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Abstract 

 

 

 The Red Snapper, Lutjanus campechanus, fishery in the Gulf of Mexico has been 

intensively regulated as managers attempt to rebuild the fishery.  This has led to a need 

for improved data collection, and a better understanding of Red Snapper biology.  This 

study examined three aspects of the biology and fishery of Red Snapper.  First, patch-

reefs were examined as a novel method for estimating Red Snapper juvenile density as an 

index of year-class strength, which could improve fishery management efforts if years of 

strong or weak year classes can be measured before they enter the directed fishery.  The 

timeframe examined also included years before and after the 2010 Deepwater Horizon oil 

spill, allowing for an evaluation of the spill’s effects on juvenile Red Snapper.  Second, 

the present study estimated tagging mortality, natural mortality and fisher nonreporting 

from acoustic telemetry of Red Snapper to calibrate a conventional mark-recapture study 

to improve fishing mortality estimates, which can increase the accuracy of management 

efforts.  Finally, while many artificial reefs have been deployed in the northern Gulf of 

Mexico to improve fishing opportunities, it is unclear if these artificial reefs function 

differently than natural reefs.  Fine scale telemetry methods were used to compare Red 

Snapper home range, diel and seasonal behaviors, site fidelity, and mortality on natural 

reefs and artificial reefs to help improve our understanding of how Red Snapper use these 

different habitats. 

High densities of age-0 Red Snapper in 2009, 2011, and 2013 on patch-reefs 

indicated years of higher potential year classes of Red Snapper.  The density of age-0 Red 

Snapper in 2010 was low at an offshore location, but similarly low densities were also 

observed in other years.  The density of age-0 Red Snapper in 2010 at an inshore 
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location, and the density of age-1 Red Snapper in June 2011 were similar to other years.  

Thus, the present study detected little effect of the 2010 Deepwater Horizon oil spill on 

the density of age-0 Red Snapper on patch-reefs. 

Mean fishing mortality for Red Snapper greater than 406 mm total length was F = 

0.22 in 2015 and 2016, with an estimated annual harvest of 212,237 fish per year. These 

results were based on estimates of tagging mortality, natural mortality, tag shedding, and 

fisher nonreporting from telemetry that were applied to the conventional tagging effort, 

and accounting for Red Snapper distributions on different reef types.  Red Snapper living 

on both natural and artificial reefs had similar mortality rates, site fidelity and movement 

patterns, and similar relations to changing seasons and temperature on these two reef 

types.  These observed similarities indicated that these two reef types have similar 

ecological functions for Red Snapper.  Importantly, fishing mortality rates were nearly 

identical on both reef types and provided little evidence that artificial reefs 

disproportionally concentrate Red Snapper and increase exploitation compared to natural 

reefs. 

Red Snapper are closely tied to reef structure, even at the youngest ages.  The 

present study used this association to measure year-class strength, and to estimate fishing 

mortality in this valuable fishery.  Importantly, this study indicated little difference in 

Red Snapper behavior and exploitation between natural and artificial reefs.  This supports 

the idea that artificial reefs benefit, rather than harm, Red Snapper populations.  Thus, 

further artificial reef deployments have the potential to increase Red Snapper habitat, 

even at early life stages. 
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Chapter 1: 

Juvenile Red Snapper Lutjanus campechanus, densities on small artificial reefs to 

estimate year-class strength. 

 

Abstract 

 

Densities of age-0 and age-1 Red Snapper, Lutjanus campechanus, were 

compared over a nine-year period (2007 to 2015), based on SCUBA visual estimates on 

small (1.42 m3) artificial patch reefs (patch-reefs) in the northern Gulf of Mexico.  This 

time period included years both before and after the Deepwater Horizon oil spill in 2010 

and provided a robust evaluation of the effect of the oil spill on initial density on patch-

reefs of this species.  Densities of juvenile Red Snapper on patch-reefs were also 

compared with catch (number caught/H) of juvenile Red Snapper from trawl surveys by 

the Southeast Area Monitoring and Assessment Program (SEAMAP) that has been used 

as an index of juvenile density in the Gulf of Mexico.  High densities of age-0 Red 

Snapper in 2009, 2011, and 2013 on patch-reefs indicated years of higher potential year 

classes of Red Snapper.  The density of age-0 Red Snapper in 2010 was low at an 

offshore location, but similarly low densities were also observed in 2014 and 2015.  The 

density of age-0 Red Snapper in 2010 at an inshore location was higher than the offshore 

location and similar to densities in other years.  Also, the density of age-1 Red Snapper in 

June 2011 was similar to that in other years.  Thus, the present study detected little effect 

of the 2010 Deepwater Horizon oil spill on the density of age-0 Red Snapper on patch-

reefs.  There was an inverse relation between the natural log density of age-0 and the 
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density of age-1 Red Snapper in August, September, and October, indicating that older 

conspecifics interfered with age-0 Red Snapper movements to patch-reefs.  There was no 

significant correlation between the density of age-0 Red Snapper on patch-reefs in 

October and catch per unit effort (CPUE = catch/H) of Red Snapper from the SEAMAP 

fall trawl surveys.  However, in June the density of age-1 Red Snapper on patch-reefs 

was significantly correlated with CPUE from SEAMAP summer trawl surveys, after a 

2015 outlier was removed.  In the present study, visual surveys of small patch-reefs were 

effective in estimating the density of juvenile age-0 and age-1 Red Snapper.  This survey 

method, if applied throughout the northern Gulf of Mexico may substantially enhance 

present management efforts to reliably determine initial densities on reef structure and 

potentially help management in predictions of year class strength. 

 

Introduction 

 

Accurate stock assessment and management of marine reef fishes requires an 

understanding of juvenile settlement and movement to reef habitats.  Management efforts 

are more effective if year class strength can be estimated before juveniles enter the 

fishery, rather than back-calculating year class strength after a year class moves into the 

exploited portion of the fishery.  The open nature and large size of marine habitats make 

accurate measurement of juvenile fish density difficult.  Red Snapper, Lutjanus 

campechanus, is a valuable reef fish that is intensively managed in the northern Gulf of 

Mexico (SEDAR 2018).  Accurately predicting year class strength could allow quotas to 

be increased when it can be anticipated that large year classes will enter the fishery.  
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Jointly, stocks could be protected from overfishing by decreasing quotas as less abundant 

year classes enter the fishery.  Historically, density estimates of juvenile Red Snapper in 

stock assessments were based on trawl surveys (Pollack et al. 2012; SEDAR 2018).  

However, such estimates are inherently unsuitable for Red Snapper, as juveniles quickly 

move to structured habitat within their first year of life (Szedlmayer and Lee 2004; 

Szedlmayer 2011).  With these known difficulties in trawl surveys, other survey methods 

may be more accurate for determining the density of juvenile Red Snapper, especially 

after they settle to benthic habitats and quickly move to reef structure (Bailey et al. 2001; 

Gallaway et al. 2009; Szedlmayer 2011; Mudrak and Szedlmayer 2012). 

