
On Advances in Deep Learning with Applications
in Financial Market Modeling

by

Xing Wang

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 8, 2020

Keywords: Deep learning, Stock prediction, Convolutional neural network, Stock2Vec,
Deep Q-network, Exploration, Overestimation, Cross Q-learning, DQN Trading

Copyright 2020 by Xing Wang

Approved by

Alexander Vinel, Chair, Assistant Professor of Industrial and Systems Engineering
Jorge Valenzuela, Distinguished Professor of Industrial and Systems Engineering

Daniel F. Silva, Assistant Professor of Industrial and Systems Engineering
Erin Garcia, Industrial and Systems Engineering

Abstract

This dissertation focuses on advancing the machine learning, with a particular focus on

the application for financial trading. It is organized into two parts. The first part of this

dissertation (Chapters 1-2) will be concerned with the application of predictive modeling on

stock market prediction. Chapter 1 presents the basics of machine learning and deep learning.

In Chapter 2, we combine several recent advances in deep learning to build a hybrid model

to forecast the stock prices, that gives us the ability to learn from various aspects of the

related information. In particular, we take a deep look at the representation learning and

temporal convolutional network for sequential modeling. With representation learning, we

derived an embedding called Stock2Vec, which gives us insight for the relationship among

different stocks, while the temporal convolutional layers are used for automatically capturing

effective temporal patterns both within and across series. Our hybrid framework integrates

both advantages and achieves better performance on the stock price prediction task than

several popular benchmarked models.

In the second part of this dissertation (Chapters 3 - 6), we turn our focus to the topics

of reinforcement learning. In Chapter 3, we provide the necessary mathematical and the-

oretical preliminaries in reinforcement learning, as well as several recent advances in deep

Q-networks (DQNs) that we would apply later. In Chapters 4 and 5, we aim at algorith-

mically improving the convergence of training in reinforcement learning, with theoretical

analysis and empirical experiments. One prominent challenge in reinforcement learning is

the tradeoff between exploration and exploitation. In deep Q-networks (DQNs), this is usu-

ally addressed by monotonically decreasing the exploration rate yet is often unsatisfactory.

In Chapter 4, we propose to encourage exploration by resetting the exploration rate when it

ii

is necessary. Another severe problem in training deep Q-networks involves the overestima-

tion for the Q-values. In Chapter 5, we propose to bootstrap the estimates from multiple

agents, and refer to this learning paradigm as cross Q-learning. Our algorithm effectively

reduces the overestimation and significantly outperforms the state-of-the-art DQN training

algorithms. In Chapter 6, we continue our studies on DQN with an application in real finan-

cial trading environment, by training a DQN agent that provides trading strategies. Finally,

we summarize this dissertation in Chapter 7, and discuss the possible directions for future

research.

iii

Acknowledgments

The first person I am greatly indebted to during my Ph.D. studies is my advisor,

Dr. Alexander Vinel. He is the kindest advisor a Ph.D. student could have asked for.

Dr. Vinel fully supports every decision I made and gives me lots of freedom to grow as

an independent researcher; he encourages me at every difficult moment and takes good care

of me both academically and personally. I must express special thanks to Dr. Fadel Megahed

and Dr. Daniel Silva. I was benefited greatly from many discussions with them to gain guid-

ance and excellent insights, both of them have significant impact on my research. I would

also like to thank the other committee members, Dr. Jorge Valenzuela, Dr. Erin Garcia, and

Dr. Levent Yilmaz, for their time and effort on giving me invaluable feedback. Thanks also

go to all my collaborators, Bing Weng, Lin Lu, Yijun Wang, and Waldyn Martinez, for their

kind and brilliant help, and I had great pleasure to work with them. Looking back the long

journey, I cannot forget to express my sincere gratitude to my masters advisors and mentors

in other majors, Dr. Alvin Lim, Dr. Yujin Chung, and Dr. Henry Kinnucan, I am fortunate

enough to be guided by them and have learned a lot from them as well. Last but not the

least, I need to thank my parents for their long-lasting support and love during my life.

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . ix

List of Tables . xiii

1 Machine Learning and Deep Learning Preliminaries 1

1.1 Introduction to Machine Learning . 1

1.2 Support Vector Machine . 2

1.3 Boosting . 4

1.3.1 Gradient Boosted Tree and XGBoost 5

1.4 Bagging and Random Forest . 7

1.5 Neural Networks and Deep Learning . 7

1.5.1 Convolutional neural network . 8

1.5.2 Recurrent neural network . 9

1.6 Regularization . 11

1.7 Principal Component Analysis (PCA) and Robust PCA 13

1.8 Summary . 16

2 Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction

with Representation Learning and Temporal Convolutional Network 17

2.1 Introduction . 17

2.2 Related Work . 21

2.3 Methodology . 24

2.3.1 Problem Formulation . 24

2.3.2 A Distributional Representation of Stocks: Stock2Vec 24

v

2.3.3 Temporal Convolutional Network . 27

2.3.4 The Hybrid Model . 30

2.4 Data Specification . 32

2.5 Experimental Results and Discussions . 35

2.5.1 Benchmark Models, Hyperparameters and Optimization Strategy . . 35

2.5.2 Performance Evaluation Metrics . 37

2.5.3 Stock2Vec: Analysis of Embeddings 38

2.5.4 Prediction Results . 42

2.6 Concluded Remarks and Future Work . 45

2.A Sector Level Performance Comparison . 47

2.B Performance comparison of different models for the one-day ahead forecasting

on different symbols . 48

2.C Plots of the actual versus predicted prices of different models on the test data 51

3 Reinforcement Learning Preliminaries . 61

3.1 Markov Decision Processes . 61

3.2 Value-based Reinforcement Learning . 62

3.3 Deep Q-Networks . 63

3.3.1 Double DQN . 64

3.3.2 Dueling DQN . 64

3.3.3 Bootstrapped DQN . 65

3.A A Simple Proof of Policy Invariance under Reward Transformation From Lin-

ear Programming Perspective . 66

3.A.1 Encoding MDP as LP . 67

3.A.2 Policy Invariance under Reward Transformation 68

4 Re-anneal Decaying Exploration in Deep Q-Learning 70

4.1 Introduction . 70

4.2 Exploration in DQN . 72

vi

4.2.1 Exploration Strategies . 72

4.2.2 Exploration Decay . 74

4.3 Exploration Reannealing . 75

4.3.1 Local Optima in DQN . 75

4.3.2 Exploration Reannealing . 75

4.3.3 Defining Poor Local Optima . 77

4.3.4 Algorithm . 79

4.4 Experimental Results . 80

4.4.1 Testbed Setup . 80

4.4.2 Implementation of Exploration Reannealing 82

4.4.3 Results . 83

4.5 Conclusions . 87

5 Cross Q-Learning in Deep Q-Networks . 88

5.1 Introduction . 88

5.2 Estimating the Maximum Expected Values 92

5.2.1 (Single) Maximum Estimator . 92

5.2.2 Double Estimator . 93

5.2.3 Cross Estimator . 94

5.3 Convergence in the Limit . 95

5.4 Cross DQN . 97

5.5 Experimental Results . 102

5.5.1 CartPole . 103

5.5.2 Lunar Lander . 109

5.6 Conclusions and Future Work . 113

6 An Application of Deep Q-Network for Financial Trading 115

6.1 Introduction and Related Work . 116

6.2 Problem Formulation for Trading . 116

vii

6.2.1 State Space . 116

6.2.2 Action Space . 117

6.2.3 Reward Function . 118

6.3 Experiment . 120

6.3.1 Environment Setup . 120

6.3.2 DQN Agent Setup . 122

6.3.3 Results . 123

6.3.4 Effect of Transaction Cost . 126

6.4 Summary . 128

7 Conclusion . 129

viii

List of Figures

2.1 Model Architecture of Stock2Vec. 27

2.2 Visualization of a stack of 1D convolutional layers, non-causal v.s. causal. . . . 28

2.3 Visualization of a stack of causal convolutional layers, non-dilated v.s. dilated. . 30

2.4 Comparison between a regular block and a residual block. In the latter, the

convolution is short-circuited. 31

2.5 The full model architecture of hybrid TCN-Stock2Vec. 32

2.6 Feature importance plot of XGBoost model. 34

2.7 PCA on the learned embeddings for Sectors . 39

2.8 PCA on the learned Stock2Vec embeddings . 39

2.9 Nearest neighbors of Stock2Vec based on similarity between stocks. 41

2.10 Boxplot comparison of the absolute prediction errors. 43

2.11 AAPL daily price predictions over test period, 2019/08/16-2020/02/14. 51

2.12 AAPL daily price predictions over test period, 2019/08/16-2020/02/14. 51

2.13 AAPL daily price predictions over test period, 2019/08/16-2020/02/14. 52

2.14 AAPL daily price predictions over test period, 2019/08/16-2020/02/14. 52

ix

2.15 AAPL daily price predictions over test period, 2019/08/16-2020/02/14. 53

2.16 Showcase DAL of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 53

2.17 Showcase DIS of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 54

2.18 Showcase FB of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 54

2.19 Showcase GE of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 55

2.20 Showcase GM of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 55

2.21 Showcase GS of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 56

2.22 Showcase JNJ of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 56

2.23 Showcase JPM of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 57

2.24 Showcase MAR of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 57

2.25 Showcase KO of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 58

x

2.26 Showcase MCD of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 58

2.27 Showcase NKE of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 59

2.28 Showcase PG of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 59

2.29 Showcase VZ of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 60

2.30 Showcase WMT of predicted v.s. actual daily prices of one stock over test period,

2019/08/16-2020/02/14. 60

4.1 Lunar Lander Environment . 81

4.2 Performances measured during training. The upper two rows illustrate the total

rewards during each episode and moving averages; (a) and (b) correspond to

training without reannealing, while (c) and (d) are with exploration reannealing.

The bottom row plots the varying ε values along training with reannealing. In

all cases the left column corresponds to exploration decay rate ρdecay = 0.99, and

the right column corresponds to ρdecay = 0.985. 86

5.1 Separate and Shared Network Architecture . 100

5.2 Comparison of vanillar DQN, double DQN and cross DQNs of K = 5, K = 10

on CartPole. 106

5.3 Comparison of cross DQNs of K = 5. Cross DQN with ensemble voting, with

dueling DQN and voting, with bootstrapped DQN, and with both dueling &

bootstrapped DQN on CartPole. 107

xi

5.4 Comparison of cross DQNs of K = 10. Cross DQN, with dueling DQN, with

bootstrapped DQN, with both dueling & bootstrapped DQN on CartPole. . . . 108

5.5 Comparison of vanillar DQN, double DQN and cross DQNs of K = 5, K = 10

on LunarLander. 110

5.6 Comparison of cross DQNs of K = 5. Cross DQN, with dueling DQN, with boot-

strapped DQN, and with both dueling & bootstrapped DQN on LunarLander.

. 111

5.7 Comparison of cross DQNs of K = 10. Cross DQN, with dueling DQN, with

bootstrapped DQN, and with both dueling & bootstrapped DQN on LunarLan-

der. 112

6.1 Total rewards for each episode throughout training 124

6.2 Effects of different transaction cost factor values on DQN in-sample policies . . 126

6.3 Effects of different transaction cost factor values on DQN in-sample policies . . 127

xii

List of Tables

2.1 Description of technical indicators used in this study. 33

2.2 Dataset summary. 34

2.3 Average performance comparison. 43

2.4 Sector level RMSE comparison . 47

2.5 Sector level MAE comparison . 47

2.6 Sector level MAPE (%) comparison . 47

2.7 Sector level RMSPE (%) comparison . 48

2.8 RMSE comparison of different models for the one-day ahead forecasting on dif-
ferent symbols . 48

2.9 MAE comparison of different models for the one-day ahead forecasting on differ-
ent symbols . 49

2.10 MAPE (%) comparison of different models for the one-day ahead forecasting on
different symbols . 49

2.11 RMAPE (%) comparison of different models for the one-day ahead forecasting
on different symbols . 50

6.1 Some statistics of in-sample performance, DQN derived portfolio v.s. benchmark,
2017/10/08-2018/10/08 . 125

xiii

Chapter 1

Machine Learning and Deep Learning Preliminaries

1.1 Introduction to Machine Learning

Machine learning is the study of establishing models, or machines that can learn from

data. A commonly cited definition is “a computer program is said to learn from experience

E with respect to some class of tasks T and performance measure P , if its performance at

tasks in T , as measured by P , improves with experience E” [1]. Upon the distinction of

the tasks T , there are generally three subfields in machine learning: supervised learning,

unsupervised learning, and reinforcement learning.

In supervised learning, we are given a set of experience E that consists of N input-

output pairs {(x1, y1), . . . , (xN , yN)}, each represents a training example, in which the input

x is described by a vector of features, and the output y is often called the label. The task

T is to find a model f to predict the labels for a set of new test data. If the labels are

discrete, f(x) can be interpreted as an estimate of the category that x belongs to, and it is a

classification task; on the contrary, it is called a regression task if the labels are continuous.

Linear regression might be served as a simple form of the supervised learning problem, our

model in which is a linear transformation of the inputs: f(x) = wTx, in which w is a vector

of parameters, in the least squares setting, we aim at minimize the mean squared error

(MSE) over the training data:

1

N

N∑
i=1

||yi −wTxi||2. (1.1)

In contrast, in unsupervised learning problems, the experience E does not include the

labels, in other words, we are only given X, and the task T is to perform some transformation

1

or obtain some insight from the inputs, includes density estimation, dimensionality reduction,

clustering, and representation learning, etc.

We will introduce reinforcement learning in details in Chapter 3, but here we would like

to illustrate its distinction with supervised learning. In reinforcement learning, the actions

can be seen as labels, but our task T is sequential decision making, instead of making only

the decision once as in supervised learning. Moreover, the experience E is collected by

interacting with the environment throughout learning, unlike in supervised learning, all the

samples are given beforehand. Thus we would have the exploration-exploitation dilemma in

reinforcement learning, which we would like to address in Chapter 4.

1.2 Support Vector Machine

To explain the learning process from statistical point of view, [2] proposed VC learning

theory, and one of its major components characterizes the construction of learning machines

that enable them to generalize well. Based on that, Vapnik and his colleagues in Bell

laboratory developed the support vector machine (SVM) [3, 4] which has been shown as one

of the most influential supervised learning algorithms til now. The key insight of SVM is

that those points closest to the separator, called the support vectors, are more important

than others. Assigning non-zero weights only to those support vectors while constructing

the learning machine can lead to better generalization, and the separator is then called

the maximum margin separator. [5] then expanded the idea to regression problems, by

omitting the training points which deviate the actual targets less than a threshold ε while

calculating the cost. These points with small errors are also called support vectors, and the

corresponding learning machine for the classification or regression task is called the support

vector machine (SVM).

The goal of training SVM is to find a hyperplane that maximize the margin, which is

equivalent to minimize the norm of the weight vector for every support vectors, subject to

the constrains that make each training sample valid, i.e., the optimization problem can be

2

written as

min 1
2
||w||2

s.t. yi − wTxi − b ≤ ε

wTxi + b− yi ≤ ε

(1.2)

where xi is a training sample with target yi. We will not show the details here, but maximiz-

ing the Lagrangian dual is a much simpler quadratic programming optimization problem. It

is convex thus would not stuck in local optima, and has well-studied techniques to solve, such

as the squential minimal optimization (SMO) algorithm [6] that is specialized for minimizing

SVM loss.

[4] also introduced the idea of soft margin which allows some misclassification by as-

signing them a penalty proportional to the distance to their correct class. The allowance

of softness in margins dramatically reduces the computational work while training SVM,

but more importantly, it captures the noisiness of real world data and could obtain more

generalizable model, as in contrast, hard margin results in zero errors in training data, but

the model is possibly overfitting. Another key technique that makes SVM successful is the

use of so-called “kernel trick”, which maps the non-linearly-separable original input into

higher dimensional space so that the data become linearly-separable, thus greatly expand

the hypothesis space [7].

However, SVM has its own disadvantages. The performance of SVM is extremely sen-

sitive to the selection of the kernel function as well as the parameters. Another major

drawback to kernel machines is that the computational cost of training is high when the

dataset is large [8], and also suffers the curse of dimensionality and struggles to generalize

well.

3

1.3 Boosting

Rooted in probably approximately correct (PAC) learning [9], [10] posed the question

that whether a set of “weak” learners (i.e., learners that perform slightly better than ran-

dom guessing) can be combined to produce a learner with accuracy arbitrarily high. [11]

and [12] then showed the affirmative answer by giving a boosting algorithm, and the most

popular boosting algorithm Adaboost was also developed by [13]. Adaboost addresses two

fundamental questions in the idea of boosting: how to choose the distribution in each round,

and how to combine the weak rules into a single strong learner [14]. It uses the “importance

weights” to force the learner pay more attention on those examples having larger errors, that

is, iteratively fits a learner using the weighted data and updates the weights using the error

from the fitted learner, and lastly combines these weak learners together through a weighted

majority vote. Boosting is generally computationally efficient and has no difficult parame-

ters to set, it (theoretically) guarantees to provide desired accuracy given sufficient data and

a reliable base learner. However, practically, the performance of boosting significantly de-

pends on the sufficiency of data as well as the choice of base learner. Applying base learners

that are too weak would definitely fail to work, overly complex base learners could result in

overfitting on the other hand. It also seems susceptible to uniform noise [15], since it may

over-emphasize on the highly noisy examples in later training and result in overfitting.

As an “off-the-shelf” supervised learning method, the decision tree method is used most

common in the choice of base learners for boosting. It is one of the simplest to train yet

powerful and easy to represent. It partitions the space of all joint predictor variable values

into disjoint regions using greedy search, either based on the error or the information gain.

However, due to its greedy strategy, the results obtained by the decision tree might be

unstable and have high variance, thus often achieve lower generalization accuracy. One

common way to improve its performance is boosting, which primarily reduces the bias as

well as the variances [16].

4

1.3.1 Gradient Boosted Tree and XGBoost

The key idea of gradient boosting is to use gradient descent to find the optimal weak

learner at each iteration that forms the final additive model, which requires the objective

function to be differentiable to calculate the gradient. Consider the additive boosting, let

ft denote the weak learner obtained at iteration t, the predictive value of input xi can be

formed by the additive model as

ŷ
(t)
i =

t∑
k=1

fk(xi) = ŷ
(t−1)
i + ft(xi), (1.3)

The objective of the optimization problem is then

min J (t) =
n∑
i=1

L(yi, ŷ
(t)
i) +

t∑
i=1

Ω(fi) (1.4)

=
n∑
i=1

L
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ Ω(ft) + constant (1.5)

where L denotes the loss function, Ω is the regularization penalty, and n is the number of

samples. We can obtain Equation (1.5) since the weak learners from previous iterations are

fixed in additive boosting. Let gi and hi denote the gradient and Hession for the loss function

with respect to i-th sample, respectively, i.e.,

gi =
∂L(yi, ŷ

(t−1)
i)

∂ŷ
(t−1)
i

, (1.6)

hi =
∂2L(yi, ŷ

(t−1)
i)

∂(ŷ
(t−1)
i)2

. (1.7)

With Taylor expansion, we rewrite Equation (1.5) as

min J t =
n∑
i=1

[
L(yi, ŷ

t−1
i) + gift(xi)) + +

1

2
hif

2
t (xi)

]
+ Ω(ft) + constant (1.8)

=
n∑
i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft) (1.9)

5

after removing all the constants. This optimization problem then can be solved with the

gradient and Hessian for each sample as inputs.

As for gradient boosting tree, further define an individual tree can be parameterized as

ft(x) = wq(x), (1.10)

where w ∈ RT denotes the score vector on leaves, T is the number of leaves, and q : Rd →

{1, · · · , T} assigns sample x to the corresponding leaf. And define the regularization term

as

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j . (1.11)

Equation (1.9) can then be written as

min J t ≈
n∑
i=1

[
giwq(xi) +

1

2
hiw

2
q(xi)

]
γT +

1

2
λ

T∑
j=1

w2
j (1.12)

=
T∑
j=1

[
(
∑
i∈Ij

gi)wj +
1

2
(λ+

∑
j∈Ij

hi)w
2
j

]
+ γT (1.13)

where Ij = {i|q(xi) = j} is the index set for samples that are assigned to leaf j. We solve the

problem iteratively with greedy algorithm, i.e., coordinate descent for each leaf, then each

term in Equation (1.13) is of quadratic form, and has simple analytic solution that

w∗j = − Gj

Hj + λ
(1.14)

in which Gj =
∑

i∈Ij gi and Hj =
∑

i∈Ij hi for conciseness. And we can see how easily and

efficiently the gradient boosted tree can be obtained during an iteration with the gradient

and Hession information, according to Equation (1.14).

XGBoost [17] refers to a software package that implements the gradient boosting with

extreme engineering effort. It was designed to be scalable, efficient, flexible and portable,

6

the common advantages of XGBoost include: cache-aware access for memory efficiency, out-

of-core computation, efficient handling of sparse data, theoretical justified approximation

for instance weights, built-in cross-validation for regularization and tree pruning, etc. The

library is very user-friendly, training XGBoost models can be very fast and easily parallelized

as well as distributed across cluster.

1.4 Bagging and Random Forest

The name “bagging” is abbreviated from bootstrap aggregating, which is another en-

semble meta-algorithm in machine learning. Bagging averages the predicted value (or aggre-

gates votes with equal weights as in classification task) over a collection of bootstrap subset

of training samples (i.e., by sampling with replacement), thus reducing the variance. The

bagging estimate would differ from the original estimate only if the latter is a nonlinear or

adaptive function of the data [16].

Some supervised learning methods, such as the decision tree, are sensitive to outliers

and have high variance, thus are often combined with bagging to avoid an individual model

overfitting the training data. Random forest [18] further improves the bagged decision trees.

While each decision tree selects optimal split on features with greedy algorithm, even with

bagging, the outputs from different trees are often highly correlated, due to the similarity of

trees. Random forest alleviates this issue by searching over only a random subset of features

for each split, results in less correlation in the outputs.

1.5 Neural Networks and Deep Learning

Inspired by complex biological neuron system in our brain, the artificial neurons were

proposed by [19] using the threshold logic. [20] and [21] independently discovered the back-

propagation algorithm which could train complex multi-layer perceptrons effectively by com-

puting the gradient of the objective function with respect to the weights, and made the

complicated neuron networks widely used since then, especially since the reviving of deep

7

learning field from 2006 as the parallel computing emerged quickly. Neural networks have

been shown as the most successful among machine learning models in stock market predic-

tion, due to its ability to handle complex nonlinear systems over the complex stock market

data.

In neural networks, the features are as input x and weighted summed (z = wTx), the

information are then transformed by the functions in each neuron and propagated through

layers, finally to the output we desired. If there were hidden layers between the input and

output layer, the network is called “deep”, and the hidden layers could distort the linearity of

the weighted sum of inputs, so that the outputs become linearly separable. Theoretically, we

can approximate any function that maps the input to the output, if the number of neurons are

not limited. And that gives the neural networks the ability to obtain higher accuracy in stock

market prediction, where the model is extremely complicated. The functions in each neuron

are called “activations”, and could have many different types. The most commonly used

activation before deep learning era is the sigmoid function, which is smooth and has easy-to-

express first order derivative (in terms of the sigmoid function itself), thus is appropriate to

train by using back-propagation. Furthermore, its bell-shaped curve is good for classification,

but as for regression, this property might be a disadvantage. It is worth to note that the

rectified linear unit (ReLU) [22], which takes the simple form f(z) = max(z, 0), has the

advantage of less likely to have vanishing gradient but rather constant (when z > 0), thus

results in faster learning in networks with many layers. Also, the sparcity of its weights

arises as z < 0, thus could reduce the complexity of the representation on large architecture.

Both properties allow the ReLU become one of the dominant non-linear activation functions

in the last few years, especially in the field of deep learning [23].

1.5.1 Convolutional neural network

Convolutional neural networks (CNNs) are a special family of deep neural network

model, and have been tremendously successful in practical applications, especially in the field

8

of computer vision for processing 2D image data. In contrast to standard fully-connected

neural networks in which a separate weight describes an interaction between each input

and output pair, CNN shares the parameters for multiple mappings. This is achieved by

constructing a bunch of kernels (or filters) with fixed size (which is generally much smaller

than that of the input), each consists of a set of trainable parameters, therefore, the number

of parameters is greatly reduced. The size of the kernels is generally much smaller than

that of the input, and each kernel is slide over the entire input to create a feature map.

Multiple kernels are usually trained and used together, each is specialized in capturing a

specific feature from the data. Note that the so-called convolution operation is technically a

cross-correlation in general, which generates linear combinations of a small subset of input,

thus focusing on local connectivity. Fundamentally, with CNNs we assume that the input

data has some grid-like topology, and the same characteristic of the pattern would be the

same for every location, i.e., yields the property of equivariance to translation [24]. The size

of the output would then not only depend on the size of the input, also on several settings of

the kernels: the stride, padding, and the number of kernels. The stride s denotes the interval

size between two consecutive convolution centers, and can be thought of as downsampling the

output. Whereas with padding, we add values (zeros are used most often) at the boundary of

the input, which is primarily used to control the output size, but as we will show later, it can

also be applied to manage the starting position of the convolution operation on the input.

The number of kernels adds another dimensionality on the output, and is often denoted as

the number of channels.

1.5.2 Recurrent neural network

Recurrent neural network (RNN) and its variants of sequence to sequence (Seq2Seq)

framework [25] have achieved great success in many sequential modeling tasks, such as ma-

chine translation [26], speech recognition [27], natural language processing [28], and extended

9

to autoregressive time series forecasting [29, 30] in recent years. However, RNN suffers sev-

eral major problems, for instance, due to its inherent temporal nature (i.e., the hidden state

is propagated through time), the training cannot be parallelized; moreover, training with

backpropagation through time (BPTT) [31], RNN can severely suffer the problem of gra-

dient vanishing thus actually cannot capture long time dependency [32]. More elaborate

architectures of RNN use gating mechanisms to alleviate the gradient vanishing problem,

the long short-term memory (LSTM) [33] and its simplified variant, the gated recurrent unit

(GRU) [34], are the two popular architectures commonly used in practice.

In LSTM, a memory cell is used to store the states at time step t, as the cell state

vector ct and a hidden state vector ht would be propagated over time as the information

flow. Inside each memory cell, the flow is controlled by parameterized gates: the forget gate

ft, the input gate it, and the output gate ot. The forward propagation of an LSTM cell can

be summarized as follows:

ft = σ(Wf

[
xt,ht−1

]
+ bf) (1.15)

it = σ(Wi

[
xt,ht−1

]
+ bi) (1.16)

ot = σ(Wo

[
xt,ht−1

]
+ bo) (1.17)

c̃t = tanh(Wc

[
xt,ht−1

]
+ bc) (1.18)

ct = ft � ct−1 + it � c̃t (1.19)

ht = ot � ct (1.20)

where [xt,ht−1] ∈ Rdh+dx denotes the concatenation of the current input xt ∈ Rdx and the pre-

vious hidden state ht−1 ∈ Rdh , the activation σ is often a sigmoid function, while the operator

� denotes the Hadamard product. Wf ,Wi,Wo,Wc ∈ Rdh×(dh+dx) and bf ,bi,bo,bc ∈ Rdh

are the weights and bias parameters to be learned.

GRU combines the forget gate and input gate in LSTM to a single “update gate” zt,

thus is simpler and has fewer parameters to learn. To eliminate confusion due to renaming,

10

we note that the reset gate rt and hidden state ht correspond to the output gate and the

cell state in its LSTM counterpart, respectively. The update of a GRU cell is very similar

to that of LSTM, and is summarized as follows:

zt = σ(Wz

[
xt,ht−1

]
+ bz) (1.21)

rt = σ(Wr

[
xt,ht−1

]
+ br) (1.22)

h̃t = tanh(Wh

[
xt, it � ht−1

]
+ bh) (1.23)

ht = (1− zt)� ht−1 + zt � h̃t (1.24)

1.6 Regularization

In statistics, weight decay is often called Ridge, or simply L2 regularization. As argubly

the most common regularizer, weight decay is imposed for most of our models, in which

the training objective function is assumed to include a regularization term that penalizes a

perturbation of unknown parameters in terms of L2 norm, i.e.,

ŵ = arg min
w

{
L(w) + λ||w||22

}
, (1.25)

where λ ≥ 0 is a complexity parameter that controls the amount of regularization. It is

equivalent to adding a hard constrain of the weights to an Euclidean ball, with the radius

decided by the amount of weight decay, i.e., an equivalent way of rewriting (1.25) is

ŵ = arg min
w
L

subject to ||w||22 ≤ t,
(1.26)

Note there is a one-to-one correspondence between λ in (1.25) and t in (1.26). We could also

think of weight decay from Bayesian perspective, it then corresponds to using a symmetric

multivariate normal distribution as prior for the weights, i.e., p(w) ∼ N (w|0, λ−1I), as a

result, − logN (w|0, λ−1I) ∝ − log exp(−λ
2
||w||22) = λ

2
||w||22.

