710*** 

pc1 0.00214 -0.0208* -0.00124 -0.0147 -0.00748 -0.000746 

_cons 0.00196 -0.00179 0.0201** -0.0103 0.00918 0.0161 

N 1617 1617 1617 1617 1617 1617 

R2 0.639 0.708 0.899 0.651 0.858 0.713 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 4: Regression Results Continued 

 labeq paper boxes trans whlsl rtail 

mrf 1.121*** 1.029*** 1.037*** 1.133*** 0.964*** 0.982*** 

smb 0.0932*** -0.00293 0.203*** 0.233*** 0.326*** 0.00937 

hml -0.297*** -0.0572 0.0636 0.117** -0.0271 -0.289*** 

rmw -0.0845* 0.419*** 0.279*** 0.436*** 0.192*** 0.452*** 

cma 0.171*** 0.504*** 0.425*** 0.196** 0.327*** 0.0247 

pc1 -0.00295 -0.000334 -0.00471 0.0154 0.0130* 0.00675 

_cons 0.0177 -0.00635 0.00183 0.00393 -0.00459 0.00710 

N 1617 1617 1617 1617 1617 1617 

R2 0.835 0.744 0.587 0.718 0.811 0.765 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Table 4: Regression Results Continued 

 meals banks insur rlest fin other 

mrf 0.821*** 1.059*** 0.922*** 1.098*** 1.178*** 0.959*** 

smb -0.0271 0.0913*** -0.0377 0.446*** 0.0909*** -0.203*** 

hml -0.159*** 1.025*** 0.339*** 0.125** 0.765*** 0.274*** 

rmw 0.259*** -0.327*** -0.0614 0.193*** -0.329*** -0.108** 

cma 0.124* -0.718*** -0.103* 0.0348 -0.403*** 0.255*** 

pc1 -0.00404 -0.0117 -0.00114 0.0108 -0.0139 0.00631 

_cons 0.0210 0.0142 0.0274** -0.0270 0.00898 -0.00795 

N 1617 1617 1617 1617 1617 1617 

R2 0.625 0.879 0.780 0.674 0.859 0.779 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Appendix 2: Figures 
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Figure 1 - Carbon Monoxide
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Figure 2 - Nitrogen Dioxide
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Figure 3 - Ozone
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Figure 5 - Sulfur Dioxide
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Chapter 4: Sample Selection Bias in Hedonic Pricing Models of Thoroughbred Broodmares 

Abstract 

An issue with OLS estimation in hedonic pricing model literature is that they do not account for 

sample selection bias. In broodmare auctions, the purchase decision and whether a price is 

realized or zero is endogenous. This paper contributes to the hedonic broodmare price analysis 

literature by implementing the Heckman (1976) sample selection regression to estimate a 

hedonic pricing model using data from the 2020 January Keenland Sale. Many published papers 

do not accommodate this selection process and may have biased coefficients. This paper further 

contributes methodologically to the thoroughbred broodmare literature by estimating a Bayesian 

Heckman model. The sire’s stud fee, domestic status, and the day of the session are significant 

for broodmare prices. This may be implemented within a profit maximizing purchasing and 

breeding strategy.  

Keywords 

Hedonic models, sample selection bias, thoroughbred broodmares, Bayesian methods 

Introduction 

American Pharoah (2015) and Justify (2018) recently claimed the Triple Crown of Thoroughbred 

Racing after a draught since Affirmed (1978) took the title. Thirteen racers have won the 

prestigious award in history, with some earning more than $10 million in today’s dollars. 

The American Horse Council Foundation estimates 7.2 million horses are in the United States 

consuming 32 million acres of owned land and another 49 million acres of leased land. Further, 

they estimate that the direct effect of the horse industry on the domestic economy is 
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approximately $50 billion. The direct employment total reaches near one million jobs earning 

roughly $38 million in various accounts. The ripple effect from this gigantic industry is 

estimated to be $122 billion impact and 1.7 million jobs, respectively. The high stakes associated 

with thoroughbred horseracing makes understanding the determinants of prices economically 

important for both buyers and sellers. According to Chizum and Wimmer (1997) and Wimmer 

and Chizum (2006), asymmetric information and adverse selection prevail in Thoroughbred 

markets. These issues may make the empirical findings of this paper useful for increasing market 

efficiency. 

