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Abstract

Deep neural networks are increasingly being used in neuroimaging research for the di-

agnosis of brain disorders and understanding of human brain. They are complex data driven

systems that work in a black-box fashion once they are trained. Despite their impressive per-

formance, their applicability in medical applications will be limited unless there is more trans-

parency on how these algorithms arrive at their decisions. Interpretability algorithms help in

bringing transparency in the decision-making of deep neural networks.

In this work, we combined the understanding generated by multiple interpretable deep

learning algorithms, to explain our resting state functional connectivity classifiers. Convolu-

tional neural network classifiers were trained for discriminating between patients and healthy

subjects; we worked with post-traumatic stress disorder (PTSD), autism spectrum disorder

(ASD) and Alzheimer‚Äôs disease. We used the variants of gradient and relevance-based inter-

pretability algorithms. Permutation testing and cluster mass thresholding was used to identify

the significant discriminating functional connectivity paths between patients and control sub-

jects.

For PTSD, the classifier provided >90% accuracy and we found that different inter-

pretability algorithms gave slightly different results, most likely because they assume different

things about the model and data. By taking a consensus across methods, the interpretability be-

came more robust and was found to be in general agreement with prior literature on connectivity

alterations underlying PTSD. For ASD, classification performance, and hence interpretabil-

ity, varied widely across data acquisition sites (56% - 94%). Harmonization of data across

sites provided incremental improvement in accuracy, but not enough to make interpretability

largely consistent. We found that interpretability makes sense only for some sites that provide

high enough accuracy. Our results demonstrate that robust interpretability across methods and
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models requires substantially higher accuracy than is currently possible in many neuroimag-

ing datasets. This should be a cautionary tale for researchers wanting to use interpretability of

artificial neural network classifiers in neuroimaging.
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Chapter 1

Introduction

1.1 Motivation

Human brain is known to be the most complex entity in the nature, and understanding parts

of the human brain with certainty is challenge in neuroscience. The brain disorders are dif-

ficult to diagnose because it is difficult to identify underlying complex mechanism with high

fidelity. The diagnosis in most of the clinical setups are done by the knowledge of the medical

professionals using MRI images (among other diagnostic tools). And also, every individual is

different; this adds more to the problem of understanding human brain and its disorders. So,

we need mathematical processing of brain data, that is able to draw conclusions by looking at

data that is available.

Deep neural networks are becoming increasingly common for the classification of neu-

roimaging data, to diagnose and learn about human brain disorders. With the help of enough

training data, these models give promising classification performance to differentiate between

healthy and patients. The deep learning classification algorithm gives a flag at the output, say-

ing a ’yes’ or ’no’ about a patient. So, this level of detail is not enough, and it challenges the

deployment of such systems in a clinical or research setup where human lives are involved.

We have a mechanistic understanding of the deep neural network models but there is no clear

understanding of how/why they make their decisions after they are trained to perform a task.

Neuroimaging needs more elaboration about the classification decisions because human brain

data contains immense number of features and the problems could be anywhere. Without a

strong explanation, a decision is only a data driven opinion, which could be biased or have any

other problem inherited from dataset. For instance: if all the data for brain disorder study is
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collected from a specific age group, gender, geography or scanning equipment; the decision-

making will generalize less regarding the disorder and specialize more regarding the dominant

metadata (age, gender, geography, scanner specifications). One such example can be seen in

[1], showing how the classifier focused on copyright text in an image and less on the actual

content. Data imbalance between the classes in the population, also is a challenge in medical

imaging and can produce misleading performance metrics (the accuracy for a data based de-

cision could be 95%, this could be occurring because one class comprises the larger part the

sample size and not due to the model’s learning of data).

The interpretable deep learning algorithms give an explanation of neural network deci-

sions in the input space in the form of a heatmap. The heatscores in a heatmap guide the users

of a data driven system, about input features that play an important role. There are several

such algorithms that give explanations of the classifier diagnoses decisions. Every explanation

algorithm has a separate working principle; many of them fail under certain conditions of hy-

perparameters and even basic perturbations in the input [2]. None of such methods is known

to give a perfect solution. The combined power of all these algorithms is used here to generate

disorder specific heatmaps in the human brain space. Our results inform us about the signifi-

cant connectivity features that make healthy and diseased subjects different. Collection of large

datasets at one imaging site is costly and challenging to manage by one organization or team,

so it is very important to combine and use data from different sites. Mathematically it is more

understandable to work with more data, however, there are several unseen biases that reduce

the quality of such combined data. We show an example of such datasets and identify why a

neural network performs ineffectively on it. An interpretability analysis of multisite data mod-

els could give more general understanding of disorders independent of site or scanner specific

effects.

1.2 Introduction

Magnetic resonance imaging (MRI) is a non-invasive technique of studying structure and func-

tioning of the brain by measuring the changes in the properties of the molecules in the subjects’

brain [3]. The imaging information collected from MRI machines are used for diagnosis of
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mental disorders and research for understanding of human brain. From the magnetic resonance

imaging scanner there are two main types of images generated, the structural MRI (sMRI) im-

ages and functional MRI (fMRI) images. The structural images contain good spatial resolution

and give anatomical understanding of the brain, while the functional MRI gives better temporal

resolution and basically the data is obtained over the course of brain activity. In fMRI the goal

is to observe the human brain activations while it is functioning in real-time as closely as possi-

ble. Usually in fMRI a subject is supposed to perform certain tasks, the data is collected while

the user performs the tasks, for example: eye blinking, finger taping and watching a movie etc.

A more effective and convenient form of fMRI is the resting state fMRI (rsfMRI). In

rsfMRI the patient/subject is put in the MRI machine and is supposed to be not involved in

any physical activity or specific thinking or goal-directed behavior [4]. Resting state functional

connectivity matrices from rsfMRI data are calculated by the calculating the correlation of the

time series of a region of interest (ROI) with every other ROI over time. A connectivity matrix

contains the correlations among all regions of interest, of a brain. The elements of connectivity

matrices show how activation of ROIs affect each other in default or resting state.

In this study, we use rsfMRI connectivity data for creating an interpretable tool for the di-

agnosis of brain disorders. The disorders considered in the experiments here are post-traumatic

stress disorder (PTSD), Alzheimer’s disease and Autism. The connectivity matrices are reduced

in size with the help of a feature selection algorithm, this helps getting rid of the features that

are less likely to be discriminatory. The reduced connectivity matrices are used to train a deep

neural network model for the classification of people between healthy and those individuals

with disorders.

The trained deep neural networks are used in further analysis using interpretable deep

learning techniques. These methods read a model, an input and the models’ decision to gen-

erate an explanation for an individual subject or image. In order to understand a disorder,

we use explanations generated for our entire training data (large groups of patient and control

heatmaps) in a permutation testing mechanism. The permutation test helps generate one single

heatmap or explanation that reflects the significance of discriminating connectivity paths be-

tween groups; we correct for multiple comparison in the testing process. We used permutation

3



testing with two different strategies, difference of means statistic and a cluster mass statistic

thresholding method.

We take our study a step further, by seeing whether all the explanation algorithms give

similar resulting paths of significance for the disorders. To do this, we build a composite

pipeline that combines the power of multiple interpretability algorithms to give explanations of

diagnosis decisions. The explanations generated by this interpretability pipelines show visually

the magnitude of consensus for a significant path. This way, we are able to narrow down to brain

paths that are more important or less important. Out of the three datasets in question, we get

convincing explainable results for Post-traumatic stress disorder and Alzheimer’s disease. For

Autism, our data comes from multiple sites, so initially we did not achieve any considerable

performance of the classification models. It means, the models were not able to capture trends

in this dataset, so we used site harmonization to show that the problem is occurring because data

came from multiple sources. We processed each sites’ data separately to show this problem.

1.3 Thesis Organization

The chapter 2 gives a basic view of the relevant literature and content The chapter 2 gives a

basic view of the relevant literature and content specific detail is available in the following

chapters. Chapter 3 gives a description of the datasets, preprocessing and how the features

extraction was performed. Chapter 4 focuses on convolutional neural networks and training

classifers for the disorders. Chapter 5 explains the variants of gradient and relevance-based

algorithms for generating heatmaps. Chapter 6 shows to how to calculate general heatmaps of

a disorder and make an integrated pipeline for the explanations, using all the interpretability

algorithms together. This concept is illustrated using PTSD data. Chapter 7 considers ABIDE

multisite dataset and demonstrates that robustness and agreement of explanations generated by

interpretability algorithms with previous literature is dependent upon the fidelity of the clas-

sification model in terms of the prediction accuracy that it can provide. Chapter 8 gives a

conclusions and future work directions regarding the thesis.
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Chapter 2

Literature Review

2.1 Resting State Functional Connectivity

In the beginning of fMRI, researchers would usually explore the brain functioning in the pres-

ence of a stimulus (such as sensory, motor or some type of cognitive task) to see how brain

activations occur. Resting state fMRI was first defined by Biswal in 1995 [5] when he tried

having his subjects do literally nothing in the MRI scanner. Instead of random spontaneous

neuronal activity at rest, he saw structure, organization and correlations among parts of the

brain. The rsfMRI concept became more famous when Marcus Raichle in 2001 [6] identified

a default mode network in the brain at rest. This default network would show activation at

rest and decreased activity when subjects were engaged in a cognitive task. Further exploring

the default mode network (DMN), Michael Greigius showed that at rest, it shows correlated

oscillations [7]. A large number of researchers have suggested that networks of brain regions

that activate and deactivate together during tasks maintain signatures of their connectivity, that

can be studied even at rest [4]. A number of other networks have also been observed at rest

including sensorimotor, vision, hearing and memory [8]. The slow, synchronized oscillations

within each network (that are independent of one another) are robust, and steady during sleep

and under anesthesia [9, 10]. In rsfMRI the data can be obtained with a dedicated scan, in

which individuals are instructed to simply rest, or by inferring resting-state data from segments

of rest embedded within a series of tasks [11]. The lack of task requirements in rsfMRI makes

it more attractive, especially for patients who have difficulty with understanding or executing

instructions. The resting-state functional connectivity (FC), usually is measured by calculating
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a correlation between the time-series of the brain regions of interest under analysis. Resting-

state FC can show the intrinsic organization of human brain, and the spontaneous activations at

rest are also predictive of task and behavior performance [12].

