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Abstract 

 

 

Surface- and groundwater resources in the lower Apalachicola-Chattahoochee-Flint (ACF) River 

Basin play an important role in the economic and ecological vitality of the region. Agriculture, 

which contributes more than $2 billion annually to the region’s economy, is heavily dependent on 

the underlying Upper Floridan Aquifer (UFA) for irrigation. As the aquifer is close to the land 

surface and in direct connection with many surficial streams, it also plays a critical role in 

sustaining streamflow and maintaining the habitat of a wide range of flora and fauna including the 

endangered mussels species in the region. Intensive groundwater withdrawal from UFA for 

irrigation, which is further projected to increase in the future, has, however, led to decreases in 

streamflow and groundwater levels. This has led to detrimental impacts in the habitat of the aquatic 

species and also threatened the sustainability of agriculture in the region. The issue is further 

compounded by the emerging and potential impacts of climate change in the watershed hydrologic 

components in the region. As a result, the overarching goal of this dissertation was to help improve 

the agricultural and environmental sustainability of the region by evaluating the benefits of the 

change in agricultural management practices for the major row crops (cotton and peanut) along 

with understanding the regional impacts of the projected increase in irrigation and changing 

climate in the surface- and groundwater resources of the region.  

A field-scale SWAT model can help evaluate the agricultural management practices in detail and 

also help to increase the confidence of the stakeholders in the evaluation results. As a result, a 

detailed literature review of the different methods SWAT can be set up as a field-scale model was 

first performed to identify the most suitable method for setting up the model for this study. The 

review study identified five different ways with which a SWAT model could be set up for field-
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scale evaluation. Evaluating the range of agricultural management practices using a field-scale 

SWAT model for cotton and peanut production for irrigation water use, crop yield, and nitrate loss 

identified the management scenario with soil moisture sensor-based irrigation, cover crop, and 

strip tillage as having the highest potential for reducing irrigation water use and nitrate loss while 

maintaining high agricultural productivity. Although the management scenarios that are most 

adopted in the region, which included checkbook irrigation and no cover crops, had similar crop 

yields, irrigation water use and nutrient loss were considerably high. 

Evaluating the regional impacts of the projected increase in irrigation using the MODular 

groundwater FLOW (MODFLOW) model showed that groundwater levels would decrease by as 

much as 2.38 m when compared to levels observed in a significant drought year of 2011. Reduction 

in groundwater levels was highest in the region of the lower ACF River Basin where the aquifer 

was comparatively thin. It was also observed that groundwater discharge from the UFA to the 

surficial streams would decrease by as much as 33% indicating that the projected increase in 

irrigation may not be sustainable, especially during prolonged drought conditions.  

Assessing the impacts of streamflow and evapotranspiration (ET) calibration on groundwater 

recharge simulation by SWAT to determine if there is a calibration approach that results in 

improved groundwater recharge simulation showed that calibration of streamflow followed by ET 

provided the best estimates for groundwater recharge. The study also identified streamflow as the 

most important variable to be calibrated for groundwater recharge simulation while calibration of 

ET alone had a negligible impact in groundwater recharge simulation. A comparison of SWAT 

simulated groundwater recharge to estimates derived from RORA also showed that SWAT can 

accurately simulate groundwater recharge in the lower ACF River Basin. Information derived from 
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this study was critical in setting up and calibrating the SWAT-MODFLOW for evaluating the 

impacts of climate change. 

Evaluation of the regional impacts of climate change in the surface- and groundwater resources of 

the lower ACF River Basin using the calibrated SWAT-MODFLOW model showed an increase 

in streamflow in most months throughout the region. There were, however, certain months, mostly 

at the beginning of the year, during which streamflow decreased in the Spring and 

Ichawaynochaway watersheds under future climate. Comparison of flow duration curves (FDCs) 

between the baseline and future climate identified a considerable increase in streamflow in extreme 

events indicating the possibility of flooding events in the future. Although the study indicated to 

an increase in surface- and groundwater (SW-GW) exchange (groundwater discharge to streams) 

in the main-stem of the Flint River, groundwater discharge to streams reduced in the ephemeral 

streams and the Spring and Ichawaynochaway watersheds signaling to the vulnerability of these 

watersheds to the change in the climate. 

Overall, results from the field-scale evaluation of the agricultural management practices of the 

major crops can help reduce irrigation water while maintaining high agricultural productivity, 

which can be important, especially during prolonged drought conditions. Regional evaluation of 

the projected increase in irrigation as well as climate change helped us understand the challenges 

that lay ahead for the agricultural and ecological sustainability of the region, an understanding of 

which can help us plan and make better management decisions for the future. 
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Chapter 1 

Introduction 

1.1 Background and problem statement 

Surface- and groundwater resources in the lower Apalachicola-Chattahoochee-Flint (ACF) River 

Basin of southeastern United States (U.S.) play a vital role in the economic and ecological vitality 

of the region.  Agriculture, which is a critical component of the economy in the region generating 

more than $2 billion in farm-based revenue annually (CAES, 2018), is heavily dependent on the 

underling Upper Floridan Aquifer (UFA) for irrigation (Jones and Torak, 2006; Singh et al., 2016). 

It provided an estimated 1.7 million cubic meters of water for irrigation in 2015 but the 

withdrawals can exceed 3.6 million cubic meters in a drought year (Couch and McDowell, 2006). 

The aquifer also serves as the primary source of water for industrial and municipal water use. The 

river basin is also a habitat to a diverse range of flora and fauna having the highest density of 

reptiles and amphibians in North America (Couch et al., 1996). It is also home to multiple species 

of federally endangered mussel species as well as more than 58 species of the imperiled fish 

population (Couch and McDowell, 2006). The UFA, which consists primarily of karst limestone, 

is close to the land surface and is in direct connection with the surficial rivers and lakes throughout 

much of the lower ACF River Basin through sinkhole ponds, karst sinks, incised streambeds, and 

conduits that exposes the limestone to the surface (Torak and Painter, 2006). As a result, the UFA 

is an important contributor to streamflow in many of the surficial streams in the lower ACF River 

Basin contributing tens of million cubic meters of water every day (Torak and Painter, 2006).  

A rapid increase in groundwater withdrawal for irrigation in the region since the expansion of the 

center pivot irrigation system in the 1970s, however, has led to detrimental impacts on the surface- 

and groundwater resources (GWC, 2017). Multiple studies have indicated to a reduction in 
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baseflow (Golladay et al., 2007; Singh et al., 2016, 2017) as well as short- and long-term declines 

in groundwater levels (Jones and Torak, 2006; Mitra et al., 2016; Singh et al., 2016). The situation 

is only exacerbated by the recurring drought conditions in the region. According to the National 

Drought Mitigation Center (NDMC), the region has experienced multiple severe drought years 

just in the last two decades including 2000-2002, 2007-2008, 2011-2012, and 2017. Pumpage 

induced groundwater level fluctuations of nearly 10 m were observed during the severe droughts 

of 2000 and 2001 while flows in the spring-fed streams of Spring and Ichawaynochaway 

watersheds decreased by 50 to 100% during drought conditions. Reduced streamflow compounded 

by prolonged drought conditions has also severely impacted the federally endangered mussel 

species (Gagnon et al., 2004; Golladay et al., 2004; Shea et al., 2013) and bass population (Couch 

and McDowell, 2006) in the region. The Georgia Water Planning and Policy Center (GWPCC) 

projects the agricultural irrigation demand to further increase by 16% from 2010 to 2050 during 

drought years (CH2M, 2017), which will further increase stress on the surface- and groundwater 

resources, agricultural industry, and ecology of the region. Along with intensive agriculture and 

climate variability, the threat of climate change is another growing concern for the economic and 

environmental sustainability in the region. The temperature in southeastern U.S. has increased by 

more than 1.1℃ since the 1970s (Karl et al., 2009) and an upward trend in precipitation has been 

identified in more than 70% of the precipitation recordings in the region (Reidmiller et al., 2017). 

The region has also witnessed an increase in frequency and intensity of extreme precipitation 

events along with more frequent drought conditions and extreme and prolonged heat waves 

(Reidmiller et al., 2017). Globally, the rise in temperature and subsequent change in climate has 

already altered the global hydrological cycle and led to change in precipitation patterns and 

intensity, changes in river discharge patterns, altered the water balance components, affected the 
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frequency and magnitude of fluvial floods, and increased heat waves and droughts (Ahiablame et 

al., 2017; Leta et al., 2016; Masson-Delmotte et al., 2018; Mohammed et al., 2017; Pachauri et al., 

2014; Shrestha et al., 2017). 

Understanding the impacts of agricultural management practices and improving them, especially 

as it relates to irrigation and nutrient management, for maintaining agricultural productivity but 

reducing the environmental impacts is of critical importance in the region for reducing irrigation 

demand. It is equally important to understand the impacts of the potential increase in irrigation in 

the region, as projected by GWPCC, to determine if the UFA can sustain the increased withdrawal 

and the resulting consequences in the surface- and groundwater interaction.  Likewise, as climate 

change is an emerging threat, the impacts of which are already being felt in the region, it is very 

important to understand the potential impacts of climate change in the surface- and groundwater 

resources.  

The Soil and Water Assessment Tool (SWAT) is a multi-process simulation tool that can simulate 

hydrology, sediments, nutrients, and pesticides, predominantly from agricultural watersheds 

(Neitsch et al., 2011). It has been widely used for evaluating a range of agricultural issues including 

water management, the impact of agricultural Best Management Practices (BMPs), land use 

change, climate change, water and nutrient transport, and water quality assessment at 

regional/watershed scale (Gassman et al., 2007; Krysanova and Arnold, 2008; Tuppad et al., 2011). 

Evaluation of the management practices including irrigation and fertilizer application for the major 

crops in detail requires the development of a field-scale SWAT model as it is the scale in which 

the BMPs are applied and the impacts of these BMPs can be better understood and evaluated at 

this scale. Recommendations to farmers and stakeholders by presenting SWAT outputs at this scale 

can also be critical in improving model confidence in stakeholders for implementing the BMPs. It 
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is, however, also important to make sure that SWAT can adequately simulate the complex 

hydrological and nutrient processes at field-scale for accurate evaluations of the BMPs. And, as a 

field-scale SWAT model can be set up in numerous ways, performing a detailed review of the 

methods used the for field-scale application of SWAT can provide an insight into the advantages 

and limitations of each method. This can help identify the most suitable method for setting up the 

field-scale SWAT model in this study. An added advantage of using SWAT as a field-scale model 

is the transferability of the calibrated crop database model parameters when performing regional-

scale evaluations using SWAT. 

Evaluation of the range of current management practices for the major crops in the region in detail 

for irrigation water use, fertilizer application rates, crop yield, and nutrient loss over a long-term 

climate can provide crucial information to farmers and stakeholders in making management 

decisions that can help reduce irrigation water and fertilizer application while maintaining high 

yields for productivity. This can help reduce competition for water resources for irrigation, 

especially during drought years, and also reduce nutrient loss from agricultural fields thereby 

enhancing the agricultural and environmental sustainability of the region. 

It is also of paramount importance to evaluate the impacts of the projected increase in groundwater 

withdrawal from the Upper Florinda aquifer for agricultural irrigation use, especially in drought 

years, to determine if the aquifer can sustain this increased withdrawal to maintain agricultural 

productivity without adversely affecting the diverse ecological habitat of the region. 

Understanding the effects of the increased water withdrawal on the groundwater levels as well as 

the stream-aquifer interaction in the lower ACF River Basin is important for planning for the long-

term sustainability of the aquifer. It will also help identify the critical regions within the lower 

ACF River Basin where the decrease in groundwater levels and reduction in stream-aquifer flux 
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can be expected to be the most for targeted conservation activities. Identifying the important 

geohydrologic zones in the region that contribute to the recharge of the UFA through the 

infiltration of precipitation is also important for the sustainability of the aquifer. 

As infiltration from precipitation is an integral component for aquifer recharge in the lower ACF 

River Basin, it is important to accurately simulate groundwater recharge before any regional-scale 

hydrological evaluation study. However, it is also one of the least understood processes in 

hydrogeology (Rushton and Redshaw, 1979) that can only be estimated as it is impossible to 

measure directly (Healy, 2010). As a result, although SWAT has been used for multiple 

groundwater recharge evaluation studies, confidence in the model simulated groundwater recharge 

is often derived by evaluating the model performance in simulating other hydrological variables 

including streamflow and/or ET (Baker and Miller, 2013; Chinnasamy et al., 2018; Dakhlalla et 

al., 2016; Emam et al., 2015; Gemitzi et al., 2017; Lee et al., 2014). However, the impact of 

calibrating these hydrological variables in the simulation of groundwater recharge in SWAT has 

still not been evaluated. Understanding how SWAT groundwater recharge simulation is impacted 

by calibrating either streamflow or ET or when using a multi-variate approach and comparing it to 

recharge estimates obtained for the study region can provide important insight into accurately 

representing the surface hydrology as well as groundwater recharge simulation using SWAT. This 

information is vital in developing a SWAT-MODFLOW model that accurately represents the 

surface- and groundwater dynamics of the lower ACF River Basin before evaluating the impacts 

of climate change. 

Evaluation of the potential impacts of climate change in the important hydrologic components of 

the surface- and groundwater resources of the region including streamflow, surface- and 

groundwater (SW-GW) exchange, evapotranspiration (ET), and groundwater recharge can provide 
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important insight into challenges that lay ahead in developing a long-term water management plan 

for the region. As there is an intricate connection between the surface- and groundwater resources 

in the study region, an integrated hydrologic modeling system that allows for a detailed simulation 

of both surface- and groundwater systems along with the interactions between the two components 

is vital. It is difficult to understand and quantify the spatio-temporal distribution of SW-GW 

exchange using only a surface- or groundwater model and the management decisions made based 

on the scenario results from such results could have little merit. SWAT-MODFLOW is an 

integrated hydrologic model that couples the SWAT model with the U.S. Geological Survey 

(USGS) finite-difference, three-dimensional groundwater flow model (MODFLOW-NWT) 

(Niswonger et al., 2011). SWAT is a robust model in simulating the land-surface hydrological and 

water quality processes and has been tested in a range of climate and geologic conditions 

(Francesconi et al., 2016; Gassman et al., 2007; Krysanova and Arnold, 2008) but is limited in 

simulating groundwater flow and storage (Gassman et al., 2007; Molina-Navarro et al., 2016; 

Nguyen and Dietrich, 2018). MODFLOW, on the other hand, has robust groundwater simulation 

capabilities but is limited in the simulation of surface hydrology, plant growth, and groundwater 

recharge. The coupling of SWAT and MODFLOW allows utilizing the strength of both models to 

develop an integrated model that is strong in both surface and sub-surface hydrological simulation 

and suitable for evaluating the impact of climate change in the lower ACF River Basin. 

1.2 Dissertation Objectives 

The overarching goal of this dissertation is to help improve the agricultural and environmental 

sustainability of the lower ACF River Basin by evaluating the benefits of change in agricultural 

management practices as well as understanding the impacts of an increase in irrigation and climate 

change in the surface- and groundwater hydrology of the region. Specific objectives include: 
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1. Performing a detailed literature review on the methods used for the field-scale SWAT 

modeling based on the modeling and research needs as well as its application to identify 

the appropriate method for setting up the field-scale SWAT model for the evaluation of the 

range of current management practices for the major row crops in south Georgia (GA). 

2. Evaluating the importance of multi-variable calibration in improving runoff and nutrient 

simulation including crop yield at field-scale using the SWAT model and to quantify the 

effect of different agricultural management practices on crop yield, irrigation water use, 

and nutrient loss for cotton and peanut production in south GA.  

3. Quantifying the impacts of the projected increase in groundwater withdrawals for irrigation 

in the groundwater levels of the UFA and surface- and groundwater interaction in the lower 

ACF River Basin along with the identification of critical zones for groundwater recharge 

and river sections sensitive to groundwater levels for flow. 

4. Evaluating the ability of SWAT to estimate groundwater recharge in the karstic landscape 

of the lower ACF River Basin as well as analyzing the importance of multi-variable 

calibration of different hydrologic components in SWAT to accurately estimate 

groundwater recharge. 

5. Simulating the regional impacts of climate change on the surface- and groundwater 

resources of the lower ACF River Basin using SWAT-MODFLOW. 

1.3 Dissertation Organization 

The dissertation is organized into seven chapters. Chapter 1 discussed the study area, problem 

statement, the rationale of the project, and dissertation objectives. Chapter 2 to 6 discusses the five 
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objectives of this dissertation. Each chapter further details the objective’s rationale, the methods 

used, results, and major conclusions. Findings from the detailed literature review of methods used 

for field-scale modeling using SWAT is presented in chapter 2. The third chapter evaluates the 

range of agricultural management practices for the major row crops for irrigation water use, crop 

yield, and nutrient loss using a field-scale SWAT model. The chapter also discusses the importance 

of multi-variable calibration for field-scale SWAT modeling. Impacts of the projected increase in 

groundwater withdrawal for irrigation from the UFA in the aquifer system and the surficial streams 

in the lower ACF River Basin is discussed in chapter 4. Chapter 5 evaluates the importance of 

calibrating different hydrologic variables separately or using a multi-variate approach for 

accurately simulating groundwater recharge using SWAT. The chapter also evaluates the ability 

of SWAT to estimate groundwater recharge in the lower ACF River Basin. Chapter 6 discusses 

the impact of climate change in the surface- and groundwater resources of the lower ACF River 

Basin. Finally, chapter 7 summarizes the major findings from the five objectives along with 

practical implications of this research as well as recommendations for future research. 
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Chapter 2 

Application of the Soil and Water Assessment Tool (SWAT) at Field Scale: Categorizing 

Methods and Review of Applications 

2.1 Abstract 

Although the Soil and Water Assessment Tool (SWAT) has been widely used as a watershed/basin 

scale model, recently, there has been considerable interest in applying it at the field-scale, 

especially for the evaluation of best management practices, and for building stakeholder 

confidence. For this study, a thorough review of literature on the field-scale application of SWAT 

was conducted. It was determined that there is more than one way of setting up the field-scale 

SWAT model depending on the spatial scale of the research as well as the research question being 

answered. This paper provides a detailed literature review of the methods used for field-scale 

SWAT modeling along with the summary of applications. The paper also discusses the limitations 

and advantages of each method along with the future research needs. The overarching goal of this 

paper was to provide a valuable and time-conserving resource to future researchers interested in 

field-scale SWAT modeling. 

2.2 Introduction 

Agricultural intensification in the U.S. over the last 100 years has led to more than 120 million 

hectares currently under agriculture, with crop irrigation accounting for nearly two-thirds of the 

nation’s total water use and with one-quarter of the nation’s cropland now artificially drained 

(Capel et al., 2018). Additionally, pesticide and nitrogen fertilizer use have increased three- and 

fourfold, respectively, since 1960 (Capel et al., 2018). Nutrient, chemical, and sediment losses 

from agricultural fields can severely degrade the quality of streams, rivers, and shallow 

groundwater. Eleven billion kilograms of nitrogen are applied as fertilizer, of which 5% to 50% is 
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transported to surface and groundwater sources (Capel et al., 2018), and median total nitrogen 

(TN) and total phosphorus (TP) stream concentrations persist at about six times greater than 

background levels (Dubrovsky et al., 2010). As a result, agricultural producers are under ever-

increasing pressure to reduce agricultural nonpoint-source (NPS) pollution while maintaining high 

levels of productivity for profitability. Thus, it is of critical importance to understand the 

underlying nutrient and water transport processes in agricultural fields and to assess the potential 

of alternate land uses and agricultural management practices to help maintain agricultural 

productivity while conserving surface and groundwater resources. Field-scale models including 

but not limited to CREAMS (Knisel, 1980), GLEAMS (Leonard et al., 1987), EPIC (Williams et 

al., 1989), APEX (Williams et al., 2006), AGNPS (Young et al., 1989), and WEPP (Flanagan et 

al., 2001) have been developed and widely used to simulate water, nutrient, pesticide, and plant 

processes in agricultural fields as well as to evaluate alternate irrigation and nutrient management, 

tillage operations, drainage, and manure application practices (Arnold et al., 2015). Hence, field-

scale models are important for the evaluation of practices that can help increase agricultural 

productivity while reducing production cost and improving environmental sustainability. 

The Soil and Water Assessment Tool (SWAT) is one of the most widely used multi-process 

simulation models for evaluating a range of agricultural issues, including water management, 

impacts of structural and non-structural best management practices (BMPs), climate change, land 

use change, water and nutrient transport processes, groundwater dynamics, and water quality 

assessment (Francesconi et al., 2016; Gassman et al., 2007; Krysanova and Arnold, 2008), most 

of which are done at the river basin or watershed scale. As BMPs (e.g., nutrient management, 

conservation tillage, cover cropping, and irrigation scheduling) that are critical to improving 

agricultural productivity and reducing NPS pollution by nutrients, sediments, pesticides, and 
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bacteria from agricultural fields are applied at the field scale, it is important to evaluate and make 

field-scale recommendations. Presenting SWAT outputs to stakeholders at the scale that is most 

relevant to them can also be helpful for increasing BMP adoption. This is especially important if 

the alternative practices have a direct impact on crop yield and production costs, which are primary 

concerns for the implementation of alternative practices by farmers. As a result, although SWAT 

has commonly been used for watershed-scale evaluations (Gassman et al., 2007), field-scale 

SWAT modeling has been conducted recently for a range of applications (Chen et al., 2017; 

Daggupati et al., 2011; Kalcic et al., 2015; Merriman et al., 2018; Sinnathamby et al., 2017; Uribe 

et al., 2018). Field-scale SWAT modeling has been done using different methods and for a range 

of spatial scales. As an example, it has been used to evaluate the outputs of a watershed-scale 

SWAT model for each field within a simulated watershed (Daggupati et al., 2011), which was not 

possible under the conventional SWAT setup. It has also been used to simulate and evaluate a 

single field (Maski et al., 2008). 

Although many reviews of watershed-scale SWAT applications have been conducted (de Almeida 

Bressiani et al., 2015; Francesconi et al., 2016; Gassman et al., 2007; Krysanova and Arnold, 2008; 

Tuppad et al., 2011; van Griensven et al., 2012), none provide a detailed review of the methods 

used for field-scale application of SWAT. A detailed review of field-scale SWAT modeling can 

be a valuable and time-conserving resources for future research initiatives using SWAT at field 

scale. The main objective of this article is to summarize and categorize the current methods used 

for field-scale SWAT modeling based on the modeling and research needs. Examples for each 

category are provided to discuss the application of field-scale modeling. This article provides a 

brief description of the SWAT model and the subbasin and HRU delineation processes used in 
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field-scale SWAT modeling, along with the application of field-scale modeling, and discusses the 

limitations of each modeling method along with future research needs and directions. 

2.3 SWAT Model 

SWAT is a continuous time, physically based, computationally efficient, semi-distributed model 

with spatially distributed parameters that was developed by the USDA Agricultural Research 

Service (ARS) (Arnold et al., 1998; Neitsch et al., 2011). It is a direct outgrowth of the Simulator 

for Water Resources in Rural Basins (SWRRB) model (Arnold et al., 1990) and has been used to 

simulate watersheds of varying sizes, ranging from fields to large complex watersheds, to evaluate 

the impacts of land management practices, climate, and land use change on hydrology, sediments, 

nutrients, plant growth, and pesticides (Gassman et al., 2007; Neitsch et al., 2011). Primary inputs 

to the model include both spatial and tabular information: digital elevation model (DEM) data for 

topographical information, soil properties, land cover and management, weather, point sources, 

and reservoir characteristics. The SWAT-modeled components include hydrology, water and 

sediment movement, soil temperature, weather, nutrients, pesticides, bacteria, and land 

management (Neitsch et al., 2011). 

The basic unit of all calculations in SWAT is the hydrologic response unit (HRU), which is a 

lumped land area composed of a unique combination of land cover, soil series, and optionally slope 

steepness within a subbasin (Neitsch et al., 2011). An important step in the SWAT model setup is 

the watershed delineation process, which divides a watershed into hydrologically connected 

subwatersheds or subbasins, and then divides each subbasin into HRUs (Winchell et al., 2013). 

Threshold area, which defines the minimum drainage area required to form the origin of a stream, 

can be defined during the watershed delineation and affects the number and size of subbasins when 

subdividing a watershed. Division of each subbasin into HRUs enables the model to evaluate the 
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differences in hydrology, plant growth, and contaminant transport processes for different 

combinations of land cover and soil (Winchell et al., 2013). A user-defined threshold percentage 

for the land use, soil, and slope class can be applied during the HRU definition process, which 

eliminates land use, soil, and slope classes that cover an area of the subbasin that is less than the 

threshold defined by the user. The area of the remaining land use, soil, and slope class is 

reapportioned after the elimination process so that all of the land area in the subbasin is simulated 

(Winchell et al., 2013). However, the use of thresholds can cause some fields that are critical for a 

watershed-level evaluation to be eliminated during the simulation process (Her et al., 2015). 

Lumping of land areas with similar attributes to form a single HRU within a subbasin can cause 

multiple fields to be simulated as a single HRU, or multiple HRUs can be within a single field, 

making field-level analysis and recommendation difficult. Additionally, there are no routing 

mechanisms between HRUs. Outputs from all HRUs within a subbasin are aggregated, and surface 

runoff and shallow subsurface flows and associated contaminants are routed to the stream network 

from one subbasin to another. This approach of using subbasins and HRUs helps SWAT maintain 

a balance between computational efficiency and preserving the spatial heterogeneity of the 

simulated watershed (Neitsch et al., 2011). However, this approach also limits evaluation and 

recommendation at field scale because each field does not correspond to unique HRU boundaries 

in a conventional SWAT setup. 

2.4 Field-Scale SWAT Modeling 

2.4.1 Methods and Applications 

A thorough review of the literature on field-scale SWAT modeling identified five basic methods 

for evaluating model output at the field scale: (1) simulation of an individual field as a field-scale 

SWAT model; (2) modification of SWAT input files such that each field is represented by multiple 
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HRUs that reflect changes in the soil and slope classes within each simulated field; (3) 

modification of SWAT input files such that when SWAT runs the HRU definition process for a 

watershed with multiple fields, each HRU corresponds to a unique field located in the simulated 

watershed; (4) development of a post-processing tool that uses the SWAT output generated with 

conventional HRU delineation and converts this output to field scale using different techniques; 

and (5) defining a relationship between fields in the simulated watershed and HRUs from the 

SWAT model that was set up using conventional HRU delineation by comparing land use, soil, 

and slope attributes and evaluating the HRU-level outputs. 

Field-scale SWAT modeling does not involve any modification to the algorithms that simulate 

hydrology, nutrient transport, or any other processes in SWAT. The HRUs are still disconnected 

from each other, and outputs for a subbasin are still generated by aggregating the outputs from the 

HRUs within the subbasin. Modification of SWAT input files or post-processing of SWAT outputs 

are the keys to field-scale SWAT modeling. Each of the following subsections summarizes 

published articles that describe field-scale modeling methods as well as applications of field-scale 

SWAT models. 

2.4.1.1 Simulation of an individual field using SWAT 

Marek et al. (2016) evaluated the ability of SWAT to simulate daily and monthly 

evapotranspiration (ET) for major irrigated summer crops including cotton, soybean, grain and 

silage sorghum, sunflower, and corn silage in the semi-arid Texas High Plains from a 4.7 ha 

irrigated field located at the USDA-ARS Conservation and Production Research Laboratory 

(CPRL) at Bushland, Texas, using lysimetric data. Because the irrigated field was square in shape 

and SWAT does not consider artificial boundaries that do not coincide with topographic features 

for watershed and subbasin delineation, a novel method was applied for simulating the irrigated 
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field. A polygon outlining the field was drawn using the “draw polygon” tool in the ArcSWAT 

2012 interface with a satellite image overlay and a 30 m DEM. A single subbasin having the 

longest reach of the several subbasins and outlets generated for the field was selected to be 

representative of the slope and aspect of the entire field, which resulted in a watershed project with 

one subbasin, one HRU, and one reach. The area of the representative subbasin was then adjusted 

in the subbasin text file to match the field area of 4.7 ha, and a single management file was created 

for the HRU to reflect the agronomic practices used in the field during the study period. Model 

performance analysis for simulating ET for the manual calibration and validation period showed 

that SWAT adequately simulated ET with NSE of 0.67 and 0.78 for calibration and validation, 

respectively, for daily ET estimation and with NSE of 0.77 and 0.85 for calibration and validation, 

respectively, for monthly ET estimation. 

Chen et al. (2017) evaluated the SWAT auto-irrigation function to simulate irrigation management 

strategies typical of the Texas High Plains while also evaluating the ability of SWAT, as a field-

scale model, to simulate crop yield, leaf area index (LAI), and ET. The SWAT model was set up 

for a 4.7 ha irrigated lysimeter field located at the USDA-ARS CPRL at Bushland, Texas, using a 

single-HRU method. After calibration for LAI for the crops simulated, model performance 

evaluation for ET during calibration and validation showed good agreement (NSE  0.80). 

Simulation of crop yield after calibration also showed very good agreement (NSE = 0.99, PBIAS 

= 1.3%). Results from the scenario analysis using the SWAT auto-irrigation function demonstrated 

that the auto-irrigation function was not able to match field conditions and highlighted the 

shortcomings of the auto-irrigation function for users, modelers, and developers. Although the 

overall performance for ET simulation was satisfactory with the auto-irrigation function, there was 

a noticeable decrease in NSE. The study also emphasized the need to improve the SWAT auto-
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irrigation function by including the management-allowed depletion (MAD), a framework for 

irrigation scheduling that can be useful to better simulate water balance and crop growth in 

irrigated regions. 

Chen et al. (2018) modified the SWAT source code to incorporate MAD-based irrigation 

management and evaluated the MAD auto-irrigation algorithm for simulation of ET and crop ET 

by comparing results from the new algorithm with results from the default auto-irrigation function 

and observed data. The authors used the calibrated single-HRU SWAT model from Chen et al. 

(2017) for this study. A small watershed was delineated around the lysimeter field, and a single 

subbasin with the longest reach was selected as representative of the slope and aspect of the field. 

All other subbasins and associated outlets were removed, which resulted in a SWAT model 

consisting of a single subbasin, single reach, and single HRU. The modified SWAT code allowed 

simulation of a single constant MAD value throughout the growing season or for growth stage-

specific MAD values (FAO-MAD). Results from the study indicated that although the SWAT 

default auto-irrigation algorithm simulated reasonable values for ET, the simulated irrigation was 

considerably higher than the actual irrigation. Use of the new constant MAD auto-irrigation 

algorithm greatly improved the simulation of seasonal irrigation, which improved further with the 

use of the FAO-MAD auto-irrigation algorithm. 

Anand et al. (2007) calibrated and validated the runoff prediction of SWAT and Agricultural 

Drainage and Pesticide Transport (ADAPT) (Alexander, 1988) for individual field plots under no-

till planting with surface-broadcast fertilizer/pesticide application (NT/SB), no-till with deep-

banded fertilizer application (NT/DB), and tilled management practices. The study site was a 4.7 

ha farm field in the Upper Marais des Cygnes basin in Kansas, which included two replicates of 

each BMP treatment. The models were calibrated for each BMP treatment using observed runoff 
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from one plot and validated using observed runoff from the replicate plots. The authors did not 

provide details on how the SWAT model was set up to simulate runoff from each plot under the 

different BMP treatments. Results from the study indicated that the best-fit curve number for 

antecedent soil moisture condition II (CNII) for ADAPT was 66, 68, and 70 for the NT/SB, NT/DB, 

and tilled BMP treatments, respectively, while the best-fit CNII for SWAT was 86 for all 

treatments. Although the calibration parameters were different for the two models, the best-fit 

model parameters had excellent correlation to monthly runoff totals and moderate correlation to 

individual events. Validation of the model using the calibrated parameters for the replicate plots 

showed improved or similar statistical results. It is possible that the differences in calibration 

parameters for the two models could be related to the differences in ET estimation in the two 

models. 

Maski et al. (2008) evaluated the ability of SWAT set up for field scale to simulate runoff and 

sediments under different management practices and to verify optimal parameter sets for runoff 

and sediments simulation under different management practices. Because the experimental plots 

were the same as those used by Anand et al. (2007) for comparing SWAT and ADAPT, the three 

BMP treatments were the same, and the runoff calibration process for SWAT was adapted from 

that previous study. The model was calibrated for three field plots (0.39 to 1.46 ha) with different 

management practices and validated for three replicate plots (0.40 to 0.56 ha) with the same 

management practices. A field survey of the plots with a horizontal accuracy of 10 to 20 mm and 

vertical accuracy of 2 to 3 times the horizontal accuracy was used to derive slopes for individual 

plots. The field-scale model was set up such that each plot was simulated as a single subbasin with 

no routing between subbasins, and the outputs from the subbasin were evaluated against the plot 

outputs. Each subbasin had a single HRU, and management scenarios were specified for each plot, 
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scheduled by dates. Model performance was evaluated by comparing event-based flow and 

sediment yield values. The calibrated CNII of 86 for the tilled treatment was slightly lower than 

the values for the no-till treatments of NT/SB (88), and NT/DB (89) for runoff simulation. 

Saturated hydraulic conductivity followed a similar trend, with lower values for tilled than no-

tilled treatments, while the baseline soil available water capacity (AWC) was appropriate for all 

the treatments. Calibration of sediments showed that the baseline USLE cropping factor (Cmin) was 

adequate for the tilled and deep-banding treatments with soil disturbance, while the best-fit Cmin 

value for field conditions without soil treatment was 2.5 to 3 times greater than the baseline value. 

The authors cautioned that field- or watershed-scale models calibrated for tilled management 

practices may not function well for management scenarios with no-till. 

Douglas-Mankin et al. (2010) built on the field-scale SWAT model calibrated and validated for 

runoff and sediment by Maski et al. (2008) and evaluated the ability of the SWAT model to 

simulate daily and monthly TN and TP yields in runoff at field scale under the different BMPs. 

The authors calibrated the model sequentially for TN and TP, followed by validation with paired 

treatment plots. Results showed that the calibrated parameter values used for TN and TP 

calibration were identical for all plots irrespective of tillage and fertilizer application method, 

indicating that runoff and sediment yield calibration alone can adequately simulate the differences 

in nutrient loss from different tillage and fertilizer placement practices. Evaluation of daily TN 

yield calibration for all treatments showed that SWAT had satisfactory robust modeling efficiency 

(Ef*) (0.54 to 0.64), good to very good PBIAS (31% to 7%), and satisfactory to good median RSR 

(RSR*) (0.72 to 0.62), while lower and more variable performance was observed for daily TP 

simulation (Ef* of 0.42 to 0.62, PBIAS of -48% to 2%, and RSR* of 0.76 to 0.62). The authors 

also noted that the model predicted greater TN loss from the no-till fields when compared to the 
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tilled fields, which was contrary to the observed values and a major concern, while also pointing 

out that the effects of tillage systems on nutrient loss are still very little understood. 