Vickner (2018) points out that among all the hedonic price models applied to Thoroughbreds, a 

majority study yearling. Only Neibergs (2001), Maynard and Stoeppel (2007), and Dority et al. 

(2016) focus on broodmares. Chezum and Wimmer (1997), Vickner and Koch (2001), Robbins 

and Kennedy (2001) Wimmer and Chezum (2006), Parson and Smith (2008), Plant and Stowe 

(2013), Marion and Stowe (2016) all focus predominately on yearlings. Stowe and Ajello (2010) 

perform OLS in their hedonic pricing model of stud fee determinants, while Stowe (2013) 

extends this model to include fixed effects. Taylor et al. (2006) uses the Heckman model within 

the horse literature on data about quarter horses. This paper contributes to the relatively scarce 

literature on broodmare pricing by applying the Heckman model to account for sample selection 

bias. Failure to consider the endogenous selection process causes estimates to be bias and would 

misinform prospective buyers, sellers, bloodline agents, policymakers, and fellow scientists.  

Vickner (2018) suggests that a Bayesian Heckman selection model would be an interesting 

future contribution to the thoroughbred literature. Heckman et al. (2013) provide the details for 

extending the classical selection model to a Bayesian framework. Ng’ombe and Boyer (2019) 

point out that a Bayesian inference is desirable as it is exact for any sample size. 
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Methodology 

A Heckman sample selection framework is applied to a hedonic pricing model for broodmares at 

the 2020 January Keenland Sale. 

1) y = ∑ βbxb
5
b=1 + xg + ∑ βmxm

4
m=1 + u1 

where 𝑦 is the natural log of broodmare selling price, 𝑥𝑏 represents breeding characteristics, and 

𝑥𝑔, and 𝑥𝑚 are genetic, and market characteristics, respectively. The error term 𝑢1 is 

2) u1 ~ N(0, σ) 

The covariates in this model are motivated by Maynard and Stoeppel (2007) and Dority et al. 

(2016). They argue that breeding, genetic, and market characteristics are relevant in explaining 

thoroughbred broodmare auction prices. The breeding characteristics in the model are a dummy 

= 1 if a broodmare is a prospect, the age in years, color dummy=1 if the broodmare is black, sire 

earning, and sire stud fee. Stowe (2013) finds that sire stud fee is highly explained by progeny 

sale price. 

Poerwanto and Stowe (2010) find a positive relationship between the number of foals produced 

by a sire and sire’s yearlings’ average selling price, therefore sire representation is included into 

the model as a genetic characteristic. Market characteristics include a dummy = 1 if the sire is 

domestic and dummies for the days of the auction. In the case of broodmare auctions, each 

individual broodmare is not sold, and the price is only observed if the selection equation is 

satisfied: 

3) γszs + u2 > 0 
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where 𝑧𝑠 is a dummy =1 if the sire has won a Triple Crown race. This can be the Kentucky 

Derby, Preakness Stakes, or Belmont Stakes. The error term 𝑢2 is 

4) u2 ~ N(0,1) 

5) corr(u1,u2) = ρ 

Estimating hedonic pricing models via OLS in the existence of this error correlation causes 

estimates to be biased, as it violates the assumption of random sampling. Dority et al. (2016) 

does not account for sample selection processes. Heteroskedasticity may also arise. Maynard and 

Stoeppel (2007) account for heteroskedasticity using a Box-Cox transformation.  Marion and 

Stowe (2016) use a Breusch Pagan test and reject the null hypothesis of heteroskedasticity. 

The methodological contribution of this paper is the Bayesian Heckman model applied to 

thoroughbred broodmare auctions. The Random-walk Metropolis-Hastings algorithm was used. 