2.2 Brain Disorder Diagnosis and Functional Connectivity

Resting-state functional connectivity also helps diagnose the disorders in human brain. In

resting-state functional connectivity we assume that the default networks of the brain do not

function normally. For example: the disruption of default mode network has been seen in

Alzheimer’s disease, autism, schizophrenia and depression [13]. For autism, several studies

have shown abnormal patterns of connectivity in various networks related to memory, lan-

guage, emotion processing and social cognition [14]. Similarly, there are studies in which

resting state functional connectivity information has been used to look in Post-traumatic stress

disorder (PTSD). During the period from 1990 to 2017, more than 200 papers used functional

connectivity features alone or multi-modality features including functional connectivity to clas-

sify or predict brain disorders [15]. Given below are three brain disorders which we will explore

in more detail using our experiments in later chapters.

2.2.1 Autism Spectrum Disorder

It is a complex neurodevelopmental disorder, consisting of a long range of symptoms. With

different levels of disability, it affects a person’s interactions, communications and learning

[16]. This disorder begins in childhood and prevails through the lifetime; in United States, it

is estimated that ASD has a prevalence of 1:68 [17]. The treatment costs of an ASD patient

in lifetime exceed one million dollars [18]. There is still no clear understanding of autism, it

might be due to genetics, brain structure and functioning, developmental and environmental

factors.

2.2.2 Alzheimer’s disease and Mild Cognitive Impairment

Mild cognitive Impairment (MCI) is a syndrome which causes memory loss greater than ex-

pected by aging [19]. About 3-19 percent of people, older than 65 years suffer from MCI. The
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symptoms of MCI are not as dangerous as Alzheimer’s disease (AD) and people with MCI

can carry out their normal activities [20]. However, in AD the cognitive functioning is also

disturbed in addition to memory loss [16]. AD is the most common type of dementia, causes

problems with memory, thinking and behavior [21]. AD occurs increasingly in the people older

than 60 years, its significance as a public health problem was became evident [22]. Between

2000 and 2013, the death results from AD increased remarkably 71 percent, making AD the

sixth leading cause of death in the United States [23].

2.2.3 Post-traumatic stress disorder

Post-traumatic stress disorder (PTSD) is a brain disorder common in people who go through

some traumatic and tense situations. It is one of the most prevalent disorders in war veterans

[24]. An investigation by US military for mental health problems identified 9.8 percent of vet-

erans returning from Iraq, 4.7 percent from Afghanistan, and 2.1 percent from other locations

were at risk of PTSD [25]. The biological basis for PTSD from several studies is reviewed by

[26] and neuroimaging studies, for example: [24, 27].

2.3 Deep Learning for Brain Disorder Classification

In the last decade, we have seen the increasing use of traditional machine learning and deep

neural networks in neuroimaging. These complex algorithms have performed very well on

classification tasks. Most common of these algorithms are support vector machines (SVM),

random forests, feed-forward neural network (FFNN), convolutional neural networks (CNN),

recurrent neural networks (RNN) and auto-encoders. Working of these algorithms is explained

in the next chapter. Deep learning has been used in neuroimaging with data of all modalities.

But here, we will focus more on the studies that used functional connectivity or particularly

resting state data to classify brain disorders. Table 2.1 below summarizes some example studies

from the recent years. In this research, we do not necessarily claim to have created the best

classification models. Our focus is mainly about how to make these classifiers more transparent,

trustworthy and interpretable for use in clinical setup.
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2.4 Interpretability of Deep Learning

Interpretability refers to the degree of clear understanding of a system. Tang et al [28] say:

‚ÄúInterpretability is the degree to which a human can understand the cause of a decision‚Äù.

Greater interpretability in a machine learning or deep learning system means that it is easier

for humans to comprehend why it takes certain decisions. With the increasing number of ap-

plications and the improving performance of deep learning in neuroimaging, the question of

interpretability becomes important. Because the ultimate goal of neuroimaging is to under-

stand the human brain, diagnose brain disorders and help in curing the disorders. The research

and decision-making systems are extremely challenging to deploy in clinical setup for actual

use. Neuroimaging deep learning systems must be made interpretable because of the huge im-

portance of human lives. As researchers we have a mechanistic understanding of how parts of a

deep neural network work. For example: the relationship of nonlinearity with the depth of the

layers, types of activation functions, convergence of the learning process etc are all understood

very well in theory. However, it is a challenge to generate a clear post-decision explanation of

the neural network output. For example: a good explanation would exactly identify the reasons

why an MRI scan of a given patient is attributed with dementia. There are a few studies that

have explored the question of interpretability of neuroimaging classification models, as shown

in Table 2.2. These research studies are improving over time, but as of now, there is no study

that shows the explanation of deep models convincingly. This research is the one of the first in

generating explanations for neural network classification decisions for resting-state functional

connectivity data. The interpretable machine learning algorithms themselves will be described

later in the text.
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Table 2.1: Brain Disorder Classification Studies Using Machine Learning
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Abbreviations: MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomog-
raphy), SVM (Support Vector Machine), CNN (Convolutional Neural Network), LSTM
(Long Short-term Memory Network), ADNI (Alzheimer’s Disease Neuroimaging Initia-
tive), ABIDE (Autism Brain Imaging Data Exchange), ADHD (Attention Deficit Hyperac-
tivity Disorder), ResNet (Residual Network), VGGNet (Visual Geometry Group Network),
fMRI (Functional Magnetic Resonance Imaging), rsfMRI (Resting state functional MRI),
EEG (Electroencephalography), DTI (Diffusion Tensor Imaging), sMRI (Structural Mag-
netic Resonance Imaging).

Table 2.2: List of neuroimaging studies that used Interpretability techniques

Author Modality Model Interpretability Method
Strum et al [42] EEG Multilayer Pooling Network Layer-wise Relevance Propagation

Thomas et al [32] fMRI CNN and LSTM Layer-wise Relevance Propagation

Oh et al [43] fMRI
Convolutional Autoencoder
and CNN Gradient Method

Rieke et al [44] sMRI CNN
Occlusion, Gradient and
Guided Backropagation

Tang et al [28]
Whole Slide
Images CNN GradCam

Kawahara et al [45] DTI CNN Gradient

Abbreviations: CNN (Convolutional Neural Network), LSTM (Long Short-term Memory
Network), fMRI (Functional Magnetic Resonance Imaging), EEG (Electroencephalogra-
phy), DTI (Diffusion Tensor Imaging), sMRI (Structural Magnetic Resonance Imaging).
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Chapter 3

Dataset and Preprocessing

The resting state fMRI data used in this study originates from the opensource neuroimag-

ing databases. These include ADNI (Alzheimer’s Disease Neuroimaging Initiative), ABIDE

(Autism Brain Imaging Data Exchange) and data for PTSD was acquired in house at AU MRI

Research Center. Preprocessing and feature extraction of this data has already been formed

by Pradyumna Lanka [46, 47] and is kept opensource. We are using his dataset with minor

additions.

3.1 Dataset Description

The resting state fMRI data for ABIDE contains 566 healthy subjects, 339 with autism and 93

with Asperger’s syndrome. In ADNI we have 132 subjects in total, with 34 EMCI (early MCI)

subjects, 29 LMCI subjects, 29 with Alzheimer’s disease and 35 healthy controls. For PTSD the

data had been collected in house, this resting state fMRI data was acquired from 87 active duty

male US Army soldiers who served in Iraq or/and Afghanistan, with 28 controls, 17 diagnosed

with only PTSD and 42 diagnosed with both PTSD and post-concussion syndrome (PCS). Our

in-house data collection was approved by Institutional Review Board at Auburn University and

Headquarters U.S. Army Medical Research and Material Command (HQ USAMRMC IRB).

A 3T Siemens MAGNETOM Verio Scanner was used to scan participants, with a 32-channel

head coil. Resting state data was collected from the subjects in two runs using a T2* multiband

echoplanar imaging (EPI) sequence. The data acquisition parameters were, TR = 600ms, TE

= 30ms, FA = 55 degrees, multiband factor = 2, voxel size = 3x3x5(millimeter cube) and
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1000 points in time. The brain coverage for the volumes was restricted to only cortical and

subcortical areas, and cerebellum was not included. We use binary classification to classify

between controls and patients in these 3 datasets, so we can focus particularly on the diseases

in question and the explainability of models. Table 3 shows the information about how our data

was organized and its properties of concern.

