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Abstract

Choosing the correct statistical distance for a machine learning problem is vital when

estimating the degree of dissimilarity between two discrete distributions. In the distributional

reinforcement learning problem, the distribution of returns that can be obtained by an agent

are approximated across the entirety of the state space. To describe the expected behavior of

the agent as it interacts with the environment in the distributional setting, the C51 algorithm

initially proposed using the Wasserstein distance due to the convergence guarantees it offered

for the policy evaluation problem. However due to the biased sample gradients produced by the

Wasserstein distance, the KL divergence was ultimately used as the categorical loss function in

the C51 algorithm.

In this thesis we studied two potential class of statistical distances and empirically ob-

served their performance as viable categorical loss functions in the C51 algorithm as compared

to the KL divergence. The first were probability metrics such as the Sinkhorn divergence and

the Energy distance which attempt to alleviate the poor sample and computational complexity

of the exact Wasserstein distance. The second were divergence measures that were instances of

both the f divergence and α divergence. We studied the training time and testing time perfor-

mance of these variations on the Acrobot and Cartpole environments.

We demonstrated that the statistical distances most suitable for approximating value distri-

butions in these environments were divergence measures that possessed the zero-avoiding prop-

erty or an amalgamation of zero-avoiding and zero-forcing properties. Strictly zero-forcing di-

vergence measures were unsuitable for use as a categorical loss function in these environments.

The Sinkhorn divergence was ill suited to serve as a categorical loss function whereas the En-

ergy distance demonstrated evidence of learning in these environments, although its training

performance paled in comparison to the more successful crop of divergence measures. This

indicated that if an optimal transport based categorical loss function was to be used in the C51

algorithm, maximal entropic regularization would have to be applied.
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Chapter 1

Introduction

Reinforcement learning is the study of the sequential decisions made by an agent, forced to

optimize its behaviour through self-learning with the goal of amassing the largest possible re-

ward whilst minimizing potential penalties incurred. It comes under the umbrella of machine

learning along with supervised learning and unsupervised learning. In other branches of engi-

neering, the same study of optimal sequential decision making is referred to as optimal control.

The only difference between the two being that reinforcement learning looks to approach a

problem with the perspective of maximization of long-term reward whereas optimal control

approaches the problem with the perspective of minimization of long-term cost.

The reinforcement learning problem involves an agent interacting with a environment

through trial and error, obtaining a reward or penalty for each action taken with no assisted

supervision. There may be certain actions that the agent takes that provide instantaneous re-

ward, however over the long-term horizon certain actions may negatively affect the agent’s

cumulative reward. In addition, the agent’s realization of whether a particular action was help-

ful or consequential happens many steps into the future. Hence the agent should not greedily

try to chase actions that will beget it greater rewards at the current time step at the cost of

diminished long term rewards. Since the environment may not reward the agent in the short

term for its actions, the agent must select actions in the here and now while planning ahead for

greater cumulative reward for a longer time horizon.

As each decision is made sequentially, what decision an agent makes at the current time-

step greatly determines what actions it shall make at a future time step. Actions that the agent
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takes in future time steps will be predicated on the choice of actions that the agent made in pre-

vious iterations i.e. subsequent interactions in the environment are dependent on the choices

made by the agent at previous iterations. Therefore the planning process must be meticulously

designed to turn a blind eye to actions begetting short term rewards that may ultimately restrict

the agent to an inferior selection of actions in the long time horizon eventually leading to di-

minished cumulative rewards.

A key breakthrough in trying to provide more information to the agent about its possible choice

of actions was the work by Bellemare et al. (2017a) which rather than modelling the expected

return obtained by the agent, instead approximated the distribution of the return that the agent

can obtain for a given action. This approach, termed distributional reinforcement learning, has

the benefit of allowing the agent to choose a particular action based on the risk that the user is

comfortable with. This can be useful for instance in problem settings where a high priority is

ascribed to safe exploration and taking risky and unknown actions that can lead the agent to hin-

drances are to be avoided at all costs. Thus the agent will be able to distinguish between riskier

actions that may generate greater rewards but at a lower probability as well as safer actions that

while generating a lower reward are more likely to produce it. This cannot be gleaned from

the standard expectational perspective to reinforcement learning. In addition, forcing the agent

to learn the underlying structure of the rewards forces the function approximation architecture

to learn more about the environment. This may be beneficial to the agent and improve its data

efficiency, assuming that it learns information that is of some benefit.

The C51 algorithm proposed by Bellemare et al. (2017a) originally proposed the Wasser-

stein to minimize the statistical distance between the sample value distribution and the target

value distribution. The Wasserstein distance was so chosen due to its theoretical properties that

could provide guarantees of the agent’s behaviour for the policy evaluation problem similar to

results present in the standard expectational reinforcement learning setting. However empiri-

cally, the sample Wasserstein distance did not provide a good approximation of the underlying

distributional loss and hence the authors opted instead to use the KL divergence.
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In this thesis we study entropic regularization based algorithms used in the optimal trans-

port literature that attempt to mitigate the computational complexity and statistical complexity

of the exact Wasserstein distance. We also study the family of f divergences that are used

to quantify dissimilarity between two distributions using a convex function of their ratio. We

specifically choose divergence measures that are also members of the class of α divergences so

that we can interpret the desirable properties a divergence measure must possess in order to be

successful in this domain.

Finally we test the candidacy of these probability metrics and divergence measures as the

categorical loss function for the C51 algorithm in contrast to the baseline model which incor-

porated the KL divergence.

The organization of this thesis is as follows:

In chapter 2 we formulate the reinforcement learning problem as a Markov Decision Pro-

cess (MDP) and introduce the value iteration and Q-learning algorithms. We then study rein-

forcement learning algorithms that utilize deep neural networks as function approximators such

as the DQN algorithm and then introduce the C51 algorithm which incorporates the aforemen-

tioned distributional setting.

Having discussed the C51 algorithm, in chapter 3 we discuss viable categorical loss func-

tions between discrete measures that can be used in place of the KL divergence. We first study

Integral Probability Metrics (IPM) such as the entropy regularized Wasserstein distance and

the Energy distance. We then study f divergences and provide insights into how the different

instances of the f divergences differ on the method of quantifying dissimilarity by studying the

properties of α divergences.

After discussing each probability metric and divergence measure, in chapter 4 we contrast

the performance of variants of the C51 algorithm each of which utilize the aforementioned

statistical distances as their categorical loss functions. We use the Acrobot and Cartpole en-

vironments for training and testing these variants. We close this chapter by interpreting the
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performance of the loss functions through the less of zero forcing and zero avoiding properties

of probability metrics and divergence measures.

In chapter 5 we finally conclude and discuss the future directions we would like to explore

in the field of distributional reinforcement learning.
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Chapter 2

Background

In this section we discuss the fundamental concepts in reinforcement learning. We begin by

formulating the problem as a Markov Decision Process and then obtain the tabular based al-

gorithm called Value Iteration (Bellman, 1957). We then study how it can applied to more

complex settings through function approximation and sampling resulting in the Q-learning al-

gorithm Watkins and Dayan (1992). Our discussion on reinforcement learning is based on

Schulman et al. (2017).

Next we discuss deep reinforcement learning algorithms which integrate deep neural networks

as value function approximators. The first such algorithm is DQN (Mnih et al., 2015) which

overcame the deficiencies of the Q learning algorithm and was able to successfully play most

games from the Arcade Learning Environment (Bellemare et al., 2013). Finally we discuss the

C51 algorithm (Bellemare et al., 2017a) and its central idea of approximating value distribu-

tions. We also discuss the theoretical motivations for this approach as well as the method used

in practice that resulted in superior performance than the DQN algorithm.