11

Just as in weight decay, the Lasso (Least Absolute Shrinkage and Selection Operator)

estimate [35] is defined as

ŵ = arg min
w
L

subject to |w| ≤ t,
(1.27)

And its equivalent Lagrangian form is written as

ŵ = arg min
w

{
L(w) + λ|w|

}
, (1.28)

In addition to the shrinkage effect as in Ridge, Lasso also performs variable selection.

As the sparsity of the variables can be measured by the L0 norm, however, the most straight-

forward optimization problem for imposing sparsity that

arg min
w

{
L(w) + λ||w||0

}
, (1.29)

is intractable. Lasso can be seen as a convex relaxation for (1.29), in which the L1 norm is

used to replace the non-convex L0 norm to impose sparsity. While linear models with Lasso

regularization are often solved with least angle regression (LAR) [36], more generally, such a

convex optimization problem can be solved efficiently using proximal gradient descent such

as iterative thresholding algorithm (ITA) [37], as long as L(w) is convex and has Lipschitz

continuous gradient while the other term only needs to be convex, which is often the case

in design of machine learning systems. In particular, the alternating direction method of

multipliers (ADMM) [38] also often serves as the solver, especially for distributed model

fitting with big data, or deriving heuristics when the objective is non-convex. For more

details on proximal gradient methods, readers can refer to [39].

A number of simple yet powerful regularization methods have been proposed in recent

years that dedicate to prevent overfitting in training deep learning models. Besides the

general weight decay and Lasso, such methods include data augmentation [40], early stopping

[41], dropout [42], etc. Dropout is a stochastic regularization method which imposes sparsity

12

constraints by randomness. During training, dropout masks out each element of a layer

output randomly with a given dropout probability, this prevents units from excessive co-

adapting since the dropped-out neurons can no longer affect other retained units. At test

time, predictions are obtained by using the output of all neurons, but are scaled down by

the dropout probability. Another way to interpret dropout is that it yields a very efficient

form of model averaging where the number of trained models is exponential in that of units,

and these models share the same parameters [43].

It also been shown that a bunch of recent advances on deep learning optimization tech-

niques have implicit regularization effect, such as learning rate decay, batch normalization,

etc. Batch normalization [44] has been proposed for resolving the internal covariant shift by

normalizing layer inputs, in which the distribution of inputs of each layer changes during

the training process. However, experimental studies has proven that it also induces both

faster convergence and better generalization, by enabling large learning rate and preventing

overfitting when training deep networks.

1.7 Principal Component Analysis (PCA) and Robust PCA

The principal component analysis (PCA) in some ways formed the multivariate data

analysis and is probably the most commonly used multivariate technique. Its origin can be

traced back to [45], who described the geometric view of this analysis as looking for lines and

planes of closest fit to systems of points in space. [46] further developed this technique and

came up with the term “principal component”. The goal of PCA is to extract and only keep

the important information of the data. To achieve this, PCA projects the original data into

principal components (PCs), also called PC-scores, which are derived as linear combinations

of the original variables so that the second-order reconstruction error is minimized. As we

know, for normal variables with mean zero, the second-order covariance matrix contains all

the information about the data. Thus the PCs provide the best linear approximation to

the original data, the first PC is computed as the linear combination to capture the largest

13

possible variance, then the second PC is constrained to be orthogonal to the first PC while

capture the largest possible variance left, and so on. This process can be obtained through

the singular value decomposition (SVD), while indeed the PCA is often solved by truncated

SVD. Since the variance depends on the scale of the variables, standardization (i.e., centering

and scaling) is needed beforehand so that each variable has zero mean and unit standard

deviation. Let X be the standardized data matrix, the covariance matrix can be obtained

as Σ = 1
n
XXT , which is symmetric and positive definite. By spectral theorem, we can write

Σ = QΛQT , where Λ is a diagonal matrix consists of ordered eigenvalues of Σ, and the column

vectors of Q are the correspondent eigenvectors which are orthonormal. The PCs then can be

obtained as the columns of QΛ. It can be shown [47] that the total variation is equal to the

sum of the eigenvalues of the covariance matrix
∑p

i=1 Var(PCi) =
∑p

i=1 λi =
∑p

i=1 trace(Σ),

and the fraction
∑k

i=1 λi/trace(Σ) gives the cumulative proportion of the variance explained

by the first k PCs. In many cases, the first a few PCs have captured most variation, so

the remaining components can be disregarded only with minor information loss. Also it is

important to note that PCA derives orthogonal components which are uncorrelated with

each other. The optimization problem can then be written as

arg min
A
||X − A||2F

subject to rank(A) ≤ k
(1.30)

where F denotes the Frobenius norm, and A is the low rank representation for the centered

data X, with the truncated SVD solution A =
∑

i≤k σiuiv
T
i .

However, just as other linear models, PCA is highly sensitive to outliers. Robust PCA

[48, 49], also called Principal Component Pursuit, solves this issue by considering an addi-

tional structure which is assumed to present the sparse outliers, i.e., X = A+Z +E, where

Z is the matrix of sparse outliers, and E denotes rest of the noise. The optimization problem

14

is then becomes

min
A

rank(A) + λ||Z||0

subject to X = A+ Z
(1.31)

where λ is the regularization term for Z. While solving the above problem is intractable,

two convex relaxations are made. First, the nuclear norm of A, i.e., the sum of singular

values, ||A||∗ =
∑

i σi(A) replaces the real rank (which can be seen as the L0 norm of Σ),

this relaxation is often applied in solving matrix completion problem. Second, as in Lasso,

L1 instead of L0 norm of Z is used. We can then write it in augmented Lagrangian form as

L(A,Z, Y) = ||A||∗ + λ||Z||1+ < Y,X − (A+ Z) > +
µ

2
||X − (A+ Z)||2F (1.32)

where Y and µ
2

are the coefficients for the Lagrangian term and the augmentation, respec-

tively, and < ·, · > denotes the inner product. This convex problem can then be solved in

the form of ADMM with further improvement borrowed elsewhere as follows:

• Given Z and Y , update A:

arg min
A
||A||∗ +

µ

2
||X − A− Z +

Y

µ
||2F .

Note this step is very similar to the convex relaxation of matrix completion prob-

lem, and can be efficiently solved by singular value thresholding (SVT) [50], i.e., soft-

thresholding on the singular values of matrix X − S + Y
µ

by 1
µ
.

• Given A and Y , update Z:

arg min
Z
||Z||1 +

µ

2
||X − A− Z +

Y

µ
||2F .

While this step has the same form as Lasso, it has closed form solution with soft-

thresholding the scalar entries by λ
µ
, i.e., Z = sgn(X−A+ Y

µ
) max(|X−A+ Y

µ
|− λ

µ
, 0).

15

• Given A and Z, update Y as in ADMM:

Y ←− Y + µ(X − A− Z).

And the above procedure iterates until convergence. Note that the robust PCA can be seen

as a special case of imposing regularization on PCA.

1.8 Summary

In this chapter, we introduced several widely applied machine learning models, which

serve as a preliminaries for our later chapters, especially for our predictive modelling appli-

cation in the stock market. The SVM model gives us a general illustration for the linkage

between modeling and learning theory. As we will illustrate in Chapter 2, CNN is one of the

major components in our proposed model, while its RNN counterpart serves as an important

benchmark. We introduced the ensemble models, boosting and bagging in particular, not

only since we use the XGBoost and random forest models for additional benchmarking, more

importantly, the idea of combining useful and powerful components to form a strong model in

order to addressing some particular issue in our need is applied throughout our dissertation.

We also discussed several techniques of regularization, as different forms of regularization

are applied in all of our models, also although it is not elaborated in this dissertation, de-

veloping regularization through optimization advances is one of our major research focus

and interest. Finally, we discussed PCA in details, as we used this unsupervised learning

technique not only to accomplish some dimensionality reduction tasks for visualization, also

for the purpose of comparing with another major component in our proposed model, namely

the neural embedding, which is shown in Chapter 2.

16

Chapter 2

Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction with

Representation Learning and Temporal Convolutional Network

We have proposed to develop a global hybrid deep learning framework to predict the

daily prices in the stock market. We used entity embedding for the stocks, and trained the

models globally over the whole stock market. The trained embedding layer Stock2Vec can

reveal some insight of the relationship among stocks, so that we can combine the market

information which helps improving the model performance. In addition, 1-D dilated causal

convolutional layers are used for capturing the temporal patterns both within and across

series from historical data, lead to more accurate predictions. Finally, the models were

evaluated on S&P500.

2.1 Introduction

In finance, the classic strong efficient market hypothesis (EMH) posits that the stock

prices follow random walk and cannot be predicted [51]. Consequently, the well-known

capital assets pricing model (CAPM) [52, 53, 54] serves as the foundation for portfolio

management, asset pricing, among many applications in financial engineering. The CAPM

assumes a linear relationship between the expected return of an asset (e.g., a portfolio, an

index, or a single stock) and its covariance with the market return, i.e., for a single stock,

CAPM simply predicts its return ri within a certain market with the linear equation

ri(t) = αi + βirm(t),

17

where the Alpha (αi) describes the stock’s ability to beat the market, also refers to as its

“excess return” or “edge”, and the Beta (βi) is the sensitivity of the expected returns of

the stock to the expected market returns (rm). Both Alpha and Beta are often fitted using

simple linear regression based on the historical data of returns. With the efficient market

hypothesis (EMH), the Alphas are entirely random with expected value of zero, and can not

be predicted.

In practice, however, financial markets are more complicated than the idealized and

simplified strong EMH and CAPM. Active traders and empirical studies suggest that the

financial market is never perfectly efficient and thus the stock prices as well as the Alphas can

be predicted, at least to some extent. Based on this belief, stock prediction has long played a

key role in numerous data-driven decision-making scenarios in financial market, such as deriv-

ing trading strategies, etc. Among various methods for stock market prediction, the classical

Box-Jenkins models [55], exponential smoothing techniques, and state space models [56] for

time series analysis are most widely adopted, in which the factors of autoregressive struc-

ture, trend, seasonality, etc. are independently estimated from the historical observations of

each single series. In recent years, researchers as well as the industry have deployed various

machine learning models to forecast the stock market, such as k-nearest neighbors (kNN)

[57, 58], hidden Markov model (HMM) [59, 60], support vector machine (SVM) [61, 62],

artificial neural network (ANN) [63, 64, 65, 66, 67], and various hybrid and ensemble meth-

ods [68, 69, 70, 68, 71], among many others. The literature has demonstrated that machine

learning models typically outperform traditional statistical time series models, which might

be mainly due to the following reasons: 1) less strict assumption for the data distribution

requirement, 2) various model architecture can effectively learn complex linear and non-liner

from data, 3) sophisticated regularization techniques and feature selection procedures pro-

vide flexibility and strength in handling correlated input features and control of overfitting,

so that more features can be thrown in the machine learning models. As the fluctuation of

the stock market indeed depends on a variety of related factors, in addition to utilizing the

18

historical information of stock prices and volumes as in traditional technical analysis [72],

recent research of stock market forecasting has been focusing on informative external source

of data, for instance, the accounting performance of the company [73], macroeconomic effects

[74, 71], government intervention and political events [75], etc. With the increased popularity

of web technologies and their continued evolution, the opinions of public from relevant news

[76] and social media texts [77, 78] have an increasing effect on the stock movement, various

studies have confirmed that combining the extensive crowd-sourcing and/or financial news

data facilitates more accurate prediction [79].

During the last decade, with the emergence of deep learning, various neural network

models have been developed and achieved success in a broad range of domains, such as

computer vision [80, 81, 82, 83] and natural language processing [84, 85, 86]. For stock pre-

diction specifically, recurrent neural networks (RNNs) are the most preferred deep learning

models to be implemented [87, 88]. Convolutional neural networks (CNNs) have also been

utilized, however, most of the work transformed the financial data into images to apply 2D

convolutions as in standard computer vision applications. For example, the authors of [89]

converted the technical indicators data to 2D images and classified the images with CNN

to predict the trading signals. Alternatively, [90] directly used the candlestick chart graphs

(which uses candles to visually representing the open, close, low and high prices, and denot-

ing the moves with different colors) as inputs to determine the Buy, Hold and Sell behavior

as a classification task, while similarly in [91], the bar chart images were fed into CNN. The

authors of [92] uses a 3D CNN-based framework to extract various sources of data including

different markets for predicting the next day’s direction of movement of five major stock

indices, which showed a significant improved prediction performance compared to the base-

line algorithms. There also exists research combining RNN and CNN together, in which the

temporal patterns were learned by RNNs, while CNNs were only used for either capturing

the correlation between nearby series (in which the order matters if there are more than 2

series) or learning from images, see [93, 94]. Deployment of CNN in all these studies differs

19

significantly from ours, since we aim at capturing the temporal patterns without relying

on two-dimensional convolutions. In [95], 1D causal CNN was used for making predictions

based on the history of closing prices only, while no other features were considered.

Note that all of the aforementioned work has put their effort into learning more accurate

Alphas, and most of the existing research focuses on deriving separate models for each of the

stock, while only few authors consider the correlation among different stocks over the entire

markets as a possible source of information. In other words, the Betas are often ignored.

At the same time, since it is natural to assume that markets can have nontrivial correlation

structure, it should be possible to extract useful information from group behavior of assets.

Moreover, rather than the simplified linearity assumed in CAPM, the true Betas may exhibit

more complicated nonlinear relationships between the stock and the market.

In this chapter, we propose a new deep learning framework that leverages both the

underlying Alphas and (nonlinear) Betas. In particular, our approach innovates in the

following aspects:

1) from model architecture perspective, we build a hybrid model that combines the advan-

tages of both representation learning and deep networks. With representation learn-

ing, specifically, we use embedding in the deep learning model to derive implicit Betas,

which we refer to as Stock2Vec, that not only gives us insight into the correlation struc-

ture among stocks, but also helps the model more effectively learn from the features

thus improving prediction performance. In addition, with recent advances on deep

learning architecture, in particular the temporal convolutional network, we further re-

fine Alphas by letting the model automatically extract temporal information from raw

historical series.

2) and from data source perspective, unlike many time series forecasting work that di-

rectly learn from raw series, we generate technical indicators features supplemented

with external sources of information such as online news. Our approach differs from

20

most research built on machine learning models, since in addition to explicit hand-

engineered temporal features, we use the raw series as augmented data input. More

importantly, instead of training separate models on each single asset as in most stock

market prediction research, we learn a global model on the available data over the

entire market, so that the relationship among different stocks can be revealed.

The rest of this chapter is organized as follows. Section 2.2 lists several recent advances

that are related to our method, in particular deep learning and its applications in forecasting

as well as the representation learning. Section 2.3 illustrates the building blocks and details of

our proposed framework, specifically, Stock2Vec embedding and the temporal convolutional

network, as well as how our hybrid models are built. Our models are evaluated on the

S&P 500 stock price data and benchmarked with several others, Section 2.4 describes the

sample data, while the evaluation results as well as the interpretation of Stock2Vec are

shown in Section 2.5. Finally, we conclude our findings and discuss the meaningful future

work directions in Section 2.6.

2.2 Related Work

Recurrent neural network (RNN) and its variants of sequence to sequence (Seq2Seq)

framework [25] have achieved great success in many sequential modeling tasks, such as ma-

chine translation [26], speech recognition [27], natural language processing [28], and exten-

sions to autoregressive time series forecasting [29, 30] in recent years. However, RNNs can

suffer from several major challenges. Due to its inherent temporal nature (i.e., the hidden

state is propagated through time), the training cannot be parallelized. Moreover, trained

with backpropagation through time (BPTT) [31], RNNs severely suffer from the problem

of gradient vanishing (i.e., the backpropagated gradients easily approach zero in deep mod-

els with chain rule, and the model can hardly learn from the backpropagated loss through

gradient descent), thus often cannot capture long time dependency [32]. More elaborate

architectures of RNNs use gating mechanisms to alleviate the gradient vanishing problem,

21

with the long short-term memory (LSTM) [33] and its simplified variant, the gated recurrent

unit (GRU) [34] being the two canonical architectures commonly used in practice.

Another approach, convolutional neural networks (CNNs) [96], can be easily parallelized,

and recent advances effectively eliminate the vanishing gradient issue and hence help building

very deep CNNs. These works include the residual network (ResNet) [97] and its variants

such as highway network [98], DenseNet [99], etc. In the area of sequential modeling, 1D

convolutional networks offered an alternative to RNNs for decades [100]. In recent years, [101]

proposed WaveNet, a dilated causal convolutional network as an autoregressive generative

model. Ever since, multiple research efforts have shown that with a few modifications,

certain convolutional architectures achieve state-of-the-art performance in the fields of audio

synthesis [101], language modeling [102], machine translation [103], action detection [104],

and time series forecasting [105, 106]. In particular, [107] abandoned the gating mechnism in

WaveNet and proposed temporal convolutional network (TCN). The authors benchmarked

TCN with LSTM and GRU on several sequence modeling problems, and demonstrated that

TCN exhibits substantially longer memory and achieves better performance.

Learning of the distributed representation has also been extensively studied [108, 109,

110] with arguably the most well-known application being word embedding [28, 84, 85] in

language modeling. Word embedding maps words and phrases into distributed vectors in a

semantic space in which words with similar meaning are closer, and some interesting relations

among words can be revealed, such as

King−Man ≈ Queen−Woman

Paris− France ≈ Rome− Italy

as shown in [84]. Motivated by Word2Vec, the neural embedding methods have been ex-

tended to other domains in recent years. The authors of [111] obtained item embedding

for recommendation systems through a collaborative filtering neural model, and called it

22

Item2Vec which is capable of inferring relations between items even when user informa-

tion is not available. Similarly, [112] proposed Med2Vec that learns the medical concepts

with the sequential order and co-occurrence of the concept codes within patients’ visit, and

showed higher prediction accuracy in clinical applications. In [113], the authors mapped

every categorical features into “entity embedding” space for structured data and applied it

successfully in a Kaggle competition, they also showcased the learned geometric embedding

coincides with the real map surprisingly well when projected to 2D space.

In the field of stock prediction, the term “Stock2Vec” has already been used before.

Specifically, [114] trained word embedding that specializes in sentiment analysis over the

original Glove and Word2Vec language models, and using such a “Stock2Vec” embedding

and a two-stream GRU model to generate the input data from financial news and stock prices,

the authors predicted the price direction of S&P500 index. The authors of [115] proposed

another “Stock2Vec” which also can be seen as a specialized Word2Vec, trained using the co-

occurences matrix with the number of the news articles that mention both stocks as entries.

Stock2Vec model proposed here differs from these homonymic approaches and has its distinct

characteristics. First, our Stock2Vec is an entity embedding that represent the stock entities

rather than a word embedding that denotes the stock names with language modeling. As

the difference between entity embedding and word embedding may seem ambiguous, more

importantly, instead of training the linguistic models with the co-occurrences of the words,

our Stock2Vec embedding is trained directly as features through the overall predictive model,

with the direct objective that minimizes prediction errors, thus illustrating the relationships

among entities, while the others are actually fine-tuned subset of the original Word2Vec

language model. Particularly inspiring for our work are the entity embedding [113] and the

temporal convolutional network [107].

23

2.3 Methodology

2.3.1 Problem Formulation

We focus on predicting the future values of stock market assets given the past. More for-

mally speaking, our input consists of a fully observable time series signals y1:T = (y1, · · · , yT)

together with another related multivariate series X1:T = (x1, · · · ,xT), in which xt ∈ Rn−1,

and n is the total number of series in the data. We aim at generating the correspond-

ing target series ŷT+1:T+h = (ŷT+1, · · · , ŷT+h) ∈ Rh as the output, where h ≥ 1 is the

prediction horizon in the future. To achieve the goal, we will learn a sequence modeling

network with parameters θ to obtain a nonlinear mapping from the input state space to

the predicted series, i.e., ŷT+1:T+h = f(X1:T ,y1:T |θ), so that the distribution of our output

could be as close to the true future values distribution as possible. That is, we wish to

find minθ EX,y

∑T+h
t=T+1 KL

(
yt||ŷt

)
. Here, we use Kullback-Leibler (KL) divergence to mea-

sure the difference between the distributions of the true future values yT+1:T+h and the

predictions ŷT+1:T+h. Note that our formulation can be easily extended to multivariate

forecasting, in which the output and the corresponding input become multivariate series

ŷT+1:T+h ∈ Rk×h and y1:T ∈ Rk×h, respectively, where k is the number of forecasting vari-

ables. The related input series is then X1:T ∈ R(n−k)×T , and the overall objective becomes

minθ EX1:T ,y1:T

∑T+h
t=T+1

∑k
i=1 KL

(
yi,t||ŷi,t

)
.

2.3.2 A Distributional Representation of Stocks: Stock2Vec

In machine learning fields, the categorical variables, if are not ordinal, are often one-hot

encoded into a sparse representation. i.e.,

e : x 7→ δ(x, c),

where δ(x, c) is the Kronecker delta, in which each dimension represents a possible category.

Let the number of categories of x be |C|, then δ(x, c) is a vector of length |C| with the

24

only element set to 1 for x = c, and all others being zero. Note that although providing

a convenient and simple way of representing categorical variables with numeric values for

computation, one-hot encoding has various limitations. First of all, it does not place similar

categories closer to one another in vector space, within one-hot encoded vectors, all cate-

gories are orthogonal to each other thus are totally uncorrelated, i.e., it cannot provide any

information on similarity or dissimilarity between the categories. In addition, if |C| is large,

one-hot encoded vectors can be high-dimensional and often sparse, which means that the

model has to involve a large number of parameters resulting in inefficient computations. For

the cross-sectional data that we use for stock market, the number of total interactions be-

tween all pairs of stocks increases exponentially with the number of symbols we consider, for

example, there are approximately
(

500
2

)
≈ 0.1 million pairwise interactions among the S&P

500 stocks. This number keeps growing exponentially as we add more features to describe the

stock price performance. Therefore, trading on cross-sectional signals is remarkably difficult,

and approximation methods are often applied.

We would like to overcome the abovementioned issue by reducing the dimensionality of

the categorical variables. Common (linear) dimensionality reduction techniques include the

principal component analysis (PCA), singular value decomposition (SVD), which operate by

maintaining the first few eigen- or singular vectors corresponding to the largest few eigen-

or singular values. PCA and SVD make efficient use of the statistics from the data and have

been proven to be effective in various fields, yet they do not scale well for big matrices (e.g.,

the computational cost is O(n3) for a n×n matrix), and they cannot adapt to minor changes

in the data. In addition, the unsupervised transformation based on PCA or SVD do not

use predictor variable, and hence it is possible that the derived components that serve as

surrogate predictors provide no suitable relationship with the target. Moreover, since PCA

and SVD utilize the first and second moments, they rely heavily on the assumption that the

original data have approximate Gaussian distribution, which also limits the effectiveness of

their usage.

25

Neural embedding is another approach to dimensionality reduction. Instead of com-

puting and storing global information about the big dataset as in PCA or SVD, neural

embedding learning provides us a way to learn iteratively on a supervised task directly. In

this paper, we present a simple probabilistic method, Stock2Vec, that learns a dense dis-

tributional representation of stocks in a relatively lower dimensional space, and is able to

capture the correlations and other more complicated relations between stock prices as well.

The idea is to design such a model whose parameters are the embeddings. We call a

mapping φ : x→ RD a D-dimensional embedding of x, and φ(x) the embedded representa-

tion of x. Suppose the transformation is linear, then the embedding representation can be

written as

z = Wx =
∑
c

wcδx,c.

The linear embedding mapping is equivalent to an extra fully-connected layer of neural

network without nonlinearity on top of the one-hot encoded input. Then each output of the

extra linear layer is given as

zd =
∑
c

wc,dδx,c = wdx,

where d stands for the index of embedding layer, and wc,d is the weight connecting the one-

hot encoding layer to the embedding layer. The number of dimensions D for the embedding

layer is a hyperparameter that can be tuned based experimental results, usually bounded

between 1 and |C|. For our Stock2Vec, as we will introduce in Section 2.5, there are 503

different stocks, and we will map them into a 50-dimensional space.

The assumption of learning a distributional representation is that the series that have

similar or opposite movement tend to correlated with each other, which is consistent with the

assumption of CAPM, that the return of a stock is correlated with the market return, which

in turn is determined by all stocks’ returns in the market. We will learn the embeddings

as part of the neural network for the target task of stock prediction. In order to learn

the intrinsic relations among different stocks, we train the deep learning model on data of

26

all symbols over the market, where each datum maintains the features for its particular

symbol’s own properties, include the symbol itself as a categorical feature, with the target

to predict next day’s price. The training objective is to minimize the mean squared error of

the predicted prices as usual.

Output

Dropout

Dense Layer

Concatenate

Dropout + BN + ReLU

Dense Layer

Dropout + BN + ReLU

Dense Layer

Categorical Input Continuous Input

Embedding Normalization

Figure 2.1: Model Architecture of Stock2Vec.

2.3.3 Temporal Convolutional Network

Sequential data often display long-term correlations and can be though of as a 1D

grid with samples taken at regular time intervals. CNNs have shown success in time series

applications, in which the 1D convolution is simply an operation of sliding dot products

between the input vector and the kernel vector. However, we make several modifications to

traditional 1D convolutions according to recent advances. The detailed building blocks of

our temporal CNN components are illustrated in the following subsections.

Causal Convolutions

As we mentioned above, in a traditional 1D convolutional layer, the filters are slided

across the input series. As a result, the output is related to the connection structure between

the inputs before and after it. As shown in Figure 2.2(a), by applying a filter of width

2 without padding, the predicted outputs x̂1, · · · , x̂T are generated using the input series

27

x1, · · · , xT . The most severe problem within this structure is that we use the future to

predict the past, e.g., we have used x2 to generate x̂1, which is not appropriate in time

series analysis. To avoid the issue, causal convolutions are used, in which the output xt is

convoluted only with input data which are earlier and up to time t from the previous layer.

We achieve this by explicitly zero padding of length (kernel size − 1) at the beginning of

input series, as a result, we actually have shifted the outputs for a number of time steps.

In this way, the prediction at time t is only allowed to connect to historical information,

i.e., in a causal structure, thus we have prohibited the future affecting the past and avoided

information leakage. The resulted causal convolutions is visualized in Figure 2.2(b).

(a) standard (non-causal) (b) causal

Figure 2.2: Visualization of a stack of 1D convolutional layers, non-causal v.s. causal.

Dilated Convolutions

Time series often exhibits long-term autoregressive dependencies. With neural network

models hence, we require for the receptive field of the output neuron to be large. That is, the

output neuron should be connected with the neurons that receive the input data from many

time steps in the past. A major disadvantage of the aforementioned basic causal convolution

is that in order to have large receptive field, either very large sized filters are required, or

those need to be stacked in many layers. With the former, the merit of CNN architecture

is lost, and with the latter, the model can become computationally intractable. Following

28

[101], we adopted the dilated convolutions in our model instead, which is defined as

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d×i,

where x ∈ RT is a 1-D series input, and f : {0, · · · , k − 1} → N is a filter of size k, d is

called the dilation rate, and (s − d × i) accounts for the direction of the past. In a dilated

convolutional layer, filters are not convoluted with the inputs in a simple sequential manner,

but instead skipping a fixed number (d) of inputs in between. By increasing the dilation

rate multiplicatively as the layer depth (e.g., a common choice is d = 2j at depth j), we

increase the receptive field exponentially, i.e., there are 2l−1k input in the first layer that

can affect the output in the l-th hidden layer. Figure 2.3 compares non-dilated and dilated

causal convolutional layers.

Residual Connections

In traditional neural networks, each layer feeds into the next. In a network with residual

blocks, by utilizing skip connections, a layer may also short-cut to jump over several others.

The use of residual network (ResNet) [97] has been proven to be very successful and become

the standard way of building deep CNNs. The core idea of ResNet is the usage of shortcut

connection which skips one or more layers and directly connects to later layers (which is the

so-called identity mapping), in addition to the standard layer stacking connection F . Figure

2.4 illustrates a residual block, which is the basic unit in ResNet. A residual block consists

of the abovementioned two branches, and its output is then g(F(x) + x), where x denotes

the input to the residual block, and g is the activation function.

By reusing activation from a previous layer until the adjacent layer learns its weights,

CNNs can effectively avoid the problem of vanishing gradients. In our model, we implemented

double-layer skips.

29

Output

Dilation = 1

Hidden Layer

Hidden Layer

Hidden Layer

Input

Dilation = 2

Dilation = 4

Dilation = 8

Output

Hidden Layer

Hidden Layer

Hidden Layer

Input

(a) Non-dilated

Output

Dilation = 1

Hidden Layer

Hidden Layer

Hidden Layer

Input

Dilation = 2

Dilation = 4

Dilation = 8

Output

Hidden Layer

Hidden Layer

Hidden Layer

Input

(b) Dilated

Figure 2.3: Visualization of a stack of causal convolutional layers, non-dilated v.s. dilated.