Table 3.1: Shows a summary of the datasets which are later used to train classifiers. Reduced
features refer to the number of features we receive after we apply t-test on the content of the
connectivity matrices.

Disorders Dataset Classes Number of
Subjects Reduced Features

Post-traumatic
Stress Disorder

AU MRI Re-
search Center

2 174 677

Alzheimer’s Dis-
ease

ADNI 2 132 665

Autism ABIDE 2 988 1357

3.2 Preprocessing

For preprocessing the resting state fMRI data, a Matlab package called DPARSF (Data Pro-

cessing Assistant for Resting-State fMRI Toolbox) was used by [48]. The preprocessing steps

performed on data include 3D volume realignment, slice-timing correction, co-registering of

T1-weighted structural images to mean of the functional image, nuisance variable regression,

mean global signal, white matter and signals of cerebrospinal fluid and 6 motion parameters.

The dataset was normalized with to MNI (Montreal Neurological Institute) template. The

BOLD (blood oxygen level dependent) timeseries of voxels was deconvolved by estimating

the hemodynamic response function (HRF) using blind deconvolution process. These time-

series signals were filtered temporally using a bandpass filter of 0.01Hz-0.1Hz. Using CC200

template [49], mean timeseries of 200 functionally homogeneous brain regions was extracted.

Pairwise functional connectivity values were calculated using the 200 timeseries signals, by

measuring the Pearson‚Äôs correlation coefficients between signals. This process results in
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19800 FC features. Whole brain coverage for PTSD and ADHD were not available, so time-

series were extracted only using 125 and 190 regions. 19800 features for each example subject

are a lot for a machine learning model to take care of, given the small sample sizes. So, the num-

ber of features was reduced to around 1000, using a t-test and an FDR correction of p ≤ 0.05

was used to find these significant FC values.
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Chapter 4

Deep Neural Network Classifiers

4.1 Selection of the Neural Network Classifier and Associated Parameters

We have seen previously in Table 2.1 that machine learning algorithms and deep neural net-

works are being used extensively in research, to perform classification and other types of deci-

sions. The temporal nature of the data has already been taken care of, by calculating Pearson

correlation coefficients. And all of our datasets have number of features between 600 and 1400,

using a t-test. To build a deep learning classifier for this data, the obvious option is a fully con-

nected network. In fully connected networks the feature vector is transformed through layers

linearly and a non-linear operation is performed at the output of each layer [50]. The size of

the layers is reduced step by step to the number of classes to generate, ‚Äùyes‚Äù or ‚Äùno‚Äù

decisions about a class. This type of neural network has a greater number of parameters, be-

cause each neuron node in a layer is connected with all other nodes in the layers before and

after itself. So, in this kind of network we will have to optimize millions of parameters. It is

impractical because we are working with a smaller number of subjects or a smaller number of

examples.

There are a number of factors that guide the type of classifier used, and we will discuss

them briefly below. First, feature length in one subjects’ data is between 600 and 1400, which is

comparable to the feature length (724) of MNIST handwritten digits dataset [51]. MNIST digits

classification using fully connected network hardly performs with an accuracy of 90 percent

for 60000 sample size. Even, the 60000 images were not enough to generate an extraordinary
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result. However, the convolutional neural network accuracy for MNIST went to 97 percent

without adding any complexity [52].

Second, our reduced feature vectors (features that pass the t-test for group differences in

the training data) were resized as images and fed into a convolutional neural network. In the

FC matrix or correlation space, we can think of each number as a pixel in an image. We can

do this, because the convolution operation in a CNN is equivalent to a linear transformation

(of fully connected networks) [53]. So, we reshape the feature vectors into squares and work

with them similar to how images are dealt with in machine learning. If a feature vector does

not evenly become a square, then we append constant numbers to fill the empty spots of the

closest square. This process is equivalent to the padding operation in a convolution layer, to

maintain the desired dimensions. Adding a constant feature to every single input instance,

does not create a different because it is same for all classes and the gradient updates for the

corresponding parameters are all zeros.

Third, we are dealing with our dataset examples as images in a convolutional neural net-

work, however our sample sizes (PTSD 174, ADNI 132 and ABIDE 988) are not large enough

to applications of convolutional neural network that have been successful in other fields. When

we reshape our feature vectors into 2D images, the landmark/location for each feature stays the

same in the entire dataset. In other words, the pose of content in our images does not change

and it makes the dataset easier to learn, even with a smaller sample size. The negative effects of

pose variation on image datasets and convolution-based classification was done in [54]. They

saw that the change in the pose of an image challenges and fools a trained classifier. For our ap-

plication, in training and even on deployment in a real situation, the pose would never change.

Due to the above reasons, we think it is safe to use a convolutional neural network and it results

in better classification accuracy using less data.

Figure 4.1 shows a performance comparison between a convolutional and feed-forward

network on our PTSD dataset. The models were trained 10 times, from the start with a random

initialization of weights and biases.
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Figure 4.1: Comparing FFNN and CNN Models for trained for classification of PTSD and
Control Subjects.

4.1.1 Convolutional Neural Networks

CNNs are a type of deep neural networks that have proven to be highly successful in medi-

cal image processing. CNN architecture exploits the spatial relationships of the content of the

image; this feature is unique to this type of neural networks which makes them good at pro-

cessing image information. They are basically related to both digital image processing theory

and human visual cortex. CNNs have a hierarchical layered structure in which every layer pro-

cess‚Äôs, certain features of the image which are similar in human vision system [55]. The

initial layers detect and process low level features (dots, lines) whereas the higher layers make

sense of the complex features (for e.g. curves, corners, textures and their combinations). Most

common ingredients of a CNN are convolutional layers, activation functions, pooling layers and

fully connected layers. Figure 4.2 shows an image of our neural network architecture which is

similar to Alex-net [56] and Lenet [52] . The convolutional layers apply a 2D convolutional

operation on their input and kernel consists of the weights of the neural networks and adds a

bias parameter to every output pixel. The weights and biases can be thought of as knobs, upon

which the working of the machine depends. Every convolution layer output is passed through

an activation function and then followed by a pooling layer. The activation function is simply a
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non-linear function. The purpose of the pooling layer is to reduce the size of the output images

by subsampling; most of the famous architectures use average pooling or maximum pooling.

So, the architecture consists of cascaded Conv-Pool layers and after passing the image to a few

layers the size becomes very small.

Then the 2D image is flattened in the form of a vector and further reduced in size using

fully connected layers. The fully connected layers also simply do a non-linear transformation

are like layered graphs in which every input node has a connection to all output nodes. The

connection is fully connected layers are weights/biases upon which the transformation depends.

The output of the transformation is passed through a non-linear activation function to produce

non-linearity. Finally, the output layer of a CNN classifier is made to have nodes equal to the

number of classes.

]

Figure 4.2: Example of a Convolutional neural network being used in a functional connectivity
data classification task for PTSD and Control subjects.

4.1.2 Training a Deep Neural Network Model

By training a deep neural network we refer to the process of adjusting its parameter, so that later

when an input example of data is passed through it, it gives the desired output. This process

can be broken down into four parts.

First, given a number of example images we pass them forward through our classifier

models to generate decision. Now, some of these decisions are correct and some are incorrect.

We have both the predictions of the model and actual labels of data.
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Second, a cost function is required to evaluate the success of a model by measuring the

magnitude of incorrect classifications. Usually an effective error is selected as the cost function,

in our work we use sum of squared error. The smaller the cost function, the better the model

performance.

Third, adjusting the parameters (weights and biases) of the model guided by the cost func-

tion value. Most commonly these adjustments are done using gradient descent algorithm. The

partial derivatives of the cost function are calculated with respect of every parameter of the

neural network. The neural network parameters are updated by subtracting the corresponding

partial derivative values from them.

Finally, this process of doing predictions, calculating the new cost value, the partial deriva-

tives and updating parameters is repeated over and over until the model starts performing sig-

nificantly correct classifications.

4.2 Structuring and Training Brain Disorder Classifiers

The selection of hyperparameters of the CNN comes through a mathematical understanding

of different parts in a neural network and observing the learning process. We put our sample

size, feature length and data quality in consideration as we tune the structure of CNNs. The

hyperparameters include all the things that a developer sets, for better learning. Some of these

parameters for CNNs are number of convolution layers, size of convolution kernel in each layer,

number of kernels in convolution layers, selection of pooling mechanism, choice of activation

function, gradient update strategy and learning rate etc.

There are many structure-related hyperparameters to start with, but since our samples‚Äô

shape matches well with the shape of MNIST examples, so we started off with LENET base

architecture [52] and applied changes to it according to our data and application. LENET was

the first convolutional network tried for MNIST and also one of the first few in the deep learning

history.

We used max-pooling for the subsampling step in the classification networks. There 2 most

common subsampling methods for CNNs (average pooling and max-pooling). Max-pooling

Max-pooling [50] suits our application better because it passes only the most important brain
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paths over to the next layer (this process seems like we lose information; but it is better than a

wrong assumption). The other reason we avoid another type of pooling is because in our 2D

FC input, 2 adjacent numbers do not necessarily have to identify adjacent paths in brain space.