2.1 Reinforcement Learning

In this section the define the reinforcement learning problem in the context of a Markov Deci-

sion Process wherein an agent obtains rewards at each time step for interacting with an environ-

ment with the ultimate goal being to maximize the cumulative rewards obtained at the end of

an episode. The primary means to maximize the cumulative reward is to find the optimal map-

ping at a given state to a particular action. With this goal in mind we study the Value Iteration
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algorithm which tries to accomplish just that. Finally we study the Q-learning algorithm which

is a sample based algorithm that estimates the transition dynamics of the model thereby by-

passing prohibitive constraints of the Value Iteration algorithm making it suitable for a variety

of applications.

2.1.1 Markov Decision Process (MDP)

The goal in reinforcement learning is to choose actions so as to maximize long term future

rewards. The procedures that an agent must employ to successfully navigate the environment

are generally described in the context of a Markov Decision Process (MDP).

Given a discretized setting, the MDP outlines the following process: at each time step t,

an agent interacts with the environment from a given state s by taking actions at and receiving

rewards rt thereby moving to a new state s′. The goal of a reinforcement learning agent is to

maximize cumulative future reward over the entirety of time-steps the agent interacts with the

environment. To generalize this concept of an MDP, we’ll utilize the following set of defini-

tions for its components:

Let S denote the state space, which consists of all possible states s that the agent can be in

when interacting with the environment.

Let A denote the action space, which consists of the set of all possible actions a which the

agent can take at a given state s at time t. Not all actions in the state space A will be available

to the agent at a given time and state.

Let P (r, s′|s, a) denote the state transition probability distribution, which given the current

state and action taken, predicts the next state and the reward obtained. This formulation can be

used for both stochastic and deterministic transition functions. For inherent stochasticity in the

transitions, the return becomes a random variable and thus the objective becomes to maximize

the expected return.

Let π denote the policy, which determines the action taken by the agent in the environment

at any state. If the state transitions are deterministic then the policy is a deterministic policy,

where the action chosen at a state is determined by, a = π(s). Otherwise if the state transitions

are stochastic then the policy is a stochastic policy, where the action chosen is conditioned on
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the state, a ∼ π(a|s).

Let γ denote the discount factor, which serves as a coefficient to the reward obtained at each

state. The discount factor, γ down-weights rewards in the more distant future thereby depri-

oritizing their importance to the agent and forcing it to focus on maximizing rewards over a

relatively shorter horizon.

In contrast to traditional machine learning which involves optimizing a single objective

function, by utilizing an MDP the reinforcement learning problem is broken down into two

stages:

The Policy Evaluation problem deals with obtaining the expected sum of rewards (also

known as the return) for a given policy π. The return is also a random variable. The undis-

counted return of an agent interacting in an environment for T time-steps, following a policy π

is expressed as:

η(π) = E

[
T∑
t=0

rt

]
= rt + rt+1 + · · ·+ rT−1 + rT

To ensure that the sum of rewards results in a finite quantity, a discount factor γ is utilized

which serves as a coefficient to each individual rewards through a geometric series of weights

(1, γ, γ2, . . .). Since γ ∈ [0, 1) the discounted expected return for T time-steps, following a

policy π will be a finite scalar sum expressed as:

η(π) = E

[
T∑
t=0

γtrt

]
= r0 + γr1 + γ2r2 + · · ·+ rT−1 + rT

The Policy Optimization problem deals with maximizing the expected sum of rewards

obtained by the agent over the space of possible policies, whilst following a given policy for

the entire length of an episode. For a given stochastic environment that an agent interacts with

for T time steps, this involves maximizing the following expression:

max
π

E

[
T∑
t=0

rt

]
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We restrict our analysis to maximizing the expected sum of returns over a fixed horizon of

T time steps. This is referred to as the fixed horizon episodic setting.

Our episodic setting is formulated as a stochastic process where the first step involved is sam-

pling an initial state from a probability distribution: s0 ∼ µ (s0). For a given policy π, the

agent samples the first action: a0 ∼ π (a0|s0). The reward obtained from taking that action

and the resultant next state the agent transitions to is sampled from the state transition matrix:

s1, r0 ∼ P (s1, r0|s0, a0). At this point the process is repeated by sampling the next action.

This entire process, is referred to as sampling a trajectory. The trajectory terminates when the

agent choose its final action aT−1 ∼ π (aT−1 | sT−1) and the state transition matrix determines

the final reward and state: sT , rT−1 ∼ P (sT |sT−1, aT−1).

We next define the state-value function as the expected sum of future rewards for the

length of an episode given that it is present at a specific state. It is expressed as:

V π,γ(s) = Eπ
[
r0 + γr1 + γ2r2 + . . . | s0 = s

]
= Ea∼π [Qπ,γ(s, a)]

We define the state-action-value function as the expected sum of future rewards that can be

obtained by the agent for the length of an episode given that it is present at a specific state and

takes a specific action. It is also referred to as the Q-function and expressed as:

Qπ,γ(s, a) = Eπ
[
r0 + γr1 + γ2r2 + . . . | s0 = s, a0 = a

]
2.1.2 Value Iteration

The Value Iteration (VI) algorithm (Bellman, 1957) attempts to maximize an agent’s expected

return whilst interacting in an environment for an episode of length T . We’ll denote the reward

obtained at the final time step, sT as the terminal reward VT (sT ).

The Value Iteration algorithm maximizes the expected return for each intermediate policy cho-

sen by the agent at each time step:

max
π0

max
π1

. . .max
πT−1

E [r0 + r1 + · · ·+ rT−1 + VT (sT )]
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As the immediate rewards obtained at transition at earlier time steps are not dependent on the

choice of policies at subsequent time steps they can be separated from the rest of the expression:

max
π0

E
[
r0 + max

π1
E
[
r1 + · · ·+ max

πT−1

E [rT−1 + VT (sT )]

]]
The nested problem is simply the tail sub-problem where a policy, πT−1(s) has to be chosen

at the penultimate time step, T − 1 such that the agent can obtain the value function at the

penultimate time step which is given by: V π−1
T−1 (s) = maxa EsT [rT−1 + VT (sT )]

We can substitute this in our original VI expression to finally obtain the following expression:

max
π0

E
[
r0 + max

π1
E
[
r1 + · · ·+ max

πT−2

E [rT−2 + VT−1 (sT−1)]

]]

Algorithm 1 Value Iteration (Bellman, 1957)
for t = T − 1, T − 2, . . . , 0 do

for s ∈ S do

πt(s), Vt(s) = maxa E [rt + Vt+1 (st+1)]

end for

end for

Thus the VI algorithm involves solving tail sub-problems of longer time lengths using the

solution obtained previously for tail sub-problems of shorter lengths. Specifically, the agent

would begin by solving the pen-ultimate transition and use its solution to solve the antepenul-

timate tail sub-problem. In such a manner it would solve tail sub-problems recursively one by

one which would take it all the way to the initial state s0. At the point of convergence, the agent

would be able to obtain the optimal value function V ∗ (Bertsekas, 2019).

We can therefore consider the successive solving of the tail sub-problems of the VI algo-

rithm as repeated applying an operation at the current time step of the state-value function so as

to obtain the state-value function at the previous time step. We’ll denote these successive oper-

ations using a function known as the Bellman backup operator and will express the operation

as:
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[T V ](s) = max
a

Es′|s,a [r + γV (s′)]

Theoretical results have shown that the Bellman backup operation is a γ contraction in the∞-

norm. Using the contraction mapping principle, it’s been shown that through repeated appli-

cations of the Bellman backup operator, the VI algorithm converges to the optimal state-value

function V ∗ (Bertsekas and Tsitsiklis, 1996).