Small isolated reefs (patch-reefs) have long been used to experimentally 

manipulate reef fish communities (Sale 1980; Doherty 1982; Steele 1998).  Patch-reefs 

can be constructed of natural or man-made materials, and because they are easily 

manipulated, can facilitate experimental designs that address specific questions.  Studies 

that used patch-reefs have examined several factors that may affect Red Snapper density 

in the northern Gulf of Mexico, including reef complexity (Workman et al. 2002; Lingo 

and Szedlmayer 2006; Piko and Szedlmayer 2007), predator exclusion (Piko and 

Szedlmayer 2007), large reef habitat proximity (Workman et al. 2002; Mudrak and 

Szedlmayer 2012), epibenthic faunal exclusion (Redman and Szedlmayer 2009; 

Szedlmayer and Miller 2018) and reef location (Szedlmayer and Mudrak 2014).  Also, a 

previous study suggested that juvenile Red Snapper density on artificial patch-reefs could 

be used as a population attribute to estimate potential Red Snapper recruitment to the 

fishery (Szedlmayer 2011).  Szedlmayer and Mudrak (2014) applied this approach and 

detected little effect of the Deepwater Horizon oil spill on Red Snapper densities on 
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patch-reefs.  However, comparisons to surveys prior to the spill were from patch-reefs of 

various materials and designs, different deployment times, or different locations.  All of 

these features of patch-reefs can affect juvenile Red Snapper density (Szedlmayer and 

Mudrak 2014).  Also, in the previous study, densities of Red Snapper were only 

compared with pre-spill densities one year after the oil spill (Szedlmayer and Mudrak 

2014). 

The present study estimated the density of juvenile Red Snapper on artificial 

patch-reefs deployed at similar times and locations from 2007 to 2015.  All patch-reefs 

had the same dimensions and design, and were deployed in the same general area from 

2007 to 2011 as part of other studies that examined densities of Red Snapper and Gray 

Triggerfish, Balistes capriscus, over shorter times (Simmons and Szedlmayer 2011; 

Mudrak and Szedlmayer 2012; Szedlmayer and Mudrak 2014).  The present study 

estimated Red Snapper density from these previous studies, along with Red Snapper 

densities from patch-reefs built between 2012 and 2015.  Combined, all surveys allowed 

comparisons of densities of juvenile Red Snapper on the same patch-reef structure over a 

nine-year period.  Importantly, the present study provided a robust evaluation of the 

effect of the 2010 Deepwater Horizon oil spill, because identical survey methods were 

used before and after the spill. 

 

Methods 

 

Reef design and surveys 
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Each patch-reef had a total volume of 1.42 m3 and consisted of a polyethylene 

plastic pallet (1.22 × 1.02 × 0.14 m), 10 concrete blocks (41 × 20 × 10 cm) and a plastic 

crate (65 × 35 × 28 cm; Figure 1-1).  Patch-reefs were assembled with 122-cm plastic 

cable ties with a breaking strength of 79 kg.  A small plastic float (5.1 × 12.7 cm) was 

attached to each reef corner and floated 1 m above the reef.  A larger float (15.2-cm in 

diameter) was attached at the patch-reef center and also floated 1 m above the patch-reef.  

The floats added vertical structure to the patch-reef and facilitated patch-reef relocations 

with sonar.  The patch-reefs were anchored by attachment to a 1.2 m ground anchor with 

a 3 m length of 1.3 cm diameter nylon rope.  All patch-reefs were placed at least 500 m 

apart and 500 m distant from any known reefs in the area (Mudrak and Szedlmayer 

2012). 

Patch-reefs were visually surveyed by SCUBA divers.  Divers identified fish to 

species, counted all fish present on the patch-reef, and estimated their size in 25 mm total 

length (TL) intervals.  Divers took up stationary positions 2 m from the patch-reef and 

counted all fish within visible range of the patch-reef over an approximate 15 min survey 

period.  Fish distance varied and was not measured; thus, all densities were calculated as 

density per m3 reef size.  However, diver visibility typically exceeded maximum fish 

distances from the reef due to the small size of the patch-reefs.  If diver visibility was 

determined to be less than the 3 m distance to the far side of the reef (i.e., divers could 

not count all fish on the far side of the reef), the reef surveys were discontinued.  Some of 

the patch-reefs became partially buried after storms.  If more than 50% of a patch-reef 

was buried, the estimate of fish density from that patch-reef was not included in the 

analysis.  The age of Red Snapper observed was estimated based on TL as determined 
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from previous studies.  All Red Snapper greater than 305 mm TL were considered age 2 

or older.  Red Snapper were considered age-0 in May, June and July when less than 76 

mm TL, in August when less than 102 mm TL, in September when less than 127 mm TL, 

in October when less than 152 mm TL, in November when less than 178 mm TL and in 

December when less than 203 mm TL (Szedlmayer and Conti 1999; Szedlmayer and Lee 

2004).  No surveys were conducted in January, February, March or April.  At the time of 

the diver surveys, temperature, salinity and dissolved oxygen were measured within 1 m 

of the bottom with a remote YSI 6920 meter.  If more than one water condition reading 

was taken at a reef site during a survey, temperature, salinity and dissolved oxygen were 

presented as a mean of the measurements.  Temperature ranged from 22.9 to 30.0 °C, 

salinity from 29.0 to 36.2 ppt and dissolved oxygen (DO) from 2.0 to 6.5 ppm (Table 1-

1). 

 

Interannual comparisons 

The densities (number of fish/m3 patch-reef size) of age-0 and age-1 Red Snapper 

were compared among deployment dates, locations and survey dates (Table 1-2).  Patch-

reefs deployed at the same time and location were referred to as a reef set (Table 1-2; 

Figure 1-2).  The patch-reefs (described above) were deployed with 10 to 30 patch-reefs 

per set.  One set of patch-reefs was deployed each year, with the exception of 2010 when 

three patch-reef sets (N = 10 patch-reefs for each set, N = 30 total patch-reefs) were 

deployed to evaluate the effect of the Deepwater Horizon oil spill on reef-associated fish 

assemblages (Table 1-2).  The offshore location was 19 – 23 km from shore and ranged 

in depth from 17 – 24 m (Figure 1-2).  The inshore location was 12 – 16 km from shore 
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and ranged in depth from 14 – 18 m (Figure 1-2).  If there was more than one survey 

conducted in the same month, the highest mean density of age-0 Red Snapper per survey 

was used for interannual comparisons of juvenile fish density.  In 2008, not all patch-

reefs could be located after Hurricane Gustav (1 September 2008).  In 2009, patch-reefs 

could not be located or were damaged after Hurricane Ida (10 November 2009).  In 2011, 

one patch-reef could not be located after tropical storm Lee (4 September 2011), and in 

2012 four patch-reefs could not be located after Hurricane Isaac (28 August 2012). 

