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Abstract

Essay 1

This chapter aims to provide a model for quantifying judgment in order to set a foundation for
human knowledge representation and reasoning while making decisions in the presence of
vagueness, imprecision, and uncertainty. Instead of seeking exact values through deterministic
systems, based on computer science mature algorithms and data-structures, this research empowers
software engineering to handle the uncertainty, which pertains to non-deterministic systems,
bridging their study, their modeling with techniques such as machine learning. The theoretical
framework of this research is grounded in a group of theories, i.e. possibility theory and the
uncertainty-based information theory as they guide us in the quantification of uncertainty and
proposed mature techniques to study and represent imprecision. Probability theory has a wider
application to uncertainty problems, the same is true for possibility theory and the general theory
of uncertainty-based information due to imprecise or incomplete information (i.e. studied by fuzzy
set theory). This research has gained motivation from the fact that an object may more or less
become the representation of the category in which one attempts to place it even when the states
of its entities are not well known (i.e., deriving the final grade of high-quality coffee beans from
their individual attributes such as Fragrance, Aroma, etc., hypothetically impacted by how was
roasted and, measuring children’s speech intelligibility as the child utters words. Then, predicting
these two systems outputs using machine learning models, trained and validated with collected
parameters from non-deterministic systems featuring controlled variability). Two highly complex
systems whose behavior is not well understood have been given an approximated solution
(hypothetically with less error), not only by modeling themselves but, by modeling their

uncertainty as well by utilizing both linguistic scoring techniques and machine learning. The aim



is to integrate the naturalistic mechanisms of human decision making with machine learning
capabilities as a useful framework with the hypothetical capacity of supporting several domains of

the human decision-making process.

Essay 2

This chapter presents a novel approach from the perspective of computational intelligence by
applying fuzzy logic, machine learning. We proposed the unifications of roasting and cupping by
combining the expert’s knowledge from each of these domains, including a design of a Fuzzy
Controller for modeling the roasting of raw coffee beans and their impact in the final quality grade
given to high-quality coffees known as specialty coffees. This device’s approach, theoretically,
will roast coffee beans by looking at their final quality as an optimization problem to be solved,

not as the coffee industry standard protocol indicates.

Essay 3

Speech intelligibility estimation lacks a standardized measurement system. This has produced an
important clinical need for evaluative tools to functionally assess intelligibility in children, and to
identify estimation approaches for conceptualizing the problem beyond subjective intuition.
Young children, in particular, present a clinical challenge in speech intelligibility estimation. As
speech becomes less intelligible, unfamiliar speech patterns become more difficult to assess even
amongst highly-trained clinicians. As large data sets have become available, more advanced
methods based on deep learning have yielded more intelligent solutions (beyond regression
models) for solving complex computational problems. However further research is needed,
specifically in the pediatric population, to develop a useful application of deep learning models for

automatic speech intelligibility detection that captures both the abnormal speech variation and



subjective ratings of assessors of speech intelligibility. This research aims to fill part of this gap.
We introduce a novel alternative supporting intelligibility assessment methodology for young
children based on linguistic, rather than numeric scoring mechanisms. We also introduce a
software tool to estimate speech intelligibility using the long-established Direct Magnitude
Estimation (DME) approach. The assessment methodology is tested against the established
approach with a randomized controlled trial (experiment). The experiment compares the linguistic
scoring system against the numeric scoring system employed by inexperienced and experienced
listeners. Econometric analysis of the experiment data, using linear regression estimation
techniques, identifies important implications for the use of linguistic terminology for scoring and
evaluating speech intelligibility. We find more variability in the evaluations of the group of trained
clinicians in all scoring techniques i.e. (linguist, numeric, and both) versus the group of
inexperienced listeners. The research results suggest the use of linguistic scoring mechanisms
results in decreased variability (i.e., greater precision) in intelligibility assessment than the
longstanding numeric scoring systems with both experimental groups. The implications of this
methodology and these findings have great potential well beyond speech intelligibility, informing
subjective assessments using numeric scoring systems. Furthermore, a machine learning model
was developed employing a freshly captured dataset. DME metrics were gathered from trained
clinicians presented only with a linguistic scoring option because this research suggests this

methodology decreases variability.
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Purpose and Problem Statement

Through a series of field observations, it was possible to develop a hypothesis about

potential bias and variability in the numeric processes of scoring in some contexts (e.g., modeling

the relationship between roasting and grading high-quality coffees beans, the measurement of child

speech intelligibility through Direct Magnitude Estimation or DME).

To formalize human impression, there are two possible scenarios (whether or not is a bias

or error) that will be tested in this research and a question to explore:

1.

The existent methodologies (i.e., use of numeric scoring mechanism) inflates
the variance/variability in the evaluative processes.

The existing methodologies introduces bias (e.g., error in a consistent
direction).

Systems that support good decisions making, when designed from domain
expert’s knowledge, they should carry the less possible error.

Heuristics are quite useful, but sometimes they lead to severe and systematic
errors.

The existing methodologies seem not to encourage human heuristics to
potentially take less work/effort to report linguistic versus numeric values.

Solving complex computational problems by automated assessment and Al.

In this dissertation, we propose two separate studies to formally test the following

overarching research questions:

Vi



Research Questions
1. Can Machine Learning techniques in conjunction with a linguistic scoring mechanism
be utilized to address these problems of how decision-makers evaluate in numeric
processes?
2. Can Machine Learning techniques be utilized to reduce bias and/or error by replacing
numeric processes with linguistic ones that have the capacity to be more naturalistic and

less stressful for human decision-makers?

Significance

Even if this research provides little evidence that there is a bias rather than error, this could
extrapolate affecting the scope of several domains e.g. medical evaluations, prescriptions, control,
planning, banking, treading, predictions, decision making, scheduling, diagnosis, etc.

In addition, if these experiments support evidence that it takes the subject less work/effort
to report linguistic versus numeric values, the implication could lead to the re-design of data
gathering in general.

Moreover, if machine learning techniques can offer a modest improvement, this could
indicate, essentiality a vital contribution of this research program. Similar industrial and societal
applications include naturalistic language processing, sentiment analysis, facial recognition,
accurate medical diagnoses of various illnesses [1], [2]. Furthermore, in decision-making,
investments and, risk analysis; a broad spectrum of software applications meant to help investors.
Would this help them make less erroneous investment decisions, result in more stable retirements,

lower pension costs, more effective illness diagnosis (i.e., accurate early detections), an increase

Vii



on space exploration mission’s success by having more efficient anomaly detection mechanisms

in place, etc.?
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Essay 1: Designing Machine Learning Models Leveraging Linguistic Scoring Uncertainty

(De-erroring)

Introduction

This chapter will provide an approach for quantifying judgment, the foundation of human
knowledge representation and reasoning when making decisions in the presence of vagueness,
imprecision, and uncertainty. Two highly complex systems whose behavior is not well understood
will be given an approximated solution (e.g., speech intelligibility, and coffee roasting and
judging), and we will model their uncertainty using numeric and linguistic scoring techniques,
fuzzy logic and machine learning.

The preponderance of cognitive and heuristic biases in human decision making is well
established, Montebellier & Von Winterfelt [3]. Moreover, in light of recent developments in
machine learning designed to mimic human behaviors, the next frontier for both machine learning
and the decision sciences will address the degree to which human decision biases (including
cognitive errors and heuristic biases) can be mitigated using machine learning methodologies. In
short, if machine learning can be utilized to replicate human decisions along with all of their biases
and flaws, can machine learning also be used to reduce or even correct those biases? Many research
domains and conferences within the fields of decision sciences, psychology, and human factors
engineering identify methodologies for addressing cognitive and heuristic biases with applications
as wide reaching as terrorism interdiction, jury selection, and medical diagnoses. This chapter will
peer into tomorrow’s frontier by addressing the imprecision embedded in human judgment and
decision making relative to the next generation of machine learning approaches [4] [5] [6] [7].
The aim is to integrate the naturalistic mechanisms of human decision making with machine

learning capabilities.



Beyond the Organized Simplicity Perspective

Halpern, 2017, states, “whichever approach is used to model uncertainty, it is important to
be sensitive to the implications of using that approach” [8, p. 55], and Ezell considered this when
designing I-VAM, a model that was successfully employed to score clean water plans [9]. In this
context, Halpern clarifies that the uniqueness of an application requires an approach that is
appropriate for handling its uncertainty (call for choosing a representation). Halpern’s observation
provides a solid leaning perspective for this research, in particular when no quantitative
information is available and a tool, system, or application does exist to offer the necessary
accuracy. Hence, as a solution is designed and built, the appropriate approach to handle its
uncertainty must be handled with sensitivity [8] [10] [11]. An analogous case that we see in nature
is how humans cope with decision-making mechanisms. This is applicable to banking,
investments, risk management, and food consumption decisions [3].

The current information systems marketplace is defined by many developed and
maintained arrays of information systems that produce volumes of collected data. This
observational data has become the raw material for data scientists and others interested in
developing models to make inferences.

In human cognition, it is well established that as randomness and complexity increase, so
does the organized complexity within the randomness of the system, and vice versa. Generally, in
software engineering, individuals have the tendency to operate within organized simplicity, a
comfortable place where our system design is based on the known states of inputs and pre-
determined outputs (i.e., deterministic systems in bank account management applications). We as

researchers want to reach into disorganized complexity and extract tractable solutions when the



output of the system is not well understood from the initial states of its inputs (i.e., non-
deterministic systems).

According to Klir, 2017, a fully operational theory, such as the uncertainty-based
information theory or any other theory targeting the uncertainty of some conceived type, addresses
uncertainty issues using four levels [12]. Level one provides the mathematical formalization. Level
two consists of the calculus needed to properly handle this uncertainty. Level three features the
ways to measure the amount of relevant uncertainty in any formalized situation covered in the
theory. Lastly, level four addresses the need to develop methodological aspects of the theory,
including procedures for making various uncertainty principles operational within the theory [12].

The broad array of available methodologies, such as Waterfall, Agile, Rapid Application,
DevOps, etc., each have their strengths and weaknesses [13], and they are mainly driven by a set
of practices geared toward adopting an organization size and field of specialization. All of these
methodologies facilitate the task of assisting software engineering in growing its organized
simplicity. Figure 1-1 shows three types of systems and the associated problems that require those
four levels of the theory. Software development features applications within the scope of organized

simplicity.

Organized
Simplicity

Figure 1-1. Classes of systems and their associated problems [12].
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Unlike a conventional system analysis that first poses a model, the uncertainty contained
in both the inputs and outputs of a system are employed when formulating the system’s structures.
In this chapter, our research focuses on the formalization of human imprecision, specifically the
uncertainty carried by Scoring Numeric Processes driven by probabilistic methods. Additionally,
we discuss the formalization of human imprecision and the uncertainty introduced (a) by tools
used by humans, and (b) by the translation of human perception of any stimuli into a derived
measurement despite the complexity of the phenomenon. Furthermore, we explain that
transitioning from numerical to linguistic scoring methods, or by combining both numeric and
linguistic methods, as shown by Livio et al., 2020, allows for the measurement of imprecision.

The debate concerning how uncertainty should be represented when modeling natural
phenomena is an ongoing and heated one [8, p. 12]. Some researchers believe that there is only
one suitable mechanism, the probability theory, to study numeric uncertainty [12, p. 11]. However,
although the probability theory (a mature and well-understood theory) has come a long way in
providing an appropriate modeling mechanism that addresses uncertainty, in particular numeric
uncertainty, probability theory faces some challenges (e.g., the fact that a model’s numbers are not
always at hand). Because probability theory is based on numbers, it compares two events in terms
of probability by considering scenarios when both events have the same probability of occurring
or when one event is more probable than the other.

Moreover, another set of arguments support, under certain assumptions, that the only
rational way to represent uncertainty is Dubois’ possibility theory because “the notion of
probability seems less flexible than of possibility” [14, pp. 10-12].

Additionally, classical logic has a serious limitation in that it cannot cope with the issues

of vagueness and uncertainty, which exists in most modes of human reasoning [15] [16, pp. 265-



2771 [17, pp. 8-10]. Contrary to Rutherford’s dictum: “qualitative is nothing but poor
quantitative,” computer science and its applied arm of software engineering are supporting
artificial intelligence in considering quantitative attributes with nothing but limited knowledge of
the qualitative [18].

Here we focus on those non-deterministic systems where the uncertainty is evident and
pertains to the purpose for which the system was constructed [12, pp. 4-7]. Software engineering
involves designing and developing solutions, driven by system requirements and derived business
logic, and employing a subset of methodologies and tools. These methodologies and tools carry
uncertainties that find their way into the resulting data. Software engineering and software
architecture see systems as a relation among states of given entities. Hence, each system’s relation
targets some unknown states of given entities with the purpose of providing values from the basis
of the known states of other involved entities. However, it is not always possible to
deterministically set those unknown states from those that are known [10] [12] [19].

Furthermore, extensive research supports that “heuristics are quite useful, but sometimes
they lead to severe and systematic errors” [20, p. 104]. Shah and Oppenheimer have developed an
effort-reduction framework [21]. They studied heuristics (i.e., simple processes that replace
complex algorithms), as it serves as a diminisher of the amount of energy a decision-making task
requires [21]. However, from the perspective of software engineering and computer science, in
particular when eliciting human knowledge (i.e., designing membership functions), researchers
must move beyond established facts and consider how those complex algorithms represent
complex systems (i.e., the most exact mathematical representations of a phenomena are context-
dependent [19, pp. 34-25]), modeling the underling phenomena associated with the human

decision processes that are engaged either by judgment or choice). Furthermore, Ezell studied the



importance of assessing a system’s conditions (i.e., vulnerability, uncertainty) within the “context
of a scenario” [9], and introduced the model of infrastructure vulnerability assessment (I-VAM).
I-VAM is a great example of knowledge engineering, as it requires subject matter experts (SMEs)
to derive value functions and weights along with the assertion of protection measures of the
proposed system. For example, I-VAM was used to score a clean water system that served a
residential community and supplied approximately 2 million gallons of water per day [9, p. 575].
Ezell reported that “significant changes to the weights (provided by SMEs) may change the score,
but just as importantly, inform where improvements could be made to reduce vulnerability in the
system” [9, p. 581].

This research aims to contribute toward level four proposed by Klir. In this work, we are
not embracing organized simplicity nor “simple processes that replace complex algorithms™ [12,
pp- 4-5]. Instead, this study takes a look at disorganized complexity from the perspective that
organized complexity simultaneously feeds on a blend of discussed theories such as Possibility
Theory and Fuzzy Set Theory (i.e., Fuzzy Logic) and chaotic complexity. However, this work does
not intend to increase simplicity, but, as disorganized complexity is reached, will instead build a
pathway to formalize the uncertainty involved in each of the steps (the ones clearly handled
through software engineering processes). Here, uncertainty and probability are not equal, and

uncertainty has been liberated from its probabilistic confines [12].

So far, we have defined uncertainty, vagueness, elasticity, and complexity from software
engineering perspective. Next, we describe two terms that support the conceptual contributions of

this chapter.



Bias and Error

Technically, error has a direct impact on the variance. However, error does not affect the
mean [22, p. 19]. By recognizing the fact that all measurements carry error, we have a solid ground
on which to develop strategies that compensate it [23, p. 189]. Additionally, an error in a consistent
direction becomes bias, a systematic error with “an inherent tendency of a measurement process
to favor a particular outcome” [23, p. 190]. This is unfavorable because it leads to conclusions
other than the actual true point estimates in the object of our measurement, as is the case when bias
affects the mean [22, p. 10]. Koehler and Harvey suggest a set of tools to address the bias when
domain experts (i.e., practicing physicians) engage in decision making through their inherent
judgment, what psychologists call “the optimistic overconfidence perspective” [20, p. 209-201].
Their study considers this a natural perspective that over-predicts when outcomes are desirable
and under-predicts when outcomes are un-desirable. However, their study observed other natural
perspectives, such as confirmatory bias and positive and negative moods bias, where those
outcomes with higher probability resulted in over-prediction and those with less likelihood of

occurrence were under-predicted by experts [20, p. 209].

De-biasing

Koehler and Harvey suggested tools to correct bias (e.g., sunk cost bias, recency bias, etc.)
in what they called “a debiasing problem.” Their effort involved the study of a set of tools targeting
these biases to improve decision-making [20, p. 412]. For example, utility assessment is one of the
most influential tools in medical decision-making research. It supports researchers, policymakers,
and individual clinicians. Clinicians use it to consider pre- and post-treatment health states and the

side effects of surgery in an individual patient or a group of similar patients. Additionally, when



debiased, an ethical decision of whether or not to approve the payment for an intervention can be
made, especially when placed on the shoulders of a policy maker who is well aware of the
normative regulations and specifications that drive the system’s requirements, as dictated by stake-
holders. Hence, increasing the patient’s quality of life would be the predominant factor driving the
decision [20, p. 608-610].

De-biasing patients’ health decisions gives one the ability to easily and accurately improve
their decision-making process and has many applications, such as. Thus, the need for designing
decision aid tools (i.e., for customized treatment recommendations) based on the data pertaining
to an individual patient’s preferences for health states.

Two recent applications incorporate this concept: a hearing aid solution that incorporates
both hardware and software components (Starkey Livio) and features a telehealth service that the
care provider to "troubleshoot and improve the patient experience by delivering programming
adjustments directly to a patient’s smartphone and hearing aids with no need for them to stop in"
[24]; a customizable, demographically profile-based diet (Noom) that claims “Quick fix diets are

a thing of the past, and behavior change is the way to the future” [25].

De-erroring

In this exposition, bias is an error in a consistent direction and can be corrected with some
tools. Nonetheless, researchers have also suggested some tools to correct error as it affects the
decision-making process (e.g., availability bias, correlation error, gain loose error, over
confidence) [3] [20].

Software engineering is a systematic discipline concerned with all aspects of software

production, from the early stages of system specification to maintaining the system after it has



gone into use [13, p. 10]. It is centered around organized simplicity, and as it approaches
complexity, randomness (error) is introduced. Figure 1-1 shows an ample region in its center titled
“Organized Complexity.” Regarding this region (which science has not explored enough), Klir
remarks that problems often involve “a considerable number of variables” [12, p. 4]. Moreover,
Klir indicates that at this organized complexity region is where high computing power is needed.
However, it is not enough to make substantial progress [10] [12, p. 4]. It is there, at the organized
complexity region where radically new approaches are needed to formalize this “broad concept of
uncertainty” [12, p. 4-5].

We have identified that when human decision-makers are forced to use a numeric system
for evaluation in contexts where numeric values are foreign or not naturalistic, this leads to error
(not necessarily bias). Therefore, considering that psychologists are proposing the use of debiasing
tools and that a vast number of tools are available within software engineering and computer
science, this research anchors its aims in a de-erroring tool, a tool that can correct or mitigate error.
Moreover, this research considers business applications that target daily decision-making
processes, where decision-makers often choose precision with unknown bias (that is not benign)

instead of highly imprecise measurements (that are manageable) with random error [23].

Recent Applications of Machine Learning Supporting Human Decision-Making



Data are the fuel of machine learning techniques. Learning is possible because of data [26],
and as data comes through the tools that integrate decision-making processes, it incorporates
human interaction.

Researchers and entrepreneurs from various disciples are reaching out to computer
scientists, data scientists, and software engineers to help them build less error-prone applications.
These applications are used by humans daily for basic and complex decision-making processes,
such as driving a car along a busy highway, grading school assignments, and asking a patient for
their level of pain (i.e., by presenting a scale from 1 through 10). Human travel locally, nationally,
and internationally demands the need for real-time information on catastrophes and pandemics,
such accidents, hurricanes, and COVID-19. In particular, as we follow the COVID-19 pandemic
news locally and globally, it is clear that the human decision process is engaged, however, the
decision results do not match the expectations of involved authorities and scientists. This fosters
another question: is the decision-making process at the level required to handle this event?