2.1.3 Q-Learning

An issue with using the Value Iteration algorithm is that the transition dynamics and the reward

function of the agent as it moves from one state to the next must be known by it i.e. the model

of the system must be known. Only after this strict constraint was satisfied could a dynamic

programming based algorithm be used to obtain the optimal state-value function. To avoid this

strict constraint, we will use a model-free algorithm, which utilize the past interactions of the

agent in the environment to obtain a proxy for the transition dynamics and the reward to solve

both the policy evaluation and policy optimization problems.

We’ll begin by formulating the Bellman backup for the state-action value function using the

expression for the Bellman backup for state-value function that we previously defined for a

one-step lookahead:

Qπ (s0, a0) = Es1∼P (s1|s0,a0) [r0 + γV π (s1)]

= Es1∼P (s1|s0,a0) [r0 + γEa1∼π [Qπ (s1, a1)]]

We can also write the above expression in terms of a Bellman operator that is successively

applied to evaluate policy π by solving the Bellman expectation equation:

[T πQ] (s0, a0) = Es1∼P (s1|s0,a0) [r0 + γEa1∼π [Q (s1, a1)]]
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As we had explained previously for the state-value function, due to the contraction mapping

principle, repeated application of the Bellman backup operator on the state-action-value func-

tion will lead to the fixed point (Bertsekas and Tsitsiklis, 1996): Q, T πQ, (T π)2Q, · · · → Qπ

Analogous to the optimal state-value function, V ∗ we can denote Q∗ as the optimal state-

action-value function. We’ll define the optimal state-action-value-function as the Q function

when the agent follows the the optimal policy π∗.

It can be expressed as a maximization of state-action-value function over the space of all pos-

sible policies π:

Q∗(s, a) = max
π

Qπ(s, a)

From the Bellman expectation equation in place of the state-action-value function following a

policy π, we can substitute the optimal state-action-value function following the optimal policy

π∗:

Q∗ (s0, a0) = Es1∼P (s1|s0,a0)

[
r0 + γmax

a1
Q∗ (s1, a1)

]
We can also write the above expression in terms of a Bellman operator that is successively

applied to obtain the optimal policy π∗ by solving the Bellman optimality equation:

[T Q] (s0, a0) = Es1∼P (s1|s0,a0)

[
r0 + γmax

a1
Q (s1, a1)

]
Again, due to the contraction mapping principle, repeated application of the Bellman backup

operator will lead to the fixed point (Bertsekas and Tsitsiklis, 1996): Q, T Q, T 2Q, · · · → Q∗.

To make these reinforcement learning algorithms work in model free settings, we have to

remove the constraint of requiring the transition dynamics i.e. requiring an underlying model of

the system. To do this we’ll utilize sample updates from the current state to the next state with

the agent collecting immediate rewards. These samples will provide an unbiased estimator of

both the Bellman backup equation and the Bellman optimality equation (Bertsekas et al., 1995)

(Jaakkola et al., 1994):
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[T̂ Q] (s0, a0) = r0 + γmax
a1

Q (s1, a1)

Therefore to obtain a sampled version of the value iteration algorithm utilizing the state-action-

value function instead of the state-value function, we’ll simply utilize the individual samples

as unbiased estimators of the Q-function for the entirety of a trajectory:

[T Q] (st, at)→ T̂ Qt = rt + max
at+1

Q (st+1, at+1)

In addition, instead of using the average of the unbiased estimates as our update to the state-

action-value function, we can use that particular state-action-value function (over the space of

all possible state-action-value function) as the update that minimizes the `2 norm between the

unbiased sample estimate and the Q-function for all T time steps:

Q(n+1)(s, a) = arg min
Q

T∑
t=1

∥∥∥T̂ Qt −Q (st, at)
∥∥∥2

Its important to note that, while using a sample based version of the VI has permitted

bypassing the constraint of having perfect knowledge of the transition dynamics, the issue that

arises with using an unbiased estimate is that, the inherent noise added in every transition can

pull the update away from the desired contraction mapping provided by the Bellman operator.

This weakens the convergence guarantees that the original VI algorithm provided.

To generalize the applicability of the Value Iteration algorithm to environments that have

high dimensionality we forgo the setting where the state-action values for all state-action pairs

could be both mapped and looked up using a table. We’ll instead parameterize the state-action-

value function using a function approximator: Qθ.

Specifically, Riedmiller (2005) proposed using the parameterized formulation of the state-

action-value function in the `2 norm minimization expression.

However another alternative is, instead of obtaining the exact solution to this minimiza-

tion problem, stochastic gradient descent based optimization can instead be employed on a loss
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function.

This will involve calculating the gradient of the function in the direction that points to the steep-

est descent. This is achieved by taking the partial derivative of our minimization objective with

respect to the parameter θ. We’ll update our parameter using the obtained gradient weighted

by a step size. The resulting algorithm is the Q-learning algorithm (Watkins and Dayan, 1992).

Algorithm 2 Q-learning (Watkins and Dayan, 1992)
Initialize θ(0)

for n = 0, 1, 2, . . . do
Run policy π(n) for T time steps

g(n) = ∇θ

∑
t

(
T̂ Qt −Qθ (st, at)

)2

θ(n+1) = θ(n) − αg(n)

end for
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2.2 Deep Reinforcement Learning

Deep reinforcement learning combines the use of deep neural networks and reinforcement

learning to combat high dimensionality problems where the use of a lookup table to store

state-action values becomes infeasible. In particular convolutional neural network based ar-

chitectures learn to compactly approximate state-action values for high dimensional input data.

After first discussing their use in the classical reinforcement learning setting we then study how

to approximate a distribution over returns instead of simply approximating the expectation, thus

leading to more information available to the agent when making a decision on the next course

of action.

2.2.1 Deep Q Networks

There are a few issues that arise when using the Q-learning algorithm due to the function

approximation setting. As mentioned previously the algorithm loses the contraction mapping

guarantees that were present when it was utilizing a table lookup representation. In fact the

Q-learning algorithm may actually diverge in more complex settings/environments failing to

optimize our objective.

One of the causes for the failure of Q-learning is due to the high correlation of the ex-

perience sampled by our agent while its interacting with the environment. Since practically

batches of samples are fed to the agent, if there is a high correlation between the samples then

the gradient update will not lead to a generalized performance update for the agent and instead

will degrade the performance of the agent in parts of the state-space where it will encounter

dissimilar tuples of experience. To counter this, a procedure was devised that ensures more

stable updates to the state-action-value function.

Another reason for the algorithm’s instability is the fact that the agent has a non-stationary

target. At each gradient update, the state-action value function is also updated. This leads to

the target for the state-action value function also to be updated. Thus we have an optimization

problem over a moving target which can drastically change the data distribution which is being

used to provide feedback to the agent.
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Deep Q Networks (DQN) (Mnih et al., 2015) attempted to rectify these underlying issues

in the Q-learning algorithm, leveraging deep neural networks as function approximators as well

as introducing the following novel strategies:

1. Experience Replay - To mitigate issues arising from correlation, a dataset comprising

of the agent’s prior experiences while interacting with the environment was stored into a replay

buffer. These previous training examples could be sampled uniformly using mini-batches and

used for the gradient update step for the state-action-value function. Thus by incorporating

previous experience tuples at each step of the Q-learning update, we’re able to de-correlate the

sample experience. Since the experiences stored in our replay buffer are known to be optimal

for the rest of the state space we ensure that the current update step doesn’t cause instability by

displacing the correct weights at other parts of the state space whilst also improving the weights

locally with the current update.