Patch-reefs were deployed as part of manipulative experiments aimed at 

estimating reef fish densities and quantifying fish assemblage characters associated with 

various independent factors such the proximity of the patch-reef to a larger reef, reef 

spatial distribution, and the addition or removal of potential predators and competitors 

(Simmons and Szedlmayer 2011, Mudrak and Szedlmayer 2012, Szedlmayer and Mudrak 

2014).  Only fish densities recorded from patch-reefs that were deployed in July or 

August, placed at least 500 m from other known reefs and without fish artificially added 

or removed from the assemblage were used for comparing densities among years. 

Diver visual data allowed comparisons of Red Snapper densities among years in 

four months (Table 1-2).  The density of Red Snapper observed in August included data 

from eight years (2008 to 2015), in September from five years (2007, 2009, 2010, 2012, 

and 2014), in October from six years (2007, 2010, 2011, 2013, 2014, and 2015) and in 

June from six years (these patch-reefs were deployed in the previous years in 2007, 2010, 

2011, 2013, 2014, and 2015).  These data were also used to compare the relation between 

the density of age-0 and age-1 Red Snapper observed in August, September, and October.  
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Densities of age-0 to age-1 Red Snapper were not compared in June, because few age-0 

Red Snapper were present on the patch-reefs. 

The Deepwater Horizon oil spill occurred from April 20 to July 15, 2010 (NOAA 

2010; Allan et al. 2012), and it was predicted to affect local fish populations (Rooker et 

al. 2013).  In 2010, patch-reefs were deployed in July (Off-Jul2010) at the same location 

examined in an earlier study (Mudrak and Szedlmayer 2012; Figure 1-2).  The initial 

survey conducted in August 2010 indicated that there was a lower density of age-0 Red 

Snapper and a higher density of age-1 Red Snapper relative to 2008 and 2009 

(Szedlmayer and Mudrak 2014).  To determine whether the reduced densities of age-0 

Red Snapper observed on the patch-reefs were associated with the oil spill (or associated 

with increased density of age-1 Red Snapper), two additional patch-reef sets were 

deployed in August 2010.  The Off-Aug2010 reef set was deployed at the same offshore 

location as the Off-Jul2010 reef set, and the In-Aug2010 reef set was placed closer to 

shore in an area where past studies had indicated the presence of high densities of age-0 

Red Snapper (Szedlmayer and Conti 1999; Figure 1-2).  The purpose of deploying more 

patch-reefs in August 2010 was to provide unoccupied habitat so that the density of age-0 

Red Snapper could be determined in the absence of age-1 Red Snapper, which are 

potential competitors and predators to age-0 fish (Mudrak and Szedlmayer 2012).  Red 

Snapper densities from the three reef sets in 2010 were analyzed separately when 

comparing the effect of interannual differences in density, because differences in location 

and deployment date were associated with differences in the density of Red Snapper 

(Szedlmayer and Mudrak 2014).  All reef sets after 2010 were deployed at the inshore 

study location (Figure 1-2). 
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Trawl surveys 

The densities of Red Snapper as determined from diver visual data were 

compared with the catch per unit effort (CPUE = catch/H) of Red Snapper estimated from 

trawl surveys (SEAMAP; Gulf States Marine Fisheries Commission 2018).  SEAMAP 

summer trawl surveys were conducted in June and July each year, and SEAMAP fall 

trawl surveys were conducted in October and November each year.  Only CPUE data 

obtained from trawl surveys conducted by the State of Alabama (therefore located 

proximate to the present study sites) were compared with densities from diver visual data 

from patch-reefs.  Most Red Snapper collected by trawl were measured to fork length 

(mm FL).  These lengths were converted to TL with the equation TL = 1.073 × FL + 3.56 

(Wilson et al. 2001).  The same TL–age relation used to estimate age for the fish size data 

from the diver visual surveys of patch-reefs was applied to Red Snapper size (TL) 

collected by trawl.  The CPUE of age-0 Red Snapper from fall trawls was compared with 

the density estimates of age-0 Red Snapper on patch-reefs in October.  The CPUE of age-

1 Red Snapper from summer trawls was compared with the density estimates of age-1 

Red Snapper on patch-reefs in June.  For the comparison of trawl CPUE to diver visual 

data, the densities of juvenile Red Snapper estimated at the Off-Aug2010 and In-

Aug2010 reef sets were combined to obtain an estimate of the density of juvenile Red 

Snapper on patch-reefs for 2010. 

 

Statistical analysis 
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Annual densities ascribed to various independent (i.e., treatment) variables were 

compared with generalized linear models with negative binomial distributions and 

logarithm-link functions (Huelsenbeck and Crandall 1997; Seavy et al.. 2005; Bolker et 

al. 2009).  If significant differences were detected among density according to years, 

specific differences were identified with a Tukey multiple comparison test (Zar 2010).  

The relation between age-0 Red Snapper density and age-1 Red Snapper density appeared 

to be nonlinear, therefore, the natural log (ln) density of age-0 Red Snapper + 1 from 

diver visual data from patch-reefs, according to month observed, were compared with 

linear regression, with the ln-density of age-0 Red Snapper as the dependent variable and 

density of age-1 Red Snapper as the independent variable.    

A Pearson’s product-moment correlation coefficient was calculated to determine 

the association between the CPUE from trawls and densities observed on patch-reefs 

from diver visual data.  Differences were considered significant at P < 0.05.  All 

statistical analyses were conducted separately, as opposed to repeated measures, for each 

month for which there were adequate survey data, because not all reef sets were surveyed 

in all four months analyzed. 

 

Results 

 

Annual variation of juvenile Red Snapper density on patch-reefs 

The density of age-0 Red Snapper observed on small artificial patch-reefs in the 

fall varied widely among years, subsequently the density of age-1 fish the next summer 

varied less (Figure 1-3).  The density of age-0 Red Snapper was significantly different 
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among years in August (F7,81 = 19.5, P < 0.001; Figure 1-4), September (F6,63 = 23.7, P < 

0.001; Figure 1-5) and October (F6,70 = 25.8, P < 0.001; Figure 1-6).  Similarly, the 

density of age-1 Red Snapper was significantly different among years in August (F7,81 = 

6.4, P < 0.001; Figure 1-4), September (F6,63 = 4.8, P < 0.001; Figure 1-5), October (F6,70 

= 3.0, P = 0.01; Figure 1-6) and in June (F6,84 = 5.9, P < 0.001; Figure 1-7). 

 

Age-0 and age-1 Red Snapper 

Density of age-1 Red Snapper was considered the independent variable that 

affected ln-density of age-0 Red Snapper (Mudrak and Szedlmayer 2012).  There was a 

significant inverse relation between age-0 ln-density and age-1 density in August (r2 = 

0.26, P < 0.001, N = 89 patch-reefs), in September (r2 = 0.07, P = 0.02, N = 70 patch-

reefs) and in October (r2 = 0.09, P = 0.007, N = 77 patch-reefs).  