Bosch et al. (2010) evaluated the SWAT landscape model (Arnold et al., 2010) for the simulation 

of surface runoff, lateral subsurface flow, and groundwater flow on a 1.77 ha hillslope with an 

upland field, grass buffer, and subdivided forested buffer in the Atlantic Coastal Plain near Tifton, 

Georgia. Flow simulation results from the SWAT landscape model that had been manually 

configured with four HRUs for the four-component hillslope were compared against a single-HRU 

model developed using SWAT 2005 with the dominant land use and soil type configuration of the 

upland field. The total area of the upland HRU in the single-HRU SWAT model was modified to 

1.77 ha to match the total area of the simulated hillslope. The SWAT landscape model and 

observed results showed that surface runoff and groundwater flow dominated the upland field and 

grass buffer hydrology, respectively. Although the SWAT landscape model simulated the average 

annual surface runoff and groundwater flow satisfactorily and followed the general trends in the 

observed data, the difference between observed and simulated annual runoff at the edge of the 

grass and forested buffers was as great as 75%. The SWAT landscape model was also not able to 

simulate monthly observed surface runoff at the edge of the upland field, demonstrating a need for 

additional detail in the landscape model to better simulate the interactions between soil surface, 

vadose zone, and groundwater. The single-HRU SWAT model was not able to redistribute the 

water between surface and subsurface components, as done by the landscape model and observed 

in the field, resulting in considerably higher surface runoff and low groundwater flow. 

2.4.1.2 Watershed-Scale SWAT Model with Each Field Represented as a Set of HRUs 

Gitau et al. (2004) used SWAT, a genetic algorithm (GA), a BMP tool, and site-specific BMP 

costs to develop a method for determining the optimal selection and location of BMPs within a 
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farm to reduce phosphorus pollution in a cost-effective way. The farm was located in the Town 

Brook watershed (TBW) of Delaware County, New York. A SWAT model was set up for the TBW 

using a 10 m DEM for elevation data, a 10 m land use classification grid for base land use, and 

SSURGO for soil data with a 0% land use and soil definition threshold. Use of a 0% threshold 

prevented lumping of land use and soil, and the resulting HRU map was overlaid with the farm 

boundary to identify HRUs within the farm. The model was calibrated for monthly (R2 = 0.76, 

NSE = 0.44) and annual (R2 = 0.99, NSE = 0.84) streamflow, and the ten-year average annual 

loadings of phosphorus from each HRU within the farm were used as input for the GA. Cost-

effective BMP implementation scenarios used the GA, the BMP tool, and the BMP costs. Results 

from the study showed that the most cost-effective scenario achieved an effectiveness of 0.6 kg 

dissolved P reduction per dollar spent per year. 

Gitau et al. (2008) applied the SWAT model and a BMP characterization tool to a 163 ha farm that 

covered an entire subwatershed in Delaware County, New York. The authors compared pre- and 

post-BMP installation periods to determine the extent to which the model results matched the 

observed data at the watershed and field levels and to evaluate the impacts of the BMPs. Each field 

within the 163 ha watershed was simulated as a unique land use area to allow BMP evaluation at 

the field level and prevent masking of small but potentially high phosphorus (P) loss areas, which 

can happen when fields are lumped together during SWAT model setup. Georeferenced field 

boundary data were annotated as the base land use map for SWAT so that each field had a unique 

identifier to maintain each land use as a unique land use. The SWAT built-in crop database was 

then modified to accommodate the new land use identifiers by copying parameters from the 

appropriate corresponding general land use. A threshold of 0% was used for land use and soils to 

preclude lumping and preserving all fields and soils. This technique, also demonstrated by Veith 
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et al. (2005), allows each field to be represented by a unique set of multiple HRUs in the model 

and allows evaluation of SWAT field-level outputs against observed field experiments. Gitau et 

al. (2008) found that SWAT adequately simulated runoff, sediment, and phosphorus for the pre- 

and post-BMP periods, with annual NSE for the simulated components ranging between 0.56 and 

0.8 and monthly values ranging between 0.45 and 0.78. Field-level simulations were also found to 

be adequate, with the simulated in-field P loads closely matching the observed data. BMP 

installation reduced dissolved phosphorus (DP), particulate phosphorus (PP), and TP by an average 

of 31%, 13%, and 21%, respectively, at the watershed scale. This finding was consistent with the 

findings from the observed data. The model was not able to evaluate the impacts of individual 

BMPs because the BMPs existed in various combinations within the fields. However, the model 

was able to evaluate the impacts of BMP combinations, such as nutrient management plans and 

rotations (31% DP, 25% TP reduction). The BMP characterization tool was also found to suitably 

complement the model, as it provided information on the impacts of individual BMPs as well as 

the efficiency of BMPs that were not simulated by SWAT. 

Ghebremichael et al. (2008) built on the calibrated SWAT model for runoff, sediment, and 

phosphorus developed by Gitau et al. (2008) and assessed the benefits of three farm-level precision 

feed management (PFM) strategies at field and watershed level. The authors used the calibrated 

model results as the baseline scenario and evaluated the hydrologic, sediment, and nutrient 

responses to the PFM strategies of reduced manure P concentrations as a result of dietary P 

reduction (scenario 1), increased forage productivity + scenario 1 (scenario 2), and converting corn 

land to high-yielding grass + scenario 2 (scenario 3). Simulation of each field as a unique set of 

HRUs allowed assessment of the field-level impacts of PFM strategies for each field by evaluating 
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outputs from the HRUs that corresponded to each field. Results from the study showed that the 

PFM strategies reduced soil P buildup and P losses at both field and watershed level. 

Ghebremichael et al. (2010) quantified and identified critical source area (CSAs) for P loss in the 

Rock River watershed in Vermont using SWAT. The watershed, which covers an area of about 71 

km2, is dominated by dairy agriculture and is considered a high-priority area for watershed 

management activities. Land use data for the SWAT model input were developed from a 

combination of the National Land Cover Database (NLCD) data layer, common land unit (CLU) 

maps, and digitized active farmsteads. Because the NLCD provides information only as either 

closely grown crops or row crops, without specific crop type identification, the NLCD data layer 

was updated wherever possible using CLU data and digitized farmsteads. HRUs in the study were 

defined using SSURGO soil data, the updated land use map, and four slope groups (0% to 3%, 3% 

to 8%, 8% to 15%, and >15%). The HRUs were defined by distinctly coding to specific fields 

using available field boundary data for crops to maintain the specific locations of the crop fields, 

which was critical for identifying CSAs for P loss. Assessment of daily and monthly streamflow 

(NSE of 0.60 and 0.74 during calibration and 0.60 and 0.70 during validation, respectively) showed 

that the streamflow predictions were acceptable for the project. The model also adequately 

simulated daily and monthly sediment loads (NSE of 0.4 and 0.7 during calibration and 0.4 and 

0.6 during validation, respectively) and monthly total P loads (NSE of 0.7 during calibration and 

0.6 during validation). Evaluation of CSAs for P loss showed that 80% of the total P loss in the 

watershed was contributed by 24% of the area, which can help managers and planners implement 

management strategies with limited resources. 

2.4.1.3 Watershed-Scale SWAT Model with Fields Simulated as Unique HRUs 
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Kalcic et al. (2015) demonstrated a method for defining each SWAT HRU as a field boundary 

within a simulated watershed and compared the field boundary method to the standard method of 

HRU definition for streamflow, nitrogen, phosphorus, and sediment simulation in a 56 km2 

watershed in west-central Indiana. The authors used the CLU map layer provided by the USDA 

Farm Service Agency (FSA) for the field boundaries to first determine the major land use in each 

field boundary. A new soil map was created using the SSURGO and CLU maps such that each 

field boundary was assigned one soil type with the greatest number of cells assigned within the 

field, and a unique soil name was assigned for every field in the study area so that each field had 

one land use, a unique soil type, and one slope, which is required for simulating each field as a 

unique HRU and prevent lumping of HRUs. Each unique soil name required the addition of a new 

soil to the usersoil table in the SWAT database. A lookup table was also created to map each new 

soil name to the SSURGO soil map unit key (mukey), a unique identifier for each soil in the 

database. As a result, the model saw each field as having a unique soil type and defined each field 

as a unique HRU. Kalcic et al. (2015) provided a detailed step-by-step process for the field 

boundary method. The authors mentioned that each field could also be simulated as a unique HRU 

by creating a unique land use for each field, but an upper limit on the number of unique land use 

names can become an issue. Only one slope class (0% to 2%) and a 0% threshold for land use, 

soil, and slope characteristics were used for both the standard method and the field boundary 

method during the model setup. The authors noted that only 418 HRUs were produced by the field 

boundary method, as compared to 690 HRUs using the standard method. Model performance 

evaluation showed that the water balance and hydrology were quite similar for both methods, and 

the R2 and NSE were >0.6 for daily and monthly flows for both methods, even though the models 

were not calibrated. Daily simulations of nitrogen, phosphorus, and sediment at the watershed 



20 

 

outlet were also similar for both methods, but the field boundary method masked extremely high 

soil erosion predicted for a few soils because only a majority soil type was chosen for each field. 

Teshager et al. (2016) developed an ArcGIS preprocessing procedure using the USDA National 

Agriculture Statistics Service (NASS) Cropland Data Layer (CDL) land use/land cover (LULC) 

and soil data to spatially define a one-to-one match between farm fields and HRUs within a 

subbasin prior to SWAT simulations. The authors then used the preprocessing outputs to set up 

the SWAT model for evaluation of flow, sediment, nitrate, and mineral phosphorus for two 

midwestern watersheds, Raccoon River watershed (RRW) and Big Creek River watershed (BRW), 

at daily, monthly, and annual time scales. The preprocessing procedure is detailed step-by-step in 

the article. The general steps include converting LULC to polygons, splitting the polygons with 

road and river networks, intersecting the final polygons with predefined subbasin polygons from 

ArcSWAT, relabeling the LULC polygon codes by assigning different codes for the same LULC 

type and adding the new crop/LULC types to the SWAT crop database, and using the updated 

polygons to assign a dominant soil for each polygon. A threshold of 0% for land use, soil, and 

slope characteristics was used during the HRU definition process, and a single slope class was 

used to prevent HRU fragmentation. Evaluation of the model results for the two simulated 

watersheds showed that SWAT was able to replicate annual, monthly, and daily streamflow as 

well as sediment, nitrate, and mineral phosphorus within the accuracy recommended by Moriasi 

et al. (2007), although the model performed better in the RRW than in the BRW. The authors stated 

that older and limited observed data along with bias issues in estimating pollutant loads with 

LOADEST, especially for daily load estimates, could have led to the decreased model performance 

in the BRW. 
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Merriman et al. (2018) calibrated and validated the SWAT model for the 50 km2 Alger Creek 

watershed in Michigan to identify CSAs with the highest runoff, erosion, and nutrient loss potential 

and to estimate the impact of BMPs on nutrient and sediment yields in the watershed. The authors 

also simulated additional scenarios of BMP implementation for evaluating reductions in nutrient 

and sediment yields. The SWAT model was configured to have HRUs approximately equal to one 

farm field in the watershed to allow accurate placement of BMPs with spatially correct land use 

and soil types modeled beneath the BMPs, and to identify CSAs. The National Conservation 

Planning (NCP) database, which is a repository of NRCS-funded BMPs, was used to identify the 

locations of BMPs in the watershed. The setup of each field as a unique HRU in the model was 

done by loosely following the methods used by Daggupati et al. (2011) and Kalcic et al. (2015). A 

CLU map was used to determine the farm outlines in the watershed. The land use map for the 

SWAT model was prepared by using the majority value for each outlined field through the CDL. 

A soil map was created using a similar approach with the dominant soil type in each field. A 

threshold of 0% was used for land use, soil, and slope characteristics, and the slope layer was 

created using the single slope option to keep the field boundaries as delineated. The BMPs installed 

in the watershed were mostly non-structural and were simulated by adjusting the management 

practices following an approach similar to Arabi et al. (2008). Monthly model calibration at the 

watershed outlet resulted in very good NSE values of 0.90, 0.79, 0.87, 0.88, and 0.77 for flow, 

sediment, TP, DP, and TN, respectively, and a satisfactory NSE of 0.51 for nitrate. Validation 

results were at least satisfactory, with NSE of 0.83, 0.54, 0.73, 0.53, and 0.60 for flow, sediment, 

TP, DP, and TN, respectively, and unsatisfactory for nitrate, with NSE of 0.28. Evaluation of the 

BMP effects at field scale showed that the most effective practice for reducing sediment, TP, and 

DP was no-till followed by cover crops, while nitrate loss was most reduced at the field scale by 
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cover crops. The BMPs were not as effective at reducing nutrient and sediment loss at the 

watershed scale. 

2.4.1.4 Post-Processing Tool for Scaling HRU Outputs to Field Scale 

Daggupati et al. (2011) created a SWAT HRU output post-processing tool that used CLU layer 

maps to convert SWAT HRU output from a watershed-scale model to field-level results for 

evaluating sediment yields at the field level and assessing the impact of topography, soil, land use, 

and land management source data on field-scale targeting. The authors set up the SWAT model 

for a 7,818 ha watershed in south Kansas using a 0% threshold for soil and land use so that all 

combinations of topography, soil, and land use were preserved. The model performance was 

evaluated for streamflow at the watershed outlet, and the model agreement with observed flow 

data was satisfactory, with monthly statistics of R2 = 0.75, NSE = 0.66, and PBIAS = -18.8%. 

Model performance for sediment yield was evaluated against the published measurements for 

small cropland drainages because observed stream sediment data were not available. Post-

processing the SWAT HRU output to field-level output was a two-step process in which the first 

step was to read in the SWAT HRU output table from the access database and export average 

annual yields for sediment, TN, and TP. The second step was to use the outputs from the first step, 

fullHRU shapefile, and boundary of interest (e.g., fields, counties) to produce maps of area-

weighted average annual pollutant yields for the user-defined boundary using zonal statistics. An 

ArcGIS-based SWAT targeting toolbar was created using ArcGIS Visual Basic that automated the 

two processes. Results from the study showed that the post-processing tool can be useful for field-

level targeting of critical areas of sediment loss. However, incorrect use of source data for model 

setup, such as misclassification of land use in NASS or missing land management datasets (e.g., 

terraces, contour farming, or no-till) in the NLCD datasets, along with low-resolution topographic 
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data (30 m DEM instead of 10 m) and soil data (STATSGO instead of SSURGO soil dataset) 

translate into incorrect field-level targeting. 

Pai et al. (2012) developed a standalone tool called Field_SWAT, based on the MATLAB 

programming environment, for mapping SWAT HRU outputs to user-defined boundaries such as 

fields. The authors developed a spatial algorithm that aggregated HRU-level outputs to field 

boundaries using one of four different methods for spatial aggregation (mean, mode, geometric 

mean, and area-weighted mean) chosen by the user and incorporated the algorithm into user-

friendly geospatial software that allows visualization and saving of SWAT output to user-defined 

field boundaries. Field_SWAT has three major components: input data, display, and status/output. 

The input data component requires the user to define a base folder, identify the SWAT project 

folder, and provide the field boundary layer in polygon vector format. The display component 

requires the user to choose between annual sediment or annual runoff options, which are the only 

outputs that can be mapped using this tool. The status/output component allows the user to save 

the output maps in the form of shapefiles. The tool was tested by the authors in the agriculturally 

dominated Second Creek watershed in northeast Arkansas by mapping outputs from 218 HRUs to 

89 field boundaries. Using visual and statistical results, the authors determined that the area-

weighted spatial aggregation method resulted in the most suitable mapping between HRU and field 

outputs. The study demonstrated that Field_SWAT can be a useful tool for field-scale targeting of 

conservation practices by identifying critical NPS pollution areas in a watershed and enhancing 

communication between SWAT modelers and watershed managers. 

2.4.1.5 Evaluation of Field-Scale Results by Relating HRUs to Fields by Matching HRU 

and Field Properties 
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Sinnathamby et al. (2017) developed a new crop parameter dataset for sweet sorghum and 

evaluated the ability of SWAT to simulate corn and grain sorghum yields under a range of 

ecoclimatic regions using field-scale crop yield data from two research sites. The authors 

calibrated the model for corn and grain sorghum yields using ten years of field data in Kansas by 

developing a watershed-scale SWAT model for the 4,800 ha watershed that included the research 

sites. They calibrated the model by evaluating HRU-level outputs from two HRUs that had similar 

soil, slope, and land use characteristics, one each for corn and grain sorghum. Corn and grain 

sorghum yields were validated using five years of yield data from a research site in Oklahoma. 

Similar to the calibration method, a watershed-scale SWAT model for a 12,767 ha watershed was 

developed that included the research site with observed data, and two HRUs were selected that 

matched the research fields. Calibrated crop parameters from the Kansas site were used for model 

validation. Overall, SWAT was able to simulate corn, grain sorghum, and sweet sorghum yields 

reasonably over a range of climatic conditions. Results showed that calibration improved model 

performance for corn and grain sorghum yield simulation. Validation of the crop parameters 

showed improvement in corn yield but no improvement in sorghum yield, as the research site used 

for validation was influenced by drought and possibly had different management practices. The 

results also supported site-specific calibration for crop yields rather than using default or off-site 

calibrated parameters to minimize the effects of different soil, water, and nutrient management 

conditions. 

Uribe et al. (2018) assessed the impact of intensive tillage (IT) and conservation tillage (CT) on 

runoff, sediment, TN, and TP yield at field and watershed scales in the 784 km2 Fuquene Lake 

watershed in Colombia. The watershed was divided into 30 subbasins and five slope classes (0% 

to 5%, 5% to 15%, 15% to 25%, 25% to 45%, and >45%). Evaluation at the field scale was 
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performed by selecting HRUs that had similar slope, soil, and land use characteristics in a subbasin 

that corresponded spatially to where the observed plots were located in the watershed. Model 

calibration and validation were performed at two spatial levels. First, monthly streamflow was 

calibrated and validated using R2, NSE, root mean square error (RMSE), and mean absolute error 

(MAE) (Moriasi et al., 2007) for four stream gauging stations located within the watershed. Next, 

the model was calibrated against plot-level data for surface runoff, sediment load, and NO3 and 

soluble P concentrations using SWAT HRU outputs. Model results showed that the monthly 

streamflow predictions and calibration of nutrients and sediments were acceptable. At the plot 

level, assessment of the two tillage practices showed that CT reduced sediment and runoff by 46% 

and 27%, respectively, but increased TN and TP by 17% and 29%, respectively. Evaluation at the 

watershed scale showed that CT was able to reduce surface runoff and sediment by 11% and 26%, 

respectively. There was also a TP reduction of 18%, but TN increased by 2% at the watershed 

scale. 

2.5 Benefits, Limitations, and Directions for Future Research 

This literature review of field-scale SWAT modeling research identified multiple ways of setting 

up a field-scale SWAT model depending on the spatial scale of the research as well as the research 

questions to be addressed. Each method has its own advantages, limitations, and further research 

needs, which are detailed in the following paragraphs. 

Simulation of an individual field using the single-HRU approach allows modelers to study 

complex hydrological and nutrient processes in more detail as well as evaluate the impacts of 

BMPs at the field scale. However, the single-HRU method allows only the single dominant or 

user-selected soil type in the field to be simulated and causes a loss in intra-field soil variability, 

which might otherwise be present. In addition, fields generally do not follow hydrological 
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boundaries, and calibration and validation of the hydrological and nutrient processes of an 

individual field using observed data should consider the uncertainty in the observed data pertaining 

to contributions from adjacent fields. Observed datasets used for field-scale calibration, including 

ET, soil moisture, or nutrients in runoff, that are measured at the field are also not readily available, 

and gathering these datasets can become expensive with the installation of instruments and sample 

analysis. Evaluation of soft data, such as satellite-based ET, LAI, soil moisture, and normalized 

difference vegetation index (NDVI), as potential datasets for field-scale calibration can be pivotal 

in simulating and evaluating fields for which observed datasets are not available. 

The single-HRU method limits the number of crops grown in a field because a single HRU does 

not allow multiple crops to be grown simultaneously. The single-HRU method also does not allow 

hydrological or nutrient routing because SWAT allows routing only between subbasins, which 

could impact the evaluation of sediment and nutrient losses from a field, especially if the fields are 

large and flow routing could have an impact. Using SWAT to simulate a field as a small watershed 

rather than as a single HRU can be a potential method of field-scale SWAT simulation that 

preserves the intra-field soil and slope variability and allows multiple crops as well as flow and 

nutrient routing in the field. The importance of multi-objective calibration for hydrological and 

nutrient transport processes at the field scale for increasing model robustness has not been 

evaluated. However, field-scale simulation of a single field using SWAT provides an excellent 

opportunity to improve the trust of stakeholders, including farmers and landowners, in the model, 

as the model’s outcome can be directly related to measurements that they see in their fields, and 

accurate field-scale simulation by SWAT can help increase stakeholder confidence in the model 

results. The method can also be an important tool for evaluating irrigation and nutrient 
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management BMP scenarios for water quantity and quality at the field scale, along with the effects 

on crop yield with detailed management practices. 

Simulation of each field using a land use map with unique names for each field but preserving the 

intra-field soil heterogeneity and slope characteristics, if present, allows each field to be 

represented by a unique set of HRUs. This method of field-scale SWAT allows placing and 

evaluating multiple BMPs and growing multiple crops within a single field, if more than one HRU 

is created for a field, which is not possible with the single-HRU method at field or watershed scale. 

Identification and management scenario evaluation of CSAs for nutrient and sediment losses from 

a field can also be performed using this method. Field-level outputs can still be evaluated by 

combining the outputs from the HRUs that relate to any field in the simulated watershed. However, 

this method requires post-processing of model output for field-level evaluation, as the unique set 

of HRUs related to each field needs to be identified, and the outputs from each HRU need to be 

combined. The method can also potentially lead to the creation of a large number of HRUs if the 

simulated watershed is large with many fields and high soil and slope variability, leading to issues 

with model size and data post-processing. 

Watershed-scale SWAT modeling with each field represented as a unique HRU is an important 

method for field-level targeting of BMPs as well as for implementing different management 

practices in separate fields with the same land use, soil, and slope characteristics within the same 

subbasin, which would have been lumped together in the conventional HRU definition process. 

Each field in this method is simulated as a single HRU by creating a unique land use and dominant 

soil type for each field in the simulated watershed. However, as in the single-HRU method for 

simulating a single field, use of a single soil type for each field to be simulated as an HRU can 

lead to loss of soil variability within a field and mask or eliminate small areas that have high 
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potential for soil erosion (Kalcic et al., 2015) and nutrient loss. The method is also limited to only 

one slope characteristics within a field, which can potentially lead to error in the simulation and 

representation of field conditions when a field has multiple slopes. Loss of important land cover 

sections within a field, such as grassland or forested buffers, to simulate the field as a single HRU 

can also lead to inaccurate simulation of surface and subsurface components, as shown by Bosch 

et al. (2010), which can lead to inaccuracies in simulating the field hydrological and nutrient 

transport processes. 

Calibration and validation of watershed-scale SWAT models with each field simulated as an 

individual HRU or as a set of unique HRUs are often performed at the watershed outlet, while the 

outputs are evaluated at the HRU level, which can lead to uncertainty in the model output. Use of 

soft data in evaluating model-simulated outputs at the HRU level, at least in critical HRUs 

identified from the initial model analysis, can help improve the accuracy of model outputs at the 

field or HRU level. Missing spatial references for HRUs and routing water, nutrients, sediments, 

bacteria, and pesticides within a subbasin are still issues with SWAT and are not addressed by the 

use of either method. 

The post-processing tools developed by Daggupati et al. (2011) and Pai et al. (2012) allow 

evaluation of field-level outputs using SWAT HRU outputs from a conventionally developed 

SWAT model, which can greatly reduce model setup time because manual development of land 

use or soil maps and tables is not required for delineating the HRUs required when simulating each 

field as a single HRU. However, the method does not allow simulating and evaluating field-

specific BMP applications, as fields with the same land use and soil can still be lumped into one 

HRU within a subwatershed during model setup. This method was also evaluated for field-level 

outputs from SWAT HRU outputs, but the method was not evaluated for its accuracy by comparing 
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it to field observations, which can lead to uncertainty in model output. Use of soft data for the 

evaluation of post-processed output at field level can, again, be helpful in improving model 

simulation and post-processed model outputs. Daggupati et al. (2011) mentioned that the quality 

of input data can greatly influence critical areas for sediment loss and could easily lead to incorrect 

field-level targeting, thus making evaluation with field observations even more important. Both 

post-processing tools only prepare annual field-level outputs, and improvement to the tools might 

be required if intra-annual evaluations are desired. 

Although field-scale evaluations can be done by relating HRUs defined using the conventional 

method to fields by using land use, soil, and slope characteristics, the method can be limited in its 

use. Field-specific BMP application and management practice data are critical for evaluating the 

impacts of BMPs and management practices on water quantity and quality, but field-specific BMP 

applications cannot be simulated using this method, as fields with the same land use, soil, and 

slope are lumped into one HRU, and there is no exclusive relationship between a field and an HRU. 

Lumping of fields also prevents simulation of field-specific management practices
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Chapter 3 

Multi-Variable Sensitivity Analysis, Calibration, and Validation of a Field-Scale SWAT 

Model: Building Stakeholder Trust in Hydrologic and Water Quality Modeling 

3.1 Abstract 

Multi-variable calibration of a field-scale Soil and Water Assessment (SWAT) model is critical 

for understanding the true impacts of irrigation and nutrient best management practices on 

hydrology, water quality, and agricultural productivity, and for building stakeholder trust for its 

eventual implementation at the watershed scale. This study evaluated the ability of the SWAT 

model to simulate runoff, soil moisture, cotton and peanut yield, and nitrate in conventionally- and 

strip-tilled plots while also evaluating the differences in hydrological and nutrient simulation 

parameters in the two tillage practices. Modeling results showed that SWAT can adequately 

simulate runoff, soil moisture, cotton and peanut yield, and nitrate at the field scale and that 

calibrated values for the Curve Number Of Operation (CNOP) were different for the 

conventionally- and strip-tilled plots and critical to runoff calibration. We found that it was also 

important to change the routing method from Variable Storage to Muskingum and adjust 

DIS_STREAM for runoff simulation if the fields were to be simulated as a watershed rather than 

as an HRU. Sequential calibration of surface runoff, soil moisture, crop yield, and nitrate showed 

that crop yield can be an important consideration for improving SWAT model robustness in 

nutrient transport simulations. Soil moisture calibration did not have a significant effect on runoff 

simulations. Evaluation of the impacts of different management scenarios showed that soil 

moisture sensor-based irrigation, cover crop, and strip tillage had the highest potential for reducing 

nutrient loss and conserving water while maintaining agricultural productivity in South GA. The 
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study also demonstrated to stakeholders that the SWAT model can successfully quantify the 

impacts of different management scenarios on their farm fields. 

3.2 Introduction 

Elevated levels of nitrogen and phosphorus in the rivers, streams, and shallow groundwater of the 

United States, especially in agricultural watersheds, is an important concern for aquatic life and 

human health. Concentrations exceeding 2 to 10 times regional limits set by the U.S. 

Environmental Protection Agency (USEPA) indicate that substantial changes in land use 

management and agricultural practices are needed to reduce nutrient loadings to surface and 

groundwater systems (Dubrovsky et al., 2010). Along with nutrient loss reduction, irrigation water 

management is crucial for agriculture sustainability and conservation of surface and subsurface 

water resources. Agricultural Best Management Practices (BMPs), which include nutrient 

management, cover crops, conservation tillage, and buffers, among others, are important tools for 

reducing water quality and quantity impacts in agricultural watersheds (Prokopy et al., 2008). 

Many field and watershed scale models have been utilized for evaluating the impacts of BMPs 

including Dynamic Watershed Simulation Model (DWSM), Water Erosion Prediction Project 

(WEPP), Annualized Agricultural NonPoint Source model (AnnAGNPS), Revised Universal Soil 

Loss Equation Version 2 (RUSLE2), Environmental Policy Integrated Climate (EPIC), 

Agricultural Policy/Environmental eXtender (APEX) and Soil and Water Assessment Tool 

(SWAT) (Arnold et al., 1998; Bingner et al., 2015; D K Borah et al., 2002; Flanagan et al., 2001; 

Foster et al., 2002; Williams et al., 1989, 2006). Among these, SWAT is arguably the most widely 

used model, especially at the watershed scale. 

SWAT is a physically-based, watershed-scale, continuous-time, semi-distributed, quasi process-

based model designed for the simulation of flow, sediment, nutrient, and pesticide transport from 
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predominantly agricultural watersheds (Neitsch et al., 2011). The model has been evaluated and 

applied extensively for simulation of a wide range of watershed problems (Gassman et al., 2007) 

including evaluation of BMPs at the field scale (Y Chen et al., 2017; Gitau et al., 2008; Maski et 

al., 2008) and watershed scales (Her et al., 2016; Ni and Parajuli, 2018; Uribe et al., 2018).  

Although field and watershed models have been used for decades to address a variety of water 

quality and quantity problems, stakeholder trust in models is still low and scientific findings are 

often rejected when demonstrating a need of unpopular decisions (Voinov and Gaddis, 2008). This 

can also be said to be true for the SWAT model. Demonstrating that SWAT can simulate the 

farm/field scale processes well under different BMPs can be critical to increase stakeholder trust 

in a model and for the eventual evaluation of BMP application at watershed scale for water quantity 

and quality protection. In the SWAT model, the basic unit for all calculations is the hydrologic 

response unit (HRU), which are lumped land areas with a unique combination of land cover, soil, 

and/or slope class within a sub-watershed delineated based on thresholds defined by the modeler. 

As a result, HRUs do not have spatial orientation, and multiple fields within a sub-watershed can 

be represented by a single HRU. This can make it difficult to apply as well as evaluate the impacts 

of conservation practices at the field level as fields similar in land use, soil, and slope within a sub-

watershed can have different management practices. As BMPs are implemented at the field/farm 

scale, it is important to evaluate the ability of SWAT to simulate the hydrological and nutrient 

processes at the field scale and present the model outputs to farmers, land-owners, and other 

stakeholders at this scale in order to build stakeholder trust in models. As a consequence, there 

have been recent studies evaluating the hydrological, sediment, and nutrient processes of SWAT 

using a field/plot scale SWAT model as well as the evaluation of watershed-scale SWAT model 

outputs at field-scale  (Anand et al., 2007; Daggupati et al., 2011; Kalcic et al., 2015; Pai et al., 
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2012). Merriman et al. (2018) identified critical sources areas for highest runoff, erosion, and 

nutrient losses as well as evaluated the impacts of BMPs at the field and watershed scales by setting 

up the SWAT model such that each field was represented by an individual HRU. Kalcic et al. 

(2015), Gitau et al. (2008), Teshager et al. (2016), and Ghebremichael et al. (2010) conducted 

similar studies where they set up the SWAT model such that each HRU represented a unique field 

in the watershed. Maski et al. (2008) evaluated the effects of conventional tillage and no-tillage 

management practices on a sorghum-soybean rotation for runoff and sediment yield from three 

plots with each plot simulated as an individual HRU, while Chen et al. (2017) investigated the 

auto-irrigation function of the SWAT model by simulating the experimental field as a single HRU. 

Daggupati et al. (2011) and Pai et al. (2012) developed post-processing tools that utilized SWAT 

outputs from a watershed-scale model to evaluate individual fields.  

Most field-scale SWAT studies for BMP evaluation have used only a single hydrologic (surface 

runoff) and/or nutrient (nutrient concentrations in surface runoff) variable for model calibration. 

This approach can often provide good model performance results by compensating for errors in 

model simulation with erroneous simulation of other hydrological and nutrient variables that are 

not calibrated. Calibration and validation strategy using multiple variables can help reduce 

parameter uncertainty as well as the problem of equifinality as fewer sets of calibration parameters 

can satisfy the calibration criterion due to interaction among other parameters (Daggupati et al., 

2015) and thereby increase model robustness. It is also important to note that many BMP 

evaluation studies using SWAT at the field-scale have not considered crop yield (Douglas-Mankin 

et al., 2010; Maski et al., 2008; Merriman et al., 2018), which is an important consideration for 

farmers looking to implement management practices, especially when the BMPs involve nutrient 

and irrigation management. Availability of long-term runoff, soil moisture, crop yield, and 
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nutrients in surface runoff data along with detailed management practice data for two experimental 

plots in a cotton-peanut rotation at the University of Georgia farms in Tift County, Georgia (GA) 

presented a unique opportunity for evaluating the importance of multi-variable calibration in the 

simulation of hydrological (using surface runoff and soil moisture) and nutrient (using crop yield, 

and nutrient in surface runoff) processes at the field scale using SWAT for BMP evaluation. This 

can be critical in evaluating the environmental and/or economic trade-offs of implementing 

agricultural BMPs that focuses on nutrient and irrigation management for reducing nutrient loss 

from agricultural fields and water conservation as these BMPs can impact crop yield and thereby 

provide critical information to stakeholders. As the two experimental plots are in conventional and 

strip tillage, the study also provided the opportunity to evaluate the differences in parameterization 

in simulating runoff and nutrients in fields under the two tillage practices at field scale.  

Cotton and peanut are the 2nd and 4th ranked agricultural commodities in the state of GA accounting 

for about 12.5% of the total agricultural economy (University of Georgia CAES, 2018). Since a 

wide range/level of irrigation, nutrient, and tillage management operations are being practiced by 

farmers for cotton and peanut production in GA, understanding their effects on irrigation water 

use, crop yield, and nutrient losses is critical for farmers and stakeholders for protecting water 

quality and reducing water use while optimizing crop yield. Three different nutrient, irrigation, 

and tillage management practices that represent a wide range of cotton and peanut production 

practices in GA were also evaluated to determine the ability of the SWAT model to simulate crop 

yield, irrigation water use, and nutrient loss at the field-scale under different management 

practices. 

There were two main objectives of this study. The first objective was to quantify model accuracy, 

evaluating the importance of multi-variable calibration in improving runoff and nutrient simulation 
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including crop yield. The second objective was to quantify the effect of different levels of 

management practices on crop yield, irrigation water use, and nutrient loss at the field scale for 

cotton and peanut production.  