Markov Chain Monte Carlo (MCMC) sample size is 50,000. 20,000 burn-ins were used. 

Data and Descriptive Statistics 

Data on broodmare sales price and characteristics were obtained from the 2020 January 

Keenland Sale at Keenland Association in Lexington, KY. The sire nationality and performance 

data were obtained from the Blood-Horse Stallion Register and matched to corresponding 

broodmares. Table 1 presents the descriptive statistics. 

The sample contains 524 unique broodmares. 323 (61.6%) of those ended up being sold. The 

other sale prices are recorded as zero. The average price conditional on being sold is $44,889 and 

ranges from $1,000 to $640,000. Broodmare prospects account for roughly 51% of the sample 

and average prospects have a price of $28,079 versus $27,241 of the average non-prospects. The 

difference, however, is statistically insignificant, with a p-value of 0.879 as shown in Figure 1. 
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The average broodmare in the sample is approximately 6 years of age.  The average sire earned 

$2.08 million, has a stud fee of about $63.81, and is being represented 10 times. 95% of sires are 

domestic, and 16.8% total sire have won a Triple Crown race. A broodmare of a domestic sire on 

average sold for $28,379.92 versus 14,076.92. The difference is not statistically significant, with 

a p-value of 0.261. Figure 2 show this comparison. 

Table 2 presents a pairwise comparison of mean price across different auction sessions. There 

are statistically significant differences in price between session 1 to sessions 3, 4, and 5, 

respectively as well as between 2 and 3, 4, and 5, respectively. The signs on each of these 

differences are negative and have management implications. Buyers may be able to receive a 

discounted price if they are willing to delay their purchase by attending a later auction. This 

inference is consistent whether using Bonferroni, Sidek, Sheffe, Tukey, SNK, Duncan, or Dunnet 

adjustment. Figure 3 visualizes this relationship. Dority et al. (2016) find that the longer buyers 

are willing to wait, the lower price that they can receive. 

Results and Discussion 

Table 3 presents the posterior summary statistics from the Bayesian Heckman model performed 

in Stata. The sire’s stud fee, domestic status, and the session are found to have a statistically 

significant effect on average broodmare selling price. 

A one percent increase in sire’s stud fee is expected to increase the selling price of the 

broodmare .23 percent on average holding other variables constant. This value is like Neiberg 

(2001) who find 0.21 and less than the 0.65 of Dority et al. (2016). This provides further 

evidence for the necessity to model sample selection processes. The corrected model gives 

managers better estimates of possible returns to sire earnings in the breeding market. Figure 4 
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shows the diagnostic plots for the stud fee variable. Autocorrelation is shown to decline in the 

initial lags, indicating convergence of the model. A domestic sire is associated with an 86.6% on 

average broodmare selling price relative to non-domestic all else equal. For managers, this 

means that including a domestic sire in your bloodline may increase future broodmare returns. 

Figure 5 shows the diagnostic plots for the domestic status variable. Autocorrelation is shown to 

decline in the initial lags. 

The result on sire representation also has management relevance. When deciding the number of 

mares for a sire to service, managers must trade-off short term earnings with the possibility of 

decreasing future value of the sire due to the possibility of inadequate foal. Based on the 

statistically insignificant results, the relationship between the sire representation and broodmare 

price is inconclusive. 

The dummies indicating the session are all statistically significant except for the session 2 

dummy. This is consistent with Dority et al. (2016) who find what they describe as buyer fatigue 

in these auctions. They point out that it is customary for the highest quality broodmares to be 

auctioned the earliest and that there may be a psychological notion that the best lot has been sold. 

This evidence suggests potential buyers who wait until later auction sessions incur additional 

risk. Managers and potential buyers should seek to attend the earliest sessions. 