Furthermore, most non-deterministic systems collect an increasing amount of data (e.g.,
aerospace records, medical records, daily trading, money exchanges, investments, law suits,
retirement information, social security transactions, traffic patterns, etc.). For example, currently
the field of space exploration features anomaly detection in spacecraft telemetry and exoplanet
detection. These unique applications allow engineers and scientists using terabytes of data
collected from space missions to improve their decision-making processes [27] with machine
learning techniques, specifically convolutional neural networks (or CNNs). This is done by
carefully preprocessing the data, setting the network parameters, and addressing underlying
physics constraints while constructing the system [27]. The output of one system eventually

becomes the input for another application, and, in most cases, data changes through a flow of
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decision-making steps. Moreover, this data, when properly aggregated and used with machine
learning techniques, will predict new events, classify new diagnoses, and look for cluster patterns
not visible to the human eye. All of this will contribute to the ultimate goal of assisting humans in

our decision-making process, a core element of our human nature.

Supporting Theories in the Literature
Possibility Theory

A theory has emerged and matured to the point of providing enough foundation to deal
with these systems in the most qualitative way possible. Known as Possibility Theory [28] [29,
pp- 531-571], it is a modern and simple mathematical theory of uncertainty that is sufficiently used
when dealing with incomplete information or imprecise probabilities. Zadeh developed the idea of
Possibility Theory from his previous popular work on fuzzy sets and fuzzy logic, which were first
postulated in 1965. See [30] for Zadeh’s remark: “imprecision that is intrinsic in natural languages
is, in the main, possibilistic rather than probabilistic in nature.”

Possibility Theory supports reasoning under uncertainty, and has taken the role of
addressing some issues that classical probability-based methods cannot solve. For example, the
lexical elasticity of the predicate small and large, perfectly handled with fuzzy set theory, dealing
with the possible rather than probable values of a variable with the possibility being a matter of
degree (elasticity) [28].

Additionally, research indicates that the unique relationship between fuzzy set theory (or
fuzzy logic) and the possibility theory is the result of inconsistency between available knowledge
and what is considered possible (a fuzzy set type) from current observations of the phenomenon

being studied [31, pp. 12-13]. This has proven useful in the scope of statistical reasoning, like
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when providing a solution using information containing uncertainty due to variability or vagueness
and incomplete or imprecise information.

Why is Possibility Theory a part of this research and how it is connected? As part of our
research, we have employed fuzzy logic. As the literature indicates, fuzzy logic is a method to
formalize the human capacity of imprecise reasoning (approximate reasoning) [32] [33]. In
addition, a clear distinction between fuzzy set theory (fuzzy logic) and the probability theory is
well presented by the concept that, the kind of uncertainty associated with the impression present
in the prescription of the boundaries of a set, it could be well represented by a possibility
distribution [14] [28].

In a recent work, Dubois et al. published in 2016 [34, pp. 24-6], remarks that possibility
theory is one of the main theories for reasoning under uncertainty due to incomplete information.
This theory is described as “a flexible framework for merging information because set based fusion
modes can be directly extended to fuzzy sets representing those entities of incomplete information
in a gradual way.” While possibility theory represents imprecision (in the form of fuzzy sets), it
also quantifies uncertainty through the measure of possibility and necessity [14] [28]. Moreover,
it illustrates conceptually that a possibility distribution is, in fact, a fuzzy restriction performing as
“an elastic constraint on the values that may be assigned to a variable” [31]. In fuzzy logic, a
membership function representing a linguistic term, which maps a possibility distribution also
called possibility measures by Zadeh [14] [15] and [30]. This makes the connection between

these two frameworks, the Fuzzy set Theory and the Possibility Theory.

Uncertainty-based Information Theory
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The uncertainty carried by a non-deterministic system rarely is a result of randomness, the
producer of meaningful statistical averages [12]. Uncertainty-based Information Theory
challenges the early assumption that this uncertainty only could be dealt with the resulting frame
work of the classical probability theory, a perspective that “uncertainty and probability are equal”.
A thought that has been challenged by two important mathematical generalizations: a
generalization of the classical measure theory and a generalization of the classical set theory, both
enlarged substantially the framework for formalizing uncertainty by making possible to conceive
new uncertainty theories departing from the classical probability theory [12, p. 6]. The
Uncertainty-based information, uncertainty involved in any problem-solving situation is a result
of some information deficiency pertaining to the system with which the situation is
conceptualized” Klir J. George, 2006 [12] and [17]. This a theory that distinguishes the
information conceived in terms of uncertainty reduction from other conceptions of information.
This theory perfectly supports the modeling of non-deterministic systems, systems not based on
the conception of information in human communication and cognition, or the algorithm conception
of information. It moves away from systems where the amount of information needed to describe
an object is measured by the shortest possible description of the object in some standard language,
a language that resembles the common-sense of what is perceived during the interpretation of the
system’s involved information.

However, formal treatment of uncertainty-based information derives from two classical
roots, one comes from possibility [28] and the other from the notion of probability [12], [17] and
[31]. Why is Uncertainty-based Information Theory a part of this research and how it is connected?
A core element of our research is the formalization of human impression. We do depart from the

perspective that indeed, information reduces uncertainty, which gives me the foundations Instead,
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it inspires me to contribute toward the understanding of human communication and cognition
explained from the perspective of both deterministic or not deterministic systems.

In summary, Uncertainty-based Information Theory strives to develop the capability to
deal formally with any type of uncertainty and the associated uncertainty-based information that
one can recognize on intuitive grounds [12]. Hence, connecting uncertainty-based information
theory with fuzzy set theory which at the same time is connected with possibility theory as

remarked above.

Fuzzy Logic

For this section, we start with the question: Why is fuzzy logic a part of this research and
how it is connected with it?

Fuzzy logic, the first theory with a theoretical application of the uncertainty and vagueness,
supports the generalization of classical measures by leaving behind sharp boundaries between sets
as seen by contemporary science [35, p. 481]. Furthermore, fuzzy logic has proven to be a superset
encompassing classical bivalent logic, generally presumed to be the principal pillar of science.
Fuzzy logic’s propositions are not required to be either true or false, but may be true or false to
different degrees. This aggressive approach (the degree of being either partially true or partially
false, elasticity) has shown that some bivalent logic laws do not hold any longer, e.g. the law of
excluded middle and the law of contradiction [12, pp. 418-420].

Research has shown that fuzzy logic offers a novel approach when other mathematical
models (i.e., the linear regression statistical model) are not available for processes where human
experts do well at mastering. Moreover, in order to provide a foundation for human knowledge

representation and reasoning in the presence of vagueness, imprecision, and uncertainty [29].
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Fuzzy logic, in particular, the fuzziness of a fuzzy system is based on the fact that such a system
handles very well the imprecision in the underlying model parameters, it deals with it rigorously
and predictably [36, pp. 12-13].

Additionally, fuzzy logic does not see imprecision as the result of missing data, cloudiness
in the knowledge base, the probability that one event occurs, or sloppiness in the model design,
for fuzzy logic, “imprecision rest in the natural and real-world imprecision associated with nearly
all-natural phenomenon™ [36, p. 12].

More, fuzzy logic consists of a set of mathematical principles e.g. level one and two as
suggested by Klir [12] and proved by Zadeh [15] [30] [37], for knowledge representation based
on degrees of membership rather than what classical binary logic features off a crisp membership.
With the power of fuzzy logic, now classical binary logic is considered as a special case of multi-
value fuzzy logic [38, p. 89].

Hence, we can see fuzzy logic as a method of encoding and using imprecise information.
However, its usefulness results when it works combined with analytical methodologies as
suggested by Klir as well [12] [17], machine reasoning techniques, and the decision support
apparatus inherent of conventional expert systems [17], [36] and [39]. This because when fuzzy
logic is used, the underlying fuzzy sets define the semantics of the model as well as the precise
relationship between data points (models’ state) and the set membership (elasticity).

Because fuzzy sets are always concrete and deterministic, the only actual imprecision or
fuzziness is associated with the very high level of the structure represented by the fuzzy sets
themselves [36]. Ross puts it this way “Natural language despite its vagueness and ambiguity, is

the vehicle for human communication, and it seems appropriate that a mathematical theory that
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deals with fuzziness and ambiguity are also the same tool used to express and interpret the

linguistic character or our language” [29, p. 118].

Deep Learning

Deep learning is inspired by the architectural depth of the brain, researchers wanted for
decades to train deep multi-layer neural networks. No successful attempts were reported before
2006. Researchers reported positive experimental results with typically two or three levels (i.e.
one or two hidden layers), but training deeper networks consistently yielded poor results. In 1993,
Vapnik and his co-workers developed the Support Vector Machine (SVM, a shallow architecture).
Some exceptions continued, for example, convolutional neural networks were reported by Yann
LeCun in 1998. However, these approaches led to a digression, in the 1990s, many researchers
abandoned neural networks with multiple adaptive hidden layers because SVMs worked better,
and there were no successful attempts to train deep networks. Until 2006, deep multi-layer neural
networks had not been successfully trained. Since then, several algorithms have been shown to
successfully train them, and now experimental results have shown the superiority of deeper vs less
deep neural network architectures. Deep learning methods focus on learning hierarchies with
features from higher levels of the hierarchy formed by the composition of lower levels [5]. Also,
deep learning employs a wide scope of learning methods ranging from neural networks with many
hidden layers [4] to graphical models handling several hierarchies of hidden variables.

Deep learning architecture (architectures that are composed of multiple levels of non-linear
operations, such as neural nets with many hidden layers) brought some advantages and challenges.
Moreover, theoretically speaking, the deep learning architecture allows us to model some

complicated functions not efficiently represented (in terms of the number of tunable elements) by

16



architectures that are too shallow and, it might be able to represent some functions otherwise not
efficiently representable.

Such functions that can be compactly represented by a depth k architecture (multiple levels
of non-linear operations) might require an exponential number of computational elements to be
represented by a depth k — 1 architecture. Hence, computationally there is no need for many
elements in the layers, and statistically, poor generalization may be expected when using an
insufficiently deep architecture for representing some functions [7].

Why is Deep Learning a part of this research and how it is connected with it? As part of
our research, we have to acknowledge some limitations of fuzzy expert systems, whereas they are
very useful in situations involving highly complex systems whose behaviors are not well
understood and in cases when an approximate, but a fast solution is derived [29][36]. Nonetheless,
some scholars have remarked that because fuzzy systems are primarily used in deductive
reasoning, where the specific is inferred from the general (deductive reasoning, also called shallow
reasoning [29, p. 8]), but not do well when modeling systems based on inductive reasoning
(inferring the general from the particular) or deep reasoning, requiring models to capture those
processes, core players of the mother nature that produce the phenomenon we observed such as
listening to a child in order to determine its intelligibility or seeing a human driving a car and being

able to model these phenomena.

Theoretical Problems to Address
Two major problems have been addressed, an industrial problem (coffee) and a social one
(speech pathology). As studied by Jorge Klir [12] and proposed by Jerry Mendel [17] [20]

“When dealing with real-world problems, we can rarely avoid uncertainty” [19]. Nonetheless,
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there is a core distinction when considering measurements and perceptions: “measurements are
crisp numbers where perceptions are fuzzy numbers (represented linguistically)” [19]. This is
based on the original work of Zadeh, on a paper presented in 1975 where he provided the
foundation of a qualitative approach successfully applied on modeling complex systems behavior

by using linguistic instead of numerical variables [15] [16] [32] [40] [41].

Industry Problem: Roasting and Judging (Determining Quality Scoring) Coffee Beans

An industry-standard protocol (roasting high-quality coffees beans and its impact into its
final grading, based on their attributes, see Appendix 1B, 1C) [42] [43]. The approach. First,
coffee beans from various countries were profiled. These coffees were roasted; batch profiles were
recorded focusing on various parameters (e.g. charge temperature, turn time and temperature, first
and second cracks’ time and temperature and total roasting time). Second, a Fuzzy Expert System
was used to determine the final quality grading of these coffees as indicated by the SCA standard
protocol (see Appendix 1A, 1B, and 1C). Third, these two datasets were combined by matching
each of these coffee beans’ country of origin, quality grading score with their roast profiled batches
(see Appendix 1E).

As the coffee beans were profiled, we captured domain knowledge and, we used the
Experts’ knowledge captured through a Fuzzy expert system [33] while quality scores were given.
In essence, a subset of soft-computing, Fuzzy Logic was employed to capture the underlying
phenomenon such as the one inherent in the process of judging coffee beans by following the
industry-standard protocol.

This chapter includes a solution to gather all the data needed for the tracking

interrelationships, interdependencies, and co-relationships between the roasting process (getting

18



raw coffee bean ready for human consumption) and the cupping process (determining the coffee
quality grade). Hypothetically, this research leads the way toward the design and development of
a fuzzy controller to be integrated into a coffee roaster used to roast high-quality coffee beans
while machine learning techniques are employed throughout the simulation process, profiling
coffee roast curves and their key parameters (critical cut points along the roast curve, drivers of
the cupping results targeting the final coffee bean quality grading).

Furthermore, other roasting parameters, ambient parameters (e.g., humidity) hypothetically
impact the roasting process, with unknown and unmeasured impacts on the results (cupping to

determine quality) of the coffee, they were also captured.

Social Problem: Ascertaining Children’s Speech Intelligibility

A problem currently in the speech pathologic field has been addressed. The need for having
a standardized tool to ascertain children’s speech intelligibility. An exhaustive literature review
was conducted and a well-established method knows as Direct Magnitude Estimation (DME) was
chosen. The result, a second application was built implementing the DME as a platform to design
and conduct experiments (IntelliTurk).

Using the IntelliTurk, experiments have been designed to capture direct magnitude
estimation, DME measurements from experienced or domain experts (speech pathologists,
technicians), and inexperienced listeners using the IntelliTurk’s platform with three treatments,
linguistic, numeric and both combined.

The scoring mechanism with less variability (error) is linguistic hence, it is proposed as the
default method of evaluating and scoring speech intelligibility. Moreover, in order to employed

machine learning techniques. A subset of recordings capturing the speech of sixty-two children
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selected to articulate more than two hundred words was used. Another application was designed,
coded, and presented to trained clinicians. These clinicians were instructed to listen to a portion of
these recordings and then ascertain the DME using the new default scoring method.

When given audio samples in a computer-readable format (such as a .wav file) of a few
seconds duration, holding a child reproduction of the recorded words used by the experts to
linguistically measure the DME, we want to be able to determine (predict) the DME associated
linguistic terms with those recordings. The goal, to have a prediction accuracy of at least eighty
percent (80%). The following terms, a set of predictable, classifiable labels for the DME. The idea
is to have a linguistic term for the final classification of the DME, initially suggested terms for the

DME are: Very Difficult, Medium, Easy and Very Easy.

Deep neural networks (DNNs) have become very popular for image classification
problems, they do it with high accuracy and at scale; our research employs DNNss for the prediction
of the (DME), and to model the relationship between roasting coffee beans and its impact in their

quality, we employed a Random Forest Regressor (RFR).

Theoretical Approach to Solve Proposed Problems
We presented above that heuristic and bias research have combined perceptual principles
with the psychology of thinking and reasoning. This equipped us with a new perspective on
judgment under uncertainty and, to consider, based on irrefutable evidence that humans’ reasoning
and decision-making capabilities, though certainly remarkable, are prone to systematic errors (i.e.
bias) [20, p. 105]. These contributions, once considered from the software engineering and

computer science perspective, offer us an opportunity to contribute. Hence, our de-erroring
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approach if used, for example when developing applications supporting human decision-making,
spanned across numerous domains, when utilizes machine learning, it can (hypothetically) disrupt
the systematic propagation of the error, hence by de-erroring, it de-biases as well. Here we discuss
two such domains based on existing research as an application. Therefore, we have conducted
experiments to test and improve human decision making with human subjects and, by developing
machine learning models trained and validated with data captured through non-deterministic
applications (i.e., systems designed to model underlined phenomenon). Livio et. al. [32] [33].
Furthermore, when human decision-makers are forced to use a numeric system for an evaluation
in contexts where numeric values are foreign or not naturalistic, this leads to error (not necessarily
bias, see Appendix 2A, 2B, 2C, and 2D).

When a numerical value is attached to a logical formula as the result of logic-based
knowledge representation such as requirement engineering, business intelligence, autonomous
systems, software engineering including medical or engineering decision support, this value can
be explained in many different ways according to its semantics [44]. Researchers agreed with a
subset of common justifications for this value, e.g. belief degrees preference degrees and trust
degrees [11] [44].

Ma introduced a numerical characteristic function for each knowledge-based approach and
concluded with the existence of one to one correspondence between a set of combination rules of
belief functions. It is observed in [45] that researchers are framing combination rules as the core
of merging from “ancient concepts of non-additive probabilities to the modern concept of belief
functions”, supporting with evidence that the degree of belief is the result of comparing evidence
to knowledge about chances governing the truth founded in a philosophical perspective [45, pp.

38-41].
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As aresult, combination rules such as Dempster’s rule [45], Smets’s rule [46] and merging
methods support the use of weighted knowledge base representations [47], by proposing a
knowledge merging operator capable of solving the conflicts among the knowledge bases.
However, these perspectives keep on calling for more exploration to be done. Mainly because
researchers have noticed that sources may be partially dependent, but not completely, leaving room
for wrong interpretations of the data models and the uncertainty they might carry [48].

On the other hand, uncertainty in information takes different shapes and it could be derived
from ignorance, a variety of stochastic sources, from the inability of conducting adequate
measurements, from lack of knowledge or from the fuzziness carried on our natural languages as
we express certain phenomenon [29, pp. 13-14].

The various sources of uncertainty can either be study separately or combined. For
example, as the imprecision or vagueness associated with data increases, overwhelming Fuzzy
type-1 methods; Fuzzy type-2 offers a more robust approach to handle these uncertainties [12] [17]
[19]. This is done by taking into account the inherent relationship encountered in precision, data,
and technique [8] [49].

Nonetheless, other researchers had remarked that a distinction should be made, “in order
to account for the underlying realities” [29, pp. 8-9] between employing mathematical models
when studying the observed data and, those hidden but important elements that produce this data.
The reason, models that cover only part of the phenomenological aspects, the part of the behavior
being studied, are by definition shallow models. Models that do not perform well due to their lack
of knowledge of the inherent processes that by nature account for these phenomena [8, p. 11].

Our research sees these uncertainties from an angle of problems we solve in software

engineering. These problems are framed into imprecise and precise, formalizing their imprecision
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as data is modeled from numbers into words and, from words into perceptions. However, the
techniques we used have their part in the encountered uncertainties. Coupland and John remarked
that “problems that contain precise data, should not be expected to exist.”

For example, mathematical modeling, type-1 fuzzy sets, and logic or type-2 fuzzy sets and
logic, have been studied and proven to capture with different precision, the uncertainty carried by

the perceptions we embrace as we interact with the underlined systems [19, pp. 246-248].

Possibility Theory

Probabilities General Information Theory
Deep Learning
Fuzzy Logic
Quantification Traits Representation

Figure 1-2. Kinds of Reasoning and Information Perspective
Figure 1-2 depicts the established kinds of reasonings and their information’s perspective.
Non-statistical uncertainty is equivalent to fuzziness, it is an inherent property of a system and it
cannot be altered or resolved by observations [35, p. 10]. Moreover, “the amount of fuzziness is
not connected in any way to the quantification of information, it is an important trait of information

representation” [12, p. 321]. On the other hand, Didier and Prade remarked that “probability theory
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seems to be too normative a framework to take all aspects of uncertainty judgment into account”
[14, p. 5] and even though the calculus of formal logic seems to be appropriate, nonetheless it falls
short as it distinguishes just between true and false propositions whereas humans in a natural way,
and efficiently cope with “highly subjective partial beliefs and drawing reasonable conclusions

from distorted, hazy information of restricted reliability” [49].

Additionally, the use of numeric systems results in biases that can be improved upon with
more human-friendly linguistic techniques that are now enabled by the use of new machine
learning technologies [19] [35] and [38]. These biases (biases due to the use of numbers) are
called item response bias, proxy bias, range insensitivity bias, and a full class of stimulus-response
biases known as scaling bias (which includes contraction bias, logarithmic response bias, range
equalizing bias, centering bias, and equal frequency bias).

In this perspective, [35, pp. 451-480] presents grounds to develop software products that
model human reasoning, approximate reasoning, it has been framed from the combination of fuzzy
logic with the fuzzy set theory where an element belongs to a set to a degree, indicating the
certainty (or uncertainty) of membership, in a realm of characterizing domains by linguistic terms,
rather than by numbers. Moreover, two-valued set theory enabled the development of exact
reasoning systems when coupled with traditional Boolean knowledge [35].