2.3.4 The Hybrid Model

Our overall prediction model is constructed as a hybrid, combining Stock2Vec embed-

ding approach with an advanced implementation of the temporal convolutional network

(TCN), schematically represented on Figure 2.5. Compared with Figure 2.1, it contains an

additional TCN module. However, instead of producing the final prediction outputs of size 1,

we let the TCN module output a vector as a feature map, as the size of the temporal module

output can be easily and naturally controlled by the convolutional layer. As a result, it adds

a new source of features, which contains information extracted from the temporal series. We

then concatenate the temporal output vector with the learned Stock2Vec features. Note that

the TCN module can be replaced by any other architecture that learns temporal patterns,

30

activation function

weight layer

activation function

weight layer

activation function

weight layer

activation function

weight layer

(a) A standard block

activation function

weight layer

activation function

weight layer

activation function

weight layer

activation function

weight layer

(b) A residual block

Figure 2.4: Comparison between a regular block and a residual block. In the latter, the
convolution is short-circuited.

for example, LSTM-type network. Finally, a series of fully-connected layers (referred to as

“head layers”) are applied to the combined features producing the final prediction output.

Implementation details are discussed in Section 2.5.1.

Note that in each TCN block, the convolutional layers use dropout in order to limit

the influence that earlier data have on learning [42, 43]. It is then followed by a batch

normalization layer [44]. The most widely used activation function, the rectified linear unit

(ReLU) [22] is used after each layer except for the last one.

31

Output

Dropout

Dense Layer

Concatenate

Dropout + BN + ReLU

Dense Layer

TCN Feature Map Continuous Feature MapCategorical Feature Map

Dropout + BN + ReLU

Dense Layer

Dropout + BN + ReLU

Dense Layer

Categorical Input Continuous Input

Embedding Normalization

Sequence Input

D
ropout

+ BN

+ R
eLU

C
O

N
V

C
O

N
V

D
ropout

+ BN

+ R
eLU

C
O

N
V

C
O

N
V

TCN
Block

TCN
Block

Figure 2.5: The full model architecture of hybrid TCN-Stock2Vec.

2.4 Data Specification

The case study is based on daily trading data for 485 assets listed on S&P 500 index,

downloaded from Yahoo!finance for the period of 2015/01/01–2020/02/18 (out of 505 assets

listed on https://en.wikipedia.org/wiki/List_of_S%26P_500_companies, two did not

have data spanning the whole period). Following the literature, we use the next day’s

closing price as the target label for each asset, while the adjusted closing prices up until

the current date can be used as inputs. In addition, we also use as augmented features

the downloaded open/high/low prices and volume data for calculating some commonly used

technical indicators that reflect price variation over time. In our study, eight commonly

used technical indicators are selected, which are described in Table 2.1. As we discussed

in Section 2.1, it has also been shown in the literature that assets’ media exposure and the

corresponding text sentiment are highly correlated with the stock prices. To account for

32

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

this, we acquired another set of features through the Quandl API. The database “FinSentS

Web News Sentiment” (https://www.quandl.com/databases/NS1/) is used in this study.

The queried dataset includes the daily number of news articles about each stock, as well as

the sentiment score that measures the texts used in media, based on proprietary algorithms

for web scraping and natural language processing.

We further extracted several date/time related variables for each entry to explicitly cap-

ture the seasonality, these features include month of year, day of month, day of week, etc.

All of the above-mentioned features are all dynamic features that are time-dependent. In ad-

dition, we gathered a set of static features that are time-independent. Static covariates (e.g.,

the symbol name, sector and industry category, etc.) could assist the feature-based learner

to capture series-specific information such as the scale level and trend for each series. The

distinction between dynamic and static features is important for model architecture design,

since it is unnecessary to process the static covariates by RNN cells or CNN convolution

operations for capturing temporal relations (e.g., autocorrelation, trend, and seasonality,

etc.).

Technical Indicators Category Description

Moving average convergence or divergence (MACD) Trend Reveals price change in strength, direction and trend duration
Parabolic Stop And Reverse (PSAR) Trend Indicates whether the current trend is to continue or to reverse
Bollinger Bands (BB R©) Volatility Forms a range of prices for trading decisions
Stochastic Oscillator (SO) Momentum Indicates turning points by comparing the price to its range
Rate Of Change (ROC) Momentum Measures the percent change of the prices
On-Balance Volume (OBV) Volume Accumulates volume on price direction to confirm price moves
Force Index (FI) Volume Measures the amount of strength behind price move

Table 2.1: Description of technical indicators used in this study.

Note that the features can also be split into categorical and continuous. Each of the

categorical features is mapped to dense numeric vectors via embedding, in particular, the

vectors embedded from the stock name as a categorical feature are called Stock2Vec. We

scale all continuous features (as well as next day’s price as the target) to between 0 and 1,

since it is widely accepted that neural networks are hard to train and are sensitive to input

scale [116, 44], while some alternative approaches, e.g., decision trees, are scale-invariant

[117]. It is important to note that we performed scaling separately on each asset, i.e., linear

33

https://www.quandl.com/databases/NS1/

transformation is performed so that the lowest and highest price for asset A over the training

period is 0 and 1 respectively. Also note scaling statistics are obtained with the training

set only, which prevents leakage of information from the test set, avoiding introduction of

look-ahead bias.

As a tentative illustration, Figure 2.6 shows the most important 20 features for predict-

ing next day’s stock price, according to the XGBoost model we trained for benchmarking.

0 200 400 600 800 1000 1200
F score

sector_PUBLIC UTILITIES
Week_34

news_buzz
Day_15

sector_ENERGY
Year_2018

trend_macd_signal
Dayofweek_0

Week_5
momentum_roc

industry_REAL ESTATE
volume_obv

volatility_bbw
sentiment

trend_macd_diff
trend_macd

volatility_bbm
Dayofyear

news_volume
Adj Close

Fe
at

ur
es

49525355575860646770717381889094 211 414547 1254
Feature importance

Figure 2.6: Feature importance plot of XGBoost model.

In our experiments, the data are split into training, validation and test sets. The last

126 trading days of data are used as the test set, cover the period from 2019/08/16 to

2020/02/18, and include 61000 samples. The rest data are used for training the model, in

which the last 126 trading days, from 2019/02/15 to 2019/08/15, are used as validation set,

while the first 499336 samples, cover the period from 2015/01/02 to 2019/02/14, form the

training set. Table 2.2 provides a summary of the datasets we used in this research.

Table 2.2: Dataset summary.

Training set Validation set Test set

Starting date 2015/01/02 2019/02/15 2019/08/16
End date 2019/02/14 2019/08/15 2020/02/18
Sample size 499336 61075 61000

34

2.5 Experimental Results and Discussions

2.5.1 Benchmark Models, Hyperparameters and Optimization Strategy

In the computational experiments below we compare performance of seven models..

Two models are based on time series analysis only (TS-TCN and TS-LSTM), two use static

feature only (random forest [18] and XGBoost [17]), pure Stock2Vec model and finally, two

versions of the proposed hybrid model (LSTM-Stock2Vec and TCN-Stock2Vec). This way

we can evaluate the effect of different model architectures and data features. Specifically,

we are interested in evaluating whether employing feature embedding leads to improvement

(Stock2Vec vs random forest and XGBoost) and whether a further improvement can be

achieved by incorporating time-series data in the hybrid models.

Random forest and XGBoost are ensemble models that deploy enhanced bagging and

gradient boosting, respectively. We pick these two models since both have shown powerful

predicting ability and achieved state-of-the-art performance in various fields. Both are tree-

based models that are invariant to scales and perform split on one-hot encoded categorical

inputs, which is suitable for comparison with embeddings in our Stock2Vec models. We built

100 bagging/boosting trees for these two models. LSTM and TCN models are constructed

based on pure time series data, i.e., the inputs and outputs are single series, without any

other feature as augmented series. In later context, we call these two models TS-LSTM

and TS-TCN, respectively. The Stock2Vec model is a fully-connected neural network with

embedding layers for all categorical features, it has the exactly same inputs as XGBoost and

random forest. As we introduced in Section 2.3.4, our hybrid model combines the Stock2Vec

model with an extra TCN module to learn the temporal effects. And for comparison purpose,

we also evaluated the hybrid model with LSTM as the temporal module. We call them TCN-

Stock2Vec and LSTM-Stock2Vec correspondingly.

Our deep learning models are implemented in PyTorch [118]. In Stock2Vec, the embed-

ding sizes are set to be half of the original number of categories, thresholded by 50 (i.e., the

35

maximum dimension of embedding output is 50). These are just heuristics as there is no

common standard for choosing the embedding sizes. We concatenate the continuous input

with the outputs from embedding layers, followed by two layers of fully-connected layers,

with sizes of 1024 and 512, respectively. The dropout rates are set to 0.001 and 0.01 for the

two hidden layers correspondingly.

For the RNN module, we implement two-layer stacked LSTM, i.e., in each LSTM cell

(that denotes a single time step), there are two LSTM layers sequentially connected, and

each layer consists of 50 hidden units. We need an extra fully-connected layer to control the

output size for the temporal module, depending on whether to obtain the final prediction as

in TS-LSTM (with output size to be 1), or a temporal feature map as in LSTM-Stock2Vec.

We set the size of temporal feature map to be 30 in order to compress the information for

both LSTM-Stock2Vec and TCN-Stock2Vec. In TCN, we use another convolutional layer to

achieve the same effect. To implement the TCN module, we build a 16-layer dilated causal

CNN as the component that focuses on capturing the autoregressive temporal relations from

the series own history. Each layer contains 16 filters, and each filter has a width of 2.

Every two consecutive convolutional layers form a residual block after which the previous

inputs are added to the flow. The dilation rate increases exponentially along every stacked

residual blocks, i.e., to be 1, 2, 4, 8, · · · , 128, which allows our TCN component to capture

the autoregressive relation for more than half a year (there are 252 trading days in a year).

Again, dropout (with probability 0.01), batch normalization layer and ReLU activation are

used for each TCN block.

The MSE loss is used for all models. The deep learning models were trained using

stochastic gradient descent (SGD), with batch size of 128. In particular, the Adam optimizer

[119] with initial learning rate of 10−4 was used to train TS-TCN and TS-LSTM. To train

Stock2Vec, we deployed the super-convergence scheme as in [120] and used cyclical learning

rate over every 3 epochs, with a maximum value of 10−3. In the two hybrid models, while the

36

weights of the head layers were randomly initialized as usual, we loaded the weights from pre-

trained Stock2Vec and TS-TCN/TS-LSTM for the corresponding modules. By doing this,

we have applied transfer learning scheme [121, 122, 123] and wish the transferred modules

have the ability to effectively process features from the beginning. The head layers were

trained for 2 cycles (each contains 2 epochs) with maximum learning rate of 3× 10−4 while

the transferred modules were frozen. After this convergence, the entire network was fine-

tuned for 10 epochs by standard Adam optimizer with learning rate of 10−5, during which

an early stopping paradigm [41] was applied to retrieve the model with smallest validation

error. We select the hyperparemeters based upon the model performance on the validation

set.

2.5.2 Performance Evaluation Metrics

To evaluate the performance of our forecasting model, three commonly used evaluation

criteria are used in this study: (a) the root mean square error (RMSE), (b) the mean absolute

error (MAE), (c) the mean absolute percentage error (MAPE), (d) the root mean square

percentage error (RMSPE):

RMSE =

√√√√ 1

H

H∑
t=1

(yt − ŷt)2 (2.1)

MAE =
1

H

H∑
t=1

∣∣yt − ŷt∣∣ (2.2)

MAPE =
1

H

H∑
t=1

∣∣∣yt − ŷt
yt

∣∣∣× 100 (2.3)

RMSPE =

√√√√ 1

H

H∑
t=1

∣∣∣yt − ŷt
yt

∣∣∣2 × 100 (2.4)

where yt is the actual target value for the t-th observation, ŷt is the predicted value for the

corresponding target, and H is the forecast horizon.

37

The RMSE is the most popular measure for the error rate of regression models, as

n→∞, it converges to the standard deviation of the theoretical prediction error. However,

the quadratic error may not be an appropriate evaluation criterion for all prediction problems,

especially in the presence of large outliers. In addition, the RMSE depends on scales, and

is also sensitive to outliers. The MAE considers the absolute deviation as the loss and is

a more “robust” measure for prediction, since the absolute error is more sensitive to small

deviations and much less sensitive to large ones than the squared error. However, since the

training process for many learning models are based on squared loss function, the MAE

could be (logically) inconsistent to the model optimization selection criteria. The MAE

is also scale-dependent, thus not suitable to compare prediction accuracy across different

variables or time ranges. In order to achieve scale independence, the MAPE measures the

error proportional to the target value, while instead of using absolute values, the RMSPE can

be seen as the root mean squared version of MAPE. The MAPE and RMSPE however, are

extremely unstable when the actual value is small (consider the case when the denominator or

close to 0). We will consider all four measures mentioned here to have a more complete view

of the performance of the models considering the limitations of each performance measure.

In addtion, we will compare the running time as an additional evaluation criterion.

2.5.3 Stock2Vec: Analysis of Embeddings

As we introduced in Section 2.3, the main goal of training Stock2Vec model is to learn

the intrinsic relationships among stocks, where similar stocks are close to each other in the

embedding space, so that we can deploy the interactions from cross-sectional data, or more

specifically, the market information, to make better predictions. To show this is the case,

we extract the weights of the embedding layers from the trained Stock2Vec model, map the

weights down to two-dimensional space with a manifold by using PCA, and visualize the

entities to look at how the embedding spaces look like. Note that besides Stock2Vec, we also

learned embeddings for other categorical features.

38

Figure 2.7(a) shows the first two principal components of the sectors. Note that here

the first two components account for close to 75% of variance. We can generally observe

that Health Care, Technology/Consumer Services and Finance occupy the opposite corners

of the plot, i.e., represent unique sectors most dissimilar from one another. On the other

hand a collection of more traditional sectors: Public Utilities, Energy, Consumer Durables

and Non-Durables, Basic Industries generally are grouped closer together. The plot, then,

allows for a natural interpretation which is in accordance with our intuition, indicating that

the learned embedding can be expected to be reasonable.

0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

BASIC INDUSTRIES

CAPITAL GOODS

CONSUMER DURABLES

CONSUMER NON-DURABLES

CONSUMER SERVICES

ENERGY

FINANCE

HEALTH CARE MISCELLANEOUS

PUBLIC UTILITIES

TECHNOLOGY

TRANSPORTATION

(a) Visualization of learned embeddings for sec-
tors, projected to 2-D spaces using PCA.

1 2 3 4 5 6
number of principle components

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e

(b) The cumulative explained variance ratio for
each of the principal components

Figure 2.7: PCA on the learned embeddings for Sectors

0.05 0.00 0.05 0.10

0.10

0.05

0.00

0.05

0.10
sector

CAPITAL GOODS
TRANSPORTATION
CONSUMER SERVICES
TECHNOLOGY
HEALTH CARE
MISCELLANEOUS
CONSUMER NON-DURABLES
PUBLIC UTILITIES
BASIC INDUSTRIES
FINANCE
CONSUMER DURABLES
ENERGY

(a) Visualization of Stock2Vec (colored by sec-
tors), projected to 2-D spaces using PCA.

0 10 20 30 40 50
number of principle components

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e

(b) The cumulative explained variance ratio for
each of the principal components

Figure 2.8: PCA on the learned Stock2Vec embeddings

39

Similarly, from the trained Stock2Vec embeddings, we can obtain a 50-dimensional

vector for each separate stock. We simialrly visualize the learned Stock2Vec with PCA in

Figure 2.8(a), and color each stock by the sector it belongs to. It is important to note that

in this case, the first two components of PCA only account for less than 40% of variance.

In other words, in this case, the plotted groupings do not represent the learned information

as well as in the previous case. Indeed, when viewed all together, individual assets do not

exhibit readily discernible patterns. This is not necessarily an indicator of deficiency of

the learned embedding, and instead suggests that two dimensions are not sufficient in this

case. However, lots of useful insight can be gained from the distributed representations, for

instance, we could consider the similarities between stocks in the learned vector space is an

example of these benefits as we will show below,

To reveal some additional insights from the similarity distance, we sort the pairwise

cosine distance (in the embedded space) between the stocks in the ascending order. In Figure

2.9a, we plot the ticker “NVDA” (Nvidia) as well as its six nearest neighbors in the embedding

space. The six companies that are closest to Nvidia, according to the embeddings of learned

weights, are either of the same type (technology companies) with Nvidia: Facebook, Akamai,

Cognizant Tech Solutions, Charte; or fast growing during the past ten years (was the case

for Nvidia during the tested period): Monster, Discover Bank. Similarly, we plot the ticker

of Wells Fargo (“WFC”) and its 6 nearest neighbors in Figure 2.9b, all of which are either

banks or companies that provide other financial services. These observations are yet another

indicator that Stock2Vec can be expected to learn some useful information, and indeed is

capable of coupling together insights from a number of unrelated sources.

The following points must be noted here. First, most of the nearest neighbors are not

the closest points in the two-dimensional plots due to the imprecision of mapping into two-

dimensions. Secondly, although the nearest neighbors are meaningful for many companies as

the results either are in the same sector (or industry), or present similar stock price trend in

the last a few years, this insight does not hold true for all companies, or the interpretation

40

0.050 0.025 0.000 0.025 0.050 0.075 0.100

0.10

0.05

0.00

0.05

0.10

AKAM
CHTR

CTSHDFS
FB

MNST

NVDA

(a) Nearest neighbors of NVDA, which are: 1).
’MNST’, Monster, fast growing; 2) ’FB’, Face-
book, IT; 3)’DFS’, Discover Bank, fast growing;
4) ’AKAM’, Akamai, IT; 5) ’CTSH’, Cognizant
Tech Solutions, IT; 6) ’CHTR’, Charter, com-
munication services.

0.050 0.025 0.000 0.025 0.050 0.075 0.100

0.10

0.05

0.00

0.05

0.10

AXP

CMA

ETFC

PGR

SPGI

STT

WFC

(b) Nearest neighbors of WFC, which are: 1)
’ETFC’: E-Trader, financial; 2) ’STT’: State
Street Corp., bank; 3) ’CMA’: Comerica, bank;
4) ’AXP’: Amex, financial; 5) ’PGR’: Progres-
sive Insurance, financial; 6) ’SPGI’, S&P Global,
Inc., financial & data

Figure 2.9: Nearest neighbors of Stock2Vec based on similarity between stocks.

can be hard to discern. For example, the nearest neighbors of Amazon.com (AMZN) include

transportation and energy companies (perhaps due to its heavy reliance on these industries

for its operation) as well as technology companies. Finally, note that there exist many other

visualization techniques for projection of high dimensional vectors onto 2D spaces that could

be used here instead of PCA, for example, t-SNE [124] or UMAP [125]. However, neither

provided visual improvement of the grouping effect over Figure 2.8(a) and hence we do not

present those results here.

Based on the above observations, Stock2Vec provides several benefits: 1) reducing the

dimensionality of categorical feature space, thus the computational performance is improved

with smaller number of parameter, 2) mapping the sparse high-dimensional one-hot encoded

vectors onto dense distributional vector space (with lower dimensionality), as a result, similar

categories are learned to be placed closer to one another in the embedding space, unlike in

41

one-hot encoding vector space where every pairs of categories yield the same distance and are

orthogonal to each other. Therefore, the outputs of the embedding layers could be served

as more meaningful features, for later layers of neural networks to achieve more effective

learning. Not only that, the meaningful embeddings can be used for visualization, provides

us more interpretability of the deep learning models.

2.5.4 Prediction Results

Table 2.3 and Figure 2.10 report the overall average (over the individual assets) fore-

casting performance of the out-of-sample period from 2019-08-16 to 2020-02-14. We observe

that TS-LSTM and TS-TCN perform worst. We can conlude that this is because these

two models only consider the target series and ignore all other features. TCN outperforms

LSTM, probably since it is capable of extracting temporal patterns over long history without

more effectively gradient vanishing problem. Moreover, the training speed of our 18-layer

TCN is about five times faster than that of LSTM per iteration (aka batch) with GPU, and

the overall training speed (given all overhead included) is also around two to three times

faster. With learning from all the features, the random forest and XGBoost models perform

better than purely timeseries-based TS-LSTM and TS-TCN, with the XGBoost predictions

are slightly better than that from random forest. This demonstrates the usefulness of our

data source, especially the external information combined into the inputs. We can then ob-

serve that despite having the same input as random forest and XGBoost, the proposed our

Stock2Vec model further improves accuracy of the predictions, as the RMSE, MAE, MAPE

and RMSPE decrease by about 36%, 38%, 41% and 43% over the XGBoost predictions, re-

spectively. This indicates that the use of deep learning models, in particular the Stock2Vec

embedding improves the predictions, by more effectively learning from the features over the

tree-based ensemble models. With integration of temporal modules, there is again a signif-

icant improvement of performance in terms of prediction accuracy. The two hybrid models

LSTM-Stock2Vec and TCN-Stock2Vec not only learn from features we give explicitly, but

42

also employ either a hidden state or a convolutional temporal feature mapping to implic-

itly learn relevant information from historical data. Our TCN-Stock2Vec achieves the best

performance across all models, as the RMSE and MAE decreases by about 25%, while the

MAPE decreases by 20% and the RMSPE decreases by 14%, comparing with Stock2Vec

without the temporal module.

Table 2.3: Average performance comparison.

RMSE MAE MAPE(%) RMSPE (%)

TS-LSTM 6.35 2.36 1.62 2.07
TS-TCN 5.79 2.15 1.50 1.96

Random Forest 4.86 1.67 1.31 1.92
XGBoost 4.57 1.66 1.28 1.83
Stock2Vec 2.94 1.04 0.76 1.05

LSTM-Stock2Vec 2.57 0.85 0.68 1.04
TCN-Stock2Vec 2.22 0.78 0.61 0.90

Figure 2.10 shows the boxplots of the prediction errors of different approaches, from

which we can see our proposed models achieve smaller absolute prediction errors in terms

of not only the mean also the variance, which indicates more robust forecast. The median

absolute prediction errors (and the interquartile range, i.e., IQR) of our TS-TCN model

is around 1.01 (1.86), while they are around 0.74 (1.39), 0.45 (0.87), and 0.36 (0.66) for

XGBoost, Stock2Vec and TCN-Stock2Vec, respectively.

TS-
LSTM

TS-
TCN

Random
Forest

XGBoost Stock2Vec LSTM-
Stock2Vec

TCN-
Stock2Vec

0

1

2

3

4

5

Ab
so

lu
te

 E
rro

r

Figure 2.10: Boxplot comparison of the absolute prediction errors.

43

Similarly, we aggregate the metrics on the sector level, and calculate the average per-

formance within each sector. We report the RMSE, MAE, MAPE, and RMSPE in Tables

2.4, 2.5, 2.6, and 2.7, respectively, from which we can see again our Stock2Vec performs

better than the two tree-ensemble models for all sectors, and adding the temporal module

would further improve the forecasting accuracy. TCN-Stock2Vec achieves the best RMSE,

MAE, MAPE and RMSPE in all sectors with one exception. Better performance on different

aggregated levels demonstrates the power of our proposed models.

We further showcase the predicted results of 20 symbols to gauge the forecasting perfor-

mance of our model under a wide range of industries, volatilities, growth patterns and other

general conditions. The stocks have been chosen to evaluate how the proposed methodologies

would perform under different circumstances. For instance, Amazon’s (AMZN) stock was

consistently increasing in price across the analysis period, while the stock price of Verizon

(VZ) was very stable, and Chevron’s stock (CVX) had both periods of growth and decline.

In addition, these 20 stocks captured several industries: (a) retail (e.g., Walmart), (b) restau-

rants (e.g., McDonald’s), (c) finance and banks (e.g., JPMorgan Chase and Goldman Sachs),

(d) energy and oil & gas (e.g., Chevron), (e) techonology (e.g., Facebook), (f) communica-

tions (e.g., Verizon), etc. Table 2.8, 2.9, 2.10, 2.11 show the out-of-sample RMSE, MAE,

MAPE and RMAPE, respectively, from the predictions given by the five models we discussed

above. Again, Stock2Vec generally performs better than random forest and XGBoost, and

the two hybrid models have quite similar performance which is significantly better than that

of others. While there also exist a few stocks on which LSTM-Stock2Vec or even Stock2Vec

without temporal module produce most accurate predictions, for most of the stocks, TCN-

Stock2Vec model performs the best. This demonstrates our models generalize well to most

symbols.

Furthermore, we plot the prediction pattern of the competing models for the abovemen-

tioned stocks on the test set in 2.C, compared to the actual daily prices. We observe that the

random forest and XGBoost models predict up-and-downs with a lag for most of the time,

44

as the current price plays too much a role as a predictor, probably mainly due to the correct

scaling reason. And there occasionally exist several flat predictions over a period for some

stocks (see approximately 2019/09 in Figure 2.15, 2020/01 in Figure 2.18, and 2019/12 in

Figure 2.30), which is a typical effect of tree-based methods, indicates insufficient splitting

and underfitting despite so many ensemble trees were used. With entity embeddings, our

Stock2Vec model can learn from the features much more effectively, its predictions coin-

cide with the actual up-and downs much more accurately. Although it overestimates the

volatility by exaggerating the amplitude as well as the frequency of oscillations, the overall

prediction errors are getting smaller than the two tree-ensemble models. And our LSTM-

Stock2Vec and TCN-Stock2Vec models further benefit from the temporal learning modules

by automatically capturing the historical characteristics from time series data, especially the

nonlinear trend and complex seasonality that are difficult to be captured by hand-engineered

features such as technical indicators, as well as the common temporal factors that are shared

among all series across the whole market. As a result, with the ability to extract the au-

toregressive dependencies over long term both within and across series from historical data,

the predictions from these two models alleviate wild oscillations, and are much more close

to the actual prices, while still correctly predict the up-and-downs for most of the time with

effective learning from input features.

2.6 Concluded Remarks and Future Work

Our argument that implicitly learning Alphas and Betas upon cross-sectional data from

CAPM perspective is novel, however, it is more of an insight rather than systematic analysis.

In this paper, we built a global hybrid deep learning models to forecast the S&P stock prices.

We applied the state-of-the-art 1-D dilated causal convolutional layers (TCN) to extract the

temporal features from the historical information, which helps us to refine learning of the

Alphas. In order to integrate the Beta information into the model, we learn a single model

that learns from the data over the whole market, and applied entity embeddings for the

45

categorical features, in particular, we obtained the Stock2Vec that reveals the relationship

among stocks in the market, our model can be seen as supervised dimension reduction method

in that point of view. The experimental results show our models improve the forecasting

performance. Although not demonstrated in this work, learning a global model from the

data over the entire market can give us an additional benefit that it can handle the cold-

start problem, in which some series may contain very little data (i.e., many missing values),

our model has the ability to infer the historical information with the structure learned from

other series as well as the correlation between the cold-start series and the market. It might

not be accurate, but is much informative than that learned from little data in the single

series.

There are several other directions that we can dive deeper as the future work. First

of all, the stock prices are heavily affected by external information, combining extensive

crowd-sourcing, social media and financial news data may facilitate a better understanding

of collective human behavior on the market, which could help the effective decision making

for investors. These data can be obtained from the internet, we could expand the data

source and combine their influence in the model as extra features. In addition, although

we have shown that the convolutional layers have several advantages over the most widely

used recurrent neural network layers for time series, the temporal learning layers in our

model could be replaced by any other type, for instance, the recent advances of attention

models could be a good candidate. Also, more sophisticated models can be adopted to

build Stock2Vec, by keeping the goal in mind that we aim at learning the implicit intrinsic

relationship between stock series. In addition, learning the relationship over the market

would be helpful for us to build portfolio aiming at maximizing the investment gain, e.g.,

by using standard Markowitz portfolio optimization to find the positions. In that case,

simulation of trading in the market should provide us more realistic and robust performance

evaluation than those aggregated levels we reported above. Liquidity and market impacts

46

can be taken into account in the simulation, and we can use Profit & Loss (P&L) and the

Sharpe ratio as the evaluation metrics.