Conclusion 

This paper contributes to the thoroughbred literature by estimating a Heckman sample selection 

model to 2020 January Keenland Sales data to account for the sample selection process 

underlying broodmare sales. Given the documented asymmetric information and adverse 

selection in the Thoroughbred industry, an unbiased hedonic pricing model of broodmares stands 
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to inform buyers of the characteristics important in determining price. This evidence may 

alleviate some inefficiency associated with the information gap and market failure. In an industry 

with roughly $175 billion economic impact, the welfare loss from this inefficiency is likely 

nontrivial. Failure to account for the selection process prevalent by omitting broodmares with 

prices of zero from the sample will bias coefficient estimates and misinform prospective buyers, 

breeders, and racers. This estimation procedure, combined with the exactness of Bayesian 

inference, can be used in future Thoroughbred hedonic pricing analyses, whether for broodmares 

or yearlings. 

Sire’s stud fee, domestic status, and the day of the auction session are all statistically significant 

factors in broodmare prices. Managers can implement this information into their buying and 

breeding strategies. Further studies may examine other variables, such as dam characteristics, 

sprinting speed, or breeder characteristics for significance, but should be aware of the modelling 

issues addressed in this paper. 
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Appendix 1: Tables 

Table 1: Descriptive Statistics  

 Variable  Mean  Std.Dev.  Min  Max 

 price 27670.23 63181.87 0 640000 
 prospect .511 .5 0 1 
 age in years 5.742 2.519 2 16 
 black .468 .499 0 1 
 sire stud fee 63812.34 67347.84 2000 250000 
 sire earnings 2080000 2260000 32400 1.05e+07 
 representation 10.439 6.488 1 25 
 domestic .95 .217 0 1 
 Triple Crown 
# Observations 

.168 
524 

.374 0 1 

 
Table 2: Pairwise comparisons of mean price across sessions with Bonferroni adjustment 

Session   Contrast  Std.Err.  P>t 

2_vs_1 6935.513 7710.558 1.000 
3_vs_1 -21575.94 8390.539 0.104 
4_vs_1 -28729.55 8591.845 0.009 
5_vs_1 -31674.73 8858.497 0.004 
3_vs_2 -28511.46 8122.274 0.005 
4_vs_2 -35665.06 8330.065 0.000 
5_vs_2 -38610.25 8604.833 0.000 
4_vs_3 -7153.605 8963.17 1.000 
5_vs_3 -10098.79 9219.088 1.000 
5_vs_4 -2945.185 9402.672 1.000 

 

Table 3: Bayesian Heckman Posterior Summary Statistics 
MCMC sample size =    50,000, Burn-in = 20,000 

  

   Mean  Std.Dev.  MCSE  Median  [95%  Cred.]  

lnp             
prospect      0.097     0.106     0.007     0.094    -0.105     0.318 
ageyears     -0.046     0.030     0.001    -0.046    -0.105     0.012 
black      0.190     0.140     0.011     0.189    -0.084     0.465 
lnsireearnings      0.028     0.054     0.004     0.028    -0.077     0.132 
lnsirefee      0.233     0.078     0.005     0.231     0.083     0.387 
representation      0.006     0.015     0.001     0.007    -0.026     0.035 
siredomestic      0.866     0.223     0.012     0.862     0.432     1.303 
 
session  
2       0.145     0.105     0.007     0.146    -0.063     0.342 
3      -0.813     0.169     0.018    -0.814    -1.143    -0.479 
4      -1.412     0.161     0.010    -1.416    -1.724    -1.096 
5      -1.569     0.192     0.011    -1.568    -1.949    -1.194 
 
_cons      7.395     1.046     0.077     7.406     5.252     9.382 
select          
siretcwinner     -0.086     0.140     0.005    -0.091    -0.348     0.201 
_cons      0.312     0.060     0.001     0.312     0.193     0.429 
athrho     -0.910     0.473     0.058    -1.032    -1.500     0.446 
lnsigma      0.389     0.097     0.010     0.399     0.187     0.556 
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Appendix 2: Figures 
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Figure 2: Price difference aross Sire's domestic status
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