In an effort to formalize each of these uncertainties, uncertainty-based information depends
on the mathematical theory from which the conceptualization of its problem-solving situation is
based. Hence, a search for a mathematical model to represent these situations is an undergoing
endeavor whose influence has rippled the ultimate goal of generalized information theory: “to

capture properties of uncertainty-based information formalized within any feasible mathematical
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framework™ [17, p. 246]. However, as remarked by Kruse et al., “the basic intention of any model
is to reflect properties of the real world, i.e. to enable the prediction of a system’s behavior in the
real world” [49, pp. 2-4].

Furthermore, cognitive scientists have studied those conceptual patterns and mental images
from which humans conceptualize process, and store input knowledge domains. For example,
Borghis [50] made clear that perception and action are not separate and sequential processes but
that they are deeply interwoven. Other disciplines like engineering profoundly use numerical
quantities. Where the latter operates on solid theories, the former acknowledge that despite the
vagueness and ambiguity in natural language, “the shape of our thoughts” [37]. Human
communicating in a common language have little trouble in basic understanding, supporting the
idea that when modeling the human thought process as expressed in our communications with one
another, this model must emulate our natural language [29, pp. 239-141].

Furthermore, employing machine learning techniques has proven to produce accurate
models. Models that mimic basic human senses (e.g. humans’ visual and auditory systems) [51],
[52], [53], [54]. Hence, we can use computers to assist human in their decision-making process
and, by offering systems that consume accurate and re-trainable models, this process could evolve
into a methodology filling the gap identified by Klir, 2017, as a pivotal contribution to his

Uncertainty-Based Information Theory, level 4 [10, pp. 4-7].

Key Highlights of this Research

About Coffee Bean Roasting and its Impact on their Final Quality Grade
1. Statistical regression models were employed to study how the predictors of the

roasted coffee bean parameters can explain their final quality grading. The regression
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models were not able of modeling the phenomenon. However, a machine learning
model trained and validated using the same data, was able to modeled the prediction
of the quality metric with robust accuracy (over 90%).

2. A deep neural network is capable of modeling domain expert knowledge by handling
the underline phenomena between and quality indicators.

3. Additional coffee data was collected at the University Lab (e.g., green and roasted
bean color, moisture and kernel size, ambient temperature and roaster’s gas and air
flow levels, see Appendix 1F, 1G and, 1I). These additionals parameters, combined
with both roasting parameters and cupping paramaters (see Appendix 1E and, 1H)
provide the foundation for the design of a Fuzzy Controller.

4. The Fuzzy Controller will assist a domain expert, a human roast master, to roast
coffee beans targeting their optimal quality while the bean is being roasted. This
device’s approach, theoretically, will roast coffee beans by looking at their final
quality as an optimization problem to be solved, not as the coffee industry standard-

protocol indicates (see Appendix 1B).

About Children Speech Intelligibily

1. First and foremost, the main hypothesis is confirmed that linguistic assessment
generally reduces error and improves accuracy of intelligibility assessment.

2. It is possible to conclude that numeric procedure does not inflate estimates and
the true estimate is actually captured by Linguistic terms which does not

suppress/deflate the assessmen metric (i.e., DME).
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3. Some sound subtypes are likely to be more accurately assessed using one
methodology over another.

4. Statistically significant and positive coefficients are identified for Stop-affricate
Consonants and Final Cluster-Final Singleton. So, the experimental results
indicate that these word categories, or subtypes, are most effectively estimated
using Linguistic scoring methods.

5. Linguistic assessment methods are not an improvement over assessment methods
that combine Linguistic and Numeric, for any given single subtype

6. Results reinforce the idea of suggesting replacing numeric with linguistic holds
less dispersion.

7. The similarity (or lack of difference) in the variability between the Numeric and
Both treatments also drives the lower model fitness measure (as provided by the
F-statistic)

8. Experienced Listeners reported higher dispersion (more error) than inexperienced.

Summary
This chapter provided an approach (de-erroring model) for quantifying judgment, a
foundation for human knowledge representation and reasoning while making decisions in the
presence of vagueness, imprecision, and uncertainty. Two highly complex systems whose behavior
is not well understood have been given an approximated solution (hypothetically with less error),
not only by modeling themselves but, by modeling their uncertainty as well by utilizing both

linguistic scoring techniques and machine learning.
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In this work, we have modeled how coffee roasting impacted the final quality of the beans
and how measuring children’s speech intelligibility as the child utters words by using direct
magnitude estimation to improve speech intelligibility analysis. The aim is to integrate the
naturalistic mechanisms of human decision making with machine learning capabilities as a useful
framework with the hypothetical capacity of supporting several domains of the human decision-
making process.

Essay 2: Computational Intelligence: Fuzzy Logic and Machine Learning Applied to
Modelling Raw Beans Roasting and Judging (Cupping) of Specialty Coffees

Introduction
Motivation and Study Problem
Only for the past several years, researchers have noted the influence of roasting on coffee
bean and cup quality [55] as an important factor driving the coffee industry. Currently, due to the
heuristic nature of both the roasting and cupping (judging the final beans’ quality), researchers are
proposing, for example, to use fuzzy logic to model the human knowledge of coffee judges while
performing a sensorial evaluation of coffee beans [32] [56] [57], and leaving behind the
relationship between the roasting process and its impact into the final coffee bean quality. This
research fills the gap in knowledge between the roasting process and its impact in the final coffee

bean quality grading score.

Purpose and Research Approach
In this chapter, we take the novel approach of applying fuzzy logic combined with machine
learning techniques, such as deep learning for modeling both, the roasting and its influence when
determining the final quality of coffee beans through sensorial evaluation.
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Moreover, a fuzzy controller is proposed to be integrated into a coffee roaster leveraging
the human knowledge of the roast masters to drive temperature and airflow (output) from bean
attributes such as moisture and color (input). Another fact, Machine Learning Algorithms (ML), a
subset of artificial intelligence where computer algorithms are used to learn from data, are growing
in popularity since the introduction of the Turing Test in 1950 to the learning capabilities of

tracking human features exposed by Microsoft Kinect in 2010 [58].

For example, ML has proven to be useful in several industries ranging from pattern
recognition in pharmaceutical research, automobile industry targeting self-driving cars, and
identifying key attributes assessing the severity of heart failure [59]. Classification and clustering
in data mining like big data algorithms currently in production systems covering a vast spectrum
of services including the analysis of crime data [51]. However, ML potential is not fully explored
in the coffee industry, in particular, specialty coffees. Moreover, in the food industry, for example,
a machine vision system can facilitate the inspection of rice grains during processing for quality

evaluation [60].

The Goals of the Study are to Support the Following Research Contribution
1. This research fills the gap in knowledge between the roasting process and its impact on
the final coffee bean quality grading score
2. Aiming to design a fuzzy control system to model the heuristic element of the roast
masters’ domain knowledge, presenting the roasting process as a possible answer to an
optimization problem targeting the best possible quality of the coffee beans
3. We proposed the unifications of roasting and cupping by combining the expert’s

knowledge from each of these domains
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Organization of this Work
This document is divided as follows, in Section II a hypothetical statement is made through the
lenses of ML, Section III includes a literature review, and Section IV presents the landscape of the
research work covering coffee roasting, inferring the judging of final quality grading, a fuzzy
control system design aiming to leverage the heuristic element of the roast masters’ domain
knowledge. Section V holds preliminary results along with the collaborative efforts needed for
accomplishing this research. Section VI includes the conclusions and future work expected to be

done to fully take advantage of the models presented in this research.

Research Questions
Can statistical analyses (i.e., regression analysis) explain the relationship between the process of

coffee roasting and its impact on the final quality of the coffee beans?

Can machine learning techniques (i.e., deep learning) model the relationship between the process
of coffee roasting and its impact on the final quality of the coffee beans, even without explaining

the phenomena?

Research Hypothesis
The use of ML in this research is mainly to address the following hypothetical statement:
“There is a relationship between the final quality-grading of a specialty coffee, determined by a
judge through the sensorial evaluation of its attributes (e.g., fragrance/aroma, acidity, flavor, etc.)
and the underlined parameters (i.e., charge and discharge temperatures, exhaust temperature, first
and second pops’ time and temperature, moisture, the color of the roast bean and so forth)

measurable during the roasting process.”
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Limitations

This research aims to study specialty coffees (coffees of high-quality) and, it departs from the
standard protocols established by the Specialty Coffee Association (SCA), former Specialty Coffee
Association of America (SCAA), see Appendix 2A, 2B, 2C and 2D). Additionally, the proposed
design of a hardware device, a fuzzy roaster controller will also target specialty coffees and, in
order to prototype this device, a collaborative effort is needed with other departments and
institutions (i.e., electronic engineering, agriculture, etc.). For example, a formal invitation to
collaborate with the Institute of Technology of Veracruz, Mexico, offers their coffee fields, years
of experience studying coffee crops, their varietals and the process of coffee roasting; they have
successfully prototyped and developed their coffee roaster using an industrial controller (see.
Appendix 2J). Furthermore, they have experimented using fuzzy logic to control a drum-based

coffee roaster flame level (temperature) (see Appendix 2J and, 2K).

Key Terms

Coffee Cupping (judging coffee quality by an expert), Coffee Roasting (cooking the coffee
beans in order to make them consumable by humans), Coffee Attribute (e.g., Aroma, Fragrance,
Aftertaste, Body, Acidity, etc.). Specialty Coffees (i.e., coffees of high-quality), Specialty Coftfee
Association (i.e., organization that created the standards for the coffee industry). Regression
analysis (i.e., a reliable method of identifying which variables have an impact on a topic of
interest). Principal component analysis (PCA) (i.e., the technique used to emphasize variation and
finds strong patterns in data). Deep Learning, a Machine Learning (ML) technique, a subset of

Artificial Intelligence (AI).
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Literature Review

This chapter aims to use statistical analyses and machine learning for modeling the specialty
coffee bean roasting process and the final quality grading as the industry-standard indicates [42]
[61]. The design and development of a fuzzy controller is proposed because the heuristic elements
that coffee domain experts put into the process, make it practically impossible to model their
knowledge.

A novel work from Godoy et al. [62] offers evidence of feasibility pertaining to fuzzy logic
applied at industrial roasters in temperature control. They based this work on the fact that a fuzzy
controller works well for systems lacking adequate methodology for its control, including the
heuristic approach taken by coffee experts as they operate the roasters, making it very hard or
impossible to achieve a satisfactory way of deriving a mathematical model of the roasting process,
not to mention the cupping process.

Beyond controlling the roaster temperature, as proposed by Godoy et al., a fuzzy controller
could also assist with air-flow control and exhaust air, key drivers when roasting small batches of
specialty coffees. Research has shown that fuzzy logic offers a novel approach when mathematical
models are not available for processes where human experts do well at mastering, making a good
case for fuzzy logic [63].

Furthermore, Nogueira et al. [64] have proposed two multi-scale methods based on
Convolutional Neural Networks (Deep Learning) to identifying coffee crops from Remote Sensing
Images (RSIs) providing feedback to the Brazilian Agriculture-Industry. Their research laid the
foundation for extracted geolocation of events (burned forest, for example), productivity forecast,
and crop recognition from these images. In addition, this favors the identification of crops, a key

process when monitoring the land-use, helping to define new expansion strategies of the land or to
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estimate the feasible production amount.

Experimental Methods / Research Landscape

The section presents the details of the landscape where this research has been focused in terms

of modeling raw beans roasting and their cupping or judging (sensorial evaluation) of their final
quality grade.
Being the case that both the roasting and cupping, the obvious relationship of roasting a coffee
bean to get it ready to be cupped (judge) is heuristically known by the roast masters and the coffee
judges (cuppers). In order to apply machine learning, meaningful data must be collected from both
the roasting and the cupping process, see section below titled “Incorporating Machine Learning
(Random Forest Regressor).”

This research includes a solution to gathering all the data needed for the tracking of any
interrelationships, interdependencies and, co-relationships between the roasting process (getting
raw coffee bean ready for human consumption) and the cupping process (determining the coffee
quality grade).

On the other hand, this research will lead the way toward the design and development of a
fuzzy controller to be integrated into a coffee roaster used to roast high-quality coffee beans while
machine learning techniques are employed to predict the final quality grading of the roast coffee
beans.

Figure 2-1 plots a coffee roast curve. Critical cut points along the roast curve may be important
drivers of the cupping results. Roasting parameters, as well as ambient environmental parameters
(e.g., humidity) hypothetically impact the roasting process, with unknown and unmeasured

impacts on the results (i.e., cupping to determine quality) of the coffee.
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Hypothesized Functional Form of Cupping Results Driven by Roast Profile and Bean

Parameters

Cupping Vector [Roast (1-N)] = f[(Roast Vector) + (Growth Parameters Vector) + (Innate Bean-

Specific Parameters) + (Unexplained Stochastic Properties)]

Figure 2-1. Coffee Roast Curve Plot, Y axis = temperature in Fahrenheit, X axis = time in
Minutes

The following section aims toward the development and testing of the alternative
measurement systems targeting the subsequent steps: tackling any interrelationships,
interdependencies, and co-relationships between the roasting and the cupping processes. Figure 2-
2 shows the four components of the Roast Profiler in charge of recording coffee bean batch profiles
along with the origin of the coffee beans and their green parameters including variety, altitude,
color, moisture, kernel size, etc.

The solution includes a client application interacting directly with the coffee roaster, a

window-based application to manage collected data, a Restful API decoupling both the client
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profiler, a windows-based application and, a relational database holding collected data.

Roasting Profiler Solution

FRoast Prafiler
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Figure 2-2. Roasting Profiler Solution

The roasting profiler solution, Figure 2-2, provides the Ul, consisting of a windows-based
client module, which interacts with a Restful Application Programming Interface (API). This API
is based on the Model View Controller design pattern (MVC) [65], which achieves loose coupling
between the constituent parts: the Model which represents the data, the View (the graphical
display) and the Controller, in charge of managing the interactions (sending and receiving of

messages) between the Model and the View.
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Coffee Beans Roasting and Cupping
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Figure 2-3. The Roasting and Cupping of Coffee Beans are two Separate Manual Processes

The SCA standard protocols described both, roasting and coffee cupping as two independent
processes. In this chapter, we aim to study the impact of the roasting process on the output of the
cupping process, i.e., the quality grade of specialty coffees. Figure 2-3 shows how the specialty
coffee industry sees the roasting and judging processes. However, this research intends to unify
these two processes by combining the expert’s knowledge from each of these domains. Before
combining the data collected while studying these two industrial processes; in the next sections

we present both, the roasting and the cupping processes in detail.

Roasting Specialty Coffee Beans
The chemical process by which aromatics, acids and other flavor components are either
created, balanced or altered in the way that should augment the flavor, acidity, aftertaste, and body
of the coffee as desired by the roast master (the person who roasts the beans) is called “Coffee

Roasting” [61].
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Furthermore, the dark color of the coffee is directly relative to the caramelization of the sucrose
in the coffee. In the coffee industry, it is widely known that sucrose is a core determinant of both
sweetness and bitterness. As a carbohydrate that makes up roughly fifty percent of the coffee's total
dry weight by composition, sucrose has a direct impact on the class of important byproducts

created during roasting are those of organic acids.

During roasting, proteins combine with carbohydrates in what is perhaps the most important
reaction for all thermally processed foods — the Maillard Reaction. This set of reactions, discovered
by a French chemist in 1910, is what is largely responsible for transforming the mere handful of
compounds found in green coffee to the complex matrix that coffee is today [39]. This involves
the evaporation of the bean’s moisture and reaction products from non-enzymatic and pyrolytic
reactions evolve. Concluding, the most decisive parameter controlling the overall development of

the coffee bean is the roasting temperature [55].

Inferring Specialty Coffee Bean’s Quality Grading
In this chapter, we study the process of judging specialty coffees as indicated in the Specialty

Coffee Association (SCA) Cupping Form [42], derived from their Cupping Standard Protocol.

Figure 2-4 shows an excerpt from the latest SCA’ cupping form (see Appendix 2A).

Roast Score: Score: Score;
Level Fragrance/Aroma Flavor Acidity
o

S nnnnnnT l||||||||||||||| Linlenden
] T 8 ] 1046 7 8 9 10 J6 7 8 9 10

Dy Qualities: Break SCDI’E. |ﬂt€ﬂ5|‘y’
Aftertaste High
annnanmm
6 7 a9 10 Low

Figure 2-4. SCA Cupping Form’s Strip, few Attributes of a Sample (Coffee Bean)
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The Cupping Form (see Appendix 2A) provides means of recording eleven important attributes
of the coffee bean as described in Table 2-1: Fragrance/Aroma, Flavor, Aftertaste, Acidity, Body,
Balance, Uniformity, Clean Cup, Sweetness, Overall, and to record Defects as well. These

individual attributes are evaluated based on the scores shown in Table 2-2.

Additionally, the SCA protocol instructs the coffee judge (i.e., cupper) to rate coffee samples’
quality grade using a numeric scale shown in Table 2-3. (see Appendix 2B, 2C and, 2D). In the
current cupping process, crisp numeric values are used to represent coffee bean attributes perceived

by the cupper; for example, Aroma equals 7.5, Acidity equals 7, and so forth.

Table 2-1. Coffee Bean Attributes as Described by the SCA. Seven attributes are classified as
fuzzy attributes (italics), four attributes are crisp attributes (normal)

1) Attribute: Description

01 Fragrance: The aromatic aspects include Fragrance (defined as the smell of the ground
coffee when still dry) and Aroma (the smell of the coffee when infused with hot water).

02 Flavor: Represents the coffee's principal character, the "mid-range" notes, in between the
first impressions given by the coffee's first aroma and acidity to its final aftertaste.

03 Aftertaste: Defined as the length of positive flavor (taste and aroma) qualities emanating
from the back of the palate and remaining after the coffee is expectorated or swallowed.

04 Acidity: Is often described as "brightness" when favorable or "sour" when unfavorable.

05 Body: The quality of Body is based upon the tactile feeling of the liquid in the mouth,
especially as perceived between the tongue and roof of the mouth.

06 Uniformity: Refers to consistency of flavor of the different cups of the sample tasted.

07 Balance: How all the various aspects of Flavor, Aftertaste, Acidity and Body of the
sample work together and complement or contrast to each other is Balance.

08 Cleancup: Refers to a lack of interfering negative impressions from first ingestion to
final aftertaste, a "transparency" of cup.

09 Sweetness: Refers to a pleasing fullness of flavor as well as any obvious sweetness and
its perception is the result of the presence of certain carbohydrates.

10 Overall: The "overall" scoring aspect is meant to reflect the holistically integrated rating
of the sample as perceived by the individual panelist.

11 Defects: Are negative or poor flavors that detract from the quality of the coffee.
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Filling the SCA Cupping Form requires the following: first, the judge senses the coffee bean
attributes. Second, he or she perceives the level of intensity of the sensed attribute and writes down
a numerical score for the different attributes in the form. The cupper follows the following
protocol’s steps in filling the SCA Form: first, the coffee’s Fragrance/Aroma is evaluated. Second,
the Flavor, Aftertaste, Acidity, Body and Balance are evaluated. Third, Sweetness, Uniformity and
Cleanliness including Overall score are decided on by the cupper. Finally, the cupper determines

the sample quality score based on all of the combined attributes and deducts any faults (defects).

Table 2-2. SCA Coffee Attributes Quality Scale

Good Very Good Excellent Outstanding
6.0 7.0 8.0 9.0

6.25 7.25 8.25 9.25

6.50 7.50 8.50 9.50

6.75 7.75 8.75 9.75

Table 2-3. SCA Coffee Final Grading Quality Scale

Good Very Good Excellent Outstanding

= 60 <70 = 70< 80 = 80 <90 = 90

A fuzzy expert system has been designed and developed to capture and preserve the irreplaceable

human expertise of the coffee judges, see Figure 2-5.

Coffee Quality Grading from bean attributes using approximated reasoning

Input Coffee Attribute Scores
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Figure 2-5. Coffee Bean Quality Grading Using Linguistic Terms for Attribute Scoring through
the User Interface
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The fuzzy expert system promotes the replacement of numerical values to express the
individual attributes’ scores with a process based on this selection of linguistic terms, Figure 1-5
shows how the attribute Acidity could be represented by any of the linguistic terms “Low, Medium,
High or Very High.” However, the final grading of the coffee bean quality is not the arithmetic
addition of the individual scores (as the SCA protocol indicates), it is the result of an approximated
reasoning underlined by an appropriate Mamdani fuzzy engine, see Figure 2-5 - 6. Hence, offering

a seemly level of abstraction between numbers and scores.