In addition to reducing the potential of divergence, by utilizing experience replays the agent

avoids having to re-experience optimal training examples to ensure convergence to the objec-

tive. Thus the addition of the replay buffer leads to an improvement in data efficiency of the

algorithm.

2. Fixed Q-targets - To ensure the stability of the gradient updates to the state-action-

value function, we fix the target weights of the state-action-value function over which the Bell-

man backup operation is performed for a fixed interval of time-steps. This freezing of the

state-action-value functions is used as a target approximation to an optimal state-action-value

function. Meanwhile we update the weights of another state-action-value function Q⇒ T Q(n)

that serves as our estimate. Thus we have to maintain two sets of weight vectors: one for our

estimate and one for our target, the former being updated immediately while the latter is up-

dated after periodic intervals. Thus the loss to optimize is the mean square difference between

the estimate state-action-value function and the target state-action-value function and is used to

perform the gradient update to the estimate state-action-value function. After the conclusion of
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the fixed interval the target state-action-value function is updated from the accumulated gradi-

ent updates from our estimate state-action-value function.

Algorithm 3 Deep Q-learning with experience replay (DQN) (Mnih et al., 2015)
Initialize replay memory D to capacity N .

Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

for episode = 1,M do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ (s1)

for t = 1, T do

With probability ε select a random action at

otherwise select at = argmaxaQ (φ (st) , a; θ)

Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ (st+1)

Store transition (φt, at, rt, φt+1) in D

Sample random minibatch of transitions (φj, aj, rj, φj+1) from D

Set yj =

 rj if episode terminates at step j + 1

rj + γmaxa′ Q̂ (φj+1, a
′; θ−) otherwise

Perform a gradient descent step on (yj −Q (φj, aj; θ))
2 with respect to the network parameters θ

Every C steps reset Q̂ = Q

end for

end for
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2.2.2 Distributional Reinforcement Learning

The methods we have described so far, try to predict the expected cumulative rewards at the end

of a trajectory. However another approach that has been suggested involves trying to learn the

underlying distribution of returns (Bellemare et al., 2017a). Instead of taking the expectation

of the the immediate reward and discounted next state-action-value function as in the regular

Bellman equation, Bellemare et al. (2017a) instead approximated the entire distribution over

returns to better assess the impact of selecting a particular action as well as discern the variance

associated with the corresponding return for that action.

Thus the distributional form of the Bellman equation utilizes a random variable Z(s, a) in place

of the state-action-value function and a random variableR(s, a) in place of the reward obtained

on transitioning to the next state, r and is expressed as:

Zπ(s, a)
D
= R(s, a) + γZπ (s′, a′) s′ ∼ P π(·|s, a) a′ ∼ π(·|s′)

The value distribution Z provides the agent with an estimate of all the returns that can be

obtained by it at every point in the state space. The equivalent distributional Bellman operator

that can be applied on a value distribution is the following:

T πZ(s, a)
D
:= R(s, a) + γZ (s′, a′)

As we had described previously, in the classical expectational setting the application of

the Bellman backup operator provided a γ contraction in the∞ norm leading to a fixed point.

In the distributional setting, the∞ norm is inapplicable and therefore a probability metric must

be relied on to provide similar contraction guarantees for the distributional Bellman operator

T πZ.
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The most common statistical distance that’s used to minimize the dissimilarity between

two discrete measures is the KL divergence (Kullback and Leibler, 1951) which for two dis-

crete measures p and q and points xi is denoted by:

DKL(p‖q) =
∑

p(xi) log
p(xi)

q(xi)

Caticha (2004) showed that the KL divergence was the only divergence measure that possessed

locality, coordinate invariance and subsystem independence properties.

However a constraint that has to be satisfied in order to use the KL divergence is that the

support of distribution p must be contained in the support of the distribution q. In the case that

the distributions p and q have a disjoint support then DKL(p‖q) =∞. Thus it can’t be used as

a viable metric over which the behaviour of T πZ can be described due to the contracting effect

on the value distribution upon applying the operator.

Ultimately, Bellemare et al. (2017a) used the Wasserstein metric which is an integral over

the difference between the inverse of the cumulative distribution functions of the measures P ,

Q. The generalized form of the Wasserstein metric is denoted by:

Wp(P,Q) =

(∫ 1

0

∣∣F−1
P (x)− F−1

Q (x)
∣∣p dx) 1

p

We’re primarily concerned with the case where p = 1 referred to as Wasserstein-1 (W1):

W1(P,Q) =

∫ 1

0

∣∣F−1
P (x)− F−1

Q (x)
∣∣ dx

The benefit of using the Wasserstein metric is that the metric is sum invariant, scale sen-

sitive and ”Jensen-like” (Bellemare et al., 2017a). These three properties respectively are:

Wp(A+ P,A+Q) ≤ Wp(P,Q)

Wp(aP, aQ) ≤ |a|Wp(P,Q)

Wp(AP,AQ) ≤ ‖A‖pWp(P,Q)
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By defining a maximal Wasserstein metric as the largest Wasserstein-1 difference between

value distributions Z1 and Z2:

sup
s,a

W̄p (T πZ1(s, a), T πZ2(s, a)) ≤ γ sup
s,a

W̄p (Z1(s, a), Z2(s, a))

and utilizing these three properties of the Wasserstein metric, Bellemare et al. (2017a)

showed that for a given policy π, the distributional Bellman operator, T πZ was a γ contraction

in the Wasserstein-1 metric.

While this result was true for the policy evaluation problem, it did not hold for the policy

optimization problem. Thus using the Wasserstein-1 distance as a probability metric would not

guarantee that the optimal value distribution Z∗ would be obtained.

The novel algorithm that Bellemare et al. (2017a) proposed was C51. The C51 algorithm

uses a softmax function to generates a discrete probability measure with 51 possible outputs

over the parameterized value distribution, Zθ. At each update step Zθ is updated towards a tar-

get value distribution using the distributional Bellman backup operator. However since Z and

R are random variables to be sampled from, Zθ is actually being optimized towards samples of

the target value distribution (from experience replay) and not the actual target distribution. The

key steps involved in the algorithm are as follows:

1. The agent samples a new experience tuple at a given state-action pair by taking a new

action a′ and transitioning to a new state s′ and obtaining an immediate reward r:

r, s′, a′ ∼ R(x, a), P (· | s, a), π (· | s′)

2. The distributional Bellman backup operator is applied on this sample, to obtain a sam-

ple backup of the value distribution: T̂ πZθ−(s, a) := r + γZθ (s′, a′)

3. Setting this sample backup as the fixed target value distribution, the parameterized

estimate of the value distribution would ideally be optimized using gradient descent on the

Wasserstein-1 loss function: lθ(s, a) := W1

(
T̂ Zθ−(s, a), Zθ(s, a)

)
.
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However, in practice using the Wasserstein distance leads to biased estimates of the sample

gradient which fail to converge to the minima (Bellemare et al., 2017b). In particular, Bellemare

et al. (2017b) concluded that ”minimizing the sample Wasserstein loss by stochastic gradient

descent may in general fail to converge to the minimum of the true (Wasserstein) loss”.

Since using the Wasserstein-1 loss was not feasible, the C51 algorithm instead minimizes

the KL divergence which despite not being scale sensitive, generates unbiased estimates of the

sample gradient (Bellemare et al., 2017b). To use the KL divergence, the C51 algorithm en-

sures that the supports of the target value distribution and the estimate value distribution are not

disjoint.