3.3 Methods 

3.3.1 Study Area 

The two experimental plots that were simulated in this study are located in the University of 

Georgia research farm in Tift County (31o 26’ 13”N, 83o 35’ 17”W) in south-central GA, USA 

(Fig. 3.1). The two plots have been utilized for multiple long-term studies including studying the 

effects of tillage and slope position on field-scale hydrologic processes (Bosch et al., 2012), effects 

of conservation tillage on hydrology and water quality in the coastal plains (Bosch et al., 2005, 

2015), APEX calibration and validation for water and herbicide transport (Plotkin et al., 2013), 

and sediment loss and runoff in a coastal plain landscape (Endale et al., 2014). Plots 1 and 2 (Fig. 

3.1) were selected from a set of six experimental plots due to the availability of soil moisture data 

for these plots. The average annual precipitation of this area is 1209 mm and the average daily 

maximum and minimum temperatures are 25oC and 15oC, respectively. Of the two plots, one was 

under conventional tillage (referred to herein as Plot1), and the second one was under strip tillage 

(referred to herein as Plot2) (. 1). The total drainage area was approximately 0.18 ha and the total 

planted area was approximately 0.14 ha for both plots 1 and 2. Interceptor drains were installed 

upslope of the two plots and between the plots, and earthen berm of 0.6 m were installed around 

each plot to keep the plots hydrologically isolated. H flumes and autosamplers were installed at 

each plot to measure flow and to collect flow-weighted composite samples for water quality 

analyses (Fig. 3.1). Plot2 consisted of Tifton sandy loam soil while Plot1 consisted of Tifton loamy 
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sand and Carnegie sandy loam soils. Both soils are deep and well drained and have moderate 

available water capacity (AWC) (USDA-NRCS, 1983). 

 

Figure 3.1 Experimental plots 1 and 2 at the University of Georgia research farm used for this 

study. Also shown are the location of the experimental farm in Georgia, surface flow and water 

quality data collection points (i.e., H-flume), and berms and interceptor drains that isolate each 

plot horizontally and vertically. 

Both fields were under a cotton and peanut rotation and had the same management practices except 

for tillage operations. Table 3.1 summarizes the crop rotation, cover crop, planting and harvest 

dates, total irrigation and fertilizer application for both the plots from 1999 to 2006. 
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Table 3.1 Crop rotation, fertilizer application, cover crop, and planting and harvesting dates in 

the conventional tillage (Plot1) and strip tillage plots (Plot2) over the simulation period. 

Year Crop 

Winter 

Cover Crop 

Planting 

Date 

Harvest 

Date 

Irrigation 

(mm) 

Precipitation 

(mm) Fertilizer 

1999 Cotton Rye 5/6/1999 9/16/1999 67.05 

915.67 Poultry litter - 4483 

kg/ha 

       N - 87 kg/ha 

2000 Cotton Rye 5/1/2000 9/14/2000 105.66 

1041.9 Poultry litter - 4483 

kg/ha 

       N - 41.6 kg/ha 

2001 Cotton Rye 5/7/2001 10/5/2001 228.6 

886.2 Poultry litter - 4483 

kg/ha 

       N - 97.65 kg/ha 

2002 Peanut Rye 5/9/2002 9/10/2002 177.8 

1145.02 Poultry litter - 4483 

kg/ha 

2003 Cotton Rye 5/12/2003 10/22/2003 25.4 1249.93 N - 104.8 kg/ha 

2004 Peanut Rye 5/10/2004 9/21/2004 127 1131.06 ------------------ 

2005 Cotton Rye 5/23/2005 10/13/2005 50.74 

1486.66 Poultry litter - 4483 

kg/ha 

       N - 107.9 kg/ha 

2006 Peanut Rye 5/15/2006 10/2/2006 50.8 1120.65 ------------------ 

 

3.3.2 SWAT model inputs 

SWAT is a river basin or watershed scale, process-based, semi-distributed, continuous simulation 

model that predicts the effect of land management practices, land-use change, and climate on 

water, sediment, nutrient, crop yield, pesticide, and bacteria in complex watersheds (Neitsch et al., 

2011). As discussed above, although SWAT is a watershed scale model, to increase stakeholder 

trust in SWAT and for its eventual application at the watershed scale for BMP evaluation and 

water quality protection, it is important to demonstrate that the model is simulating farm/field-

scale processes well. As the major calculations in the SWAT at the HRU level incorporates 

processes from the CREAMS, GLEAMS, and EPIC models (Neitsch et al., 2011), which are 

applicable at the field/farm scale, SWAT can also be used to simulate small fields. Major inputs 

to the SWAT, irrespective of the model scale, includes topographic, climate, land-use, soils, and 

management practices.  
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As fine-scale topographic elevation dataset that represented the manual changes to experimental 

plots due to the construction of berms were not available for use in the model setup, 10 m digital 

elevation model (DEM) dataset was acquired from the United States Geological Survey (USGS) 

(Gesch et al., 2002) and modified so that the topographic changes could be represented and each 

field could be simulated as an independent sub-basin. The average slope steepness for the HRU 

was also provided to the model (.hru) based on field calculation. The field-scale SWAT model was 

set up using conventional SWAT model watershed delineation steps (Winchell et al., 2013), unlike 

the single HRU delineation method employed by Maski et al. (2008) and Chen et al. (2017) that 

represented each field using only a single HRU. This allowed for the surface runoff routing and 

soil heterogeneity to be preserved. Daily precipitation and temperature data were recorded on-site 

while the other weather variables required for the model including wind speed, relative humidity, 

and solar radiation were acquired from a station located 8.3 km from the site and maintained by 

the Georgia Automated Environmental Monitoring Network in Tifton, GA. Detailed management 

practices of the two plots including fertilizer and irrigation application, planting and harvest dates, 

tillage operations, cover crop planting and kill operations were available to set up the management 

file (.mgt) for the two plots in the model. Base soil data for the two experimental plots were 

obtained from the Soil Survey Geographic (SSURGO) database (USDA-NRCS, 2019). 

Soil moisture data in the experimental plots were collected using Stevens Water Monitoring 

Systems Inc., (Portland, OR) installed at depths of 51, 127, and 305 mm beneath the soil surface. 

The probes collected soil moisture data every 30 minutes which were averaged to produce daily 

averages for depth intervals of 0-85 mm, 85-216 mm, and 216-305 mm. Hence, the base soil data 

downloaded from SSURGO was modified such that each soil moisture observed depth was 

represented as a layer in the SWAT soil input (.sol) file, which allowed for SWAT to simulate soil 



44 

 

moisture at depths consistent with field observation for evaluation. Figure 3.2A shows the DEM 

and resulting basin, subbasin, and reach (stream network) delineation for Plot1 and Plot2. Figures 

3.2B and 3.2C, respectively, show the land-use and soil map for model setup. 

 

Figure 3.2 Subbasin and HRU delineation and stream network derived from DEM (A); land-use 

map of planting area for Plot1 and Plot2, and contributing area (B); and, soil map over the 

simulated watershed (C). 

3.3.3 Model calibration and validation 

The SWAT model was set up from 1999-2006 as climate, management, and runoff data were 

available for that period. A warm-up period of 3 years was set up by replicating the climate and 

management data from 1999-2001 to minimize loss of observed data for calibration and validation 

to warm-up. The model was calibrated and validated for surface runoff, soil moisture, crop yield, 

and nitrate in surface runoff. Plot1 and Plot2 were calibrated and validated separately as the 

observed hydrology was different for the two plots. The model was, however, calibrated and 

validated for crop yield by calibrating the model to the crop yield of Plot1 and validating to the 

crop yield of Plot2 as the same crop varieties were planted on both plots and only crop parameters 

were adjusted during crop yield calibration. This allowed for using a longer crop yield dataset for 
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model calibration. The model was calibrated using automated and manual techniques. Model 

parameters sensitivity analysis and automated calibration were conducted using the Sequential 

Uncertainty Fitting Algorithm – Version 2 (SUFI-2), an optimization and uncertainty analysis 

program that uses Latin hypercube sampling (Abbaspour et al., 2004), located within SWAT-CUP, 

an automated calibration and uncertainty program developed for SWAT (Abbaspour, 2013). Initial 

parameters selected for the automated calibration were based on literature (Arnold et al., 2012) 

and prior knowledge of the study area (Plotkin et al., 2013). The model was calibrated for sensitive 

model parameters in the sequential order of surface runoff, soil moisture, crop yield, and nitrate in 

surface runoff to first calibrate the hydrological processes followed by nutrient processes loosely 

following the sequence adopted by Nair et al. (2011) and Parajuli et al. (2013). 

The model was calibrated for surface runoff from 1999-2002 and validated from 2003-2006 at a 

daily time step. Curve Number Of Operation (CNOP), which allows for adjusting the curve 

number according to planting or management operations, was used for calibrating surface runoff 

instead of CN2 which represents a general curve number for an HRU, irrespective of the 

management operation. CNOP was adjusted for each planting operation. This also allowed for 

optimizing CNOP values for cotton and peanut grown in conventional tillage and strip tillage 

separately, which was important for simulating management scenarios under conventional and 

strip tillage.  

Soil moisture data were available only from 2001to 2006. Hence, the model was calibrated for soil 

moisture from 2001-2003 and validated from 2004-2006 at a daily time step. The model was 

calibrated for total soil moisture for the top 305 mm (combined soil moisture for the top 3 soil 

layers). The default configuration of SWAT allows for soil moisture simulation output to be 

printed only for the whole soil column in the output.hru file, which is utilized by SWAT-CUP for 
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the auto-calibration process. Hence, the SWAT source code was modified in the hruday.f90 

subroutine and a new SWAT executable was compiled such that the total simulated soil moisture 

for the top 305 mm was exported as an additional variable in the hru output file, which was then 

utilized for automated soil moisture calibration through SWAT-CUP. 

The crop growth module of SWAT simulates biomass accumulation and nutrient content in plant 

at various stages of crop growth along with crop yield at harvest at the end of the growing season 

(Neitsch et al., 2011). The model was calibrated for annual crop yield by calibrating for cotton and 

peanut yield separately. Cotton yield was calibrated using 5 years of yield data (1999, 2000, 2001, 

2003, 2005) and peanut was calibrated using 3 years of yield data (2002, 2004, 2006) for Plot1. 

The model was validated against the observed crop yield of Plot2. 

As the nitrate loading data in surface runoff were available from 2004-2006, the model was 

calibrated for nitrate from 2004-2005 and validated for 2006. Unlike surface runoff and soil 

moisture, nitrate was calibrated and validated at a monthly time scale.  

Coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS) were 

the three objective functions used to optimize the model simulation and were also the statistical 

parameters utilized for model performance evaluation. R2 describes the degree of collinearity 

between simulated and measured data. Value of R2 ranges from 0 to 1 with values close to 1 

indicating less error variance, and values greater than 0.5 are typically considered acceptable 

(Moriasi et al., 2015). NSE demonstrates how well the measured vs simulated plot fits the 1:1 line 

and determines the relative magnitude of the residual variance vs the measured data variance. Its 

value ranges from -∞ to 1 with 1 indicating a perfect fit between simulated and measured data and 

values smaller than 0 indicating that the mean observed value is a better predictor than the 
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simulated value (Moriasi et al., 2015). PBIAS indicates the average tendency of the simulated data 

to be larger or smaller than the observed data. Optimal value of PBIAS is 0.0 and positive or 

negative values of PBIAS indicate bias, underestimation or overestimation, respectively (Moriasi 

et al., 2015). 

3.3.4 Scenario Analysis 

Three levels of management operations with varying levels of fertilizer and irrigation applications 

and tillage operations that represent the wide range of management practices observed in south 

GA were developed for a cotton-cotton-peanut rotation with suggestions and input from the 

University of Georgia (UGA) Extension. Management levels were developed for a cotton-cotton-

peanut rotation as it is the most common rotation being practiced in GA for cotton and peanut. 

Management level 1 (Mgt1) represents the most environmentally friendly practice with optimized 

fertilizer and irrigation water application with soil moisture sensor (SMS) based irrigation and 

UGA recommended fertilizer application, strip tillage, and cover crop. Management level 2 (Mgt2) 

represents the most common agricultural practices being practiced by farmers in south GA which 

includes UGA recommended fertilizer and irrigation application for both crops with conventional 

tillage and no cover crop, and Management level 3 (Mgt3) represents the operations with high 

fertilizer and irrigation application, conventional tillage and no cover crop. Details of the three 

management levels for cotton and peanut are presented in Table’s 3.2 and 3.3, respectively. 
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Table 3.2 Description of the three management level scenarios for Cotton in South GA. 

Cotton Management level 1 Management level 2 Management level 3 

Tillage Strip tillage Conventional tillage Conventional tillage 

Irrigation Soil moisture sensor based UGA checkbook based Minimum 25.4 mm per week 

Fertilizer 33.6 kg/ha N – starter 4483 kg/ha poultry litter before planting 4483 kg/ha poultry litter before planting 
 

78.6 kg/ha N- sidedress 78.6 kg/ha N- sidedress 33.6 kg/ha N - starter 
   

78.6 kg/ha N - sidedress 

Cover crop Rye No cover crop No cover crop 

 

Table 3.3 Description of the three management level scenarios for Peanut in South GA. 

Peanut Management level 1 Management level 2 Management level 3 

Tillage Strip tillage Conventional tillage Conventional tillage 

Irrigation Soil moisture sensor based UGA checkbook based Minimum 25.4 mm per week 

Fertilizer -------------------- -------------------- 4483 kg/ha poultry litter before planting  

Cover crop Rye No cover crop No cover crop 

 

The three management level scenarios were simulated using the calibrated model over a 30-year 

historical climate data for the study area which was derived from the North American Land Data 

Assimilation System (NLDAS-2) climate forcing dataset. NLDAS-2 has a spatial resolution of 

1/8th degree covering the continental United States (CONUS) and is available at 1-hour temporal 

resolution (Xia et al., 2012).  

The SMS based irrigation in Mgt1 scenario was simulated using the auto-irrigation feature 

available in SWAT. Auto-irrigation in SWAT can be triggered based on two water stress threshold: 

1) plant water demand and 2) soil water content (Neitsch et al., 2011). Plant water demand 

threshold triggers irrigation when the plant experiences a user-defined reduction in plant growth 

and was used as the trigger for auto-irrigation in this study. Multiple simulation trials and 

comparison to typical irrigation amounts observed over the growing season using SMS in the 

region for cotton and peanut showed that a threshold of 0.6 for cotton and 0.7 for peanut provided 

the most reasonable irrigation values and was used in the scenario analysis. SWAT applies a 



49 

 

default value of 25.4 mm each time auto-irrigation is triggered which was also adjusted to 19.05 

mm based on the recommendation from the UGA Extension office. To make sure that the auto-

irrigation function triggered only during the growing season and not when the cover crop is 

growing, a new threshold of 0.1 was used after harvest. Evaluation of SWAT output showed no 

auto-irrigation application in the non-growing season with the adjusted threshold. The UGA 

checkbook irrigation method for Mgt2 estimates irrigation requirement for each week by 

calculating the difference in precipitation and plant water requirement for that week. Table 3.4 

shows the plant water required for cotton and peanut based on UGA Extension recommendation 

(University of Georgia Extension, 2018; Whitaker et al., 2018). Irrigation scenario in Mgt3 was 

simulated such that a minimum of 25.4 mm of water was applied by a combination of precipitation 

and irrigation, except for weeks which had the crop water demand higher than 25.4 mm, and the 

corresponding values were matched. Strip tillage and conventional tillage were simulated by using 

the calibrated CNOP values of cotton, peanut, or rye. 

Results from the long term simulation of the three management levels for the crop rotation allowed 

us to understand the differences in irrigation water use, nutrient loss, and crop yield at the 

farm/field-scale level which can provide critical information to farmers, decision-makers, and 

stakeholders regarding BMPs and cost-share programs that can be introduced to reduce the water 

quality and quantity impacts from agricultural fields.  
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Table 3.4 UGA recommended crop water demand for cotton and peanut. 

Weeks after 

planting 

Cotton water demand 

(mm/week) 

Peanut water demand 

(mm/week) 

1 1.1 2.1 

2 4.5 6.5 

3 7.3 10.0 

4 10.3 13.9 

5 14.3 19.3 

6 18.0 24.0 

7 21.7 27.6 

8 27.4 32.8 

9 32.6 37.8 

10 37.3 40.4 

11 38.5 40.2 

12 36.3 38.0 

13 36.1 37.4 

14 33.8 32.9 

15 29.4 29.4 

16 22.4 24.6 

17 17.6 21.2 

18 12.9 17.0 

19 9.0 12.4 

20 5.5 7.5 

21 3.0 3.5 

22 1.3 0.4 

23 0.5 0.0 

 

3.4 Results and Discussion 

The initial parameter and parameter ranges used for model sensitivity analysis to identify important 

parameters for calibration using SWAT-CUP are presented in Table 3.5. During automated and 

manual calibration, the calibrated model parameters (identified through sensitivity analysis) were 

made sure to be within a realistic uncertainty range typical of the management practices and land 

use. 
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Table 3.5 SWAT parameters and parameter ranges for initial sensitivity analysis for surface 

runoff, soil moisture, crop yield, and nitrate in surface runoff calibration. 

Variable Parameter Description SWAT 

input file 

Adjustment 

[a] 

Initial 

Range 

Surface runoff CNOP Curve number Of operation, moisture condition II HRU r -0.3,0.3 
 

ALPHA_BF Baseflow alpha factor GW v 0.01,1 
 

GW_DELAY Groundwater delay, days GW v 0, 500 
 

OV_N Manning’s “n for overland flow” HRU r -0.3,0.3 
 

SURLAG Surface runoff lag coefficient BSN v 1-20 
 

GWQMN Threshold depth of water in shallow aquifer for 

required for return flow to occur 

GW v 0.01 – 5000 

Soil moisture SOL_K Saturated hydraulic conductivity SOL r -0.3,0.3 
 

SOL_BD Moist bulk density SOL r -0.3,0.3 

 ESCO Soil evaporation compensation factor HRU v 0.01,1 
 

SOL_AWC Available water capacity of the soil layer SOL r -0.3,0.3 

Crop yield BIO_E Radiation use efficiency Plant r -0.3,0.3 
 

HVSTI Harvest index for optimal growing conditions Plant r -0.3,0.3 

 BLAI Maximum potential leaf area index Plant r -0.3,0.3 

 WSYF Lower limit of harvest index Plant r -0.3,0.3 

Nitrate SOL_CBN Amount of organic carbon in the soil layer SOL r -0.3,0.3 

 CMN Rate coefficient of mineralization of active organic 

nutrients 

BSN r -0.3,0.3 

 RSDCO Residue decomposition coefficient BSN r -0.3,0.3 

 NPERCO Nitrate percolation coefficient BSN v 0.01,1 

 SDNCO Denitrification threshold water content BSN v 0.9,1.10 

 CDN Denitrification exponential rate coefficient BSN v 0,3 

[a] Indicates the type of model parameter adjustment. ‘r’ represents the model parameter adjustment by multiplying the original 

parameter with the  adjustment factor (1 +  r). ‘v’ represents replacement of the original parameter value by a value within the 

initial range. 

3.4.1 Surface runoff calibration and validation 

Preliminary evaluation of simulated surface runoff before calibration showed small volumes of 

simulated runoff (@10-7 m3/s) at the outlet of both plots for multiple days following precipitation 

when there was no flow observed in the plots. These volumes were below the level of detection of 

the instrumentation. Changing the default Variable Storage channel routing method, which is 

based on continuity equation, to Muskingum which uses a combination of wedge and prism storage 
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(Neitsch et al., 2011) simulated no flow conditions better and was used in the model. Along with 

adjusting the channel routing method, DIS_STREAM (average distance to the stream in .hru file), 

which has a default value of 35 m, was another important parameter that was adjusted to reduce 

simulated flow in days with no flow. Adjusting DIS_STREAM, however, did not have much effect 

on model performance as the simulated flows were very close to 0 in days with no observed flow. 

DIS_STREAM was adjusted to 15 m in Plot1 HRUs and 25 m in Plot2 HRUs after multiple 

iterations of manual adjustment. It is important to note that the adjustment of routing method and 

DIS_STREAM were influential in the flow routing simulation from within the field to the outlet.  

Global sensitivity analysis results from SWAT-CUP showed CNOP (P-value < 0.0001) and 

GWQMN (P-value = 0.001) as the two sensitive parameters to surface runoff calibration in Plot1 

and CNOP (P-value < 0.0001) and GW_DELAY (P-value = 0.0005) as the two parameters 

sensitive to surface runoff calibration in Plot2 from the initial parameters used in surface runoff 

calibration. It is important to note that surface runoff was not sensitive to baseflow alpha factor 

(ALPHA_BF) for either plot. Also, the calibrated GWQMN value for Plot1 was 3753 mm and 

GW_DELAY value for Plot2 was 42.4 days, which, although unrealistic, constrained the model to 

have no groundwater return flow contribution to streamflow. As a result, the total simulated 

streamflow consisted of contributions only from overland flow and lateral sub-surface flow, 

accurately representing the overland and lateral sub-surface flow dominated surface hydrology in 

the field plots. This also implied that surface and lateral flows are the important flow mechanisms 

that need to be considered for field-scale SWAT simulation.  

Model performance evaluation after calibration showed that SWAT does a satisfactory job of 

simulating daily surface runoff in the conventionally tilled Plot1, with daily values of R2 of 0.68, 

NSE of 0.64, and PBIAS of 4.90%, as well as in the strip-tilled Plot2 with a R2 of 0.50, NSE of 
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0.49, and PBIAS of 1.50% (Table 3.7) based on the model performance metrics of Moriasi et al. 

(2015). Plot2 during the calibration period from 1999-2002 had very little runoff from 1999-2001 

and exceptionally high runoff in 2002. This led to the model under-simulating runoff events in 

2002 and over-simulating other years, producing a poor model performance for surface runoff 

simulation for Plot2 when compared to Plot1 (Fig. 3.3). It is significant to note that there were a 

number of particularly large events which occurred in 2002, beginning with 196 mm of rainfall 

occurring in July of that year followed by high precipitation in October and November of the same 

year (Endale et al., 2014). The model appeared to have difficulty representing these high surface 

runoff producing conditions following extended dry periods. Similar to Plot2, the model was not 

able to simulate the runoff events of July-Nov 2002 in Plot1 which was also not observed in the 

preceding July-Nov months of calibration although the precipitation and management operations 

for that time periods were similar (Fig. 3.3). This shows the importance of calibrating the model 

over a long climate period for the model to be able to simulate surface runoff under various weather 

conditions.  

Simulated flow evaluation for the conventionally-tilled and strip-tilled plot shows that SWAT can 

adequately simulate surface hydrology in fields under both tillage operations. The calibrated 

CNOP values (Table 3.6), which was the most sensitive parameter for surface runoff calibration 

in both plots, were different for the two plots. This shows that selecting the right CNOP or CN2 

values is critical for simulating the effects of strip tillage and conventional tillage on surface 

hydrology at the field scale.  
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Figure 3.3 Precipitation (top), and Simulated vs Observed daily runoff for Plot1 (middle) and 

Plot2 (bottom) for the calibration period (1999-2002). 

Table 3.6 Average CNOP values for Plot1 and Plot2 for different crops after calibration. 

Adjusted CNOP Default Calibration 

 Plot1 Plot2 Plot1 Plot2 

CNOP (Cotton) 83 83 86 75 

CNOP (Peanut) 83 83 86 75 

CNOP (Rye) 81 81 71 71 

 

Model performance for surface runoff simulation during validation was similar to calibration for 

Plot1 with R2 of 0.72, NSE of 0.59, and PBIAS of 4.00%. However, the model evaluation statistics 

were much improved for Plot2 with R2 and NSE both equals to 0.83. PBIAS of -17.20% showed 

that the model over simulated runoff in the validation period while slightly under-simulated in the 

calibration period (Table 3.7). This also shows that the model was adequately parameterized for 

simulation of surface runoff in both fields. Larger precipitation events during validation having 

higher total rainfall than during calibration could have contributed to the model overestimating 

runoff in large precipitation events during validation in both fields (Fig. 3.4). This indicates that 

the model parameterization could be further improved with a longer calibration period with bigger 
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rainfall events. Successful calibration and validation of runoff simulation for the two fields also 

demonstrated that SWAT can adequately simulate flow routing even at the field scale although the 

flow routing methods and mechanisms in SWAT were ideally designed for large watersheds. 

 

Figure 3.4 Precipitation (top), and Simulated vs Observed daily runoff for Plot1 (middle) and 

Plot2 (bottom) for the validation period (2003-2006). 

Table 3.7 Model performance evaluation of surface runoff simulation for Plot1 and Plot2 during 

calibration (1999-2002) and validation (2003-2006). 

Goodness of Fit Measure Plot1 Plot2 

 Calibration Validation Calibration Validation 

R2 0.68 0.72 0.50 0.83 

NSE 0.64 0.59 0.49 0.83 

PBIAS 4.9% 4.0% 1.5% -17.2% 

 

3.4.2 Soil moisture calibration and validation 

Soil moisture is an important hydrologic variable driven by saturated and unsaturated flow 

conditions that can affect surface runoff, infiltration, crop growth, and other important processes. 

SWAT has a simplified module for soil moisture simulation that only simulates saturated soil water 
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flow between the multiple soil layers and uniformly distributes soil water within a given layer 

using a cascading approach. Soil water is allowed to percolate or move between soil layers only 

when the water quantity exceeds the field capacity for the layer (Neitsch et al., 2011). Global 

sensitivity analysis showed that soil moisture was sensitive to SOL_AWC, SOL_BD, SOL_K, and 

ESCO for both fields (P-value < 0.05). Unlike surface runoff, there is no recommended statistical 

performance measure for soil moisture evaluation. Evaluation of SWAT soil moisture simulation 

using remotely sensed data had R2 ranging from 0.18 to 0.3 (Rajib et al., 2016). Cao et al. (2006) 

showed similar difficulty with simulating soil moisture when compared to observed soil moisture 

data. 

Soil moisture simulation evaluation after the calibration of sensitive parameters (Table 3.8) at the 

field scale for Plot1 and Plot2 showed that SWAT was able to simulate soil moisture adequately 

for both plots capturing the daily trend well (Fig. 3.5 and 3.6; Table 3.9) demonstrating that SWAT 

can simulate soil moisture at the field level. The model was, however, not able to match the peak 

soil moisture conditions in both plots, especially during the non-growing season. The measured 

peak conditions represented rather short periods where the soil moisture exceeded field capacity, 

a condition the model is unable to represent. It is also important to note that the soil moisture was 

slightly under-simulated during validation in 2004 in Plot2 (Fig. 3.6), although it captured the trend 

well. As the observed soil moisture for Plot2 was lower than that observed in Plot1 even though 

Plot2 was in strip tillage which tends to enhance infiltration and increase the soil water holding 

capacity (Truman et al., 2003), calibration to observed soil moisture resulted in Plot2 having lower 

SOL_AWC values than Plot1 (Table 3.8). Lower observed soil moisture in Plot2 could have 

possibly resulted from the easy transfer of water to increased depths due to the absence of tillage 

pan as a result of reduced tillage operations in the strip tilled Plot2 along with the fact that enough 
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water must infiltrate to allow sorption into the highly aggregated soil that results from strip tillage. 

A sequential calibration approach was followed in which soil moisture was calibrated after surface 

runoff, and it was observed that although soil moisture calibration improved simulation of soil 

moisture, it did not have a considerable effect on the simulation of surface runoff, which was also 

noted by several other studies (Nilawar et al., 2017; Patil and Ramsankaran, 2017; Rajib et al., 

2016). This tends to indicate the importance of the CNOP parameter relative to the soil moisture 

related parameters for runoff calibration. 

Table 3.8 Adjusted .sol and .hru parameters for soil moisture calibration in Plot1 and Plot2. 

Parameters SWAT input file Adjustment [a] Plot 1 Plot 2 

   Initial  Calibrated Initial Calibrated 

SOL_AWC SOL r -0.3,0.3 0.26 -0.3,0.3 0.05 

SOL_BD SOL r -0.3,0.3 -0.12 -0.3,0.3 -0.02 

SOL_K SOL r -0.3,0.3 0.3 -0.3,0.3 0.21 

ESCO HRU v 0.01,1 0.84 0.01,1 0.80 

[a] Indicates the type of model parameter adjustment. ‘r’ represents the model parameter adjustment by multiplying the original 

parameter with the  adjustment factor (1 +  r). ‘v’ represents replacement of the original parameter value by a value within the 

initial range. 
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Figure 3.5 Comparison of daily simulated and observed soil moisture for Plot1 during 

calibration (top) and validation (bottom). 

Table 3.9 Model performance evaluation of daily soil moisture simulation for Plot1 and Plot2 

during calibration (2001-2003) and validation (2004-2006). 

Goodness of Fit Measure Plot1 Plot2 

 Calibration Validation Calibration Validation 

R2 0.58 0.44 0.39 0.45 

NSE 0.20 0.14 0.14 0.29 

PBIAS 7.20% -5.00% 1.70% 15.50% 
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Figure 3.6 Comparison between simulated and observed soil moisture for Plot2 during 

calibration (top) and validation (bottom). 

3.4.3 Crop yield calibration and validation  

Global sensitivity analysis on the selected initial crop yield parameters showed that BIO_E, 

HVSTI, BLAI, and EPCO were the sensitive parameters for both cotton and peanut (P-value < 

0.05), while WSYF was not sensitive for either crop (P-value = 0.47 (cotton); P-value = 0.33 

(peanut)). Cotton and peanut yields were calibrated using observed yield data from Plot1, the 

calibrated parameter values for which are presented in Table 3.10. Statistical results showed 

satisfactory model performance in the simulation of cotton and peanut with R2 of 0.41, NSE of 

0.35 and PBIAS of -0.30%. Year-by-year analysis of crop yield during calibration (Fig. 3.7) shows 

that the model was able to simulate peanut much better than cotton as the annual percent 

discrepancy of peanut yield was less than 18% but was as high as 41% for cotton. Chen et al. 

(2016) and Mittelstet et al. (2015) reported similar difficulty in simulating irrigated cotton yields 

using SWAT.  Cotton yield in 2000 is the only year when the percent discrepancy between 

simulated and observed yield was greater than 30% during calibration (Fig. 3.7). Assessment of 
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the field management practices showed that a much lower amount of nitrogen fertilizer (41.6 

kg/ha) was applied when compared to other years (> 87 kg/ha) with cotton which could have 

resulted in the lower observed cotton yield. It seems SWAT was not able to replicate that N 

deficiency observed in the field which could have resulted in higher simulated yield for that year. 

Incomplete and variable boll opening of cotton in the plot leading to reduced observed cotton yield 

could also have contributed to the increased difference between the simulated and observed cotton 

yield. 

Table 3.10 Adjusted plant and .hru parameter values for cotton and peanut yield calibration. 

Parameters SWAT input file Cotton Peanut 

  Initial Calibrated Initial Calibrated 

BIO_E Plant 15 20.56 20 18.6 

HVSTI Plant 0.4 0.56 0.4 0.45 

BLAI Plant 4 4.59 4 5.25 

EPCO HRU 0.6 0.5 0.6 0.5 

 

 

Figure 3.7 Comparison of simulated vs observed annual crop yields during calibration in Plot1 

(top) and validation in Plot2 (bottom). Percentage indicates the difference between simulated and 

observed crop yield for each year. 
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Validation of the crop yield by using the calibrated parameters to simulate crop yield in Plot2 

showed slightly better performance with R2 of 0.48, NSE of 0.48, and PBIAS of 0.60%. Similar 

to the crop yield during calibration, peanut was simulated better than cotton and 2000 cotton yield 

had the highest discrepancy between simulated and observed yield. The percent discrepancy was 

less than 31% in all the other years. Evaluation of the difference between observed yields and 

simulated yields for Plot1 and Plot2 for each year shows that SWAT is able to simulate yield 

variability for cotton for the two plots much better than peanut (Table 3.11). The observed yield 

difference for peanut between the two plots was as high as 922.7 kg ha-1 in 2004 but the highest 

simulated yield difference was only 17.8 kg/ha. Hence, although SWAT could simulate the 

temporal variability of peanut, the model was not able to simulate the tillage impacts on peanut 

yield. 

Table 3.11 Observed and simulated crop yield difference between Plot1 and Plot2 for each year. 

Crop Year Observed crop yield difference 

between plots (kg/ha) 

Simulated crop yield difference between 

plots (kg/ha) 

Cotton 1999 209.5 -201.1 

Cotton 2000 249.8 64.9 

Cotton 2001 -218.0 26.4 

Peanut 2002 -42.5 3.3 

Cotton 2003 -124.3 267.3 

Peanut 2004 -922.7 -17.8 

Cotton 2005 256.8 85.4 

Peanut 2006 315.1 -7.4 

 

3.4.4 Nitrate calibration and validation 

A review of multiple studies by Borah and Bera (2004) has shown that SWAT is more suitable for 

simulating nutrients at a monthly time scale and many of the studies with daily nutrient simulation 

had poor results. As a result, SWAT was calibrated and validated for nitrate loading in surface 

runoff at a monthly time scale. Automated calibration for nitrate loading with SWAT-CUP resulted 
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in drastically reduced model performance for crop yield simulation even after running a multi-

objective calibration scheme using both crop yield and nitrate loading data. Hence, the model was 

manually calibrated for nitrate loading and the automated calibration run was only utilized for 

global sensitivity analysis to determine the sensitive parameters for nitrate calibration in surface 

runoff. Global sensitivity analysis showed that nitrate loads were sensitive to SDNCO, NPERCO, 

CMN, and CDN (P-value < 0.05). The automated calibration trial, however, showed that 

calibration of crop yield can be an important constraint for calibrating nutrient simulation and can 

help reduce the uncertainty in nutrient simulation in SWAT. The calibration process also gives a 

higher confidence in the other nutrient processes in SWAT that were not directly calibrated. 