Fuzzy Based Expert System
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-
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Figure 2-6 Fuzzy Expert System Architecture

Roaster Fuzzy Controller
Control systems are the greatest success of fuzzy logic. In areas where classical control
knowledge has fallen short, fuzzy logic has proven to be effective and has become a very strong
player as part of the industry standards [63, p. 437]. Figure 2-5, depicts a block diagram of a simple
fuzzy control system proposed in [63, p. 442]. In this diagram, the steps (assumptions) included
in Table 2-4 below, where Plant, is the physical system under control, it represents the roasting
process which output (mainly heat and air-flow), at the same time, is determined by input signals

coming from the coffee bean color and exhaust air moisture sensors.
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Figure 2-7. A simple Fuzzy Logic Control System Diagram [16, p. 442]

Moreover, the proposed fuzzy controller, by design will handle the bean temperature

through gas flow, the exhaust air and, the air flow while monitoring the coffee bean’s color and the

air (ambient) moisture. All of this with the awareness of other parameters like charge temperature,

roaster temperature when the coffee beans fell into it, the first and possible the second cracks

(pops), and so forth. Table 2-4 below renders a set of assumptions embraced by fuzzy controller

designers. These assumptions were identified in [63, p. 441].

Table 2-4. Assumptions in a Fuzzy Control System Design [16, p. 441]

#  Assumption

01 The plant is observable and controllable: state, input, and output variables are usually
available for observation and measurement or computation

02 There exist a body of knowledge comprising a set of linguistic rules, engineering common
sense, intuition, or a set of input-output measurements data from which rules can be
extracted.

03 A Solution exists

04 The control engineer is looking from a “good enough’ solution, not necessarily the
optimum one

05 The controller will be designed within an acceptable range of precision

06 The problem of stability and optimality are not addressed explicitly; such issues are still

open problems in fuzzy controller’s design

After ascertaining the assumption listed in Table 2-4, the designer embraces a set of steps listed in

Table 2-5.
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Table 2-5. Steps in Designing a Fuzzy Control System

#  Steps

01 Identify the variables (input, states, and outputs) of the plant

02  Partition the universe or discourse or the interval spanned by each variable into a
number of fuzzy subsets, assigning each a linguistic label (subsets include all the elements
in the universe of discourse)

03 Assign or determine a membership function for each fuzzy subset

04 Assign the fuzzy relationships between the inputs’ states’ fuzzy subset on the one hand and
the outputs’ fuzzy subsets on the other hand, thus forming the rule-based

05 Choose appropriate scaling factors for the input variables in order to normalize the
variables to the [0,1] interval

06 Fuzzify the inputs to the controller

07 Use fuzzy approximate reasoning to infer the output contributed from each rule

08 Aggregate the fuzzy outputs recommended by each rule

09 Apply defuzzification to form a crisp output

The core of a fuzzy controller design is the concept of its decision surface, a time-varying
nonlinear surface, which encompasses the behavior of the controller’s dynamics [63, p. 440].
Moreover, to approximate and build the control surface of a fuzzy controller, knowledge
representation of a set of fuzzy conditional statements are paramount. This is a known fact, which
makes fuzzy control design free from the paradigm of classical control linear system design. Fuzzy
rule-based control systems are universal nonlinear function approximators which in essence, could

be approximated to any desired precision [63, pp. 440-441].

Incorporating Machine Learning (Random Forest Regressor)

The goal of the cupping process is to allow the cupper (i.e., judge) to determine the final
grading of the coffee bean quality as shown in Table 2-3. Any of these four-possible quality
gradings, for example “Excellent” simply represents a final classification of the evaluated coffee
bean. Hence, establishing the final quality grade of a coffee is a classification problem with four

possible values: Good, Very Good, Excellent or Outstanding; the learning problem is to map the
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predictor parameters from the roast profile with their quality grading scores, Table 2-6.

Table 2-6. Seven Predictors and the Output Parameter (Score)

ID Attribute: Description

01 Initial Temperature: the temperature at which the roaster (machine) is pre-heated before
the roasting process starts.

02 Minimum Temperature: value of the minimum recorded temperature during the roasting
process.

03  Minimum Seconds: recorded time in seconds when the minimum recorded temperature
was observed.

04 Maximum Temperature: value of the maximum recorded temperature during the roasting
process.

05 Maximum Seconds: recorded time in seconds when the maximum recorded temperature
was observed.

06 Final Temperature: value of the recorded temperature when the roasting process ended.

07 Seconds (roast time): total elapsed time of the roasting process.

08 Score: quality grade given to the coffee by the coffee judge after evaluating the coffee
individual attributes

The final score, the label, representing the quality of the bean will be based on the values
shown in Table 2-3.

Table 2-7. Several Parameters Combined from Green and Roast Data

ID Attribute

01 Country of Origin
02 Region of Origin
03 Farm Altitude
04 Variety

05 Process

06 Green Color
07 Green Size

08 Roast Color
09 Roast Size

10 Air flow curve

Table 2-8. Sample Roast Data
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Table 2-9. Sample Data, Combining Origin and Roast
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COLOMEBIA Planadas 1900 Caturra Washed 4418 0.64 12.22 29.73 4.73 6.01 4492 5899 6915 5807 2.51 0.37 5320 6383 8103 6305
COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 31.15 4.64 6.12 4492 5899 6915 5807 8.51 0.3 5335 6908 8085 6813
COLOMBIA Planadas 1900 Caturra Washed 44,18 0.64 12.22 30.09 4.47 6.27 4492 5899 6915 5807 8.51 0.28 5328 6908 8130 6808
COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 28.97 4.59 5.63 4492 5899 6915 5807 8.51 0.25 5336 6850 8061 6741

COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 29.45 4.81 5.81 4492 58939 6915 5807 8.51 0.22 5301 6878 8121 6793
COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 30.37 5.06 6.62 4492 5899 6915 5807 8.51 0.2 5386 6961 8209 63870
COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 28.86 4.63 5.76 4492 5899 6915 5807 8.51 0.23 5303 6869 B129 6736
COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 230.01 4.51 5.98 4492 58939 6915 5807 8.51 0.2 5309 6882 2101 6791
COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 28.16 4.18 4.77 4492 5899 6915 5807 8.51 0.29 5296 6888 B152 6798

COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 30.54 5 6.74 4492 5899 6915 5807 8.51 0.28 5311 6887 8156 6806
COLOMBIA Planadas 1900 Caturra Washed 44.18 0.64 12.22 29.74 4.74 5.99 4492 58939 6915 5807 8.51 0.25 5304 6882 8167 6305
HOMNDURAS Intibuca 1600 Catuai Washed 44.57 1.49 13.36 28.09 4 4.73 4444 6267 7302 6064 8.42 0.29 5381 7243 8435 7068

HONDURAS Intibuca 1600 Catuai Washed 44.57 1.49 13.36 27.28 4.6 4.48 4444 6267 7302 6084 B8.42 0.38 5381 7267 8487 7099
HOMNDURAS Intibuca 1600 Catuai Washed 44.57 1.49 13.36 28.77 4.73 5.49 4444 6267 7302 6064 8.42 0.47 5353 7191 8452 7040
HOMNDURAS Intibuca 1600 Catuai Washed 44.57 1.49 13.36 26.37 3.85 3.82 4444 6267 7302 6064 8.42 0.33 5394 7191 8392 7050
HONDURAS Intibuca 1600 Catuai Washed 44.57 1.49 13.36 29.71 4.95 5.65 4444 6267 7302 5064 8.42 0.43 5348 7155 8468 7026
HOMNDURAS Intibuca 1600 Catuai Washed 44.57 1.49 13.36 28.35 4.39 4.36 4444 6267 7302 6064 8.42 0.26 5328 7161 2421 7004
HONDURAS Intibuca 1600 Catuai Washed 44.57 1.49 13.36 20.27 4.89 6.57 4444 6267 7302 6064 8.42 0.36 5354 7101 8349 6992

Discussion of Preliminary Results

Linear Regression Models, Looking for Linearity in the Data
In order to have a sort of benchmark, a foundation to work with, some work has been done
in order to evaluate if a linear model could explain the correlation among the predictor parameters

and the quality grading score shown in Table 2-6. We developed three statistical models trained
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using data as shown in Table 2-8, only a subset of the data shown in Table 2-9. One model including
all countries and two models, one with only Colombian coffees and another with Honduran

coffees. Figure 2-8 shows the distribution of scores per country.

Distribution of SCORE

874 F 4.89
Prob >F <.0001
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Figure 2-8. Dependent Variable Score distributed by Country

Amnalysis of Variance

Sum of| Mean

Source DF | Squares| Square | F Value | Pr>F
Model 7 18.79427 | 2.68490 3.36 | 0.0024
Error 143 | 114.40776 | 0.80005

Corrected Total | 150| 133.20203

Figure 2-9. ANOVA Shows Statistical Significance of the Regression Model (All Countries)

Root MSE 0.89446 R-Square 0.1411
Dependent Mean | 84.40722 | Adj R-Sq | 0.0991
Coeff Var 1.05969

Figure 2-10. Model Could Explain 14 Percent of the Variability of the Data (All Countries)

Parameter Estimates
Parameter| Standard
Variable DF| Estimate Error|t Value | Pr = [t]
Intercept 1 90.16770 7.73991 11.65| <.0001
INITIALTEMP 1 -0.00132 0.00949 -0.14 | 0.8898
MINTEMP 1 -0.06441 0.02467 -2.61| 0.0100
MINSECS 1 -0.00404 0.00941 -0.43 | 0.6682
MAXTEMP 1 0.01727 0.01488 1.16| 0.2477
MAXSECS 1| 0.00011692| 0.00029946 0.39| 0.6968

Figure 2-11. Only the Intercept Shows Statistical Significance (All Countries)
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Fit Diagnostics for SCORE
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Figure 2-12. Fit Supporting Model Assumptions (All Countries)
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Figure 2-13. Scatter Plots (Colombia)
Analysis of Variance
Sum of| Mean
Source DF | Sqguares| Square | F Valoe| Pr = F
Mhodel 7 6.18413| 088345 124 035116

Error 32| 22833535 0.71554
Corrected Total 30| 2001748

Figure 2-14. Model is not Significant (Colombia)

46



Parameter Estimates
Parameter| Standard
Variable DF| Estimate Error|t Valoe| Pr = |t
Intercept 1| 10810457 32.05082 338 0.0019
INITIALTEMP | 1 001118  0.01480 0.76| 04536
MINTEMP 1 007030  0.05267| -1.33] 0.1914
MINSECS 1 0.02327 0.02629 0.89| 03827
MAXTEMP 1 004176 0.06744|  -0.62| 0.5401
MAXSECS 1| -0.00006442| 0.00054622 -0.12| 0.9069
FINALTEMP 1 0.02046|  0.00933 2.13| 0.0394
SECONDS 1 001244 000861 -144| 01384
Figure 2-15. Individual Predictors Statistical Significance (Colombia)

Root MSE 0.84471 | R-Square | 0.2131

Dependent Mean | 2491675 | Adj R-Sq | 0.0410

Coeff Var 0.99476

Figure 2-16. Model Only Explains 21 Percent of Variability (Colombia)

Fit Diagnostics for SCORE
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Figure 2-17. Fit Supporting Model Assumptions (Colombia)
The model assumptions are confirmed, residuals follow a normal distribution, Figure 2-17.
The variance from the histogram Figure 2-13, is large and scatter plots look clustered. Some

potential outliers were identified and removed. Scatterplot and regression analysis were done
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without the identified potential outliers, the p-value for ANOVA is greater than 0.05, linear model
does not fit, Figure 2-14 and Figure 2-15. Parameter Estimates all are not significant except for the

intercept. R-square is 0.2131, Figure 2-16. Results do not justify a need for a modified model.

Analysis of Variance

Sum of| Mean

Source DF| Squares| Square| F Valoe| Pr>=F
Model T 2.98201) 042600 2.53) 00370
Error 291 4.88947| 0.15860

Corrected Total | 36 7.87148
Figure 2-18. Model is not Significant After Removing Outliers (Colombia)

Removing the outliers improved r-square slightly (it is now 0.3788, Figure 2-18, before
was 0.2131, Figure 2-16). Parameter estimates aside from the intercept are still not significant.
ANOVA Table, p-value 0.0370 (greater than 0.05) indicates that the data does not follow a linear
model. QQ plot and histograms are improved by removing the outliers. Data points are more
random around the residual plots. We did not perform the Box Cox transformation because the
equality of variances assumption was not violated.

Null Hypothesis, Ho: B1 = B2 =B3 =B =Bs =Bs =P7=0
Alternative Hypothesis, H,: not all ; are zero

Under H,

H,, the statistic F follows an F-distribution with 7 and 29 degrees of freedom. Because
P-value = 0.0370, P( F; ;9 >=2.53) > 0.001, we should Accept Hy, this means that there is not a
linear association between the score and the seven predictor variables. Moreover, the list below
holding parameter estimates does. Figure 2-25, does not include any predictor variable’s P-value
indicating significance correlation. In other words, none of the predictors variables seems to have

a linear relationship with the score.
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The above facts do not justify further analysis including sequential procedures like
Forward Selection, Backward Propagation nor Stepwise Regression because these methods are
based on the P-value.

We can calculate the F (the test statistic) for o = 0.05, meaning with 95% of confidence:

Ho:B1=...=B, =0

2.98201/7
F, = =2.52669 (df 7,29), P=2.35 > 0.05
4.88947 / (37-7-1)

Reject Hg if Fy > F,,; n-p-1; a. In this case we reject the null hypothesis (Hg) because F, > P.
On the other hand, to avoid multicollinearity we will not consider interaction terms. These terms

will include variables which are part of the model.
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Figure 2-19. Scatter Plots (Honduras)

Amnalysis of Variance

Sum of| Mean

Source DF | Squares| Square | F Value| Pr=>F
Model 7| 13.07842| 1.86835 2.06| 007589
Error 32| 2893686 0.90490

Corrected Total | 35| 42.03528

Figure 2-20. Model is not Significant (Honduras)
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Root MSE 0.95125 | R-Square | 0.3111
Dependent Mean | 2417675 [ Adj R-Sq | 0.1604
Coeff Var 1.13008
Figure 2-21. Model Only Explains 31 Percent of Variability (Honduras)
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Analysis of Variance

Sum of( Mean

Source DF | Squares| Square| F Valoe| Pr=F
Model 7| 10.82083| 1.54383 1.74| 0.1380
Error 31| 27.33814| 088833

Corrected Total | 38| 38.35857
Figure 2-23. Model is not Significant After Removing Outliers (Honduras)

Root M5SE 0.94251 | R-Square | 0.2321
Dependent Mean | 8412321 Adj R-Sq 0.1200|
Coeff Var 1.12033

Figure 2-24. Model Only Explains 28 Percent of Variability (Honduras)

Parameter Estimates
Parameter| Standard
Variable DF| Estimate Error| t Value | Pr = |t
Intercept 1 B2.43533 4476041 1.84( 0.0731
INITIALTEMP 1 -0.03096 0.11963 -0.26] 0.7976
MINTEMP 1 -0.10100 006993 -1.44( 01588
MINSECS 1 0.06489 0.07798 0.83( 04116
MAXTEMP 1 012228 0.11641 1.03| 0.3016
MAXSECS 1| -0.00001217 | 0.00090793 -0.01( 09894
FINALTEMP 1 007778 0.09042 -0.86( 03963
SECONDS 1 0.00931 0.01255 0.74( 0.4638

Figure 2-25. Individual Predictors Statistical Significance (Honduras)

50



Hy: B1=B2=B3=B+=Bs=B¢=B-= 0, H,: not all bi are zero

Under H,, the statistic F, follows an F-distribution with 7 and 32 degrees of freedom.
Because P-value = 0.2581, P (Fg 25 >= 1.34) > 0.001, we should Accept Hy, this means that there
is not a linear association between the score and the seven predictor variables. Moreover, the list
below holding Parameter Estimates does not include any P-value indicating significance. In other
words, none of the predictors variables seems to have a linear relationship with the score. This fact
does not justify further analysis including sequential procedures like Forward Selection, Backward

Propagation nor Stepwise Regression because these methods are based on the P-value.

Robustness test of the Machine Learning Model -- Multivariate Principal Component
Analysis (PCA)
The linear regression models did not provide enough explanation of the variability in the
data. First of all, not all assumptions for applying linear regression to the data were met (e.g., the

data is not normally distributed, there is not a linear relationship amongst the variables, nor little

multicollinearity).
Table 2-10. Parameters Correlation Table

INITIALTEMP MINTEMP MINSECS MAXTEMP MAXSECS FINALTEMP SECONDS
INITIALTEMP 1.0000
MINTEMP 0.2166 1.0000
MINSECS 0.5800 0.0165 1.0000
MAXTEMP 0.8117 0.1593 0.4553 1.0000
MAXSECS 0.2441 0.2141 0.4025 0.3018 1.0000
FINALTEMP 0.6684 0.1233 0.3550 0.8246 0.2559 1.0000
SECONDS 0.1038 0.1693 0.3592 0.1330 0.9294 0.0504 1.0000

Table 2-10. shows high correlation (i.e., multicollinearity) amongst some variables (bolded
values in table). For example, the highest correlation (0.9294) is observed between the variable

MAXSECS (time in seconds when the roast profile reaches it maximum temperature) and
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SECONDS (total roasting time in seconds). Another very high correlation is reported with the value
of 0.8246 between MAXTEMP (i.e., the maximum temperature value recorded in the roast profile
for a particular batch of coffee) and, the FINALTEMP (coffee bean temperature recorded at the
moment of the roast profile discharge). These high correlations suggest the use of a technique such
as PCA. PCA is a method that maximizes the variance of the data dimension. Considering the
multivariate analyses based on the true eigenvector-based methods, PCA is the simplest and best
for this scenario [66]. PCA aims to reveal the unseen structure of the data by explaining its
variability (i.e., variance) [66].

Table 2-11. Principal Component/Eigenvalues

Component Eigenvalue Difference Proportion Cumulative
Compl 3.26544 1.547290 0.4665 0.4665
Comp?2 1.71815 0.733817 0.2455 0.7119
Comp3 0.984336 0.371823 0.1406 0.8526
Comp4 0.612513 0.363440 0.0875 0.9401
Comp5 0.249072 0.125685 0.0356 0.9756
Comp6 0.123387 0.076291 0.0176 0.9933
Comp7 0.0470956 - 0.0067 1.0000

Table 2-11. Holds the Eigenvalues for our data. These values account for the variance of
the component (i.e., Compl =3.26544). The components are listed from the highest variance down
to the lowest. Moreover, the column titled “Proportion™ gives the value of the percentage of the
variance accounted for the component. Component one (Compl) explains 46.65 percent of the
variation of the data and, component two (Comp?2) explains 24.55 percent. These two components
combined explain the 71.19 percent of the variation of the data (See Appendix 2M).

For our study, we will pick only the components with Eigenvalues greater than one (e.g.,
Compl, Comp2 and, Comp3) (See Appendix 2N and, Appendix 20). The 71.19 value represents
a considerable improvement of the linear regression models presented at Figures 2-15, 2-26, 2-20,

2-23,2-24 and, 2-25 where the maximum percentage explaining the data was 28.
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A Random Forest Regressor (RFR) was Used

A random forest is a classifier consisting of a collection of tree-structured classifiers {h(x,
0r), k=1, ...} where the {0} represent independent identically distributed random vectors and
each tree casts a unit vote for the most popular class at input x. RFR “they always converge so that
overfitting is not a problem.” [67, p. 4].

For this RFR Model, the same data used for all countries, see Table 2-7. All fields are
treated as continuous variables. Furthermore, we identified the dependent variable (i.e., SCORE),
the value to be predicted. In this model, we set the training ratio with the value of 0.80 (80 percent
of the data will be used to train the RFR y 20 percent used for testing). Root-mean-squared percent
error is the metric we have used, Figure 2-26. The list of parameters used by the RFR model are
shown in Figure 2-27 where the dependent variable is highlighted and, seven independent variables
are shown (e.g., FINALTEMP, INITIALTEMP, etc.). Additionally, in order to prepare the data for
the model to use the Root-mean-squared percent error, the SCORE’s values were transformed

using the natural logarithmic function, see Figure 2-28.