2.A Sector Level Performance Comparison

Table 2.4: Sector level RMSE comparison

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

Basic Industries 1.70 1.61 1.06 0.85 0.76
Capital Goods 11.46 10.30 6.25 6.01 5.10

Consumer Durables 1.78 1.67 0.99 0.93 0.83
Consumer Non-Durables 1.57 1.55 0.98 0.87 0.75

Consumer Services 4.75 4.69 3.34 2.76 2.30
Energy 1.50 1.44 0.76 0.76 0.67
Finance 2.08 2.06 1.39 1.05 1.00

HealthCare 3.44 3.37 1.95 1.98 1.60
Miscellaneous 8.23 7.96 5.22 4.14 3.73

Public Utilities 0.94 0.95 0.64 0.52 0.52
Technology 4.20 4.23 2.91 1.90 1.94

Transportation 2.00 1.90 1.15 1.03 0.88

Table 2.5: Sector level MAE comparison

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

Basic Industries 1.06 1.03 0.64 0.52 0.49
Capital Goods 3.13 3.07 1.93 1.57 1.47

Consumer Durables 1.21 1.18 0.71 0.63 0.57
Consumer Non-Durables 0.96 0.93 0.57 0.52 0.45

Consumer Services 1.83 1.84 1.19 0.98 0.88
Energy 0.98 0.95 0.50 0.51 0.45
Finance 1.19 1.17 0.79 0.55 0.54

HealthCare 1.99 1.96 1.15 1.10 0.92
Miscellaneous 3.18 3.18 2.08 1.56 1.44

Public Utilities 0.63 0.64 0.44 0.33 0.34
Technology 1.95 1.98 1.26 0.92 0.91

Transportation 1.26 1.23 0.74 0.65 0.56

Table 2.6: Sector level MAPE (%) comparison

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

Basic Industries 1.34 1.31 0.74 0.65 0.61
Capital Goods 1.21 1.24 0.76 0.59 0.56

Consumer Durables 1.30 1.26 0.73 0.68 0.60
Consumer Non-Durables 1.48 1.32 0.76 0.85 0.65

Consumer Services 1.24 1.23 0.71 0.66 0.59
Energy 2.04 1.88 0.97 1.08 0.92
Finance 1.18 1.16 0.74 0.53 0.53

HealthCare 1.43 1.35 0.79 0.79 0.65
Miscellaneous 1.23 1.23 0.81 0.66 0.60

Public Utilities 0.88 0.90 0.57 0.49 0.47
Technology 1.44 1.43 0.83 0.68 0.66

Transportation 1.26 1.23 0.71 0.66 0.57

47

Table 2.7: Sector level RMSPE (%) comparison

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

Basic Industries 1.86 1.80 0.98 0.91 0.83
Capital Goods 1.63 1.65 1.01 0.83 0.75

Consumer Durables 1.79 1.68 0.96 0.95 0.81
Consumer Non-Durables 2.41 2.02 1.13 1.37 1.01

Consumer Services 1.88 1.82 0.99 1.07 0.91
Energy 2.89 2.66 1.29 1.51 1.25
Finance 1.60 1.56 1.00 0.78 0.72

HealthCare 2.17 2.00 1.15 1.24 0.99
Miscellaneous 1.66 1.63 1.05 0.95 0.81

Public Utilities 1.25 1.23 0.74 0.71 0.64
Technology 2.09 2.00 1.13 1.04 0.95

Transportation 1.76 1.68 0.98 0.95 0.80

2.B Performance comparison of different models for the one-day ahead fore-

casting on different symbols

Table 2.8: RMSE comparison of different models for the one-day ahead forecasting on dif-
ferent symbols

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

AAPL (Apple) 4.71 4.52 2.86 2.16 1.81
AFL (Aflac) 0.59 0.62 0.46 0.31 0.27

AMZN (Amazon.com) 29.91 28.47 23.80 17.73 14.45
BA (Boeing) 6.00 6.44 3.98 3.83 3.49

CVX (Chevron) 1.42 1.62 1.03 0.75 0.65
DAL (Delta Air Lines) 0.79 0.77 0.48 0.40 0.32

DIS (Walt Disney) 1.95 1.91 1.17 1.10 0.92
FB (Facebook) 3.51 5.54 2.15 1.72 1.44

GE (General Electric) 0.39 0.30 0.14 0.29 0.18
GM (General Motors) 0.58 0.57 0.30 0.30 0.28

GS (Goldman Sachs Group) 3.11 3.00 1.86 1.27 1.31
JNJ (Johnson & Johnson) 1.80 1.49 1.00 0.93 0.80
JPM (JPMorgan Chase) 1.72 1.63 1.59 0.66 0.68

MAR (Marriott Int’l) 2.02 2.02 1.52 0.89 1.07
KO (Coca-Cola) 0.49 0.50 0.32 0.26 0.25

MCD (McDonald’s) 2.67 2.50 1.51 1.26 1.16
NKE (Nike) 1.27 1.23 1.01 0.61 0.62

PG (Procter & Gamble) 1.43 1.35 0.91 0.70 0.61
VZ (Verizon Communications) 0.54 0.55 0.46 0.29 0.26

WMT (Walmart) 1.34 1.43 1.06 0.55 0.50

48

Table 2.9: MAE comparison of different models for the one-day ahead forecasting on different
symbols

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

AAPL (Apple) 3.63 3.56 2.15 1.72 1.42
AFL (Aflac) 0.45 0.44 0.35 0.20 0.21

AMZN (Amazon.com) 22.19 21.36 17.87 11.53 10.29
BA (Boeing) 4.59 5.10 2.87 2.87 2.74

CVX (Chevron) 1.07 1.22 0.75 0.57 0.50
DAL (Delta Air Lines) 0.59 0.58 0.36 0.29 0.24

DIS (Walt Disney) 1.37 1.40 0.87 0.77 0.67
FB (Facebook) 2.54 3.80 1.65 1.16 1.06

GE (General Electric) 0.30 0.22 0.11 0.25 0.15
GM (General Motors) 0.44 0.44 0.23 0.23 0.22

GS (Goldman Sachs Group) 2.48 2.37 1.31 1.01 1.05
JNJ (Johnson & Johnson) 1.21 1.04 0.72 0.64 0.59
JPM (JPMorgan Chase) 1.34 1.23 1.17 0.51 0.52

MAR (Marriott Int’l) 1.63 1.66 1.13 0.65 0.87
KO (Coca-Cola) 0.39 0.37 0.25 0.19 0.19

MCD (McDonald’s) 1.99 1.96 1.26 0.89 0.89
NKE (Nike) 0.97 0.98 0.77 0.46 0.49

PG (Procter & Gamble) 1.14 1.03 0.70 0.52 0.48
VZ (Verizon Communications) 0.43 0.42 0.36 0.22 0.20

WMT (Walmart) 1.02 1.10 0.87 0.41 0.41

Table 2.10: MAPE (%) comparison of different models for the one-day ahead forecasting on
different symbols

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

AAPL (Apple) 1.43 1.39 0.80 0.68 0.54
AFL (Aflac) 0.88 0.86 0.66 0.39 0.39

AMZN (Amazon.com) 1.21 1.17 0.97 0.63 0.56
BA (Boeing) 1.33 1.47 0.82 0.83 0.80

CVX (Chevron) 0.94 1.06 0.65 0.50 0.43
DAL (Delta Air Lines) 1.03 1.02 0.63 0.51 0.43

DIS (Walt Disney) 0.99 1.01 0.61 0.55 0.48
FB (Facebook) 1.29 1.92 0.82 0.59 0.54

GE (General Electric) 2.99 2.13 1.10 2.53 1.44
GM (General Motors) 1.22 1.23 0.63 0.63 0.61

GS (Goldman Sachs Group) 1.14 1.09 0.59 0.46 0.48
JNJ (Johnson & Johnson) 0.90 0.77 0.51 0.47 0.43
JPM (JPMorgan Chase) 1.08 1.00 0.90 0.40 0.42

MAR (Marriott Int’l) 1.21 1.23 0.81 0.48 0.63
KO (Coca-Cola) 0.72 0.68 0.45 0.35 0.35

MCD (McDonald’s) 0.98 0.96 0.61 0.44 0.44
NKE (Nike) 1.05 1.06 0.80 0.49 0.53

PG (Procter & Gamble) 0.94 0.85 0.57 0.43 0.40
VZ (Verizon Communications) 0.73 0.71 0.60 0.37 0.34

WMT (Walmart) 0.88 0.94 0.73 0.35 0.35

49

Table 2.11: RMAPE (%) comparison of different models for the one-day ahead forecasting
on different symbols

Random Forest XGBoost Stock2Vec LSTM-Stock2Vec TCN-Stock2Vec

AAPL (Apple) 1.89 1.76 1.04 0.85 0.68
AFL (Aflac) 1.15 1.19 0.87 0.60 0.53

AMZN (Amazon.com) 1.60 1.55 1.28 0.95 0.78
BA (Boeing) 1.74 1.85 1.13 1.11 1.02

CVX (Chevron) 1.25 1.42 0.88 0.65 0.57
DAL (Delta Air Lines) 1.39 1.36 0.83 0.71 0.57

DIS (Walt Disney) 1.41 1.38 0.81 0.79 0.66
FB (Facebook) 1.77 2.75 1.06 0.85 0.73

GE (General Electric) 3.96 2.89 1.35 2.91 1.72
GM (General Motors) 1.62 1.60 0.82 0.84 0.77

GS (Goldman Sachs Group) 1.44 1.39 0.84 0.58 0.61
JNJ (Johnson & Johnson) 1.33 1.11 0.72 0.70 0.60
JPM (JPMorgan Chase) 1.40 1.33 1.20 0.53 0.54

MAR (Marriott Int’l) 1.49 1.50 1.07 0.66 0.78
KO (Coca-Cola) 0.90 0.92 0.57 0.47 0.45

MCD (McDonald’s) 1.30 1.22 0.73 0.62 0.57
NKE (Nike) 1.38 1.34 1.03 0.65 0.67

PG (Procter & Gamble) 1.19 1.11 0.73 0.58 0.50
VZ (Verizon Communications) 0.93 0.93 0.76 0.49 0.45

WMT (Walmart) 1.15 1.23 0.89 0.47 0.43

50

2.C Plots of the actual versus predicted prices of different models on the test

data

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

200

220

240

260

280

300

320

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for AAPL
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.11: AAPL daily price predictions over test period, 2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

48

49

50

51

52

53

54

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for AFL

Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.12: AAPL daily price predictions over test period, 2019/08/16-2020/02/14.

51

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

1700

1800

1900

2000

2100

2200

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for AMZN
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.13: AAPL daily price predictions over test period, 2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

310

320

330

340

350

360

370

380

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for BA
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.14: AAPL daily price predictions over test period, 2019/08/16-2020/02/14.

52

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

105.0

107.5

110.0

112.5

115.0

117.5

120.0

122.5

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for CVX
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.15: AAPL daily price predictions over test period, 2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

52

54

56

58

60

62

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for DAL

Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.16: Showcase DAL of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

53

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

130

135

140

145

150

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for DIS
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.17: Showcase DIS of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

180

190

200

210

220

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for FB
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.18: Showcase FB of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

54

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

8

9

10

11

12

13

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for GE
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.19: Showcase GE of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

33

34

35

36

37

38

39

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for GM
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.20: Showcase GM of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

55

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

190

200

210

220

230

240

250

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for GS
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.21: Showcase GS of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

125

130

135

140

145

150

155

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for JNJ
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.22: Showcase JNJ of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

56

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

105

110

115

120

125

130

135

140

145

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for JPM
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.23: Showcase JPM of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

115

120

125

130

135

140

145

150

155

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for MAR
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.24: Showcase MAR of predicted v.s. actual daily prices of one stock over test
period, 2019/08/16-2020/02/14.

57

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

52

54

56

58

60

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for KO
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.25: Showcase KO of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

185

190

195

200

205

210

215

220

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for MCD

Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.26: Showcase MCD of predicted v.s. actual daily prices of one stock over test
period, 2019/08/16-2020/02/14.

58

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

80

85

90

95

100

105

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for NKE
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.27: Showcase NKE of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

116

118

120

122

124

126

128

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for PG
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.28: Showcase PG of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

59

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

55

56

57

58

59

60

61

62

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for VZ
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.29: Showcase VZ of predicted v.s. actual daily prices of one stock over test period,
2019/08/16-2020/02/14.

2019-08-16 2019-09-30 2019-11-11 2019-12-24 2020-02-07
Date

110

112

114

116

118

120

122

Pr
ice

 $

Actual v.s. Out-Of-Sample Predictions for WMT
Actual
Random Forest
XGBoost
Stock2Vec
LSTM-Stock2Vec
TCN-Stock2Vec

Figure 2.30: Showcase WMT of predicted v.s. actual daily prices of one stock over test
period, 2019/08/16-2020/02/14.

60

Chapter 3

Reinforcement Learning Preliminaries

3.1 Markov Decision Processes

A natural abstraction for many sequential decision-making problems is to model the

system as a Markov Decision Process (MDP) [126], in which the agent interacts with the

environment over a sequence of discrete time steps. It is often represented as a 5-tuple:

M =< S,A, T, R, γ >, where S is a set of states ; A is a set of actions that can be taken;

T : S × A 7→ PS is the transition function such that
∫
s′∈S T (s′|s, a) = 1, which denotes the

(stationary) probability distribution over S of reaching a new state s′, after taking action

a in state s; R is the reward function, which can take the form of either R : S 7→ R,

R : S ×A 7→ R, or R : S ×A× S 7→ R; and γ ∈ [0, 1) is the discount factor.

A policy π : S 7→ PA defines the conditional probability distribution of choosing each

action while in state s. For an MDP, once a stationary policy is fixed, the distribution of

the reward sequence is then determined. Thus to evaluate a policy π, it is natural to define

the action value function under π as the expected cumulative discounted reward by taking

action a starting from state s and following π thereafter:

Qπ(s, a) ≡ Eπ
[∞∑
τ=0

γτRt+τ |St = s, At = a
]

= R(s, a) + γ

∫
s′
T (s′|s, a)Qπ(s′, π(s′)). (3.1)

The goal of solving an MDP is to find an optimal policy π∗ that maximizes the expected

cumulative discounted reward in all states. The corresponding optimal action values sat-

isfy Q∗(s, a) = maxπQ
π(s, a), and Banach’s fixed-point theorem ensures the existence and

61

uniqueness of the fixed-point solution of Bellman optimality equations [126]:

Q∗(s, a) = R(s, a) + γ

∫
s′
T (s′|s, a) max

a′
Q∗(s′, a′) (3.2)

from which we can derive a deterministic optimal policy by being greedy with respect to Q∗,

i.e., π∗ = argmaxa∈AQ
∗(s, a).

3.2 Value-based Reinforcement Learning

In reinforcement learning problems, the agent must interact with the environment to

learn the information about the transition and reward functions, meanwhile trying to produce

an optimal policy. While interacting with the environment, at each time step t, the agent

senses some representation of current state s, selects an action a, then receives an immediate

reward r from the environment and finds itself in a new state s′. The experience tuple

< s, a, r, s′ > summarizes the observed transition for a single step. Based on the experiences

through interacting with the environment, the agent can either learn the MDP model first

by approximating the transition probabilities and reward functions, and then plan in the

MDP to obtain an optimal policy (this is called the model-based approach in reinforcement

learning); or without learning the model, directly learn the optimal value functions and upon

which the optimal policy is derived (this is called the model-free approach).

As a model-free approach, Q-learning [127] updates one-step bootstrapped estimation

of Q-values from the experience samples over time steps. The update rule upon observing

< s, a, r, s′ > is

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(3.3)

in which α is the learning rate, r+ maxa′ Q(s′, a′) serves as the update target of the Q-value,

which can be seen as a sample of the expected value of one-step look-ahead estimation for

state-action pair (s, a), based on the the maximum estimated value over next state s′, and the

last term Q(s, a) is simply the current estimation. The difference δ = r+ γmaxa′ Q(s′, a′)−

62

Q(s, a) is referred to as temporal difference (TD) error, or Bellman error. Note that one

can bootstrap more than one step when estimating the target, often by using the eligibility

trace as in TD(λ) [128]. Q-learning is guaranteed to converge to the optimal values in

probability as long as each action is executed in each state infinitely often, s′ is sampled

following the distribution T (s, a, s′), r is sampled with mean R(s, a), variance is bounded

and given appropriately decaying α.

3.3 Deep Q-Networks

For environments with large state spaces, the Q-values are often represented by a func-

tion of state-action pairs rather than the tabular form, i.e., Qθ(s, a) = f(s, a|θ), where θ is

a parameter vector. We consider Q-learning with function approximation in this paper. To

update parameter vector θ, first-order gradient methods are usually applied to minimize the

mean squared error (MSE) loss:

θ ← θ + αδ∇θQθ. (3.4)

However, with function approximation, the convergence guarantee can no longer be estab-

lished in general. Neural networks, while attractive as a powerful function approximator,

were well known to be unstable and even to diverge when applied for reinforcement learning

until deep Q-network (DQN) [129] was introduced to show great success, in which several

important modifications were made. Experience replay [130] was used to address the non-

stationary data problem, by storing and mixing the samples (i.e., experiences) into a replay

memory for the updates. During training a batch of experiences is randomly sampled each

time and the gradient descent is performed on the sampled batch. This way the temporal

correlations could be alleviated. In addition, a separate target network, which is a copy of

the learned network parameters (θ) is employed. This copy is frozen for a period of time and

is only updated periodically (denoted as θ−), and is applied to calculate the TD error, with

the aim of improving stability.

63

3.3.1 Double DQN

A variety of extensions and generalizations have been proposed and shown successes in

the literature. Overestimation due to the max operator in Q-learning may significantly hurt

the performance. To reduce the overestimation error, double DQN (DDQN) [131] decouples

the action selection from estimation of the target, that is, choosing the maximizing action

according to the original network (Qθ), and evaluate the current value using the other one

(Qθ− from the target network), i.e.,

Qθ(s, a)← r + γQθ−(s′, arg max
a
Qθ(s

′, a)). (3.5)

The procedures of double DQN is shown in Algorithm 1.

Algorithm 1 Double DQN

1: Initialize policy network Qθ and target network Qθ− with random parameters.
2: Initialize replay buffer B.
3: for each episode until end of learning do
4: Initialize state s
5: for step t = 1, · · · until s is terminal state of an episode do
6: Select action at = argmaxaQθ(s, a) with exploration
7: Take action at, observe reward r and next state s′

8: Store experience tuple < s, at, r, s
′ > into B

9: Sample a mini-batch of experiences from B.
10: for all sampled experience in the mini-batch do
11: To train network Qθ, compute a′ = argmaxaQθ(s

′, a)
12: Estimate TD target with target network y = r +Qθ−(s′, a′)
13: Backpropagate TD error δ = y −Qθ(s, at) through Qk, update θ with learning rate α
14: end for
15: s← s′

16: Update target network θ− ← θ in a fixed frequency
17: end for
18: end for

3.3.2 Dueling DQN

[132] proposed the dueling network architecture, in which lower layers of a deep neural

network are shared and followed by two streams of fully-connected layers, that are used to

represent two separate estimators, one for the state value function V (s) and the other for

64

the associated state-dependent action advantage function A(s, a). The two outputs are then

combined to estimate the action value Q(s, a):

Q(s, a) = V (s) + A(s, a)− 1

|A|
∑
a′

A(s, a′) (3.6)

Note here the average of advantage values across all possible actions are used to achieve

better stability, instead of the max operator in the other form proposed in [132], i.e.,

Q(s, a) = V (s) + A(s, a)−max
a′

A(s, a′) (3.7)

The dueling factoring often leads to faster convergence and better policy evaluation, espe-

cially in the presence of similar-valued actions. The deployment of advantage values is more

robust to noise, since it emphasizes the gaps between Q-values of different actions given

the same state, which are usually tiny thus small amount of noise may results in reordering

of actions. In addition, the subtraction of an action-irrelevant baseline in Equation (3.6)

also effectively reduces variance, which helps stabilize learning and thus is more often used.

The shared feature learning module also generalizes learning across actions, in which more

frequent updating of the value stream V leads to more efficient learning of state values, con-

trasts with that in DQNs of a single stream output, only one of the action values is updated

while other action values remain untouched.

3.3.3 Bootstrapped DQN

The main purpose of Bootstrapped DQN [133] is to provide efficient “deep” exploration

inspired by Thompson sampling or as probability matching in Bayesian reinforcement learning

[134], but instead of maintaining a distribution over possible values and intractable exact

posterior update, it takes a single sample from the posterior. Bootstrapped DQN maintains

a Q-ensemble, represented by a multi-head deep neural network in order to parameterize a

set of K ∈ N+ different Q-value functions. The lower layers are shared by the K “heads”,

65

and each head represents an independent estimate of the action value Qk(s, a|θk). For each

episode at training, Bootstrapped DQN picks a single head uniformly at random, and follows

the greedy policy with respect to the selected Q-value estimates, i.e., at = argmaxaQ
k(st, a),

until the end of the episode.

Bootstrapped DQN diversifies the Q-estimates and improves exploration through in-

dependent initialization of the K heads as well as the fact that each head is trained with

different experience samples. The K heads can be trained together with the help of so-

called bootstrap mask mτ
k, which decides whether the k-th head should be trained, i.e., the

transition experience τ updates Qk only if mk
τ is nonzero. In addition, bootstrapped DQN

adapts double DQN in order to avoid overestimation, i.e., the the estimates of TD targets

are calculated using the target network Qθk−
. The loss backpropagated to k-the head is then

L(θk) = Eτ [mk
τ (r + γQk(s′, a′|θk−)−Qk(s, a|θk))2] where a′ = argmaxaQ

k(s′, a|θk) (3.8)

Note the gradients should be further aggregated and normalized for updating the lower layers

of the network.

3.A A Simple Proof of Policy Invariance under Reward Transformation From

Linear Programming Perspective

In this section, we focus on the linear programming (LP) perspective of MDP. By

looking at the LP dual form of MDP, it is possible to derive the policy invariance under

reward transformation property with little proof, which serves as the theoretical foundation

of the inverse reinforcement learning (IRL).

66

3.A.1 Encoding MDP as LP

Recall that Bellman optimality equation is a system of nonlinear equations:

V ∗(s) = max
a

(
R(s, a) + γ

∫
s′
T (s′|s, a)V ∗(s′)

)
(3.9)

If the state space S and the action space A are finite, we can also encode the problem in the

linear programming (LP) formulation:

min
∑
s∈S

V (s)

subject to V (s) ≥ R(s, a) + γ
∑
s′

T (s, a, s′)V (s′) ∀s ∈ S, a ∈ A
(3.10)

For each decision variable V (s), its optimal value should be no smaller than whichever action

we take in state s, and that forms a set of |A| constraints. The minimization implies that it

chooses the smallest upper bound for each V (s), and the summation over every s gives us a

single objective function.

Its dual is then:

max
∑
s∈S

∑
a∈A

µs,aR(s, a)

subject to
∑
a∈A

µs′,a= 1 + γ
∑
s∈S

∑
a∈A

µs′,aT (s, a, s′), ∀s′ ∈ S

µs′,a≥ 0, ∀s ∈ S, a ∈ A

(3.11)

in which the decision variables µs′,a can be thought of the amount of “policy flow” by taking

action a to land in the next state s′, and the constraints can be illustrated as the flow

conservation law, i.e., for each state s′, the total outgoing flow (L.H.S.) equals the incoming

flow from all possible (s, a) pairs weighted by their transition probabilities, plus the existing

amount in state s′ (which is assumed to be 1 for all states). The objective is to maximize

67

the total rewards by taking a stationary stochastic policy, which takes action a in state s

with probability
µs,a∑

a′∈A
µs,a′

.

The primal has |S| decision variables and |S|×|A| constraints, and the dual has |S|×|A|

decision variables and |S| constraints excluding the non-negativity ones.

3.A.2 Policy Invariance under Reward Transformation

[135] derived the result that under certain circumstances of reward shaping, we can

change the reward function of MDP without changing the optimal policy.

Let Φ : S 7→ R be some function over states, the so-called potential-based shaping

function F : S × A × S 7→ R is defined as the difference of (discounted) potentials, i.e.,

F = γΦ(s′)− Φ(s). Then the reward is reshaped as

R′(s, a, s′) = R(s, a, s′) + F (s, a, s′) = R(s, a, s′)− Φ(s) + γΦ(s′).

For example, R′(s, a) could be an affine transformation of R(s, a) with positive coefficient,

i.e., R′(s, a) = αR(s, a) + β, in which α ∈ R+, β ∈ R.

Theorem 3.1. F is a potential-based shaping function is a necessary and sufficient con-

dition for it to guarantee consistency with the optimal policy (when learning from M ′ =

(S,A, T, γ, R + F) rather than M = (S,A, T, γ, R)), in the following sense:

• (Sufficient) If F is a potential-based shaping function, then every optimal policy in M ′

will also be an optimal policy in M (and vice versa).

• (Necessary) If F is not a potential-based shaping function, then there exist (proper)

transition function T and a reward function R such that no optimal policy in M ′ is

optimal in M .

68

The authors proved the sufficiency of the theorem by looking at the Q-values and using

infinite telescoping sum (in the expectation). We notice that this result is more straight-

forward from the LP point of view by looking at the dual as in Equation (3.11), where the

reward function only appears in the objective function but is not shown in the constraints.

The sufficiency of Theorem 3.1 can then be directly derived without telescoping expansion

as follows.

• (Multiply by a positive scalar) R′(s, a) = αR(s, a), the coefficients of the objective

function is multiplied by α, so the optimal solution won’t change.

• (Add a scalar) R′(s, a) = R(s, a) + β, add a constant to the objective function, so the

optimal solution won’t change.

• (General Potential-based shaping) R′(s, a, s′) = R(s, a, s′)−Φ(s)+γΦ(s′), the objective

is then

max
∑
s∈S

∑
a∈A

µs,aR
′(s, a)

= max
∑
s∈S

∑
a∈A

µs,a [R(s, a)− Φ(s) + γΦ(s′)]

= max

(∑
s∈S

∑
a∈A

µs,aR(s, a)−
∑
s∈S

∑
a∈A

µs,aΦ(s) +
∑
s∈S

∑
a∈A

µs,aγΦ(s′)

)

in which the last two term forms a constant, and we go back to the case of adding a

scalar as above.

69

Chapter 4

Re-anneal Decaying Exploration in Deep Q-Learning

Existing exploration strategies in reinforcement learning (RL) often either ignore the

history or feedback of search, or are complicated to implement. There is also a very limited

literature showing their effectiveness over diverse domains. We propose an algorithm based

on the idea of reannealing, that aims at encouraging exploration only when it is needed,

for example, when the algorithm detects that the agent is stuck in a local optimum. The

approach is simple to implement. We perform an illustrative case study showing that it has

potential to both accelerate training and obtain a better policy.

4.1 Introduction

The goal of a reinforcement learning agent is to try to make best decisions, based

on the information it gathers along the way. Unlike supervised learning tasks, however,

the agent can only have access to the environment through its own actions. It needs to

explicitly explore its environment and gather information for decision making. Simultaneous

exploitation (making best decisions) and exploration (gathering of information) tasks create

a dilemma, and balancing the two is one of the core challenges in reinforcement learning.

An early survey [136] of exploration strategies made a distinction between two categories:

undirected and directed. The key idea behind the former is to add randomness, in the hope

that a random action might lead towards better actions compared to the suboptimal policy

which is viewed as the best given current information. Directed strategies take a “global”

view and measure some statistics of the past experiences, and utilize these measures to guide

efficient exploration mainly by adding an exploration bonus to the reward function, so that

the less visited (in terms of pseudo-count [137] using a fitted density model or hash-count

70

[138] with locality sensitive hashing) state-action pairs, or those with larger information

gain ([139], VIME [140]) or prediction error [141], are favored. Such strategies often allow

for theoretical analysis, usually based on multi-armed bandit (MAB) problem theory [142].

In spite of their appealing mathematical formalism and theoretical guarantees in finite case,

directed exploration strategies have not shown effectiveness over domains and thus have not

played an important role in the recent success of reinforcement learning [138].

In many real-life learning applications, RL agents are trained to achieve optimal per-

formance in certain specific tasks. Hence, it is often simple to distinguish when the learned

behavior of the agent is acceptable. It is well described in the literature that if insufficient

focus has been placed on exploration, then the agent can learn to stay in a “comfort zone”

of a local optimum. In this case, one needs to force the agent to leave the “comfort zone”

and try new actions which would take it to new states that have not been well-learned yet,

so that it can explore more information about the environment, in the hope of finding better

policy. In this paper, we propose a heuristic to overcome this problem, and in general, to

speed up learning procedure.

Our main contribution is an easy yet efficient and scalable method that encourages

exploration in complex reinforcement learning domains when it is needed. To be more

specific, we emphasize the model dynamics and the agent’s behavior rather than uncertainty

estimates while measuring the need for exploration. This can be accomplished by training

a supervised model to make predictions based on existing experiences, which would require

extensive computation as well as the effective representation of the supervised model. In

this paper, we focus on using a simple heuristic measure and an annealing-based method

to redirect the agent. Our approach could be extended to serve as a general framework for

interactively training in complex RL domains, to aid the agent in finding better policies.

Another contribution is that we abstract the learning procedure with the view of general

optimization/search, and apply a generic method that attempts to improve search algorithms

on hard problems, specifically a modified version of simulated annealing and thus our method

71

is referred to as exploration reannealing. A number of other metaheuristic approaches can

be applied in similar fashion to better balance the exploration-exploitation tradeoff in rein-

forcement learning.