To facilitate this, the target value distribution is projected to the space of the estimate value

distribution. Thus, ΦT πZθ− will have the same support as Zθ. These steps are illustrated in

Figure 2.1.

Figure 2.1: Steps involved in projecting the target value distribution to the space of the estimate
value distribution (Source: Bellemare et al. (2017a))

4. The final step involves minimization of the KL divergence bringing the estimate value

distribution, Zθ closer to the projected sample backup (target) value distribution, ΦT πZθ− .
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Algorithm 4 Categorical Algorithm (C51) (Bellemare et al., 2017a)
input A transition xt, at, rt, xt+1, γt ∈ [0, 1]

Q (xt+1, a) :=
∑

i zipi (xt+1, a)

a∗ ← arg maxaQ (xt+1, a)

mi = 0, i ∈ 0, . . . , N − 1

for j ∈ 0, . . . , N − 1 do

# Compute the projection of T zj onto the support {zi}

T̂ zj ← [rt + γtzj]
VMAX

VMIN

bj ←
(
T̂ zj − VMIN

)
/∆z #bj ∈ [0, N − 1]

l← bbjc , u← dbje

# Distribute probability of T̂ zj

ml ← ml + pj (xt+1, a
∗) (u− bj)

mu ← mu + pj (xt+1, a
∗) (bj − l)

end for

output −
∑

imi log pi (xt, at) # Cross-entropy loss
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Chapter 3

Theoretical Analysis

In this section we’ll first discuss a general family of probability metrics called Integral Prob-

ability Metrics (IPM), the Wasserstein distance being one such member. We then discuss the

theoretical limitations on using the Wasserstein distance and study innovations from the field

of computational optimal transport (Peyré et al., 2019) in mitigating its prohibitive computa-

tional complexity and sample complexity. Our discussion on computational optimal transport

is based on Cuturi and Solomon (2017).

We then study a more general family of divergence measures called f divergences which have

seen successful applications in deep generative modelling. Our discussion on f divergences

is based on Nowozin et al. (2016). Of the possible instances of f divergences we restrict our

focus to a special subset which are also members of the class of α divergences. By studying

the properties of α divergences we can better interpret the results obtained in the subsequent

section. Our discussion on α divergences is based on Cevher et al. (2008).

A thing to note is that Integral Probability Metrics cannot be formulated as f divergences

and vice-versa. However the total variation distance is the only statistical distance that is both

a member of the class of f divergences and the class of Integral Probability Metrics (Sriperum-

budur et al., 2012). It is expressed as the difference of the two discrete measures at all possible

points of dissimilarity, xi:

DTVD(µ, ν) =
N∑
i=1

|µ(xi)− ν(xi)|
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Using the total variation distance to approximate value distributions had been studied rigor-

ously by Morimura et al. (2010a,b). Bellemare et al. (2017a) also studied its potential use and

ultimately concluded that on applying operations that can cause contractions (such as the dis-

count factor) the absolute difference between the estimate value distribution and the projected

target value distribution will remain unchanged. Therefore it was not considered as a viable

distance metric for the C51 categorical loss function.

3.1 Integral Probability Metrics

Integral Probability Metrics (IPM) are a class of methods used to minimize the statistical dis-

tance between two discrete measures. The distance metric generated from IPM involve taking

the supremum of the difference in expectations when sampling from two discrete measures

over a suitable set of functions (Sriperumbudur et al., 2010) (Müller, 1997).

The general form of an IPM between two measures µ and ν for the class of witness functions,

F is the following:

D(µ, ν;F) = sup
f∈F

[Eµf(x)− Eνf(y)]

The choice of the witness function determines which particular IPM is being used to minimize

the distance between the measures. In this section, from an optimal transport perspective, we’ll

analyze the relationship between three IPM: the Wasserstein distance, the entropy regularized

Wasserstein distance and the Energy distance (or MMD).

3.1.1 Computational Optimal Transport

The field of computational optimal transport deals with the geometry underpinning both dis-

crete and continuous measures. Since the field of machine learning often utilizes discrete mea-

sures, optimal transport has found many useful applications in different sub-fields of machine

learning. Primarily its often used when a task at hand involves comparing, contrasting or mini-

mizing the statistical distance between two discrete measures.

The original problem that initiated this field was Monge’s Problem (Monge, 1781). The

problem abstractly dealt with obtaining the optimal mapping T from a source measure µ to a
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target measure ν across a distance D such that the work done in moving probability mass at all

points in the source measure to all points in the target measure is minimized.

Figure 3.1: Monge’s Problem (Source: Cuturi and Solomon (2017))

Let the operator ] denotes the fact that the mapping T pushes forward the discrete measure

µ onto the discrete measure ν.

Then Monge’s problem can be formulated as determining the optimal mapping, T]µ = ν that

minimizes the product of the mass transported from the source distribution and the cost c of

transporting the probability mass for all points x in the source measure and the target measure

on the geometric space Ω:

inf
T]µ=ν

∫
Ω

c(x, T (x))µ(dx)

Unfortunately due to the fact that the problem setting involved an integral over non-convex

constraints, significant breakthroughs in this problem stalled and instead further development

in the field shifted to a relaxed formulation of the problem known as the Kantorovich problem

(Kantorovich, 1960). In particular the issue that arose was that the Monge formulation did not

permit splitting up of a Dirac measure from the source into a multiplicity of Dirac measures

in the target. In contrast, the Kantorovich relaxation of the problem permitted the splitting

up of a Dirac measure from the source measure into separate Dirac measures in the target

measure. This implies that unlike in the Monge problem where we use a deterministic mapping
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between the source and destination measure, in the Kantorovich problem we utilize measure

coupling which associates measures using a joint probability distribution across the product of

the geometric space: P ∈ P(Ω× Ω)

Therefore for source measure µ and target measure ν we consider all measure couplings (joint

probability distributions) such that the marginal distributions of the joint distribution will result

in µ and ν. We’ll denote this as:

Π(µ, ν)
def
= {P ∈ P(Ω× Ω) | ∀A,B ⊂ Ω,

P (A× Ω) = µ(A)

P (Ω×B) = ν(B)}

The Kantorovich problem involves optimizing over the space of possible measure cou-

plings, Π(µ, ν) between source measure µ and target measure ν that minimizes the cost c(x, y)

of transporting probability mass P (dx, dy) from point x in the source measure to point y in the

target measure:

inf
P∈Π(µ,ν)

∫∫
c(x, y)P (dx, dy)

This formulation is known as the primal form of the Kantorovich problem. For the given

Kantorovich formulation if we set the cost function as c(x, y) = Dp(x, y) then we obtain a

family of p distance metrics where p ≥ 1. Specifically the p-Wasserstein distance minimizing

over the space of possible measure couplings Π(µ, ν) between source measure µ and target

measure ν is expressed as:

Wp(µ, ν)
def
=

(
inf

P∈Π(µ,ν)

∫∫
D(x, y)pP (dx, dy)

)1/p

The geometry induced by applying the Wasserstein distance between two measures dif-

fers from that obtained by applying divergence measures such as the KL divergence. McCann

(1997) showed that the Wasserstein distance provided a set of measure couplings on the short-

est path between the two measures referred to as the displacement interpolation.
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Figure 3.2 demonstrates how using a euclidean distance as an interpolant between two Gaus-

sians would simply obtain the mean of the two Gaussians leading to a point of discontinuity

between the two whereas using the Wasserstein distance, the interpolant demonstrates the dif-

ferent set of measure couplings lying on the shortest path between the two Gaussians providing

a more intuitive interpretation.