Model performance statistics for nitrate loading simulation in surface runoff after calibration 

(Table 3.12) for both Plot1 and Plot2 are presented in Table 3.13. Overall, the model did a 

satisfactory job of simulating monthly nitrate loadings in surface runoff. However, the model 

performed better in simulating nitrate loadings in the strip-tilled Plot2 than the conventionally-

tilled Plot1 during calibration and validation, likely due to the better predictions of surface runoff 

for the strip-till (Table 3.7). Bosch et al. (2015) had noted that nitrate loads were highly influenced 

by water volumes in the experimental plots as nitrate concentrations were fairly stable. It is 

important to note that the calibration parameters for surface runoff and soil moisture were 

controlled at the hru level (Table 3.5); thus, calibration of surface runoff was performed 

individually for Plot1 and Plot2. Nitrate calibration was, however, performed concurrently for both 

plots as the parameters adjusted for nitrate loading calibration were adjusted in the .bsn file which 

applies to both Plot1 and Plot2 during simulation. 
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Table 3.12 Adjusted .bsn parameter values for nitrate loading calibration. 

Parameters SWAT input file Initial Calibrated 

SDNSCO BSN 1.1 0.99 

NPERCO BSN 0.2 0.15 

CMN BSN 0.0003 0.0015 

CDN BSN 1.4 3 

 

Table 3.13 Model performance evaluation of monthly nitrate loading simulation for Plot1 and 

Plot2 during calibration (2004-2005) and validation (2006). 

Goodness of Fit Measure Plot1 Plot2 

 Calibration Validation Calibration Validation 

R2 0.46 0.46 0.70 0.58 

NSE 0.29 0.41 0.65 0.51 

PBIAS -10.30% 21.00% 21.80% -26.40% 

 

PBIAS values for Plot1 and Plot2 show that the total nitrate loading simulated during calibration 

and validation was within 26.4% of the observed nitrate loading, which shows that SWAT can 

estimate nitrate loss from agricultural fields reasonably well at the field scale. This also shows that 

SWAT is capable of simulating the impacts of BMPs on nitrate loss at the field scale. Although 

nitrate loading was evaluated over only a 3-year period, the evaluated period included years with 

both cotton and peanuts. This gives us confidence that the model is capable of simulating nitrate 

loss in years with either cotton or peanut. Graphical comparison of the simulated vs observed 

nitrate loading also shows that the model is able to capture the temporal variation in nitrate loss in 

both Plot1 (Fig. 3.8) and Plot2 (Fig. 3.9).  
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Figure 3.8 Comparison of simulated vs observed monthly nitrate loading for Plot1 during 

calibration (top) and validation (bottom). 

 

Figure 3.9 Comparison of simulated vs observed monthly nitrate loading for Plot2 during 

calibration (top) and validation (bottom). 

3.4.5 Management scenario analysis 

The calibrated model was run for 27 years of historical data (1990-2016) with a 3-year warmup 

period (1987-1989) for the three management level scenarios (Tables 3.2 and 3.3). Mean 
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differences in yield, irrigation water use, and nutrient loss between the three levels were evaluated 

using One-way ANOVA with post-hoc Tukey test at 95% confidence interval (CI).  

Cotton yield evaluation for the three management levels showed that Mgt1 had a slightly lower 

yield averaging close to 4500 kg/ha. Mgt2 and Mgt3 averaged close to 5000 kg/ha (Fig. 3.10). 

Cotton yield for Mgt2 and Mgt3 were not significantly different. Mgt1 also showed a higher 

variability in cotton yield than Mgt2 and Mgt3 as demonstrated by the larger interquartile range 

for Mgt1 (Fig. 3.10). Evaluation of the nitrogen and water stress for the three management levels 

in the SWAT output showed that cotton suffered from higher nitrogen stress in Mgt1, which could 

have resulted from the lack of poultry litter application before planting as applied in Mgt2 and 

Mgt3, thereby resulting in lower and more variable yield. Peanut yield, on the other hand, had 

statistically similar yield for all three levels (Fig. 3.10). Peanuts are legumes and SWAT does not 

allow legumes to experience nitrogen stress, which led to no nitrogen stress in all three levels and 

the yield variability observed is a result of water stress. Yield variability in peanuts was slightly 

higher in Mgt2 than in Mgt1 and Mgt3 but was much lower when compared to the variability in 

cotton yield for the three managements.  

Irrigation water use for cotton were not statistically different for Mgt1 and Mgt2 but lower than 

irrigation water use for Mgt3 by an average of 100 mm per year (Fig. 3.11). Evaluation for peanut 

showed that Mgt1 with SMS irrigation had the lowest application averaging close to 100 mm per 

year, while Mgt3 had the highest irrigation water use averaging close to 300 mm per year. Mgt2 

averaged slightly less than 250 mm per year (Fig. 3.11). For both crops, Mgt1 with SMS irrigation 

had the lowest average water use and Mgt3 had the highest average water use even though average 

yield for Mgt1 was similar to Mgt3 for peanut and only slightly lower than Mgt3 for cotton which 

resulted due to higher nitrogen stress.  
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Figure 3.10 Simulated annual cotton yield (left) and peanut yield (right) for the three 

management scenarios. Same colors indicate that the means are not significantly different for 

each other. Blue circles in the box-plots represent the simulated data for each year of the scenario 

simulation. 

 

Figure 3.11 Simulated annual water use for cotton (left) and peanut (right) for the three 

management scenarios. Same colors indicate that the means are not significantly different for 

each other. Blue circles in the box-plots represent the simulated data for each year of the scenario 

simulation. 

Although the model was only calibrated for nitrate loading in surface runoff, nitrate loss for the 

three scenarios were evaluated in both surface runoff and leaching from below the root zone. 

Calibration and validation of the model for multiple variables in the hydrological and nutrient 

processes gives confidence in nutrient leaching evaluation and assessing the relative differences 

in nutrient leaching between the three scenarios.  
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Mgt3 had the highest nitrate loss in both surface runoff and leaching while Mgt1 had the lowest 

loss (Fig. 3.12). This result was expected as Mgt3 had the highest nitrogen fertilizer application, 

was under conventional tillage, and had no cover crop while Mgt1 had no poultry litter application, 

had cover crop, and was under strip tillage practice. Other studies have also shown that poultry 

litter application can be a considerable source of nutrient loss from agricultural fields (Karki et al., 

2018). As nitrate is highly soluble and mobile, and does not absorb in soils (Jury and Nielsen, 

1989), it is easy to lose nitrate in leaching with excess irrigation and precipitation. Comparison 

between nitrate loss in surface runoff and leaching showed that nitrate loss from leaching below 

the soil zone was many times higher and a critical information for water quality management of 

sub-surface sources if the groundwater table is near the surface. 

 

Figure 3.12 Simulated annual nitrate loss in surface runoff (left) and leaching below soil root 

zone (right) for the three management scenarios. Same colors indicate that the means are not 

significantly different from each other. Blue circles in the box-plots represent the simulated data 

for each year of the scenario simulation. 

Time series evaluation of nitrate leaching for the 3 scenarios (Fig. 3.13) showed that nitrate 

leaching was higher in Mgt2 and Mgt3 for majority of the simulation years which could be 

expected because of higher fertilizer application as well as the absence of rye cover crop in Mgt2 

and Mgt3. It was also observed that nutrient leaching from Mgt2 and Mgt3 was higher in years 
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with higher precipitation (Fig. 3.13). The highest nitrate leaching was observed in 2013 which was 

preceded by three years of low precipitation and indicates storage of excess nutrient over the low 

precipitation years. Nitrate loss was also higher in most years with cotton than with peanut which 

resulted from the additional nitrogen application in cotton. 

 

Figure 3.13 Time series of nitrate leaching from the three management levels (bottom) and 

annual precipitation (top). “ct” and “pn” indicates year with cotton and peanut plantation, 

respectively. 

Evaluation across the three management levels showed that Mgt1 has the highest potential for 

reducing nitrate loss in surface runoff and leaching, efficiently using water for irrigation, and 

maintaining high yield as it used the least amount of water for irrigation and had the lowest nitrate 

loss with comparable yields. The study shows that changing farming practices from Mgt2, which 

is being practiced by the majority of farmers for cotton and peanut production in south GA, to 

Mgt1 can potentially help reduce nitrate pollution and conserve water resources without any yield 
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loss for peanuts and only slight loss for cotton. Additional costs associated with installing SMS 

systems and winter cover crops could be a big deterrent in persuading farmers and stakeholders to 

shift from Mgt2 to Mgt1 which is where cost-share and incentive programs by federal and state 

agencies can play a pivotal role. Although the scenario analysis from the calibrated model provides 

a good understanding of the differences in irrigation water use, nitrate loss, and cotton yield for 

the three management systems, exact numbers provided by the model for irrigation water use, crop 

yield, and nitrate loss should be used with caution. 

3.5 Summary and Conclusions 

This study showed that SWAT can adequately simulate surface runoff, soil moisture, cotton and 

peanut yield, and nitrate transport at the field scale. Adjusting the routing methods from Variable 

Storage to Muskingum and adjustment of DIS_STREAM was critical for flow routing and 

simulating surface runoff at the plot scale, a scale that can have multiple no-flow days. Surface 

runoff calibration for the conventionally- and strip-tilled plots 1 and 2 separately showed that 

adjusting CNOP values accordingly for conventional tillage and strip for tillage is very important. 

Although SWAT was able to simulate soil moisture, it did not have a large influence on the model 

performance for surface runoff simulation at the field scale. Furthermore, although the model was 

able to simulate both cotton and peanut yields reasonably well, the model was able to simulate 

temporal variation in peanut yield better than cotton yield. However, the simulated peanut yield 

differences between Plot1 and Plot2 was much lower than observed in the two plots, indicating 

that SWAT was not able to simulate the tillage impact on peanut yield. Inability of the model to 

simulate low observed cotton yields in 2000 which had low fertilizer application as compared to 

other years possibly indicates to the inability of the model to simulate N deficiency. Sequential 

calibration of crop yield and nitrate showed that crop yield calibration can be an important 
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consideration for simulating nitrate transport while reducing model uncertainty and increasing 

model robustness, as calibration of nitrate had an effect on model performance for crop yield 

calibration. 

Simulation of the three management scenarios showed that SWAT can be used as a tool to evaluate 

BMPs for crop yield, nutrient transport, and irrigation water use at the field scale. Evaluation of 

the three management scenario results showed that Mgt1 with soil moisture sensor-based 

irrigation, cover crop, and strip tillage had the highest potential for reducing nutrient loss and 

conserving water while maintaining agricultural productivity in south GA. The results also showed 

that poultry litter can be an important source of nitrate loss from agricultural fields and that nitrate 

loss occurred predominantly through leaching from below the root zone. Application of the SWAT 

model at the field scale as done in this study can increase stakeholder trust in the model, for its 

eventual application at the watershed scale for best management practice evaluation and water 

quality protection. 
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Chapter 4 

Assessing the Impacts of Increased Groundwater Withdrawal in the lower Apalachicola-

Chattahoochee-Flint River Basin using MODFLOW 

4.1 Abstract 

Groundwater withdrawal for irrigation is an important issue in the lower Apalachicola-

Chattahoochee-Flint (ACF) River Basin of southeastern United States (U.S.) as it has led to a 

decline in groundwater levels as well as a reduction in baseflow. As the withdrawal is further 

projected to increase in the future, understanding the potential impacts of this increase is critical 

for developing long-term management plans, especially during prolonged drought conditions. This 

study developed a two-layered three-dimensional groundwater model for the Upper Floridan 

Aquifer (UFA) in the lower ACF River Basin using MODFLOW-NWT to evaluate the impacts of 

the projected increase in irrigation in the groundwater levels as well as the stream-aquifer flux in 

the region. A transient model was developed from 2007-2013 that was calibrated for 2,360 daily 

groundwater level observations and stream-aquifer flux at six reach sections. Simulation of the 

projected irrigation scenario showed a reduction in groundwater levels by as much as 2.38 m while 

a general reduction was observed in much of the model domain. Large groundwater level 

reductions were mostly observed in the regions where the aquifer is comparatively thinner. 

Evaluation of the changes in stream-aquifer flux showed that flux reduced by as much as 33% with 

high reductions observed in the Lower Flint and Kinchafoonee watersheds within the model 

domain. This study also helped identify regions within the lower ACF River Basin that were 

important for groundwater recharge and most susceptible to the impacts of an increase in irrigation 

which can be critical for the sustainability of the aquifer and the surficial streams. 
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4.2 Introduction 

Agriculture is critical to the economy of the lower Apalachicola-Chattahoochee-Flint (ACF) river 

basin in South Georgia, United States (U.S.), with more than $2 billion generated in farm-based 

revenue annually (University of Georgia CAES, 2014). The region is the leading producer of 

peanuts and pecan in the U.S. and is also a major producer of cotton and corn. A major underlying 

factor for the intense agricultural production in the region is the presence of the Upper Floridan 

Aquifer (UFA), which supplies about 80% of the total irrigation demand for irrigating more than 

200,000 hectares of agricultural land through more than 4,000 irrigation wells (GA EPD, 2016). 

The UFA, which is made up of karst limestone, is the primary source of water for agricultural, 

industrial, and municipal use in the region and is amongst the most productive aquifer systems in 

the world. It supplied an estimated 1.7 million cubic meters (MCM) of water for irrigation in 2015, 

but withdrawals from the UFA can be as high as 3.6 MCM during a drought year (GA EPD, 2016). 

The UFA is in direct hydraulic connection with the surficial rivers and lake systems throughout 

much of the lower ACF river basin through sinkhole ponds, karst sinks, incised streambeds, and 

conduits that exposes the limestone to the surface (Torak and Painter, 2006). As a result, the UFA 

is an important contributor to streamflow in many of the surficial streams in the lower ACF river 

basin contributing tens of million cubic meters of water every day as baseflow (Torak and Painter, 

2006). However, intense groundwater withdrawal for irrigation has led to a decline in groundwater 

levels and has also resulted in the baseflow reduction to the streams in the lower ACF river basin 

(Jones and Torak, 2006; Singh et al., 2016; Singh et al., 2017). Groundwater withdrawal during 

the growing season has led to an increase in no-flow and low-flow periods in many perineal 

streams (Singh et al., 2016). The situation is only exacerbated by the recurring drought conditions 

including 1985-1989, 1999-2002, 2010-2012, and 2016 drought periods. Pumpage induced 
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groundwater level fluctuations of nearly 10 m were observed during the severe droughts of 2000 

and 2001 with a record or near-record low groundwater levels in most wells (Torak and Painter, 

2006). Flow in the spring-fed streams in the region has decreased by 50 to 100% during drought 

periods (GWC, 2017). The recurring drought conditions along with agriculture intensification in 

the lower ACF has threatened the already limited groundwater resources as well as the future of 

the agricultural economy in the region. Along with agriculture, the low flow and no-flow stream 

conditions have severely affected the endangered and threatened species of freshwater mussels in 

the lower ACF river basin (Gagnon et al., 2004; Golladay et al., 2004; Shea et al., 2013). Declining 

downstream flow as a result of reduced baseflow conditions in the lower ACF river basin, 

especially during drought periods, has also led to the tri-state water wars since the 1980s between 

the neighboring states of Alabama, Georgia, and Florida (Center, 2015; Gilbert and Turner-

Nesmith, 2019).   

The adverse impact of groundwater over-exploitation in the region has led to numerous studies to 

evaluate the spatio-temporal impacts of groundwater use on the groundwater levels and surface- 

and groundwater interaction. Lynn and Torak (2006) developed a finite-element groundwater 

model and evaluated the impacts of seasonal groundwater pumpage for irrigation in drought 

conditions including a comprehensive water budget for the UFA in the lower ACF river basin. 

Mitra et al. (2016) utilized the model developed by Lynn and Torak (2006) and simulated the 

transient drought conditions from 2010-2012 to evaluate its impact on the groundwater levels and 

the groundwater budget of the region. They also assessed the impacts of irrigation during drought 

conditions. The MODular Finite-Element Model (MODFE) used by Lynn and Torak (2006) was 

calibrated under steady-state conditions, while Mitra et al. (2016) validated the model utilizing 

data from a single day. Singh et al. (2017) identified critical streams and tributaries that were 
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adversely affected by irrigation pumping using principal component and K-means clustering 

analysis and evaluated the effectiveness of water restriction scenarios on the stream-aquifer flux. 

Jones et al. (2017) developed a USGS Modular Finite-Difference Groundwater Flow Model 

(MODFLOW) (Harbaugh, 2005) that was calibrated for transient conditions for groundwater 

levels and baseflow for the UFA and the overlying semi-confining unit to evaluate the hydrologic 

budget for the 2008-2012 drought. Baseflow calibration for the model was performed for only a 

limited area in the model domain. 

The Georgia Water Planning and Policy Center (GWPCC) prepared the agricultural water demand 

forecast for the whole of Georgia for 2020, 2030, 2040, and 2050 at the county and/or drainage 

area level for a range of weather conditions, which projects the agricultural irrigation groundwater 

demand in the lower ACF river basin to further increase from 2010 to 2050 during dry years 

(CH2M, 2017). It is of paramount importance to understand the spatial and temporal impacts of 

this increased groundwater withdrawal from the UFA on groundwater levels and surface-aquifer 

interactions, especially in drought years, to determine if the UFA can sustain this increased 

withdrawal to maintain agricultural productivity without adversely affecting the diverse aquatic 

species. Although Mitra et al. (2019) also evaluated the impacts of increase in irrigation in the 

region, the simulated increase in irrigation was a constant % increase of the 2011 groundwater 

pumpage values over the entire model domain. This might not accurately reflect the change in 

spatial variability as well as increase in irrigation with increasing agricultural lands that is captured 

by the GWPCC agricultural demand forecast and can potentially help get a more accurate 

understanding of the potential impacts of increase in irrigation. Understanding quantitative 

interactions between the UFA and the surface streams in the study region under projected water 

withdrawals scenario is critical for protecting endangered and threatened species residing in this 
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region. Failure to protect aquatic habitat due to low flow conditions in surface streams of this 

region, because of unsustainable withdrawals from UFA, can potentially lead to water use 

restrictions, which can negatively affect agricultural productivity and rural communities of the 

region. Understanding of the change in stream-aquifer flux due to the projected withdrawals in 

drought years can also help water managers to avoid potential conflict amongst the water users of 

this region.  

This paper adds to the previous modeling efforts in the region by developing a two-layered three-

dimensional MODFLOW model for the UFA in the lower ACF river basin that is calibrated for 

transient conditions for groundwater level and stream-aquifer flux (baseflow discharge from 

aquifer) for both wet and dry years and throughout the model domain. The study also identifies 

sensitive recharge zones within the model domain that has not been performed in any of the 

previous studies. A comprehensive analysis of the impacts of the projected increase in groundwater 

withdrawal for irrigation is also presented. This study is part of a larger project that aims to improve 

the agricultural sustainability in the Lower Flint River basin of the lower ACF while also protecting 

the UFA and the ecological habitat it sustains. The three main objectives of this paper are to i) 

develop a three-dimensional calibrated groundwater flow model for the UFA in the lower ACF 

using the USGS Modular Three-Dimensional Finite-Difference Groundwater Flow Model 

(MODFLOW) – NWT, ii) identify critical zones for groundwater recharge sensitive to 

groundwater levels and flow, and iii) simulate projected irrigation scenario and quantify the effects 

of the projected withdrawals on the UFA. 

4.3 Materials and methods 

The focus area for this research is the UFA in the agriculturally intensive region of the lower ACF 

river basin. Hence, the modeled region includes parts of South Georgia (GA), southeastern 
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Alabama (AL), and northwestern Florida (FL) and is about 12,003 km2 in area (Fig. 4.1). Forests 

and agricultural land are the dominant land cover and land use types in the study area covering 

about 46% and 39% respectively, while urban area accounts for only about 6% of the total area 

(Homer et al., 2020). The climate of the region is humid subtropical with long, hot, and humid 

summers and mild winters. The average temperature ranges from about 17℃ in the winter to about 

33.7℃ in the summer (Arguez et al., 2012), but temperatures above 37.7℃ are common in the 

summer. Precipitation is evenly distributed throughout the year and averages annually about 1365 

mm in the south to about 1161 mm in the north of the study area (Arguez et al., 2012). Precipitation 

in the winter, however, accounts for almost all of the areal recharge to the UFA as the frontal, low-

intensity, and long-duration nature of the rainfall along with low evapotranspiration demand in 

winter is conducive for recharge. Summer precipitation events are convective with high intensity 

and short duration resulting in more surface runoff. Land-elevation of the study region ranges from 

about 76 m in the northwestern boundary of the study area to about 46 m in the southwestern 

boundary (Fig. 4.1). Agriculture accounts for the highest water use in the area of which more than 

80% is supplied by the UFA (Rugel et al., 2012). Groundwater withdrawals for irrigation have 

steadily increased in the lower ACF river basin since the 1970s with the expansion of center pivot 

irrigation systems (GWC, 2017). Groundwater irrigation increased by 59% from 2005 to 2010 

while surface-water irrigation decreased during the same time period (Lawrence, 2016). 

The modeled area lies in the Coastal Plain physiographic province and consists mostly of a low-

lying karstic region called the Dougherty Plain physiographic district. The Dougherty plain is 

characterized by relatively flat, inner lowland containing sub-surface and internal drainage, and 

heterogeneous stream development typical to a karst topography (Torak and Painter, 2006). The 

modeling domain and the geohydrologic setting for the domain are based on the area described by 
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Torak and Painter (2006), which describes in detail the groundwater flow and geohydrology of the 

UFA and the overlying and underlying units in the study region and are referred to for further 

detail. The UFA in most of the modeling domain consists of the Ocala Limestone of the Eocene 

period. Overlying the UFA is the discontinuous, undifferentiated overburden, weathered residuum, 

and undifferentiated surficial deposits that may contain water-bearing zones and are together 

referred to as the Upper Semi-Confining Unit (USCU). Regions where the USCU is absent or thin 

or where the UFA outcrops to the surface are sources for direct recharge to the aquifer while the 

aquifer also receives recharge through the USCU as vertical leakage of water (Torak and Painter, 

2006). Major rivers and streams have cut shallow channels through the USUC to the underlying 

UFA that is close to the land surface resulting in a direct connection between the UFA and the 

rivers and streams that flow through the area. The UFA outcrops in the northwestern boundary of 

the study domain and dips towards the southeast with the thickness of the aquifer ranging from 

about 9 m in the outcrop area to more than 130 m in the southern end of the modeling domain 

(Torak and Painter, 2006; Williams and Kuniansky, 2016). 
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4.3.1 Study area and geohydrology of the UFA 

 

Figure 4.1 Groundwater model domain and study area including the major lakes, rivers, and 

agricultural acreage in the study area. 

4.3.2 MODFLOW-NWT 

MODFLOW is a block-centered finite difference groundwater model developed by USGS that can 

be utilized for two- or three-dimensional applications in solving groundwater flow problems. 

MODFLOW uses a modular structure that allows for each option to be independent of each other 

and allows for adding or removing of options (Harbaugh, 2005). The groundwater flow model for 

this study was developed using MODFLOW-NWT, a Newton formulation of MODFLOW-2005 

(Niswonger et al., 2011). MODFLOW-NWT is a standalone version that must be used with the 
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Upstream-Weighting Package (UPW). It expands on the capacity of MODFLOW-2005 to solve 

the problem of constant drying and rewetting non-linearities when simulating unconfined systems 

that can lead to the issue of model instability and convergence issue when using other versions of 

MODFLOW (Hunt and Feinstein, 2012; Niswonger et al., 2011). Although the karstic system of 

the UFA could have the presence of conduit and fractured flow and the use of an equivalent porous 

media model could probably not represent the system very accurately, Kuniansky (2016) showed 

than an equivalent porous media model without representation of local conduit flows can 

adequately simulate the groundwater levels of a karstic system and hence was used in this research. 

The governing equation for each cell in MODFLOW for groundwater flow is based on the 

continuity equation and is expressed as (Harbaugh, 2005): 

 
∑ 𝑄𝑖 = 𝑆𝑆

∆ℎ

∆𝑡
∆𝑉 

(1) 

where, 𝑄𝑖 is the flow rate into the cell [L3T-1], 𝑆𝑆 is the specific storage [L-1], ∆𝑉 is the volume of 

the cell [L3], ∆ℎ is the change in the head [L], and ∆𝑡 is the time interval [T]. 

4.3.3 Conceptual model development 

The conceptual flow model for the UFA in the lower ACF river basin is based on the geohydrologic 

study of Torak and Painter (2006) of the region and similar to the model developed by Jones and 

Torak (2006) and Jones et al. (2017). The groundwater recharge from precipitation as vertical 

leakage from the overlying semi-confining unit where present and as direct recharge where it is 

thin or absent is the biggest source of groundwater flow into the system. The northwestern 

boundary, where the UFA outcrops, is considered the saturated updip limit of the aquifer, and the 

regional groundwater flow occurs from the northwest to southeast as the UFA downdips in that 
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direction. Groundwater level in the updip area of the UFA fluctuates very little throughout the 

year. The regional outflow of groundwater occurs from the south and southeastern boundary based 

on the potentiometric maps of the UFA (Gordon and Peck, 2010; Kinnaman and Dixon, 2011). 

The biggest outflow from the UFA is to the rivers and streams in the region as the aquifer and the 

surficial streams are in direct connection throughout the region. Groundwater pumpage is another 

important source of outflow from the aquifer, which peaks during the June/July of the growing 

season when the irrigation is at the highest level. Lake Seminole and Lake Blackshear, which are 

within the model domain, are maintained at or near-constant levels throughout the year and impact 

the local groundwater levels. Underlying the UFA is an impermeable layer known as the Lisbon 

formation that acts as the lower confining unit to the aquifer. 

4.3.4 Numerical model development 

A three-dimensional groundwater flow model was developed using MODFLOW-NWT based on 

the conceptualization of the flow system for the modeled region which is defined by the following 

partial differential equation (Harbaugh, 2005): 

 𝜕

𝜕𝑥
(𝐾𝑥𝑥

𝜕ℎ

𝑑𝑥
) +  

𝜕

𝜕𝑦
(𝐾𝑦𝑦

𝜕ℎ

𝑑𝑦
) + 

𝜕

𝜕𝑥
(𝐾𝑧𝑧

𝜕ℎ

𝑑𝑧
) + 𝑊 =  𝑆𝑠

𝜕ℎ

𝜕𝑡
 

(2) 

where, 𝐾𝑥𝑥, 𝐾𝑦𝑦, 𝑎𝑛𝑑 𝐾𝑧𝑧 are values of hydraulic conductivity along the x, y, and z coordinate axes 

parallel to the major axes of hydraulic conductivity [LT-1]; ℎ is the potentiometric head [L]; W is 

the volumetric flux per unit volume representing sources and sinks [T-1]; 𝑆𝑠 is the specific storage 

of the porous material [L-1]; and 𝑡 is time [T]. 

Data pre-processing and post-processing for preparing the model inputs for the MODFLOW-NWT 

was performed using ModelMuse, a graphical user interface developed by USGS (Winston, 2009). 
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4.3.4.1 Model discretization 

A two-layered groundwater model with a uniform grid size of 750 m x 750 m was constructed that 

represents the USCU and the UFA (Fig. 4.2). The model has 282 rows and 102 columns resulting 

in a total of 28,764 grid cells of which 21,394 are active. The bottom elevation of the UFA was 

combined with the thickness of the UFA, both acquired from Williams and Dixon (2015), to 

determine the top of the UFA. A digital elevation model (DEM) of the land-surface was then 

acquired from USGS (Gesch et al., 2002) to determine the thickness and the top of the USCU. 

Manual adjustments had to be made for grid cells that resulted in having the top of the UFA higher 

than the top of the USCU using the two datasets. A transient model was built from 2007 to 2013 

with monthly stress periods and daily time steps. This allowed for comparison between model-

simulated groundwater level and flux with observed daily groundwater levels rather than 

comparing with monthly averages, thus giving better confidence in model performance. Initial 

hydraulic conductivity for the UFA and USCU as well as the specific yield and specific storage 

information for model setup were derived from the previous studies in the region which were then 

adjusted during model calibration (Jones et al., 2017; Jones and Torak, 2006). 
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Figure 4.2 Groundwater model discretization and the regional and internal boundary conditions. 

4.3.4.2 Boundary conditions 

The base of the UFA was simulated as a no-flow boundary as the lower confining unit below the 

UFA acts as an impermeable layer. The updip limit of the UFA in the northwestern boundary of 

the model was simulated as a specified head boundary condition (Anderson et al., 2015) (Fig. 4.2) 

using the time-variant specified head package (CHD) as there was a minimal fluctuation in the 

groundwater head throughout the year. The remaining of the regional boundary of the model was 

simulated as a general head-dependent boundary (GHB) condition (Anderson et al., 2015) using 

the GHB package (Fig. 4.2). Two lakes in the model domain were also simulated using the GHB 

package and lake level elevation was provided for each stress period (Fig. 4.2). Groundwater head 

for the regional CHD and GHB boundaries were provided by averaging the potentiometric heads 

from Gordon and Peck (2010) and Kinnaman and Dixon (2011) and kept constant throughout the 

simulation for model simplicity.  
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Groundwater pumpage was an important boundary condition that needed to be estimated 

accurately for input in the model. Monthly groundwater withdrawal estimates from the UFA were 

acquired from the Georgia Environmental Protection Division (EPD) at Hydrologic unit code 

(HUC)-12 level, which was then divided equally to each well within the HUC-12 watershed (Fig. 

4.3). Groundwater pumpage was simulated as a specified flux package (Anderson et al., 2015) 

using the well package (WEL). 

 

Figure 4.3 Groundwater wells pumping from the UFA and the HUC-12 watersheds in the model 

domain. 

Ephemeral streams that had the possibility of going dry were simulated using the Drain package 

(DRN) while the perennial streams were simulated using the River package (RIV) (Fig. 4.2). 



89 

 

Streambed depth for the DRN and RIV packages were acquired from previous studies performed 

in the region (Jones et al., 2017; Jones and Torak, 2006). Initial values for streambed conductance 

were also acquired from the previous studies which were then calibrated during the model 

calibration period. Stream elevation for the RIV package was estimated by interpolating stream-

stages from USGS stations with continuous observed data for the simulation period and the lake 

levels from the two lakes. 

Areal recharge from precipitation is a very important boundary condition in the model as it has the 

greatest influence in the groundwater budget but is also the most difficult to estimate (Healy, 

2010). Groundwater recharge can vary greatly spatially and temporally as it is influenced by the 

variation in land use, vegetation, geohydrologic conditions, climate, and land management 

practices among others (Healy, 2010; Sophocleous, 2005). Groundwater recharge for this study 

was estimated using a physically-based, semi-distributed, watershed-scale, continuous simulation, 

water-balance based model called the Soil and Water Assessment Tool (SWAT) (Neitsch et al., 

2011). SWAT accounts for the spatial and temporal variability in recharge as it maintains the 

spatial heterogeneity of a watershed by dividing it into sub-watersheds and each sub-watershed is 

further divided into hydrologic response units (HRUs), which are the basic units for calculation. 

Many studies have successfully used SWAT to estimate groundwater recharge (Arnold et al., 2000; 

Raposo et al., 2013; Sun and Cornish, 2005). A SWAT model was developed for the study region 

(Fig. 4.4) that incorporated the major land-types and agricultural crop rotations. The model was 

then calibrated and validated for streamflow for 5 USGS streamflow stations within the watershed 

(Table 4.1; Fig. 4.4) after which groundwater recharge estimates were acquired for each sub-

watershed and incorporated into the MODFLOW as a specified flux (Anderson et al., 2015) using 

the recharge package (RCH) (Fig. 4.5). The developed SWAT model had a total of 160 sub-
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watersheds of which 89 were partially or completely located within the groundwater model domain 

(Fig. 4.4) and used for estimating groundwater recharge. 

Table 4.1 Monthly streamflow statistics for the simulation period (2007 – 2013). 

USGS Station R2 NSE 

2349605 0.83 0.85 

2352500 0.86 0.89 

2353000 0.83 0.87 

2356000 0.80 0.85 

2358000 0.92 0.94 

 

 

Figure 4.4 SWAT model domain used for estimating groundwater recharge. 
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Figure 4.5 SWAT estimated monthly groundwater recharge for the groundwater model domain. 

4.3.5 Model calibration 

Model calibration was a two-step process and involved matching simulated groundwater levels to 

observed levels followed by matching model predicted stream-aquifer flux to its counterpart for 

the 2007-2013 period. Observed groundwater levels and streamflow data used for model 

calibration were acquired from the USGS National Water Information System (NWIS) (USGS, 

2019). 2,360 daily groundwater observation data of the UFA were acquired from 359 wells in the 

model domain. Lack of observed groundwater observation data in the overlying USCU limited us 

to calibrating the groundwater head only for the UFA. Model performance for evaluation for 

simulating groundwater head was performed by calculating the root mean square (RMS) of the 

groundwater head residual, which can be calculated as: 

 𝑅𝑀𝑆 =  [
1

𝑁
∑(ℎ𝑖 𝑠𝑖𝑚 − ℎ𝑖 𝑜𝑏𝑠)2

𝑁

𝑖=1

]

1
2

 (3) 
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where, 𝑁 is the number of residuals, ℎ𝑖 𝑠𝑖𝑚 is the simulated head [L], and ℎ𝑖 𝑜𝑏𝑠 [L] is the observed 

head 

Along with RMS, a value of less than 0.1 for the ratio of the standard deviation of residuals (STD) 

divided by the range (R) of observed groundwater levels also indicates a good model fit 

(Kuniansky et al., 2004) and was also used for evaluation. Along with the statistical measures, 

graphical measures including the plot of the frequency histogram of residuals and spatial 

distribution of residuals were also used for evaluating model performance. 

Calibration of stream-aquifer flux was performed by comparing the simulated flux to monthly 

averaged estimated flux for a reach section, which was estimated by subtracting the baseflow at 

the downstream from the upstream end of a reach. A positive flux indicates a gaining stream and 

that the aquifer contributed water to streamflow in the reach section while a negative flux indicates 

a losing stream and that the stream lost water in that section. As there are uncertainties associated 

with streamflow, the estimation of baseflow, and the resulting estimated/observed flux for a reach 

section, a target range of flux was calculated for each reach section to aid in calibration following 

the procedure mentioned in Jones and Torak (2006). The error factors (EF) of 10% (0.10) and 5% 

(0.05) were applied to reach sections having average streamflow less than and greater than 7.07 

m3/s, respectively (Jones and Torak, 2006), and the target range was calculated as follows: 

 𝐹𝑙𝑜𝑤𝑚𝑖𝑛 =  (𝑄𝑑 − 𝐸𝐹 ∗  𝑄𝑑) − (𝑄𝑢 + 𝐸𝐹 ∗ 𝑄𝑢) (4) 

 𝐹𝑙𝑜𝑤𝑚𝑎𝑥 =  (𝑄𝑑 + 𝐸𝐹 ∗ 𝑄𝑑) −  (𝑄𝑢 − 𝐸𝐹 ∗  𝑄𝑢) (5) 

where, 𝐹𝑙𝑜𝑤𝑚𝑖𝑛 is the minimum target flow, 𝐹𝑙𝑜𝑤𝑚𝑎𝑥 is the maximum target flow, 𝑄𝑑 is the 

downstream flow, 𝑄𝑢 is the upstream flow, and 𝐸𝐹 is the error factor. 
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Daily baseflow estimates for calculating the target range fluxes were acquired using the USGS 

groundwater toolbox (Barlow et al., 2015). The model was calibrated for stream-aquifer flux for 6 

reach sections – reach 2, 3, 4, 5, 6, and 8 (Fig. 4.6). As the Lower Flint River basin region was the 

major focus of the study, stream reaches in and contributing to the Lower Flint were calibrated for 

stream-aquifer flux in this study. Fig. 4.6 also shows the upstream and downstream USGS stations 

that were used to estimate the target flux range for each reach section. 