 

Visual density estimates compared to CPUE from trawls 

The SEAMAP trawl surveys off coastal Alabama were conducted annually during 

summer and fall (Gulf States Marine Fisheries Commission 2018).  The number of trawl 

tows ranged from 4 to 12 per season each year, and trawl times ranged from 10 to 96 min 

(Table 1-3).  All catch from trawl surveys was standardized to CPUE = catch/H.  There 

was no significant correlation between the density of age-0 fish observed on patch-reefs 

in October compared to the CPUE of age-0 fish from fall trawls (r = 0.42, P = 0.41).  

There was a marginally significant correlation between the density of age-1 fish observed 

on patch-reefs in June and the CPUE of age-1 fish from summer trawls (r = 0.80, P = 

0.055).  Also, SEAMAP trawling in June 2015 failed to catch any age-1 Red Snapper, but 
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age-1 fish were observed during patch-reef surveys.  This result of no captures of age-1 

Red Snapper is likely an outlier, perhaps due to small sample size, surveying in areas of 

poor Red Snapper habitat (i.e., lack of structure) or reduced effectiveness by trawling 

over structured (i.e., rugose) habitats.  After removal of the data from June 2015, there 

was a significant correlation between densities of age-1 Red Snapper observed on patch-

reefs in June and CPUE from trawl surveys in the summer (r = 0.99, P = 0.001; Figure 1-

8). 

 

Discussion 

 

Interannual comparisons 

The main objective of the present study was to compare density variation in 

juvenile Red Snapper among years based on visual estimates from patch-reefs, and to 

evaluate the effect of the 2010 Deepwater Horizon Oil spill on juvenile Red Snapper 

density.  In the present study, density of juvenile Red Snapper on patch-reefs was 

considered an index of settlement and movement to reef habitat (Szedlmayer 2011).  The 

timing of the Deepwater Horizon oil spill in 2010 coincided with Red Snapper spawning, 

and previous studies have suggested that larval condition and juvenile density were 

reduced in 2010 (SEDAR 2013; Hernandez et al. 2016).  In contrast, the densities of age-

0 Red Snapper on patch-reefs in October of 2010 and 2011 were similar to densities in 

years prior to the oil spill (Szedlmayer and Mudrak 2014).  Additionally, there were high 

densities of age-1 Red Snapper on patch-reefs in June 2011 that were from the 2010 year 

class (Szedlmayer and Mudrak 2014). 
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In the present study, the lowest density of age-0 Red Snapper among all surveys 

was observed on the patch-reefs deployed at the offshore location in 2010; however, the 

density of age-1 Red Snapper the following June was similar to that in other years.  Low 

densities of age-0 Red Snapper were also observed in some surveys of patch-reefs 

deployed in 2014 and 2015, but again in the following June densities of age-1 Red 

Snapper were similar to those in other years.  The densities of age-0 Red Snapper on the 

inshore patch-reefs in 2010 were in the middle of the range of densities compared with 

other years, and again, the densities of age-1 Red Snapper observed the following June 

were similar to those in other years.  Thus, an oil-spill effect on juvenile Red Snapper 

density either did not occur or was not detected by this survey method beyond the 

normal, expected variation of density among juvenile Red Snapper.  Szedlmayer and 

Mudrak (2014) also indicated that a year class failure was not detected in 2010, because 

age-1 Red Snapper were abundant the following year.  This earlier conclusion was 

supported in the present study based on six years of density determinations of age-1 Red 

Snapper on patch-reefs in June that indicated statistically similar densities for 2010 

compared with both before the oil spill (2007) and after the oil spill (2011, 2013, 2014, 

and 2015; Figure 1-7). 

The highest density of age-0 Red Snapper in October was for patch-reefs 

deployed in 2013 and this strong year class persisted as the highest density of age-1 Red 

Snapper observed the following June.  This indicates that successful Red Snapper 

settlement and movement to patch-reefs was exceptionally high in 2013 compared with 

colonization in other years considered here.  Age-0 Red Snapper densities were also high 

in August and October 2011.  However, by the following June, the 2011-year class was 
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similar to other years.  Also, the September 2009 survey indicated the presence of an 

exceptionally high density of age-0 Red Snapper.  Unfortunately, all patch-reefs deployed 

in 2009 were destroyed by storms, and it was not possible to conduct surveys for juvenile 

Red Snapper the following summer. 

It was difficult to identify the factors influencing the differences in relative 

densities of juvenile Red Snapper among years, as the present study was unable to control 

the environmental, biological or anthropogenic factors associated with these differences.  

However, two of the three years when high densities were observed corresponded to 

changes in management of the fishery.  The high density of age-0 Red Snapper in 2009 

followed severe reductions in the commercial quota and a reduced recreational season 

(only 65 days) in 2008 (SEDAR 2013, 2018).  Similarly, the high density of age-0 Red 

Snapper observed in 2011 also followed severe reductions in fishing effort, as large areas 

of the Gulf of Mexico were closed to fishing during the 2010 Deepwater Horizon oil spill 

(NOAA 2010).  This tendency suggested that higher densities of age-0 Red Snapper 

occurred after the spawning stock biomass had likely increased due to reduced harvest 

(assuming little adult mortality induced by the oil spill).  However, it was difficult to 

associate the higher density of age-0 Red Snapper in 2013 with any directed management 

actions.  Also, if the increased density of age-0 Red Snapper resulted from increased 

spawning stock through harvest reductions, for the most part this did not lead to a 

continuation of high densities of age-0 fish in subsequent years.  This lack of continued 

association between management and the density of age-0 Red Snapper, may have been 

due to density dependent mechanisms; that is, as density of age-0 fish increased, 

competition for food or habitat reduced the survival of age-0 fish (Gazey et al. 2008).  It 
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is also possible that increases in the spawning biomass of Red Snapper had less effect on 

juvenile fish density when fishing resumed and catch quotas were subsequently 

increased.  These higher densities of age-0 Red Snapper in particular years may also have 

been influenced by other environmental or biological factors which were only 

incidentally related to management actions. 

The present study occurred while the Gulf of Mexico Red Snapper stock was 

being managed under a rebuilding plan, which resulted in an increased spawning biomass 

(SEDAR 2013, 2018; Szedlmayer et al. 2020).  Nevertheless, the densities of age-1 Red 

Snapper appeared relatively stable over the present study from 2007 to 2015.  If 

spawning biomass was the limiting factor for density of age-1 Red Snapper, density 

would have increased over the present study period as the stock increased (SEDAR 

2018).  The lack of an associated increase suggested that factors other than spawning 

biomass were limiting the density of age-1 fish, and that available spawning biomass was 

sufficient to saturate available habitat with juvenile Red Snapper.  The high densities of 

juvenile Red Snapper observed on patch-reefs in the present study suggested that later 

recruitment to the fishery in this portion of the northern Gulf of Mexico may not expand 

beyond current levels, even if spawning stock biomass continues to increase. 