Figure 3.2: Displacement interpolation induced by optimal transport as compared to linear
interpolation (Source: Cuturi and Solomon (2017))

However an issue that we can observe is that computing the exact solution to the Wasser-

stein distance will require linear programming, since the factor p is present on the cost term

and not on the optimal measure coupling representing the probability mass being transported

from point x to point y.

We’ll next analyze the computational complexity for obtaining the exact solution to the optimal

transport problem for two discrete empirical measures.

Given two discrete empirical measures µ and ν on the geometric space Ω consisting of n

and m points respectively. Let δxi denote the Dirac measure at point xi, having corresponding

length ai. Similarly, let δyj denotes the Dirac measure at point yj , having corresponding length

bj . Figure 3.3 depicts the respective measures.
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Figure 3.3: Optimal transport problem between two discrete measure (Source: Cuturi and

Solomon (2017))

To obtain the optimal mapping from µ to ν we first define the cost function as the pairwise

p-Wasserstein distance between all points in the source measure and the target measure:

MXY
def
= [D (xi, yj)

p]ij

Next we define the space of measure couplings for consideration in our optimal mapping. If

we consider these measure couplings as matrices, we desire only those matrices which have

the appropriate marginal distributions, ensuring that all probability mass from µ is mapped to

ν. Therefore if we compute the product of matrix with an identity matrix we obtain a and if we

compute the product of the transpose of the matrix with the identity matrix we obtain b:

U(a, b)
def
=
{
P ∈ Rn×m

+ |P1m = a, P T1n = b
}

Finally, since the objective is to obtain that measure coupling which is the infimum of the

product of the cost function and the probability mass distribution, the formulation of the p-

Wasserstein involves computing their Frobenius inner product:

W p
p (µ, ν) = min

P∈U(a,b)
〈P,MXY 〉

Thus the p-Wasserstein distance indeed requires linear programming to obtain an exact

solution. This results in a prohibitive computational complexity: O((n + m)nm log(n + m)).
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Thus not only is using the p-Wasserstein distance impractical for high dimensionality problems,

but the resultant loss function is also non-differentiable thus making it unsuitable for gradient

based optimization.

In addition to the computational complexity we’re also interested in the sample complex-

ity since in practical machine learning settings, i.i.d samples drawn from the source and target

measures: µ̂n, ν̂m serve as proxies for the true underlying measures µ and ν. The sample com-

plexity quantifies whether the p-Wasserstein distance between the samples of the measures,

Wp (µ̂n, ν̂m) is truly representative of the actual underlying Wasserstein distance Wp(µ, ν) that

we’re trying to approximate.

Unfortunately, Dudley (1969) showed that for dimensionality d > 3, the sample complexity

of using the p-Wasserstein distance is also prohibitive: O
(
1/n1/d

)
. This implies that an expo-

nential number of samples are required to obtain a suitable mapping for high dimensionality

problems. Thus not only is the exact solution computationally prohibitively, the resultant sam-

ple approximation is a poor representation of the underlying ”true” distance metric between the

two measures.

Thus to make an optimal transport inspired distance metric feasible for high dimension-

ality machine learning problem settings, regularization needs to be employed to not only opti-

mize both the computational and sample complexity but also to engineer a loss function that is

both stable and differentiable, with the later property enabling gradient based optimization.

Wilson (1969) suggested entropic regularization as a possible solution wherein a regular-

ization term, E(P ) was added to the primal form of the p-Wasserstein distance parameterized

by a blurring coefficient γ ≥ 0:

Wγ(µ, ν)
def
= min

P∈U(a,b)
〈P,MXY 〉 − γE(P )

where the entropy term is the following strongly concave function:

E(P )
def
= −

nm∑
i,j=1

Pij (logPij − 1)
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The resultant entropy regularized Wasserstein distance adds a degree of blurring to the opti-

mal solution sacrificing the accuracy of reaching the optimal measure coupling, P ? as a trade-

off for reducing the computational and sample complexity. This results in a more scalable and

differentiable loss function.

Figure 3.4 illustrates the effect of varying the blurring parameter γ on the optimal transport

mapping. The left most figure corresponds to the exact optimal transport solution between the

two measures. On moving to the right we increase γ, and so the mapping becomes less sharp

and more diffused.

Figure 3.4: Increasing the γ parameter leads to a more regularized mapping between measures

µ and ν (Source: Cuturi and Solomon (2017))

Cuturi (2013) devised a scalable technique utilizing GPUs to efficiently compute the op-

timal solution to the regularized Wasserstein distance called Sinkhorn’s algorithm. Cuturi

(2013) showed that for the following entropy regularized Wasserstein formulation:

Pγ
def
= argmin

P∈U(a,b)

〈P,MXY 〉 − γE(P )

the optimal solution, Pγ is a product of the following matrices: Pγ = diag(u)K diag(v)

Wherein, vectors, u ∈ Rn
+, v ∈ Rm

+ are variables to be approximated via repetitive opera-

tions. The kernel matrix, K is the exponential of the negative pairwise p-Wasserstein distances

between all points in the source measure and the target measure divided by the blurring param-

eter: K def
= e−MXY /γ
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The vectors u and v are determined using the constraints on the probability mass that can

be transferred between the source and target measure. Specifically, the space of feasible mea-

sure couplings, must fulfill the marginal constraints for the source measure and target measures:

Pγ ∈ U(a, b)⇔

 diag(u)K diag(v)1m = a

diag(v)KT diag(u)1n = b

Since the product of the diagonal of a vector with the identity matrix results in the original

matrix we can use the following substitutions: v = diag(v)1m and u = diag(u)1n. In addition

the product of the diagonal of a vector with another matrix results in the Hadamard product,

� between the two. Thus the diagonalization of the former vector in the above formulation is

removed. Using these two properties we can re-express the marginal constraints to be satisfied

by the optimal measure coupling of the entropy regularized Wasserstein distance:

Pγ ∈ U(a, b)⇔

 u�Kv = a

v �KTu = b

By moving variables between the LHS and the RHS, we can thus determine the form

that the variables u and v must take in order to satisfy the constraints of the optimal measure

coupling:

Pγ ∈ U(a, b)⇔

 u = a/Kv

v = b/KTu

Sinkhorn (1964) proved that the algorithm converges to an optimal solution. The im-

plementation by Cuturi (2013) leveraging GPUs for hardware acceleration thus resulted in a

computationally tractable method to apply optimal transport based distance metrics for high

dimensionality problems.

Ramdas et al. (2017) and Genevay et al. (2018) showed that there are two edge cases of

the entropy regularized optimal transport problem: the minimal entropy form and the maximal

entropy form.
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The minimal entropy form corresponds to the exact Wasserstein distance, for which the optimal

fixed point solution requires a network flow solver with high computational complexity. By ap-

plying some degree of entropic regularization we’ll obtain the entropy regularized Wasserstein

distance which has a corresponding set of sub-optimal solutions Pγ . If we set γ → ∞ this re-

sults in the maximal entropy form, where the resultant measure coupling is simply the product

of the marginal distributions of the source measure and target measures.

However an issue that is endemic with the entropy regularized Wasserstein distance and

the maximal entropy form of the optimal transport problem is that the distances do not equal

zero for the case where the target measure and source measure are identical. Ramdas et al.

(2017) proposed a solution to de-bias both the entropy regularized Wasserstein distance and

the maximal entropy formulation by subtracting from both solutions the distances when the

source measure is contrasted to itself and the target measure is contrasted to itself.