 

Figure 4.6 Reach sections that were calibrated for stream-aquifer flux. 

Model calibration was performed by adjusting the hydraulic conductivity of the UFA, streambed 

conductance for the RIV and DRN packages, and specific storage values using automated and 

trial-by-error methods. The model domain was divided into 14 hydraulic conductivity zones for 

the UFA, 10 DRN zones, and 15 RIV zones for calibration purposes. UCODE, an inverse modeling 

tool for model calibration (Poeter and Hill, 1998, 1999) was used to identify the sensitive hydraulic 

conductivity zones and river sections and perform initial automated calibration runs after which 
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the model was calibrated manually for further refinement. A sensitivity analysis was also 

performed by dividing the SWAT estimated RCH into zones to identify critical groundwater 

recharge areas within the model domain that were sensitive and critical for groundwater level and 

flow. This can potentially help decision-makers identify target zones for land management for 

potentially improving groundwater recharge. 

4.3.6 Irrigation scenario  

Evaluating the spatio-temporal impacts in groundwater levels and stream-aquifer flux of a fine 

resolution projected irrigation scenario – at HUC-12 level – can provide important information 

that can be critical for developing management plans for the long-term sustainability of the aquifer, 

the agricultural productivity, and the ecological habitat of the UFA and the lower ACF river basin. 

GWPCC estimated agricultural water demand for the years 2020, 2030, 2040, and 2050 for five 

different climate scenarios to include the potential climate extremes and included the 10th, 25th, 

50th, 75th, and 90th percentile scenarios. Of the five scenarios, the 75th percentile represented dry 

conditions with higher irrigation demands and is used by GWPCC for planning purposes (CH2M, 

2017). Hence, the irrigation scenario in this study was also evaluated for the 75th percentile. 

Evaluation of the 75th percentile irrigation scenario from 2020 to 2050 for each month showed a 

similar increasing trend in irrigation demand from 2020-2050 (Fig. 4.7a). Hence, only the 2040 

75th percentile irrigation scenario was selected for evaluation in this study. Scenario analysis was 

performed by replacing the irrigation demand of the year 2011, which was a dry year, with the 

2040 75th percentile irrigation demand and comparing the changes in groundwater levels and 

stream-flux to estimate the impacts of the projected increase in agricultural irrigation demand in a 

dry year (Fig. 4.7b). This also allowed us to evaluate the aquifer rebound potential and long-term 

impact by comparing the calibrated and scenario model results for 2012 and 2013. 
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Figure 4.7 (a) GWPCC projected 75th percentile irrigation from 2020-2040, and (b) current and 

projected 2040 75th percentile irrigation. 

4.4 Results and discussion 

4.4.1 Groundwater level calibration 

As the model was calibrated only for transient conditions, a model warm-up period was performed 

by replicating the stress periods of the first year of simulation for four years. Replication of the 

stress period for four years allowed for adequate model warm-up without the loss of observed data 

that can be used for model calibration. 

The scatter plot between simulated and observed groundwater levels for the total simulation period 

of 2007-2013 (Fig. 4.8a) shows that simulated groundwater levels from the calibrated model 

closely matched the observed groundwater levels in the UFA for much of the simulation period. 

RMS of groundwater head residual for the whole simulation period was 2.68 m which was close 

to the RMS values in the previous modeling studies in the area (Jones et al., 2017; Jones and Torak, 

2006; Mitra et al., 2016). Jones and Torak (2006) had also stated that a simulation error of less 

than 2.8 m can be considered acceptable accounting for the uncertainties and potential error in the 

aquifer geometry and groundwater level measurement. The calculated ratio of STD/R was 0.03 

which is less than 0.1 and indicated a good model fit. Frequency histogram (Fig. 4.8b) and 

cumulative distribution plot (Fig. 4.8c) of the residuals showed that more than 80% of the residuals 



96 

 

were less than 3m and more than 92% of the residuals were less than 4.5m. The histogram also 

shows no skewness in the simulation of the groundwater level. 

 

Figure 4.8 (a) Comparison between simulated and observed groundwater levels for the total 

simulation period, (b) frequency histogram of groundwater residual for the whole simulation 

period, and (c) cumulative distribution plot of groundwater residuals. 

Evaluation and plotting of the mean groundwater head residual for each groundwater well showed 

that the model was also able to simulate adequately the spatial variability of groundwater levels in 

the model domain as shown by the random distribution of residuals (Fig. 4.9). RMS of the 

groundwater residual was also calculated for each month in the simulation period to evaluate the 

groundwater model for simulating the temporal variation of the groundwater head. RMS of less 

than 2.86 m in 65 of the 83 months and less than 4 m in 79 of the 83 months (Fig. 4.10) 
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demonstrated that the model was also able to adequately simulate the temporal variability in 

groundwater level for the UFA in the model domain.  

 

Figure 4.9 Mean groundwater head residual for each observation well used for model 

calibration. 

 

Figure 4.10 Monthly RMS of residual for groundwater level simulation. 
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Overall, groundwater calibration results have shown that the model can adequately simulate 

groundwater levels for the UFA both temporally and spatially. The model also performed 

adequately for dry as well as wet climate conditions as the calibration period included both dry 

(2011-2012) and wet periods (2008-2010).  

4.4.2 Groundwater flux calibration 

Calibration of stream-aquifer flux along with groundwater levels in the model is critical for 

increasing model robustness and confidence in the simulation results as calibration of multiple 

variables helps constrain the model parameters better. Simulated stream-aquifer flux and the target 

flux range for each reach section estimated based on the flow difference between the upstream and 

downstream end of the reach and the EF are presented in Fig. 4.11. Stream-aquifer flux for each 

section was calibrated by adjusting the streambed conductance. Estimated baseflow for reach 2, 3, 

and 4, and as a result target flux, were much smaller as compared to the other reach sections as the 

three reach sections are located in the region where the UFA is thin and have a smaller baseflow 

contribution.  

Comparison between the simulated flux and target flux for all reach sections demonstrates that the 

model does an adequate job of simulating the stream-aquifer flux as most of the simulated flux is 

within or close to the target range for much of the simulation. The model is, however, not able to 

capture the high flux estimates for Oct 2010 – April 2011 in reach 2 (Fig. 4.11a) and 3 (Fig. 4.11b), 

where the estimated target flux is much higher than the rest of the simulation period and could 

potentially indicate the inability of the baseflow filter program to estimate accurate baseflow 

because of increased surface runoff and potentially sub-surface later runoff during that period. The 

model was also able to capture the temporal variability in stream-aquifer flux for all reach sections 

except for reach 2. The smallest reach section calibrated in the model was reach 4 and also the 
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only section that had negative flux for most of the time period indicating that the reach was 

behaving as a losing reach for much of the simulation period, and consistently during the drought 

periods of 2011-2012. Simulation of stream-aquifer flux was much better for reach 5, 6, and 8 

(Fig. 4.11d, 4.11e, and 4.11f) which were along the main-stem of the Flint River in the Lower Flint 

River basin and had a direct connection to the aquifer section that was much deeper. Overall, the 

flux calibration result shows that the calibrated model can adequately simulate and capture the 

temporal and spatial variability of stream-aquifer flux for the stream reaches in the Lower Flint 

and adjoining reaches. The model was, however, able to estimate stream-aquifer flux better at 

reach sections that were in the region where the aquifer was thicker and had less variability in 

groundwater levels. 
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Figure 4.11 Simulated stream-aquifer flux and estimated target flux range for (a) reach 2, (b) 

reach 3, (c) reach 4, (d) reach 5, (e) reach 6, and (f) reach 8. 

4.4.3 Groundwater budget  

Groundwater budget evaluation provides critical information about the important groundwater 

components of the region and the impact on different components with a change in boundary 

conditions such as recharge and groundwater pumpage. Evaluation of net flux (inflow-outflow) 

for each boundary condition for the whole simulation period showed that recharge (RCH) was the 

biggest source of groundwater inflow and averaged about 8,500 Megaliters per day (MLD) with a 

minimal contribution also from the outcrop area (CHD) averaging about 1,100 MLD (Fig. 4.12). 
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Perennial rivers (RIV) accounted for the biggest outflow from the model domain (about 6,300 

MLD) (Fig. 4.12) showing evidence to the fact that the UFA is an important contributor to 

streamflow in the region. Groundwater wells (WEL) and ephemeral streams (DRN) averaged less 

than 1,000 MGD of outflow while there was also a net outflow from the remaining regional 

boundary and lakes (GBH) at slightly higher than 1,000 MLD (Fig. 4.12). 

 

Figure 4.12 Total net groundwater budget for the major boundary conditions. 

As the groundwater levels in the UFA follow a distinct pattern of seasonality, monthly 

groundwater budget evaluation for the model was also performed (Fig. 4.13) to evaluate its impact 

on the groundwater components. As most groundwater recharge occurs in the winter months 

(December-March), the groundwater level of the aquifer system is normally highest in the spring 

(April – May). Groundwater outflow to perennial rivers and ephemeral streams, as a result, is 

biggest during this time of the year which gradually decreases with summer and fall as there is a 

gradual decrease in groundwater level due to minimal recharge and increased groundwater 

pumpage for irrigation (Fig. 4.13). The year 2011 and 2012 were drought years and the monthly 

groundwater budget of the two years clearly show the impact on the stream-aquifer flux with 

reduced outflow to rivers due to drought conditions. February 2013, which was preceded by 

prolonged drought, was the only month during the whole simulation period that had a net positive 

flux for the river outflow (RIV) indicating a net inflow of water from the rivers to the aquifer and 
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demonstrates the negative impact drought can have in the region (Fig. 4.13). The river flux returns 

to normality with higher than normal recharge in 2013. This exhibits the potential of the aquifer 

system in the region and the river flux to rebound quickly to normal levels after drought conditions 

but also demonstrates the vulnerability of the stream-aquifer flux and streamflow in the region to 

prolonged drought that can be exacerbated by increased groundwater pumpage demand and 

withdrawal for irrigation during such periods. 

 

Figure 4.13 Monthly groundwater budget for the simulation period for the major boundary 

conditions including the specified head boundary (CHD), groundwater pumpage (wells), 

ephemeral streams (DRN), perennial rivers (RIV), general head boundary (GHB), and recharge 

(RCH). 

4.4.4 Groundwater recharge critical zones 

The USCU was divided into 15 geohydrologic zones by Torak and Painter (2006) based on the 

hydrologic and geologic setting and the potential for recharge to the UFA (Fig. 4.14a). Scarcity of 

groundwater wells in the USCU make it difficult for evaluating the recharge potential and 

sensitivity of the geohydrologic zones for recharge into the UFA. Hence, monthly recharge 

estimates obtained from the SWAT model were divided into 15 recharge zones based on the 

geohydrologic zones and sensitivity analysis was performed using UCODE to determine the 
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sensitivity of each zone to simulating groundwater levels and stream-aquifer flux. Fig. 4.14b 

presents the composite scaled sensitivity (CSS) for the 15 zones. CSS in UCODE indicates the 

sensitivity of the parameter to the observed values for estimating the parameter value accurately 

with higher values indicating higher sensitivity. Results showed that zone 11, upland interstream 

karst, was the most sensitive recharge zone, followed by zones 10, 4, 3, 6, 12, and 7 (upland 

instream, instream karst swamp, instream karst, upland outcrop, and solution escarpment) (Torak 

and Painter, 2006). Recharge zones were mostly sensitive in the region where the UFA is thin and 

close to the land surface where groundwater recharge can reach to the UFA quickly and can create 

substantial variations in the groundwater level. Identification of the sensitive recharge zones can 

provide potential information in identifying the critical recharge zones that are most sensitive to 

groundwater levels and stream-aquifer flux. It should be, however, noted that sensitivity analysis 

results are dependent on the observations provided and although a concerted effort was made to 

include observations that were distributed temporally and spatially, lack of observations in some 

zones (e.g. zone 5, and zone 9), could have biased the sensitivity analysis results. 
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Figure 4.14 (a) Geohydrologic zones of the USCU (Torak and Painter, 2006) and, (b) Composite 

scaled sensitivity (CSS) results for the recharge zones. Higher CSS values indicates to higher 

sensitivity of the recharge zones to simulating groundwater levels and fluxes. 

4.4.5 Impact of projected increase in irrigation demand  

Groundwater levels from the scenario model run that replaced the January to December 2011 

irrigation data with the 2040 projected scenario were compared against the calibrated model run 

for four specific time periods to study the short- (first day of September 2011, December 2011) 

and long-term (first day of March 2012, and December 2013) impacts of the projected increase in 

irrigation (Fig. 4.15). Evaluation of change in groundwater levels towards the end of the growing 

season (Fig. 4.15a) showed that the groundwater levels would have further decreased by more than 

1 m in many parts of the UFA and by as much as 2.38 m in the Lower Flint River basin as compared 

to the groundwater levels of 2011 for that time period. Large groundwater level decrease was 

mostly observed in regions where the aquifer is comparatively thinner in the Lower Flint and the 

adjoining Kinchafoonee, Ichawaynochaway, and spring HUC-8 watersheds, but there was some 

groundwater level decrease throughout most of the aquifer. Assessment of the groundwater level 

in December 2011 (Fig. 4.15b) and March 2012 (Fig. 4.15c) showed gradual rebounding of the 

aquifer levels although groundwater levels were still lower by half a meter in many places. The 

aquifer was not able to fully recover to the groundwater levels of December 2013 (Fig. 15d) even 

after the higher than normal recharge (Fig. 4.5) in 2013. 

Decrease in stream-aquifer flux (river outflow from the aquifer) was also observed in all the 

evaluated reach sections because of the increase in irrigation and the subsequent reduction in 

groundwater levels (Fig. 4.16). Reach 2 and 8, that are in the Kinchafoonee and Lower Flint 

watersheds, respectively, saw the biggest relative reduction in aquifer outflow as the two reach 
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sections were in the region that observed the high reduction in groundwater levels (Fig. 4.16). Flux 

decreased by as much as 33% in reach 8 and 14% in reach 2. It was also observed that reach 2 was 

not able to recover to the calibrated model flux levels even in December of 2013 while all the other 

reaches did not recover till at least December 2012 (Fig. 4.16). 

Simulation of the projected irrigation scenario helped identify the critical regions in the model 

domain and reach sections that are most susceptible to increase in groundwater irrigation. 

Substantial reduction in groundwater levels and stream-aquifer flux, especially at the end of the 

growing season, also indicates the UFA might not be able to provide a sustainable supply of 

groundwater for irrigation in the future, especially under drought conditions. Impact on the UFA 

and the streams that are connected to it could be worse if the drought persists for a longer time-

period and the aquifer has to sustain the projected irrigation for multiple years. Increased loss of 

stream-aquifer flux can lead to more streams going dry and severely impact the local ecological 

habitat.  
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Figure 4.15 Difference in groundwater levels between the calibrated model and projected 

scenario for (a) September 2011, (b) December 2011, (c) March 2012, and (d) December 2013. 
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Figure 4.16 Simulated flux between calibrated and scenario model run from 2011 to 2013 for (a) 

reach 2, (b) reach 3, (c) reach 4, (d) reach 5, (e) reach 6, and (f) reach 8. 

4.5 Summary and Conclusions 

This study developed a groundwater model for the UFA in the lower ACF river basin that can 

adequately simulate for groundwater levels and stream-aquifer flux in the region. Spatio-temporal 

calibration and evaluation of both groundwater levels and stream-aquifer flux was performed to 

make sure that the model can accurately simulate groundwater levels and stream-aquifer flux 

throughout the model domain and for both wet and dry climatic periods. Evaluation of the 

groundwater budget showed that recharge was the most important groundwater inflow into the 
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system while river outflow was the most important source of groundwater outflow. This also 

indicated the importance of the UFA in maintaining streamflow in the region, especially under 

drought conditions. Monthly evaluation of groundwater budget showed that decrease in 

groundwater recharge due to prolonged drought conditions can severely reduce flow from the 

aquifers to the rivers in the region. The rebound of the stream-aquifer flux with the return of normal 

precipitation indicated to the rebound potential of the aquifer but also to the vulnerability of the 

region to prolonged drought conditions. Sensitivity analysis of recharge zones helped identify 

upland instream karst as the most sensitive geohydrologic zone for recharge into the aquifer. 

Simulation and comparison of the projected irrigation scenario to the calibrated model showed that 

groundwater levels decreased by as much as 2.38 m in the UFA in the Lower Flint and, as a result, 

decrease in stream-aquifer flux was also observed. Reach sections in the Lower Flint and the 

adjoining Kinchafoonee watershed saw the greatest % reduction in stream-aquifer flux. The 

scenario run helped identify the aquifer regions that are most susceptible to the increase in 

groundwater pumpage for irrigation and also indicated that the aquifer might not be able to sustain 

the projected increase in groundwater pumpage for irrigation, especially under prolonged drought 

conditions. 
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Chapter 5 

Impact of hydrological calibration in SWAT groundwater recharge simulation: A case 

study in the Flint River Basin, USA 

5.1 Abstract 

Accurate estimation of groundwater recharge is essential for the sustainable management of 

groundwater resources. Although quantifying groundwater recharge is critical, it is one of the least 

understood processes in hydrogeology and can only be estimated at a regional scale as it is almost 

impossible to measure directly. The Soil and Water Assessment Tool (SWAT) has often been used 

as a tool for performing groundwater recharge studies. And, as calibration of groundwater recharge 

simulation is not possible due to the lack of direct measurements, confidence in the SWAT 

simulated groundwater recharge is often derived by evaluating the model performance in 

simulating other hydrological variables including streamflow and/or evapotranspiration (ET). 

However, the impact and sensitivity of calibrating these variables in the simulation of groundwater 

recharge in SWAT are yet to be evaluated to develop a better calibration approach for accurately 

simulating groundwater recharge. This study evaluated the sensitivity of calibrating either 

streamflow or ET or using a multi-variate approach in the SWAT simulation of groundwater 

recharge by doing a case study in the Flint River Basin of southeastern United States (U.S.). The 

study showed that streamflow is the most important and influential variable to be calibrated in 

SWAT for simulating groundwater recharge accurately while the calibration of ET alone had a 

negligible impact in the simulation of groundwater recharge. Evaluation of the multi-variate 

calibration approach showed that streamflow calibration followed by ET calibration provided the 

most accurate estimates for groundwater recharge. A flipped calibration sequence, however, did 

not result in simulated groundwater recharge that was representative of the region’s hydrogeology. 
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The study also demonstrated the importance of calibrating the different sub-sections of the 

watershed that differ in geology separately for better estimation of groundwater recharge as the 

parameters that are critical for groundwater recharge simulation can be fine-tuned for the region. 

5.2 Introduction 

Groundwater is an integral component of the hydrologic system accounting for more than 97% of 

the available freshwater in the world (Lall et al., 2020; Shiklomanov and Rodda, 2003). It is an 

indispensable water resource supplying over half of the world’s water for drinking and irrigation, 

along with a third of the industrial demand (Lall et al., 2020; Siebert et al., 2010). Groundwater 

plays a critical role in mitigating impacts of prolonged drought conditions, especially in 

agriculture, serving as a source when the surficial sources are depleted (Famiglietti, 2014; Lall et 

al., 2020). However, groundwater around the world is being pumped at a rate higher than it can be 

naturally replenished, and this has resulted in short- and long-term declines in groundwater levels. 

Wada et al. (2010) determined that the global groundwater depletion increased from 126 (± 32) 

km3 yr-1 to 283 (± 40) km3 yr-1 from 1960 to 2000. The United States, during the same time period, 

increased the groundwater depletion by 32 (± 7) km3 yr-1. This has led many aquifers to the brink 

of extinction or being seasonally exhausted, and the aquifers will only be further stressed with the 

continuous increase in population, irrigated agriculture, urbanization, and climate change 

(Famiglietti, 2014; Gleeson et al., 2012; Konikow and Kendy, 2005; Lall et al., 2020). Along with 

the reduction in freshwater availability, groundwater level reduction also results in severe 

ecological impacts, including a reduction in streamflow, loss of springs, wetlands, and the 

ecological habitat associated with it, seawater intrusion, and land subsidence (Famiglietti, 2014). 

Hence, sustainable management of groundwater resources is a priority topic for many 

stakeholders, policymakers, and researchers around the world and in the United States for which 
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an accurate estimation of groundwater recharge is a critical component (De Vries and Simmers, 

2002).  

Groundwater recharge can be described as the amount of water that percolates past the unsaturated 

zone of the land surface and adds to the groundwater storage through diffused and focused 

mechanisms (Healy, 2010). Although quantifying groundwater recharge is critical for assessing 

aquifer sustainability, it is one of the least understood processes in hydrogeology (Rushton and 

Redshaw, 1979) and can only be estimated as it is almost impossible to measure directly (Healy, 

2010; Kinzelbach and others, 2002). Groundwater recharge can vary significantly in time and 

space as it is influenced by multiple factors, including temporal and spatial variability in climate, 

land use, vegetation, and hydrogeology. Multiple methods at the point- and watershed-scale have 

been used to estimate groundwater recharge. Examples include water budget method, lysimeters, 

seepage meters, tracers (heat, isotopic, and environmental), numerical modeling, and baseflow 

discharge (Scanlon et al., 2002). Point scale methods provide a detailed estimate of groundwater 

recharge for a location but can have high uncertainty when extrapolated to a large region while 

recharge estimates based on streamflow/baseflow only provide an average value for the whole 

contributing watershed. Hence, catchment-scale hydrological models that simulate spatially 

variable groundwater recharge by accounting for the spatial and temporal distribution of the factors 

impacting groundwater recharge can be valuable and cost-effective tools for indirectly estimating 

groundwater recharge (Jayakody et al., 2014; Sun and Cornish, 2005) and provide critical 

information for sustainable management of groundwater resources. 

The Soil and Water Assessment Tool (SWAT), developed by United States Department of 

Agriculture (USDA) – Agricultural Research Service (ARS), is a watershed scale, continuous-

time, physically-based, semi-distributed model that has spatially distributed parameters and uses 
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water balance as the driving force for all calculations in the model (Arnold et al., 1998; Neitsch et 

al., 2011). The SWAT model performs spatial disaggregation of a watershed by dividing it into 

sub-basins, which is further divided into hydrologic response units (HRU’s). HRU’s are lumped 

land areas with a unique combination of land use, soil, and/or slope class within a sub-basin 

(Neitsch et al., 2011). This allows SWAT to differentiate the different areas of the watershed 

spatially and simulate spatially variable groundwater recharge by accounting for different land use 

and soil within a sub-basin. Hydrological components simulated by SWAT includes overland flow, 

sub-surface lateral flow, soil moisture storage, evapotranspiration, transmission losses, and 

groundwater recharge (Neitsch et al., 2011). As the model divides a watershed with spatially 

distributed parameters and can simulate groundwater recharge, SWAT has been widely used for 

performing groundwater recharges studies including simulating the impacts of land use change 

(Emam et al., 2015; Eshtawi et al., 2016; Fallatah et al., 2019; Kalin and Hantush, 2009), climate 

(Awan and Ismaeel, 2014; Mechal et al., 2015; Raposo et al., 2013), and agricultural management 

practices (Dakhlalla et al., 2016).  

As with any physically based hydrological model including SWAT, it is necessary to calibrate the 

model parameters after the initial model setup to make sure that the model is simulating the critical 

hydrological processes of the target watershed with accuracy to have confidence in the model 

output. As direct calibration of groundwater recharge is not possible due to the lack of direct 

measurements, confidence in the model simulated groundwater recharge in SWAT is often derived 

by evaluating the model performance in simulating other hydrological variables. Many 

groundwater recharge studies using SWAT have utilized only streamflow to calibrate the 

hydrological component of the SWAT model (Baker and Miller, 2013; Chinnasamy et al., 2018; 

Eshtawi et al., 2016; Ghaffari et al., 2010; Gyamfi et al., 2017; Lee et al., 2014; Lin et al., 2013; 
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Mechal et al., 2015; Sun and Cornish, 2005). Others have, in addition to streamflow calibration, 

evaluated SWAT simulated evapotranspiration (ET) against observed ET (Gemitzi et al., 2017), 

calibrated crop yield as an estimate for ET simulation (Emam et al., 2015; Izady et al., 2015), or 

calibrated water table fluctuation of the shallow groundwater level (Dakhlalla et al., 2016; Raposo 

et al., 2013). Studies have also been performed where the SWAT model was simultaneously 

calibrated for streamflow and ET (Githui et al., 2012) or just ET (Awan and Ismaeel, 2014) to 

develop confidence in the model for groundwater recharge simulation. 

Even though calibration of SWAT for streamflow and ET, which are critical components of the 

hydrologic water balance, can help increase confidence in SWAT groundwater recharge 

simulation as a residual variable of the water balance, impact of calibrating these hydrological 

variables in the simulation of groundwater recharge in SWAT, to the authors knowledge, has not 

been evaluated. It is essential to evaluate the sensitivity of groundwater recharge simulation in 

SWAT to calibrating either streamflow or ET or when using a multi-variate approach. 

Understanding the changes in magnitude and trend of SWAT groundwater recharge simulation 

due to streamflow and ET calibration as well as comparing to the basin- and point-scale estimated 

recharge through other methods under different land use and soil types can provide valuable insight 

into groundwater recharge simulation in SWAT. This information can be pivotal to researchers for 

efficiently and accurately calibrating the SWAT model for groundwater recharge estimation. 

Hence, the main objective of this study was to understand in detail how the SWAT calibration 

approach of streamflow and ET independently as well as using a multi-variate approach through 

sequential calibration affected the groundwater recharge simulation in SWAT by performing a 

case-study in the Flint River basin of Southeastern United States. The study also compared the 

SWAT simulated recharge at the basin- and point-scale against groundwater recharge estimated 
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through the RORA program (Rutledge, 2007) and groundwater levels in the surficial aquifer 

system, respectively, to determine if any calibration approach shows better model performance. 

As the Flint River basin consists of independent sub-basins that are vastly different in soil and land 

use types, the evaluation was also performed for different land uses and soil. The overarching goal 

of this project was to identify a SWAT calibration approach that can provide a reliable estimate of 

groundwater recharge.  

5.3 Methods 

5.3.1 Study area 

The study area, located in the Southeastern United States (Fig. 5.1a), covers about 24,000 km2 and 

includes six Hydrologic Unit Code (HUC)-8 watersheds (Seaber et al., 1987) of the Flint River 

basin ( Fig. 5.1b). As the study area spans over 3 degrees in latitude, temperature and precipitation 

vary spatially and temporally across the area. The mean daily temperature in the winter ranges 

from about 9.8℃ in the south to about 5.5℃ in the north, while the summer temperature averages 

about 28℃ across the study area (Arguez et al., 2012). Temperature above 37.7℃ in the summer, 

however, is not uncommon in the region. Annual precipitation averages about 1348 mm in the 

south and about 1244 mm in the north (Arguez et al., 2012). Forest, most of which is loblolly pine 

(Pinus taeda) in the region (Ruefenacht et al., 2008), is the dominant land use/land cover (LULC) 

and occupies about 55% of the study area (Fig. 5.1c).  Parts of the study area that is underlain by 

the Upper Floridan Aquifer (UFA), which is very close to the land surface and serves as the 

primary source of water for irrigation, has intensive agriculture (Torak and Painter, 2006; Fig. 5.1b 

and 5.1c). Row crop agriculture covers about 17% of the watershed. Cotton and peanut are the two 

major crops produced in the region. Urban area accounts for only about 7% of the watershed 

(University of Georgia CAES, 2018; Fig. 5.1c). Accurate estimation and understanding of 
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groundwater recharge in the study area, especially in the lower Flint region, is critical for 

agricultural sustainability in the region. Agriculture generates annual revenue of about $2 billion 

(University of Georgia CAES, 2014) and is heavily dependent on the underlying aquifer for 

irrigation water. The aquifer also plays a critical role in maintaining streamflow, spring flow, and 

the ecological habitat of endangered and threatened species that depend on the river system. 

 

Figure 5.1 SWAT model domain and location of the study area in the southeastern United States 

(a), the six HUC-8 watersheds located within the model domain (b), and major land use/land 

cover (LULC) types in the study region (c). 

5.3.2 Groundwater recharge simulation in SWAT 

This section provides a summary of the theory behind groundwater recharge simulation in SWAT; 

the readers are referred to Neitsch et al. (2011) for further detail. The water balance equation that 

is the basis of all land phase hydrologic calculations in SWAT, which is computed at the HRU 

level, is: 
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𝑆𝑊𝑖 =  𝑆𝑊𝑖−1 + ∑(𝑅𝑖 − 𝑄𝑠𝑢𝑟𝑓,𝑖 − 𝐸𝑎,𝑖 − 𝑤𝑠𝑒𝑒𝑝,𝑖 − 𝑄𝑔𝑤,𝑖)

𝑖=𝑡

𝑖=1

 
(6) 

where, 𝑆𝑊𝑖 is the final soil water content for the day, 𝑆𝑊𝑖−1 is the final soil moisture content for 

day 𝑖 − 1 and initial soil water content for day i, 𝑅𝑑𝑎𝑦,𝑖 is the amount of precipitation on day 𝑖, 

𝑄𝑠𝑢𝑟𝑓,𝑖 is the amount of surface runoff on day 𝑖, 𝐸𝑎,𝑖 is the amount of evapotranspiration on day 𝑖, 

𝑤𝑠𝑒𝑒𝑝,𝑖 is the amount of percolation and bypass flow exiting the soil profile bottom on day 𝑖, and 

𝑄𝑔𝑤,𝑖 is the amount of return flow on day 𝑖. 

Vertical movement of water through the soil layers in SWAT after entering the soil profile is 

simulated using a simplified soil module that only simulates saturated flow using a cascading 

approach. Water is allowed to move from a layer to the layer below only if the field capacity is 

exceeded for that layer and the layer below is unsaturated, after accounting for losses to other 

pathways such as evapotranspiration and lateral flow. Water that moves past the bottom layer of 

the soil through percolation or bypass flow becomes groundwater recharge after accounting for the 

time delay it takes for the water to move from the bottom of the soil profile to the top of the water 

table. Groundwater recharge in SWAT, after water moves past the soil profile, is calculated using 

an exponential decay weighing function: 

 
𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 = (1 − exp [

−1

𝛿𝑔𝑤
]) 𝑊𝑠𝑒𝑒𝑝 + exp [

−1

𝛿𝑔𝑤
] 𝑊𝑟𝑐ℎ𝑟𝑔,𝑖−1 

(7) 

where, 𝑊𝑟𝑐ℎ𝑟𝑔,𝑖 is the amount of recharge entering the aquifer on day 𝑖, 𝛿𝑔𝑤 is the delay time for 

the water to travel through the vadose zone, 𝑊𝑠𝑒𝑒𝑝 is the water exiting the bottom of the soil profile 

on day 𝑖, and 𝑊𝑟𝑐ℎ𝑟𝑔,𝑖−1 is the amount of recharge entering the aquifer on day 𝑖 − 1 
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The groundwater delay function (𝛿𝑔𝑤; GW_Delay in .gw file), which estimates the time for water 

to pass through the vadose zone, cannot be measured and is often used as a calibration variable 

when calibrating SWAT for streamflow and/or baseflow (Karki et al., 2020; Risal and Parajuli, 

2019). The estimated groundwater recharge is then distributed into the two aquifers that are 

simulated in SWAT, the shallow aquifer and the deep aquifer, using a percolation coefficient 

(RCHGRG_DP, .gw file) and is calculated as: 

 𝑊𝑑𝑒𝑒𝑝 =  𝛽𝑑𝑒𝑒𝑝 ∗ 𝑊𝑟𝑐ℎ𝑟𝑔 (8) 

where,  𝑊𝑑𝑒𝑒𝑝 is the amount of water moving to the deep aquifer, 𝛽𝑑𝑒𝑒𝑝 is the aquifer percolation 

coefficient, and 𝑊𝑟𝑐ℎ𝑟𝑔 is the amount of recharge 

Shallow aquifer recharge is then calculated as the difference between the total recharge and the 

deep aquifer recharge. SWAT simulated total groundwater recharge (𝑊𝑟𝑐ℎ𝑟𝑔) value represents the 

total water contribution to the groundwater system. Hence, the value was used as a simulated 

groundwater recharge for evaluating the different calibration approaches as well as comparing to 

estimated groundwater recharge from other studies. 

5.3.3 SWAT model setup 

Major inputs into SWAT for the initial model set up include elevation, climate, LULC, and soil 

dataset (Neitsch et al., 2011). A 30m x 30m Digital Elevation Model (DEM) provided by the 

United States Geological Survey (USGS) (Gesch et al., 2002) was used as the elevation dataset for 

the model (Fig. 5.2a) while initial soil parameters for the region was acquired from the State Soil 

Geographic (STATSGO) dataset (Schwarz and Alexander, 1995). Cropland Data Layer (CDL) 

developed by the USDA – National Agricultural Statistics Service (NASS) for the year 2015 was 
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used as the base LULC map for the model (Han et al., 2012). As LULC is mostly dynamic and 

changes year by year, especially in the row crop agricultural region, major crop rotations in the 

study area were identified by downloading the 2010-2015 CDL and performing an overlay analysis 

using ArcGIS which was then added to the model. It is also equally important to accurately 

represent the agricultural management practices for the major crops as it can help simulate the crop 

growth and yield accurately, which can impact ET simulation in the model and thereby affect the 

simulation of groundwater recharge. Hence, detailed management practices including fertilizer 

application rates and timing, tillage, plant and harvest dates, and irrigation were developed with 

help from the University of Georgia Extension Service and incorporated into the model. As 

loblolly pine made up almost all of the forest in the modeled area, all forest classes in the CDL 

were changed to a single class – FRSE for ease of calibration. Similarly, the default forest 

management file created by ArcSWAT ‘plants and kills’ forest every year of the simulation. The 

forest management file was modified, following steps implemented by Haas (2020), such that the 

forest was growing in the initial model set up and was not killed every year. Climate data was 

acquired from the North American Land Data Assimilation Phase-2 (NLDAS-2) climate forcing 

dataset, which has a spatial resolution of 1/8th degree and temporal resolution of 1 h covering the 

continental United States (Xia et al., 2012). A SWAT model with 118 sub-basins (Fig. 5.2b) and 

7,068 HRUs was developed in the end.  
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Figure 5.2 Topography (a), and SWAT delineated 118 sub-basins (b) for the study area. 