It is worth noting that exploration reannealing itself is not a complete learning algorithm,

and in fact needs to be combined with other reinforcement learning tools. In this paper, we

emphasize and evaluate its application to deep Q-learning, but the combination of exploration

reannealing with other methods can be considered.

Section 4.2 provides some widely-used exploration strategies in DQN, also explains the

trade-off between exploration and exploitation. In Section 4.3, we present the motivation of

our reannealing method and discuss the appropriate ways to use it, as well as the specific

algorithm. We perform empirical studies and showcase the improvement by exploiting our

reannealing strategy on a large scale challenging domain, the Lunar Lander model, in Section

4.4. Finally, we outline conclusions in Section 4.5.

4.2 Exploration in DQN

4.2.1 Exploration Strategies

ε-Greedy Exploration. The most commonly-used strategy for exploration is the ε-greedy

method, in which the agent selects the action it believes to be the best according to current

Q(s, a) values for the most of the time, and occasionally acts randomly. That is, it takes

the greedy action arg maxπ
∫
Q(s, a)π(a|s)da with probability 1− ε, and selects (uniformly)

randomly among all actions with probability ε. Then after infinitely many steps, every state-

action pair will be visited infinitely often, thus all Q(s, a) converge to the true action values

Q∗(s, a) almost surely [143]. However, deficiencies of ε-greedy are also often discussed and

new RL algorithms can be proposed. For example, the time complexity of ε-greedy learning

is exponential with respect to the size of the state space, which leads to PAC-learning ideas

for RL [144]. Moreover, ε-greedy selects actions with equal probability. Intuitively, we would

expect the agent to pay more attention to more “promising” actions, i.e., those with maybe

72

slightly lower Q-values than the current greedy action, rather than those with really low

Q-values, which have less potential to be optimal. Moreover, it might be a waste to explore

those actions with low Q-values, which have been selected many times since we may be

confident that these are “bad” actions. Despite its deficiencies, due to its simplicity, practical

effectiveness, and the ease with which it can be embedded into Q-learning, ε-greedy strategy

has been prevalent in most value-based algorithms in reinforcement learning, including DQN

and its variants.

Softmax (or Boltzmann) Exploration. The (variational) free energy for an RL agent

can be defined as

F (π) = −
∫
Q(s, a)π(a|s)da+ T

∫
π(a|s) log π(a|s)da, (4.1)

in which the first term represents the energy of the agent, and the second term is the standard

form of negative entropy. Coefficient T of the negative entropy is referred to as temperature.

Free energy principle claims that a self-organizing agent would act on the environment by

minimizing its free energy, by which it reaches an equilibrium with the environment (or more

accurately, a sampling of sensory data) [145]. Minimization of free energy gives us

π(a|s) =
exp

(Q(s,a)
T

)∫
exp

(Q(s,a′)
T

)
da′

(4.2)

which is called the softmax policy or Boltzmann policy. Note that hyperparameter T con-

trols the exploration [146]. If the temperature is high, the action selection according to π

approaches uniform distribution, which yields more randomness and thus encourages explo-

ration. On the other hand, low temperature would reduce the randomness and enhance

exploitation. As an extreme case, if the temperature is zero, the negative entropy term in

Eq. (4.1) goes away, and the corresponding policy becomes deterministic which takes the

greedy action arg maxπ
∫
Q(s, a)π(a|s)da given the current estimate of Q(s, a). With the

73

softmax probability, the possibilities for each action to be selected are ranked and weighted

relevant to their estimated Q-values, instead of equal probabilities for all actions in ε-greedy

approach.

4.2.2 Exploration Decay

Theoretical analysis of exploration strategies is usually performed through the Multi-

Armed Bandit (MAB) model [142]. ε-Greedy strategy has been well studied through regret

analysis in MAB, in which the regret is often defined as a measure of the difference in value

between taking an action a and the optimal action a∗ at time t, i.e., ρ(t) = Ea[V ∗ −Q(at)],

that is, the opportunity loss of taking at for one step. The total regret is then the overall

opportunity loss over time until time t, i.e., L(t) =
∑t

τ=1 ρ(τ) = Ea[
∑t

τ=1(V ∗ −Q(aτ))]. As

shown in [142], if we set ε = 0, that is, always choose the action with the largest Q-value

greedily without exploration attempt, then the greedy action could lock onto a suboptimal

policy forever, in that case, a linear bound (O(t)) on total regret is achieved. On the other

hand, if we take ε-greedy action with constant ε > 0, the agent would keep exploring with

probability ε even if the optimal policy is found, thus also resulting in linear total regret.

A natural approach, then, is to encourage exploration early and exploitation later,

which is achieved with decaying ε over time. Decaying-ε-greedy can achieve asymptotically

logarithmic bound on total regret, by defining εt = min(1, c
δ2t

), where c is a constant and

δ is the gap between the best and second best action values, both are unknown however.

Thus it is often hard to derive an efficient decay schedule. Nevertheless, it is important to

emphasize the decay strategy on exploration. We note that the exploration of stochasticity

for softmax strategy could also be annealed during training by changing the temperature T

over time.

74

4.3 Exploration Reannealing

4.3.1 Local Optima in DQN

In theory, Q-learning converges to the optimal policy if all state-action pairs are visited

infinitely often. However, this condition cannot be met in practice if the state-space is

too large or continuous. A neural network in DQN approximates large or continuous state

space and thus suffers from this problem. A deep neural network in general is of very high

dimensinality, and popular practical optimization techniques, such as stochastic gradient

descent, only consider first-order gradient information of the loss function. Such optimization

algorithms may get stuck at local optima or saddle points. In practice, for regular neural

networks, saddle points of the loss function can be escaped by applying special optimization

techniques [147], and it is often the case that a local optima is good enough for many

supervised learning problems. However, this might not be the case in DQN. A local optimum

in DQN arises from both the complicated structure of loss function itself, and the limited

representation and inference ability of a neural network for the search space. The latter is

especially pervasive for state-space segments that are not well-explored. As a result, the

learning agent cannot make progress for a long time and might waste learning resources by

updating information for irrelevant parts of state space. Therefore, it is more common in

practice that a DQN learning agent gets stuck in poor local optima, due to the difficulty of

handling the exploration-exploitation trade-off well.

4.3.2 Exploration Reannealing

Simulated annealing (SA) is a classic heuristic optimization approach used to escape

local optima. At the heart of it is an analogy with thermodynamics. Boltzmann probability

distribution again is used to analogically represent the (variational) free energy, with a control

hyperparameter, referred to as temperature T . The free energy determines the stochasticity

for the search direction, which aids the local search to escape from local optima. The

75

concepts are fundamentally based on the same principle as those in exploration strategies

we mentioned above, in which decaying the exploration is fundamentally the same as tuning

the temperature in SA. In some variations of simulated annealing search, re-anneaing [148]

is a quite common idea for the anneal schedule, that is, the temperature is periodically set

to a high value in order to encourage exploration.

Similar idea can be naturally employed in our problem for enabling exploration in RL.

Note that the act of reannealing itself can be implemented in a straightforward way for

both ε-greedy and softmax strategies we introduced above. In ε-greedy, we can easily reset

the exploration rate ε to a large value (note that 0 ≤ ε < 1 and ε decays over time) if

poor local optima is met. Similarly, for softmax action selection, we can more directly

reset the temperature to a high value (e.g., close to the initial temperature) whenever it is

necessary. We note here that with finitely many reannealing events, the theoretic guarantee

of asymptotically logarithmic bound on total regret will still hold as for decaying ε-greedy.

A more significant challenge relates to the timing of reannealing events. We will discuss this

question below, but first we discuss additional reasons why we believe reannealing can bring

benefits for learning in DQN.

The key advantage of reannealing exploration is that it could substantially improve

the sample efficiency. We know that collecting data by interacting with the environment is

usually expensive for RL systems. While stuck in local optima, it is usually the case that

the TD errors being backpropagated are small, and the agent could learn little information

thus gain little learning progress. With reannealing, the agent would tend to take random

actions in this case and is more likely to experience unacquainted states thereafter. Those

state-action pairs are usually visited much less often than those obtained by taking greedy

policy, thus have larger TD errors in general and from which the agent can learn more.

Another advantage is that reannealing exploration could substantially alleviate the data

imbalance problem. Without reannealing exploration, large amounts of samples are collected

around local optima, resulting in data distribution biased in favor of samples that may not

76

be relevant. As a result, a notable portion of model parameters are dedicated to describing

states around (poor) local optima, and much of the training work is hence in vain. By

reannealing the exploration instead of exploiting around the local optima, random actions

are taken with much higher probabilities, the agent are more likely to jump out of the local

optima and experience with unacquainted states, gather significantly more useful information

about the entire environment as well as the training overall.

Finally, a training episode is often designed to have a finite horizon for computational

simulation purpose. Each episode finishes when either certain criteria are met (in this case,

a success or a failure on the task is defined and final reward is given), or the time step

exceeds a fixed period. When a local optimum is encountered, the agent tends to wander

around until exceeding the time limit of an episode. It is important to note that using a

time limit makes the environment non-stationary, since in this case the final reward is never

actually assigned, and hence, the agent may not be able to recognize a suboptimal policy.

Exploration reannealing can enable the agent to actually achieve either success or failure,

making sure that appropriate reward is assigned. Consequently, more episodes finish with

more concrete information gain.

4.3.3 Defining Poor Local Optima

Given the intuitive advantages of applying reannealing to DQN, we next describe our

proposed algorithm. As described above, the mechanism of reannealing is straghtford for

both ε-greedy and softmax strategies. On the other hand, detemining the appropriate times

for reannealing is more difficult. Clearly, we must reanneal, when the agent is stuck in a

poor local optimum. Unfortunately, in high-dimensional spaces formally determining local

optimum is challenging. In practice, an often used empirical way is to track variation of

loss function across iterations. When the loss stops improving, it is often the case that the

search reaches local optimum. However, simply looking at the change in loss does not tell

77

us whether the local optimum is acceptable. It might be the case that near-global optimum

has already been achieved, and hence there is no need to escape from it.

On the other hand, sometimes a poor local optimum can be easily observed and distin-

guished by human from the outside perspective, in which case the observer utilizes some a

priori knowledge that has not been integrated into the reward function. In RL, the agent’s

learned policy as well as its behavior are determined by optimizing the discounted cumulative

rewards, thus an ideal reward function should capture the goal and measure the performance

exactly, which requires perfect knowledge of all states and transitions in the environment.

Except for some human designed games in which the rules are entirely understood, it of-

ten takes considerable effort to tweak the rewards until desired behavior is learned. This

then means, that in many applications the reward function is already overloaded in a way

as to result in favorable agent’s behavior, and, hence, attempting to also use the same re-

ward function to distinguish the quality of local optimum may be either impossible or very

complicated with unexpected side-effects (see also inverse reinforcment learning, [149]).

Alternatively, we propose to consider a separate criterion for initiating reannealing. This

criterion can be viewed as a supervised model, which makes predictions based on existing

experiences. The training labels could be as simple as a categorical signal to denote the

need to explore, or as complicated as representation of next state, which would require

extensive computation as well as the effective representation of the supervised model. In

this paper, we use a simplified version of this supervision idea. We explicitly measure the

easily distinguished feature as an a priory defined heuristic, representing the fact that the

agent’s bottleneck behavior due to sub-optimal policy can often be described with some

undesirable characteristics from an outside observer’s perspective. We, then, can explicitly

extract such a feature as a useful heuristic independent from the reward function. Once

defined, we can keep track of the heuristic along the learning process and use it to control

the learning behavior. See Section 4.4 for an example based on Lunar Lander problem.

78

4.3.4 Algorithm

The objective of reannealing exploration is to explicitly inform the learning agent that

it should be exploring rather than exploiting with a heuristic measure. We set up a heuristic

variable called stuck to represent if the agent has been stuck in poor local optima. The

variable stuck should be a global statistic for some aspect of the agent’s performance in-

formation. If some threshold of “stuck” has been reached, we reanneal the exploration. In

ε-greedy learning, we reset ε to 1 and force the agent do pure exploration. The exploration

rate ε then is decayed over time. The pseudo-code of our proposed procedure for DQN is

shown in Algorithm 2. And similar reannealing strategy applies for softmax, in which we

reset the “temperature” T to its initial value, and anneal it again to smaller value over time.

As argued above, the candidates of the stuck variable should be some performance

measure that might have not been integrated (or not been integrated well) in the reward

function. The chosen feature as the explicit heuristic should be a representative bottleneck

for learning. We expect that the RL agent could jump out of the local optima by applying

reanneal strategy, and be able to learn better policy than the one it obtained before rean-

nealing when it stucks. As a result, acceptable behavior and good policy could be learned

faster. We also expect that with reannealing exploration, we could worry less about poor

local optima and spend less time on tuning the hyperparameters (such as the annealing

schedule, learning rate, etc.) while training.

79

Algorithm 2 Exploration Reannealing in DQN

Initialize εt = 1 and stuck, as well as DQN parameters θ.
repeat {for each episode}

initialize state s
repeat {for each step in an episode}

Generate a random number u ∈ [0, 1]
if u < εt then

Randomly select a ∈ A
else
a← arg maxa′∈AQ(s, a′|θ)

end if
Take action a, observe reward r and next state s′

Store experience tuple < s, a, r, s′ > into memory
Sample a batch of experiences from memory
for all sampled experience in the batch do

Compute the TD error δ = r + maxa′ Q(s′, a′|θ)−Q(s, a|θ)
Backpropagate δ through the DQN, update θ with learning rate αt

end for
s← s′

until s is terminal state
Update stuck according to performance
if stuck meets some threshold then

Reset εt = 1
Reset stuck to its initial value

else
Decay εt

end if
until end of learning

4.4 Experimental Results

4.4.1 Testbed Setup

We conducted an experiment by implementing a reinforcement learning agent to solve

the Lunar Lander task in Box2D [150], interfaced through OpenAI gym environment [151].

In each step, the agent is provided with the current state s of the lander in R8, in which 6

of the dimensions are in continuous space denoting the position, speed, and angular speed,

whereas the other 2 are dummy variables in discrete space, indicating the severity of collision.

The agent is allowed to make one of the 4 possible actions (i.e., the action space is discrete).

80

At the end of each step, the agent receives a reward and moves to a new state s′. An episode

finishes if the lander rest on the ground at zero speed (receives additional reward of +100),

or hits the ground and crashes (receives additional −100 reward), or flies outside the screen,

or reaches the maximum of 1000 time steps of one episode. The agent aims for successful

landing which is defined as reaching the landing pad (between two flags) centered at the

ground at the speed of zero, and receives an additional reward in range [100, 140], while

landing outside the pad would cause some penalty. Figure 4.1 provides a snapshot of the

task environment.

Figure 4.1: Lunar Lander Environment

We use a neural network with two fully-connected hidden layers (which consist of 200

and 60 neurons, respectively) as our function approximator. ReLU nonlinearity is utilized

as the activate function for each hidden neuron. The network takes the 8-dimensional vector

s which describes the state as the input, and outputs the approximated Q-values for the 4

possible actions. We train the neural network with a FIFO memory of size 106 for experience

replay. A target neural network for double learning is updated every 20 episodes, so that the

original network has enough time to converge. The adaptive moment estimation (Adam)

optimizer with initial learning rate set to 0.01 is used to train the network, since it is in

general less sensitive to the choice of the learning rate than other stochastic gradient descent

algorithms [119]. We apply the pseudo-Huber loss instead of MSE as the loss function, as it

81

is less sensitive to outliers and is more commonly used in DQN [129]. The discount factor γ

is set to 0.99, and ε-greedy policy is used for choosing actions throughout interacting with

the environment. For comparison purpose, we used two different exploration decay rates,

ρdecay = 0.99 and 0.985. These hyperparameters are empirically tuned in the aim of achieving

better performance.

4.4.2 Implementation of Exploration Reannealing

As in Q-learning, a simple ε-greedy policy is applied while choosing actions to interact

with the environment during training. With large exploration rate ε, the agent fails in

exploitation and refining its policy, while with small ε, the agent would have a problem

in exploration. For example, if we simply pick ε = 0.01, the agent soon learns to hover

above the ground forever but hesitates to land. Annealing strategy for exploration rate is

considered and tried, in which ε gradually decreases from 1 to 0.01 during say, half of the

training episodes, and ε = 0.01 for the rest of training time. However, this cannot solve the

hovering problem. This annealing strategy adds randomness at the early stage of training,

but the pretrain step (in order to fill the memory for experience replay) has already provided

the agent enough exploration stored in the memory at the beginning. Even if the agent learns

to land occasionally, it prefers hovering for most of the time. This is probably because the

neural network is dealing with continuous state space, learning through some unknown states

with bad decisions would also affects the values of well-learned states. As a result, the agent

again learns to hover forever.

In order to escape from such hovering local optima, we carefully engineered a reannealing

strategy for the exploration rate. The idea is to encourage the agent to explore while it is

hovering. We define a variable hover to count the hovering number which starts from 0.

Whenever an episode finishes exceeding the time limit (i.e., the maximum 1000 step in an

episode), we increase the hovering number by 1. If the next episode finishes within 1000

steps, we halve the hovering number (using integer division). We will reset ε back to 1 (for

82

fully exploration) and recount if the hovering number reaches 10 (in this case, the agent

tends to hover forever). Otherwise, ε anneals to 0.01 as described above.

4.4.3 Results

The network was trained over 10,000 episodes. Figures 4.2a and 4.2b illustrate the

results for the ordinary DQN without applying the exploration reannealing strategy, using

two different exploration decay rates. We plot the cumulative rewards for each episode shown

with grey, and the smoothed moving averages of the last 100 episodes shown with the blue

line. Notice that higher rate means slower decay, which results in more exploration at the

beginning. In the case that reannealing strategy is not applied, the agent with exploration

decay rate ρdecay = 0.985 explores less at the beginning than the one with ρdecay = 0.99,

and performs worse, i.e., its average episodic total rewards are significantly lower, and also

the learning process is slower. For instance, with ρdecay = 0.985, the agent barely learns

to avoid crashing (i.e., with episodic rewards above zero) within 3000 episodes, while with

ρdecay = 0.99, the agent can obtain the same level in about 2000 episodes. Also, to achieve

average episodic rewards above 100, it takes less than 4000 episodes with ρdecay = 0.99,

and more than 7000 episodes with ρdecay = 0.985. This coincides with our intuition, and

emphasizes the importance of sufficient exploration.

As shown in Figures 4.2c and 4.2d, applying the reannealing strategy improves our

result significantly. We could achieve an average value of episodic total reward as high as

200 (in this case, reward 200 means that the agent could land smoothly at the right position

on the ground). Without reannealing, however, the agent never achieves such level in either

cases (see Figures 4.2a and 4.2b). An interesting observation is the steep falls of the moving

average along the training while reannealing is applied, clearly these are the moments when

ε is reset to 1. Note that at those times, the falling of episodic total rewards value does

not mean the agent is doing worse in general. Q-learning is an off-policy algorithm, which

means the learned target policy is not the same as the behavior policy (ε-greedy) it uses

83

while interacting with the environment and accumulating the samples. The induced greedy

policy has not changed much in such a short period of time from the recent ε resetting, so

the agent can still do as well as before falling if it acts greedily. At the same time, the target

policy keeps learning while exploring. We can see from Figures 4.2c and 4.2d, that for most

of the time, it can soon get back to the previous best performance, and often its new peaks

are higher, which indicates that it jumps out of the previous local optima.

We deliberately choose the sliding window size to be not too big, nor do we show the

average values over multiple training runs, so that the curves are not over-smoothed, thus

allowing us to discern the occurrences of reannealing. Over-smoothed curves would give us

the illusion that the learning is be slower with reannealing strategy, especially at the early

training stages. We claim it is not true, using the same argument that Q-learning is off-

policy. We cannot compare the derived policies early on since the exploration rate differ

a lot, however, while ε reaches its minimum value, we can compare the performance of all

“near-greedy” behavior polices. We see that with reannealing, the agent could reach higher

values much faster, thus we claim that reannealing accelerated the training.

We also plot the varying ε values along training with reannealing strategy in Figures 4.2e

and 4.2f, from which we can directly observe the moments when reannealing was initiated.

There is no need to plot such patterns for the cases without reannealing, since ε decays to 0.01

in a few hundred episodes. From Figures 4.2e and 4.2f we can see the frequent reannealing

early on, since the agent generally can learn to hover very quickly and frequently. Note that

reannealing occurs more frequently with ρdecay = 0.985 than that with ρdecay = 0.99. We

can surmise then that our reannealing strategy serves as a remedy for poor hyperparameter

tuning, specifically the exploration decay rate, as long as the reannealing criterion (aka the

heuristic measure) is appropriately picked. With insufficient exploration at the beginning,

the learning would get stuck in poor local optima more often, but reannealing strategy can

force the agent to explore later on when it is necessary, and help find similarly good policy

as when training with better hyperparameter. Also notice that there is a long flat tail in

84

Figure 4.2e after episode 4500. During this period of training, the agent did not reanneal,

and the total reward values stays at that level with smaller variance, compared with no

reannealing graphs on Figures 4.2a and 4.2b . In fact, we can see that with reannealing, the

variance is smaller when near-greedy policy is applied, i.e., when ε stays at its minimum for

a while. Upon this, we could expect the (greedy) policy learned with reannealing strategy

to be superior both in terms of higher total reward and smaller variance.

85

.

(a) no reannealing, ρdecay = 0.99 (b) no reannealing, ρdecay = 0.985

(c) with reannealing, ρdecay = 0.99 (d) with reannealing, ρdecay = 0.985

(e) progress of ε, ρdecay = 0.99 (f) progress of ρdecay = 0.985

Figure 4.2: Performances measured during training. The upper two rows illustrate the total
rewards during each episode and moving averages; (a) and (b) correspond to training without
reannealing, while (c) and (d) are with exploration reannealing. The bottom row plots the
varying ε values along training with reannealing. In all cases the left column corresponds to
exploration decay rate ρdecay = 0.99, and the right column corresponds to ρdecay = 0.985.

86

4.5 Conclusions

In this work we present a method to organize exploration in RL algorithms. In partic-

ular, we focus on its application to model-free value-based approaches, such as DQN. Our

method is particularly suited to problems which suffer from poor local optima, and that have

sparse rewards as well as long horizons which can trigger the termination criterion earlier.

Poor local optima can often be easily distinguished from an outside perspective, yet it may

be hard to encode this additional information into reward function or state variables due

to complexity of the underlying system. Instead we propose to use a separate, heuristic

measure, independent from the agents reward and state, aimed at detecting the local optima

that need to be avoided. With such a measure, we can then organize the learning process

using a reannealing framework, previously used to solve hard optimization problems.

We highlight some intuitive benefits of applying exploration reannealing, and demon-

strate its performance on a standard RL task. In our experiments, reannealing method,

indeed helps the agent avoid poor local optima and gather more useful information. The

sample efficiency for the reinforcement learning is improved, and the data imbalance problem

alleviated. As a result, the training procedure can is accelerated, and the derived policies

have superior performance. In addition, we hypothesize that it can serve as a remedy for

imperfect hyperparameter tuning.

It is worth noting that the simple framework presented here can be extended to use

more sophisticated supervised learning-based heuristic measures for reannealing initiation.

If trained properly, such strategies can result in even better performance, due to improved

timing of reannealing.

87

Chapter 5

Cross Q-Learning in Deep Q-Networks

In this work, we propose a novel cross Q-learning algorithm, aim at alleviating the well-

known overestimation problem in value-based reinforcement learning methods, particularly

in the deep Q-networks where the overestimation is exaggerated by function approximation

errors. Our algorithm builds on Double Q-learning, by maintaining a set of parallel models

and estimate the Q-value based on a randomly selected network, which leads to reduced

overestimation bias as well as the variance. We provide empirical evidence on the advantages

of our method by evaluating on some benchmark environment, the experimental results

demonstrate significant improvement of performance in reducing the overestimation bias

and stabilizing the training, further leading to better derived policies.

5.1 Introduction

Overestimation has been identified as one of the most severe problems in value-based

reinforcement learning (RL) algorithms such as Q-learning [152], where the maximization

of value estimates induces a consistent positive bias, and the error of the estimates is accu-

mulated by the nature of temporal difference (TD) learning. In the function approximation

setting such as deep Q-networks (DQN), the issue of value overestimation is more severe,

given the noise induced by the inaccuracy of the approximation. As a result, learning DQN

tends to have instability and variability for estimated Q-values, the derived policies accroding

to the overestimated Q-values tend to be not optimal and often diverge.

To overcome this issue, double Q-learning [131] has become a standard approach for

training DQNs. The main purpose of double Q-learning is to avoid the overestimation

problem for the target Q-value, by introducing negative bias from the double estimates.

88

The usual way to realize it in DQN is to maintain a target network which is a copy of the

policy DQN which is either frozen for a period of time, or softly updated with exponential

moving average. The target network then is used to estimate the TD target. This may

alleviate the issue, however, double DQN still often suffer from overestimation in practice,

partially because the policy and target estimates of Q-values are usually too similar, while

the noise from high variance is propagated through the network and occasional large reward

can produce great overestimation in the future. Another approach sometimes proposed is

to impose a bias-correction term on the estimates for Q-learning [153], however, the error

correction term is complicated to derive for deep networks, in which the finiteness of state

space is no longer true. A more recent modification over double DQN favors underestimation

and clips the Q-value estimates [154], that is, always chooses the minimum of the estimated

targets over the two networks. The clipped double Q-learning is used on the critics in

actor-critic methods for the deterministic policy gradient, which is referred to as TD3 (twin

delayed deep deterministic policy gradient) and has shown state-of-the-art results on multiple

tasks. However, the intentionally engineered underestimation lacks of rigorous theoretical

guide, in addition, it may induce bias in the other direction, e.g., the underestimation can

also accumulate through TD learning and derive suboptimal policies. Further, excessive

underestimation can naturally lead to slower convergence.

Another direction to alleviate overestimation is through reducing the variance during

training. For example, [155] uses the average of the learned estimated Q-values from multiple

networks, which is designed to help reduce the target approximation error. There also exist

various variance reduction techniques [156, 157, 158, 159] that focus on the general non-

convex optimization procedure for accelerating the stochastic gradient descent, or their direct

application on DQNs [160], in which the agent could obtain smaller approximated gradient

errors. Reducing the variance can effectively stabilize the DQN training procedure, and

overestimation alleviation can be seen as a by-product. However, these are indirect methods

89

for overestimation control, and the positive bias due to the max operator in TD update are

not taken care of.

To address these concerns, we propose a cross DQN algorithm, which can be seen as

a direct extension of an earlier variant of double DQN, but can be more flexible. In cross

DQN, we maintain more than two networks, and update them one at a time based on the

estimation from another randomly selected one. As mentioned above, the averaged DQN

[155] calculates the average of K estimated Q-values, with the primary purpose of the overall

variance reduction. For all K networks, each step of TD updates as well as action selections

are based on combining the K estimates. Consequently, the networks are tangled together

and cannot be implemented with a parallel simulation. In bootstrapped DQN [133], one of

the K networks (or heads) is bootstrapped for each action selection step during training,

aiming at encouraging exploration early on. Thus the simulation is not independent among

networks, while the TD updates are totally independent within each of the networks, by

using its own estimation of Q-values as in standard (double) DQN. [161] investigates more

general applications of traditional ensemble reinforcement learning on policies, i.e., majority

voting, rank voting, Boltzmann addition, etc. to combine the different policies derived from

multiple networks, by which they called the target ensembles, in addition to the averaged

DQN which they called the temporal ensemble. All of the above-mentioned work that

maintain multiple networks have achieved better performance by addressing different issues

through some particular settings. Our method focuses on the variation of TD updates, in

which the target Q-values are estimated with a bootstrapped network for calculating the

gradients, with the direct goal of reducing overestimation. Each of the K networks would

perform its own TD updates, while maintaining flexibility in action selections: the networks

can either interact with the environment independently, or through any other ensemble

strategy. The detailed implementation options would be discussed in Section 5.4.

In supervised learning, ensemble strategies such as bagging, boosting, stacking, and hi-

erarchical mixture of experts, etc. are commonly applied to achieve better performance, by

90

simultaneously learning and combining multiple models. All of the abovementioned algo-

rithms that maintain multiple models, including ours, can be seen as special cases of general

ensemble DQNs. But our method has a deeper root in resampling and model selection.

By bootstrapping another model to assess the values of current model, we introduce model

bias for in-sample estimations, but reduce the variance of out-of-sample estimations (i.e.,

the squares of out-of-sample bias), in other words, the trained model can generalize bet-

ter and alleviate overfitting. For squared errors, this can be expressed as the well-known

bias-variance trade-off: MSE = Irreducible Error2 + Bias2 + Variance. In value-based re-

inforcement learning, the model easily overfits due to overestimation (which is caused by

the max operator) during learning. Cross Q-learning introduces underestimation bias, and

further reduces the variance, thus improves the generalization of the trained model.