Thus we can express the sub-optimal solution of the biased entropy regularized Wasser-

stein distance using the following formulation:

Wγ(µ, ν) = 〈Pγ,MXY 〉

The sub-optimal solution of the de-biased entropy regularized Wasserstein distance, referred to

as the Sinkhorn divergence can be obtained by normalizing the biased formulation:

W̄γ(µ, ν) = Wγ(µ, ν)− 1

2
(Wγ(µ, µ) +Wγ(ν, ν))

For the minimal entropy form of the regularized optimal transport problem, the blurring

parameter is set to: γ → 0 to obtain the following formulation of the exact optimal solution to

the Wasserstein distance:

W p(µ, ν) = 〈P ?,MXY 〉
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For the biased maximal entropy form of the regularized optimal transport problem, the blurring

parameter is set to: γ →∞ to obtain the following formulation:

E(µ, ν) =
〈
abT ,MXY

〉
Similarly, we can obtain the de-biased maximal entropy form of the regularized optimal trans-

port problem, referred to as the Energy distance or MMD (Gretton et al., 2012) by normalizing

the biased formulation:

MMD(µ, ν) = E(µ, ν)− 1

2
(E(µ, µ) + E(ν, ν))

To conclude, a comparison can be drawn between the sample complexity and computational

complexity of each of these algorithms fulfilling the original motivation for this analysis. In

comparison to the previously prohibitive, O((n+m)nm log(n+m) computational complexity

and O
(
1/n1/d

)
sample complexity of the exact Wasserstein distance, the MMD has a compu-

tational complexity of O(1/
√
n) and a sample complexity of (n + m)2 (Gretton et al., 2012)

while the Sinkhorn Divergence has a computational complexity of O ((n+m)2) and a sample

complexity of O
(

1
γd/2
√
n

)
(Feydy et al., 2019) (Genevay et al., 2019).
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3.2 f Divergences

f divergences are the second class of methods used to quantify the degree of dissimilarity

between two discrete measures. Csiszár (1967) introduced the general form of the f divergence

measure. Let µ and ν be two discrete measures on the measurable space Ω. For any convex

function f : (0,∞) → R with f(1) = 0, and given two measures ν and µ where µ � ν and

the respective probability mass functions are denoted as ν(x) and µ(x), then the general form

of the f divergence of ν from µ can be expressed as:

Df (µ‖ν) =
∑
x∈Ω

ν(x)f

(
µ(x)

ν(x)

)

Csiszár and Körner (1981) showed that the f divergences satisfied both joint convexity and

Jensen’s inequality. Other favorable properties of f divergences include being non-negative,

scale sensitive, and invariant (Cichocki and Amari, 2010). Each member of the class of f di-

vergences quantifies the aforementioned dissimilarity between the measures using a different

criterion.

The following select set of divergence measures are instances of f divergences across all pos-

sible points of dissimilarity, xi between the two measures and for a particular choice of the

convex function f :

On choosing f(x) = x log x we obtain the KL divergence:

DKL(µ‖ν) =
N∑
i=1

µ(xi) log

(
µ(xi)

ν(xi)

)

On choosing f(x) = − log x we obtain the reverse KL divergence:

DReverse KL(µ‖ν) =
N∑
i=1

ν(xi) log

(
ν(xi)

µ(xi)

)

On choosing f(x) = 2(
√
x− 1)2 we obtain the squared Hellinger distance:

33



DH2(µ‖ν) = 2
N∑
i=1

(√
µ(xi)−

√
ν(xi)

)2

On choosing f(x) = 1
2
(x− 1)2 we obtain the Pearson χ2 divergence:

DPearson χ2(µ‖ν) =
1

2

N∑
i=1

(ν(xi)− µ(xi))
2

µ(xi)

On choosing f(x) = (1−x)2

2x
we obtain the Neyman χ2 divergence:

DNeyman χ2(µ‖ν) =
1

2

N∑
i=1

(µ(xi)− ν(xi))
2

ν(xi)

On choosing f(x) = x log 2x
x+1

+ log 2
x+1

we obtain the Jensen-Shannon divergence:

DJSD(µ‖ν) = DKL

(
µ(xi)‖

µ(xi) + ν(xi)

2

)
+DKL

(
ν(xi)‖

µ(xi) + ν(xi)

2

)

As mentioned previously, the potential convex function, f used to formulate the f diver-

gence should satisfy f(1) = 0. This is the desired theoretical target where the target measure

perfectly matches the source measure implying that there is no dissimilarity between the two

measures.

3.2.1 α Divergences

The class of α divergences are themselves a set of divergence measures of the parent family of

f divergences and hence enjoy the same properties as their parent divergence measure. Cher-

noff et al. (1952) proposed the α divergence while Minka et al. (2005) provided the general

formulation of the α divergence for α ∈ [−∞,+∞] which adapted for discrete measures µ and

ν is as follows:

Dα(µ‖ν) =

∑N
i αµ(xi) + (1− α)ν(xi)− [µ(xi)]

α[ν(xi)]
1−α

α(1− α)

34



For values of α in the range α ∈ [−1, 2], the following special cases arise (Minka et al.,

2005):

Dα=−1(µ‖ν) =
1

2

N∑
i=1

(ν(xi)− µ(xi))
2

µ(xi)
= DPearson χ2(µ, ν)

lim
α→0

Dα(µ‖ν) =
N∑
i=1

ν(xi) log

(
ν(xi)

µ(xi)

)
= DReverse KL(µ, ν)

Dα= 1
2
(µ‖ν) = 2

N∑
i=1

(√
µ(xi)−

√
ν(xi)

)2

= DH2(µ, ν)

lim
α→1

Dα(µ‖ν) =
N∑
i=1

µ(xi) log

(
µ(xi)

ν(xi)

)
= DKL(µ, ν)

Dα=2(µ‖ν) =
1

2

N∑
i=1

(µ(xi)− ν(xi))
2

ν(xi)
= DNeyman χ2(µ, ν)

Minka et al. (2005) analyzed the applications of α divergences in Bayesian inference and pro-

vided the following conclusions:

For negative values of α, the target measure ν concentrates on a single mode in the source

measure µ which covers the largest probability mass. In particular for α ≤ 0 if the source mea-

sure µ assigns zero probability mass at any point xi then the target measure ν will also force

probability mass concentrated at the point xi to be zero. Thus the divergence measure priori-

tises minimizing dissimilarity at the single largest mode in the source measure and disregards

the rest of the points in the measure. This property of select α divergence measures is known

as zero-forcing and is exhibited by DReverse KL(µ‖ν) and DPearson χ2(µ‖ν).

On the other hand for positive values of α, the target measure ν tries to distribute proba-

bility mass evenly across all points where the source measure µ has assigned some probability

mass. In particular for α ≥ 1, the target measure distributes probability mass at all points of
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non-zero probability in the source measure, not singularly prioritizing a specific mode in the

source measure. Thus the bulk of the points in the source measure with non-zero probabil-

ity will also be approximated in the target measure even if there is little valuable information

at those particular point. This property of select α divergence measures is known as zero-

avoiding and is exhibited by DKL(µ‖ν) and DNeyman χ2(µ‖ν).

Finally for values of α in the range 0 < α < 1, the target measure ν will not concentrate

simply on the largest mode in the source measure µ but will also assign probability mass to

other modes proximal to the largest mode in the source measure. However all points xi that

are distant to the largest mode will not be assigned any probability mass (even if they contain

a smaller mode). This property of select α divergence measures is an amalgamation of zero-

forcing and zero-avoiding and is exhibited by DH2(µ‖ν).