 

Density dependent mechanisms may cause higher mortality in years with high densities 

and higher survival in years with low densities (Gazey et al. 2008).  In the present study, 

the density of age-0 Red Snapper varied widely among years, especially early in the 

settlement season with peak mean density 59 times higher than the lowest observed mean 

density in August.  The variability in density among years was reduced to a 17 fold 



 

 

24 

 

difference in September, a six fold difference in October, and by June the following year 

there was only a two-fold difference between the minimum and maximum mean densities 

of age-1 Red Snapper on patch-reefs.  While density dependence may have reduced the 

differences in density among years, the effect of higher density of age-0 Red Snapper in 

October was still apparent the following June, at least for the 2013 reef set (Figure 1-3).  

These differences among years that were observed in October, and again in June, 

indicated that the later surveys in October may be a better predictor of later recruitment to 

the fishery than the August or September surveys. 

 

Age-0 and age-1 Red Snapper relations 

The present long-term comparison confirmed earlier reports of the inverse relation 

between the density of age-0 and age-1 Red Snapper (Mudrak and Szedlmayer 2012; 

Szedlmayer and Mudrak 2014).  Workman et al. (2002) also reported that age-0 Red 

Snapper did not settle on small artificial reefs with age-1 conspecifics, and in a laboratory 

study, age-1 fish excluded age-0 Red Snapper from structured habitat (Bailey et al. 2001).  

In September and October, the inverse relation was weaker (7 to 9%) between age-0 and 

age-1 Red Snapper.  This reduced relation in September and October was likely because 

age-0 fish were larger and logically more able to compete with older conspecifics.  Thus, 

the results supported previous studies, and suppression of age-0 settlement by age-1 fish 

is likely an important mechanism of density dependence in Red Snapper (Mudrak and 

Szedlmayer 2012; Szedlmayer and Mudrak 2014). 

The patch-reefs used in the present study represented an experimental habitat, not 

simply because of the artificial materials of which they were composed, but also because 



 

 

25 

 

they were deployed immediately prior to the peak of Red Snapper settlement 

(Szedlmayer and Conti 1999).  This timing of reef deployments provided an unoccupied 

habitat for age-0 fish that was free of potential predators and competitors.  Under natural 

conditions, such empty habitat would only be available as a result of environmental 

disturbances; for example, hypoxic events leading to uninhabitable areas or hurricanes 

that can deplete resident fishes or uncover buried natural rock habitat.  Also, if a patch-

reef was available for any length of time, it would become colonized by age-1 Red 

Snapper.  The inverse relation between densities of age-0 and age-1 Red Snapper 

indicates that these age-1 fish would likely competitively exclude age-0 Red Snapper 

until the age-1 Red Snapper begin to seek larger structures (Mudrak and Szedlmayer 

2012). 

Although not used in the interannual comparisons of the present study, such a 

pattern was observed on the In-Jul2011 reef set, which was surveyed in August and 

October 2012 (Figure 1-3).  In August 2012, the mean density of age-0 Red Snapper 

(1.0/m3) was much lower on the In-Jul2011 reef set than on the In-Jul2012 reef set 

(21.2/m3).  In October 2012, after age-1 Red Snapper had mostly emigrated from the In-

Jul2011 reef set (Figure 1-3), these patch-reefs had similar densities of age-0 Red 

Snapper (32.0/m3) compared to other years (Figure 1-6).  Thus, the timing of patch-reef 

deployment is important if the study objective is to compare settlement and movement to 

reef structure of age-0 Red Snapper among years.  If patch-reefs were deployed too early, 

age-1 Red Snapper would colonize and suppress age-0 Red Snapper densities.  If patch-

reefs were deployed too late, age-0 Red Snapper would already have colonized other 

structures.  Thus, future studies that use patch-reefs to determine age-0 Red Snapper 
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densities need to carefully consider the timing of deployment and potential competitive 

exclusion by age-1 and older Red Snapper. 

 

Comparison densities on patch-reefs to trawl CPUE 

Stock assessments have used trawl surveys for estimating densities of age-0 and 

age-1 Red Snapper (Pollack et al 2012; SEDAR 2013, 2018).  However, the use of trawl 

surveys to estimate density of juvenile Red Snapper has been questioned.  Age-0 Red 

Snapper move to structured habitat as they grow and most had already moved to such 

habitat before the SEAMAP fall trawl surveys were conducted in October and November 

(Szedlmayer and Conti 1999; Szedlmayer and Lee 2004; Szedlmayer 2011).  For 

example, substantially higher densities of juvenile Red Snapper were observed in diver 

visual data from patch-reefs than were caught in SEAMAP trawl surveys on the 

continental shelf off coastal Alabama.  If the densities on patch-reefs and the CPUE from 

trawl surveys of open habitat were converted to number of Red Snapper/m2, diver visual 

data resulted in density estimates that were 141,373 to 17,395,000 times higher than 

density estimates from trawl surveys collected at the same time.  To clarify, the present 

study is not reporting that densities of Red Snapper were 100,000 times higher than 

indicated by CPUE trawl estimates.  The implication here is only that trawls surveyed 

extensive areas that were marginal habitat for juvenile Red Snapper; that is, flat open 

sand and mud substrates.  The premise here is that Red Snapper were only incidentally 

captured when the trawl passed in close proximity to structured habitat where juvenile 

Red Snapper resided, or when individuals were transiting over open habitat in search of 

structure.  Thus, visual surveys targeting structured habitats preferred by juvenile Red 
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Snapper were possibly more effective at determining juvenile Red Snapper density than 

trawl surveys of large areas of nonpreferred (i.e., open sand and mud) habitat. 

There was a significant correlation between densities of age-1 Red Snapper 

observed via visual surveys and densities derived from trawl surveys in June, but only 

after the removal of the 2015 outlier (i.e., no age-1 fish were caught in trawls).  This 

result was unexpected, because age-1 Red Snapper have mostly already moved to reef 

habitat and consequently their capture by trawls should have a lower capture efficiency 

(Szedlmayer and Conti 1999; Szedlmayer and Lee 2004; Gallaway et al. 2009); for 

example, the failure of trawl surveys to capture age-1 Red Snapper in 2015, when age-1 

Red Snapper were clearly present based on diver visual data from of patch-reefs (Figure 

1-7).  However, these comparisons between trawl CPUE and diver visual data should be 

interpreted with caution, because there were only six years of comparisons.  In addition, 

further comparisons are needed from larger areas and longer time series to determine 

whether densities of juvenile Red Snapper on patch-reefs continue their correlation with 

trawl CPUE in June. 

Supporters of trawl surveys have suggested that offering high quality, preferred 

patch-reef habitats only estimates the carrying capacity of the reef rather than the 

variability in densities among years.  In contrast, the present study detected significant 

differences in densities among years with identical patch-reefs in similar areas.  Thus, 

differences in densities were detected rather than just maximum carrying capacity.  

Probably the greatest advantage of estimating juvenile Red Snapper density from diver 

visual data from patch-reef was that visual data provided quantitative estimates (number 

of fish/m3 of reef structure, as reported here); that is, all Red Snapper were counted on 
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each patch-reef.  With trawl samples, quantitative estimates are difficult as the number of 

fish that escape versus those that are caught cannot be estimated without camera 

recordings.  There are also difficulties with patch-reef surveys that should be considered 

before applying such methods.  Patch-reef surveys rely on visual censuses, which are 

affected by water clarity.  Additionally, patch-reefs generally will not remain intact or in 

place in areas undergoing intense shrimp trawling or frequently hit by tropical storms.  