5.3.4 SWAT calibration scenarios 

As the main objective of this study was to evaluate the impact of streamflow and ET calibration 

on groundwater recharge simulation individually as well as using a multi-variate approach and 

also to determine if there is a calibration sequence that provides better groundwater recharge 

estimation, two calibration approaches were tested in this study. Streamflow and ET were chosen 

as the hydrologic variables for calibration as these two variables are major components of the land 

phase hydrologic water balance. Observed streamflow as well as remotely sensed ET data set for 

the calibration of these two variables are readily available and have been widely used for 

hydrologic calibration of SWAT. 

The first calibration approach, from herein referred to as approach-1, resembled the calibration 

strategy that has been used by many researchers for groundwater recharge estimation in SWAT. 
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Streamflow was the first variable calibrated after the initial model set up to constrain the model, 

which was followed by ET calibration. Simulated groundwater recharge after each calibration step 

was evaluated against default SWAT simulated groundwater recharge as well as the recharge 

estimated using the RORA program. This allowed for evaluating the impact of just streamflow 

calibration on groundwater recharge as well as the impact of multivariable calibration using a 

sequential approach in which streamflow calibration was followed by ET calibration. RORA, 

which is based on the recession-curve displacement method for estimating groundwater recharge 

from observed streamflow data, has been used in multiple studies for estimating groundwater 

recharge (Chen and Lee, 2003; Delin et al., 2007; Rutledge, 2007) as well as evaluating the 

performance of hydrological models in simulating groundwater recharge (Arnold et al., 2000; Zhu 

et al., 2020). 

The second approach, from herein referred to as approach-2, was the exact opposite of approach-

1 with ET calibration being performed after the initial model setup followed by streamflow 

evaluation. This, again, allowed to evaluate how groundwater recharge simulation is impacted if 

only ET is calibrated. ET calibration was then be followed by streamflow calibration, and model 

performance was again evaluated. This allowed us to evaluate if there is any difference in model 

performance for hydrological simulation between the two calibration sequences of ET and 

streamflow. 

5.3.5 SWAT model calibration and evaluation 

The SWAT model was set up for the period 2000-2015 with a 3-year warm-up. As the focus of 

this research was to evaluate how the calibration approaches impacted groundwater recharge 

simulation, model performance evaluation after calibration was performed for the total simulation 

period. The model was, however, calibrated for the period 2003-2010 to make sure that the model 
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was not over-parameterized during calibration and the simulation included time period 

independent of model calibration. This also allowed to keep the study focused on the impact of 

calibration on groundwater recharge simulation without having to differentiate results between 

calibration and validation periods. Streamflow calibration was performed using daily observed 

data, while ET calibration was performed at a monthly scale. Although the two calibration 

scenarios were evaluated in this study that differed in the sequence of streamflow and ET 

calibration, the calibration approach used for each variable in both scenarios were the same. 

Calibration for both streamflow and ET was performed using SWAT-CUP, an optimization 

program specifically developed for SWAT that uses the Sequential Uncertainty Fitting Algorithm-

Version 2 (SUFI-2) (Abbaspour, 2013). 

Streamflow calibration was performed by utilizing observed streamflow data from seven USGS 

monitored streamflow stations (USGS, 2019) that were within the study area (Fig. 5.1). A 

sequential approach to streamflow calibration was applied in which flows to streamflow stations 

that received water from independent sub-sections of the watershed, as well as the most upstream 

streamflow station, were calibrated separately. This was followed by calibrating streamflow at the 

downstream stations without modifying the calibrated parameter values for the upstream and 

independent sub-sections of the watershed. A sequential approach to streamflow calibration was 

necessary as this allowed to evaluate groundwater recharge as well as the calibrated model 

parameter values, especially pertaining to groundwater recharge, on how it differed for different 

parts of the watershed that varied in LULC, soil, and proximity to the underlying aquifer. Initial 

parameters for streamflow calibration were selected based on literature as well as the SWAT 

theoretical documentation and are presented in Table 5.1 (Arnold et al., 2012; Neitsch et al., 2011; 

White and Chaubey, 2005). 
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MODerate Resolution Imaging Spectroradiometer (MODIS) 8-day global terrestrial ecosystem ET 

data product (MOD16A2) was used as the observed ET data for calibration of model-simulated 

ET (Running et al., 2017). The data product is based on the logic of the Penman-Monteith equation 

and uses daily meteorological reanalysis data as well as MODIS remotely sensed data products to 

calculate ET and is available at 500 m grid resolution. The 8-day ET data product was aggregated 

to monthly values for each grid and the observed monthly ET value was calculated for each sub-

basin by averaging the monthly gridded values of all grids that were within a sub-basin. Field-

scale SWAT studies performed by Haas (2020) and Tadych (2020) identified forest parameters for 

loblolly pine and crop parameters for cotton and peanut, respectively, by calibrating the model for 

yield, leaf area index (LAI), and biomass. To make use of this valuable forest and crop dataset, an 

ET calibration scheme was developed in which the calibrated plant database parameters for 

loblolly pine from Haas (2020), which was represented as FRSE, was first incorporated into the 

model. This was followed by identifying a sub-basin in the model that had the highest percentage 

of forested land and further calibrating ET for that sub-basin by only adjusting the parameters 

important for ET calibration (Table 5.1). The forest ET calibrated parameters were then 

extrapolated to all HRUs with FRSE as the LULC. Calibration of parameters for forest ET 

simulation was followed by incorporating the calibrated crop parameters of cotton and peanut from 

the study of Tadych (2020) followed by further calibration of cotton and peanut ET parameters. 

RNGE was the only other LULC type that covered more than 5% of the study area. Evaluation of 

ET simulation in a sub-basin with the highest RNGE percentage after forest and crop ET 

calibration showed a good correlation between simulated and observed ET and hence ET for 

RNGE was not further calibrated. 
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Model performance evaluation for streamflow and ET simulation was performed using the 

coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), and percent bias (PBIAS). The 

three statistics have been widely used for performance evaluation of hydrological models and 

describe the collinearity between simulated and observed variables, indicate how well the 

simulated and observed data fit the 1:1 line, and describe the average tendency of the simulated 

value to be over or under the observed value, respectively (Arnold et al., 2015). NSE was also the 

objective function used for optimization in SWAT-CUP. 

Table 5.1 SWAT calibration parameters for streamflow and ET 

Variable Parameter Description SWAT 

input file 

Adjustment a Initial 

Range 

Streamflow CN2 Curve number of operation, moisture condition II MGT r -0.3,0.3 
 

ALPHA_BF Baseflow alpha factor GW v 0.01,1 
 

GW_DELAY Groundwater delay, days GW v 0, 500 
 

GWQMN Threshold depth of water in the shallow aquifer 

required for return flow (mmH2O) 

GW v 0,5000 

 
REVAPMN Threshold depth of water in the shallow aquifer for 

“revap” or percolation to the deep aquifer to occur 

(mmH2O) 

GW v 0,1000 

 
GW_REVAP Groundwater “revap” coefficient GW v 0.02,0.2 

 
SOL_K Saturated hydraulic conductivity SOL r -0.3,0.3 

 
SOL_BD Moist bulk density SOL r -0.3,0.3 

 SOL_AWC Available water capacity of the soil layer SOL r -0.3,0.3 
 

OV_N Manning’s “n for overland flow” HRU r -0.3,0.3 

 SURLAG Surface runoff lag coefficient HRU v 0.5-20 

 SLSUBBSN Average slope length (m) HRU r -0.3,0.3 

 HRU_SLP Average slope steepness (m/m) HRU r -0.3,0.3 

 LAT_TIME Lateral flow travel time (days) HRU v 0,180 

Streamflow/ET EPCO Plant uptake compensation factor HRU v 0.01,1   

 ESCO Soil evaporation compensation factor HRU v 0.01,1 

ET CANMX Maximum canopy storage (mmH2O) HRU v 0.1,20 

 CHTMX Maximum canopy height (m) DAT v 0.5,30 

 GSI Maximum stomatal conductance at high solar 

radiation and low vapor pressure deficit (ms-1) 

DAT v 0.001,0.01 

“a” Indicates the type of model parameter adjustment. ‘r’ represents the model parameter adjustment by multiplying the original 
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parameter with the adjustment factor (1 +  r). ‘v’ represents the replacement of the original parameter value by a value within the 

initial range. 

5.3.6 Groundwater recharge estimation and groundwater well observation 

As RORA utilizes streamflow data for estimating groundwater recharge, the estimated recharge is 

the averaged value for the entire surficial drainage area contributing to the streamflow station. 

Estimated groundwater recharge using the RORA program for comparison against the SWAT 

simulated groundwater recharge were derived for three streamflow stations (Fig. 5.3a, 5.3b, and 

5.3c). The three streamflow stations were selected such that SWAT groundwater recharge 

simulation could be evaluated in a forested region where the underlying aquifer is not connected 

to the surficial streams (Fig. 5.3a; USGS station 2349605), an agriculture dominated region where 

the aquifer is close to the land surface (Fig. 5.3b; USGS station 2357150), and recharge simulation 

evaluation for most of the model domain (Fig. 5.3c; USGS station 2356000). The most 

downstream USGS station (USGS station 2358000; Fig 5.1) was not selected for estimating 

groundwater recharge for the whole model through RORA as the station was downstream of Lake 

Seminole, which could impact groundwater recharge estimation through the RORA program. It is 

important to note that the RORA program, which estimates groundwater recharge based on 

streamflow peaks, does not explicitly account for gradual recharge to the water table and can cause 

errors in the recharge estimates (Rutledge, 2007). Hence, only a graphical comparison was 

performed between the SWAT simulated, and RORA estimated groundwater recharge to perform 

a general comparison between the two methods. And, although it is suggested to use RORA for 

seasonal or quarterly estimation of groundwater recharge (Rutledge, 2007), RORA provides 

monthly estimates of groundwater recharge and was used in this study for comparison against 

simulated recharge to evaluate SWAT simulated groundwater recharge in more detail. 
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A comparison of the temporal trend in SWAT estimated groundwater recharge was also performed 

against groundwater level observation in two shallow wells (Fig. 5.3d) that were completed close 

to the land surface to compare the daily trend in groundwater recharge simulation and groundwater 

level. Temporal changes in groundwater levels in the two wells can be used as an indicator to 

evaluate the trend of groundwater recharge in the region and be compared against SWAT simulated 

groundwater recharge. Groundwater well data for the two wells were acquired from the USGS 

National Water Information System (NWIS) (USGS, 2019). The two wells were selected such that 

one was in a forest dominated sub-basin with deep soils (well 11AA01; Fig. 5.3d) while the second 

one was in an agricultural dominated sub-basin and the underlying aquifer was close to the land 

surface (well 08G001; Fig. 5.3d). 

 

Figure 5.3 Sub-watersheds contributing to streamflow and RORA estimated groundwater 

recharge for station (a) 2349605, (b) 2357150 and (c) 2356000. Figure (d) shows the location of 

the two groundwater wells and the sub-watershed associated with it for comparing the temporal 

trend in groundwater recharge and groundwater levels. 
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5.4 Results and discussion 

5.4.1 Default model 

The first step in understanding the sensitivity of streamflow and ET calibration, as well as the 

impact/change on groundwater recharge simulation is to evaluate SWAT simulation of 

streamflow, ET, and groundwater recharge under default parameters. 

5.4.1.1 Default streamflow simulation 

Model performance evaluation for streamflow simulation showed that the model performed poorly 

for all seven USGS stations with default parameters (Table 5.2). SWAT simulation of daily 

streamflow is considered satisfactory when the R2 and NSE values are higher than 0.5, and PBIAS 

is less than ±15% (Moriasi et al., 2015), and it was observed that R2 was less than 0.5 and NSE 

values were negative for all stations. Evaluation of PBIAS showed that the default model 

significantly over simulated streamflow for all stations. 

Table 5.2 Model performance for streamflow simulation with default parameters for the total 

simulation period for all stations 

USGS streamflow station R2 NSE PBIAS (%) 

2349605 0.14 -2.38 62 

2352500 0.16 -3.32 74.9 

2353000 0.14 -4.56 70.2 

2355350 0.09 -19.96 123.2 

2356000 0.13 -6.18 71.9 

2357150 0.04 -29.31 83.9 

2358000 0.42 -0.49 27.3 

 

5.4.1.2 Default ET simulation 

Evaluation of ET simulation for each sub-basin with default parameters shows that the model does 

a much better job of simulating ET with the default parameters (Fig. 5.4 and Fig. 5.5) when 

compared to streamflow simulation. R2 values were all greater than 0.2, and the average was about 
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0.5. Mean NSE for all sub-basins was close to 0.4, while more than 50% of the sub-basins have 

NSE close to 0.5 or higher (Fig. 5.5). Evaluation of PBIAS shows that the default model under 

simulates ET with mean and median values both close to -20% (Fig. 5.5).  Spatial evaluation of 

R2, NSE, and PBIAS shows that the model does a much better job of simulating ET on the non-

forest dominated sub-basins (Fig. 5.2a and Fig 5.4) than the forest dominated sub-basins (upper 

part of the study area) with default plant database parameters. It should, however, be noted that 

although default plant database parameters were used for row crops, detailed management 

practices, including fertilizer application and irrigation, were provided, which could have led to 

better simulation of row crops and hence, better ET estimates.  

 

Figure 5.4 (a) R2, (b) NSE, and (c) PBIAS for ET simulation with default parameters for each 

sub-watershed in the model. 
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Figure 5.5 Box plots showing the distribution of (a) R2, (b) NSE, and (c) PBIAS for all sub-

basins for ET simulation with default parameters. 

5.4.1.3 Default groundwater recharge 

As the RORA estimated groundwater recharge using USGS streamflow station is an average value 

for the whole area that drains to that station, simulated groundwater recharge for comparison was 

calculated by averaging the simulated recharge of all HRUs that were in the contributing sub-

watersheds associated with the respective streamflow station and aggregating to monthly values 

(Fig. 5.3a, 5.3b, and 5.3c). Comparison between simulated monthly recharge from the SWAT 

model with default parameters and the RORA estimated monthly recharge for all three sub-

watersheds show a good match (Fig. 5.6). The model seems to catch the temporal trend, especially 

peak recharges, well for all three regions. Comparison for the periods with low RORA estimated 

recharge showed that the model does a better job of estimating recharge for USGS station 2349605 

than for stations 2357150 and 2356000 (Fig. 5.6). It is important to note that station 2357150 and 

2356000 have contributing sections of the watershed in which the aquifer is close to the land 

surface and can have gradual discharge to the streamflow. This can potentially lead to error in 
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groundwater recharge estimation with RORA and hence the months with no RORA estimated 

recharge for stations 2357150 and 2356000.  

 

Figure 5.6 Comparison between RORA estimated and SWAT simulated groundwater recharge 

with default SWAT parameters. 

Temporal trend comparison between the daily groundwater levels observed in two groundwater 

wells and SWAT simulated daily groundwater recharge for the sub-watershed in which the 

groundwater well is located showed that SWAT simulated groundwater recharge with default 

parameters is more episodic with sharp rise and fall in groundwater recharge when compared to 

the change in observed groundwater levels (Fig. 5.7). The change in groundwater level in the well 

was gradual, indicating a more delayed recharge phenomenon than simulated by SWAT with 

default parameters for both wells. Well 11AA01 (Fig. 5.3d), which was located in the region with 

deep soils, had a gradual change in groundwater level than compared to well 08G001 (Fig. 5.3d), 

which was in a region where the aquifer was close to the land surface.  



134 

 

 

Figure 5.7 Temporal trend comparison between SWAT simulated groundwater recharge with 

default parameters and groundwater well 11AA01 (top) and 08G001 (bottom). 

5.4.2 Calibration approach-1 

Flow at each station was calibrated using multiple iterations of 500 simulations until there was no 

noticeable improvement in the objective function between two successive iterations. SWAT-CUP 

recommended parameter ranges were used after each iteration to keep the calibration process 

objective. The calibrated parameters were, however, kept within the parameter ranges specified in 

Table 5.1 to make sure that values were within a realistic range. As the sub-watersheds were 

calibrated separately, the calibrated parameter values for streamflow simulation varied spatially. 

The spatial distribution of calibrated parameter values important to groundwater recharge is 

discussed in section 3.4.  
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Calibration of streamflow was followed by ET calibration. The SWAT plant database parameters 

for loblolly pine developed by Haas (2020) were first imported into the model. This was followed 

by identifying a sub-basin which had the highest percentage of FRSE (sub-basin 24 – 92%) and 

calibrating the selected parameters (Table 5.1) for ET. The plant database parameters, GSI and 

CHTMX (Table 5.1), were further calibrated in this study, as Haas (2020) identified these 

parameters to be sensitive for ET simulation. EPCO and ESCO, although calibrated for 

streamflow, were also calibrated again as these parameters play an important role in ET simulation 

in SWAT (Neitsch et al., 2011). The calibrated .hru file parameters were replaced only in HRUs 

with FRSE as the LULC. ET calibration was also performed for multiple iterations using SWAT-

CUP until no noticeable improvement was observed between successive iterations. After 

completion of forest ET calibration, crop database parameters for cotton and peanut from the study 

of Tadych (2020) were imported into the model, and an approach similar to FRSE calibration was 

performed for further calibration of ET for cotton and peanut. 

5.4.2.1 Streamflow simulation after calibration approach-1 

Streamflow evaluation at all seven streamflow stations showed that the model was satisfactorily 

able to simulate streamflow in the study watershed after streamflow calibration (Table 5.3; Fig. 

5.8). R2 and NSE values greater than 0.6 were observed for all stations except for stations 2355350 

and 2357150, which had NSE values of 0.55 and 0.52, respectively. The area that contributes 

streamflow to the two stations is near the outcrop of the underlying aquifer, where the aquifer is 

thin and close to the land surface. The complex hydrogeology of the region as well as missing 

observed data for the two stations during high flows (Fig. 5.8) that limited streamflow calibration 

could have led to the comparatively poor model performance for the two stations. 
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Evaluation of streamflow simulation after the calibration of ET (Table 5.3; Fig. 5.8) showed that 

the model performance for streamflow simulation slightly weakened, especially for simulating the 

runoff volume. The simulated streamflow was lower than observed for six of the seven stations, 

with three stations having a negative PBIAS of over 20% (Table 5.3; Fig. 5.8). R2 and NSE values, 

as a result, were also lower for the six stations when compared to values after only streamflow 

calibration (Table 5.3). 

Table 5.3 Model performance for streamflow simulation after sequential calibration of 

streamflow and ET in calibration approach-1. 

 After streamflow calibration After ET calibration 

USGS streamflow station R2 NSE PBIAS 

(%) 

R2 NSE PBIAS 

(%) 

2349605 0.68 0.67 0.7 0.64 0.6 -10.3 

2352500 0.73 0.72 -7.9 0.7 0.62 -24.2 

2353000 0.69 0.67 -11.6 0.67 0.58 -28.2 

2355350 0.66 0.55 11.2 0.6 0.49 -10.1 

2356000 0.69 0.65 -9.3 0.68 0.61 -25.3 

2357150 0.67 0.52 7.2 0.69 0.55 12.8 

2358000 0.86 0.85 -7.7 0.85 0.83 -14.2 
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Figure 5.8 Graphical comparison between observed streamflow and simulated streamflow after 

streamflow calibration and subsequent ET calibration for all seven stations (approach -1). The 

vertical black line indicates the time frame of the observed dataset that was used for streamflow 

calibration. 

5.4.2.2 ET simulation after calibration approach-1 

The spatial distribution and box-plot summary of R2, NSE, and PBIAS for ET simulation in each 

SWAT sub-watershed after each calibration step of approach-1 is presented in Fig. 5.9. It can be 

seen from the figure that ET simulation in SWAT shows general improvement even after the 

calibration of only streamflow (Fig. 5.9) with better results for R2, NSE, and PBIAS. The most 

significant improvement is seen in PBIAS value as the mean PBIAS improves from about -17.5% 
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in the default model to about -5% after streamflow calibration. Improvement in R2 and NSE after 

only streamflow calibration was more profound in the lower sub-basins of the study area that had 

more agricultural crops while the improvement in the upper sub-basins that is more forest 

dominated was marginal. There was, however, a general increase in ET throughout the study area 

after streamflow calibration, as indicated by the upward shift of the PBIAS box plot. 

Calibration of ET after streamflow simulation further improved the ET simulation. Mean R2 

improved from about 0.55 to about 0.65 and mean NSE improved to about 0.55 from about 0.4. 

There was a marked improvement in ET simulation in the forest dominated upper sub-basins. 

However, when evaluating the overall watershed, ET simulation in the lower sub-basins, which 

had more agriculture, was better. There was also an improvement in the PBIAS values with the 

mean and median values, both close to 0. The spatial distribution of PBIAS (Fig. 5.9 – bottom 

figure) showed that the forest dominated landscapes slightly under-simulated ET even after 

calibration while the agriculture dominated lower sub-basins slightly over-estimated ET. The 

under-estimation of ET by the default model and the increase in ET after calibration also explains 

the reduction in streamflow performance and the under-estimation of streamflow after ET 

calibration. The outlier sub-basins with negative NSE and high PBIAS even after ET calibration 

were the ones that had a high percentage of water in the sub-basin and could have led to the model 

having difficulty in simulating ET accurately. 
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Figure 5.9 Spatial distribution and box plot of R2 (top), NSE (middle), and PBIAS (bottom) for 

the (a) default model, (b) streamflow calibration, and (c) subsequent ET calibration (approach-1). 

5.4.2.3 Groundwater recharge simulation after calibration approach-1 

Groundwater recharge evaluation for all three sub-watersheds after streamflow calibration showed 

that the SWAT simulated groundwater recharge was smoother with less temporal variation as 

compared to the default model as well as the RORA estimated recharge (Fig. 5.10). The streamflow 

calibrated recharge still followed the temporal trend of the RORA estimated groundwater recharge, 
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but the fluctuations in the recharge magnitude were much smaller when compared to the RORA 

estimated and default SWAT groundwater recharge. Peak groundwater recharge for the upper sub-

watershed with deep soils (Fig. 5.10 – station: 2349605) after streamflow calibration was much 

lower than compared to the default and RORA estimated recharge and the temporal change in 

recharge were also not very drastic as expected in the geology with deep clayey soils. Temporal 

change in groundwater recharge in the lower sub-watershed where the aquifer is close to the land 

surface (Fig. 5.10 – station:2357150) was more drastic, indicating a much faster recharge. This is 

not surprising knowing the geology of the area where the aquifer is close to the land surface.  

Calibration of ET, however, did not seem to make a big difference in the simulation of groundwater 

recharge in SWAT as the groundwater recharge after streamflow and thereafter ET calibration 

were similar (Fig. 5.10). It is, however, important to note that groundwater recharge slightly 

decreased after ET calibration in the upper forest dominated sub-watershed, especially between 

2003 and 2010, which had under-estimated ET in the default model and improved after ET 

calibration (Fig. 5.10 – station: 2349605). Evaluation at the whole basin scale, however, did not 

show any difference in groundwater recharge estimations after the calibration of ET (Fig. 5.10 – 

station: 2356000). 
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Figure 5.10 Comparison between RORA estimated groundwater recharge and SWAT simulated 

groundwater recharge for the three sub-watersheds after streamflow and subsequent ET 

calibration (approach-1). 

Comparing the SWAT simulated groundwater recharge for the sub-basins after calibration 

approach-1 to the groundwater level observed in wells located in the sub-basin showed that the 

temporal change in groundwater recharge simulation as a result of streamflow calibration closely 

matched the temporal change in the groundwater levels in the wells (Fig. 5.11). SWAT closely 

matched the temporal as well as the change in the magnitude of groundwater recharge to the 

groundwater well in the forested watershed with deep soils (well 11AA01; Fig 5.11). Although the 

temporal trend of groundwater recharge matched well even in well 08G001, where the 

groundwater is close to the land surface, and the geology is karstic, resulting in significant water 

movement also in lateral directions, SWAT was not able to match the change in the magnitude of 

groundwater recharge to that observed in the groundwater well. This could potentially indicate the 
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limitation of SWAT in that HRU’s in the SWAT are isolated, and there is no lateral flow between 

HRU’s in SWAT. This potentially is not an issue in the region with clay soils where the lateral 

flow is very minimal (sub-basin 4 – well 11AA01) but can cause errors in the region where the 

soil is more sandy, and lateral flow can be prominent (sub-basin 92 – well 08G001). This could 

have led to SWAT not match the change in the magnitude of groundwater recharge to the 

groundwater level observed in the well in sub-basin 92 as it could not account for groundwater 

recharge due to lateral flows. 

 

Figure 5.11 Comparison between observed groundwater level and final simulated groundwater 

recharge after calibration approach-1 for sub-basin 4 (top) and sub-basin 92 (bottom). 

5.4.3 Calibration approach-2 

Although ET was the first variable calibrated in approach-2 and followed by streamflow 

calibration, the calibration approach for each variable was the same as described in detail in section 
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3.2 and used in approach-1. It is also important to note that the evaluation of results for streamflow 

is presented first, as in section 3.2 for consistency with the discussion of results for approach-1 in 

section 3.2. 

5.4.3.1  Streamflow simulation after calibration approach-2 

Evaluation of model streamflow simulation after ET calibration showed that the calibration of ET 

alone and as the first variable calibrated does not have much influence in streamflow simulation. 

R2, NSE, and PBIAS values were poor at all stations for streamflow simulation after ET calibration 

(Table 5.4). The only measurable difference in performance statistics for streamflow simulation 

after ET calibration was in the reduction of PBIAS as compared to the default model statistics 

(Table 5.2) indicating a slight reduction in streamflow volume. This, again, resulted from the 

increase in ET after calibration of ET, which was underestimated in the default model. 

Table 5.4 Model performance for streamflow simulation after sequential calibration of ET and 

streamflow in calibration approach-2. 

 After ET calibration After streamflow calibration 

USGS streamflow station R2 NSE PBIAS (%) R2 NSE PBIAS (%) 

2349605 0.15 -2.06 47.5 0.63 0.62 3.4 

2352500 0.16 -2.94 58.9 0.72 0.72 -1.4 

2353000 0.14 -4.09 54.9 0.72 0.69 -4.8 

2355350 0.09 -18.66 96.5 0.63 0.61 -2.7 

2356000 0.13 -5.67 57.1 0.73 0.69 -8.9 

2357150 0.04 -30.06 75.4 0.62 0.43 23.4 

2358000 0.42 -0.41 21 0.86 0.85 -8.9 

Calibration of streamflow after ET calibration, as expected, drastically improved streamflow at all 

stations with R2 and NSE above 0.6 and PBIAS less than ±15% for all stations (Table 5.4; Fig. 

5.12) except for station 2357150 which had a PBIAS of 23.4% and NSE of 0.43. The model had 

difficulty simulating streamflow in the complex hydrogeological region that drains to station 
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2357150 even with calibration approach 2. It is, however, important to note that the final 

streamflow simulation, after completing all calibration steps in both approaches, was better 

through approach-2. This shows that if streamflow is the hydrological variable that needs to be 

simulated most accurately for a study with the model also constrained well for ET simulation, 

approach-2 works better. Fig. 5.12 shows the graphical comparison between simulated and 

observed streamflow for all stations using approach-2. 

 

Figure 5.12 Comparison between observed streamflow and SWAT simulated streamflow after 

ET and subsequent streamflow calibration (approach-2) for all seven stations. The vertical black 

line indicates the time frame of the observed dataset that was used for streamflow calibration 

5.4.3.2 ET simulation after calibration approach-2 



145 

 

ET simulation after calibration showed good improvement with mean R2, NSE, and PBIAS 

increasing from 0.5, 0.45, and -17.5% to 0.64, 0.6, and -2.5%, respectively (Fig. 5.13). The model, 

however, still under simulated ET for most of the study area even after ET calibration, as indicated 

by the negative PBIAS (Fig. 5.13 – bottom figure – label (b)). Subsequent calibration of 

streamflow only slightly declined ET simulation with a slight reduction in mean R2 and NSE values 

(Fig. 5.13 – top and middle figure). Calibration of streamflow, however, resulted in increased ET 

over the whole watershed, an effect that was also observed in approach-1. This resulted in the 

mean PBIAS for ET simulation to be around 0%, but it can be easily observed that the model 

overestimated ET in the agricultural watersheds and under simulated ET in the forested watersheds 

even with approach 2. Comparison between the final simulated ET from both approaches shows 

that either approach does not have a considerable advantage over the other for ET simulation as 

the performance statistics were similar in both cases (Fig. 5.9 and Fig. 5.13). 
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Figure 5.13 Spatial distribution and box plot of R2 (top), NSE (middle), and PBIAS (bottom) for 

the (a) default model, (b) ET calibration, and (c) subsequent streamflow calibration (approach-2). 

5.4.3.3 Groundwater recharge simulation after calibration approach-2 

Groundwater recharge simulation after calibration of only ET was very similar to the recharge 

simulation in the default model for all three sub-watersheds (Fig. 5.14), indicating that 

groundwater recharge simulation was not sensitive to the calibration of ET alone. As it was also 

observed that streamflow simulation is also very poor after only ET simulation (Table 5.4), 

hydrological simulation in SWAT cannot be adequately constrained by calibrating ET alone, and 
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the simulated groundwater recharge might not be an accurate representation of the groundwater 

recharge in a study area. 

Subsequent calibration of streamflow resulted in the simulated groundwater recharge to be 

smoother and have less temporal variation as observed after streamflow calibration in approach-1 

(Fig. 5.14). However, it was observed that the simulated groundwater recharge after approach-2 

was more episodic with a greater temporal variation for the sub-watersheds contributing to station 

2349605 and 2356000 when compared to the groundwater recharge simulation after calibration 

approach-1. Simulated groundwater recharge for sub-watershed contributing to station 2357150 

was also exact opposite in that there was almost no temporal variability in simulated groundwater 

recharge after approach-2 while it was the most episodic of the three sub-watersheds after 

approach-1. Simulated groundwater recharge following calibration approach-2 is less 

representative of the expected groundwater recharge mechanisms, especially when evaluating for 

sub-watersheds contributing to stations 2349605 and 2357150. Groundwater recharge is expected 

to be more episodic with a higher temporal variation for station 2357150 as the region is karstic 

with thin soils and the aquifer very close to the land surface, unlike simulated by approach-2. 

Similarly, as the region draining to station 2349605 has deep soils, and the aquifer is not close to 

the land surface, groundwater recharge is expected to have less temporal variation due to the slow 

movement of water through the deep soil profile.  
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Figure 5.14 Comparison between RORA estimated groundwater recharge and SWAT simulated 

groundwater recharge for the three sub-watersheds after ET and subsequent streamflow 

calibration (approach-2). 

Comparison between observed groundwater level and simulated groundwater recharge after 

calibration approach-2 further demonstrated that the simulated groundwater recharge for sub-basin 

4 was more episodic than as expected in the region as the change in groundwater recharge was 

more drastic than the change in groundwater level (Fig. 5.15). On the contrary, simulated 

groundwater recharge for sub-basin 92 was less episodic than the observed change in groundwater 

level for that region (Fig. 5.15).  This indicated to calibration approach-2 having more difficulty 

in accurately representing the recharge mechanism when compared to approach-1. 
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Figure 5.15 Comparison between observed groundwater level and final simulated groundwater 

recharge after calibration approach-2 for sub-basin 4 (top) and sub-basin 92 (bottom). 

5.4.4 Comparison of groundwater parameters and recharge from the two approaches. 

The groundwater delay parameter (GW_DELAY in .gw file) is one of the most critical parameters 

for accurate simulation of groundwater recharge in SWAT as it controls the number of days it 

takes for water to travel from the bottom of the soil profile to the top of the water table and thereby 

impact the temporal variation in groundwater recharge. Based on the hydrogeological information 

of the study region (Jones and Torak, 2006; Torak and Painter, 2006), it is clear that the final 

calibrated values for GW_DELAY through approach-1 is more representative of the region than 

values derived using approach-2. GW_DELAY values, through approach-1, are the smallest in the 

region of the study area where the aquifer is close to the land surface (Fig. 5.16a) and water is 

expected to percolate past the unsaturated soil zone faster while the highest values are located in 
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the region where the soils are deep. In contrast, GW_DELAY values are highest in the region 

where the aquifer is close to the land surface and low where the soil zones are thick (Fig. 5.16b), 

indicating the inability of the model to represent the groundwater dynamics through calibration 

approach-2 accurately. It is important to note that the starting parameter ranges for all the variables 

were the same for both approach and the optimized variables for subsequent calibration runs were 

based on the SWAT-CUP outputs.  

 

Figure 5.16 Calibrated GW_DELAY parameter for the SWAT model following (a) approach-1 

and (b) approach-2. 

Evaluation of average annual groundwater recharge for the total simulation period after the two 

calibration approaches showed some important differences (Fig. 5.17). Estimated groundwater 

recharge through approach-1 was higher in the lower part of the modeled area when compared to 

recharge from approach-2. However, the estimated recharge from approach-1 was lower when 

compared in the upper-middle and upper portion of the modeled area (Fig. 5.17). As the underlying 

karstic aquifer is close to the land surface and even exposed at the land surface in the lower part 
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of the study area (Torak and Painter, 2006), recharge in the lower part of the modeled area can be 

expected to be higher than the upper region of the study area. This spatial variability in recharge 

was captured better when SWAT was calibrated using approach-1. Lower estimated recharge 

through calibration approach-2 in the lower part of the study area compounded by the inability of 

the model to replicate the temporal trends of groundwater recharge observed in groundwater well 

08G001 in the same region (Fig. 5.15) also showed that SWAT could have potentially under 

simulated recharge through calibration approach-2 in the lower part of the modeled area. 