In [8]: def rmse(x,y): return math.sqrt(((x-y)**2).mean())

In [92]: # RMSLE (root mean squared log error) between the actual and predicted scores.

# Therefore we take the log of the scores, so that RMSE will give us what we need

df_raw.SCORE = np.log(df_raw.SCORE)

df_raw.SCORE
Out[9]: 4.442651
4.4360817
.436817
. 442651
. 442651

hbhb

.486719
.488636
. 276666
.488636
.338733
Name: SCORE, Length: 1241, dtype: floate4

[
N
)
<]
bhbhbb

Figure 2-26, Root-mean-squared Metric Used in the RFR Model
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In [10]: 1 display_all(df raw.isnull().sum().sort_index()/len(df raw))

FINALTEMP 0.9
INITIALTEMP 0.0
MAXSECS 0.0
MAXTEMP 0.0
MINSECS 0.9
MINTEMP 0.9
SECONDS 0.0

dtype: float64d

Figure 2-27, List of Parameters Available for the Model

INITIALTEMP MINTEMP MINSECS MAXTEMP MAXSECS FINALTEMP SECONDS SCORE
0 320 147 28 401 672 401 677 1.491251
1 365 171 28 408 554 408 555 1.488584
2 394 176 29 403 258 403 565 1.488584
3 378 180 28 397 241 397 548 1.491251
4 394 180 31 401 982 401 588 1.491251

Figure 2-28, Excerpt of the Data fed Into the RFR Model

In [16]: 1 # n_estimators is the number of trees to be used in the forest.
2 # Since Random Forest is an ensemble method comprising of creating multiple decision trees,
# this parameter is used to control the number of trees to be used in the process.

number_of_estimators = Bﬂ
6 m = RandomForestRegressor(n_estimators=number_of_estimators, bootstrap=True, n_jobs=-1)
7 m.fit(X_train, y_train)

Out[16]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion="mse’,
max_depth=None, max_features='auto', max_leaf_nodes=None,
max_samples=None, min_impurity decrease=0.0,
min_impurity split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=32, n_jobs=-1, oob_score=False,
random_state=None, verbose=0, warm_start=False)

Figure 2-29, Setting up the Random Forest Regressor Model
Table 2-12 shows a list of experiments designed for testing the impact of the PCA
components with the highest eigenvalues (e.g., Compl and, Comp2) see Table 2-11. For example,
the experiment for control (i.e., Control) includes all the variables, trial one excludes highest
components from principal component Comp!l and, trial two excludes only highest component

from principal component Comp2. All of this to assess the marginal contribution of each of the
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three largest factors from the PCA components (e.g., INITIALTEMP, MAXTEMP and,

FINALTEMP).

Table 2-12. Experiments for Testing the Impact of PCA Components in the Machine Learning

Model

Control Trial one Trial two Trial three | Trial four | Trial five Trial six

Included Included Included included Included Included Included
INITIALTEMP | x X X X
MINTEMP X X X X X X X
MINSECS X X X X X X X
MAXTEMP X X X X
MAXSECS X X X X X
FINALTEMP X X X X
SECONDS X X X X X X X

The RFR Model ran for each of the experiments listed on Table 2-12 and, the results are
shown on Table 2-13.

Table 2-13. Eigenvector Omitted by Components

Eigenvector Eigenvector .
Trial Accuracy OI%litted Orfr:{litted I\A/Ij;%;:s; RD?;QE::;;
from Compl from Comp? Change in Eigenvector
Control 0.85 0.0000 0.0000 0.0000
one 0.81 1.3580 -0.9098 0.0295
two 0.83 0.3592 0.5482 0.0557
three 0.81 1.7172 -0.3616 0.0233
four 0.83 0.4732 -0.2962 0.0423
five 0.82 0.4610 -0.2879 0.0651
Six 0.84 0.4246 -0.3257 0.0236

The eigenvectors omitted by Components shown in Table 2-13 (see Appendix 2P and,

Appendix 2Q) are reflecting the marginal contribution of these PCA components (e.g., Compl
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and, Comp2) when the variables with the highest impact are removed from each of the experiments
shown in Table 2-12, the column titled “Explained” holds the R squared (R?) reported by the RFR
Model when the trial was completed. The R? is the proportion of the variance in the dependent
variable (i.e., SCORE) predictable from the independent variables included in each of the trials,
see Table 2-12 and Figure 2-17.

The Table 2-13 column titled “Marginal RFR Model Accuracy Decrease for Change in
Eigenvector” holds the decrease of the RFR Model per trial. For example, for trial one (i.e.,

0.0295), this value results from:

Control Accuracy (85%) minus trial one accuracy (81%) divided by Compl eigenvalue

(1.3580):
0.85-0.81 0.04
S —0.0295
1.3580 1.3580
Component loadings
[
© 5 seconds
L
TI'_ —
o
g ™
=2 ® mintemp
g K
S < T minsecs
S
firwiglitljamp p.
‘F -
F 2 3 4 =

Comp;:)nent 1

Figure 2-30, PCA Component Loading (Comp1 and, Comp2)
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Furthermore, Figure 2-30 indicates that for PCA Compl, the three variables with the
highest impact (i.e., eigenvectors) in the RFR Model are initial temp (0.5431), max temp (0.5579)
and, final temp (0.5304). Moreover, for the PCA Comp2, the variables with the highest impact are

seconds (0.6936) and, MAXSECS (0.6543).

Moreover, in Table 2-13 the columns titled “Eigenvector Omitted from Comp1” and titled
“Eigenvector Omitted from Comp2” reflect the eigenvector values that were omitted during the
execution of a trial by the RFR Model. For example, no eigenvector values (from Compl nor
Comp2) were omitted by the Control experiment. However, trial one has the following values (e.g.,
for Compl is 1.358 and for Comp2 is -0.9098). These values resulted for the following
calculations:

Eigenvector Omitted from Compl (1.358) = Compl {Eigenvalue — Eigenvalues [initial temp +
max temp + final temp]}

Eigenvector Omitted from Comp1 (1.358) = 3.26544 — (0.5431 + 0.5304 + 0.5579)

Eigenvector Omitted from Comp1 (1.358) = Comp2 {Eigenvalue — Eigenvalues [INITIALTEMP

+ MAXTEMP + FINALTEMP]}

Eigenvector Omitted from Comp1 (-0.9098) = 1.71815 — (— 0.0201 — 0.0212 — 0.0709)

Using the experimental procedure just identified to selectively omit explanatory variables
from the RFR, we also identify strong consistency of the machine learning model in both
directions, which provides an even stronger robustness check. With comparisons across trials, we
derive a clear linear relationship that is negatively associated with the omission of larger
eigenvector values, and positively associated with the omission of larger negative eigenvector
values. Results suggest that RFR decreases its accuracy (i.e., explains less) as we omit more. For

example, if we take away (high value characteristics such us initial temperature), it hurts the RFR
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performance. The marginal decreasing accuracy, as shown on Table 2-13 for trial one, trial three
and, trial five are 0.0295, 0.0233 and, 0.0651 being the initial temperature (i.e., INITIALTEMP)
as the parameter with the highest impact.

Additionally, all the variables representing the maximum metrics (i.e., MAXSECS) are
the least impactful (i.e., they caused the RFR Model to have a lower accuracy). The trials having

the best results are trial one, and trial three (these trails omit MAXSECS).

Conclusions and Future Work

Results indicate that the RFR is capable of predicting the quality grading scores with accuracy
over eighty percent, Table 2-12. The RFR does not place the SCORE’s values far away from the
quality grading ranges showed in Table 2-3 as the standard suggested. The goal is to make the
system always produce reliable predictions of the coffee bean quality grade by keeping its accuracy
under control, meaning within a reasonable range. This could be achieved by incorporating a fuzzy
controller into the roasting process modeling the heuristic of the domain experts (roast masters) in
charge of roasting the coffee beans considering both coffee bean origin, green parameters and,
roasted parameters obtained during the roasting process itself (see Appendix 2F, 2G) and those
parameters measured at the lab after the coffees have been roasted (see Appendix 21).

A future work that could potentially enhance the accuracy of predicting the quality of the coffee
bean while it is being roasted. This process will employ a type-2 fuzzy set (2FS), an extension of
the currently used. Research has shown that 2FS breeds high accuracy when dealing with
uncertainties [26]. The rationale is that the currently used fuzzy engine computes the input values
of the attributes’ individual scores, in a similar way as a probability distribution function computes

the mean, which measure-of-dispersion is captured by the variance [26, p. 643]. By using 2FS, the
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fuzzy model could rely on a more suitable measure-of-dispersion, one capable of handling the
uncertainties inherent to the linguistic terms used by the domain experts’ roasting and judging the
coffee beans. In other words, fuzzy logic type I addresses data imprecision while 2FS handles the
expert imprecision. As shown in Table 2-6, the RFR Model used seven predictors, all from the
roasting process, used to predict the final quality grading score (final result from the non-
deterministic roasting process), leaving out of the model several other measurable parameters (see
Appendix 2G, 2I).

Additionally, further work can apply ML to understanding the relationship between the way
coffee beans have been roasted and their final quality grade, including several more coffee bean
parameters (e.g., moisture, color, density, kernel size, and farm altitude). This could be evaluated
running simulation tests to give and take away parameters as the PCA suggests; our experimental
statistical analysis serves an important validation function by confirming that the selective
withholding of statistically-influential component loadings from the machine learning model
weakens the explanatory power of the machine learning model in the expected direction, for both
positive and negative vector loadings.

Nonetheless, the coffee origin or green parameters as shown in Table 2-7, are yet to be
understood considering that the coffee bean moisture is considerably reduced as well as the beans’
kernel size, Table 2-7.

Furthermore, in order to select an optimal subset of these parameters, a genetic algorithm
is proposed as it has been successfully employed by Santhanam, T. and Padmavathi, M.S. [68]
with the goal to minimize the number of selected features that maximize the accuracy of the
classification as suggested by Sohrabi and Tajik [69].

Moreover, modeling the final quality grading of the coffee bean and its relationship with
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the way it has been roasted seems to be a good approach. Nonetheless, modeling the final
consumer’s acceptance (suggested by Professor Oscar Gonzalez Rios from TNM/Instituto
Tecnoldgico de Veracruz) as they are the one paying for the final product, it is a more noble
approach due to the fact that the coffee judge who determined the grading, is not the only one
tasting the coffees.

Additionally, collaborative efforts at the Veracruz Institute of Technology, with other areas
like the electronic department, industrial engineering, agriculture, biochemistry and experts on

sensory evaluation of coffee beans are keen players on this research (see Appendix 2L).
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Essay 3: The IntelliTurk Tool for Evaluating Speech Intelligibility in Children: Software
Tool Introduction and Experimental Validation

Introduction

Motivation and Study Problem

Efficient, accurate, reliable, and valid measurements of speech intelligibility are a critical
component of determining the severity of functional communication in everyday environments.
Improvement of speech intelligibility is a primary aim in the remediation of speech disorders in
children [70]. Although an established consensus exists amongst clinical speech pathologists
supporting the importance of evaluating speech intelligibility, little agreement exists on how to
measure it [71] [72]. Most clinicians rely on subjective impressions of intelligibility yielded from
intuition or by extrapolating a level of intelligibility based on measures of speech severity [73].

Recently, more objective methods, like rating scales, have been used to measure speech
intelligibility. Rating scales typically require a listener to mark a visual analog, such as an equal-
appearing interval or a labeled ordinal scale [74]. Interval scale measures have faced scrutiny,

however, as listeners are challenged to accurately and reliably divide the scale [75].

Purpose and Research Approach
Magnitude estimation has been used to resolve the issues regarding perceptual partitioning
of speech intelligibility across a continuous scale [74] [76]. In this case, an anchor sample, termed
the modulus, is provided as an example of a speaker with a determined level of intelligibility. The
listener then rates impressions of the magnitude of difference between the modulus and the speech
sample presented. This approach has yielded promising results, but the method is not without

limitations.
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Limitations of Existing Approaches

Listeners may be challenged to rate the magnitude of difference from the modulus (e.g.,
twice as intelligible, or three times less unintelligible), or they may revert to providing numeric
values without estimating the magnitude of difference. Additionally, the severity of the modulus
may introduce a listening bias that influences ratings of intelligibility. Some evidence supports the
standardization of the modulus at a medial level of intelligibility for direct magnitude estimation
experiments [77]. Magnitude estimation may be further influenced by the unit of measurement
being observed, which may lack a definite unit of measurement or have numeric values that are
visualized across a scale.

Listener characteristics also influence the evaluation of intelligibility. Listener level
expertise with a particular type of speaker or speech disorder, as well as with the materials used to
make assessments, affect their impressions of intelligibility [78] [79]. Moreover, it is well known
that information (data) on any conceptualized problem has limited utility as a direct result of the
uncertainty associated either with the experts or with the methodology and tools engaged during
problem-solving tasks [80, pp. 245-246]. Additionally, information resulting from the reduction
of uncertainty neglects the essence of what human communication and cognition are born from:
the richness of human notions based on their surroundings, perceptions, previous experiences, and
more. These thoughts, aligned with our research commitment to develop a specific mathematical
theory that supports the modeling of our subject of research, are factually limited by the constraints

of the theory itself [80, p. 246].
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Research Approach

In this work, we use linguistic terms in combination with crisp (i.e., numeric values) terms
to capture the elasticity of human perception. This is an initial step towards integrating Fuzzy
Logic with empirical findings based on magnitude estimation. We look at Direct Magnitude
Estimation (DME), as a linguistic variable and in a fuzzy set holding a group of terms [29, pp.
140-141] [81, p. 65]. The universe of discourse of the DME is derived from the numeric ranges
(crisp values) from each of these linguistic terms, as “our natural language is the supreme
expression of sets” [38, pp. 94-96]. These numeric ranges define the degree of membership of the
individual values ranging from Very Difficult, Difficult, Medium, Easy, and Very Easy, as shown
in Table 3-2. This scale will be utilized by experienced listeners to indicate the level of
intelligibility of speech samples reviewed in this experiment.

The goal is to take advantage of the fact that fuzziness is independent of the DME
measurement obtained by the user selection. Selection of the linguistic term by the user carries
some uncertainty, and this uncertainty translates to imprecision (a property of the phenomena itself
as another attribute, dimension, or variable that would be a great topic for future study). Hence, as
a Proof of Concept (POC), in this work has been developed the IntelliTurk® application and
associated framework. IntelliTurk® has been created to support researchers when designing
experiments that target either inexperienced or experienced listeners who are ascertaining child
speech intelligibility through direct magnitude estimation. It is predicted that the applied use of Al
will increase and that new clinical tools will emerge that automate clinical processes like
intelligibility assessment [82]. A shift in research inquiry has emerged as a result of improved
speech recognition performance. As large datasets have become available, more advanced

modeling methods based on deep learning has yielded increasingly intelligent solutions (that go
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beyond regression models) when solving complex computational problems. However, further
research is needed to develop useful applications of deep learning models for automatic speech
intelligibility detection, specifically within the pediatric population, that capture both the abnormal
speech variation and subjective ratings of assessors of speech intelligibility [82].

This study aims to enable researchers to customize the scope of their experiments based on
(a) the target audience (i.e., experienced or inexperienced), (b) their preferred scoring method for
collecting DME metrics (i.e., Numeric, Linguistic, and the combination of Numeric and
Linguistic), and (c) the use of a default or a custom reference recording, as needed for listener
training (as suggested by Stevens [78]). Additionally, researchers will have the option to run the
experiments without the Amazon Mechanical Turk, and can instead run experiments in their lab
or classrooms. In summary, this study will accomplish the following:

. Identify levels of speech intelligibility.

. Develop tools that effectively aid clinicians in the assessment of child intelligibility

and use deep learning for computational speech assessment.

. Reduce ambiguity in analyzing levels of children’s speech.
. Enhance the ability of speech pathologists to create experiments with the IntelliTurk
framework.

Research Questions

Which scoring mechanism, Numeric, Linguistic, or Both (Numeric/Linguistic), results in
less error when applied to collect DME metrics?

Which group of listeners, Experienced or Inexperienced, scores DME metrics with less

variability?
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Research Hypothesis

The null hypothesis being tested is: whether or not Linguistic assessment methodologies
improve variability in intelligibility assessment. These child intelligibility experiments allow us to
test the hypothesis that there is no statistical difference in DME values between Numeric,

Linguistic, and Numeric/Linguistic user estimation approaches (see Tables 3-2 and 3-3).

Limitations

This chapter focuses on child intelligibility, and it is based on experiments targeting
children. A limitation of this study is that it was performed on a group of children that were
opportunistically sampled at a university testing lab. Thus, the results cannot be generalized to the
entire population. Nevertheless, this research has fewer limitations as a control for the experiment
for Direct Magnitude Estimation (DME), as the research participants were crowd-sourced based

on entrance criterion from the Amazon Mechanical Turk.

Key Terms
Direct Magnitude Estimation (DME), Amazon Mechanical Turk (AMT), Speech
Intelligibility, Numerical Scoring, Linguistic Scoring, External Stimulus, Machine Learning
Literature Review - Established Intelligibility Assessment Methodology
The way a human perceives and judges external stimuli has laid the foundation for the
development of scaling mechanisms, such as the expression of perceived magnitude of stimuli, the

ordinal discrimination judgments of stimuli, and the partition of the sensory continuum into equal
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intervals. These methods are leveraged on “the basic assumption,” the idea that humans can
correctly ascertain a situation’s intensity [83].

Researchers have been encouraged to look for a suitable mechanism to model domain-
specific phenomena that are influenced by human’s subjective intuition, such as the expression of
perceived magnitudes of stimuli. The expression of perceived magnitudes of stimuli is a
psychophysical scaling method used to explore the relationship between human sensation and
physical stimuli, and researchers have widely employed it since its introduction [78].

Research has shown that a human’s ability to judge duration, distance, and intensity is core
for their brain to build mental representations, one such phenomenon being the modality-
independent capacity of language [84]. Researchers in the field of magnitude estimation had
employed a variety of dependent measures [85]. For example, past work has allowed subjects to
adjust the loudness of a sound, brightness of a light, vibration frequency, numeric estimates, and
line lengths, among others [84].

Since the early sixties, researchers have advocated for the exploration of emerging
disciplines, such as information theory, space perception, and multidimensional scaling [85].
Additionally, they have conducted a set of pioneering studies in the fundamental areas of human
perception that suggest alternative approaches for modeling the judgment of multidimensional
stimuli. Their concerns hovered around the fact that from the perspective of stimuli, researchers
must attempt to understand the effects of different attributes or dimensions and the combination of
intensities inferred from them.

Moreover, the explanation of the extensive set of empirical findings on magnitude
estimation, one of the oldest topics in psychology, remains central to researchers’ investigations.

For example, a group of researchers has suggested a generic principled mechanism for perceptual
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inference, a well-founded methodology under the general framework of Bayesian inference. These
researchers successfully developed a modeling framework for distinguishing between shared and
selective representations of magnitude in neuroimaging experiments, and showed how their
association (i.e., brain activities) with cognitive distortions is noted in psychiatric disorders [86].
An interactive software labeled MEDAS, the Magnitude Estimation Data Analysis System,
was developed by Sung et. al. in 1997 [83], to equip researchers with systematic and generalized
methods for analyzing magnitude estimation data. MEDAS housed a set of procedures and
deterministic rules designed to assist researchers during the analysis of collected magnitude
estimation data. It allows the researchers to choose the appropriate data standardization method,
mean deviation, min-max values, and the geometric mean method [83, p. 520]. Furthermore,
MEDAS frames the rules and procedures among three different stages of the magnitude estimation
data analysis (i.e., the analysis of the response space, cross-modality matching/merge, and data
standardization) and for the analysis of two different types of scales. These scales, the unipolar
and bipolar scales, were designed to support what is called “the response space.” Whereas the
unipolar scale aims to allow an experiment to go directly to the stage of cross-modality, the bipolar
scale favors the treatment of negative responses; when both scales are present, they should be
combined to constitute one sensory continuum [83, p. 516]. However, to date, MEDAS does not
support the design or gathering of experimental data. To the best of our knowledge, there is no
tool currently available that supports both the designing and gathering of experimental data.
Furthermore, the internet was not as mature when MEDAS was developed as it is today. Currently,
tools such as Amazon Mechanical Turk® (AMT), a web-based platform that supports
crowdsourcing (a method of obtaining information through the online recruitment of many non-

expert listeners), facilitate streamlining listener recruitment and speech intelligibility assessment
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processes. The AMT offers a set of services, including compensation and data gathering, at a
reduced cost and with high flexibility: “Crowdsourcing is a good way to break down a manual,
time-consuming project into smaller, more manageable tasks to be completed by distributed
workers over the Internet” [87].