Like in [154], our work can be naturally extended to the state of the art actor-critic

methods in continuous action space, such as the deep deterministic policy gradient [162],

in which the critic network(s) are learned to give an estimate of the Q-value for the actor

network to update its gradient and derive policies. Usually multiple critic networks are

applied, however, rather than accumulating their learned gradients (either synchronously

or asynchronously [163]) and optionally sharing network layers, no other information is

shared among the critics. The extension of our method allows the critics to share their

value estimates and utilize that of others, which leads to more accurate estimation of each

critics, thus can improve the performance of these models. Similar to these actor-critic

algorithms, our work can be implemented for parallel training easily, and the exchange of

information among networks could take place either synchronously or asynchronously like the

accumulation of gradients, as there is always tradeoff between synchronous and asynchronous

update.

The rest of this chapter is organized as follows. In Section 5.2, we formally define the

estimators for the maximum expected values, along with their theoretical properties. The

convergence of our cross estimator is shown in Section 5.3. Section 5.4 illustrates our cross

91

DQN algorithm directly derived from the double DQN in details. We show some empirical

results in Section 5.5. Finally, Section 5.6 draws conclusions and discusses future work.

5.2 Estimating the Maximum Expected Values

For Q-learning, the action is selected according to the estimated target Q-values. This is

an instance of a more general maximum expected value estimation problem, which is formed

as follows. Consider a set of |A| random variables Q = {Qa1 , · · · , Qa|A|}, we are interested

in finding the maximum expected value among the set of variables, which is defined as

max
a
µa = max

a
E[Qa]

while each E[Qa] is usually estimated from samples. Let Ωa denote the sample space for

estimating Qa, for a ∈ A, and we further assume that the samples in Ωa are i.i.d. The

sample mean µ̂a = 1
|Ωa|
∑

x∈Ωa
x is then an unbiased estimator for E[Qa].

Let fa : R → R be the probability density function (PDF) for the variable Qa, and

Fa(x) =
∫ x
−∞ fa(x)dx be the cumulative density function (CDF). The maximum expected

value is then

max
a

E[Qa] = max
a

∫ ∞
−∞

xfa(x)dx. (5.1)

5.2.1 (Single) Maximum Estimator

The most straightforward way to approximate maxa E[Qa] is to take the maximum over

the sample mean for each a, i.e., maxa E[Qa] ≈ maxa q̄a. Note that the sample means q̄a are

unbiased estimates of the true means, thus maxa q̄a is an unbiased estimate for E[maxa µa] =∫∞
−∞ xfmax(x)dx, however, it is a biased estimate for maxa E[Qa].

Consider its CDF F µ
max = P{maxa µ̂a ≤ x} = ΠaP{µa ≤ x} = ΠaF

µ
a (x), we can write

E[max
a
µ̂a] =

∫ ∞
−∞

x
d

dx
ΠaF

µ
a (x)dx =

∑
a′

∫ ∞
−∞

xfµa (x)Πa′ 6=aF
µ
a (x)dx. (5.2)

92

Comparing equations (5.1) and (5.2), clearly maxa E[Qa] and E[maxa µ̂a] are note equiv-

alent. Moreover, the product term Πa′ 6=aF
µ
a (x) in the integral introduces positive bias (since

CDFs are monotonically increasing, the sum of their derivatives will be positive, the integral

value would be monotonically increasing while more product terms are added). Therefore,

we say that the expected value of the single estimator for the maximum is an overestimation

of the maximum expected value.

5.2.2 Double Estimator

Consider the case that we use two sets of estimators µ̂A = {µ̂Aa1 , · · · , µ̂
A
a|A|
} and µ̂B =

{µ̂Ba1 , · · · , µ̂
B
a|A|
}, in which each µ̂Aa and is estimated from a set of samples independent of the

one to estimate µ̂Ba , i.e., µ̂Aa = 1
|ΩA

a |
∑

x∈ΩA
a
x, µ̂Ba = 1

|ΩB
a |
∑

x∈ΩB
a
x, and ΩA

a ∩ΩB
a = ∅. For all a,

both µ̂Aa and µ̂Ba are unbiased estimator for E[Qa], assuming all the samples in both sets are

independently drawn from the population. That means E[µ̂Aa] = E[Qa] for all a, including

a∗B = argmaxaµ̂
B
a , the action that maximizes the sample mean µ̂B. Therefore, µ̂Aa∗B can be

used to estimate maxa E[µ̂Aa] as well as maxa E[Qa], i.e.,

max
a

E[Qa] = max
a

E[µ̂Aa] ≈ µ̂Aa∗B .

The same argument holds for the opposite way considering the best action over ΩA and

the sample mean µ̂Ba∗A . The selection of a∗ means that all other a gives lower estimation, i.e.,

P (a = a∗) = Πa6=a∗P (µAa < µAa∗). Let fAa and FA
a be the PDF and CDF of µAa , respectively.

Then

P (a = a∗) =

∫ ∞
−∞

P (µAa = x)Πa′ 6=aP (µAA < x)dx =

∫ ∞
−∞

xfAa (x)Πa′ 6=aF
A
a (x)dx.

The expected value of double estimator is a weighted sum of the sample means’ expected

values in one sample space, weighted by the probability of each sample mean to be the

93

maximum in the other sample space, i.e.,

∑
a

P (a = a∗)E[µBa] =
∑
a

E[µBa]

∫ ∞
−∞

xfAa (x)Πa′ 6=aF
A
a (x)dx.

Double estimator gives us negative bias, since the weights P (a = a∗) are probabilities,

which are positive and sum to 1, the maximum expected value then serves as an upper bound

for the weighted sum, as some weights may also be given to variables whose expected value

is less than the maximum.

5.2.3 Cross Estimator

We can easily extend the double estimator to a more general case, in which instead

of using two sets of estimators, suppose now we have K independent sets of estimators

µ̂1, · · · , µ̂K . We call it the cross estimator. The double estimator can be seen as a special

case of the more general cross estimator. Similar argument as analyzing the double estimator

can be applied here, for any two estimators µ̂i and µ̂j, as

max
a

E[Qa] = max
a

E[µ̂ia] ≈ µ̂Aa∗j .

The cross estimator finally uses a convex combination of the K sample means,

∑
a

P (a = a∗)E[µja] =
∑
a

E[µja]

∫ ∞
−∞

xf ia(x)Πa′ 6=aF
i
a(x)dx,

thus also underestimates the maximum expected value.

Theorem 5.1 (Van Hasselt [164]). There does not exist an unbiased estimator for maximum

expected values.

94

5.3 Convergence in the Limit

In this section, we first present a lemma which claims the convergence of SARSA from

[165], and then use it to prove convergence of cross Q-learning. Note that this part heavily

borrows the proof of the convergence of double Q-learning [166], but serves as a more general

case.

Lemma 5.2 (Singh et al. [165]). Consider a stochastic process (αt,∆t, Ft), t ≥ 0, where

αt,∆t and Ft : X → R satisfy the equation

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x), where x ∈ X, t = 0, 1, 2, · · ·

Let Pt be a sequence of increasing σ-fields such that α0 and ∆0 are P0-measureable and αt,∆t

and Ft−1 are Pt-measurable, for t = 1, 2, · · · .

∆t converges to zero with probability one (w.p.1) if the following hold:

1. the set X is finite.

2. 0 ≤ αt(x) ≤ 1,
∑

t αt(x) =∞, and
∑

t α
2
t (x) <∞ w.p. 1.

3. ||E[Ft|Pt]|| ≤ κ||∆t||+ ct, where κ ∈ [0, 1] and ct converges to zero w.p. 1.

4. V ar(Ft|Pt) ≤ K(1 + ||∆t||)2, where K is a constant.

in which || · || denotes the maximum norm.

Theorem 5.3. In a given ergodic MDP, suppose that we have a set of K Q-value functions,

Q1, Q2, · · · , QK, as updated by cross Q-learning, will converge to the optimal value function

Q∗ with probability 1, if the following conditions hold:

1. The MDP is finite, i.e., |S × A| <∞.

2. γ ∈ [0, 1).

95

3. The Q-values are stored in a lookup table.

4. Each state-action pair is visited infinitely often.

5. Each Qk receives an infinite number of updates, for all k = 1, · · · , K.

6. 0 ≤ αt(s, a) ≤ 1,
∑

t αt(s, a) = ∞, and
∑

t α
2
t (x) < ∞ w.p. 1. Moreover, αt(s, a) =

0,∀(s, a) 6= (st, at).

7. V ar(R(s, a)) <∞, ∀s, a

Proof. Let k, j ∈ {1, · · · , K} are randomly picked with k 6= j. Apply Lemma 5.2 by let-

ting Pt = {Q1
0, Q

2
0, · · · , QK

0 , s0, a0, α0, r1, s1, · · · , st, at}, X = S ×A, ∆t = Qk
t − Q∗, and

Ft(st, at) = rt + γQj
t(st+1, a

∗) − Q∗t (st, at), where a∗ = argmaxaQ
k(s, a). The first two con-

ditions of Lemma 5.2 hold immediately from conditions 1 and 6 of Lemma 5.3, respectively.

And since condition 7 of Theorem 5.3 gives us the bounds for the variance of rewards, the

fourth condition of Lemma 5.2 holds.

To show the third condition of Lemma 5.2, we write

Ft(st, at) = rt + γQj
t(st+1, a

∗)−Q∗t (st, at)

=
(
rt + γQk

t (st+1, a
∗)−Q∗t st(st, at)

)
+ γ

(
Qj
t(st+1, a

∗)−Qk
t (st+1, a

∗)
)

= FQ
t (st, at) + γct

in which we define FQ
t = rt + γQk

t (st+1, a
∗) as the estimated Q-value for (s, a) under the

standard (single) Q-learning. While the convergence of standard Q-learning in finite MDP is

well-known, i.e., E[FQ
t |Pt] ≤ γ||∆t||, it suffices to show that ct = Qj

t(st+1, a
∗)−Qk

t (st+1, a
∗)→

0, so that the condition on the expected contraction of Ft holds.

Let ∆jk
t (st, at) = Qj

t(st, at) − Qk
t (st, at). It is important to note that at each step, the

choice of j, k is random, all with equal probability pjk = pjk = 1/
(
K
2

)
. Consider the case

96

that Qk is updated using Qj
t at time t, the update of ∆kj is

∆jk
t+1(st, at) = ∆jk

t (st, at) + αt(st, at)
(
rt + γQj

t(st+1, a
∗)−Qk

t (st, at)
)

= ∆jk
t (st, at) + αt(st, at)F

k
t (st, at)

Or, again with probability pkj = 1/
(
K
2

)
, we use Qk to update Qj, in this case we have

∆jk
t+1(st, at) = ∆jk

t (st, at)− αt(st, at)
(
rt + γQk

t (st+1, a
∗)−Qj

t(st, at)
)

= ∆jk
t (st, at)− αt(st, at)F j

t (st, at)

Otherwise, this particular (j, k) pair is not selected at time t, and the update of ∆kj is then

zero. Then

E
[
∆jk
t+1|Pt+1

]
=

= (1− 2pjk)E
[
∆jk
t |Pt

]

Clearly E
[
∆jk
t+1|Pt

]
converges to 0 since the coefficient on the R.H.S. is less than 1. Therefore

we have shown that ct → 0 since ∆jk
t → 0 in expectation and j, k are randomly chosen. It

in turn ensures condition 3 of Lemma 5.2 holds, which completes our proof.

Finally, we rephrase Theorem 5.3 as follows:

Proposition 5.4. Cross estimation converges in the limit, given finite and ergodic MDP.

5.4 Cross DQN

In this section, we elaborate our proposed cross Q-learning method and its variants.

Cross DQN serves as an extension to the double DQN algorithm [131], which has been used

as the default setting for most state-of-art DQN training.

97

Double DQN was proposed in the aim of reducing overestimation bias, in which the

target network simply is a delayed-updated copy of the current network. Note that the

original vanilla DQN also uses two networks, the purpose of periodic frozen and update of

the target network is to stabilize learning. Specifically, in vanilla DQN, the target network

is used to evaluate both the action and the value, i.e.,

y ← r + γQθ′(s
′, a′∗) where a′∗ = argmaxa′Qθ′(s

′, a′) (5.3)

On the other hand, in double DQN, the current network is used to evaluate the action

and select a′, while the target network is used for evaluate the value, so that action selection

is decoupled from estimation of the target:

y ← r + γQθ′(s
′, a′∗) where a′∗ = argmaxa′Qθ(s

′, a′) (5.4)

In practice however, it is common the case that little improvement can be gained by

using double DQN, since the current and target networks are usually too similar due to slowly

changed parameters in neural network models with SGD optimization. We can neither set the

period of updating target too long, otherwise the derived policy would not exhibit learning

and progress. As a result, double DQN does not entirely eliminate the overestimation bias.

In Section 5.5, we will further experimentally show the elimination of overestimation is not

effective nor sufficient in double DQN.

Instead of maintaining only two separate networks, we will use a set of K models

for estimating Q-values and selecting actions in our cross Q-learning. While update each

network’s parameters, we will calculate its TD target Q-value using one of the other K − 1

models. More specifically, let the network with parameters we are about to adjust be our

current network (θi), and we randomly pick another network to be our target network (θj,

e.g., j ∈ U [1, K]). To compute the target Q-value, we will use the current network to

evaluate the actions and select a′ in the next state s′, while the value is evaluated by using

98

the target network, i.e.,

y ← r + γQθj(s
′, a′∗) where a′∗ = argmaxa′Qθi(s

′, a′) (5.5)

Algorithm 3 Cross-Learning DQN

1: Initialize K ∈ N+ different Q-functions Q(s, a|θk) with random parameters θk for k = 1, · · · ,K.
2: Initialize replay buffer B.
3: for each episode until end of learning do
4: Initialize state s
5: for step t = 1, · · · until s is terminal state of an episode do
6: Select action at according to Q with exploration, e.g., at = MajorityVote{argmaxaQk(s, a)}Kk=1

7: Take action at, observe reward r and next state s′

8: Store experience tuple < s, at, r, s
′ > into B

9: Sample a mini-batch of experiences from B.
10: for all sampled experience in the mini-batch do
11: To train network Qi, compute a′ = argmaxaQ

i(s′, a|θi)
12: Randomly pick another network Qj to estimate TD target y = r +Qj(s′, a′|θj)
13: Backpropagate TD error δ = y −Qi(s, a|θi) through Qi, update θi with learning rate αt
14: end for
15: s← s′

16: end for
17: end for

In implementation, we have flexibility and various options in how to utilize the K

different Q-networks. There always exist tradeoffs among different choices that we need to

consider in order to pick the one that meets our goal most. For example, we can have different

design of neural network architectures. A natural choice of having K independent models is

to maintain a list of separate neural networks with the same architecture. With K separate

models, the difference between their outputs (i.e., K streams of Q-values derived from the

same (s, a)-pair as the input) comes from different random parameter initialization of each

model, also is due to that different data that each model is trained upon, i.e., for each step

of backpropagation, each model randomly samples a mini-batch of experiences and performs

SGD optimization with the mini-batch. Moreover, maintaining K model copies implies that

not only the storage for the models would be K times large as a single network, also the

forward propagation would take K times amount of computations. Instead, we can utilize

the shared network design for the K models, in which the K models shared their weights

99

except for the last layer, which consists of K value function heads from which the value

functions Qk(s, a|θk) are derived, and the weights on the last layer are generally different.

Thus we have much less parameters in total to be trained, and the computational burden

can be greatly alleviated. Moreover, as recent deep learning research reveals, the first few

layers of neural network are mainly about representations learning, the shared layers provide

the same features expressed for computing Q, this can be seen as online transfer of learned

knowledge among models. Note that in shared learning settings, in order to avoid premature

learning and suboptimal convergence, the gradients of the network except the last layer are

usually normalized by 1/K, but this also results in slower learning early on. On the other

hand, the separate models are simpler yet provide more variability in Q-values, also are more

stable during training. In addition, when we train the networks in distributed system, the

separate networks do not depend on others’ weights thus can be learned independently, which

requires much less information exchange and this could be a huge advantage for distributed

learning. The comparison of the separate and shared network architectural design is shown

in Figure 5.1.

······

(a) Separated Network Design

···
Shared	Layers

(b) Shared Network Design

Figure 5.1: Separate and Shared Network Architecture

100

With K different models (or heads), while each could derive a possibly different policy,

there is no doubt that during test phase we should take advantage of ensembles, for instance

by choosing the action with the majority votes across the outputs. However, we can make

choices on how to combine action selections into a single policy during training. With en-

semble action selection such as majority voting, the derived policy is often superior than any

individual one, thus greatly reduces the variance during training, as we will experimentally

show in Section 5.5. This in turn refines exploitation, results in great variance reduction of

Q-values and speeds up learning. Note that to deal with exploration-exploitation dilemma,

ε-greedy strategy is needed to encourage exploration. On the other hand, we may also ran-

domly pick a single network from the K models, and act as it suggests during training. This

falls into the paradigm of Bootstrapped DQN [133], which encourages exploration, in the

cost of slower early learning (see Section 5.5), but may learn better policy later with more

exploration. Another advantage of bootstrapped action selection is that it can slightly reduce

computational burden, since instead of forward passing and computing all K of the Q-values

for action selection, we can calculate only one of them. The procedure of bootstrapped

version of cross DQN is presented in Algorithm 4.

Algorithm 4 Bootstrapped Cross DQN

1: Initialize K ∈ N+ different Q-functions Q(s, a|θk) with random parameters θk for k = 1, · · · ,K.
2: Initialize replay buffer B.
3: for each episode until end of learning do
4: Initialize state s
5: Randomly pick a network Qk to act, where k ∈ {1, · · · ,K}.
6: for step t = 1, · · · until s is terminal state of an episode do
7: Select action at = argmaxa′Q

k(s, a′) with exploration
8: Take action at, observe reward r and next state s′

9: Store experience tuple < s, at, r, s
′ > into B

10: Sample a mini-batch of experiences from B.
11: for all sampled experience in the mini-batch do
12: To train network Qi, compute a′ = argmaxa′Q

i(s′, a′|θk)
13: Randomly pick another network Qj to stimate TD target y = r +Qj(s′, a′|θj)
14: Backpropagate TD error δ = y −Qi(s, at|θi) through Qi, update θi with learning rate αt
15: end for
16: s← s′

17: end for
18: end for

101

Another choice we can make is the training frequency. In our cross DQN settings, when

backpropagation occurs, we can either choose to train on a single network (e.g., the single

model that provides the action selection), or each of the K networks could independently

sample a mini-batch of experiences and perform SGD optimization. The latter would increase

the sample efficiency and speed up learning, while the former would reduce the computa-

tional burden, in which the number of backpropagation (which is the most computational

expensive) remains the same as in a single DQN. In addition, with the former setting, our

cross Q-learning does not require maintaining copies of the networks as the target. Exper-

imentally, we found that freezing targets merely has any effect on stabilization of learning,

but only costs doubled memory for model storage. This is due to two reasons. First, we

bootstrap a model that is different than the current one, when K ≥ 2, the variety of models

ensures the difference in parameter initialization, as well as the difference of mini-batch data

their learning based upon, which in turn ensures the independence of Q-value estimates. Sec-

ondly, with less frequent update of each network, the bootstrapped target Q-value changes

less as well, also helps stabilize learning.

5.5 Experimental Results

In this work, we conducted experiments on two classical control problems, CartPole

and LunarLander, for extended tests. We selected these testbeds in the aim of covering

different challenges, especially in terms of complexity. As both environments interfaced

through OpenAI gym environment [151], unless specified otherwise. The neural networks

have a number of hyperparameters. The combinatorial space of hyperparameters is too large

for an exhaustive search, therefore we have performed limited tuning. For each component,

we started with the same settings as in [167] in order to make comparisons with states of

the art results.

102

5.5.1 CartPole

Experimental Setup

The CartPole, also known as an inverted pendulum, in which a pole (or pendulum)

is attached by an un-actuated joint to a cart (i.e., the pivot point). The pendulum starts

upright at the center of a 2D track but is unstable since the center of gravity is above the pivot

point. The goal of this task is to keep the pole balanced and prevent it from falling over, by

applying appropriate force to the pivot point, while the force could move the cart along the

frictionless track with finite length of 4.8 units. An immediate reward of +1 is provided for

every timestep that the pole remains not falling over, and the maximum cumulative rewards

in an episode are clipped to 200. An episode also ends when the pole is slanted with degree

> 15◦ from vertical, or the cart moves out of the track [168]. In each timestep, the agent is

provided with current state s ∈ R4, which represents cart position, cart velocity, pole angle,

and pole angular velocity, respectively. A unit force either from left or right can be applied,

thus the actions are discrete with a ∈ {−1, 0,+1}.

As in [167], we approximate theQ-values using a neural network with two fully-connected

hidden layers (which consist of 64 and 32 neurons, respectively). We train each of the neural

networks for 1000 episodes (approximately a little less than 200000 steps), with a FIFO

memory of size 5× 104 transitions for experience replay. A target network is updated every

500 steps to further stabilize learning. The adaptive moment estimation (Adam) optimizer

with learning rate α = 0.001 is used to train the network, since it is in general less sensitive

to the choice of the learning rate than other stochastic gradient descent algorithms [119].

The optimization is performed on mini-batches of size 32, sampled uniformly from the expe-

rience replay. The discount factor γ is set to 0.99, and ε-greedy policy is used for choosing

actions throughout interacting with the environment, which starts with exploration ε = 1,

and annealed to 0.02 in the first 10000 steps.

103

After every 20 training episodes, we conduct a performance test that plays 10 full

episodes using the greedy policy deterministically derived from the current network. For the

models with K > 1, majority voting is used for the action selection disregard whether or

not bootstrapped Q-value head is used during training. The cumulative rewards of each test

episode are used for comparison among different models. Moreover, in order to comparing

the estimation of Q-values among models, every 20 training episodes, we randomly sample a

batch of historical 1024 (s, a)-pairs from the replay buffer and compute their Q-values using

current network. More than one thousand samples ensure that their mean is somewhat

representative for Q-values under current model.

Analysis of Cross Q-learning Effects

We compared our cross Q-learning algorithms with vanilla DQN and double DQN. Note

that vanilla DQN uses single estimators, while double DQN uses double estimators, and our

cross DQN uses cross estimators. K = 5 and K = 10 are used in cross DQNs. Figure 5.2(a)

illustrate the training history of episodic total rewards of the four models, from which we

can see that although with a single network (vanilla and double DQNs), the agent starts to

learn early on with less samples, in particular, double Q-learning helps the single network

to learn even faster, however, the learned models are not stable. With cross Q-learning,

although the networks learn slower at the beginning, in particular, cross DQN with K = 10

started to learn even later than cross DQN with K = 5, once cross DQNs start to learn, the

performance improvement is substantial. Not only the total rewards are higher, the learning

is also much more stable. After 300 episodes, the training total rewards converge to 200 for

K = 10 cross DQN, with little variation (due to ε exploration). K = 5 cross DQN has more

variation, but it also seems to converge after 900 episodes, while vanilla DQN and double

DQN are easily deteriorated, and have much larger variations.

The performance improvement can be more clearly seen in Figure 5.2(b). After 300

episodes of training, the policies derived cross DQN with K = 10 become more and more

104

stable, the variance of test total rewards become zero close to the end of training. Cross

DQN with K = 5 deteriorates after 500 episodes of training, but later it also learns to derive

stable policy that has total rewards of 200 with tiny variances. Whereas the policies derived

from vanilla DQN and double DQN can only get score which is approximately half of cross

DQNs, and with large variances. The policy derived from double DQN seems to be a little

better than that from vanilla DQN, but the improvement is not as significant as that of using

cross Q-learning.

Furthermore, part of the reason for slower start of cross DQN is due to our learning

settings, in which we only perform SGD optimization on one of the networks (or heads). In

other words, we reduce the learning frequency of each network (or head) down to 1/K to

alleviate the computational effort, at the cost of slower start on learning. If we increase the

learning frequency (i.e., backpropagate for each of the K networks/heads every time), the

learning should be faster.

We also plot the average Q-values from bootstrapped 1024 (s, a)-pairs as shown in

Figure 5.2(c). We observe that the beginning of learning, vanilla DQN has highest estimates

of Q-values, which is an evidence of overestimation. The estimates from double DQN is

lower, but only for limited amount, therefore we say that double Q-learning may have not

solve the overestimation problem completely. Cross DQNs have quite smaller estimations

at the beginning, in particular, as K gets larger, the estimates of Q-values become even

lower. Overestimation is clearly an obstacle of effective learning, as a result, the estimated

Q-values from cross DQNs are substantially higher than that from vanillar or double DQNs,

since cross DQNs has derived better policies and obtained higher rewards. The Q-values

estimates from cross DQNs start to converge after the derived policies stabilized, At the end

of training, the estimated Q-values from the four different models are about at the same

level, however, note that the estimates from vanilla and double DQNs continue increasing,

and their derived policies are not stable, also have lower rewards. Our cross Q-learning

algorithm has addressed the overestimation problem better.

105

0 200 400 600 800 1000
episode

0

50

100

150

200

to
ta

l r
ew

ar
ds

vanilla DQN
double DQN
cross DQN, K=5
cross DQN, K=10

(a) Learning curves

0 200 400 600 800 1000
episode

0

50

100

150

200

te
st

 sc
or

e

vanilla DQN
double DQN
cross DQN, K=5
cross DQN, K=10

(b) Model test performance. Every 20 training episodes, 10 full test episodes were conducted.

0 200 400 600 800 1000
Episode

0

20

40

60

80

100

120

Av
er

ag
e

Q
Va

lu
es

vanilla DQN
double DQN
cross DQN, K=5
cross DQN, K=10

(c) Mean of Q-value estimations on CartPole. Every 20 training episodes, 1024 (s, a)-pairs were
bootstrapped.

Figure 5.2: Comparison of vanillar DQN, double DQN and cross DQNs of K = 5, K = 10
on CartPole.

Effects of dueling DQN & Bootstrapped DQN

As the cross learning architecture shares the same input-output interface with standard

DQN, we can recycle many recent advances in DQN research. We have mentioned one vari-

ant in Section 5.4 that it can combined with Bootstrapped DQN for action selection during

training, while in Secction 5.5.1, our experiments for cross DQN are based on majority voting

106

0 200 400 600 800 1000
episode

0

50

100

150

200

to
ta

l r
ew

ar
ds

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(a) Learning curves

0 200 400 600 800 1000
episode

0

50

100

150

200

te
st

 sc
or

e

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(b) Model test performance. Every 20 training episodes, 10 full test episodes were conducted.

Figure 5.3: Comparison of cross DQNs of K = 5. Cross DQN with ensemble voting, with
dueling DQN and voting, with bootstrapped DQN, and with both dueling & bootstrapped
DQN on CartPole.

from K different Q-functions. Furthermore, it is convenient to combine the dueling architec-

ture into each of the K networks. The goal of dueling DQN is to reduce variance for Q-value

estimation, by subtracting a baseline and emphasizing the advantages among different ac-

tions, thus accelerates learning effectively. The variance reduction is performed on a single

network’s estimation, while our cross Q-learning reduces variance from a different perspec-

tive. For each network, the target values were calculated with other models by bootstrapping

from multiple Q-values, thus introduces some bias. Due to the bias-variance tradeoff, how-

ever, the variance of our estimates decreases, and thus the overall error becomes smaller. In

addition, the maximum operator induces overestimation bias, while cross-estimator tends to

introduce bias in the other direction, thus greatly alleviates overestimation problem.

Figure 5.3 and Figure 5.4 illustrate the training and testing performance of cross DQN

with different architectures, for the cases of K = 5 and K = 10, respectively. We can

see that dueling architecture speeds up early on learning effectively, without hurting the

107

0 200 400 600 800 1000
episode

0

50

100

150

200

to
ta

l r
ew

ar
ds

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(a) Learning curves

0 200 400 600 800 1000
episode

0

50

100

150

200

te
st

 sc
or

e

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(b) Model test performance. Every 20 training episodes, 10 full test episodes were conducted.

Figure 5.4: Comparison of cross DQNs of K = 10. Cross DQN, with dueling DQN, with
bootstrapped DQN, with both dueling & bootstrapped DQN on CartPole.

model performance later in general. On the other hand, Bootstrapped DQN slows learning

at beginning, especially when K is large, since the selected actions varies among networks

at beginning quite a bit. For example, the K = 10 cross DQN with bootstrap converges

around 400 episodes while the other cross learning agents converges before 200 episodes. But

after learned something, the bootstrapped action selection won’t hurt the model. In fact,

it might help learning for more complicated tasks because of more exploration early on. At

least, using bootstrapped DQN can help our cross DQN agent make faster action selection

during training and reduce computational burden slightly, since instead of calculate all K

Q-values, we can calculate only one of them. Moreover, by comparing the learning curves of

bootstrapped cross DQNs with different Ks, we can conclude that it is primarily our cross

Q-learning rather than policy ensemble that greatly reduces the variance, as with K = 10 the

variations are much smaller that that with K = 5, though policy ensemble further reduces

the variance greatly, and during testing phase, our agent can definitely benefit from ensemble

108

of multiple models. Naturally combined crossed Q-learning with dueling and bootstrapped

DQN, our model aggregates the merits from all three perspectives.