We replaced the tangent sigmoid activation function of convolution layers with rectified

linear unit (Relu function). Relu was introduced in 2010 by Hinton [57] and has proven to

be the best non-linear function to use in the hidden layers. For the last layer of the classifier

we used softmax function, so the sum of the activation units is 1, there are sharp differences

between unit activations. Figure 4.3 shows our comparison of the classification accuracies for

Relu, tangent hyperbolic (Tanh) and Sigmoid function, after training the model 10 times with

a random initialization of weights and biases. We found that Relu function produced the best

mean test accuracy.

]

Figure 4.3: Comparing models test accuracies with different activation functions for the classi-
fication of PTSD/Controls subjects.

In general, for image classification, the kernel size is chosen as 3x3 or 5x5 or above (com-

monly most of the literature and applications use 3x3). A comparison of bigger and smaller

kernel windows is discussed in [58]. We chose the smallest possible kernel (3x3) size, because

in our 2D inputs, we do not assume any flat continuity in the input space and the dimensions are

small. We try to put the focus on every edge in the image and it is possible only with smaller
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kernels. In all three models we worked with, the stride in the convolution process was set to 1,

so that we do not skip any information.

In all the datasets we worked with, we had to use 3 convolutional layers instead of 2 layers

of LENET. This is mainly because with 3x3 kernel size, the feature length does not become

small enough in 2 layers. And when it is not small enough, the flat layers in the end add an

unacceptable number of parameters. So, it is best to use another convolution layer instead of

having long dense layers. We increased the number filters in the convolution layers from 16 to

32 and then 64, this was kept same for the networks. Normally, it is good to use as many filters

as possible to capture all kinds of possible trends, but we could not afford to further increase

the number of filters because we did not have enough data to optimize them.

In the training process, that dataset was split into 80 percent training-set and 20 percent

testing-set. Initially we used gradient descent algorithm [50] to optimize the weights and biases

of the CNN. However, we found that the performance was not always the same for CNN train-

ing and stopped at a level. Sometimes the models learned enough and sometimes the learning

just stopped at particular accuracy (indicting getting stuck in local minima). So, we employed

ADAM optimizer [59] for a faster and consistent learning. With this ADAM as our parameter

optimization algorithm, the problem of halts in learning was reduced and the networks learned

according to their capacity in smaller number of epochs. Figure 4.4 shows the accuracy and

training epochs comparison for the different optimizers available in Keras library.

An epoch indicates the number of passes of the complete training set in the learning pro-

cess. When we mention the number of epochs for training, we are reporting the dataset iteration

at which the gap between training and testing accuracies starts to increase consistently. Another

way of deciding when to stop the training is, to look at training and testing loss values. Figure

4.5 shows the loss curves under training of PTSD CNN model. We can see that there is a point

in the process where further training increases the testing loss (45 in case of PTSD model).

Testing loss looks more edgy because it is based to totally unseen data.
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]

Figure 4.4: Comparing the efficacy of optimizers used for CNN model. This data is based on
our PTSD vs Control subjects classification.

]

Figure 4.5: Loss curves indicating the epoch where the training process is halted. This example
is based on a CNN models classifying our PTSD and Control subjects.

4.2.1 Post-traumatic Stress Disorder and Alzheimer’s Disease Models

The feature size for the PTSD and Alzheimers’ subjects differs for only 12 paths (PTSD 677,

ADNI 665). We used the same structure of CNN models described previously, for both of these
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disorders because the number of subjects as well is comparable. The only difference between

the two is the number of epochs it took to train the models to achieve its highest accuracy.

Tables 4.1 and 4.2 show the exact dimensions of the input, it passes through the network and

corresponding number of parameters in each layer. It took 45 epochs to train the PTSD/Controls

model to an accuracy of testing accuracy of 91 percent. And, for Alzheimers’ disease it took

50 epochs to train the model to a testing accuracy of 77 percent.

Table 4.1: A summary of the CNN model used for PTSD/Controls classification task.
Layer Number Layer Output Shape Number of Parameters

1 2D Convolution 25 x 25 x 16 160
2 2D Convolution 23 x 23 x 32 4640
3 Max Pooling 11 x 11 x 32 0
4 2D Convolution 9 x 9 x 64 18496
5 Flatten 5184 0
6 Dense 8 41480
7 Dense 2 18

Total Parameters = 69794

Table 4.2: A summary of the CNN model used for Alzheimer’s disease/Controls classification
task.

Layer Number Layer Output Shape Number of Parameters
1 2D Convolution 24 x 24 x 16 160
2 2D Convolution 23 x 23 x 32 4640
3 Max Pooling 11 x 11 x 32 0
4 2D Convolution 9 x 9 x 64 18496
5 Flatten 5184 0
6 Dense 8 41480
7 Dense 2 18

Total Parameters = 69794

4.2.2 Autism vs Controls Model

For autism we had 1179 features and 988 subjects, the size of this dataset is good enough to train

a classifier for a binary task. However, the data was collected at different sites (we work on site

variation factor in the dataset, in a later chapter). Table 4.3 shows the structure and parameters

of the model. With model structures tested for previous disorders, we repetitively found a large
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gap between the training and testing accuracy. We trained the model enough to get to a training

accuracy of 60 percent, the testing was only 51 percent; this indicated no actual learning and

more overfitting. An overfit model performs well on the training data, but on testing data

it fails badly. So, we added 2 regularization layers to avoid this problem. Particularly, we

used dropout regularization [60] mechanism and varied its setting. In this method we set a

probability by which the neuron units in a layer are turned off, in the training stage. This makes

the output of a layer less dependent on the layer before it, due to the randomness involved,

resulting in a more robust model. The addition of dropout layers with 1 percent probability,

reduced the gap between training and testing (60 / 56 percent at 67 epochs), the improvement

was only marginal. Given below is a summary of the dimensions in the CNN and its trainable

parameters. Figure 4.6 shows the effects of different dropout probabilities on model learning

and overfitting control.

]

Figure 4.6: Dropout Regularization introduced for the ABIDE model to reduce overfitting. Dif-
ferent dropout probabilities were tried in ABIDE for improvement in performance.1% dropout
gave a better training and testing accuracy.
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Table 4.3: A summary of the CNN model used for ASD/Controls classification task.
Layer Number Layer Output Shape Number of Parameters

1 2D Convolution 35 x 35 x 16 160
2 2D Convolution 33 x 33 x 32 4640
3 Max Pooling 16 x 16 x 32 0
4 2D Convolution 14 x 14 x 64 18496
5 Dropout 14 x 14 x 64 0
6 Flatten 12544 0
7 Dense 8 100360
8 Dropout 8 0
9 Dense 2 18

Total Parameters = 123,674

4.3 Saving the models

After training, we saved these models and also saved a 10-fold cross-validated version of these

models. Given below is a summary of the models we saved after training.

Table 4.4: Performance of brain disorder neural network classifiers saved at end of model
training.

Disorders Epochs Train/Test Acc Cross-validation Acc
Post-traumatic Stress Disorder 45 94% / 91% 96%

Alzheimer’s Disease 50 85% / 76% 85%
Autism 67 60% / 56% 58%
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Chapter 5

Generating Explanations of Classifier Decisions

Once we have classification models that are able to classify functional connectivity data gen-

erated from resting state fMRI of a subject; we become more interested in understanding how

has the model under consideration, captured the trends in data (FC data in our case). This helps

answer questions like, what are the most important features that are significant in a disease.

5.1 Interpertable Machine Learning

An interpretable machine learning algorithm is aimed at making the models transparent. It

reads 3 blocks as input and to generate an explanation. These include an input example, a

trained classification model, and the model’s decision for the given example. The explanation

has exactly the same dimensions as the input example. Let’s say that we have a model F that

reads an input x of d dimensions and generates a classification decision y of c dimensions in

equation 5.1. An interpretability algorithm is denoted by E that reads F, x and y to generate

a heatmap or explanation in 5.2. A brief description of the 10 methods of interpretability we

used in this study is given below.

y = F (x) (5.1)

H = E(F, x, y) (5.2)
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5.1.1 Gradient Heatmaps

The gradient method [61] is the simplest way of generating an explanation. In this method

we simply calculate partial derivatives of the output with respect to every input feature. This

is implemented by running a backward pass from output to the input layer (like it is done in

normal training procedures), and one last derivative is calculated with respect to the actual

input. In light of equations 5.1 and 5.2, it can be denoted as 5.3; where Ei(F, x, y) is the

heatmap value for feature at index i of an input.

E(F, x, y)i =
∂y

∂xi
(5.3)

5.1.2 Smoothgrad

Smoothgrad [62] is an improved version of Gradient method, it reduces noise and visual dif-

fusion in explanations, by averaging heatmaps over noisy replicas of an input. For a given

example x, the smoothgrad explanation Esg can be calculated as shown in equation 5.4. Where

gi are the noise vectors that belong toN(0, σ2) and drawn from i.i.d from a normal distribution.

Esg(F, x, y) =
1

N

N∑
i=1

E(x+ gi) (5.4)

5.1.3 Input ◦ Gradient

This method is referred to as input times gradient method. The explanation here is an element-

wise product of input example and gradient matrix. This setup reduces the problem of gradient

saturation and reduces diffusion [63]. Equation 5.5 shows how Ei.g is calculated.