 

Figure 5.17 SWAT estimated annual average groundwater recharge for the total simulation 

period after calibrating through  (a) approach-1 and (b) approach-2. 

5.5 Summary and Conclusions 

This study evaluated the impact of separately calibrating streamflow and ET as well as using a 

multi-variate approach in SWAT on the simulation of groundwater recharge. Evaluation of SWAT 

simulated groundwater recharge with default parameters for three sub-watersheds in the Flint 

River Basin by comparing to RORA estimated recharge showed that the model was able to 
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adequately replicate the groundwater recharge estimated by RORA even with default parameters. 

However, a comparison of the temporal variability of SWAT simulated groundwater recharge with 

default parameters to groundwater levels observed in two wells, which are indicative of the 

temporal distribution of recharge, showed that the SWAT simulated groundwater recharge was 

more episodic and had greater variability than observed through the groundwater wells.  

Calibration of ET alone had a negligible impact in the simulation of groundwater recharge, and 

there was also minimal improvement in streamflow simulation. Hence, ET calibration alone cannot 

constrain the hydrological simulation in SWAT enough to accurately simulate the groundwater 

recharge. It was observed that streamflow is an important and influential variable to be calibrated 

in SWAT for simulating groundwater recharge accurately as the parameters important for 

calibrating streamflow in SWAT are more directly related to the simulation of groundwater 

recharge. Calibration of streamflow tended to make the simulated groundwater recharge smoother 

and less variable temporally for all three sub-watersheds when compared to the RORA estimated 

groundwater recharge. However, comparing the simulated recharge after streamflow calibration 

to groundwater levels observed in the two wells showed that the simulated groundwater recharge 

replicated the temporal variability of groundwater levels much more accurately after streamflow 

calibration. The study also pointed out the importance of calibrating streamflow separately for the 

different sections of the watershed that differ in geology as the parameters that are critical for 

groundwater recharge simulation can be fine-tuned for the region. This was evident by the 

difference in calibrated GW_DELAY parameter value for the region with deep soils and where 

the aquifer was close to the land surface that allowed the model to accurately simulate the temporal 

variability in groundwater recharge matching the change in groundwater levels observed in wells. 

Sequential calibration of ET after streamflow calibration slightly reduced groundwater flow in the 
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forested region and also slightly reduced model performance for streamflow simulation to 

compensate for the under simulation of ET by the default model. There was, however, no change 

in temporal variability in groundwater recharge simulation after calibration of ET. Although the 

sequential calibration of ET followed by streamflow (approach-2) presented better overall 

simulation results for streamflow simulation, simulated groundwater recharge and the calibrated 

groundwater variable (GW_DELAY) were not representative for both the region with deep soils 

and where the aquifer was near the land surface. Hence, the calibration approach in which 

streamflow was first calibrated followed by ET calibration was identified as the most suitable for 

multi-variate calibration using a sequential approach for groundwater recharge simulation while 

streamflow is the single most important hydrological variable to be calibrated for accurate 

simulation of groundwater recharge in the Flint River Basin. 

Evaluation of the calibration approaches in varying hydrogeology within the study area provides 

confidence in the applicability of the findings from this research over varying land use and soils. 

Findings from this study can also provide important insight into the calibration of SWAT-

MODFLOW in which SWAT simulates the overland hydrologic process and provides recharge 

estimation into the MODFLOW model (Bailey et al., 2016). It should, however, be noted that the 

lack of accurate point recharge estimates limited the groundwater recharge evaluation to coarse 

recharge estimates using the RORA program and observed groundwater level for temporal 

variability. The study could be further improved and the impacts of streamflow and ET calibration 

on groundwater simulation in SWAT can be more accurately defined by using more accurate 

recharge estimates for comparison. It should also be noted that the study area has a humid climate 

where the surface- and groundwater dynamics can be very different from arid regions and hence 

further evaluation might be required for different climatic conditions. 
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Chapter 6  

Application of SWAT-MODFLOW for evaluating the impacts of climate change on the 

surface- and groundwater resources of the lower Apalachicola Chattahoochee Flint River 

Basin, USA 

6.1 Abstract 

The threats of climate change on the surface- and groundwater resources of the lower 

Apalachicola-Chattahoochee-Flint (ACF) River Basin of southeastern United States (U.S.) is an 

important concern for the long-term sustainability of agriculture and environment in the region. 

Evaluation of the potential impacts of climate change requires the development of an integrated 

modeling system that can adequately simulate the surface- and groundwater resources together due 

to the intrinsic connection between the resources in the region. Hence, this study developed a 

coupled SWAT-MODFLOW for the lower ACF River Basin and the underlying Upper Floridan 

Aquifer (UFA) and evaluated the impacts of climate change predicted under Coupled Model 

Intercomparison Project 5 (CMIP5) RCP4.5 and RCP8.5 emissions scenario on streamflow, 

surface- and groundwater (SW-GW) exchange, evapotranspiration (ET), and groundwater 

recharge. Streamflow evaluation after calibration at six locations showed that the model can 

adequately replicate streamflow in the region even though it has complex hydrogeology due to its 

karstic nature. The model also adequately simulated the spatial and temporal variability of 

groundwater levels in the study region. Comparison of historic monthly averaged daily maximum 

and minimum temperature to future predicted temperature under the RCP4.5 and RCP8.5 scenarios 

showed an increase in daily maximum temperature by as much as 2.7℃ with a general increase 

throughout the year by the middle of the 21st century. A shift in precipitation pattern with higher 

precipitation in fall months and decrease in precipitation in the early months was also expected. A 
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general decrease in streamflow was expected under RCP4.5 and RCP8.5 for the late spring and 

summer months while an increase was expected in the late fall and early months of the year 

indicating also to a shift in flow pattern in the region under future climate. Evaluation of change 

in SW-GW exchange showed an increase in flux along the main-stem of the Flint River while there 

was minimal change in ET in the region ranging from about -4% to 4%. 

Introduction 

Surface- and groundwater resources in the lower Apalachicola Chattahoochee Flint (ACF) River 

Basin of southeastern United States (U.S.) play a critical role in the economic and environmental 

vitality of the region.  Agriculture, which serves as the major economic contributor to the region 

generating more than 2 billion dollars in revenue annually, is heavily dependent on irrigation from 

the underlying Upper Floridan Aquifer (UFA) (CAES, 2018). The UFA contributes more than 

80% of the total irrigation demand in the region and supplied an estimated 1.7 million cubic meters 

of water for irrigation in 2015 (GA EPD, 2016). The withdrawal, however, can be as high as 3.6 

million cubic meters during a drought year (GA EPD, 2016). The aquifer irrigates more than 

200,000 hectares of agricultural land through more than 4,000 irrigation wells (GA EPD, 2016) 

and is also the primary source of water for municipal and industrial use. The UFA, which is made 

up of karst limestone in the region, is close to the land surface and as a result, is in direct connection 

with the surficial river and lake systems through incised streambeds, sinkhole ponds, karst sinks, 

and conduits that exposes the limestone to the surface (Torak and Painter, 2006). The aquifer 

system contributes tens of million cubic meters of water to many of the surficial rivers daily as 

baseflow. Hence, the aquifer system serves as a vital component in maintaining streamflow, 

especially during low flow periods (Torak and Painter, 2006). The river basin also supports a 

diverse population of flora and fauna. It has the highest density of reptiles and amphibians in North 
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America (Couch et al., 1996) and is also habitat to multiple federally endangered mussel species 

as well as striped bass (Couch and McDowell, 2006). However, the surface- and groundwater 

resources in the region are under increasing stress due to increased irrigation as well as recurring 

prolonged drought conditions. Multiple studies have indicated to a reduction in baseflow (Golladay 

et al., 2007; Jones and Torak, 2006; Singh et al., 2016, 2017)  as well as short- and long-term 

decline in groundwater levels (Jones and Torak, 2006; Mitra et al., 2016; Singh et al., 2017; Torak 

and Painter, 2006) due to increased groundwater withdrawals, especially during drought periods 

in the region. Flows in the spring-fed streams in the region decreased by 50 to 100% during drought 

periods (GWC, 2017). Reduced streamflow exacerbated by prolonged drought conditions has also 

severely impacted the federally endangered mussel species (Gagnon et al., 2004; Golladay et al., 

2004; Shea et al., 2013) and bass population (Couch and McDowell, 2006) in the basin.  

Along with the impacts of increasing irrigation and climate variability factors, climate change is a 

growing threat to the environmental and economic sustainability of the region. The temperature in 

the region has increased by over 1.1℃ since the 1970s (Karl et al., 2009), and an upward trend in 

precipitation has been identified in more than 70% of the precipitation recording stations in the 

southeastern United States (U.S.) (Reidmiller et al., 2017). The region has also witnessed an 

increase in frequency and intensity of extreme precipitation along with more frequent drought 

conditions and extreme and prolonged heat waves (Reidmiller et al., 2017). Numerous 

precipitation events that are expected to occur once every 500 years have been observed since 

2014 while the decade of 2010s was warmer than any previous decade, and the rise in temperature 

and increase in extreme precipitation events are expected to increase further in the future 

(Reidmiller et al., 2017). As a result, climate change is a significant growing threat to 

environmental and economic sustainability in the region. Globally, the rise in temperature and 
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subsequent change in climate has already altered the global hydrological cycle and led to change 

in precipitation patterns and intensity, changes in river discharge patterns, altered the water balance 

components, affected the frequency and magnitude of fluvial floods, and increased heat waves and 

droughts (Ahiablame et al., 2017; Leta et al., 2016; Masson-Delmotte et al., 2018; Mohammed et 

al., 2017; Pachauri et al., 2014; N. K. Shrestha et al., 2017). As the impacts of climate change are 

already being felt in the region, it is imperative to understand the potential impacts of climate 

change on the surface- and groundwater resources of the lower ACF River Basin for developing a 

long-term water resource management plan. Understanding the potential changes in streamflow as 

well as other vital components of the hydrologic water balance including evapotranspiration (ET), 

groundwater recharge, and surface- and groundwater (SW-GW) exchange due to climate change 

in the region can provide important insight to the development of sustainable water resources 

management plan for environmental and socio-economic sustainability.  

Hydrologic models are essential decision support tools that can provide important insight into 

short- and long-term water resources management plans at the basin-scale as they can simulate 

watershed hydrology and help evaluate scenarios including potential changes in climate, land use, 

and management practices. Because of the intricate connection between the surface- and 

groundwater resources in the study region, an integrated hydrologic modeling system that allows 

for a detailed simulation of surface- and groundwater systems along with the interactions between 

the two components is critical to accurately simulate and represent the hydrology of the lower ACF 

River Basin. It is difficult to understand and quantify the spatio-temporal distribution of SW-GW 

exchange using only a surface- or groundwater model and the management decisions made based 

on the scenario results from such results could have little merit. 
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There are multiple hydrologic models that allow for the simulation of surface- and groundwater 

resources including HydroGeoSphere (HGS) (Brunner and Simmons, 2012), Parallel Flow 

(ParFLOW) (Kollet and Maxwell, 2006), MODHMS (HydroGeoLogic, 2000), MIKE SHE (Jaber 

and Shukla, 2012), Groundwater Surface-Water FLOW model (GSFLOW) (Markstrom et al., 

2008), and SWAT-MODFLOW (Bailey et al., 2016). Some of these models allow for the 

concurrent/simultaneous simulation of surface and groundwater processes (e.g., ParFlow, HGS) 

while the other models such as SWAT-MODFLOW and GSFLOW couple two or more 

hydrological modeling codes to develop an integrated modeling system.  

SWAT-MODFLOW is an integrated hydrologic model that couples the Soil and Water 

Assessment Tool (SWAT) model developed by the U.S. Department of Agriculture (USDA) – 

Agriculture Research Service (ARS) (Neitsch et al., 2011) with a U.S. Geological Survey (USGS) 

finite-difference three-dimensional modular groundwater flow model (MODFLOW-NWT) 

(Niswonger et al., 2011). SWAT is a semi-distributed, watershed scale, physically-based, 

hydrologic model that is robust in simulating flow, sediment, nutrient, and pesticides and has been 

extensively tested in a range of climatic and geologic conditions and applications, including 

evaluating impacts of climate change (de Almeida Bressiani et al., 2015; Francesconi et al., 2016; 

Gassman et al., 2007; Krysanova and Arnold, 2008). The model is, however, limited in the 

simulation of groundwater flow and storage due to the semi-distributed nature of the model as well 

as the simplistic representation of the groundwater flow using a linear reservoir approach (Neitsch 

et al., 2011). This issue and its potential negative impact in streamflow simulation have been 

highlighted by multiple studies (Gassman et al., 2007; Molina-Navarro et al., 2016; Nguyen and 

Dietrich, 2018). MODFLOW, on the other hand, has robust groundwater simulation capabilities 

but is limited in the simulation of surface hydrology and requires distributed groundwater recharge 
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provided as model input. The coupling of SWAT and MODFLOW allows utilizing the strength of 

both models to develop an integrated model that is strong in both surface and sub-surface 

hydrological simulation. Although multiple attempts have been made to couple SWAT and 

MODFLOW with varying levels of success (Bailey et al., 2016; Gassman et al., 2007), previous 

versions of SWAT-MODFLOW have been mostly limited to the use by the developers. The 

SWAT-MODFLOW model developed by Bailey et al. (2016) is publicly available, has a graphical 

user interface (Bailey et al., 2017), and has added advantages to the previous versions (Bailey et 

al., 2016), leading to a broader adoption as well as evaluation in different climatic and geologic 

conditions and for multiple applications including climate change (Aliyari et al., 2019; Chunn et 

al., 2019; Gao et al., 2019; Guevara-Ochoa et al., 2020; Molina-Navarro et al., 2019; Wei et al., 

2019).  

Although there have been some large scale studies that evaluated the impacts of climate change 

on the hydrology of the region (Georgakakos and Yao, 2000; Sun, 2013), there have been limited 

studies that evaluated the impact of climate change in the lower ACF River Basin (Viger et al., 

2011) and none of these studies have utilized an integrated modeling system that simulates the 

surface- and groundwater resources in detail. Hence, the overall objective of this research is to 

evaluate the impacts of climate change on the surface- and groundwater resources of the lower 

ACF River Basin by developing a coupled SWAT-MODFLOW model for the region. Specifically, 

the impact on streamflow, groundwater recharge, ET, and SW-GW exchange will be evaluated. 

An important advantage of using this version of SWAT-MODFLOW also includes the capability 

of the model to simulate the change in irrigation and account for its impact by extracting water 

from the underlying aquifer based on the plant water demand. Groundwater withdrawal from the 

underlying aquifers is an important hydrologic component that needs to be accounted for when 
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evaluating scenarios such as climate scenarios in intensively irrigated watersheds such as the lower 

ACF River Basin but is often overlooked due to model limitations. As the study region has 

complex and spatially variable hydrogeology with a karstic aquifer system, the study also provides 

an opportunity to evaluate the capability of the coupled SWAT-MODFLOW model to simulate 

surface- and groundwater hydrology and the interaction between them in a karstic watershed, 

which to the authors’ knowledge has not been performed yet. Global climate projections using 

multiple Global Climate Models (GCMs) from the 5th phase of the Coupled Model 

Intercomparison Project (CMIP5) under four emissions scenario are freely available to use as 

inputs into hydrologic models for evaluating the potential impacts of climate change (Taylor et al., 

2012). Of the four scenarios, representative concentration pathway (RCP) 8.5 (high emissions 

scenario) estimates the greenhouse gases to continue increasing with radiative forcing reaching to 

about 8.5 W m-2 by the end of the twenty-first century compared to the pre-industrial conditions. 

In contrast, RCP4.5 (intermediate scenario) estimates the greenhouse gases to stabilize with the 

radiative forcing reaching 4.5 W m-2 (Taylor et al., 2012). The impacts of projected climate change 

under these two emissions scenarios was evaluated in this study. 

6.2 Methods 

6.2.1 Study area 

The lower ACF River Basin is located in the southeastern U.S. and includes parts of the lower 

Flint, middle Flint, Spring, Ichawaynochaway, and Kinchafoonee-Muckalee Hydrologic Unit 

Codes (HUC-8) watersheds (Seaber et al., 1987) of the Flint River Basin (Fig. 6.1). Agriculture 

and forestry are the main land use/land cover types, while urban area accounts for only a small 

portion of the study region. Cotton, corn, and peanuts are the primary crops produced in the region, 

while loblolly pine (Pinus taeda) is the dominant forest type (Homer et al., 2020; Ruefenacht et 
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al., 2008). The region has a humid subtropical climate characterized by long, hot, and humid 

summers and mild winters. The average daily temperature ranges from about 17℃ in the winter 

to about 34℃ in the summer (Arguez et al., 2012). However, temperatures above 37.7℃ (100°F) 

are not uncommon in the region. Annual precipitation averages from about 1,365 mm in the south 

to about 1,161 in the north of the study region and is distributed throughout the year (Arguez et 

al., 2012) with higher precipitation in the winter and summer months. Winter precipitation, 

however, is more conducive for groundwater recharge due to its frontal, low-intensity, and long 

duration pattern compared to the convective, high-intensity, and short-duration precipitation of the 

summer. Flint River is the major river that flows through the study region with Spring creek and 

Ichawaynochaway creek as important tributaries to the Flint River. 

The study area is located in the Coastal Plain physiographic province. It consists mostly of a low-

lying karstic region called the Dougherty Plain physiographic district, which is characterized by 

relatively flat, inner lowland containing sub-surface and internal drainage and heterogeneous 

stream network (Torak and Painter, 2006). The UFA, which is the primary water-bearing unit in 

the region, consists of the Ocala Limestone and is overlain by the Upper Semi-Confining Unit 

(USCU). The USCU is a discontinuous unit of undifferentiated overburden, weathered residuum, 

and surficial deposits (Torak and Painter, 2006). Major rivers and streams in the region are in direct 

connection with the underlying UFA through shallow channels incised through the USCU. The 

thickness of the aquifer ranges from about 9 m in the northwestern parts of the study region where 

it outcrops to the surface to more than 130 m in the south-eastern end of the study region (Torak 

and Painter, 2006; Williams and Kuniansky, 2016). 
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Figure 6.1 The Flint River Basin and the six HUC-8 watersheds associated with the basin. 

6.2.2 SWAT-MODFLOW model 

This section provides a summary of the SWAT-MODFLOW coupling framework developed by 

Bailey et al. (2016) and used in this study. Readers are referred to the document as well as Bailey 

and Park (2019), and Wei and Bailey (2019) for further detail. In the coupled framework, SWAT 

simulates the land surface processes, crop growth, in-stream processes, and soil zone processes 

while MODFLOW, which replaces the SWAT groundwater module, simulates three-dimensional 

groundwater flow along with the sources and sinks associated with the aquifer system. The 

groundwater delay parameter (GW_DELAY) in the SWAT groundwater module (.gw file) is still 

active to mimic groundwater transport in the vadose zone. Basic steps in the SWAT-MODFLOW 

coupled simulation includes the simulation of land surface processes by the SWAT model, 

mapping of the SWAT simulated groundwater recharge and channel depths of streams into the 
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MODFLOW model, simulation of groundwater level and SW-GW exchange by MODFLOW, 

passing of SW-GW exchange volumes (groundwater discharge) from MODFLOW into SWAT, 

and SWAT routing the surface and groundwater discharge volumes through the stream network 

for each day of the simulation period. SWAT model performs the spatial disaggregation of a 

watershed into sub-basins, which is further divided into hydrologic response units (HRUs). HRU’s 

are lumped land areas with a unique combination of land use, soil, and slope classes within a sub-

basin and the basic units for calculation in SWAT but have no spatial information within a sub-

basin. Hence, HRU’s are disaggregated (DHRUs), which are then mapped to individual 

MODFLOW grid cells using mapping files to connect HRUs to DHRUs and DHRUs to 

MODFLOW grid cells. Similar mapping files are also required to connect MODFLOW river cells 

to SWAT sub-basins. The coupled model can also map drain cells in MODFLOW to sub-basins 

in the SWAT model and route water down the SWAT stream network. Similarly, irrigation 

pumpage from the MODFLOW model can also be mapped to SWAT HRUs. 

An important advantage of this SWAT-MODFLOW model over previous versions also includes 

linking SWAT auto-irrigation routines to water withdrawal from the underlying aquifer. SWAT 

auto-irrigation function allows for the triggering of irrigation events based on plant water demand 

or soil water deficit (Neitsch et al., 2011), and the depth of water irrigated each day is converted 

to water volume through sub-routines in SWAT-MODFLOW which is then extracted from the 

underlying aquifer using the well package in MODFLOW (Bailey and Park, 2019). This can be 

important for effectively evaluating scenarios like climate change impacts in intensively irrigated 

watersheds like the lower ACF River Basin where groundwater withdrawal is an important concern 

but is hugely dictated by the variability in climate each year as well as during the growing season. 
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As the SWAT-MODFLOW coupled model development process requires the FullHRU shapefile 

from the SWAT model to link the two models, users should be careful to develop the SWAT model 

with 0% threshold when defining HRUs which is important for creating the FullHRU shapefile. It 

was also realized during the SWAT FullHRU shapefile development process that having a higher 

number of HRUs that caused the ArcSWAT Access Database to exceed 2 gigabytes caused the 

process to crash and should be taken into consideration, especially when working with large 

watersheds. 

6.2.3 Model development 

6.2.3.1 SWAT model 

A SWAT model developed for the region for previous research (detailed in chapter 4) was used in 

this study for developing the coupled SWAT-MODFLOW model. The model was developed for 

the entire Flint River Basin, covering an area of about 24,000 km2. The spatial extent of the SWAT 

model is presented in Figure 6.2A. Digital Elevation Model (DEM) data of 30m x 30m resolution 

provided by the USGS was used for the elevation dataset (Gesch et al., 2002) while the soil dataset 

was provided by State Soil Geographic [STATSGO] (Schwarz and Alexander, 1995). The 

Cropland Data Layer (CDL) for the year 2015 developed by USDA-National Agricultural 

Statistics Service (NASS) was used as the land use/land cover dataset for the model (Han et al., 

2012). Typical agricultural crop rotations for the study region were identified using multiple years 

of CDL and performing an overlay analysis which was then incorporated into the model. The 

model was calibrated for the 2003-2010 period for streamflow and ET. Streamflow was calibrated 

at seven USGS monitored streamflow stations (USGS, 2019) (Fig. 6.1). ET was calibrated and 

evaluated for each sub-basin against the MODerate Resolution Imaging Spectroradiometer 
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(MODIS) global terrestrial ecosystem ET data product (MOD16A2) dataset (Running et al., 2017). 

The developed SWAT model had 118 sub-basins and 7,068 HRUs. 

6.2.3.2 MODFLOW model 

Similar to the SWAT model, a MODFLOW-NWT model developed and calibrated for previous 

research (detailed in chapter 3) was used for developing the coupled SWAT-MODFLOW model. 

The groundwater model covered an area of about 12,003 km2 and included parts of south Georgia, 

southeastern Alabama, and northwestern Florida of the lower ACF River Basin (Fig. 6.2B). The 

model is two-layered, representing the UFA and the overlying USCU and has a uniform grid size 

of 750m x 750m. The model has 282 rows and 102 columns with a total of 28,764 grid cells of 

which 21,394 are active. The model was developed as a transient model from 2007-2013 with 

monthly stress periods and daily time steps. The regional boundary of the groundwater model was 

a specified head boundary condition in the northwestern end (CHD) and a general head boundary 

(GHB) in the remainder of the regional boundary. Ephemeral streams that could go dry were 

simulated using the drain package (DRN), while the perennial rivers were simulated using the river 

package (RIV). The two lakes in the model domain (Fig. 6.2B) were also simulated using the GHB 

package. Groundwater pumpage in the region was simulated using the WEL package, and areal 

recharge from precipitation into the groundwater model was estimated using the SWAT model. 

The model was calibrated for groundwater levels using 2,360 observed daily groundwater level 

data in the groundwater model domain, which was acquired from the USGS National Water 

Information System [NWIS] (USGS, 2019). The model was also calibrated for the SW-GW 

exchange at six river reaches in the lower Flint River Basin and the contributing watersheds 

(chapter 3).  
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6.2.3.3 SWAT-MODFLOW model 

As the spatial extent of the SWAT and MODFLOW models used to develop the coupled model 

were different, the overlap area where the SWAT and MODFLOW models are coupled is shown 

in Figure 6.2C. In areas where the SWAT-MODFLOW does not overlap and is not coupled, the 

SWAT and MODFLOW model runs similar to how the models would run independently i.e. 

groundwater module for SWAT is activated and MODFLOW receives recharge from the RCH 

package. The WEL package of the MODFLOW model was modified for developing the coupled 

SWAT-MODFLOW model so that groundwater withdrawal for each day was initiated by the 

SWAT auto-irrigation routines (Bailey and Park, 2019). Mapping files required to couple the two 

models were created by following the detailed steps outlined in Bailey and Park (2019). The 

coupled SWAT-MODFLOW domain included 69 of the 118 sub-basins in the SWAT model and 

20,080 grid cells of the 21,394 active MODFLOW cells. The overlapped domain also included 

1,237 drain cells and 669 river cells. Disaggregation of the 7,068 SWAT HRUs resulted in 

2,696,425 DHRUs. The model was run from 2003 to 2013 with a 4-year warm-up period. Climate 

forcing data for model simulation was acquired from the North American Land Data Assimilation 

Phase-2 (NLDAS-2) climate dataset, which has a spatial resolution of 1/8th degree and temporal 

resolution of 1 hr, covering the continental U.S. (Xia et al., 2012).  

Although the SWAT and MODFLOW models used in developing the coupled model were already 

calibrated, the coupled model required further calibration. SWAT-MODFLOW simulated 

streamflow was calibrated using six USGS monitored streamflow stations that were within the 

coupled SWAT-MODFLOW domain (Fig. 6.2C). Streamflow was calibrated from 2007-2010 and 

validated from 2011-2013. A sequential calibration approach was used in the streamflow 

calibration process in which flows to streamflow stations that received water from the independent 
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sub-sections of the watershed as well as the most upstream streamflow station were calibrated first 

followed by downstream streamflow stations. Calibration of groundwater levels simulated by the 

model was performed against 2,360 observed daily groundwater levels from 359 wells that tap into 

the UFA during the simulation period. Model calibration was performed using both automated and 

manual adjustments to the SWAT and MODFLOW model parameter values. Automated 

calibration was performed by using a model-independent Parameter Estimation Tool [PEST] 

(Doherty, 2004) which iteratively adjusts model parameters to reduce the objective function of the 

weighted square of residuals between observed and simulated values.  

Model performance evaluation for streamflow simulation was performed by plotting time series 

and flow duration curves (FDCs) of simulated vs observed streamflow along with calculating the 

coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), and percent bias (PBIAS). The 

three statistical measures have been widely used in evaluating hydrological model performance 

for streamflow simulation (Moriasi et al., 2015). Assessment of groundwater level simulation was 

performed by plotting a scatter plot between the simulated and observed groundwater levels as 

well as calculating the root mean square (RMS), mean, and the absolute mean of the groundwater 

head residuals. 
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Figure 6.2 Spatial extent of the (a) SWAT model with the land use types and extent of the six 

HUC-8 watersheds, (b) the MODFLOW domain with the river and drain cells simulating the 

perennial and ephemeral streams, respectively, and (c) the overlap of the SWAT and 

MODFLOW domain where the model is coupled to develop the SWAT-MODFLOW model 

along with the locations of the six USGS streamflow gages used for streamflow evaluation. 

6.2.4 Climate scenarios 

Climate projection from three GCMs (Table 6.1) under two emission scenarios of RCP4.5 and 

RCP8.5 for the mid-century time horizon (2041-2060) from the CMIP5 project were used for 

evaluating the impacts of climate change in the region. Projections from multiple GCMs were used 

in SWAT as climate forcing to account for the uncertainty associated with different GCMs which 

can be a significant source of uncertainty for hydrologic modeling (Shrestha et al., 2016). The 

three GCMs selected were developed by agencies in the U.S. (Table 6.1). As the outputs from 

GCMs have a coarse resolution as well as biases which if not corrected can lead to errors in impact 

assessment, GCM outputs need to be downscaled and bias-corrected before using them for regional 

analysis (Ahmed et al., 2013). Statistically downscaled and bias-corrected precipitation and 

temperature forcings from the three GCMs using a modification of the Multivariate Adaptive 
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Constructed Analogs (MACA) (Abatzoglou and Brown, 2012) method with the METDATA 

(Abatzoglou, 2011) is publicly available 

(https://climate.northwestknowledge.net/MACA/index.php) and was used for this study. 

METDATA is a high resolution gridded data that was developed using NLDAS-2 and Parameter-

elevation Regressions on Independent Slopes Model (PRISM) data set (Abatzoglou, 2011). 

Table 6.1 List of Global Circulation Models (GCMs) of which the climate projections were used 

from the CMIP5 project. 

S.no Model name Modeling Center (Group) 

1 CCSM4.1 National Center for Atmospheric Research, USA 

2 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 

3 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA 

 

6.3 Results and discussion 

6.3.1 Streamflow simulation 

As the SWAT and MODFLOW models used in this study were individually calibrated before 

coupling, initial model evaluation after the coupling showed that the model did an adequate job of 

simulating groundwater levels but performed poorly in simulating streamflow at all six USGS 

monitoring stations. Hence, model calibration was more focused on adjusting parameters that were 

most sensitive to SW-GW exchange and streamflow simulation. As a sequential calibration 

approach was utilized, streamflow into stations 2355350, 2357150, and 2352500 were calibrated 

first by running PEST individually for each station so that the parameters could be independently 

adjusted for the different sub-sections of the watershed. This was followed by simultaneous 

calibration of stations 2353000, 2356000, and 2358000. Automated calibration was followed by 

manual parameter refinement for further improving streamflow simulation. Important parameters 

adjusted during model calibration included river conductance, specific storage, and specific yield 

https://climate.northwestknowledge.net/MACA/index.php
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of the MODFLOW model and channel hydraulic conductivity (CN_K2), groundwater delay 

(GW_DELAY), and bank storage (ALPHA_BNK) of the SWAT model. It is very important to 

note that both the SWAT and MODFLOW models were already rigorously calibrated in the 

previous studies and the calibration here can be considered as further model refinement. Readers 

are referred to chapter 3 and chapter 4 for detailed information of individual calibration of SWAT 

and MODFLOW. 

Model performance evaluation for streamflow simulation after calibration at the six USGS 

streamflow stations shows that the model does an adequate job of simulating daily streamflow at 

all stations, except for station 2357150 (Table 6.2). R2 and NSE for the remaining five stations 

during calibration were above 0.56 and PBIAS values were less than 15% (Table 6.2) indicating a 

satisfactory model performance at the five stations according to Moriasi et al., (2015) criteria. 

Although PBIAS was less than 10%, R2 and NSE values were only 0.49 and 0.17 respectively for 

station 2357150 indicating an unsatisfactory model performance for streamflow at this station. It 

should, however, be noted that a significant portion of observed streamflow data was missing at 

the station during high flows (Fig. 6.3) which could have attributed to the unsatisfactory model 

performance for the streamflow station during the calibration period. This can be further 

corroborated by evaluating the model performance for the station during the validation period 

which has fewer high flow events, and as a result, show better performance statistics (Table 6.2). 

It should also be pointed out that the region contributing streamflow to station 2357150 has 

complex hydrogeology and stream-aquifer interaction. The underlying UFA is thin in the 

southeastern end of the study domain and the overlying USCU is also thin in the region. This could 

have also contributed to the model not accurately representing the flow dynamics of the region and 

hence the reduction in streamflow simulation performance. Streamflow evaluation for the 
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remaining five stations during the validation period shows that the model performance improved 

compared to the calibration period (Table 6.2). The time series plot between observed and 

simulated streamflow for all stations shows that the coupled model is not able to match the high 

peak flows but matches the low flow periods well, especially in the upstream stations (Fig 6.3). 

Fewer high flow events during the validation period, as a result, could have resulted in the 

improved performance. It is, however, noteworthy that the PBIAS increased in all stations during 

the validation period when compared to the calibration period. The calibration period being much 

wetter than the validation period could have led to the high PBIAS during the validation period.  

Table 6.2 Model performance for streamflow simulation during calibration (2007-2010) and 

validation (2011-2013). 

 Calibration Validation 

USGS streamflow station R2 NSE PBIAS (%) R2 NSE PBIAS (%) 

2352500 0.75 0.71 -6.9 0.8 0.79 14.6 

2353000 0.73 0.73 0.2 0.8 0.72 18.5 

2355350 0.54 0.49 1 0.71 0.59 9.8 

2356000 0.7 0.69 11.4 0.8 0.57 31 

2357150 0.46 0.21 -6.5 0.76 0.4 7.8 

2358000 0.89 0.88 -2.1 0.91 0.9 7.5 
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Figure 6.3 Comparison between SWAT-MODFLOW simulated and observed streamflow for the 

six USGS stations during calibration and validation. 

Evaluation of the flow regimes using FDCs between the simulated and observed streamflow for 

each streamflow station is shown in Figure 6.4. It can be seen from the figure that streamflow 

stations 2352500, 2353000, and 2356000 have a similar flow pattern with flow rate of less than 

500 m3/s more than 95% of the time and the coupled model does a very good job of replicating 

these flows. The coupled model, however, is not able to match the very high flow rates which 

occurred less than 1% of the time. A similar pattern can be observed for the most downstream 

streamflow station (2358000) in which flows that occurs more than 95% of the time match well 

between the simulated and observed flow but the model is not able to simulate the high flow 

conditions that occurred less than 1% of the time (Fig. 6.4). FDC evaluation for station 2355350 

and 2357150 shows that the two stream reaches have a much smaller flow rate compared to the 
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remaining streamflow stations which are located in the mainstem of the Flint River. Streamflow 

was less than 25 m3/s and 40 m3/s more than 80% of the time in station 2357150 and 2355350, 

respectively (Fig. 6.4). It can also be seen that the model simulated flow matches the observed 

flow in the two stations that occurs more than 80% of the time but the model slightly over-estimates 

flow during high flow events (Fig. 6.4).  

Overall, it can be stated that the SWAT-MODFLOW model can adequately simulate streamflow 

in a karstic watershed with complex hydrogeology. The model, however, performed better in the 

region where the aquifer is thick and the variability in aquifer level did not have a significant 

impact in streamflow as compared to the region where the aquifer is thin and close to the land 

surface.  
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Figure 6.4 Flow duration curves (FDCs) of the SWAT-MODFLOW simulated and observed 

flow for all six USGS streamflow stations for the total simulation period (2007-2013). 