Experigen [88] has recently been offered for download online and at no cost to facilitate
the integration of linguistic experiments through AMT. This platform is a script-based
experimental design tool that allows researchers to design experiments using a set of templates
and a subset of libraries. To maximize the research experiment’s compatibility with the current
array of web browsers, the Experigen support team suggests employing standard HTML, CSS
(Cascade Stilling Sheets), or JavaScript depending on the targeted audience. However, this
approach requires that researchers pay attention to these standards in addition to designing,
running, and collecting the experiments’ data. Experigen comes with some documentation in the
form of a checklist that walks researchers through how to download, install, set up, and run
experiments. This approach clearly demands some knowledge of text editors, such as
TextWrangler for OS X or Notepad++ for Windows-based computers. Nonetheless, the researcher
needs basic knowledge of the source control public repository (GitHub) where Experigen source
code is kept. At the time of drafting this paper, the latest comment of the Experigen source code,
labeled “extra files for artificial language experiments,” was timestamped on September 18, 2014
[89].

These technical skill requirements limit those researchers without coding experience and
burden them with acquiring personnel who possess this specialized skill set. Experigen creators

acknowledge on their GitHub software page that the use of their platform requires webpage design
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and deployment skills and R (R Core Team, 2013) statistical computing package knowledge.
Further, it is stated that “It’s not for linguists who are not good with computers."

Moreover, Kawahara conducted a detailed survey of psycholinguistic methodologies in
phonological research [90]. In this work, Kawahara presents perspectives on how data are often
collected, for example using fieldwork research and dictionary inquiries, and several resources are
listed, including a comprehensive list of books, quantitative methods, and some software (such as
the Praat, doing phonetics by computer), that feature a set of phonetic analyses, such as acoustic
and perception. The R statistical package offers scripting functions that facilitate the automation
of repetitive processes, such as resampling and data processing. Many resources designed for
perceptual experiments have been deployed for research-specific projects that are limited to the
aims of that specific study. Hence, to address the lack of currently available resources for the study
of the perceptual phenomenon, the IntelliTurk: Speech Intelligibility and Perception Platform for
AMT, Speights Atkins ef al., 2019 was created.

System Design

IntelliTurk has an architecture driven by decoupled modules, independent components that
interact through message passing (i.e., experiment’s results), as shown in Figure 3-1. These
messages bring the experiment’s target audience and the subject responses to the survey, the

screening, and the study where the word rating process is performed.
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https://IntelliTurk.Auburn.edu
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Figure 3-1. IntelliTurk detailed solution architecture diagram.

The IntelliTurk human-computer interaction’s main element is a slider bar that facilitates
the user’s entry of a valid value by providing a range of values for selection. Figure 3-2 depicts

how the IntelliTurk guides a subject to rate a heard word using the slider.

Sound 1 of 100

Play Sound

1. Type the real word you think you heard in the box below

2. Rate the word

Re-play Sound Play reference sound

Value: 57.5 Medium
[ =

Reference Sound Level: 50 (Medium)
Very Difficult Difficult Medium Easy Very Easy

End Parficipation

AWS Worker Token: ee599801-eb1b-4276-a27c-c7d8b88fee12

Figure 3-2. User intelligibility assessment response input.

70



Moreover, IntelliTurk facilitates the design of experiments to control for listener
experience, including inexperienced listeners and experienced listeners (domain experts). Settings
allow specifications for targeting the behavior of the slider, either with linguistic terms only, both
linguistic terms and numeric values, or numeric values (crisp values) only. Figure 3-3 shows the

experimental design administration page.

Intelligibility Study - Experiments Administration

Hello, Researcher: Javier

Working on Experiment

1D: 90 Customize Consent Form

Details Tokens
ISubject Type IO Inexperienced ® Experienced
- — aZb1ch81-3bci-44di-8c58-1Thccdbaltnd, 433 751218-Worker Completed he Experiment ~
[Slider Scope [® value O Linguistic O Both a33c83cd-f5ad-4edd-9969-613b9ccBid44,546846578-Worker Completed The Experiment
a4573cea-flda-4b75-8901-4ee1daf75fd8 847773879
Graduale Cohort 2020 - November 531 4ac0-d60a-430b-a254-69e 7d9fase 7c, 798477447 -Worker hearing failed
Description 5th
bc2e99e9-5375-4736-bedc-67965421b339, 776992 161-Worker ended participation
bd116a92-52d9-4aa6-9290-38cdde769ee2 295577825-Worker Completed The Experiment
lcreated On h1/3/2019 bifdfe2d-8072-449e-98c7-a4970fdcaff7, 11897 1314-Worker ended participation
d0ec7082-90cd-4f92-9e27-d430050c06f2,231734617-Worker hearing failed
Slatus New d5d44385-b5dc-4975-9851-799217cc085d,572 146465
30 e4278f76-3a66-4200-a8f0-ccb7ic87e318,474556118-Worker Completed The Experiment
Number of Tokens e62a5e19-9286-4c7c-9e25-5d9e25068a93,817234609-Worker Completed The Experiment
- eachead9-036a-477b-9b67-091928f6e8ed 624363349-Worker Completed The Experiment
[Sliding bar only No 71d6cc1-7819-4510-bee5-1cc0b4d99643,22273943-Worker Completed The Experiment v
Experiment only No e -~
Upload reference file Browse... o file selected . . .

Specify Slider's Reference Sound Level (Suggested 55)

Reference Sound Level: 55 Medium

Very Difficult Difficult Medium Easy Very Easy

Figure 3-3. IntelliTurk experiment design administration page.

IntelliTurk Solution Architecture Design
The IntelliTurk web application was developed using Microsoft .Net Technologies to
provide a user-friendly interface for researchers without any scripting experience. The name was
inspired by the project’s name Intelligibility Study and AMT. The name IntelliTurk also reflects
the integration between our web application and AMT. In the web-based application,

administrators are provided with secured admin pages where they can create experiments and
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generate tokens. These tokens allow for the integration of the Intelliturk application with AMT by
exporting experiment-specific tokens into CSV files. The process of generating and uploading
tokens is shown in Figure 3-3. AMT enlists workers, or internet users, to complete jobs referred to
as Human Intelligence Tasks (HITs). The CSV files are uploaded into the HITs to be associated
with a worker eventually. When a worker decides to conduct the listening experiment, they click
on the provided URL and are directed to intelliturk.auburn.edu. A query string (i.e., the portion of
the URL carrying back-end data) parameter containing a unique token for that specific worker will
be added. Table 3-1 shows an excerpt of tokens, confirmation numbers, tokens’ statuses, and some
details as to whether a token has been used or not based on the worker’s interaction with Intelliturk.

Table 3-1. Example List of Tokens and Confirmation Numbers Managed by IntelliTurk

Experiment Confirmation
Identifier Token Number Is Used Tracker Status

1 3e048bc1-a684-4137-95bf- 590008288 1 Worker could not fix sound problem
ab54a45c03el

2 48dd6fbe-db68-4f1c-8ebl- 28492377 1 Worker Completed the Experiment
¢0703b1950be

2 48dd6fbe-db68-4f1c-8ebl- 369688797 1 Worker Ended Participation
¢0703b1950be

3 508d01d8-61be-41a0-9251- 786500977 1 Worker is not qualified (Survey
c475alc2bl1f3 Failed)

4 508d01d8-61be-41a0-9251- 605443273 1 Worker Completed the Experiment
c475alc2bl1f3

Note: Example includes statuses.

When the worker (listener) lands at the default page of the study, IntelliTurk must validate
the incoming token before they can start the survey. If the token has not been used, when its status
value (Is Used) equals zero (0) and its tracker status value (Tracker Status) is empty, the users are
presented with web pages as depicted in Figure 3-1. Otherwise, a page indicating an invalid token
is rendered.

At the end of the study or when a listener stops their participation (through cancellation or

abandonment, or the system has identified that they are not qualified to move forward), listeners
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must provide a confirmation number (i.e., an unique, internally-generated number paired with the
tokens used by AMT) at the AMT window. The IntelliTurk administrators or information
technology leads use this confirmation number to identify the listener’s completed tasks and
proceed with compensation. Listener’s responses in specific sections within the IntelliTurk are
recorded in a database. Figure 3-2 shows one of the 100 sounds to be heard by the subject.

The user interface (UI) is rendered to the subjects to survey and validate their participation
in the experiment. The subject is presented with a button to play the sound and a textbox to type
what the subject heard (see Figure 3-2). As subjects navigate the study’s webpages, Intelliturk
constructs messages containing their responses regarding the pre-recorded speech samples and
what they had identified. Constructed messages are sent to a database through the decoupled
database library across the mapper. The mapper (i.e., in charge of translating the messages coming
from the U, into the corresponding entities in the database), is a library capable of exposing,
partially part of the data stored in the database to the user, keeping both the UI and database
completely decoupled.

Additionally, administrative pages (shown in Figure 3-3) are only accessible by authorized
researchers and database administrators. These secured pages connect to the database’s library,
thereby isolating the database from the UI.

Nonetheless, the application works directly with AMT’s remote workers. However,
IntelliTurk also supports conducting experiments at the researcher’s lab by allowing subjects to be

initiated with a confirmation number, as seen in Figure 3-4.

73



Intelligibility Study

‘Welcome to the IntelliTurk - Intelligibility Study

About the Study

We are conducting an academic study about child speech intelligibility.

We need listeners to rate and describe what they hear child speakers say The study will begin with a brief consent,
questionnaire, hearing test, training and practice questions, followed by a 100-item study. It is anticipated that the study will
take at most 90 minutes to complete. In order to compensate you for your participation, we will provide you with a
unique confirmation number.

Your work will be tracked using a controlled number which allows us to determine which items have completed

If for some reason, during the experiment, you experience technical difficulties, extraneous circumstances or lose internet
connection before you complete the study, use the provided confirmation number to be compensated for the work you
have completed and/or contact us at misD096@auburn_edu

If you have a confirmation number

Please enter your confirmation number below:

| Please validate your Number

Figure 3-4. The IntelliTurk supports researchers in engaging subjects in their lab by using

confirmation numbers.

Data Preparation and Analysis
The IntelliTurk platform allows for experiments that target both experienced and
inexperienced listeners tasked with rating speech stimuli. In our POC test case, we applied the
DME measurement tool as the method for rating the intelligibility of children’s speech. The DME
tool can capture ratings under three conditions: numeric, linguistic, or a combination of both. These
proposed conditions are covered by setting the experiment’s slider scope. Table 3-2 shows

IntelliTurk slider linguistic terms and their overlap with numeric ranges.

Table 3-2. IntelliTurk Slider Linguistic Terms, Numeric Ranges, and their Overlap

Term Very Difficult Difficult Medium Easy Very Easy
Ranges 10 to 15.6 26.9 to 38.00 49.3 t0 60.4 71.7t0 82.8 94.1 to 100
Overlap 15.7 t0 26.8 38.1t049.2 60.5t0 71.6  82.9 t0 94.00

The child intelligibility experiments allow us to test whether or not linguistic assessment

methodologies improve the error in intelligibility assessment. In other words, the null hypothesis
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being tested is: there is no statistical difference in DME values between Numeric, Linguistic, and

Both (Numeric/Linguistic) user estimation approaches.

0 GDMELinguistic = GDMENumeric = GDMEB()th ( 1 )

Data were prepared for econometric modeling targeting a model either within or between
variation (Figure 3-3). Table 3-4 shows a breakdown representing the various data-points being

captured throughout the experiments.

Table 3-3. Study Targeting Hypotheses Covering Three Treatments and Two Subjects Types

Treatment Ho (Null Hypotheses) Ha (Alternative Hypotheses)

Numeric Only

Linguistic Only (uI) DME = (uE) DME (uI) DME != (uE) DME
Both (ul) DME = (uE) DME (ul) DME != (LE) DME
(Numeric/Linguistic)
Numeric Only (cI) DME = (cE) DME (o) DME != (cE) DME
Linguistic Only (cI) DME = (cE) DME (o) DME != (cE) DME
Both (cI) DME = (cE) DME (o) DME != (cE) DME
(Numeric/Linguistic)

(ul) DME = (LE) DME

(uI) DME != (LE) DME

Note: I=Inexperienced, E=Experienced, p=mean, c=Standard Deviation

Table 3-4. Breakdown of the List of Fields (Data-Points) Captured During Experiments

Field (data-point)

Brief description

Subject String Token used as an interface with AMT

Question Question Number (value between 1 and 100)

Target The word contained in the sound file, expected to be heard by the subject
(listener)

DME Direct Magnitude Estimation Value (coming from IntelliTurk Ul Sliders)
When Numeric is equal to 1 or when Both is equal to 1

SubjectID Unique Confirmation Number used as a Subject Identifier

Inexperienced Categorical Value (1 indicates an inexperienced listener)

Experienced Categorical Value (1 indicates an Experienced listener)

Numeric Categorical Value (1 indicates IntelliTurk Ul Sliders Show Only Numbers)

Linguistic Categorical Value (1 indicates IntelliTurk Ul Sliders Show Only Linguistic
Terms)

Both Categorical Value (1 indicates IntelliTurk Ul Sliders Show Both Numbers

and Linguistics Terms)
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When the slider’s value falls into any of the covered overlap’s range listed in Table 3-2, a
random number between 1 and 10 is generated. Thus, if this random number is less than or equal
to 5, the left linguistic term is chosen; otherwise, the right term is selected. For example, when the
slider value is 40 (overlap in the range 38.1 to 49.2) and the random number is 6, the term

“Medium” is selected. However, if the random value is 5, the term “Difficult” is selected.

Validation Study Research Method

Speech Samples

Speech samples were retrieved from an Auburn University Institutional Review Board (IRB)-
approved repository of speech samples of children both with and without disorders (see Appendix
3A). Speech samples were recorded in a quiet room. The environmental noise level was determined
to be below 40 dBA SPL for each recording session [91]. Samples were recorded at a 44K sampling
rate with 24-bit depth using handheld HON recorders with cardioid XLR MOVO LV402
microphones. Speech samples consisted of words within eight phonetic contrast categories: (1)
stop-fricatives, (2) stop-affricates, (3) final cluster-final singletons, (4) fricative-affricates, (5)
alveolar-palatals, (6) front-back vowels, (7) high-low vowels, and (8) initial cluster-initial
singletons [77]. These phonetic contrasts have been affiliated with reduced intelligibility in
children with phonological-based disorders [71]. The speech sound subtypes used in the phonetic

contrast categories are defined in Table 3-4.

Table 3-5. List of Speech Sound Subtypes

Category Definition Group

Stop Produced with complete closure at a specific Manner of Articulation
point in the vocal tract.

Fricative Produced when active and passive articulators ~ Manner of Articulation

approximate each other so closely that the
escaping air causes an audible friction
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Affricate Produced in two phases: the first phase Manner of Articulation
includes complete closure formed between the
active and passive articulator followed by a
slow-release resulting in the friction of the
sound (a combination of a stop and fricative)

Alveolar-palatal Produced in the anterior cavity of the oral Place of Articulation
consonants cavity at the place of the alveolar ridge vs.
produced with constriction at or near the
palate
Front-back vowels Vowels produced in the anterior versus the Place of Articulation
posterior portion of the oral cavity
High-low vowels Produced with the tongue position elevated Place of Articulation
toward the palate or lowered away from the
hard palate.
Initial cluster-Initial A sequence of consonants preceding the Syllable structure process
singleton vowel versus a single produced consonant
preceding the vowel.
Final cluster-final A sequence of consonants that occur after the  Syllable structure process
singleton vowel versus a single produced consonant that

follows a vowel.

One-hundred words belonging to nine categories (i.e., non-contrast, NC; stop-fricative, S-F;
stop-affricate, S-A; final cluster-final singleton, FC-FS; fricative-affricate, F-A; alveolar-palatal,
A-P; front-back vowels, F-BV; high-low vowels, H-LV; and initial cluster-initial singleton, IC-IS)
were presented to each listener. The first category of non-contrast words includes nine words
selected from the Clinical Assessment of Articulation and Phonology Second Edition [92]. These
words comprise randomly ordered speech sounds from each of the eight categories (e.g., leaf,
cheese, dog, swing). Words in the remaining eight categories are considered contrast pairs,
meaning that paired words in a category differ by only one target speech sound (e.g., “chip” versus
“ship™), creating a contrastive pair. The contrast categories represent common errors made by

young children and children with speech disorders that affect intelligibility [93].

Children Speakers (Research Population)
Nine child speakers with varying levels of word production accuracy due to age and speech

health status (non-disordered vs. disordered speech) were selected from the database. The sample
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included 5 males and 4 females. The ages of children ranged from 3 y, 4 m to 5 y, 5 m. Each child
was assessed for the presence of a speech sound disorder using the Diagnostic Evaluation of
Articulation and Phonology [94]. Scores are based on a scale of 10 and a standard deviation (SD)
of 3. A score of 7, one SD below the mean, was utilized as the criterion for determining the
presence of a speech sound disorder. Six children exhibited non-disordered speech, while three
children exhibited disordered speech. All child speakers demonstrated the following
characteristics: (1) normal bilateral hearing at 20 dB for 0.5 kHz, 1 kHz, 2 kHz, and 4 kHz; (2)
American English as their primary language; and (3) the ability to orally communicate at least one-
word utterances.

Child speakers were categorized into three groups, high, medium, and low, according to
whole word production accuracy measured by the Proportion of Whole-Word Correctness (PWC)
[95]. A PWC score is the proportion of accurately produced words in a speech sample. PWC was
calculated for each speaker from orthographic transcripts recorded by two trained graduate
students. Disagreements in the transcripts were resolved by consensus. Three additional trained
graduate students independently coded each word, transcribed as “0” for incorrect transcriptions
that did not match the intended word and “1” for correct transcriptions that matched the intended
word. From this code, we obtained a percentage of the total number of words identified correctly
by the speaker when compared to all the words spoken in the dataset. Discrepancies in coding were
resolved by consensus. Speakers were classified into three groups according to the PWC score of
high (>85%), mid (50% to 84%), and low (<50%). The same stimuli such as pre-recorded words

were presented to participants within the speech intelligibility measurement experiment.
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Preparation of Speech Samples: Materials and Procedure

One-hundred experimental listening stimuli represented words from each phonetic
category and the high, mid, and low speaker groups. Each stimulus list began with the same eight
sound files consisting of single-syllable word productions. The remaining files from the phonetic
contrast groups were randomized to control for list order and speaker effects. The same words

were presented to each listener in the same order.

Experimental Design

We evaluated our hypothesis using a randomized controlled experiment consisting of three
treatment groups. The treatment groups (previously identified in Table 3-3) are referred to as
Numeric, Linguistic, and Both (Numeric/Linguistic). In the first and second treatments, subjects
only observed Numeric and Linguistic DME rating input entries, respectively. In the third
treatment, subjects observed both Numeric and Linguistic DME rating entries. By operationalizing
all three treatments by groups and comparing them in an econometric model (described below),
we can functionally determine DME estimation differences for the same sound recordings
separately by rating input entries. Simply put, the experiment provides the ability to fully control
for exogenous differences that might otherwise explain DME estimation differences aside from
estimation methodology. In a controlled randomized experiment, any remaining differences are
due to systematic influences associated with treatment effects, in this case, the intelligibility

assessment methodologies of Linguistic, Numeric, or Both.