Figure 3.5 demonstrates the effect of varying α on the probability mass assignment by

the target measure. On increasing the value of α, the target measure curtails the zero-forcing

property and amplifies the zero-avoiding property.

Figure 3.5: Resultant target measure, Q on applying the Pearson χ2 divergence (α = −1),
Reverse KL divergence (α = 0), Squared Hellinger distance (α = 0.5), KL divergence (α = 1)
and Neyman χ2 divergence (α = 2) to approximate the source measure, P (Adapted from:
Cevher et al. (2008))
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Chapter 4

Experimental Results

After having gained insights into the theoretical characteristics of the probability metrics and

divergence measures we now proceed to determine empirically, the efficacy of using them in

place of the KL divergence in minimizing the statistical distance between the projected target

value distribution and the estimate value distribution in the C51 categorical loss function. We

modified the implementations by Park et al. (2019) to benchmark the performance of the DQN

(Mnih et al., 2015) algorithm and contrast the performance of the Sinkhorn divergence, the En-

ergy distance (or MMD), the reverse KL divergence, Pearson χ2 divergence, squared Hellinger

distance, Neyman χ2 divergence and Jensen-Shannon divergence as feasible categorical loss

functions for the C51 algorithm.

To facilitate efficient computation of the Energy distance and Sinkhorn divergence we uti-

lized the GeomLoss library (Feydy et al., 2019). For the Sinkhorn divergence we use a blurring

coefficient, corresponding to γ = 0.01, as suggested by Cuturi (2013) for applied machine

learning problems. Each algorithm utilizes similar hyperparameter settings. Specifically, the

replay buffer size is 1,000 with the target value distribution being updated after 200 steps and

the agent sampling a mini-batch of 32 transitions from the replay buffer.

After training each algorithm variant for 10,000,000 frames we test the trained agent for 1000

episodes.
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We utilize the following two classic control environments implemented in the OpenAI

Gym (Brockman et al., 2016) as test beds for gauging the training time and testing time perfor-

mance:

Cartpole (Barto et al., 1983) - The goal of the agent while navigating the CartPole envi-

ronment is to keep a pole balanced whilst moving the cart on which the pole is place in the east

or west direction.

Figure 4.1 depicts the average training time performance of each categorical loss function as

well as the baseline DQN and C51 algorithm performance. Smoothing utilizing exponential

moving average was applied on the training curves.

Figure 4.2 depicts the best test time performance of each categorical loss function as well as

the baseline DQN and C51 algorithm performance.

Acrobot (Sutton, 1996) - The goal of the agent while navigating the Acrobot environment

is to swing a pendulum with double links and two actuated joints up to a particular threshold

by applying rotational force on one of its links.

Figure 4.3 depicts the average training time performance of each loss function as well as the

baseline DQN and C51 algorithm performance. Smoothing utilizing exponential moving aver-

age was applied on the training curves.

Figure 4.4 depicts the best test time performance of each categorical loss function as well as

the baseline DQN and C51 algorithm performance.
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Figure 4.1: Comparison of the average training time performance on Cartpole

Figure 4.2: Comparison of the best test time performance on Cartpole
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Figure 4.3: Comparison of the average training time performance on Acrobot

Figure 4.4: Comparison of the best test time performance on Acrobot

40



4.1 Discussion

Based on the above observations we can infer the following:

Both the baseline C51 algorithm which utilizes the KL divergence and the variation uti-

lizing the Neyman χ2 divergence as the categorical loss function performed well in both en-

vironments with the Neyman χ2 divergence outperforming the baseline C51 algorithm during

training. The Neyman χ2 divergence came out with the best performance in the Cartpole en-

vironment during testing. The commonality between both successful methods is that they are

both instances of zero-avoiding α divergence measures.

The variations utilizing the reverse KL divergence, Pearson χ2 divergence and Jensen-

Shannon divergence did not show any evidence of learning in both the Cartpole and Acrobot

environments. The commonality between the first two methods is that they are both instances of

zero-forcing α divergence measures. Theis et al. (2016) also showed that the Jensen-Shannon

Divergence is also an instance of a zero-forcing divergence measure.

The variation utilizing the squared Hellinger distance performed adequately in the Cart-

pole though worse than the zero-avoiding α divergence measures. Surprisingly the Hellinger

squared divergence provided the best performance in the Acrobot environment during testing.

Since the Hellinger distance assigned probability mass in a fashion that was an amalgamation

of both the zero-forcing and zero-avoiding property it would seem that for some environments

a moderate influence of both properties might be most suitable.

The other class of methods we tested belonged to the family of integral probability met-

rics. Of the two the Energy distance fared better than the Sinkhorn divergence. The Energy

distance performed better for the Cartpole environment than it did for the more complex Ac-

robot environment though the training time performance in general was sub-standard in contrast

to the more successful crop of f divergence methods. Theis et al. (2016) had showed that the

Energy distance was also an instance of a zero-forcing distance. However in contrast to the

zero-forcing f divergence which failed to serve as viable categorical loss functions, the Energy
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distance showed better evidence of learning. A possible reason for this could be the more in-

formative nature of optimal transport based metrics which we had discussed in the theoretical

analysis.

The Sinkhorn divergence on the other hand was not able to serve as a viable categorical

loss function. The training time performance of the Sinkhorn divergence was the most unstable,

with it showing promising performance for a multiplicity of training iterations on the Acrobot

environment but ultimately collapsing leading to inferior training performance similar to the

zero-forcing divergence measures. This would seem to indicate that while entropic regular-

ization made computing an optimal transport based distance more scalable and tractable, the

Sinkhorn divergence seems to also be affected by the underlying issue of biased sample gradi-

ents described by Bellemare et al. (2017b) that made the exact Wasserstein distance unsuitable

for use in the distributional reinforcement learning setting.

Thus we can conclude that for the C51 algorithm, if an optimal transport based distance metric

is to be used as the categorical loss function, then maximal entropic regularization would have

to be applied.
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Chapter 5

Conclusion

In this thesis we analyzed the performance of statistical distances from the class of Integral

Probability Metrics and f divergences as viable categorical loss functions in the C51 algo-

rithm. We observed that f divergences that possessed zero-avoiding properties or an amalga-

mation of zero-avoiding and zero-forcing properties were best suited to the task of minimizing

the geometrical distance between the projected target value distribution and the estimate value

distribution for solving classic control tasks. We also observed that with the addition of en-

tropic regularization, the maximal entropy form of the optimal transport problem was more

suited than the minimal entropy form as a categorical loss function in the C51 algorithm.

In the future we would like to test other family of divergence measures such as the Breg-

man divergence (Bregman, 1967), Stein divergence (James and Stein, 1992) (Sra, 2016) and

Rényi divergence (Van Erven and Harremos, 2014) as feasible categorical loss functions in the

C51 algorithm. Given the results we obtained for the classic control environments we would

also like to study if similar or contrasting results will be obtained on testing these variations on

the Arcade Learning Environment (Bellemare et al., 2013) as well as comparing training and

test time performance to the QR-DQN (Dabney et al., 2017) and IQN (Dabney et al., 2018)

algorithms. Finally we would like to study the behaviour of these categorical loss functions

in the C51-lite algorithm which utilized linear function approximation and whose performance

was contrasted with that of the DQN-lite algorithm by Lyle et al. (2019) that analyzed the

advantages of using the distributional setting over the expectational setting.
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terpolating between optimal transport and mmd using sinkhorn divergences. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 2681–2690.

Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2019). Sample complexity of
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