Ei.g = E(F, x, y) ◦ x (5.5)
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5.1.4 Integrated Gradient

Integrated Gradient method [64] is another version of the gradient method that helps make the

visualization more appealing and understandable. In this method we integrate explanation cal-

culated by scaled versions of the input. This method is not very random compared smoothgrad.

Eig = (x− x̄)

1∫
0

∂F (x̄+ α(x− x̄))

∂x
dα (5.6)

5.1.5 Guided Backgpropagation (GBP)

Guided Backpropagation works on the same principle as gradient method, except for the ad-

ditional constraint in the calculation of gradients. In GBP, when gradients are backpropagated

through the neural network, the negative gradients are set to zero or passed through Relu func-

tions in every layer.

5.1.6 Deconvnet Method

This technique [65, 55] is primarily good for models that work using convolutions. Deconvolu-

tion method simply gives an explanation of what a convolution layers has learned. If we talk of

a complete CNN model, then Deconvnet method creates a new unsupervised network that is an

opposite image of actual model. It performs the opposite operation of all the layers including

pooling.

The filters in the new network are the inverse of filters used in classification of an input.

The deconvolution operation helps reconstruct the input of a convolution layer using its output

layer. The relu operation is performed as it is in the actual network. If we think of the new

network as backward pass, the relu functions here clip the negative gradient and hence stop

noise from propagating backwards.

The opposite approximate of the max pooling operation usually is performed by employ-

ing a location matrix of switches (1 is placed for highest activation in the pooling window and

rest are set to zero). The using this location based switching information, we transfer infor-

mation from output of a pooling layer to previous layer. It is important to understand the an

27



explanation generated by the Deconvnet, is a forward propagation unlike gradient or relevance

methods. Given below is an image obtained from [55], where deconvolution was tried first

time.

Figure 5.1: Deconvolution process chart here shows how in the deconvolution method infor-
mation from layer2 is reconstructed with the use of location based switching information in
the layers. To perform the opposite operation of each layer, the parameter matrices used in the
transformation are transposed.

5.1.7 Layer-wise Relevance Propagation-z (LRP-z)

Layer-wise Relevance Propagation is a heatmap generating method for classifiers that can show

the relevance of every input feature to the class decision [1]. The working principle of LRP is

the breaking of sums into in their constituent parts. For example: in Figure 5.1 node 7 score

is broken into three parts and fed back to the nodes 4, 5 and 6 according to their weights.

This process continues from the output to the input over all the layers. In the last step we get

relevance or contribution of every input feature in decision (either helping or opposing). It is a

general framework under which a solution has to satisfy a major constraint called Layer-wise

Relevance Conversation principle. This principle states that the sum of relevance scores across
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layers remains conserved i.e. there is no concept of sink or source. It could be represented

mathematically as follows - and this equation summarizes the entire notion of LRP.

... =
∑

d∈l+1R
l+1
d =

∑
d∈lR

l
d = ...

where Rd is the relevance/importance score for the dth dimension and l represents the lth

layer. Here we show a simple neural network-shaped architecture (Figure 2, from [1]) to derive

a solution to the LRP. When a relevance is positive, it means the corresponding feature has

helped in doing a particular decision; and if it is negative, it shows an opposition of the feature

for the decision.

Figure 5.2: Left: A neural network-shaped classifier is shown on the left during forward pass.
Right: the backward flow of relevances is shown. wij are the connecting weights and ai is the
activation of neuron i. Rl

i is the relevance of neuron i that is to be computed.

The forward pass through the network can be represented as follows -

a4 = a1w14 + a2w24

a5 = a1w15 + a2w25 + a3w35

a6 = a2w26 + a3w36

f(x) = a7 = a4w47 + a5w57 + a6w67

where ai is the activation for the ith neuron andwij represents the connection weights from

node i to node j. Classifier score is represented by f(x)

Relevance computation part is similar to the backward propagation rule as can be seen

from the following equations -

R3
7 = f(x)
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R2
4 = R2,3

4←7 = R3
7(
a4w47

a7
) = R3

7(
a4w47

a4w47 + a5w57 + a6w67

)

R2
5 = R2,3

5←7 = R3
7(
a5w57

a7
) = R3

7(
a5w57

a4w47 + a5w57 + a6w67

)

R2
6 = R2,3

6←7 = R3
7(
a6w67

a7
) = R3

7(
a6w67

a4w47 + a5w57 + a6w67

)

R1
1 = R1,2

1←4 +R1,2
1←5 = R2

4(
a1w14

a4
) +R2

5(
a1w15

a5
)

R1
2 = R1,2

2←4 +R1,2
2←5 +R1,2

2←6 = R2
4(
a2w24

a4
) +R2

5(
a2w25

a5
) +R2

6(
a2w26

a6
)

R1
3 = R1,2

3←5 +R1,2
3←6 = R2

5(
a3w35

a5
) +R2

6(
a3w36

a6
)

The equation for LRP can be generalized as follows - where zij is equal to xiwij and zi is equal

to
∑

i′ xi′wi′j

Rl
i =

∑
j

xiwij∑
i′ xi′wi′j

Rl+1
j

Rl
i =

∑
j

zij
zj
Rl+1

j (5.7)

5.1.8 Layer-wise Relevance Propagation-Epsilon

LRP-ε is an improved version of LRP, it consists of adding or subtracting a small positive

number (ε) from the denominator.

Rl
i =



∑
j

zij
zj − ε

Rl+1
j z ≤ 0

∑
j

zij
zj + ε

Rl+1
j z > 0

(5.8)

The purpose of the ε is to help limit of the relevance magnitude when zj is very close to

zero (in other words if the sum of activations if later layer is very weak). The ε also can be used

to have a control over the explanation; it will give sparse and less noisy explanations for bigger

values.
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5.1.9 Layer-wise Relevance Propagation (α, β)

One of the techniques to redistribute relevances from higher to lower layers is called LRP-(α,

β). In this we have a complete control over the flow intensity of positive intensities (using α)

and negative relevances (using β). Setting beta to zero allows to analyze only at features that

support a decision in a positive way and vice versa. In this work, we employ two LRP-(α, β)

explanations with parameters (2, 1) and (1, 0).

Rl
i =

∑
j

(α
z+ij
z+j

+ β
z−ij
z−j

)Rl+1
j (5.9)

5.2 Individual Heatmaps versus General Heatmaps

The interpretable machine learning algorithms described above, were able to generate an expla-

nation for every single input (every subject). In figure 5.3 are a few gradient based explanations

of subjects, classified as PTSD by our CNN model (trained by 10-fold cross-validation). Nor-

mally a raw heatmap identifies a very large number of paths with a high variance. We are

showing here only the top 10 paths that supported the PTSD decision of the model. We saw

that, even using the same model, and same way of generating the explanations for different

PTSD subjects returns different explanations. Only 6 out of top-10 connections were found

common among the 3 of the subjects, shown in figure 5.4.

In figure 5.5 we have showed heatmaps like before, generated using 4 different inter-

pretability algorithms for 1 PTSD subject (using same model). These methods are gradient,

integrated gradients, LRP-z and LRP-ε. We are again seeing significant visual difference be-

tween the paths identified. This convinces us of the fact that there are similarities and differ-

ences between these methods as well. And there is literature [63, 1] that supports the fact that

none of these algorithms work perfectly (there are interpretabilty algorithms that worked really

well and fail badly in some situations). One simple example of failing interpretability methods

is the presence of zeros in the input space. Input times gradient method, would definitely fail

in such situation because we multiply the input space zeros to the gradients and heatmap skips
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Figure 5.3: Gradient Heatmaps of 4 individuals PTSD subjects, classified as PTSD by the
model. These heatmaps were generated by the 96% accurate PTSD classification CNN model
(trained by 10-fold cross validation). The thickness of a path represents the contribution made
that path to support PTSD decision. In this figure we are only showing the top 10 supporting
paths of each heatmap. There numbers in the heatmaps are not subject to any upper or lower
limits.

looking at some features which may be important. Figure 5.6 shows the brain paths were most

common among the heatmap algorithms and paths that were most uncommon.