Table 3-6. Experiments Targeting Listeners Through the Amazon Mechanical Turk (AMT)

Using Auburn University’s Experimental Design Platform, IntelliTurk

Listener’s Experience Level Group Treatment Number of Subjects
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Inexperienced 1 Numeric Only 10
Inexperienced 1 Linguistic Only 10
Inexperienced 1 Both (Numeric/Linguistic) 10
Experienced 2 Numeric Only 10
Experienced 2 Linguistic Only 10
Experienced 2 Both (Numic/Linguistic) 10

Two groups of experiments were conducted, one on a group targeting inexperienced
listeners (Group 1), and the other on a group of confirmed experienced listeners (Group 2). The
subject population consisted of adult listeners with no more than incidental exposure to child
speech. They were recruited for this study through the AMT crowdsourcing platform, which allows
for data collection from a diverse population. AMT workers selected the HITs titled “Child Speech
Intelligibility Study.” After accessing the HIT, AMT workers gained access to the research
experiment through an embedded IntelliTurk® link. Those who selected the link and agreed to
complete the HIT were assigned specific token numbers and associated confirmation codes for de-
identified administrator task review and compensation. Workers blindly self-selected a HIT in the
AMT from one of three visual conditions: (1) only numeric values, (2) only linguistic values
(ranging from “Very Easy” to “Very Difficult” to understand), or (3) both numeric and linguistic
values (see Tables 3-2 and 3-6).

Participants qualified for participation if they were from the United States, were speakers
of an American English dialect, had no hearing impairment, and did not regularly interact with
children at home or work between the ages of 2 and 7 years.

At the beginning of the study, each listener was instructed to complete the experiment in a
quiet place while using headphones with the volume set to a comfortable listening level. Listeners
were required to verify that their computers and headphones were functioning properly before
advancing. Speech recognition ability was screened within the IntelliTurk® web

application using the Word Intelligibility Picture Identification Test [96][97]. This word
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recognition task was initially designed for children but has been used to evaluate listener
performance in adults for experimental purposes [98].

Additionally, listeners completed training and practice items for task conditioning before
beginning the experiment. Listeners were instructed to type the word they heard and then to rate
the intelligibility of the speech according to a referent recording determined to be in the middle
intelligibility range by three experienced speech-language pathologists. Ratings were made using
the DME tool’s dynamic sliding bar. The point selected on the sliding bar yielded a quantitative
DME score and, when specified, a linguistic term of intelligibility for each condition. The study
items were transcribed and rated according to the same reference recording introduced in the
training.

The empirical analysis of experimental results consists of formalized hypothesis testing

and regression estimation.

Results
For the inexperienced group (Group 1), 49 AMT workers responded to the HIT. Thirteen
workers were excluded from the study due to not meeting the inclusion criteria, and two ended

participation. A total of 34 listeners were eligible for inclusion in the study.

In Group 2, out of 34 experienced listeners who responded to the HIT, 32 completed the
study. Two listeners ended the study before completion.
Hypothesis Tests
To evaluate and measure treatment differences between the three experimental treatment
groups, we formally tested the differences using formalized statistical tests. First, it was necessary

to test whether or not there existed differences in the mean DME values by treatment. Our
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hypothesis is predominantly about variance (i.e., error) in the DME estimates rather than mean
differences. In other words, we are testing if linguistic assessment methodologies improve the error
in intelligibility assessments, but we have not specified any hypotheses regarding bias (defined as
an error in a consistent direction). In this case, bias would be measured as a formalized difference
in the treatment mean.

Hence, we tested for mean differences to rule out bias and focus on the more important
issue at hand—error. The mean and SD of observed DME estimates by treatment are presented in
Tables 3-7 and 3-8. From a comparison of the means, the treatment groups do not have different
DME estimates. However, observations indicate that the differences are more generally associated
with the variance of those estimates. Additionally, initial observations were supplemented by
conducting formalized Wilcoxon tests (i.e., non-parametric Mann-Whitney tests) of treatment

equality. These tests all failed to reject the null hypothesis.

Table 3-7. DME Estimate Descriptive Statistics Inexperienced Listeners (Group 1)

Treatment Mean St. Dev. Obs.
Numeric 54.141 27.957 1,508
Linguistic 54.528 24.789 1,200

Both 57.096 26.366 1,201

Table 3-8. DME Estimate Descriptive Statistics Experienced Listeners (Group 2)

Treatment Mean St. Dev. Obs.

Numeric 47.889 31.495 1,000

Linguistic 49.354 29.755 1,200
Both 50.822 29.076 800
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Figure 3-5. DME for both groups and all treatments.

Figure 3-5 facilitates the explanation of a few prominent facts. To elaborate, we colored
the boxes for Linguistic treatments in Groups 1 and 2 light brown, and the box for the Numeric
treatment in Group 2 a sienna color. We remark that for the Linguistic treatment, both groups have
smaller dispersion than do Numeric and Both treatments. However, the mean is maintained among
group treatments. Moreover, it is quite revealing that experts in Group 2 reported a larger SD (i.e.,
there was more error in each of the treatments as compared to Group 1). Table 3-7 indicates that
experienced listeners’ assertation of the DME carries even more error when performed only with
a numeric scoring mechanism.

To maintain consistency with the established hypothesis regarding differences in
variability of the estimates, we conducted Variance Ratio tests (see Tables 3-9 and 3-10). These
tests allowed us to determine the equality of the SDs across treatments in a way similar to how t-
tests determine differences in SDs between two samples (in this case, treatments). These treatments

identify clear differences beyond the P = 0.05 significance level, specifically for tests against the
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benchmark of the Linguistic treatment in Group 1. In other words, these tests substantiate the need
for further analysis with control variables (i.e., a multivariate regression) to make improvements
in DME estimation using linguistic assessments rather than the more commonly-accepted numeric

assessment methods.

Table 3-9. Variance Ratio Test of Equality of Variance Inexperienced (Group 1)

Hypothesis F-value P-value
SD(Numeric)=SD(Linguistic) 1.287*** 0.000
SD(Numeric)=SD(Both) 1.095 0.138
SD(Linguistic)=SD(Both) 0.851** 0.013

The variance is statistically higher in Group 1 (Numeric vs. Linguistic)

Table 3-10. Variance Ratio Test of Equality of Variance Experienced (Group 2)

Hypothesis F-Value P-Value
SD(Numeric)=SD(Linguistic) 1.120 0.060
SD(Numeric)=SD(Both) 1.173%%* 0.019
SD(Linguistic)=SD(Both) 1.047 0.478

Econometric Regression Analysis
Given that the treatment effects in the formalized tests prove that linguistic estimation
methods produce the same mean DME estimates but with lower SD (i.e., less error), the next step
is to conduct a regression analysis. The regression strategy is to make use of a modeling approach
that accounts for repeated-measures data (i.e., across time). We use an appropriate cross-sectional
estimation approach that corrects for autocorrelation in the presence of potential heteroskedasticity
[99]. This is a relevant concern from an econometric standpoint because our data provide across-

time variation (i.e., 100 audio recordings that provide repeated measures data). The model is linear
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in the parameters, and beta results can be interpreted in a manner consistent with ordinary least
squares (OLS) estimation, although the standard error estimates use the Newey and West
correction [99]. The lag structure used was determined by visual analysis of the Partial
Autocorrelation Function and the Autocorrelation Function plots of the respective dependent
variables.

Summary statistics tables for each dependent variable and group are provided in Tables 3-
11 and 3-12. As such, the observation in any given round covering either Group 1 or Group 2 is
the SD of one treatment (e.g., Linguistic-only) minus the SD of the comparison treatment. The
first model (Model 1) in both tables estimates the DME SD differences between Numeric and
Linguistic treatments, and the second model (Model 2) in both tables estimates the DME SD
differences between Both (Numeric/Linguistic) and Numeric treatments. Lastly, the third model
(Model 3) in both tables estimates the DME SD differences between Both and Linguistic

treatments.

Table 3-11. Summary of the Three Predictors Used in the Models for Inexperienced Listeners
(Group 1)

Variable Obs. Mean Std. Dev. Min Max
SD Diff: Numeric-Linguistic 100 2.448 5.256 -11.841 13.224
SD Diff: Numeric- Both 100 -.7424 5.119 -18.456 12.657
SD Diff: Linguistic- Both 100 -3.191 4.859 -17.480 7911

Table 3-12. Summary of the Three predictors Used in the Models for Experienced Listeners

(Group 2)
Variable Obs. Mean Std. Dev. Min Max
SD Diff: Numeric-Linguistic 100 2.448 5.255 -11.841 13.224
SD Diff: Numeric- Both 100 1.105 7.243 -18.229 18.765
SD Diff: Linguistic- Both 100 -1.343 7.095 -20.457 13.652
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Regression estimates are provided in Table 3-13 for three separate models corresponding
to inexperienced listeners (Group 1). The same models are present in Table 3-14, but for
experienced listeners (Group 2). Each regression contained identical right-hand variables, or the
dummy variables representing each sound subtype. The non-contrast category was excluded as the
reference category. The dependent variable (DV) in each model is the difference in DME SDs
(SD) between any two of the three treatments (three models provide all three comparisons).

For regression Models 1 and 2 that include a difference comparison against the Linguistic-
only treatment, the beta coefficients on the dummy variables provide insights into those sound
categories (i.e., subtypes) that are most (or least) effectively assessed with linguistic scoring
methods. In Model 1, because the DV equals the SD difference of Numeric minus Linguistic
methods, a positive and statistically significant coefficient indicates that the variable (subtype)
increases in variability, or SD, with the Numeric treatment relative to the Linguistic treatment. In
other words, a positive sign means that the word category subtype has a relatively lower SD with
Linguistic treatments than it does with Numeric treatments. The opposite is the case for negative
coefficients that are statistically significant. For example, Table 3-14 shows that for high-low
vowels, Linguistic treatments have higher variance (see Model 1 with -2.539 and Model 3 with
2.92, both with statistical significance).

Additionally, variance is higher for Both treatments, but is not higher for either Numeric
or Linguistic treatments individually for fricative affricate under Group 2. Both Group 1 and Group
2 report very little difference between Both and Numeric-only treatments.

Statistically significant and positive coefficients are identified for Stop-affricate
Consonants and Final Cluster-Final Singleton. Therefore, experimental results indicate that these

word categories, or subtypes, are most effectively estimated using Linguistic scoring methods.
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Statistically significant and negative coefficients are identified for only High-Low Vowels. For
this subtype, higher variability is observed when using Linguistic assessment methods. Other
positive and negative coefficients exist in the model, but they do not rise to commonly-accepted
levels of statistical significance. Therefore, we do not interpret their differences as statistically
different from zero, meaning that there may not be error improvement by using one assessment
method over another for these subtype word categories.

The results from Model 3 provide interesting results, but not consistently in the expected
direction. In Model 3, there are no statistically significant and positive coefficients. This indicates
that the Linguistic assessment methods are not an improvement over assessment methods that
combine Linguistic and Numeric, for any given subtype. However, both treatments represent an
improvement over the Linguistic-only treatment in the presence of Fricative-Affricate Consonants,
Alveolar-Palatal Consonants, High-Low Vowels, and Initial Cluster-Initial Singleton subtypes.
These four subtypes each have negative and statistically significant dummies. For these word
subtypes, the experimental results support the assertion that the most appropriate assessment
methodology for measuring speech intelligibility is to provide listeners with both Linguistic and
Numeric scoring assessment tools.

The regression estimates confirm the summary statistics in some compelling ways. The
lowest difference in SD (i.e., the two treatments that are most similar in terms of DME value
variability), an inconsistency equally higher when the listener is evaluating speech intelligibility
using a Numeric assessment. However, variability is consistently lower (i.e., more precise and
accurate) for Groups 1 and 2 in treatments where listeners can make use of Linguistic assessment
methods.

There are some features of Linguistic terminology that are improving accuracy (i.e.,
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reducing variability) in DME assessments. This lends support to Klir and Wierman [10] and
Mendel [19], who suggest that uncertainty (i.e., that carried by IntelliTurk’s sliders while capturing
a listener’s assessment of the DME when presented with the Linguistic terms only treatment),
“may often reduce complexity and, at the same time, increase the credibility of the model” [19, p.
256]. From this perspective, uncertainty plays a key role when modeling systems because it could
be traded for gain in the other essential characteristics of the models [10, p. 4].

The similarity (or lack of difference) in the variability between Numeric and Both
treatments also drives the lower model fitness measure (as provided by the F-statistic). Model 2,
which provides this difference, is the only regression model that lacks a statistically-significant
model fit. However, we include it for completeness. We regard Model 2 as less instructive because
it is comparing variability across two assessment methodologies that each include the Numeric
assessment of speech recordings, and are, therefore, unlikely to yield any real differences. The
absence of this difference is, nonetheless, an important confirmation of our overarching

hypothesis, because real improvement is exemplified in the Linguistic treatment.

Table 3-13. Regression Analysis Results Inexperienced Listeners (Group 1)

M @) 3)
VARIABLES Numeric Minus Numeric Minus Linguistic Minus
Linguistic Both Both
Stop_fricative -1.058 -0.117 0.941
(-0.480) (-0.0447) (0.909)
Stop_affricate 4.610%%* 2.886%** -1.724
(3.403) (1.990) (-1.043)
Final cluster final singleton 2.400%** 2434+ 0.0341
(2.174) (2.598) (0.0395)
Fricative affricate -1.397 1.611 3.008%**
(-1.178) (1.117) (3.115)
Alveolar palatal consonants -1.990* 1.866 3.856**
(-1.451) (1.140) (1.754)
Front_back vowels 1.566 1.962%* 0.396
(1.067) (1.334) (0.448)
High low_vowels -2.539%*%* 1.150 3.690%**
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(-2.042) (0.671) (2.671)

Initial cluster Initial singleton -1.468 2.339% 3.808%**
(-0.888) (1.602) (4.510)

Constant 2.611%** -2.428%** -5.039%**
(2.764) (-2.880) (-6.975)

Observations 100 100 100

Notes: Linear regression estimates with Newey-West t-statistics in parentheses. The dependent variable is
the Difference (Diff) in treatment standard deviations in DMEs by round (100 rounds/audio recordings in
total). *** p <0.05, ** p <0.10, * p<0.20

Table 3-14. Regression Analysis Results Experienced Listeners (Group 2)

) 2 A3)
VARIABLES Numeric Minus Numeric Minus  Linguistic Minus
Linguistic Both Both
Stop_fricative 0.704 3.6241 3.624
(2.516) (2.994) (2.623)
Stop_affricate 4.690%** -1.644 -1.644
(1.752) (1.299) (1.655)
Final cluster final singleton 1.643 0.758 0.758
(1.669) (0.998) (1.156)
Fricative affricate 0.366 -1.717 -1.717
(1.237) (1.094) (1.270)
Alveolar palatal consonants 0.568 0.435 0.435
(1.502) (1.145) (1.327)
Front_back vowels 1.204 1.704 1.704
(1.441) (1.067) (1.113)
High low_vowels -0.836 0.883 0.883
(1.664) (1.625) (1.861)
Initial cluster Initial singleton -1.042 -0.539 -0.539
(-0.888) (0.353) (0.936)
Constant 1.230 -1.214 -1.214
(1.193) (0.714) (0.776)
Observations 100 100 100

Notes: Linear regression estimates with Newey-West t-statistics in parentheses. The dependent
variable is the Difference (Diff) in treatment standard deviations in DMEs by round (100
rounds/audio recordings in total). *** p < (.05, ** p <0.10, * p <0.20

Moreover, as suggested by Mendel (2017), words mean different things to different people.
However, when a system is designed that considers the appropriate number of alternatives, those
other essential modeled characteristics of the system (i.e., the various word subtypes shown above)

can benefit by leveraging the uncertainty inherent in the linguistic terms. For ease of interpretation,
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the predictive margins of these statistically robust coefficients are shown in Tables 3-13 and 3-14.
Plots of the predicted values from the regression estimation for each statistically-robust sound
subtypes for Models 1 and 3 are presented below in Figs. 3-6, 3-7, 3-8, and 3-9, respectively. The
x-axis values of each figure (i.e., in the “1” category on the right) provide the predicted difference
in SD in the DME for stop-affricate sounds between the Numeric- and Linguistic-only treatments.
The x-axis values on the left (i.e., the “0” category) represent the models’ predicted SD difference
when all other word categories are held constant at their mean SDs. It can be interpreted simply as
the mean, or average, SD that could be expected when any other given subtype is presented to an
inexperienced listener. Regarding Model 1 Groups 1 and 2 (Figs. 3-6 and 3-8, respectively) and
Model 3 Groups 1 and 2 (Figs. 3-7 and 3-9, respectively) margin plots, it is clear that Numeric-
only assessment methods outperform Linguistic-only assessment methods for High-low Vowel
sounds. Additionally, for stop-affricate and final cluster-final singleton sounds, it is clear that

Linguistic-only assessments outperform Numeric-only assessments.

Fitted Yalues

Stop-Affricate Final cluster-final singleton

High-low vowels

Figure 3-6. Margins plots (with 95% ClIs) of subtypes with statistically-

robust coefficients from Regression Model #1, Group 1.
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Figure 3-7. Margins plots (with 95% Cls) of subtypes with statistically-

robust coefficients from Regression Model #3, Group 1.
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Figure 3-8. Margins plots (with 95% Cls) of subtypes with statistically-

robust coefficients from Regression Model #1, Group 2.
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Fitted Values
Fitted Values

Fricitive_Affricate High_low vowels

Figure 3-9. Margins plots (with 95% Cls) of subtypes with statistically-

robust coefficients from Regression Model #3, Group 2.

Finally, we conducted an informative intra-model comparison. The inter-consistency
suggests further validation of our findings across models we observed. We did not observe a “sign”
change for any coefficient between any two models concerning the direction of comparison for a
given assessment method. This means that, in all cases, the recommendations that would be
inferred by clinicians regarding the experimental results (i.e., which word categories are most
effectively assessed using which assessment methodology) are consistent regardless of the
treatment group utilized. This intra-model comparison, which is essentially an intra-treatment
comparison, suggests the following main takeaways. First and foremost, the main hypothesis is
confirmed that linguistic assessments generally reduce error and improve the accuracy of
intelligibility assessments. Second, some sound subtypes are more likely to be accurately assessed
using one methodology over another. For stop-affricate and final cluster-final singleton subtypes,
linguistic methods are likely to be more effective at reducing estimation error. For fricative-
affricate, alveolar-palatal consonants, and initial cluster-initial singleton subtypes, providing the

listener with both linguistic and numeric tools is likely to be more effective. Finally, for high-low
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vowels, either numeric-only or numeric combined with linguistic assessment methods are likely

to outperform linguistic-only assessment methods.

IntelliTurk Machine Learning Model
Machine learning is employed for this research, and Figure 3-10 shows the logical flow of

the method used to incorporate deep machine learning into this study.

IntelliTurk ML Child’s Mel-Frequency Cepstrum - Machine Learning Model

Train and validate IntelliTurk ML

Children Recordings Dataset Visual Representation DME Labeling ST Desktop Application

Listening to a Child

Feature
Extraction

Audio
Channels

Tromed Model

Bit-depth

Auburn Universtty ntellTurk

Figure 3-10. The Mel-Frequency Cepstrum Coefficients (MFCC) logical flow for how
recordings are converted into spectrograms (images).

Mel-Frequency Cepstrum Coefficients (MFCC)

MFCC is a feature extraction method based on how humans perceive sounds’ frequencies
through their senses [100]. This algorithm has been used by researchers to study crying infants
with hypothyroidism [101]. MFCC makes it possible to convert a sound recording’s binary data
into an image. This process facilitates the use of deep learning algorithms that perform high
accuracy classifications [4] [7] [53], making it possible to classify DMEs as a result of listener

assertation of child intelligibility.
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Researchers at the MathWorks Lab, makers of MATLAB and Simulink, have highlighted
that starting in 2016, deep learning continues to out-perform humans on image classification

[102].

ARTIFICIAL MACHINE

Meural networks with many layers
that learn representations and tasks
“directly” from data

IGENCE G DEEP LEARNING
5 1 5 g

explicifly programming

Deep learning more accurate
than humans on image
classification

FLOPS

Thousand Million Quadrillion

Figure 3-11. MathWorks depicts deep learning as a subset of machine learning, which is a subset
of artificial intelligence [103].

Moreover, the MathWorks Lab’s researchers highlight the tremendous growth in available
data over the years, starting with thousands of data points in the 1950s, growing to a million in the
1980s, and remarkably reaching a quadrillion in 2015 [102]. As such, Supervised Learning,
another subset of machine learning where collected data is labeled and used to train and validate
models, is employed to solve classifications (predictions) problems. Nonetheless, deep learning is
a subset of machine learning [103], and deep learning’s core is “Neural Networks with many layers
that learn representations and tasks directly from data” [53]. Moreover, researchers have designed
deep learning algorithms (e.g., convolutional neural networks) for extracting images’ features with

state-of-the-art classification accuracy [104].
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Singh and Ghosh stated, "deep learning are very powerful tool to develop various
mechanisms for health care management, especially in disease diagnosis for stroke care." [1].
Moreover, Patterson and Gibson suggested using deep learning when there is complex pattern
matching in images (i.e., spectrograms) [2] and such statement aligns with [105] and others like

[1], [5] and, [101].