However, despite these difficulties, patch-reef surveys provide more robust quantitative 

estimates (i.e., more information) of the density of age-0 and age-1 Red Snapper than 

CPUE estimates from trawl surveys, and their application for assessing juvenile reef fish 

densities should be continued in future studies. 
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Table 1-1.  Environmental conditions associated with visual surveys for juvenile Red Snapper:  Temperature = Temp, salinity = Sal 

and dissolved oxygen = DO measured within 1 m of the seafloor during each survey.  If more than one measurement was recorded, the 

mean value is displayed. 

 
August  September  October  June 

Reef Set 
Temp 

°C 

Sal 

‰ 

DO 

mg/L 
 

Temp 

°C 

Sal 

‰ 

DO 

mg/L 
 

Temp 

°C 

Sal 

‰ 

DO 

mg/L 
 

Temp 

°C 

Sal 

‰ 

DO 

mg/L 

Off-Aug2007 – – –  – – –  – – –  22.9 34.3 4.5 

Off-Jul2008 – – –  – – –  – – –  – – – 

Off-Jul2009 23.6 29.0 5.7  28.2 29.3 6.8  – – –  – – – 

Off-Jul2010 23.7 32.2 2.4  26.4 33.1 3.8  – – –  – – – 

Off-Aug2010 – – –  26.3 33.0 2.4  24.8 33.7 6.5  – – – 

In-Aug2010 – – –  28.2 30.6 2.0  24.0 36.2 5.8  – – – 

In-Jul2011 25.3 35.5 2.4  – – –  24.2 33.3 5.5  – – – 

In-Jul2012 – – –  – – –  – – –  – – – 

In-Jul2013 – – –  – – –  27.9 31.6 –  – – – 

In-Jul2014 – – –  30.0 32.3 –  – – –  27.1 33.6 – 

In-Jul2015 28.9 34.3 5.6  – – –  25.6 32.5 4.5  23.9 34.8 – 
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Table 1-2.  Location and deployment date for patch-reef sets surveyed off Alabama, in the northern Gulf of Mexico.  Reef sets located 

inshore (12–16 km) are prefixed with “In”, and reef sets located offshore (19–23 km) are prefixed with “Off”.  Reef N = the number of 

reefs deployed in each reef set (Reef set name).  Survey N = number of reefs surveyed for each month (not all reefs deployed were 

surveyed each month).  Dates of surveys are listed within each month. 

   Surveys 

Reef 

Set name 

Reef 

N 
Deployed August N September N October N June N 

Off-Aug2007 30 1–9Aug07 – – 27Sep07 10 26Oct07 10 10–19Jun08 24 

Off-Jul2008 10 24–28Jul08 6–15Aug08 10 – – – – – – 

Off-Jul2009 10 9–10Jul09 4–6Aug09 10 9–10Sep09 10 – – – – 

Off-Jul2010 10 14–15Jul10 2–3Aug10 10 9–20Sep10 10 – – – – 

Off-Aug2010 10 25Aug10 – – 9Sep10 10 21Oct10 10 30Jun11 10 

In-Aug2010 10 24Aug10 – – 8Sep10 10 18Oct10 10 9Jun11 10 

In-Jul2011 10 19–20Jul11 29–30Aug11 10 – – 26Oct11 9 14Jun12 9 

In-Jul2012 10 19Jul12 8Aug12 10 25Sep12 6 – – – – 

In-Jul2013 10 18Jul–1Aug13 27–29Aug13 10 – – 30Sep–16Oct13 9 5–17Jun14 10 

In-Jul2014 14 22–24Jul14 21–22Aug14 14 8–10Sep14 14 30Sep–2Oct14 14 2–4Jun15 14 

In-Jul2015 15 28Jul15 21–28Aug15 15 – – 30Sep–7Oct15 15 13–22Jun16 14 
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Table 1-3.  Mean CPUE ± SE (catch/H) of age-0 and age-1 Red Snapper and the total 

number of trawl tows conducted by SEAMAP trawl surveys by year.  Only years with 

corresponding visual estimates of juvenile Red Snapper on patch-reefs were compared. 

Year Season Age Mean CPUE Trawl N 

2007 Fall 0 12.1 ± 4.7 10 

2010 Fall 0 1.0 ± 0.8 7 

2011 Fall 0 1.1 ± 1.0 6 

2013 Fall 0 13.7 ± 13.4 4 

2014 Fall 0 7.8 ± 4.9 5 

2015 Fall 0 4.8 ± 3.9 5 

2008 Summer 1 0.1 ± 0.1 12 

2011 Summer 1 0.3 ± 0.3 6 

2012 Summer 1 1.9 ± 0.8 8 

2014 Summer 1 2.7 ±2.3 5 

2015 Summer 1 0 ± 0 5 

2016 Summer 1 0.5 ± 0.5 4 
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Figure 1-1.  Small patch-reef deployed in the present study, off coastal Alabama, United 

States, in the northern Gulf of Mexico. 
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Figure 1-2.  Locations of artificial patch-reefs deployed and visually surveyed on the 

Alabama continental shelf in the northern Gulf of Mexico from 2007 to 2015.  Circles = 

offshore patch-reefs and squares = inshore patch-reefs.  All symbols represent individual 

patch-reefs, and each reef set has the same color.  Reef set captions indicate location and 

month-year of deployment, for example, Off-Aug2007 (red circles) were patch-reefs (N = 

30) deployed at the offshore location in August 2007. 
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Figure 1-3.  Mean density (number/m3) of Red Snapper on patch-reefs deployed each 

year.  Densities observed prior to 1 January represent age-0 Red Snapper, while densities 

observed after January 1 represent age-1 Red Snapper. 
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Figure 1-4.  Mean densities (number/m3) of (A) age-0 and (B) age-1 Red Snapper on 

patch-reefs observed via visual survey in August by year.  Different letters indicate 

significant differences (P ≤ 0.05), and age-0 and age-1 densities were analyzed 

separately.  Error bars represent standard error (SE). 
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Figure 1-5.  Mean densities (number/m3) of (A) age-0 and (B) age-1 Red Snapper on 

patch-reefs in September by year.  Different letters indicate significant differences (P ≤ 

0.05), and age-0 and age-1 densities were analyzed separately.  Error bars represent SE. 
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Figure 1-6.  Mean densities (number/m3) of (A) age-0 and (B) age-1 Red Snapper on 

patch-reefs observed in October by year.  Different letters indicate significant differences 

(P ≤ 0.05), and age-0 and age-1 densities were analyzed separately.  Error bars represent 

SE. 
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Figure 1-7.  Mean densities (number/m3) of age-1 Red Snapper on patch-reefs observed 

in June the year after the patch-reefs were deployed.  Different letters indicate significant 

differences (P ≤ 0.05).  Error bars represent SE. 