Given that every subject is different, it becomes more viable to generate explanations of

the working of the model (generate group level heatmaps) in the first place. The general ex-

planations also have to be in the input space and should identify that functional connectivity

connections that are important for discerning between healthy subjects and patients. For this

purpose, we pick a subset of data (where correct classifications occurred) and apply a permu-

tation test to identify the generally significant paths for a trained classification model. The
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Figure 5.4: This brain visualization is showing which paths were most common among gradient
heatmaps of 4 PTSD subjects. Each connection in this visualization was found in 3 of the
subjects. The heatmap was generated by the 96% accurate PTSD classification CNN model
(trained by 10-fold cross validation).

details to test are given in next chapter. And the question of individual subject level explana-

tions becomes important when our model itself and the interpretability procedure is close to

perfection.
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Figure 5.5: Explanations generated for a PTSD subject, classified as PTSD by the 96% accurate
CNN model, using 4 different interpretability techniques. The thickness of a path represents
the contribution made that path to support PTSD decision. In this figure we are only showing
the top 10 supporting paths of each heatmap. There numbers in the heatmaps are not subject to
any upper or lower limits.
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Figure 5.6: Left: This is a figure is showing which paths were common among all heatmaps
generated for one PTSD subject. : Right: This figure shows which were not common among
any of the four heatmaps of the PTSD subject. These algorithms include gradient, integrated
gradients, LRP-z and LRP-epsilon method. The heatmaps were generated by the 96% accurate
PTSD classification CNN model (trained by 10-fold cross validation).
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Chapter 6

Statistical analysis and Consensus Heatmaps

The raw values in the heatmaps generated from the interpretability algorithms do not have the

same distribution and their min and max (range) heatscores are different across interpretability

methods. Each subject is different from one another. Therefore, even when the classification

decisions are same, the explanations generated may look very different. We needed a sys-

tematic way of identifying the significant paths that make the subjects of two classes different

from each other. This type of analysis would make our conclusions regarding the interpretabil-

ity algorithms and the disorders more usable. Identification of significant brain paths (using

heatmaps) gives us an understanding of the trained models as well as resting state brain con-

nectivity signatures of mental disorders. For the identification of significant paths, we consider

each path (or the corresponding heatscore in the heatmaps) as an independent entity. A hypoth-

esis testing procedure is performed to see that, whether for a given path, the heatscore values

in the PTSD group are different from those in the control group. The chose the permutation

method for hypothesis testing because we do not have a closed form analytical null distribution

for heatscore values. We tried two different strategies to generate heatmaps corresponding to a

given disorder; they both involve a permutation test. The first method uses a permutation test

and employs difference of means as the test statistic. The second method uses a t-test for the

difference of means followed by a permutation test for correcting for multiple comparisons; the

permutation test in this method uses cluster mass statistic.
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6.1 Permutation Test with Difference of Means Statistic

A permutation test [66, 67] is a statistical significance testing method, also called exact test or

a randomization test. In this test, we generate a very large number of permutations of our data

in order to determine an empirical null distribution of a given test statistic. In this distribution

we measure the area under the distribution for values greater than or less than (if it is a two-

sided test, else just greater than) the corresponding test statistic (for example, mean difference

between two groups) value obtained from real data. The area under the distribution represents

the probability or p-value and if it is less than 0.05 we can conclude that there is less than 5%

probability of the value from real data belonging to the null distribution. In case the test statistic

is the mean difference between the groups, we can say that the groups are significantly different

from one another.

Figure 6.1 shows our process of generating a statistically significant heatmap using per-

mutation testing. Starting with path1, we enlist the path1 heatscores for our all subjects from

both classes and calculate the test statistic, which is the difference of means of each group. The

actual list of heatmap values for a path1 is permuted a large number of times (for example:

1000 permutations for PTSD experiment). For each permutation we measure and enlist the

difference of means statistic. From the distribution of these test statistics we calculate a p-value

for path1. To calculate the p-value we locate the real test statistic value in the distribution. The

proportion of same of better statistic values in the total permutations gives us this probability

value. This process is repeated for each FC path, to fill a matrix with p-values.

6.1.1 Correcting for Multiple Comparisons

In general, when multiple hypothesis tests happen in parallel (like in our case), the likelihood of

getting at least one Type-I error increases with the number of tests performed. Type-I error or

false positive is rejection of null hypothesis, while the null hypothesis is true. The probability of

occurrence of a false positive in a single hypothesis test is α, also called the significance level.

The probability of at least one false positive for multiple tests can be given by the equation

below. Here, α* is the significance level of one test and α is the significance level of n tests.
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Figure 6.1: Matrices contain the raw heatmaps generated using interpretability methods, and
each matrix represents one model class (PTSD / Control). Hpath1 contains information for
path1 from all subjects. A large number of permutations of Hpath1 are generated, and for each
permutation the difference of means (x) is calculated. A p-value is calculated by seeing where
xactual lies in the distribution of test statistic (x). The process is repeated to calculate a p-value
for each brain path. An FDR corrected p-value threshold is applied to pass only significant
brain paths to visualize and analyze.

This reduction of the significance level due to multiple tests is called multiple comparisons

problem, because the α accumulates with more comparisons. It is necessary to compensate for

the multiple comparisons issue, because α* will result in incorrect hypothesis testing decisions.

α = 1− (1− α∗)n (6.1)

There are several techniques that help compensate for the problem of multiple comparisons

such as Bonferroni correction [68], FWER (family-wise error rate) correction and FDR (False

Discovery rate) correction [69] which uses the Benjamini Hochberg procedure [69] etc. In this

permutation test we used FDR method, it minimizes the chances of Type-I error. We did not

used FWER and Bonferroni correction because those two methods set the significance level for
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letting at least one false positive occurrence, and these methods did not allow for identification

of any brain paths. For FDR correction at α we apply the BH (Benjamini Hochberg process) in

three simple steps. First we sort our all p-values (Pi) obtained in total number of tests n. From

the sorted p-values we find the test with the highest rank i for which the p-value (Pi) satisfies

the equation 6.2. In this way we declare the tests ranking 1,2„,i as significant.

Pi ≤ α(
i

n
) (6.2)

6.1.2 Analyzing PTSD CNN Model using Permutation Test

We repeated the above described permutation process on the PTSD/Control groups of heatmaps

obtained using each of the interpretability algorithms, to get a heatmap of p-values. Given

below, the figures 6.2 and 6.3, show the heatmaps (Gradient and LRP-z respectively) with

significant paths calculated through the permutation process. Since we are working with a

large number of algorithms so the other 8 such heatmaps can be seen in the appendices section.

In this figure, the colorbar differentiates between the relative significance of paths, where blue

means the least significant and red means the most significant of all.

Each one of these algorithms identifies a number of paths (with count between 20 and 40)

as significant. In figures 6.2, 6.3 and 6.4, we can see that there are considerable number of

paths common between the heatmaps generated by these different algorithms. But, at the same

time we can also see a lot of paths that are different. The similarity and differences occur due to

the same working principle and change of mathematical formulation respectively, to calculate

an explanation.

Currently, in theory there is no such interpretabilty method that explains the working of a

model perfectly. At the same time, there is no clear understanding, goal or strategy being used

in the artificial intelligence community to quantify the relative effectiveness of interpretabil-

ity heatmaps in practical settings, such as neuroimaging-based diagnostics. In problems of

neuroimaging, interpretability is a concern. Having explanations of decisions can be useful

in neuroimaging diagnostics for discovery of ground truths. Unavailability of explanations re-

duces trust in the performance of a study, where machine learning does the decision-making.
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Figure 6.2: Gradient Heatmap of significant paths that make PTSD/Control subjects different
one each other. The test statistic in the permutation test was the difference of means. The
color bar shows p-values of 0.05 as 0.0 mapped to 0.95 and 1 respectively. The darkest blue
path identified least significant path and red most shows the most significant brain path. The
raw PTSD and Control groups of heatmaps were generated for a CNN classifier (with 96%
cross-validation accuracy).

To tackle these issues described above, it becomes more viable to rely on an explanation gener-

ated by the combined effort of all existing interpretability methods. Because, in a consensus the

study may incorporate and satisfy assumptions made by different explanation techniques. We

use a voting procedure described in next section, where an agreement of all heatmap methods

is calculated.

6.2 Permutation Test with Cluster Mass Statistic Threshold

In this permutation test we employ a cluster statistic referred to as cluster mass statistic (CMS)

first introduced in [70]. This will help us identify significant paths of brain in groups of

heatmaps. In this method, the first task is to calculate a matrix of t-statistics applied on the
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Figure 6.3: LRP-z of significant paths that make PTSD/Control subjects different one each
other. The test statistic in the permutation test was the difference of means. The color bar shows
p-values of 0.05 as 0.0 mapped to 0.95 and 1 respectively. The darkest blue path identified least
significant path and red most shows the most significant brain path. The raw PTSD and Control
groups of heatmaps were generated for a CNN classifier (with 96% cross-validation accuracy).

groups of connectivity matrix heatmaps coming from different disorder states (for e.g: Con-

trols/PTSD). A threshold of p ≤ 0.05 is applied to binarize the matrix of t-values generated

by the t-test (in this mask, zeros in this matrix denote insignificant and ones denote significant

brain paths). The purpose of this mask is to help with the process of calculating the cluster mass

statistic. So, after using a students‚Äô t-distribution for the binary mask, we calculate a cluster

mass statistic threshold using a permutation mechanism for finding paths that are significant,

with reduced type I error. Reducing type-I error removes the paths that do not make a cluster

at their nodes. The workflow of the process is given below and can be seen in figure 6.4.

Groups A and B refer to the two different classes of a disorder. A t-test mask is calculated

between the heatmaps in both groups. The values in the binary mask are summed over rows to

get a vector of CMS values. Each CMS number in the vector represents the number of links of
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Figure 6.4: Raw heatmap information is filled into actual correlation matrices to form groups
A and B. A large number of permutations of the matrices are created and a t-test is performed
between groups for each permutation. Applying the t-test on each permutation results in a
binary mask with ones representing significant content of heatmap and zeros representing in-
significant paths. A vector of cluster mass statistics is calculated for the actual data mask and
all other permutations. A CMS value for an ROI is measured by counting its connections with
other ROIs. From each CMS vector the maximum value is enlisted, and a distribution of max
CMS is created. FWER with corrected p-value threshold is applied to calculate a cutoff CMS
value. This CMS value threshold is applied on CMS vector of actual data. The thresholded
CMS vector is transformed back into a binary correlation mask for visualization and analysis.

the corresponding ROI (node). The labels of heatmap groups are permuted for a large of num-

ber times and for each permutation we calculate the t-test mask. A CMS vector is calculated

for each permutation to draw a distribution of max CMS values and a threshold is applied on

it. This threshold is p ≤ 0.05 and is corrected for family-wise error rate (FWER); it gives us

a cutoff value of max-CMS. The cutoff CMS threshold is applied on actual CMS vector. The

thresholded CMS vector and t-test mask matrix is used to visualize the significant connectivity

paths.
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6.2.1 Analyzing the PTSD Heatmap using CMS Permutation Method

Figure 6.5 shows gradient based PTSD heatmap, that identifies the functional connectivity

paths that are significantly different between PTSD and Control subjects. A list of these CMS

processed heatmaps is available in the supplementary section. We are showing the identified

paths equally important in a brain sketch, because the visualization process is more mathemat-

ically correct if we avoid the actually passed CMS scores. The nature of these heatmaps seems

very different from what we obtained in the simple permutation testing mechanism. In these

heatmaps, there is more focus on the clusters instead of single paths.