5.5.2 Lunar Lander

The task of Lunar Lander in Box2D [150] is to land the spaceship between the flags

smoothly. The details of this task is discussed in Section 4.4.1. To solve this problem with

cross DQNs, we build each network with two fully-connected hidden layers, which consist of

128 and 64 neurons, respectively. We train each of the neural networks for 10000 episodes

for the LunarLander task, with a much larger replay buffer of size 106. The target network

update is set to every 1000 steps for vanilla and double DQN, and learning rate α = 0.001

and batch size of 64 are used for Adam optimizer to train all the models. The discount

factor γ is again 0.99, and exploration rate ε is set to annealed to 0.02 in the first 100000

steps. And again, Q-values for bootstrapped 1024 (s, a)-pairs are evaluated and 10 episodes

of performance tests with current policy are conducted every 20 training episodes.

In Figure 5.5, We compare our cross Q-learning algorithms with vanilla DQN and double

DQN. With slower learning in the first a few hundreds of episodes due to our experimental

design of the learning frequencies, cross DQNs learned much better and more stable policies,

while vanilla and double DQN have large variances in both learning curves and performance

testing. Figure 5.5(c) clearly shows that from the beginning, vanilla DQN optimistically

gathers the occasional large rewards which are due to the high variance, and produces great

overestimations. Double DQN slightly allivates the problem, but cannot avoid the overesti-

mation effectively. The derived policies from these two networks are then not optimal nor

stable. As learning going on, the estimated Q-values from both vanilla and double DQN

explode, resulting in that the derived policies are no better than random actions. On the

other hand, cross DQNs have much lower Q-value estimations at the beginning, and the

estimates from model with K = 10 are even lower than that from model with K = 5.

109

0 2000 4000 6000 8000 10000
episode

200

100

0

100

200

300

to
ta

l r
ew

ar
ds

vanilla DQN
double DQN
cross DQN, K=5
cross DQN, K=10

(a) Learning curves

0 2000 4000 6000 8000 10000
episode

200

100

0

100

200

300

te
st

 sc
or

e

vanilla DQN
double DQN
cross DQN, K=5
cross DQN, K=10

(b) Model test performance. Every 20 training episodes, 10 full test episodes were conducted.

0 2000 4000 6000 8000 10000
Episode

0

20

40

60

80

100

120

Av
er

ag
e

Q
Va

lu
es

vanilla DQN
double DQN
cross DQN, K=5
cross DQN, K=10

(c) Mean of Q-value estimations on LunarLander. Every 20 training episodes, 1024 (s, a)-pairs
were bootstrapped.

Figure 5.5: Comparison of vanillar DQN, double DQN and cross DQNs of K = 5, K = 10
on LunarLander.

After 1000 episodes, the estimates continue growing until convergence, and their values

converge to a same level at about 105. The derived policies are very stable, with total re-

wards close to 300 and also have little variance. Note that double DQN has lower estimates

of Q-values than cross DQNs after 8000 episodes of training. The reason is that the corre-

sponding policies from double DQN are much worse, and it does not indicate that double

DQN addresses overestimation better.

110

0 2000 4000 6000 8000 10000
episode

200

100

0

100

200

300

to
ta

l r
ew

ar
ds

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(a) Learning curves

0 2000 4000 6000 8000 10000
episode

200

100

0

100

200

300

te
st

 sc
or

e

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(b) Model test performance. Every 20 training episodes, 10 full test episodes were conducted.

Figure 5.6: Comparison of cross DQNs of K = 5. Cross DQN, with dueling DQN, with
bootstrapped DQN, and with both dueling & bootstrapped DQN on LunarLander.

Comparing Figure 5.6 and Figure 5.7, K = 5 seems works even better than K = 10 for

most of time. Especially for K = 10 bootstrapped cross DQN, both the learning curve and

the test scores are lower than other cross DQN models. This indicates that it is not always

the larger K the better, since cross estimator would induce underestimate bias, and too much

underestimation may also hide the real better actions and thus hurt the model performance.

In fact, K = 10 cross DQN might have too much underestimation at the beginning, which

slows down the learning process significantly. But overall, the K = 10 bootstrapped cross

learning with dueling architecture performs best among all models, including all K = 5 cross

DQNs. We say that the DQN architectures are too complicated, and the aggregated effect

may significantly change the performance of a particular model. Generally speaking, our

cross DQNs favor underestimation, which should be much better than overestimation if no

unbiased estimation can be achieved, since underestimations do not tend to propagate too

much during training, as lower valued actions are avoided by the greedy action selection

111

0 2000 4000 6000 8000 10000
episode

200

100

0

100

200

300

to
ta

l r
ew

ar
ds

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(a) Learning curves

0 2000 4000 6000 8000 10000
episode

200

100

0

100

200

300

te
st

 sc
or

e

cross DQN
cross DQN with Dueling
cross DQN with Bootstrap
cross DQN with Dueling and Bootstrap

(b) Model test performance. Every 20 training episodes, 10 full test episodes were conducted.

Figure 5.7: Comparison of cross DQNs of K = 10. Cross DQN, with dueling DQN, with
bootstrapped DQN, and with both dueling & bootstrapped DQN on LunarLander.

mechanism. And the bias-variance tradeoff tells us that the overall error can be reduced

when the variance of our estimates is greatly decreased, by introducing slight negative bias,

this in tern leads to better model performance.

Note that the derived policies from cross DQNs are much more stable in general, and

hard to deteriorate. There are at least two reasons for this phenomena. First, cross Q-

learning effectively addressed overestimation problem, thus premature policy would be more

difficult to derived from cross DQN. In addition, we always ensemble policies using methods

such as majority voting during test time, which in general is superior and has a stabilizing

effect for action selections. The improved stability comes from larger barrier for altering

the decision boundaries, and we could care much less about the early termination as an

additional hyperparameter during training. This is yet another advantage of using multiple

networks as in cross DQN.

112

5.6 Conclusions and Future Work

In this paper, we have presented the cross Q-learning algorithm, an extension to DQN

that effectively reduces overestimation, stabilizes training, and improves performance. Cross

DQN is a simple extension that can be easily integrated with other algorithmic improvement

such as dueling network and bootstrapped DQN, leads to dramatic performance enhance-

ment. We have both shown in theory and demonstrated in several experiments of classical

control problems that the proposed scheme is superior in reducing overestimation and leads

to better policies derivation, compared to widely used approaches such as double DQN. Cross

learning favors underestimation, the introduced negative bias can greatly help variance reduc-

tion. We analyze this effect from the famous bias-variance tradeoff point of view. However,

this also indicates that it is not the case the larger K the better model performance in cross

DQN. Nevertheless, DQN models tolerate underestimation much more than overestimation,

as lower valued actions can be avoided by the greedy action selection mechanism.

It is noted that the computation complexity of cross DQN is generally higher, comparing

with that of single network DQNs. We can, however, greatly reduce the complexity given

the flexibility provided by our model. In addition, ensemble policies from multiple networks

help stabilize the decision space, which can be utilized optionally in stablizing learning and

definitely during testing.

As future work, we would apply cross learning to the state-of-the-art actor-critic methods

in continuous control, further reduce the overestimation and stabilize those algorithms. Also,

analysis from statistical learning theory could be helpful for us to derive more advanced cross

learning strategies, for instance, better bootstrap estimations may be obtained by mimicking

the K-fold cross validation [164], or from Bayesian perspective [169].

Moreover, it worth noting that in each step of Q-learning (and more general value-based

RL), we utilize Q-values in several different places. Now that a set of K different Q-functions

are applied, we can make different choices for picking particular one to use. We call them

generalized cross learning in DQNs, and some existing work can be fell into a particular

113

subclass of our generalized method. The first place that Q-values are utilized is when the

agent makes decision for choosing an action at at time step t while observing st. We can

pick a random Q-function for action selection, and this is exactly what bootstrapped DQN

[133] does. We say the bootstrapped DQN is a special case of our generalized cross DQN.

The next place is at TD update when the target Q-values need to be evaluated for choosing

the next action a′, which might not be executed, but is used to evaluate the current target

Q-value and derive the max operator. Recall in Q-learning we use the maximum estimator.

Finally, after picking the next action a′, its value can be evaluated, again we have choices

here for picking a Q-function to use. In the version of our cross DQN we presented in this

work, which is directly derived from double DQN, we decoupled the selection and evaluation

of the next action a′, where the current network is used for evaluating a′ while another target

network is used for selecting a′. We could try to do the opposite in certain circumstances,

i.e., select a′ with the current network and bootstrap another network to evaluate a′, which

should have the effect of decrease bias but increase variance due to bias-variance tradeoff

in general statistical learning scheme. One can further analyze and experiment with other

generalized cross Q-learning variants.

114

Chapter 6

An Application of Deep Q-Network for Financial Trading

In this chapter, we formulate and train a simple reinforcement learning (RL) trading

agent with deep Q-network (DQN). By observing the states from the real trading envi-

ronment, the agent is able to directly make sequential decisions through the allocation of

a portfolio, aiming at maximizing the cumulative profit according to the derived trading

strategies such as to LONG, SHORT or CLOSE for certain assets. The action space of the DQN

agent is discrete and finite, which greatly simplifies the portfolio optimization problem in real

world. The computational cost would grow exponentially as the number of allowed actions

increases, due to the curse of dimensionality in MDP. Therefore, recent advances focus on

policy gradient algorithms that form the actions in parametric continuous space, in which

only a few parameters need to be learned. In particular, consider the case that there is only

a single asset other than cash in the portfolio, and the amount of buying or selling is fixed,

the optimal strategy would be as simple as to buy when the asset’s price increases, and to

sell while the price decreases. As training is based upon all the historical information in the

market, the best a trading agent can perform is to obtain the most accurate predictions for

the future prices, whereas the RL trading agent needs to learn from errors through temporal

difference update, given the credit is reasonably assigned through the reward functions dur-

ing the design of the RL system. In other words, the same cross-entropy or mean squared

error loss (for the classification or regression problem, respectively) for supervised learning is

simply decomposed in the temporal sense and learned by the RL agent in the Bellman form.

Therefore, the learning of the RL agent is less effective, and supervised learning system for

more accurate predictions in prices is more widely applied, and we have developed such a

framework as introduced in chapter 2. Certain optimal trading strategies can then be derived

115

by forming an optimization problem, based on the predicted prices for the future. However,

RL trading agent has its own value as the system is end-to-end, rather than the two stages

framework (prediction then optimization) we introduced above.

6.1 Introduction and Related Work

Deep reinforcement learning has achieved remarkable success in a wide range of research

areas such as playing game Go [170], World of Warcraft or Starcraft [171], etc. Recently,

it has also been applied in financial analysis and investment by a multitude of researchers.

For instance, [172] proposed a recurrent reinforcement learning (RRL) algorithm to optimize

security portfolios. [173] used the relative risk-adjusted profit (Sharp ratio) as performance

function to train the trading system based on Q-learning. [174] compared the performance

of DQN and RRL, and reported that DQN achieved better performance in stock trading.

[175] applied deep reinforcement learning on portfolio management with cryptocurrencies.

[176] combined DQN with a regressor that predicts the number of shares to trade. In this

chapter, we are trying to employ deep Q-learning to build an deep Q-trading system which

can automatically determine what position to hold at each trading time. As we will illustrate

later, our approach is not the same as those state-of-art work.

This chapter is organized as follows. In Section 6.2, we carefully formulate and establish

the trading problem as solving a DQN. We perform empirical studies on the Bitcoin trading

market using our implemented DQN trading agent, as in Section 6.3. Finally, we conclude

in Section 6.4.

6.2 Problem Formulation for Trading

6.2.1 State Space

In the problem of algorithmic trading, the agent performs trading actions in the envi-

ronment of a financial market. It is impossible for the agent to get full information of such a

116

complex environment, which involves all activities in the human society as well as subjective

emotions. Nevertheless, in the context of technical analysis, it is believed that all relevant in-

formation is reflected in the prices of financial assets. Under this point of view, a state st can

be roughly represented by the prices throughout the market’s history up its current moment

t. Full history information, however, is either not available or too large for computation in

practice. People instead discretize the time into periods, and use only a number of recent

periods to represent the current state. Recent research of reinforcement learning for trading

focus on using complicated convolutional or recurrent neural networks as the first few layers,

in the hope that the relevant features could be automatically extracted by the state-of-art

deep learning frameworks. In our practical experience, however, the representation power of

these deep neural networks for algorithmic trading, especially in the context of reinforcement

learning, may require extra tuning. On the other hand, various technical indicators serve as

the foundation for existing technical analysis in the finance industry. These technical indi-

cators were summarized by financial experts throughout many years, and have shown to be

effective as trading signals. In our experience, we also found that these indicators can repre-

sent much more ambient information of historical trend and changes, and several indicators

combined together could be served as more effective features in the RL trading framework

than those automatically learned by deep neural networks. There are hundreds of technical

indicators exist and people utilize them in different circumstances. For simplicity purpose,

we only apply a few of them. More detailed discussion of applied technical indicators in this

project would be provided in Section 6.3.2.

6.2.2 Action Space

The dynamics of trading depends on the actions taken by the agents. Depending on how

complex we wish our RL agent to be, the action space could be either discrete or continuous.

For each symbol in the portfolio, at a time step, one can either BUY, HOLD, or SELL. Both

BUY and SELL would result in changing on the positions of the symbol, in which case we say

117

an order or trade occurs. The positions of the symbol can be either LONG (which means to

possess positive number shares of the symbol), CLOSE (0 shares), or SHORT (meaning negative

shares possession). We further assume the amount of shares each order can take to be some

fixed values for simplicity purpose, so that the action space is discrete and fits the DQN

framework.

The trading signals often represent appropriate position to take at the moment in the

market, thus we will derive the actions from changes of the recommended positions by the

RL agent, in the hope that our system can be more stable. Remark this strategy is different

from some state-of-art work of deep RL trading. Also note that there are many other choices

of actions. The agent could determine the proportion of each symbol (including cash) in a

portfolio, which would involving continuous action space. Even more complex scenarios

might involving various constraints imposed on the orders; or multiple objectives, such as

placing limit orders in reality, in which case the agent needs to determine not only the trading

amount also the price level.

6.2.3 Reward Function

Reward function directly reflects the goal of RL and determines the derived policy of

the agent, and the design for reward function is tricky. The Profit and Loss (PnL) is a

realistic choice, which is defined as the net profit from a trade when CLOSE a position,

i.e., SELL previously LONG, or BUY previously SHORT. However, this type of reward signals is

sparse since trading could be relatively rare during a period of time, and assigning the sparse

reward in the temporal sense is a critical challenge in RL, i.e., the credit assignment problem.

Instead, a more common choice is the net profit or return between two consecutive trading

time slots, i.e., pt − pt−1 or pt/pt−1 − 1 while the position is holding LONG, and conversely,

taking the negatives if holding SHORT. This gives the agent more frequent feedback signals.

In this project, we will use this return-typed reward.

118

There are various other choices for RL trading systems in literature. One may be risk-

averse in some circumstances and take into account the risk as the objective, depending

on how the profit and risk would result in his/her overall utility. Sharpe ratio and its

variations, while consistent with Markowitz’s mean-variance portfolio optimization theory,

are commonly used. We will not use Sharpe ratio as the reward, but calculate its value as a

measure of performance for the derived policies.

Transaction Cost

In reality, to BUY or SELL an order will incur some transaction cost. Usually a constant

commission fee for the brokers will be put on each order, also the activity would cause the

buying or selling pressure on the market and result in some impact on the prices, especially

when the amount of order is huge. To simplify the model, we consider the transaction cost

to be proportional to the trading symbol’s prices, i.e., the price would be (1 + c)pt if you

BUY, and become (1− c)pt while you SELL, in which c is the transaction cost factor, and pt

is the close price at the moment. In this way, we also combine the transaction cost into the

reward function, since an order would cause the return changes. We will evaluate the effect

of transaction cost on the RL agent’s learned policy in Section 6.3.4.

Learning Algorithm

In this paper, we use the DDQN update for training the trading agent. The learning

procedure is illustrated in Algorithm 5.

119

Algorithm 5 Training DDQN Trading Agent with Experience Replay

Require: Initialize replay memory B to capacity N
Require: Initialize action-value function Q with random weights

for episode = 1, M do
Initialise sequence s1 = x1 and preprocessed sequenced φ1 = φ(s1)
for t = 1, · · · , T do

With probability ε select a random action at at
otherwise select at = maxaQθ(φ(st), a)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φ(t), at, rt, φ(t+ 1) in B
Sample random minibatch of transitions (φj, aj, rj, φj+1) from B

yi =

{
rj for terminalφj+1

rj + γQθ−(φj+1, argmaxaQθ(φj+1, a)) for non-terminalφj+1

Perform a gradient descent step on loss function to update θ
Update θ− ← θ every τ time steps.

end for
end for

6.3 Experiment

6.3.1 Environment Setup

Cryptocurrencies are electronic and decentralized alternatives to money issued by the

governments. While the Bitcoin as the best known example and the dominant representative,

there are various other cryptocurrencies traded in the electronic market. One advantage of

using the cryptocurrencies is their openness, all the trading transactions are accessible on

the orderbook, which is transparent to anyone through the Internet. Also most exchanges

are open 24/7 without restriction on the amount. These are different from the traditional

stock market, where the transaction records for high frequency trading (HTF) are not free

(although some institutions such as Yahoo! Finance provide daily data) and some are hidden

due to regulation requirements, also exchanges close during particular periods. We down-

load the historical data from https://www.cryptodatadownload.com/, which has already

converted all the transaction records into minute, hourly, or daily format by providing the

120

https://www.cryptodatadownload.com/

columns of open, close, high, and low prices similar to the stock market data. For our

project, we will trade only a single cryptocurrency, the Bitcoin, which means the portfolios

will consist of only cash and one symbol, BTC. Moreover, we choose data for the recent year

for training and testing, one reason again is to reduce the computation time, also because

that the prices experience significant rise and drop during the past year, and comparing with

the past year, the previous price trends are simple and flat. Specifically, we choose one-year

daily prices data between Oct 08, 2017 and Oct 08, 2018 for training (i.e., in-sample pe-

riod), and the out-of-sample period is from Oct 09, 2018 to Dec 09, 2018 upon which we

test/validate the derived policy from the learned DQN agent.

Now assume you are a millionaire starting with $1M cash that could be invested in

the cryptocurrency market, which allows you to buy 100 coins for most of the time except

the only month, namely Dec 2017, when the Bitcoin was at its peak price around $20,000.

For simplicity purpose, we assume that there are only 3 allowable positions throughout the

period of time: 100 coins LONG, 100 coins SHORT, and without holdings. As a result, different

trading activities are allowed, depending on current position: you can either CLOSE, SHORT

or hold still when you are holding LONG, which involves in selling 100, 200, and 0 coins,

respectively. Similarly, you can either buy 100, 200 or 0 coins when you are holding SHORT.

And while holding cash only, you have a choice among buying 100 coins, short selling 100

coins, and keeping the cash.

A benchmark portfolio will be used for comparison purpose, which is generated by the

buy-and-hold (BH) strategy, i.e., the portfolio starts with the same $1M cash, investing in

100 coins and holding until the end of the period. This simple benchmark portfolio will

partially reflect the price change of the coin.

In order to evaluate the derived policies, we need to simulate the performance of corre-

sponding portfolios in the market. The portfolio values need to be calculated for each time

step, considering the current price of Bitcoin as well as current position. Upon the history

of the portfolio values, various metrics can be used to evaluate its performance, such as the

121

cumulative return, daily return (mean and standard deviation), and Sharpe ratio, etc. We

focus on the cumulative return, since the objective of our agent is to maximize the profit,

according to our designed reward. But we record some other measures as well.

6.3.2 DQN Agent Setup

Rather than using a sliding window of raw price data as the features, we preprocess the

features with technical indicators, since the former one gave us poor performance. Specifi-

cally, we use the simple moving average index (SMA), Bollinger bands %B, relative strength

index (RSI), as well as Williams %R, together with the daily price data as the input fea-

tures. According to financial experts, a combination of technical indicators from different

categories would give us nice trading signals. In our case, SMA serves as a trend indicator;

Bollinger bands are simply the upper and lower bands which are 2σ away from SMA where

σ is the standard deviation, thus %B is a volatility indicator; RSI on the other hand, is a

momentum indicator; while Williams %R is an oscillator indicator. They together represent

if the current price is in “overbought” or “oversold” condition, thus give signals for trading.

Interested readers are referred to [72] for further reading of the technical indicators.

The features need to be normalized, since they are in different scales. The normalized

features then serve as the states and are continuous, thus we used a neural network to

approximate the action value function Q. A small fully-connected neural network which has

one hidden layer of 10 neurons with ReLU actionvation was used, and ReLU nonlinearity

is used as the activate function for each hidden neuron. The 5-dimensional vector s which

describes the state would be the input for the network, and the final layer is simply linear

combinations since we are trying to approximate Q, which can be any real value in essence.

It would have multiple outputs, one for each of the 3 possible actions.

We trained a neural network with experience replay. We have not put restrictions on the

size of the replay buffer since the samples we have gathered are of moderate size and can be

fit into the memory. A batch of 64 samples are randomly sampled from the replay memory

122

each time for fitting the network. The adaptive moment estimation (Adam) optimizer is

used to train the network, since it is in general less sensitive to the choice of the learning

rate than other stochastic gradient descent algorithms [119], where the initial learning rate

is set to 0.0025 after some tuning. We use the pseudo-Huber loss instead of MSE as the

loss function, since it is less sensitive to outliers and is more commonly used in DQN [129].

ε-greedy policy is used for action selection, and the ε value decays with rate 0.999, which

could be approximately decay from 1 to its minimum value 0.01 in about a full episode. The

discount factor γ is set to 0.95. We do not consider the modeling horizon explicitly, but the

discount factor implicitly limits the effect that the experienced reward can impose in the

temporal sense.

For the training phase, our reward function actually assumes the price of next trading

day is known. If the stock price goes up today, i.e., pt+1 > pt, then the learning agent should

better to assign larger Q-value on the action of going long, and small or negative Q-value on

going short for yesterday; on the contrast, if the price decreases today, then the best choice

for yesterday should be to go short, and should not choose to go long. We assume a single

cryptocurrency in the portfolio, namely the Bitcoin. And 3 possible positions can then be

taken: long 100 coins, short 100 coins, or hold cash only. An order would be placed by taking

the holding difference of every adjacent trading days. The transaction cost is assumed to be

zero in Section 6.3.3, and would be compared with different settings in Section 6.3.4.

6.3.3 Results

We show the training progress in Figure 6.1. Note that the total reward values are

different from the cumulative returns we use to evaluate the portfolio performance, although

they are closely related. We trained the DQN from the begining using the same in-sample

data for 10 runs, in each run we trained 20 episodes, and an episode was trained using the

whole in-sample data from 2017/10/08-2018/10/08, following the time sequence. We record

the sum of rewards for each episode. Figure 6.1 illustrates the trend of reward sums over

123

Figure 6.1: Total rewards for each episode throughout training

training, in which the dark line represents the means of episodic total rewards for 10 exper-

iments, and the transparent region shows the variances (i.e., mean±2σ confidence range),

from which we see the DQN agent is consistently making progress throughout training. In

each run, the first episode always results in negative total rewards (and also has negative

cumulative return), which is due to the random action selection at the beginning of training.

Recall that we use ε-greedy action selection strategy in DQN, in the hope that the agent

could have enough exploration. As training proceeds, the agent tends to stick to the best

action it can take, based on its estimation of the Q-values. The TD-errors give it the signal

to update the weights of DQN, and the Q-value estimations could be improved, thus better

policy would be derived. We emphasize the deployment of experience replay, by which the

sample efficiency has been significantly improved, especially for training in such a trading

environment, where the samples are actually quite limited. As a result, it also dramatically

speedup the training. We are not claiming our DQN training has converged, on the contrary,

we expect it could keep improving after 20 episodes, and could give us more refined results

if we use smaller learning rate. However, due to lacking of computational resource and time

expenses, we only trained for 20 episodes.

In Figure 6.2(a), we show the performance of the portfolio derived from our DQN

policy (trained after 20 episodes), compared with the above-mentioned benchmark portfolio,

during the in-sample period between 2017/10/08 abd 2018/10/08. The red line represents

the normalized value of the portfolio using DQN policy during the period, while the blue

124

DQN Benchmark

Cumulative Return 3.5053 0.1991
Mean Daily Return 0.0118 0.0010
Std. Daily Return 0.0664 0.0313
Sharpe Ratio 2.8236 0.4979

Table 6.1: Some statistics of in-sample performance, DQN derived portfolio v.s. benchmark,
2017/10/08-2018/10/08

line represents that of the benchmark. We say the value of benchmark portfolio partially

illustrates the change of the Bitcoin prices. And we see that the learned DQN policy performs

much better than the benchmark for in-sample data. According to Table 6.1, the cumulative

return is 350.53%, which means that the value of the portfolio become 4.5 times as its

beginning in one year period. This is an extremely high return. We also record some other

detailed in-sample performance statistics for both portfolios, as shown in Table 6.1, from

which we see that our DQN derived portfolio obtains much higher cumulative return and

Sharpe ratio. In fact, as we will show in Section 6.3.4, the DQN policy executes orders very

frequently throughout the period, in the sense that taking advantage of the oscillations of

the Bitcoin prices. As a result, its value almost always increases during the in-sample period.

On the other hand, notice there are quite a lot of horizontal intervals on the red line, which

represents our DQN agent chooses to CLOSE the position and holds cash only, and the cash

value would not change during that period of time. In this way it could avoid loss during

the rapid fall of Bitcoin price. This shows that its picked action is from the signals provided

by those technical indicators, and probably could generalize.

Figure 6.2(b) illustrates performance of the learned DQN policy on out-of-sample data,

specifically the recent 2 months (2018/10/09-2018/12/09). During this period, the Bitcoin

price almost halves and the drop starts since mid November, which we can see from the

benchmark performance. The strategy derived by our DQN agent is simple: hold the cash,

and do not trade on Bitcoin. This would definitely result in a cumulative return of zero,

but it is much better than losing money by LONG the Bitcoin. Unlike the different derived

125

(a) In-sample performance (from 2017/10/08 to
2018/10/08)

(b) Out-of-sample performance (from
2018/10/09 to 2018/12/09)

Figure 6.2: Effects of different transaction cost factor values on DQN in-sample policies

strategy and thus performance on in-sample data, this derived policy for the out-of-sample

period is actually very consistent accordiing to our DQN agent, and can be learned in

2 episodes. However, we need to note that our DQN agent has not learned to take the

advantage of shorting during the out-of-sample period, which we allow in the environment

settings. According to the in-sample performance, our agent has successfully learned to take

such an advantage during the dramatic falls in January and February, 2018, but for smaller

falls, it chooses to hold cash rather than to short, since a small rise might occur after a short

period of time. The drop since mid November is not that significant comparing with those

in in-sample period, and our agent seems to be afraid of later risks thus choose to hold cash.

From this we can see how the domain matters. The training and test domain should be

of the same distribution (in expectation), which is not the case for our Bitcoin prices, and

actually is not the case for trading environment in general.

6.3.4 Effect of Transaction Cost

As we discussed in Section 6.2.3, our reward function implicitly takes the transaction

cost into account, and also our implemented market simulator would illustrate the effect of

transaction cost. How would the transaction cost affect our DQN agent’s learned trading

126

(a) Number of orders in the derived policies (b) Cumulative return for the derived policies

Figure 6.3: Effects of different transaction cost factor values on DQN in-sample policies

behavior and performance? In this section, we conduct an experiment on our DQN trading

agent for the in-sample bitcoin data, with 6 different values of transaction cost factors c,

ranging from 0 to 0.20. As c increases, the updated Q-values might be more inaccurate, thus

the learned policy may perform worse. However, if the transaction cost is too much, that

execution of a trading order has larger effect than taking advantage of the price changes,

there is no necessity to trade. Our DQN agent has successfully learned that.

We first look at the number of orders from learned strategies with different transaction

cost factors, as shown in Figure 6.3(a). We see that when the transaction cost is 0, the DQN

agent executes quite a lot of orders, by taking the advantage of price changes. As transaction

cost gets higher, the number of orders from derived policy decreases significantly. As the

transaction cost factor ≥ 0.10, the agent learns to not to trade at all, since the cost exceeds

the return, and executing orders can only result in a loss from now on.