 

 

42 

 

 

 

 

Figure 1-8.  Comparison of mean density (number/m3) of age-1 Red Snapper on patch-

reefs in June to mean CPUE (catch/H) of Red Snapper obtained from SEAMAP summer 

trawl surveys on the Alabama continental shelf in the northern Gulf of Mexico each year.  

The r value was calculated after removal of the 2015 outlier. 
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Chapter 2: 

Fishing mortality estimates for Red Snapper Lutjanus campechanus, based on acoustic 

telemetry and conventional mark-recapture. 

 

Abstract 

 

The management of Red Snapper Lutjanus campechanus, in the northern Gulf of 

Mexico has caused disagreement between fishers, who expect fewer restrictions as stock 

improves, and managers, who need to keep restrictions in place for continued stock 

improvement.  Therefore, accurate estimates of mortality rates are critical for proper 

management of the species.  The present study estimated tagging mortality, natural 

mortality, and fisher nonreporting from acoustic telemetry of Red Snapper to calibrate a 

conventional mark-recapture study on the Alabama continental shelf in the northern Gulf 

of Mexico.  Fishing mortality (F) estimates were higher based on acoustic telemetry in 

2015 (F = 1.17), 2016 (F = 0.46), and 2017 (F = 0.37) compared with conventionally 

tagged fish in 2015 (F = 0.45), 2016 (F = 0.37) and 2017 (F = 0.30).  Recreational fishers 

on private vessels captured the highest number of conventionally tagged fish.  

Recreational fishers on for-hire vessels and commercial fishers captured similar numbers 

of conventionally tagged fish.  Tag return rates were significantly higher for fish released 

on large reefs (> 25 m2) than for fish released on small reefs (< 25 m2), and higher on 

reefs with published locations than on reefs with unpublished locations.  Capture rates 

were also higher on reefs closer to shore (< 33 km) than on reefs more distant from shore 

(33 to 65 km).  The calibrated tag return rates for fish captured from large and small reefs 

were combined with a fishery-independent abundance estimate.  This enabled an 
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adjustment to F values according to reef type and an estimate of annual harvest off 

coastal Alabama in the northern Gulf of Mexico.  Mean F for Red Snapper greater than 

406 mm standard length was F = 0.22 in 2015 and 2016, with an estimated annual 

harvest of 212,237 fish per year.  In conclusion, high-quality telemetry data allowed the 

calculation of calibration rates for a high-reward, conventional-tagging study.  Without 

these calibrations, the results of the conventional tagging study would have been 

inaccurate.  Similarly, without the higher sample sizes provided by the conventional-

tagging study, the results of the telemetry study alone may have been biased due to small 

sample sizes. 

 

Introduction 

 

The management of Red Snapper Lutjanus campechanus, in the northern Gulf of 

Mexico has been controversial.  A rebuilding plan was implemented in 2007 that 

increased Red Snapper stocks (SEDAR 2013, 2018).  As the Red Snapper stock 

improved, catch rates increased and larger fish were landed, but quotas were attained 

more quickly and resulted in shorter recreational seasons and lower bag limits.  This 

increased stock, coupled with increasing restrictions, resulted in a derby-style recreational 

fishery; that is, where recreational fishers increased their effort to catch as many fish as 

possible in the shortest amount of time before the quota was attained and the fishery 

closed.  This led to conflicts between fishers, who were experiencing more abundant Red 

Snapper and expecting reduced restrictions, and management, which was attempting to 

limit the harvest to specific quotas that were being attained in shorter time periods 
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(Simmons et al. 2020).  Thus, there was a critical need for accurate estimates of Red 

Snapper abundance and fishing mortality rates. 

Conventional tagging (i.e., mark-recapture) has long been used to estimate fishing 

mortality (Ricker 1975).  However, some variables are difficult to determine in 

conventional tagging studies, such as tagging mortality, tag loss (e.g., shedding), fisher 

nonreporting, natural mortality, and emigration of tagged individuals outside the study 

area (Pollock et al. 2001; Miranda et al. 2002; Vandergoot et al. 2012).  Telemetry can 

directly estimate fishing, natural and tagging mortalities, and emigration (Hightower et al. 

2001; Heupel and Simpfendorfer 2002; Topping and Szedlmayer 2013).  Also, telemetry 

can determine fishing mortalities independently of tags returned by fishers.  

Consequently, telemetry offers a unique ability directly estimate fisher nonreporting. 

While telemetry studies can determine mortality rates, they are more costly 

compared with other tagging methods.  There are also limits to the number of transmitters 

that can be within range of a receiver before signal collisions prevent the detection of 

tagged fish (Topping and Szedlmayer 2011b).  Therefore, telemetry studies have usually 

had low sample sizes.  Thus, questions remain concerning the accuracy of mortality 

estimates from telemetry studies with small sample sizes.  To increase sample sizes, 

conventional tagging can be used simultaneously with telemetry (Pollock et al. 2004; 

Bacheler et al. 2009; Kerns et al. 2016).  The present study objective was to obtain 

estimates of tagging mortality, natural mortality, and fisher nonreporting (due to fishers 

not reporting their catch and tag loss) from transmitter-tagged Red Snapper.  These 

estimates were then applied to fisher tag return rates obtained with conventional tagging 
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of Red Snapper with a larger sample size to increase the accuracy of the mortality 

estimates. 

 

Methods 

 

Transmitter-tagged Red Snapper 

In 2015, transmitter-tagged Red Snapper (N = 28) still present within receiver 

detection areas (Vemco positioning system [VPS], Vemco Ltd, Nova Scotia) from 

previous studies were incorporated into the present study (Piraino and Szedlmayer 2014; 

Williams-Grove and Szedlmayer 2016a, b, 2017).  Also, 46 additional Red Snapper were 

implanted with transmitters and released. 

Each VPS site (N = 5) had a receiver (VR2W, Vemco, Nova Scotia) positioned 20 

m north of the reef site and four additional receivers placed 300 m north, south, east and 

west of the reef site (Piraino and Szedlmayer 2014).  Each VPS receiver also had a 

synchronization tag (sync tag, Vemco V16-6x transmission delay 540–720 s) placed 1 m 

above the receiver to allow for synchronization of the receiver clocks.  In addition, a 

single VR2W receiver was deployed at each of 21 surrounding reefs (1.6 km apart; 

Williams-Grove and Szedlmayer 2016 a; Figure 2-1).  All receivers were moored 4.5 m 

above the seafloor.  A control transmitter was placed on a mooring buoy within each VPS 

site.  The control transmitter estimated the accuracy of VPS-determined positions and 

determined times when the VPS site failed to detect transmitters due to environmental 

conditions, high background noise, or receiver malfunction.  All VPS sites were located 

at 18 to 35 m depths.  The VPS receivers were retrieved by SCUBA divers and the data 
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were downloaded every 76 to 210 days.  Data from the surrounding receivers were 

downloaded every 200 to 400 days. 