Figure 6.5: Visualization of significant paths generated by gradient heatmap algorithm, that is
calculated using the cluster mass thresholding in the permutation test. These significant paths
make PTSD/Control subjects different one each other. The test statistics in this permutation test
were the difference of means and cluster mass statistic. The raw PTSD and Control groups of
heatmaps were generated for a CNN classifier (with 96% cross-validation accuracy) for doing
this analysis.

6.3 Consensus Heatmaps

Visually, we can easily identify considerable variation in the paths identified by each heatmap

algorithm, even after applying the permutations methods. We can see in the figures 6.2, 6.3

and 6.4 that the paths identified (by heatmap methods) after applying the permutation process

are not necessarily same. To generate a combined opinion using the information identified by
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all the heatmap algorithms, we make use of a voting process. In our analysis we are using 10

heatmap algorithms, and explanations from all these algorithms vote for every path to calculate

a consensus. In figures 6.6 we have shown the consensus heatmap calculated, employing the

permutation test with the difference of means as the test statistic. And, figure 6.7 shows the

consensus heatmap calculated using the cluster mass statistic thresholding in the permutation

test. In the consensus heatmap, the paths that are identified significant by all the interpretability

algorithms are denoted by 1 and paths that are denoted by none of the methods, have a value

of zero. For more confidence in the identified regions of interest and clarity of the study, we do

not show brain paths that are identified by less than 8 of the interpretability algorithms.

Figure 6.6: PTSD: Consensus heatmap with score 8 or greater, showing the significant paths
calculated using the permutation testing with difference of mean statistic. The dark blue color
in figure represents paths were common among none of heatmaps and by 1 (red) represent paths
that were common among all the heatmap techniques.

PTSD normally occurs as an aftermath of a traumatic experience. Symptoms of PTSD are

mainly but not limited to hyper-arousal, tendency to avoid traumatic stimulus, mood changes
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Figure 6.7: PTSD: Consensus heatmap with score 8 or greater, showing the significant paths
calculated using the permutation testing with CMS statistic-based thresholding. The dark blue
color in figure represents paths were common among none of heatmaps and by 1 (red) represent
paths that were common among all the heatmap techniques.

and re-experiencing of traumatic situations. There has been detailed research about PTSD in

neuroimaging and we compare our interpretability analysis with their findings. We reviewed

20 articles about the discriminating biomarkers of PTSD and controls, majority of which are

resting state studies.

In the consensus brain map of significant paths discriminating PTSD subjects from Controls

using simple permutation test method, we found that most of identified paths are existing in

the literature. The key areas in the brain map that are supported by other literature are middle

frontal gyrus, inferior frontal gyrus, middle temporal gyrus, inferior temporal gyrus and lingual

gyrus. A reduction of volume in prefrontal regions and reduced activation in middle frontal

gyrus has been seen in Shin 2001 [71, 72], Pitman 2012 [26]. The map also shows some sub-

cortical areas such as thalamus, caudate nucleus and basal ganglia. The occipital discriminating

regions have been seen in a few research publications including zhang 2016, lanka 2019, clancy
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2020 and Lanius 2005 ([73, 46, 74, 75]). However, most of these works are not able identify

why occipital regions‚Äô connectivity differs between PTSD and controls. Clancy in 2020

has observed an attenuation in the power of visual signals seen for PTSD subjects. The false

positive nodes that we did not find significant in the publications are postcentral gyrus, angular

gyrus and basal ganglia. Table 6.1 gives a list of ROIs identified as important discriminating

features in brain map. Cingulate gyrus is an area that regulates the fear response, is affected in

PTSD subjects; it was not identified by our simple permutation test explanation [26].

Table 6.1: A summary of the regions of interest associated with discriminating connections
identified by permutation testing based consensus explanation. The classification model un-
der consideration is PTSD/Controls Convolutional Neural Network (with 96% cross validation
accuracy)

.

ROI Name Abbr Literature
Middle Frontal Gyrus MFG.L [76, 77, 73, 24, 46]

Inferior Frontal Gyrus (triangular part) IFG.traing.R [75]
Inferior Frontal Gyrus (opercular part) IFG.oper.R [75, 78]

Middle Frontal Gyrus (orbital part) ORBmid.L [76, 79, 73]
Median Cingulate and Paracingulate Gyri DCG.R [80]
Median Cingulate and Paracingulate Gyri DCG.L [80]

Postcenteral Gyrus PoCG.L []
Right Supramarginal Gyrus SMG.R [78]
Left Supramarginal Gyrus SMG.L [78]
Superior Temporal Gyrus STG.L [75, 81, 73]
Middle Temporal Gyrus MTG.R [82, 83, 84, 79, 81, 73, 80, 46]
Inferior Temporal Gyrus ITG.L [82, 76, 79, 83, 84, 85]

Fusiform Gyrus FFG.L [76]
Lingual Gyrus Ling.L [78, 85, 46]

Middle Occipital Gyrus MOG.R [76, 86, 73, 74]
Middle Occipital Gyrus MOG.L [76, 86, 73, 74]

Superior Occipital Gyrus SOG.L [76, 75, 74, 46]
Calcarine Fissure CAL.L [78, 13]
Angular Gyrus ANG.L []

Caudate Nucleus Cau.R [13]
Thalamus THA.R [75, 87]

Basal Ganglia CAUhead.L []
Olfactory Cortex OLF [78]

Pallidum PAL.R [81]
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In the consensus explanation, based on cluster mass thresholding in the permutation test,

we found discriminating areas between PTSD and Controls that align even better with the exist-

ing literature. We found connections associated with anterior cingulate gyrus in this consensus

which was not identified by simple permutation testing. This part plays a role in fear response

regulation and does not perform its operation normally in PTSD subjects [26]. Connections

of superior, middle and inferior opercular frontal gyri with other regions were identified in the

consensus. Mood alteration is an important aspect of PTSD that may be mediated in part by

orbitofrontal and medial cortical networks [88]. In PTSD subjects, an abnormal coactivation

of frontal regions with amygdala may be due to the inability of subjects to perform executive

actions normally in an emotional context [88]. The consensus also emphasizes on connections

of middle temporal, inferior temporal and lingual gyri; this is consistent with the existing litera-

ture as well. Inferior parietal gyrus, cuneus, calcarine fissure, olfactory cortex, vermis, caudate

nucleus, fusiform gyrus are areas identified in the consensus explanation and can also be seen

in literature summarized in Table 6.2.
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Table 6.2: A summary of the discriminating regions of interest identified by permutation testing
(with Cluster mass thresholding) based consensus explanation. The classification model under
consideration is PTSD/Controls Convolutional Neural Network (with 96% cross validation ac-
curacy)

.

ROI Name Abbr Literature
Anterior Cingulate Gyrus ACG.L [76, 86, 75, 89, 90, 71, 91]
Anterior Cingulate Gyrus ACG.R [76, 86, 75, 89, 90, 71, 91]
Superior Frontal Gyrus SFG.R [76, 75]
Superior Frontal Gyrus SFG.L [76, 75, 77]
Middle Frontal Gyrus MFG.R [76, 77, 73, 24, 46]
Middle Frontal Gyrus MFG.L [77, 78, 72, 73, 24]

Inferior Frontal Gyrus (opercular part) IFGoper.R [78]
Precentral Gyrus PreCG.L
Postcentral Gyrus PoCG.L
Postcentral Gyrus PoCG.R

Median Cingulate and Paracingulate Gyri DCG.R [80]
Median Cingulate and Paracingulate Gyri DCG.L [80]

Precuneus PCUN.L [81]
Supramarginal Gyrus SMG.L [78]
Inferior Parietal Gyrus IPL.R [78]
Inferior Parietal Gyrus IPL.L [78, 85, 86, 31]

Posterior Cingulate Gyrus PCG.L [81, 73, 31]
Superior Occipital Gyrus SOG.R [76, 75, 74, 46]
Superior Occipital Gyrus SOG.L [76, 75, 74, 46]
Middle Occipital Gyrus MOG.R [76, 86, 13, 74]
Middle Occipital Gyrus MOG.L [76, 13, 74]

Cuneus CUN.L [75, 78]
Calcarine Fissure CAL.R [78, 73]

Lingual Gyrus Ling.R [78, 85, 46]
Lingual Gyrus Ling.L [78, 85, 46]