In this work, deep learning is leveraged as a tool that improves the modeling of DME to
assist trained clinicians in assessing intelligibility in children. Deep learning serves as an effective
estimation approach for conceptualizing the problem of estimating a child’s speech intelligibly

beyond the listener’s subjective intuition.

For modeling the DME, we choose Microsoft .NET ML TensorFlow implementation, an
opensource and cross-platform machine learning framework [106] [107]. This library implements
the original Google Brain architecture, as shown in Figure 3-5. Moreover, Table 3-3 shows the
breakdown of the steps we followed to successfully train a deep neural network (DNN) capable of

predicting the DME.

We converted the voice recordings of children into spectrograms (images; see Table 3-15).
Step one indicated in Table 3-16 involves incorporating a specialized library (cs-mel-spectrogram)
[108] that processes recordings (Figure 3-10, “Listening to Child Recordings™) and produces the

MFCC coefficients.

Dataset
DME values captured from the experiments on experts are split into three subsets, one for
model training, one for model validation, and another for model testing. After keeping a very small

percentage of the data to test the model, the remainder of it will be used for training and validation.
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We used 80% of the dataset for training the model and 20% to validate it. Regarding avoiding
invalid results, in particular from the training dataset, even when experiments are repeated and the
results are validated, Abu-Mostafa et al. [52, p. 172] remark “if the data is sampled in a biased
way, learning will produce a similarly biased outcome.” Additionally, “if the dataset has affected
any step in the learning process, its ability to assess the outcome has been compromised” [52, p.

172].

Data Preprocessing and Feature Extraction

To ensure consistency across the whole dataset, we preprocessed the following audio
properties: accuracy. Moreover, a visual representation of each recorded word audio file assisted
us in identifying these features for classification (prediction) using the same techniques employed
to classify images with high accuracy. We used the MFCC technique that is similar to spectrograms
and used for visualizing the spectrum of frequencies of a sound and how they vary during a short
time. MFCC functions similarly to how the human auditory system processes sound. Figure 3-10
depicts the process of converting .wav files into spectrograms. Spectrograms use a linear spaced
frequency scale (so, each frequency bin is spaced an equal number of Hertz apart), and MFCC

uses a quasi-logarithmic spaced frequency scale.

The Deep Learning Model (DNN)
We built and trained a DNN with the above datasets, and used it to make DME predictions.
DNN’s typically make good classifiers and perform particularly well with image classification
tasks due to their feature extraction and classification accuracy. DNNs are effective at finding

patterns within the MFCCs much like they are effective at finding patterns within images.
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We trained the model starting with a low number of epochs and a low batch size. If we
observed from the output that the model was converging, we increased both epochs and batch size,
because training a DNN can take a significant amount of time. The next step is to review the

accuracy of the model using both the training and test datasets.

Lab Validation
One of our goals is to have the IntelliTurk-DME Predictor Tool used by experts for real lab
work validation. As such, we aim for a confidence level of at least 80%. In essence, DNN model
performance was estimated in terms of its accuracy at predicting the DME of experienced listeners
using new recordings of children’s words.
Each of the expert’s evaluations, either in agreement or disagreement with the DNN model
prediction, was recorded. Model performance was determined using the ratio of matchings (i.e.,

experts agreed with predicted values) to the total number of predictions.

Table 3-15 shows a subset of the spectrograms that result from converting the sound
recordings of children. Note that the density of the blue area is less evenly distributed as the level
of difficulty increases; for example, a “Very Easy” DME classification of the word “television” is
shown by an evenly distributed spectrogram, as compared to a “Very Difficult” DME classification

for the word "stairs.”

Table 3-15. Spectrograms Images from Child Word Recordings

Spectrogram DME Classification Child Recorded Word

Very Easy Television
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The MFCCs are the extracted features (from the children’s voice recordings) used for the DNN

model. Some of these features include audio-channels, sample rate, and bit-depth, as shown in
Figure 3-3 “Children Recording Dataset.”

Periodic
checkpoint

——

Figure 3-12. Google Brain Schematic TensorFlow Dataflow graph for a training pipeline [109]

Parameters
o o o o o

Read params

Apply grads

Preprocessing Training

Table 3-16. Steps to Get a Deep Learning Model for the Prediction of DME Based on Google
Brain’s TensorFlow

Step  Description

1 Convert children recordings into spectrograms (images)
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2 Load the initial full image-set (spectrograms) into an IDataView, the input and output of Query Operators

(Transforms). This is the fundamental data pipeline type, and shuffle so it will be better balanced.

3 Load Images with in-memory type within the IDataView and Transform Labels to Keys (Categorical)
4 Split the data 80:20 into train (80%) and test (20%) sets, train and evaluate.

5 Define the model's training pipeline using DNN (TensorFlow library for .Net) default values

6 Train/create the ML model - Measuring training time

7 Collect quality metrics (accuracy, etc.)

8 Save the model to assets/outputs

Table 3-17. Portion of Resources Representing Child Recordings Used to Score DME

Age in Age in Native Speech Total
ID Gender  Age Months Years Ethnicity Language Race Status Records
2AU201- African-
01DM4 9SSD Male 4;9 57 4.75 NA English American SSD 55
2AU201- African-
02NF6_8 Female 6;8 80 6.67 NA English American NSSD 56
Not
2AU201- Hispanic
07DM3_0SSD Male 3;0 36 3 or Latino English White SSD 54
Not
2AU201- Hispanic
08DF2_0SSD  Female 2;0 24 2 or Latino English White SSD 54
Not
2AU201- Hispanic
09DF4 0SSD  Female  4;0 48 4 or Latino  English White SSD 11
Not
2AU201- Hispanic
10NF4_5 Female  4;5 53 4.42 or Latino  English White NSSD 204
Not
2AU201- Hispanic
1INF3_8 Female  3;8 44 3.67 or Latino  English White NSSD 214
Not
2AU201- Hispanic White/African
12NM3_10 Male 3;10 46 3.83 or Latino  English American NSSD 178
Not
2AU201- Hispanic
14NF4 10 Female  4;10 58 4.83 or Latino  English White NSSD 212

Note: Number of records indicate number of recordings associated with a child

Table 3-18. DME Scores Given by Trained Clinicians and Collected by the IntelliTurk. ML
Windows-Based Application

Seed Break Down ID

SLP

DME Term

21

SLP Listenerl

Very Easy
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166

55
24

691
649
744
575
667
614
779
740
610
540

SLP Listenerl
SLP Listenerl
SLP Listenerl
SLP Listenerl
SLP Listener2
SLP Listener2
SLP Listener2
SLP Listener2
SLP Listener2
SLP Listener2
SLP Listener2
SLP Listener2
SLP Listener2

SLP Listener2

Medium
Difficult
Very Easy
Very Difficult
Medium
Medium

Very Easy
Difficult

Easy

Very Difficult
Very Easy
Very Easy
Easy

Difficult

Furthermore, as shown in Table 3-15, the features extracted from the spectrogram’s images

were fed into a DNN model following the flow shown in Figure 3-13. Table 3-18 shows an excerpt

from the DME scores given by trained clinicians and collected by a custom Windows-based

application specifically designed and coded for this task.

I Aubumn University - CSSE: Livio, Javier (2020)-34 of 45 days left.

Livio. Javier - 34 of 45 days left

Details

Batch # Done Date
1

100 10

Very Difficult

Chile's

Specch Intelligibillity Grading - Direct

(DME) by E:
Neeods [IMFE

Dificult Medium Easy

and DME

< > 1| Batch 2
[[Play Reterence Recording | © 1
Recording 1o play - Expert Liston. rding:
=
Record 33
Record 35
Record 37
Record 39
Record 41
Record 42
Record 43
Record 44
Record 45
Record 46
Record 47
Record 48
Record 49
Record 50
Record 51
Record 52
Record 53
Record 54
Record 55
Record 56
Record 57
Record 58
Record 59
Record 60
Record 61 ~

I EFEEFFEEFEFEEEER]

122220

Figure 3-13. A Windows-based application used by trained clinicians for listening to child word
recordings and scoring their intelligibly.
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Regarding the steps listed in Table 3-16, a DNN core principle is guiding the training of
intermediate levels of representation using unsupervised learning, which can be performed locally
at each level. These levels use a learning algorithm that greedily trains one layer at a time,
exploiting an unsupervised learning algorithm for each layer (i.e., a Restricted Boltzmann

Machine, RBM).

Deep Learning, based on a layer-wise-greedy-learning algorithm was proposed by [6],
leverages unsupervised learning as a step needed to extract features (pretraining) before the
neural network trains layer-by-layer, thus, “by extracting features from the inputs, the data
dimension is reduced and a compact representation is hence obtained” [53] [105]. Once the
features are extracted and the sample data points are labeled, they are passed down to the next

layer where they are processed as refined fuel (i.e., de-errored data).
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Figure 3-14. Core structure of a Deep Neural Network (DNN), as originally proposed by Hinton
[105]

In a DNN, the network’s initial weights are learned from the structure of the input data
(i.e., feature learning), moving away from the previously used stochastic gradient descent that was

known for its tendency to lead to over- or under-fitting [105].

Moreover, the DNN has shown high accuracy when modeling tasks like the human visual
system and image classification [105], thus making it an excellent candidate for classifying the

DME based on spectrogram images, as shown in Table 3-15.

When features are extracted by the top RBM, they are propagated back to the lower layers.

As the DNN extracts a spectrogram’s features, it sends them to lower layers. Therefore, the lower
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layers train first, followed by the layer above in a top-down flow, as shown in Figure 3-14 [105]

[6].

Preparing and Testing the DNN
The DNN model was trained, validated, and deployed as a compressed file into a Windows-
based application (see Appendix 3B), it shows both the training and validation steps as rendered
in Table 3-16. The model was deployed and a prediction was made for the spectrogram image
corresponding to a child recorded word of “bed” (see Appendices 3D). This spectrogram was
produced from a recording heard by a trained clinician who scored the child’s intelligibly with a
DME level equal to “Easy.” This file was not included during the training nor during the validation

of the DNN model.

The DNN prediction accuracy equals the “proportion of correct predictions with a test data
set. It is the ratio of the number of correct predictions to the total number of input samples” [110].
For this recording of “bed,” prediction accuracy was approximately 41% (i.e., the maximum of the

five probability scores (see Appendix 3D): 0.06123, 0.4134, 0.2203, 0.2382, and 0.0666).

Furthermore, once the model was deployed, another prediction was conducted using a
Windows-based application designed and coded to test the DNN trained model upon its
deployment, thus simulating a production environment, as shown in Figure 3-15. Here, the DNN
was 52% accurate for a word classified as “Medium” by a trained clinician for the child recording
“2AU201-35NF5 7-PC65 Medium.wav.” This recording was not part of the training or validation

processes of the DNN model.
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ol IntelliTurkk ML Predictor Form using DNN Model - O X

Please select child's recording Browse

C:\code\DR-Speights\intelliturk . ML \Intelliturk . ML \Intelli Turdk. ML Train. Model\assets'inputsspectrogramsfor-predictions\D MEsForPredictions \2AU201-35NF5_7-PC65_Medium. wav

Predicted DME: Medium. Probability = 0.5219411

Figure 3-15. Testing the DNN-deployed model with classification of a spectrogram image
employing a Windows-based application.

This section raises some questions that we address in the following sections. For example,
a deep learning model such as the IntelliTurk DNN requires considerable amounts of data.
Additionally, due to the complexity of converting children’s voice recordings into spectrograms,
employing the MFCC algorithm (i.e., it convers speech signal as a sequence of spectral vectors)
to represent the speech signal as a time versus frequency charts, the yielded images showed dark
regions at higher amplitudes (see Table 3-15 for examples). The darker the spectrogram the harder

for the DNN to learn it.

The Efficacy of the IntelliTurk Model Supported through DNN

We built the IntelliTurk POC, conducted several experiments (as seen in Table 3-15), and
gathered and analyzed data, as shown in Tables 3-13 and 3-14. However, is this study worth
continuing, and are we moving in the right direction? We have gathered evidence that the DNN is
learning from the expert participants, but the use of more experts will strengthen our method in
future iterations. Additionally, we have a limitation regarding the current environment (i.e.,

windows-based application) and not being able to gather data from as many experts as planned.
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However, we used a sufficient number of experts to substantiate that our model is being trained

successfully.

The amount data used to train the IntelliTurk DNN indicates that the middle range holds a
very strong variability, dispersion based on the complexity of child intelligibility metrics (DMEs)
as reflected in the spectrograms' features (Table 3-15). Moreover, to analyze the model's capacity
to generalize (i.e., inferring DME scores from recordings that were not used to train the model),
the DME metrics (that were transformed into spectrograms) were grouped by linguistic terms
according to the following: Group 1: Very-Difficult and Very-Easy; Group 2: Difficult and Easy;
Group 3: Very-Difficult, Difficult, and Medium; Group 4: Medium, Easy, and Very-Easy; Group
5: Very-Difficult, Difficult, Easy, and Very-Easy; Group 6: Very-Difficult, Difficult, Medium,

Easy, and Very-Easy).

The models describe that Group 1 (which excludes middle DME metrics) has the highest
accuracy. Figure 3-16 shows the DNN with over 80% accuracy during training and validation.
Moreover, Group 2 (which also excludes middle DME metrics) renders the DNN with close to
50% accuracy, which is less than Group 1 accuracy by around 30%. Furthermore, as the middle
metrics are included in the DNN training and validation (as observed in Figs. 3-18 and 3-19), it is
noticeable that model accuracy fluctuates drastically (Figure 3-19). Representing Group 5, Figure
3-20 shows the DNN with very low accuracy. Additionally, we observed that the DNN including
all available data (i.e., Group 6) experienced a consistent decrease in both training and validation
loss and had a model accuracy of around 21% (Figure 3-21). However, we found that the model is

successfully generalizing based on the experts’ DME determinations.
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Figure 3-16. DNN model including Very-Difficult and Very-Easy metrics (i.e., Group 1).
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Figure 3-17. DNN model including Difficult and Easy metrics (i.e., Group 2).
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Figure 3-18. DNN model including Very-Difficult, Difficult, and Medium metrics (i.e.,
Group 3).
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Figure 3-19. DNN model including Medium, Easy, and Very-Easy metrics (i.e., Group
4).
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Figure 3-20. DNN model including Very-Difficult, Difficult, Easy, and Very-Easy
metrics (i.e., Group 5).
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Figure 3-21. DNN model including Very-Difficult, Difficult, Medium, Easy, and Very-
Easy metrics (i.e., Group 6).
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The use of the MFCC algorithm to produce spectrograms from children’s word recordings
provides opportunities to investigate specific acoustic features needed to enhance DNN accuracy.
Moreover, DME metrics fall into the category of subjective measurements of perceptual
phenomenon (i.e., listening to a child’s voice), and our results indicate that DME metrics in the
middle ranges were more challenging for the DNN to learn. This has been previously observed for
researchers in the field of perceptual learning. For example, a group of researchers have proven
that metrics in the middle ranges are very noisy (i.e., hard to detect). Additionally, when presented
with a greater number of response options, humans do not tend to choose the responses at either

end of the scale, but rather tend to select metrics from the center [111] [112].

Conclusions and Future Work

Results indicate the presence of a treatment effect. Additionally, there is consistency in that
the DME value is statistically the same whether a subject observes a numeric or linguistic value,
according to Figs. 3-5 and 3-6. We conclude that the numeric procedure does not inflate estimates
and that the true estimate is captured by linguistic terms, which do not suppress or deflate the
DME. However, Tables 3-7 and 3-8 show that Numeric methods produce a larger SD, while
Linguistic methods produce less dispersion. This could be evidence that linguistic terms carry less
uncertainty, as they convey human stimuli upon perceiving them. Moreover, when subjects are
presented with both numeric and linguistic methods, DME values are inflated and more dispersed
(Table 3-12). Figure 3-8 shows an increasing trend captured by regression model 3 (Group 1),
while Figures. 3-9 and 3-6 show a slightly decreasing line captured by regression models 3 (Group

2) and 1 (Group 1), respectively.
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Additionally, a variance analysis indicates that 100 questions do not fatigue subjects.
Fatigue is generally consistent for the first and last 25 questions, and at the same time, the last ten
questions as well. The detractor is that the variance is statistically different across treatments
(which is good) but this is not the same for earlier versus later questions. Hence, something is
fatiguing subjects—we think this may be consistent with one of our main hypotheses. For this
reason, we think this potentially evidences that it takes the subject less work/effort to report
linguistic versus numeric values and in later rounds, the variance in the linguistic treatment is less.
So, the stress-reduction benefits (potentially) of linguistic terminology are borne out more in later
rounds but this is not observed in early rounds.

Panel models show robust treatment differences with some notable caveats. The Both
treatment (i.e., Numeric and Linguistic) is statistically significant in most models, but the others
(e.g., Numeric and Linguistic) are not as significant. Nonetheless, since capturing numeric or
linguistic values resulted in the same DME value and that, through the progress of the experiments,
subjects seemed to show fatigue only when using numeric DME, we reinforce the idea of replacing
numeric with linguistic methods, which hold less dispersion.

In several studies, phonetic contrast types were found to have different contributions to a
listener’s ability to understand the speech signal. Prior studies in child speech disorders have
contributed a listener’s impressions of decreased intelligibility to a deviation related to specific
phonetic contrast error types [113]. The findings from our current study are consistent with those
reported in prior literature in that listeners experience more difficulty with the consonantal contrast
categories of stop-affricate, fricative-affricate, alveolar-palatal, and high-low vowels, as well
syllable structure categories of final cluster-final singleton and initial cluster-initial singleton

subtypes. Our study adds to this body of literature by postulating that the mechanism with which
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this perceptual construct is measured for child speech intelligibility can affect not only the rating’s
variability, but may contribute to the identification of different phonetic categories ascribed to the
perceived decrease in intelligibility. Hodson and Paden [93] identified syllable reduction as those
that affect clusters that have a greater impact on intelligibility. The results from an unpublished
pilot study support that the aforementioned phonetic contrast types are more challenging for
listeners [114]. The increased difficulty in measuring intelligibility for these categories may
benefit from the use of both Numerical and Linguistic modalities of scoring.

Our study indicates that linguistic methods generally reduce error and improve the
accuracy of intelligibility assessments. Additionally, we found that some sound subtypes are likely
to be more accurately assessed using one methodology over another. Moreover, when needing to
further explain some observed categorical effects, like those of stop-affricate and final cluster-final
singleton subtypes, linguistic methods are likely to be more effective at reducing estimation error.
For fricative-affricate, alveolar-palatal consonants, and initial cluster-initial singleton subtypes,
providing the listener with a combination of linguistic and numeric assessment methods is likely
to improve accuracy. Moreover, for high-low vowels, either Numeric-only or Both assessment
methods are likely to outperform Linguistic-only methods. Further investigation is warranted,
however, as some scholars have highlighted that fuzzy systems employ linguistic terms [38] [80]
[81] that are primarily used in deductive reasoning (or shallow reasoning) where the specific is
inferred from the general [29, pp. 8-9]. Inductive reasoning (i.e., inferring the general from the
particular) and deep reasoning (i.e., capturing those processes of mother nature that produce
phenomenon) do not perform well when modeling complex systems, such as listening to a child
to determine its intelligibility. We are currently developing a machine learning model that employs

deep learning, a subset of artificial intelligence proven to perform well when modeling functions
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not otherwise efficiently representable. When approached statistically, we expect poor
generalization due to a deep architecture that is insufficient for representing these functions given
the amount of data available [4] [19], a limitation that we expect to improve as more data become
available. Additionally, automatic speech recognition has been challenged by child speech, and
further investigation is warranted in identifying acoustic features beyond the MFCC for the robust
classification of child speech intelligibility.

Furthermore, the IntelliTurk web-based application could evolve into a micro-service, cloud-
based application. This will make IntelliTurk a more robust platform that supports both desktops

and mobile devices.
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