Figure 6.3(b) shows the cumulative returns of learned polices with different transaction

cost factors, on the same in-sample data, i.e, between the period Oct 08, 2017 and Oct 08,

2018. We see that when the transaction cost is 0, the agent learns to derive a strategy

with quite high in-sample cumulative return. As the transaction cost increases, the learned

policies perform worse. While the transaction cost factor reaches 0.04, the derived policy have

127

negative cumulative return. After that, as the factor grows, the learned policies performs a

little bit better, for the agent learns to execute very few orders. When the factor ≥ 0.1, as

we see in Figure 6.3, our DQN trading agent chooses to hold cash only from then on, results

in a cumulative return of zero.

6.4 Summary

In this work we trained a DQN trading agent that applies the deep Q-learning approach

to algorithmic trading. DQN trading is able to detect market status from raw and noisy

data, and pays attention to long-term returns. Comparing with the state-of-art works, we

emphasized deploying technical indicators for feature preprocessing while feeding the data

for training rather than using the end-to-end deep learning framework. Our experiments on

Bitcoin portfolio demonstrated that our DQN trading system performs well consistently. We

also showed our DQN trading agent correctly responds to some environmental factors such

as the transaction cost. Despite these interesting results, our study is still in a preliminary

stage. In future work, we will investigate the contributions of other novel approaches from

reinforcement learning research community, especially those with policy gradient which could

be applied on continuous action spaces.

128

Chapter 7

Conclusion

In this dissertation, we have explored several subfields in deep learning and reinforcement

learning. We first focus on predictive modeling. In Chapter 2, we built a hybrid deep learning

model that can efficiently and effectively predict the future returns in stock market. Our

work combines the recent advances in representation learning and temporal convolutional

neural networks for sequential modeling. In addition to improving learning Alphas for stock

prediction as usual research, we also combined the market information for learning the Betas.

The hybrid training paradigm is motivated by stacking, but instead of combining the final

predicted results from different models, we combined the learning feature maps to learn in

the last a few layers to improve the forecast performance. There are several directions can go

from where we achieved. First, the stock prices are heavily affected by external information,

such as the macroeconomics factors, politic events, online exposure and sentiment on Internet

such as in social media, etc. We could expand the data source and combine their influence

in the model. Moreover, systematic feature selection could be performed for more effective

learning, in addition to the ordinary L1 and L2 regularization, advanced methods such as

grouped Lasso may have a chance to combine with deep learning models as well. In addition,

although we have shown that the convolutional layers have several advantages over the most

widely used recurrent neural network layers for time series, the temporal learning layers in

our model could be replaced by any other type, for instance, the recent advances of attention

models could be a good candidate. More importantly, systematic analysis on learning the

Betas from the market could give us insight of more effective usage of the cross-sectional

data, thus further improve the model performance. We believe this could be greatly related

129

to the field of unsupervised learning, in particular the decomposition of high dimensional

data.

We then turn our focus to reinforcement learning. In Chapter 4, we encourage the

exploration in deep Q-networks by reanneal the exploration rate when it stucks at poor local

optima, measured by heuristic measures. As a few possible directions of future work, first

of all, the idea of reannealing exploration can be easily and naturally extended to other

reinforcement learning algorithms, not limited to DQN. Second, the measure of poor local

optima could come from monitoring the performance of the learning system, in this way,

we probably could use supervised learning to define and learn such a measure, instead of

heuristics. It is also attractive to systematically reanneal the exploration rate, instead of

adaptively responding to the heuristic measure. In the field of deep learning optimization, we

have seen various forms of cyclical learning rate. Similarly, we could experiment on cyclical

exploration rate as well.

In Chapter 5, we effectively alleviate the overestimation problem in value-based rein-

forcement learning, by cross learning the Q-values with multiple agents, resulting in faster

convergence of training deep Q-networks. Our cross learning paradigm can be extended to

deterministic policy gradient algorithms, and then naturally generalize to actor-critic algo-

rithms, in which multiple critics are usually used for estimation of the action values. The

difference between synchronized and asynchronized versions of cross learning in actor-critics

is worth for further study.

We demonstrate the effective application of reinforcement learning algorithms in real

trading environment in Chapter 6. We discussed the difference between the reinforcement

learning trading and the general two steps portfolio optimization, and mentioned that the

reinforcement trading system decomposes the supervised learning loss in the temporal sense

through the reward function, and learns in the Bellman update form, thus is less effective.

However, the system is end-to-end thus is more convenient to use. In future work, we could

train reinforcement learning agents in more complex trading environment, for instance, to

130

establish the strategy for the allocation of a portfolio that consists of many stocks. It would be

computationally expensive or even infeasible to training such a DQN agent that considering

discrete actions, due to the curse of dimensionality. In that case, we could consider the

actions in parametric continuous space, and the new advances of policy gradient algorithms

might be more suitable.

This dissertation has presented novel models and algorithms in predictive modeling and

reinforcement learning. One lesson that can be gleaned from the studies is that, in the design

of a machine learning system, sometimes it is powerful to combine different components and

significant advances to achieve better performance. Ensemble as a meta-method improves

the performance in general, in the cost of computational complexity, but the idea of ensemble

can be synthesized to a single model also, as we combining multiple components. And we

can benefit from imposing other meta-heuristics as well. Despite the many successes that

machine learning has seen, many interesting and important problems in learning, or more

generally in artificial intelligence, remain. We believe that further efforts to study in this

field will pay off richly.

131

Bibliography

[1] Thomas M Mitchell et al. Machine learning, 1997.

[2] Vladimir N Vapnik and Alexey J Chervonenkis. Theory of pattern recognition. 1974.

[3] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the fifth annual workshop on Compu-

tational learning theory, pages 144–152. ACM, 1992.

[4] C Cortes and V Vapnik. Support vector machine [j]. Machine learning, 20(3):273–297,

1995.

[5] Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex Smola, Vladimir Vapnik,

et al. Support vector regression machines. Advances in neural information processing

systems, 9:155–161, 1997.

[6] John Platt. Sequential minimal optimization: A fast algorithm for training support

vector machines. 1998.

[7] Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Artificial

Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[9] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–

1142, 1984.

132

http://www.deeplearningbook.org

[10] Michael J Kearns and Leslie G Valiant. Learning Boolean formulae or finite automata

is as hard as factoring. Harvard University, Center for Research in Computing Tech-

nology, Aiken Computation Laboratory, 1988.

[11] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227,

1990.

[12] Yoav Freund. Boosting a weak learning algorithm by majority. In COLT, volume 90,

pages 202–216, 1990.

[13] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line

learning and an application to boosting. In European conference on computational

learning theory, pages 23–37. Springer, 1995.

[14] Robert E Schapire. The boosting approach to machine learning: An overview. In

Nonlinear estimation and classification, pages 149–171. Springer, 2003.

[15] Thomas G Dietterich. An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. Machine learning,

40(2):139–157, 2000.

[16] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, 2001.

[17] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, pages 785–794, 2016.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[19] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

133

[20] Paul Werbos. Beyond regression:” new tools for prediction and analysis in the behav-

ioral sciences. Ph. D. dissertation, Harvard University, 1974.

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, DTIC Document, 1985.

[22] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann

machines. In ICML, 2010.

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[24] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[25] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages 3104–

3112, 2014.

[26] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[27] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term memory

recurrent neural network architectures for large scale acoustic modeling. 2014.

[28] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. Journal of machine learning research, 3(Feb):1137–1155,

2003.

[29] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar:

Probabilistic forecasting with autoregressive recurrent networks. International Journal

of Forecasting, 2019.

134

[30] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,

Yuyang Wang, and Tim Januschowski. Deep state space models for time series fore-

casting. In Advances in neural information processing systems, pages 7785–7794, 2018.

[31] Paul J Werbos. Backpropagation through time: what it does and how to do it. Pro-

ceedings of the IEEE, 78(10):1550–1560, 1990.

[32] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In International conference on machine learning, pages

1310–1318, 2013.

[33] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[34] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[35] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[36] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle

regression. The Annals of statistics, 32(2):407–499, 2004.

[37] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[38] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical

learning via the alternating direction method of multipliers. Now Publishers Inc, 2011.

[39] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in

optimization, 1(3):127–239, 2014.

135

[40] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convo-

lutional neural networks applied to visual document analysis. In Icdar, volume 3,

2003.

[41] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient

descent learning. Constructive Approximation, 26(2):289–315, 2007.

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[43] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-

senting model uncertainty in deep learning. In international conference on machine

learning, pages 1050–1059, 2016.

[44] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[45] K Peason. On lines and planes of closest fit to systems of point in space. Philosophical

Magazine, 2(11):559–572, 1901.

[46] Harold Hotelling. Analysis of a complex of statistical variables into principal compo-

nents. Journal of educational psychology, 24(6):417, 1933.

[47] Imola K Fodor. A survey of dimension reduction techniques. Center for Applied

Scientific Computing, Lawrence Livermore National Laboratory, 9:1–18, 2002.

[48] John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust prin-

cipal component analysis: Exact recovery of corrupted low-rank matrices via convex

optimization. In Advances in neural information processing systems, pages 2080–2088,

2009.

136

[49] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal com-

ponent analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.

[50] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresholding

algorithm for matrix completion. SIAM Journal on optimization, 20(4):1956–1982,

2010.

[51] Eugene F Fama. The behavior of stock-market prices. The journal of Business,

38(1):34–105, 1965.

[52] William F Sharpe. Capital asset prices: A theory of market equilibrium under condi-

tions of risk. The journal of finance, 19(3):425–442, 1964.

[53] John Lintner. The valuation of risk assets and the selection of risky investments in

stock portfolios and capital budgets. In Stochastic optimization models in finance,

pages 131–155. Elsevier, 1975.

[54] Michael C Jensen, Fischer Black, and Myron S Scholes. The capital asset pricing

model: Some empirical tests. 1972.

[55] George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and

control. Journal of the Royal Statistical Society. Series C (Applied Statistics), 17(2):91–

109, 1968.

[56] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with

exponential smoothing: the state space approach. Springer Science & Business Media,

2008.

[57] Khalid Alkhatib, Hassan Najadat, Ismail Hmeidi, and Mohammed K Ali Shatnawi.

Stock price prediction using k-nearest neighbor (knn) algorithm. International Journal

of Business, Humanities and Technology, 3(3):32–44, 2013.

137

[58] Yingjun Chen and Yongtao Hao. A feature weighted support vector machine and k-

nearest neighbor algorithm for stock market indices prediction. Expert Systems with

Applications, 80:340–355, 2017.

[59] Md Rafiul Hassan, Baikunth Nath, and Michael Kirley. A fusion model of hmm, ann

and ga for stock market forecasting. Expert systems with Applications, 33(1):171–180,

2007.

[60] Md Rafiul Hassan, Kotagiri Ramamohanarao, Joarder Kamruzzaman, Mustafizur Rah-

man, and M Maruf Hossain. A hmm-based adaptive fuzzy inference system for stock

market forecasting. Neurocomputing, 104:10–25, 2013.

[61] Haiqin Yang, Laiwan Chan, and Irwin King. Support vector machine regression for

volatile stock market prediction. In International Conference on Intelligent Data En-

gineering and Automated Learning, pages 391–396. Springer, 2002.

[62] Cheng-Lung Huang and Cheng-Yi Tsai. A hybrid sofm-svr with a filter-based feature

selection for stock market forecasting. Expert Systems with Applications, 36(2):1529–

1539, 2009.

[63] Jian-Zhou Wang, Ju-Jie Wang, Zhe-George Zhang, and Shu-Po Guo. Forecasting

stock indices with back propagation neural network. Expert Systems with Applications,

38(11):14346–14355, 2011.

[64] Erkam Guresen, Gulgun Kayakutlu, and Tugrul U Daim. Using artificial neural net-

work models in stock market index prediction. Expert Systems with Applications,

38(8):10389–10397, 2011.

[65] Werner Kristjanpoller, Anton Fadic, and Marcel C Minutolo. Volatility forecast using

hybrid neural network models. Expert Systems with Applications, 41(5):2437–2442,

2014.

138

[66] Lin Wang, Yi Zeng, and Tao Chen. Back propagation neural network with adap-

tive differential evolution algorithm for time series forecasting. Expert Systems with

Applications, 42(2):855–863, 2015.

[67] Mustafa Göçken, Mehmet Özçalıcı, Aslı Boru, and Ayşe Tuğba Dosdoğru. Integrat-

ing metaheuristics and artificial neural networks for improved stock price prediction.

Expert Systems with Applications, 44:320–331, 2016.

[68] Jigar Patel, Sahil Shah, Priyank Thakkar, and Ketan Kotecha. Predicting stock and

stock price index movement using trend deterministic data preparation and machine

learning techniques. Expert systems with applications, 42(1):259–268, 2015.

[69] Ash Booth, Enrico Gerding, and Frank Mcgroarty. Automated trading with perfor-

mance weighted random forests and seasonality. Expert Systems with Applications,

41(8):3651–3661, 2014.

[70] Sasan Barak and Mohammad Modarres. Developing an approach to evaluate stocks

by forecasting effective features with data mining methods. Expert Systems with Ap-

plications, 42(3):1325–1339, 2015.

[71] Bin Weng, Waldyn Martinez, Yao-Te Tsai, Chen Li, Lin Lu, James R Barth, and

Fadel M Megahed. Macroeconomic indicators alone can predict the monthly closing

price of major us indices: Insights from artificial intelligence, time-series analysis and

hybrid models. Applied Soft Computing, 71:685–697, 2018.

[72] John J Murphy. Technical analysis of the financial markets: A comprehensive guide

to trading methods and applications. Penguin, 1999.

[73] Eugene F Fama and Kenneth R French. Common risk factors in the returns on stocks

and bonds. Journal of, 1993.

139

[74] Paul C Tetlock, Maytal Saar-Tsechansky, and Sofus Macskassy. More than words:

Quantifying language to measure firms’ fundamentals. The Journal of Finance,

63(3):1437–1467, 2008.

[75] Qing Li, Yuanzhu Chen, Li Ling Jiang, Ping Li, and Hsinchun Chen. A tensor-based

information framework for predicting the stock market. ACM Transactions on Infor-

mation Systems (TOIS), 34(2):1–30, 2016.

[76] Bin Weng, Lin Lu, Xing Wang, Fadel M Megahed, and Waldyn Martinez. Predict-

ing short-term stock prices using ensemble methods and online data sources. Expert

Systems with Applications, 112:258–273, 2018.

[77] Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock market.

Journal of computational science, 2(1):1–8, 2011.

[78] Nuno Oliveira, Paulo Cortez, and Nelson Areal. The impact of microblogging data for

stock market prediction: Using twitter to predict returns, volatility, trading volume

and survey sentiment indices. Expert Systems with Applications, 73:125–144, 2017.

[79] Qili Wang, Wei Xu, and Han Zheng. Combining the wisdom of crowds and techni-

cal analysis for financial market prediction using deep random subspace ensembles.

Neurocomputing, 299:51–61, 2018.

[80] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[81] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[82] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

140

[83] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[84] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[85] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vec-

tors for word representation. In Proceedings of the 2014 conference on empirical meth-

ods in natural language processing (EMNLP), pages 1532–1543, 2014.

[86] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[87] Akhter Mohiuddin Rather, Arun Agarwal, and VN Sastry. Recurrent neural network

and a hybrid model for prediction of stock returns. Expert Systems with Applications,

42(6):3234–3241, 2015.

[88] Thomas Fischer and Christopher Krauss. Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational Research,

270(2):654–669, 2018.

[89] Omer Berat Sezer and Ahmet Murat Ozbayoglu. Algorithmic financial trading with

deep convolutional neural networks: Time series to image conversion approach. Applied

Soft Computing, 70:525–538, 2018.

[90] Guosheng Hu, Yuxin Hu, Kai Yang, Zehao Yu, Flood Sung, Zhihong Zhang, Fei Xie,

Jianguo Liu, Neil Robertson, Timpathy Hospedales, et al. Deep stock representation

learning: From candlestick charts to investment decisions. In 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2706–2710.

IEEE, 2018.

141

[91] Omer Berat Sezer and Ahmet Murat Ozbayoglu. Financial trading model with stock

bar chart image time series with deep convolutional neural networks. arXiv preprint

arXiv:1903.04610, 2019.

[92] Ehsan Hoseinzade and Saman Haratizadeh. Cnnpred: Cnn-based stock market predic-

tion using a diverse set of variables. Expert Systems with Applications, 129:273–285,

2019.

[93] Wen Long, Zhichen Lu, and Lingxiao Cui. Deep learning-based feature engineering for

stock price movement prediction. Knowledge-Based Systems, 164:163–173, 2019.

[94] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning frame-

work for the financial portfolio management problem. arXiv preprint arXiv:1706.10059,

2017.

[95] Luca Di Persio and Oleksandr Honchar. Artificial neural networks architectures for

stock price prediction: Comparisons and applications. International journal of circuits,

systems and signal processing, 10(2016):403–413, 2016.

[96] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip

code recognition. Neural computation, 1(4):541–551, 1989.

[97] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[98] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep net-

works. In Advances in neural information processing systems, pages 2377–2385, 2015.

142

[99] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[100] Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J

Lang. Phoneme recognition using time-delay neural networks. IEEE transactions on

acoustics, speech, and signal processing, 37(3):328–339, 1989.

[101] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:

A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[102] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling

with gated convolutional networks. In International conference on machine learning,

pages 933–941, 2017.

[103] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.

Convolutional sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

[104] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D Hager. Tem-

poral convolutional networks for action segmentation and detection. In proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 156–165,

2017.

[105] Mikolaj Binkowski, Gautier Marti, and Philippe Donnat. Autoregressive convolutional

neural networks for asynchronous time series. In International Conference on Machine

Learning, pages 580–589, 2018.

[106] Yitian Chen, Yanfei Kang, Yixiong Chen, and Zizhuo Wang. Probabilistic forecasting

with temporal convolutional neural network. Neurocomputing, 2020.

143

[107] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv:1803.01271, 2018.

[108] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-

layer neural networks. In Advances in Neural Information Processing Systems, pages

400–406, 2000.

[109] Alberto Paccanaro and Geoffrey E. Hinton. Learning distributed representations of

concepts using linear relational embedding. IEEE Transactions on Knowledge and

Data Engineering, 13(2):232–244, 2001.

[110] Geoffrey E Hinton et al. Learning distributed representations of concepts. In Proceed-

ings of the eighth annual conference of the cognitive science society, volume 1, page 12.

Amherst, MA, 1986.

[111] Oren Barkan and Noam Koenigstein. Item2vec: neural item embedding for collabo-

rative filtering. In 2016 IEEE 26th International Workshop on Machine Learning for

Signal Processing (MLSP), pages 1–6. IEEE, 2016.

[112] Edward Choi, Mohammad Taha Bahadori, Elizabeth Searles, Catherine Coffey,

Michael Thompson, James Bost, Javier Tejedor-Sojo, and Jimeng Sun. Multi-layer rep-

resentation learning for medical concepts. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 1495–1504,

2016.

[113] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. arXiv

preprint arXiv:1604.06737, 2016.

[114] Dang Lien Minh, Abolghasem Sadeghi-Niaraki, Huynh Duc Huy, Kyungbok Min, and

Hyeonjoon Moon. Deep learning approach for short-term stock trends prediction based

on two-stream gated recurrent unit network. Ieee Access, 6:55392–55404, 2018.

144

[115] Qiong Wu, Zheng Zhang, Andrea Pizzoferrato, Mihai Cucuringu, and Zhenming

Liu. A deep learning framework for pricing financial instruments. arXiv preprint

arXiv:1909.04497, 2019.

[116] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pages 249–256, 2010.

[117] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube rec-

ommendations. In Proceedings of the 10th ACM conference on recommender systems,

pages 191–198, 2016.

[118] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[119] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[120] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural

networks using large learning rates. In Artificial Intelligence and Machine Learning

for Multi-Domain Operations Applications, volume 11006, page 1100612. International

Society for Optics and Photonics, 2019.

[121] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2009.

[122] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning.

In Proceedings of ICML workshop on unsupervised and transfer learning, pages 17–36,

2012.

145

[123] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep transfer learn-

ing with joint adaptation networks. In International conference on machine learning,

pages 2208–2217, 2017.

[124] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal

of machine learning research, 9(Nov):2579–2605, 2008.

[125] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approx-

imation and projection for dimension reduction. arXiv preprint arXiv:1802.03426,

2018.

[126] ML Puterman. Markov decision processes. 1994. Jhon Wiley & Sons, New Jersey,

1994.

[127] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–

292, 1992.

[128] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine

learning, 3(1):9–44, 1988.

[129] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-

trovski, et al. Human-level control through deep reinforcement learning. Nature,

518(7540):529–533, 2015.

[130] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning

and teaching. Machine learning, 8(3-4):293–321, 1992.

[131] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with

double q-learning. In AAAI, pages 2094–2100, 2016.

146

[132] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando

De Freitas. Dueling network architectures for deep reinforcement learning. arXiv

preprint arXiv:1511.06581, 2015.

[133] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep explo-

ration via bootstrapped dqn. In Advances in neural information processing systems,

pages 4026–4034, 2016.

[134] Malcolm Strens. A bayesian framework for reinforcement learning. 2000.

[135] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward

transformations: Theory and application to reward shaping. 1999.

[136] Sebastian B Thrun. Efficient exploration in reinforcement learning. 1992.

[137] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and

Remi Munos. Unifying count-based exploration and intrinsic motivation. In Advances

in Neural Information Processing Systems, pages 1471–1479, 2016.

[138] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan

Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study

of count-based exploration for deep reinforcement learning. In Advances in Neural

Information Processing Systems, pages 2753–2762, 2017.

[139] Richard Y Chen, John Schulman, Pieter Abbeel, and Szymon Sidor. Ucb and infogain

exploration via q-ensembles. arXiv preprint arXiv:1706.01502, 2017.

[140] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter

Abbeel. Vime: Variational information maximizing exploration. In Advances in Neural

Information Processing Systems, pages 1109–1117, 2016.

147

[141] Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in re-

inforcement learning with deep predictive models. arXiv preprint arXiv:1507.00814,

2015.

[142] Giuseppe Burtini, Jason Loeppky, and Ramon Lawrence. A survey of online experiment

design with the stochastic multi-armed bandit. arXiv preprint arXiv:1510.00757, 2015.

[143] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,

volume 1. MIT press Cambridge, 1998.

[144] Alexander L Strehl, Lihong Li, and Michael L Littman. Reinforcement learning in

finite mdps: Pac analysis. Journal of Machine Learning Research, 10(Nov):2413–2444,

2009.

[145] Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews

Neuroscience, 11(2):127, 2010.

[146] Shin Ishii, Wako Yoshida, and Junichiro Yoshimoto. Control of exploitation–

exploration meta-parameter in reinforcement learning. Neural networks, 15(4-6):665–

687, 2002.

[147] Animashree Anandkumar and Rong Ge. Efficient approaches for escaping higher order

saddle points in non-convex optimization. In Conference on Learning Theory, pages

81–102, 2016.

[148] Lester Ingber. Very fast simulated re-annealing. Mathematical and computer modelling,

12(8):967–973, 1989.

[149] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning.

In Icml, pages 663–670, 2000.

[150] Erin Catto. Box2d: A 2d physics engine for games, 2011.

148

[151] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[152] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for

reinforcement learning. 1993.

[153] Donghun Lee, Boris Defourny, and Warren B Powell. Bias-corrected q-learning to con-

trol max-operator bias in q-learning. In 2013 IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning (ADPRL), pages 93–99. IEEE, 2013.

[154] Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation

error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[155] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction

and stabilization for deep reinforcement learning. In Proceedings of the 34th Interna-

tional Conference on Machine Learning-Volume 70, pages 176–185. JMLR. org, 2017.

[156] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in neural information processing systems, pages 315–

323, 2013.

[157] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gra-

dient method with support for non-strongly convex composite objectives. In Advances

in neural information processing systems, pages 1646–1654, 2014.

[158] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the

stochastic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[159] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient meth-

ods. The Journal of Machine Learning Research, 18(1):8194–8244, 2017.

149

[160] Zengqiang Chen, Beibei Qin, Mingwei Sun, and Qinglin Sun. Q-learning-based param-

eters adaptive algorithm for active disturbance rejection control and its application to

ship course control. Neurocomputing, 2019.

[161] Xi-liang Chen, Lei Cao, Chen-xi Li, Zhi-xiong Xu, and Jun Lai. Ensemble network

architecture for deep reinforcement learning. Mathematical Problems in Engineering,

2018.

[162] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-

forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[163] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods

for deep reinforcement learning. In International conference on machine learning, pages

1928–1937, 2016.

[164] Hado Van Hasselt. Estimating the maximum expected value: an analysis of (nested)

cross validation and the maximum sample average. arXiv preprint arXiv:1302.7175,

2013.

[165] Satinder Singh, Tommi Jaakkola, Michael L Littman, and Csaba Szepesvári. Con-

vergence results for single-step on-policy reinforcement-learning algorithms. Machine

learning, 38(3):287–308, 2000.

[166] Hado V Hasselt. Double q-learning. In Advances in Neural Information Processing

Systems, pages 2613–2621, 2010.

[167] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,

Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai

baselines. https://github.com/openai/baselines, 2017.

150

https://github.com/openai/baselines

[168] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive

elements that can solve difficult learning control problems. IEEE transactions on

systems, man, and cybernetics, 5:834–846, 1983.

[169] Carlo D’Eramo, Marcello Restelli, and Alessandro Nuara. Estimating maximum ex-

pected value through gaussian approximation. In International Conference on Machine

Learning, pages 1032–1040, 2016.

[170] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-

tering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[171] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezh-

nevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrit-

twieser, et al. Starcraft ii: A new challenge for reinforcement learning. arXiv preprint

arXiv:1708.04782, 2017.

[172] John Moody, Lizhong Wu, Yuansong Liao, and Matthew Saffell. Performance functions

and reinforcement learning for trading systems and portfolios. Journal of Forecasting,

17(5-6):441–470, 1998.

[173] Xiu Gao and Laiwan Chan. An algorithm for trading and portfolio management

using q-learning and sharpe ratio maximization. In Proceedings of the international

conference on neural information processing, pages 832–837, 2000.

[174] Yang Wang, Dong Wang, Shiyue Zhang, Yang Feng, Shiyao Li, and Qiang Zhou. Deep

q-trading. cslt. riit. tsinghua. edu. cn, 2017.

[175] Zhengyao Jiang and Jinjun Liang. Cryptocurrency portfolio management with deep

reinforcement learning. In Intelligent Systems Conference (IntelliSys), 2017, pages

905–913. IEEE, 2017.

151

[176] Gyeeun Jeong and Ha Young Kim. Improving financial trading decisions using deep

q-learning: Predicting the number of shares, action strategies, and transfer learning.

Expert Systems with Applications, 117:125–138, 2019.

152

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Machine Learning and Deep Learning Preliminaries
	Introduction to Machine Learning
	Support Vector Machine
	Boosting
	Gradient Boosted Tree and XGBoost

	Bagging and Random Forest
	Neural Networks and Deep Learning
	Convolutional neural network
	Recurrent neural network

	Regularization
	Principal Component Analysis (PCA) and Robust PCA
	Summary

	Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction with Representation Learning and Temporal Convolutional Network
	Introduction
	Related Work
	Methodology
	Problem Formulation
	A Distributional Representation of Stocks: Stock2Vec
	Temporal Convolutional Network
	The Hybrid Model

	Data Specification
	Experimental Results and Discussions
	Benchmark Models, Hyperparameters and Optimization Strategy
	Performance Evaluation Metrics
	Stock2Vec: Analysis of Embeddings
	Prediction Results

	Concluded Remarks and Future Work
	Sector Level Performance Comparison
	Performance comparison of different models for the one-day ahead forecasting on different symbols
	Plots of the actual versus predicted prices of different models on the test data

	Reinforcement Learning Preliminaries
	Markov Decision Processes
	Value-based Reinforcement Learning
	Deep Q-Networks
	Double DQN
	Dueling DQN
	Bootstrapped DQN

	A Simple Proof of Policy Invariance under Reward Transformation From Linear Programming Perspective
	Encoding MDP as LP
	Policy Invariance under Reward Transformation

	Re-anneal Decaying Exploration in Deep Q-Learning
	Introduction
	Exploration in DQN
	Exploration Strategies
	Exploration Decay

	Exploration Reannealing
	Local Optima in DQN
	Exploration Reannealing
	Defining Poor Local Optima
	Algorithm

	Experimental Results
	Testbed Setup
	Implementation of Exploration Reannealing
	Results

	Conclusions

	Cross Q-Learning in Deep Q-Networks
	Introduction
	Estimating the Maximum Expected Values
	(Single) Maximum Estimator
	Double Estimator
	Cross Estimator

	Convergence in the Limit
	Cross DQN
	Experimental Results
	CartPole
	Lunar Lander

	Conclusions and Future Work

	An Application of Deep Q-Network for Financial Trading
	Introduction and Related Work
	Problem Formulation for Trading
	State Space
	Action Space
	Reward Function

	Experiment
	Environment Setup
	DQN Agent Setup
	Results
	Effect of Transaction Cost

	Summary

	Conclusion