Middle Temporal Gyrus MTG.R [82, 83, 84, 79, 81, 73, 80, 46]
Middle Temporal Gyrus MTG.L [82, 76, 79, 83, 84, 85]
Inferior Temporal Gyrus ITG.L [82, 76, 79, 83, 84, 85]

Fusiform Gyrus FFG.L [76]
Vermis Vermis [78]

Caudate Nucleus CAU.R [73]
Caudate Nucleus CAU.L [73]
Olfactory Cortex OLF [78]

Gyrus Rectus REC.G
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Chapter 7

Multiple Sites, Feature Size and Interpretability

Collecting MRI data is an expensive process and has time, capacity and other constraints; there-

fore, each site is able to acquire a small sample size dataset. For the purpose of generalization of

studies and applications in deep learning, researchers do efforts to make use of data from mul-

tiple sites to tackle the issue of smaller sample size (ADHD and ABIDE are two such datasets

that were put together for form larger sample sizes). When working with multisite MRI data,

one of the most significant factors that weakens the quality and performance of studies, is site

variation. It refers to the differences that exist between the fMRI scans performed at different

sites that are non-neural in origin. The biases can occur due to scanning parameters, prepro-

cessing procedures, differences among vendors, field strength variation, age of subjects and

subject bias etc. These biases present one of the biggest challenges in neuroimaging studies,

where researchers are not able to fully benefit from the power of employing data from mul-

tiple sites, and hence a larger sample. In order to compensate for these biases, mathematical

adjustment or harmonization techniques are used.

The ABIDE I dataset (containing the FC matrices of Autism and Controls subjects) was

collected from 12 different sites and the data came from a total of 18 MRI machines across

different sites worldwide. In this dataset we had the largest sample size of 988 subjects, the

number of subjects per site was also not same. Figure 7.1 is a chart that shows the proportion

of subjects from different sites.

Initially, the deep learning model shown previously for this dataset performed very unsat-

isfactorily with an accuracy of 58% for independent test data and 61% for cross-validation. The

number of reduced features (after t-test filtering for significant group differences in the training
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Figure 7.1: Contribution of each site to the ABIDE-I multiple sites dataset. The number in the
pie chart indicates the number of subjects in a site.

set) was 1357 FC connections. Given the low accuracies, the corresponding heatmaps were

not very meaningful. In fact, a consensus of the heatmaps showed at least 745 paths scattered

across the brain. It is clear that the model has not learned enough about the data or the quality

of data is inadequate due to site variation.

The 988 subjects could have been helpful to make a highly accurate binary classifier for

autism and controls. However, due to low performance, we suspected that variability across

sites was impacting classification. In order to address this issue, we used a harmonization tech-

nique called ComBat [92] to compensate for the inter-site variability in the ABIDE I dataset.

With the ComBat harmonized version of the dataset, we performed a controlled random selec-

tion of subjects for the training and testing pools. The training and testing proportion was 80%
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and 20% respectively. We randomly picked subjects for training and testing splits, based on the

proportion of each site in the dataset. For instance: if site-1 contributed with 200 subjects, then

160 were placed in training set and 40 were placed in testing part. Furthermore, we generated

the p-Matrix heatmaps using all methods and again the consensus was far from an interpreta-

tion of the disorder, and the improvement was that the decreased number of paths identified

in the consensus (421). This confirmed the negative impact of site variation on model and the

study itself.

Table 7.1: Comparing the classification and interpretability performance of the ABIDE-I CNN
models (with 80% training set and 20% testing set).CV denotes cross-validation and Acc de-
notes model accuracy.

Epochs Train / Test Acc CV Acc Discriminating paths
No Harmonization 67 60% / 56% 58% 745

ComBat Harmonization 64 70% / 60% 70% 421

In order to take the site variation completely out of question, we trained a separate model

(using all the subjects) for data obtained from each site. The training accuracies for these

models varied between 56 to 94 percent. Figure 7.2 shows the training accuracies and the

sample size at each site. In general, we see less accuracy for smaller sample size and higher

accuracy for larger samples (YALE and USM are two sites which do not follow this trend).

We calculated a consensus of the heatmaps generated using all the methods, for each site.

These consensus heatmaps across methods showed number of paths between 14 and 111 for

YALE, NYU, UM, UCLA and LEUVEN. For the remaining 10 sites we did not find a consensus

between the methods. Among the 15 sites data and models, we saw best training accuracy

on NYU (94% and 175 subjects) and UM sites (90% and 142 Subjects). We generated the

consensus explanation of these two models using CMS thresholding in the permutation test.

The consensus was generated across all 10 interpretability methods. In NYU ASD/Controls

explanation we saw 27, and for UM we saw 14 discriminating paths respectively. As we look at

figures 7.3 and 7.4, we do not see considerable similarity between the two explanations. These

are apparently two successful models (considering their training accuracy scores), yet they do

not seem to agree on which brain connections are allowing them to discriminate between ASD

51



Figure 7.2: A demonstration of the accuracy values for each ABIDE-I site‚Äôs model, in com-
parison with the number of subjects in the site.

and controls. The non-imaging measures of age and intelligence quotient of subjects were

significantly different (with p-value less than 0.05) between the NYU and UM sites; this could

potentially have contributed to different phenotypes or ASD sub-groups in these two sites,

leading to different explanations for classifier performances in these sites.

Among all ABIDE-I sites, we found NYU to be giving the best training accuracy (94%)

and it comprised of the largest sample size as mentioned in figure 7.2. So, we compared the

consensus explanation of NYU site model with the existing literature to analyze its efficacy. In

this consensus map for NYU site, we found several connections associated with brain areas that

are known to be different in ASD and control subjects. These areas include anterior cingulate

cortex, angular gyrus, precuneus, superior frontal regions, thalamus, superior temporal regions

and caudate nucleus. Caudate nucleus, thalamus, precuneus and anterior cingulate cortex were

previously identified as ROIs with altered connections by Lanka 2019 using exactly our same

dataset. Angular gyrus, medial frontal cortex, precuneus are part of the default mode network,

and were disrupted in ASD subjects according to Assaf 2010, Di Martino 2014, Monk 2009

and Washington 2014 [93, 94, 95, 96]. Anterior cingulate cortex and medial frontal regions are
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known to be affected in subjects with ASD Mundy 2003 [97]. used the ABIDE-I dataset and

identified that superior frontal gryi, anterior cingulate cortex and thalamus are among the most

affected regions in ASD subjects.

Figure 7.3: A consensus heatmap generated by calculating a consensus between 10 inter-
pretability methods for data acquired at UM site from ABIDE-I dataset. A score of 1 means a
path was identified my all interpretabilty algorithms. This is consensus is thresholded at 0.9,
meaning agreement between 9 or more of the 10 interpretability methods.
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Figure 7.4: A consensus heatmap generated by calculating a consensus between 10 inter-
pretability methods for data acquired at NYU site from ABIDE-I dataset. A score of 1 means
a path was identified my all interpretabilty algorithms. This is consensus is thresholded at 0.9,
meaning agreement between 9 or more of the 10 interpretability methods.
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Chapter 8

Conclusion

This work concludes that robust interpretability of neuroimaging classifiers requires substan-

tially higher accuracy than is currently possible with many neuroimaging datasets. Raw heatmap

explanations of a deep neural network classifier did not highlight the same discriminating paths

for different subjects of the same class. Neither did we see robust similarity in explanation of a

model and subject using different interpretability algorithms for multi-site data. The numbers

obtained in raw explanations are not constrained to any limits,it is better to using hypothesis

testing methods to classify the features as important and idle. The underlying working prin-

ciples of different interpretability algorithms is not same and they make different assumptions

about data and model characteristics. Therefore, we have proposed a consensus approach in

this thesis by investigating converging evidence from 10 different types of interpretability algo-

rithms. Permutation tests applied on large pools of heatmaps generated using an interpretability

method, helped quantify the understanding of deep learning models with significant connectiv-

ity paths. These paths were not exactly same across different interpretability algorithms. So, we

calculated a consensus between the results generated by different heatmap algorithms to get to a

small significant subset of totals paths. For PTSD classification model with cross-validation ac-

curacy of 96%, we achieved consensus heatmaps, which aligned well with existing knowledge

about the disorder.

For ASD versus Controls classification model for the entire multi-site ABIDE data, we did

not have a good accuracy and hence the consensus also did not convey useful information. With

ComBat harmonized ABIDE dataset, we saw an incremental increase in the model accuracy,

however this improvement (70% cross-validation accuracy) was not good enough to produce
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a good explanation. Although the ABIDE-I dataset did not produce great result due to its

multisite nature, we observed a better consensus explanation in successful ASD models trained

on individual site data under controlled conditions.

Robust interpretability across methods and models requires substantially higher accuracy

than is currently possible in many neuroimaging datasets. This should be a cautionary tale for

researchers wanting to use interpretability of artificial neural networks in neuroimaging.

In future, the classification and interpretability of multiple site neuroimaging datasets may

improve, by using the harmonization techniques and models that are able to discriminate be-

tween sites using the meta-information regarding the scans. Graph convolutional neural net-

works are another type of deep learning model that might give better results, for classification of

resting state functional connectivity data of brain disorders. Brute force method of interpretabil-

ity includes the methods, where a feature is removed and its effects on output probability are

analyzed. This can be a technique which may even help reduce the search space in p-Matrices

calculated by permutation testing.
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