6.3.2 Groundwater level simulation 

A scatter plot of the SWAT-MODFLOW simulated vs observed groundwater levels in the UFA 

shows that the model can adequately simulate the groundwater levels in the aquifer (Fig. 6.5A). 

The RMS of the residuals between simulated and observed value was 3.04 m while the mean error 

(ME) was 0.86 m and the mean absolute error (MAE) was 2.12 m. This indicated that the model 

slightly over simulated groundwater levels in the UFA. A plot of the mean residual for each 

groundwater well across the model domain shows that the model can adequately simulate the 

spatial variability in the groundwater level (Fig. 6.5B). As the model was a transient model with 

both wet and dry periods and the observed groundwater levels were scattered throughout the 
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simulation period, it can also be inferred that the model can adequately simulate the temporal 

variability in groundwater levels as well as perform adequately in both wet and dry periods. 

 

Figure 6.5 (a) scatter plot between model-simulated and observed groundwater levels for the 

Upper Floridan Aquifer for the whole simulation period (2007-2013) and (b) mean groundwater 

residual for each groundwater well that was used for collecting the observed groundwater level 

data. 

6.3.3 Evaluation of hydrologic budget components 

Evaluation of basin average annual precipitation during the simulation period compared to 30-year 

normals from 1981-2010 for the region (Arguez et al., 2012) of 1,265 mm showed that the years 

2009 and 2013 were very wet while the years 2007, 2010, and 2012 were under drought conditions 

(Fig. 6.6). Annual average ET for the basin, however, was less variable and close to around 800 

mm with slightly higher values in wet years and slightly lower values in dry years. The lack of 

temporal variability in ET can be attributed to the irrigation management practices incorporated in 

the model but also demonstrates the importance of the UFA in the region. Annual basin average 
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groundwater recharge ranged from about 300 mm (about 20% of precipitation; 2013) in a wet year 

to close to 100 mm (10% of precipitation; 2011) in drought years (Fig. 6.6). On average, about 

16% of the precipitation reached as recharge into the underlying aquifer system during the 

simulation period. 

 

Figure 6.6 SWAT-MODFLOW coupled model domain average annual precipitation, 

evapotranspiration (ET), and groundwater recharge for the simulation period (2007-2013). 

Spatial evaluation of average annual simulated ET for each sub-basin in the model for the 

simulation period (2007-2013) showed that the Lower Flint watershed had a distinct high ET when 

compared to the other watersheds. Low ET was observed at the southern end of the model 

boundary. Simulated ET were similar in the Ichawaynochaway, Kinchafoonee-Muckalee, and 

Middle Flint watersheds (Fig. 6.7) ranging between 777 mm and 801 mm in much of the area. 

Average ET ranged from about 661 mm to 1560 mm per year with the highest ET observed in sub-

basins that enclosed lake Seminole.   
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Figure 6.7 Average annual evapotranspiration (ET) for the sub-basins in the SWAT-

MODFLOW model domain for the simulation period (2007-2013). 

Annual average groundwater recharge ranged from about 100 mm to 628 mm (Fig. 6.8). The 

highest groundwater recharge, again, were observed in sub-basins that included lake Seminole 

probably indicating to leakage from lakes, especially after the growing season when the 

groundwater levels are low but the lakes are maintained at a near-constant level.. Groundwater 

recharge was high in the southern end of the model domain, the region which had low simulated 

ET. The southern part of the research area also has higher precipitation than the northern end which 

can also help explain the high recharge in the area. Groundwater recharge were similar in the sub-

basins of the Lower Flint, Ichawaynochaway, and Kinchafoonee-Muckalee watersheds while it 

was slightly higher in the Middle Flint and Spring watersheds (Fig. 6.8). 
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Figure 6.8 Average annual groundwater recharge for the sub-basins in the SWAT-MODFLOW 

model domain for the simulation period (2007-2013). 

The average SW-GW exchange for each sub-basin that had perennial river sections (simulated as 

RIV cells in the MODFLOW model) for the simulation period (2007-2013) is presented in Figure 

6.9. Evaluating the SW-GW exchanges were limited to these sub-basins as the model prints SW-

GW exchange output only for the sub-basins that are intersected with the river sections that are 

simulated as RIV cells in the MODFLOW model. The model does not print SW-GW exchange for 

DRN cells that were used to simulate the ephemeral streams in the MODFLOW model. A positive 

value indicates the flow of water from the aquifer to the perennial streams while negative values 

indicate flow from the river to the aquifer system. It can be seen from the figure that there is 

positive flux in most of the sub-basins through which the main stem of the Flint River. The highest 
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positive fluxes of greater than 1 mega cubic meters of water per day was observed in two sub-

basins through which the Flint River passes (Fig. 6.9). It is, however, important to note that 

multiple sub-basins in the Spring and Ichawaynochaway watersheds through which the tributary 

perennial rivers passed had negative fluxes indicating water loss from the rivers to the aquifer (Fig. 

6.9). The underlying aquifer in the Spring and Ichawaynochaway watersheds are not very thick 

and the occurrence of multiple drought years (2007, 2011, and 2012) could have led to the average 

flux to be negative in the region. Studies have indicated that flow in the Ichawaynochaway and 

Spring creeks have reduced by 50 to 100% during drought periods (GWC, 2017). This highlights 

the vulnerability and impact of drought in streamflow in the region in that multiple-year drought 

can lead to a reduction in streamflow. 

 

Figure 6.9 Average surface- and groundwater (SW-GW) exchange for the sub-basins in the 

SWAT-MODFLOW model domain  with major rivers for the simulation period (2007-2013). 
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6.3.4 Impacts of climate change 

6.3.4.1 Projected change in precipitation and temperature 

Comparison of historical (1979-2005) monthly average precipitation and daily maximum and 

minimum temperatures obtained through NLDAS-2 to the bias-corrected and downscaled monthly 

average projections for the three GCMs for RCP4.5 emissions scenario (2041-2060) are presented 

in Figure 6.10. A discernable trend in the projected precipitation by all three models is the increase 

in precipitation from July to October. The projected increase in precipitation was highest in August 

for all three models with ccsm4.1 projecting the precipitation to increase by close to 35 mm when 

compared to historical averages. Two of the three models also project the precipitation to decrease 

in winter (Jan-Apr). This indicates a shift in precipitation pattern for the region with increasing 

precipitation in the fall months and decreasing precipitation in the winter months. Evaluation of 

the projected change in maximum daily temperature shows that the temperature is projected to 

increase in all months with the highest projected increase in the summer months. The maximum 

daily temperature is projected to increase by close to 2℃ in the peak summer months and by about 

1℃ in the winter months. Unlike precipitation, all three models follow the same trend in the 

projected increase in daily maximum temperature. Projected change in daily minimum temperature 

under the RCP4.5 scenario follows a similar trend to the daily maximum temperature with an 

increase in temperature in all 12 months (Fig. 6.10). The increase in daily minimum temperature 

is also expected to be higher in the summer months than in the winter months with the temperature 

increasing by close to 1.5℃ and 1℃ in the summer and winter months, respectively.  
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Figure 6.10 Comparison between historical (1979-2005) and bias-corrected and downscaled 

projected (2041-2060) monthly precipitation (top left), daily maximum temperature (top right), 

and daily minimum temperature (bottom left) for the three Global Climate Models (GCMs) 

under RCP4.5 emissions scenario. 

Projected precipitation under RCP8.5 follows a similar trend to the RCP4.5 projection with an 

increase in precipitation from July to October for all three models (Fig. 6.11). The maximum 

increase in precipitation was again projected for August with gfdl-esm2m projecting an average 

increase of about 30 mm. There is, however, a slight reduction in precipitation in April and May 

for all 3 models which was not observed under the RCP4.5 scenario. A shift in precipitation pattern 

under the RCP8.5 scenario can also be observed with increasing precipitation in the fall months 

and decreasing precipitation in the early spring months. The daily maximum temperature under 

the RCP8.5 scenario is projected to further increase when compared to the historical and RCP4.5 

scenario throughout the year. The increase in temperature is projected to be higher in the summer 

months than in winter with an average daily maximum temperature projected to increase by as 

much as 2.7℃. Winter daily maximum temperature is projected to increase by about 1.5℃. The 

three climate models also project an increase in daily minimum temperature with the projected 
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increase, again, being higher than in the RCP4.5 scenario.  The minimum daily temperature is 

expected to increase by more than 1℃ and by close to 2℃ in the summer months in comparison 

to the historical values. 

 

Figure 6.11 Comparison between historical (1979-2005) and bias-corrected and downscaled 

projected (2041-2060) monthly precipitation (top left), daily maximum temperature (top right), 

and daily minimum temperature (bottom left) for the three Global Climate Models (GCMs) 

under RCP8.5 emissions scenario. 

6.3.4.2 Projected change in streamflow 

The calibrated SWAT-MODFLOW model was run using historical climate data acquired from 

NLDAS-2 from 1991 to 2015 with a four-year warm-up period to develop a baseline scenario for 

evaluating the change in hydrological components due to the projected change in the climate.  

Change in monthly average flows at the six USGS stations under projected climate data from the 

three GCMs under the RCP4.5 scenario compared against the baseline flows are presented in 

Figure 6.12. A reduction in monthly average flow was observed from March to July along the 



188 

 

mainstem of the Flint River at stations 2352500, 2353000, 2356000, and 2358000 under projected 

climate by at least one of the three GCMs in the RCP4.5 scenario (Fig. 6.12). The highest reduction 

in flow was observed in April at all four stations with flows at the upstream stations decreasing as 

much as 25% under the gfdl_esm2g GCM. Reduction in flow at the most downstream station 

(2358000) was close to 15% in April. Flow in the remaining months (September to February) 

generally increased as compared to the baseline scenario at all four stations except for December 

during which a distinct reduction in flow was observed by as much as 10% (Fig. 6.12). The increase 

in monthly flow was as high as 40% at the upstream stations and close to 20% at the most 

downstream station along the Flint River. The increasing flow in the fall months and decreasing 

flow in the spring months also indicates a shift in flow pattern in the region under projected climate 

change in RCP4.5 as the flow is normally low in the fall months and high in the spring months.  

Evaluation of change in streamflow at stations 2355350 and 2357150, which are tributaries to the 

Flint River, showed a slightly different pattern. A reduction in flow was observed for March, April, 

and May (for at least two GCMs) by as much as 40% similar to the other four stations. However, 

unlike at other stations, flow at stations 2355350 and 2357150 increased as compared to the 

baseline for June and July. A reduction in flow was also observed under all three GCMs for 

December at station 2355350 while a reduction in flow was observed under only one GCM 

(gfdl_esm2g) at station 2357150. The highest increase in flow at the two stations was observed in 

the fall months of October and November unlike at the remaining four stations which saw the 

highest increase in January - March. 

As the streamflow is normally at its lowest during the summer months due to increased 

groundwater usage for irrigation as well as a reduction in groundwater recharge, further reduction 

in streamflow in summer months due to the projected change in climate as shown by this study 
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can be of concern for the region. Reduction in streamflow can lead to loss of habitat for the 

endangered mussel species and threatened bass population that depends on continuous streamflow 

for maintaining their habitat (Shea et al., 2013). This could also lead to increased conflict between 

the neighboring states due to the reduction in flow downstream of the region which can ultimately 

threaten the sustainability of agriculture in the region. 

Comparison of the FDCs between the baseline and simulated flow under the projected climate 

forcings from the three GCMs under RCP4.5 shows that there is very little change in flow at all 

six stations that occurs more than 80% of the time (Fig. 6.13). However, evaluation of the high 

flows that occurred less than 1% of the time showed a considerable increase at all stations except 

the most downstream station (2358000) (Fig. 6.13). This indicates the possibility of more flooding 

events in the majority of the lower ACF River Basin due to the projected change in the climate.  
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Figure 6.12 Monthly % change in streamflow at each of the six USGS streamflow stations 

between each Global Climate Model (GCM) and baseline under RCP4.5 emissions scenario. 
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Figure 6.13 Comparison of Flow duration curve (FDCs) between simulated flow under projected 

climate from each Global Climate Model (GCM) under RCP4.5 emissions scenario and baseline 

at each USGS streamflow station. 

Evaluation of the change in streamflow under projected climate from the RCP8.5 scenario showed 

similar patterns of change to the RCP4.5 scenario for each station (Fig. 6.14). A reduction in flow 

was observed from April to June at all stations under projected climate from at least two GCMs. 

The reduction in flow, however, was lower when compared to the reduction under RCP4.5. A 

reduction in flow was also observed for December at all stations except station 2357150, which 

saw an increase in flow. There was a general increase in flow in the remaining months at all 

stations. The highest increase in flow at all stations was observed in October with flow increasing 

by more than 100% at stations 2355350 and 2357150. The increase in flow was higher when 
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compared to the increase in flow under RCP4.5. It is important to note that an increase in flow in 

the fall months of September and October and reduction in April signals to a change in flow pattern 

due to the projected change in climate under RCP8.5 as also observed under RCP4.5. Similarly, a 

reduction in flow in May and June, especially at stations 2357150 and 2355350, where the average 

flow is low, could indicate the possibility of these streams going dry, especially during drought 

years. 

FDCs analysis between the baseline and simulated flow for the three GCMs under RCP8.5 also 

showed a similar trend observed under RCP8.5 (Fig. 6.15). There was little change in flow that 

occurred more than 80% of the time under the projected climate. A considerable increase in flow 

was also observed in flow that occurred less than 1% of the time at all stations except the most 

downstream station (2358000), similar to under RCP4.5. The increase in flows were much higher 

than observed under RCP4.5 for stations 2352500, 2353000, and 2356000 while it was lower at 

stations 2355350 and 2357150 (Fig. 6.15). In general, the increase in high flows, again, indicates 

the possibility of an increase in flooding events similar to as observed under RCP4.5. 
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Figure 6.14 Monthly % change in streamflow at each of the six USGS streamflow stations 

between each Global Climate Model (GCM) and baseline under RCP8.5 emissions scenario. 
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Figure 6.15 Comparison of Flow duration curve (FDCs) between simulated flow under projected 

climate from each Global Climate Model (GCM) under RCP8.5 emissions scenario and baseline 

at each USGS streamflow station. 

6.3.4.3 Projected change in hydrologic budget components 

The % change in ET after comparing the average of ET due to projected climate change from the 

three GCMs under RCP4.5 and RCP8.5 scenarios to the baseline ET are presented in Figure 6.16A 

and 6.16B respectively.  

Evaluation of the change in ET between the RCP4.5 (Fig. 6.16A) and RCP8.5 (Fig. 6.16 B) 

scenarios show that there is no considerable difference between the two scenarios possibly because 

of automated irrigation being simulated by the SWAT model. A decrease in ET was observed in 
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all of the Middle Flint and Kinchafoonee-Muckalee watersheds while a slight reduction in ET was 

also observed in the majority of the Ichawaynochaway and parts of Spring watershed. An increase 

in ET was observed in almost all of the lower Flint River Basin as well as in parts of the Spring 

watershed. In general, the projected change in climate resulted in a reduction of ET in the northern 

and north-western part of the model domain, while ET increased in the south and south-eastern 

part of the model domain. Changes in ET ranged from a reduction of about 4% to an increase of 

close to 3% under both scenarios (Fig. 6.16A and 6.16B). 

Evaluation of the average change in groundwater recharge showed that there was an increase in 

groundwater recharge in almost all of the coupled model domain under both RCP4.5 and RCP8.5 

scenarios (Fig. 6.17A and 6.17B). The average change in recharge under both RCP scenarios was 

consistent throughout the watershed. The annual average increase in groundwater recharge ranged 

from less than 1% to as high as 26%. The lowest increase in groundwater recharge was observed 

in the Middle Flint, Kinchafoonee-Muckalee, and parts of Spring watersheds. Groundwater 

recharge in the lower Flint watershed varied spatially with the upper region receiving a higher 

increase in recharge as compared to the lower region under both scenarios (Fig. 6.17A and 6.17B). 

Although the evaluation of change in groundwater recharge under both scenarios indicated an 

increase, it is very important to note that the evaluation of change in streamflow (Fig. 6.12 and 

6.14) showed reduction throughout the domain in some months (April, May, and June) as well as 

increase in other months indicating to the temporal variability in groundwater recharge. This also 

points out to a reduction in groundwater recharge in certain months of the year compared to 

baseline conditions. 

Average annual SW-GW exchange for each sub-basin with the major river sections under 

projected climate from the three GCMs for RCP4.5 is presented in Figure 6.18A and the % change 
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in average SW-GW exchange when compared to the baseline values are presented Figure 6.18B.  

Evaluation of the flux (Fig. 6.18A) shows that majority of the sub-basins through which the Flint 

River passes have a positive flux while many of the sub-basins in the Ichawaynochaway watershed 

have a negative average annual flux. This is similar to the SW-GW exchange observed for the 

model calibration and validation period. In figure 6.18B, an increased % change in SW-GW flux 

in the sub-basins that had positive SW-GW indicates increasing groundwater discharge from the 

aquifer while an increased % change in SW-GW flux in sub-basins that had negative SW-GW flux 

indicates to a reduction in water loss from the streams to the aquifer. Analysis of the % change in 

average simulated flux under RCP4.5 to baseline indicated an increase in SW-GW flux throughout 

the model domain which ranged from 1% to 48% (Fig, 18.B). Evaluating the % change in flux 

(Fig. 6.18B) and average annual flux (Fig. 6.18A) together shows that the highest % changes were 

observed in sub-basins that had negative average flux indicating to the reduction of water lost from 

these sub-basins to the aquifer under projected climate. The majority of the sub-basins that had a 

positive flux saw an increase in flux from 1 – 15% with some sub-basins receiving as high as 23%. 

It should, however, be noted that although an increase in average annual flux is observed, the 

observed reduction in streamflow in certain months under projected climate indicates to the 

reduction in SW-GW exchange in some months of the year.  

Evaluation of the average simulated flux and % change, when compared to baseline scenario under 

RCP8.5, showed a very similar trend to the RCP4.5 scenario (Fig. 6.19A and 6.19B). All sub-

basins in the model domain had an increase in SW-GW exchange except for one sub-basin in the 

southwestern corner of the model domain that had a reduction of less than 1% (Fig. 6.19B). The 

increase in flux was slightly higher than when compared to the changes in flux observed under 

RCP4.5.  
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Figure 6.16 Projected change in ET (%) between the average of annual ET under projected 

climate by all three Global Climate Models (GCMs) and baseline for each sub-basin under 

emissions scenario (a) RCP4.5 and (b) RCP8.5.

 

Figure 6.17 Projected change in groundwater recharge (%) between the average of annual 

groundwater recharge under projected climate by all three Global Climate Models (GCMs) and 

baseline for each sub-basin under emissions scenario (a) RCP4.5 and (b) RCP8.5. 
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Figure 6.18 (a) Simulated average surface- and groundwater (SW-GW) flux from the three 

Global Climate Models (GCMs) for the sub-basins with major rivers, and (b) the projected 

change in SW-GW exchange (%) when compared to baseline fluxes under emissions scenario 

RCP4.5. 

 

Figure 6.19 (a) Simulated average surface- and groundwater (SW-GW) flux from the three 

Global Climate Models (GCMs) for the sub-basins with major rivers, and (b) the projected 
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change in SW-GW exchange (%) when compared to baseline fluxes under emissions scenario 

RCP8.5. 

6.4 Summary and Conclusions 

This study developed a coupled SWAT-MODFLOW for the agriculturally intensive region of the 

lower ACF River Basin to evaluate the potential impacts of climate change on the surface- and 

groundwater resources of the region. The coupled and calibrated SWAT-MODFLOW model was 

able to simulate streamflow at most of the model domain satisfactorily. The model, however, had 

difficulty in replicating the streamflow in the Ichawaynochaway watersheds due to the lack of 

observed data during high flow events at the USGS station (2357150). The region also has a 

complex hydrogeology due to its karstic nature and shallow thickness of the underlying UFA 

compared to the other parts of the model domain. This indicates the possibility that the coupled 

SWAT-MODFLOW performs better where there is a continuous connection between the surficial 

rivers and the underlying aquifer which is thick with less variability in groundwater levels. The 

coupled SWAT-MODFLOW also had difficulty in matching the peak flows observed in the region 

at all stations but simulated the low flow conditions well. The model adequately matched and 

simulated the spatial and temporal variability of the groundwater levels in the UFA. 

Evaluation of the projected change in temperature and precipitation from the three GCMs under 

scenarios RCP4.5 and RCP8.5 indicated that the daily minimum and maximum temperature will 

increase throughout the year with the daily maximum temperature increasing by as much as 2.7℃ 

under the RCP8.5 scenario. A shift in precipitation pattern was observed under both scenarios with 

increasing precipitation in the fall months and decreasing precipitation in the early months of the 

year.  
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Evaluation of the climate change impact on streamflow showed a decrease in streamflow in the 

late spring and summer months (April – July) and an increase in the streamflow in the late fall 

(September – October) and early months of the year (January – March) under both RCP4.5 and 

RCP8.5 scenarios. The increase in streamflow in the late fall and reduction in late spring indicates 

a change in flow patterns due to the projected change in the climate. The reduction in streamflow, 

especially in the Ichawaynochaway and Spring watersheds, can be of critical concern as it can 

severely impact the aquatic habitat for the endangered aquatic species in the region. FDCs showed 

that there will be very little change in flow that occurs more than 80% of the time in the region. 

The high flow events that occur less than 1% of the time showed a considerable increase in 

streamflow at all but one station that was the most downstream indicating the possibility of 

flooding in the future in the region. Although FDCs did not show change in low flows, reduction 

in streamflow during the growing season, which can be further exacerbated during drought years, 

can also be a concern for sustaining aquatic habitat for the endangered species. 

Assessment of the change in ET showed that ET will likely decrease in the northern and the 

northwestern part of the study region but will generally increase in the rest of the study area. The 

change in ET in the region, however, was not considerable, ranging from about -4% to 4%. 

Groundwater recharge increased under both RCP climate change scenarios throughout most of the 

model domain. The increase in recharge was limited in Middle Flint, Kinchfoonee-Muckalee, and 

parts of Spring watershed while the highest increase in recharge was observed in the lower Flint, 

Ichawaynochaway, and remaining of the Spring watershed. The coupled model accounted for the 

change in irrigation and subsequent withdrawal from the underlying aquifer due to climate change 

by linking automated irrigation with groundwater pumping. This probably helps explain the 
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minimal change in ET due to climate change as well as the reduction in streamflow in certain 

months even with increased groundwater recharge. 

Evaluation of the change in the SW-GW exchange showed an increase in annual average flux 

when compared to the baseline for almost all of the sub-basins that had the major river reaches 

under both RCP scenarios. The highest changes in fluxes (close to 50%) were observed in the sub-

basins with negative annual average fluxes indicating the reduction in loss of water from the 

streams to the aquifer under future climate. An increase in SW-GW exchange in the majority of 

the sub-basins through which the main-stem of the Flint River flowed ranged from 1 to 15%. The 

increase in average annual groundwater recharge and the subsequent increase in groundwater 

levels could be attributed to the increase in SW-GW fluxes. It is, however, very important to note 

that although an increase in groundwater recharge and SW-GW fluxes is observed under future 

climate, the reduction in average monthly streamflow of April – June indicates to the possibility 

of a reduction in groundwater recharge and SW-GW fluxes in certain months of the year under 

future climate. 

It is important to understand that the impacts of climate change in this study were performed under 

current land use and crops. Impact on streamflow as well as groundwater recharge can worsen with 

an increase in agricultural land and subsequent increase in irrigation. Similarly, as the study 

evaluated the changes in streamflow, groundwater recharge, ET, and SW-GW exchange by 

averaging over the whole baseline (1995 – 2015) and scenario (2041-2060) period, the results 

could potentially suppress the impacts on years with significant drought or precipitation and hence, 

the results should be taken with caution. 
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Chapter 7 

Conclusions  

7.1 General Conclusions 

The impact of intensive groundwater withdrawal from the underlying Upper Floridan Aquifer 

(UFA) in the surface- and groundwater resources that gets compounded during the frequent 

drought conditions is an important concern for agricultural and environmental sustainability of the 

lower Apalachicola-Chattahoochee-Flint (ACF) River Basin. Long-term sustainability concerns in 

the region include the potential impacts of the projected increase in agricultural water withdrawals 

from the aquifer along with understanding the potential impacts of climate change in the different 

hydrologic components of the watershed. As the overall goal of this project was to help improve 

the short- and long-term agricultural and environmental sustainability of the region, this study 

performed a detailed field-scale evaluation of the agricultural management practices for the major 

row crops in the region as well as evaluated the regional impacts of the projected increase in 

irrigation and climate change. Understanding the impacts of the range of agricultural management 

practices can help farmers and policymakers make immediate important decisions to reduce the 

detrimental environmental impacts of agriculture while maintaining high agricultural productivity 

for profitability. Evaluating the potential regional impacts of an increase in irrigation and climate 

change, on the other hand, can provide a glimpse into the challenges that lay ahead for the long-

term sustainable management of surface- and groundwater resources in the region. 

As the Soil and Water Assessment Tool (SWAT) was used as the modeling tool to perform the 

detailed field-scale evaluation of the range of management practices, it was important to perform 

a detailed literature review to identify the multiple ways SWAT can be utilized as a field-scale 

model along with its advantages and disadvantages so that the most appropriate method for setting 
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up the model for this study could be identified (Dissertation Objective 1). A thorough review 

identified five basic methods for evaluating the SWAT model output at the field-scale: (1) 

Simulation of an individual field as a field-scale SWAT model using a single Hydrologic Response 

Unit (HRU); (2) Modification of SWAT input files such that each field in a watershed is 

represented by multiple HRUs that reflect the changes in the soil and slope classes within each 

simulated field; (3) Modification of the SWAT input files such that each HRU corresponds to a 

unique field located within a simulated watershed; (4) Development of a post-processing tool that 

uses SWAT output generated with conventional HRU delineation and converts this output to field 

scale using interpolation and averaging techniques; and (5) Defining a relationship between fields 

in the simulated watershed and HRUs from the SWAT model set up using a conventional HRU 

delineation by comparing land use, soil, and slope attributes and evaluating the HRU-level outputs. 

A modified version of the second method was utilized to set up the field-scale SWAT model by 

developing a SWAT model for an individual plot but with the plot being represented by multiple 

HRUs so that the soil and slope heterogeneity within the plot can be preserved and runoff could 

be simulated. 

Evaluation of the range of agricultural management practices for the major row crops (Dissertation 

Objective 2), cotton and peanut, first required assessing the model’s ability to simulate the 

important hydrological and water quality processes at field-scale, especially as SWAT is often 

used as a watershed-scale model. Model performance assessment showed that SWAT can 

adequately simulate surface runoff, soil moisture, cotton, and peanut yields, and nitrate transport 

at the field scale. It was also observed that a multi-variable calibration for water quality simulation 

in which nitrate and crop yield were calibrated helped better constrain the model. Assessment of 

the wide range of agricultural management practices was performed by developing three 
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management scenarios that covered the range of practices. Comparison of irrigation water use, 

nitrate loss from the agricultural field, and yield between the three scenarios showed that scenario 

1 (Mgt1) with soil moisture sensor-based irrigation, cover crop, and strip tillage had the highest 

potential for reducing irrigation water use and nutrient loss while maintaining high agricultural 

productivity. Although scenario 2 (Mgt2), which is the most widely adopted practice in the region, 

produced a similar yield, it led to higher water use and nutrient loss as compared to Mgt1. 

Additional costs associated with installing soil moisture sensors and cover crops in Mgt1 are 

important financial issues that can deter stakeholders and farmers to shift from Mgt1 to Mgt1. This 

study also demonstrated the ability of SWAT as a tool for evaluating BMPs for crop yield, nutrient 

transport, and irrigation water use at the field scale. 

Regional evaluation of the impacts of an increase in irrigation (Dissertation Objective 3) projected 

by the Georgia Water Planning and Policy Center (GWPCC) using the MODular groundwater 

FLOW model (MODFLOW) showed that groundwater levels can decrease by as much as 2.4 

meters in the UFA in a drought year when compared to the groundwater levels of the 2011 drought 

year. The decrease in groundwater level was high in the aquifer regions that are comparatively 

thinner in the Lower Flint, and the adjoining Kinchafoonee, Ichawaynochaway, and Spring HUC-

8 watersheds. Reach sections in the Lower Flint and Kinchafoonee watersheds saw reduction in 

stream-aquifer flux (groundwater discharge) by as much as 33%. This indicated to the possibility 

that the aquifer might not be able to sustain the projected increase in groundwater pumpage for 

irrigation, especially under prolonged drought conditions.  

As groundwater recharge from precipitation has a critical influence in the groundwater levels and 

thereby the SW-GW exchange in the lower ACF River Basin, it was important to make sure 

groundwater recharge is accurately simulated before evaluating the impacts of climate change in 
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the surface- and groundwater resources (Dissertation Objective 4). Because confidence in 

groundwater recharge simulation is often derived by calibrating streamflow and evapotranspiration 

(ET) in SWAT, it was also important to evaluate the impact of calibrating these variables 

separately as well as using a multi-variable approach in groundwater recharge simulation in the 

model to determine if there is a calibration approach that results in better groundwater recharge 

estimation. The study identified that streamflow was the most influential variable to be calibrated 

in SWAT for simulating groundwater recharge accurately while calibration of ET alone had a 

negligible impact in groundwater recharge simulation. Evaluation of multi-variable calibration 

using a sequential approach showed that streamflow followed by ET provided the best estimates 

of simulated groundwater recharge. The study also pointed out the importance of calibrating 

streamflow separately for the different sections of a watershed that differ in geology as the 

parameters that are critical for groundwater recharge simulation can be fine-tuned for the region. 

Comparison of SWAT simulated groundwater recharge to recharge estimates derived using RORA 

the program also showed that the model can accurately simulate groundwater recharge in the lower 

ACF River Basin. 

Assessment of model performance for the integrated SWAT-MODFLOW model after coupling 

and calibration showed that the model satisfactorily simulated streamflow and groundwater level 

in most of the model domain. The model performed better in simulating streamflow in regions 

where the underlying aquifer was thick and there was a continuous connection between the aquifer 

and the surficial streams. Comparison of the projected temperature to historical observations in the 

region indicated to the rise in daily maximum and minimum temperature with summer 

temperatures rising by as much as 2.7℃ under the RCP8.5 scenario. A shift in precipitation pattern 

was also observed with increasing precipitation in the fall months and decreasing precipitation in 
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the early months of the year. Evaluation of the climate change impact (Dissertation Objective 5) 

on streamflow showed a decrease in streamflow in the late spring and summer months (April – 

July) and an increase in streamflow in the late fall (September – October) and early months of the 

year under both RCP4.5 and RCP8.5 scenarios. The reduction in streamflow, especially in the 

Ichawaynochaway and Spring watersheds, can be of critical concern as it can severely impact the 

aquatic habitat for the endangered aquatic system in the region. Comparing the flow duration 

curves (FDCs) between the projected scenario against the baseline showed that high flow events 

that occur less than 1% of the time showed a considerable increase in streamflow indicating the 

possibility of flooding in the future in the region. An increase in groundwater recharge was 

observed through most of the model domain while there was minimal change in ET with change 

ranging from -4% to 4%. The SW-GW exchange increased by as much as 15% along the mainstem 

of the Flint River while a limited increased was observed in the Spring and Ichawaynochaway 

watersheds.  

7.2 Research implications 

In general, findings from this study can be important in reducing the stress in the UFA for 

irrigation, especially during drought periods while helping maintain high agricultural productivity. 

As the evaluation of management practices was performed at field-scale, the results should, 

however, be taken with caution. Evaluation of the management practices under a range of soil and 

climatic conditions would provide an improved understanding of the management practices for 

better implementation. This study also identified the impacts of the projected increase in irrigation 

and climate change in the surface- and groundwater resources including the watersheds and stream 

reaches within the model domain that are most susceptible to these changes. This information can 

provide vital information about the challenges that lay ahead for the long-term agriculture and 
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environmental sustainability of the region and help make management and policy decisions to 

mitigate these challenges. 

Along with the importance of these regional findings, this study also contributed to some important 

research findings. This study demonstrated the importance of multi-variable calibration of SWAT 

at field-scale, especially, if it is to be used as a tool for BMP evaluation in which crop yield is an 

important consideration. Understanding the influence of streamflow and ET calibration in the 

SWAT simulation of groundwater recharge provides important information to researchers for 

efficiently calibrating the model when using it for groundwater recharge evaluation studies. 

Although the evaluation of SWAT simulation of groundwater recharge was assessed in different 

geologic regions within the simulated watershed, the study watershed is characterized by a humid 

sub-tropical climate. As the dominant hydrologic components of a watershed differ greatly 

according to climatic conditions, similar evaluation studies under different climatic conditions are 

required for further understanding the influence of streamflow and ET calibration on groundwater 

recharge. The study also showed that the integrated SWAT-MODFLOW can adequately simulate 

streamflow in a karstic watershed but performs better in regions where the aquifer is thick with 

less variability in groundwater levels than in regions where the aquifer is thin and has greater 

variability in aquifer levels. The study was, however, limited due to the lack of observed data 

(missing data) for adequate calibration of streamflow, especially during high flow events, in the 

study region where the aquifer was thin (Spring and Ichawaynochaway watersheds). Hence, 

additional investigation using complete observed data over long-term and in different watersheds 

with similar hydrogeology is needed. 
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7.3 Future works 

Additional/future works that can be performed using this study and its findings as a foundation for 

further contributing to the science as well as improving the sustainability of agriculture and 

environment in the lower ACF River Basin are listed below: 

1. Evaluate SWAT-MODFLOW for simulating water quality in the complex hydrogeology 

of the lower ACF River Basin incorporating RT3D.  

2. Evaluate the range of agricultural management practices at a regional-scale to evaluate the 

regional impacts of change in agricultural management practices in the major crops in 

quantity and quality of surface- and groundwater resources of the lower ACF River Basin. 

3. Assess the impacts of change in land use including restoration of long-leaf pines; change 

agricultural row crop types; and, conversion of agricultural land to pasture in critical areas 

identified from the above studies, in the quantity and quality of the surface- and 

groundwater resources of the lower ACF River Basin. 

4. Assess the impacts of land use and climate change in the ecological flows of the lower 

ACF River Basin for developing better sustainability plans for the protection of the 

endangered and threatened species in the lower ACF River Basin. 

 