Red Snapper were captured with hook-and-line, consisting of an 8/0 barbless 

circle hook (Eagle Claw, United States) baited with Gulf Menhaden, Brevoortia 

patronus, attached to a 1 m 45 kg leader and a 27 kg mainline.  All tagged Red Snapper 

were larger than the minimum size limits in place during the 2015–2017 fishing seasons 

for commercial (330 mm total length [TL]) and recreational (406 mm TL) fishers.  No 

internally hooked Red Snapper were tagged with transmitters. 

After capture, Red Snapper were anesthetized in 150 mg tricaine 

methanesulfonate (MS-222)/L seawater for 90 seconds in a 70 L tank.  Fish were 

weighed (to nearest 0.1 kg) and measured (mm standard length [SL], fork length [FL] and 

TL).  Subsequently, a unique transmitter (Vemco V16-6x-R64k, transmission delay = 

20–69 s) was surgically implanted into the peritoneal cavity through a vertical incision 

above the ventral midline.  The incision site was sealed with absorbable, plain gut sutures 

(Ethicon 2-0, metric 3), and an intramuscular injection of 0.4 ml/kg of 250 mg/ml 

oxytetracycline solution was administered as a prophylactic antibiotic treatment and to 

serve as a marker on the otolith for other studies (Szedlmayer and Beyer 2011; 

Szedlmayer et al. 2020a).  An externally visible tag (Floy FM-95W internal anchor tag) 

was inserted into the peritoneal cavity for recognition as a transmitter-tagged fish by 

fishers.  The tag provided information regarding a reward for the tag and carcass.  A local 

telephone number was also provided.  After tagging was completed, Red Snapper were 

placed in a 185 L seawater tank for recovery.  Tagged fish were released after they 

displayed active movements and recovery from the anesthesia (Topping and Szedlmayer 
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2011a, b, 2013; Piraino and Szedlmayer 2014; Williams-Grove and Szedlmayer 2016a, b, 

2017). 

All tagged Red Snapper were released on the seafloor with a cage (Piraino and 

Szedlmayer 2014; Williams et al. 2015).  This plastic-coated wire mesh cage (62 × 62 × 

84 cm) protected fish from predators as the fish was lowered to the seafloor.  After the 

cage reached the seafloor, a door automatically opened.  Fish were provided an 

opportunity to exit the cage for at least 15 min on their own initiative before the cage was 

retrieved.  A tagged Red Snapper that had not exited the cage after cage retrieval was not 

released.  No fish were released if dissolved oxygen was < 2.5 ppm at the seafloor. 

To calculate a fish position, the transmitter must be simultaneously detected by at 

least three receivers.  The receivers were placed 300 m apart in the present VPS sites, 

which allowed high detection efficiency, as 100% of transmitter signals were detected at 

400 m (Piraino and Szedlmayer 2014).  Fish positions were calculated with Vemco post-

processing (Vemco Ltd, Nova Scotia) based the time differential of the transmitter’s 

signal arrival among receivers.  To reduce signal collisions, the maximum number of 

transmitters within a VPS site at one time was limited to 10 (Topping and Szedlmayer 

2011b).  This included control and stationary transmitters, and transmitter-tagged Gray 

Triggerfish, Balistes capriscus, within the VPS sites in addition to tagged Red Snapper 

(Herbig and Szedlmayer 2016; McKinzie et al. 2016). 

Calculated fish positions and transmitter detection patterns were used to 

determine the fate of transmitter-tagged Red Snapper (Topping and Szedlmayer 2013; 

Williams-Grove and Szedlmayer 2016b).  If a Red Snapper was caught by a fisher, the 

tracking patterns had continuous detections of the fish around the reef with an abrupt 
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disappearance near the reef and a lack of detections on surrounding receivers.  A US$150 

reward was paid for the return of a tagged Red Snapper by a fisher.  Fisher returns were 

used to validate telemetry-identified fishing mortalities.  If a Red Snapper emigrated from 

a VPS site, the tracking data indicated continuous detections around the reef, followed by 

a series of positions sequentially moving away from the reef, with the final detections of 

the transmitter recorded on either the north, east, south or west receiver.  Emigration 

patterns could also be subsequently confirmed by detections on surrounding receivers.  If 

a transmitter-tagged fish became stationary within the first six days after tagging, it was 

considered a tagging mortality, and if the fish became stationary after six days, it was 

considered a natural mortality.  False detections were removed from the data following 

previously developed detection criteria (Pincock 2012; Williams-Grove and Szedlmayer 

2016a, b). 

Mortality rates for any Red Snapper still alive within the VPS sites after a six-day 

tagging recovery period were estimated with a known fate model applied with the MARK 

program (Topping and Szedlmayer 2013; Williams-Grove and Szedlmayer 2016b).  

Annual estimates were based on weekly time intervals for each year.  The MARK 

program calculated survival estimates based on the maximum likelihood binomial (MLE; 

Edwards 1992), expressed as: 
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This equation describes the survival model for the weekly time interval (θ), the number of 

individuals active during each interval (ni), the number surviving each interval (yi), and 

the MLE of survival during each interval (Si).  In this model, survival was estimated from 

conditional probabilities of surviving specified events (i.e., fishing or natural mortality).  

For example, the probability of surviving a mortality event (i) was determined by 

calculating the number of individuals at risk of dying (ni) and the number of individuals 

that survived (yi) for that time interval (t).  Fish that emigrated, or suffered a mortality not 

under consideration, were removed (i.e., the data were “right censored”).  For example, 

when fishing mortality (F) was estimated, all emigrations and natural (M) mortalities 

were removed. 

On July 9, 2015, the VPS site at R3 was removed because of excessive harvest of 

tagged fish by fishers.  On August 10, 2015, a new VPS site was established at R6.  On 

April 25, 2017 the VPS site at R2 was relocated to R3, because several stationary 

transmitters at R2 limited the number of fish that could be tracked.  Receivers were 

temporarily removed from R3, R4 and R5 on September 5, 2017 in preparation for the 

possible arrival of Hurricane Irma.  The receivers were replaced at R5 on September 15, 

2017, and at R3 and R4 on September 19, 2017 (Figure 2-1). 

 

Conventionally tagged Red Snapper 

Conventionally tagged Red Snapper were captured and treated in nearly the same 

way as the transmitter-tagged fish, but without a transmitter implant.  However, the 

retention time for conventionally tagged Red Snapper was less than the retention time for 

transmitter-tagged fish because of the reduced handling time.  All captured Red Snapper 
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greater than 406 mm TL were tagged.  Conventionally tagged Red Snapper were released 

with the same cage-release procedure as the transmitter-tagged fish.  However, up to 

three conventionally tagged fish were released from the same cage.  Also, in contrast to 

transmitter-tagged fish, which were not released if they did not exit the cage within 15 

min, conventionally tagged fish were released at the surface if they did not exit the cage.  

If a Red Snapper was internally hooked during capture, the line was cut close to the fish’s 

mouth, and the fish was marked with a conventional tag and released.  Any internally 

hooked Red Snapper that did not exit the cage (N = 9) within 15 min were removed from 

further analyses. 

Fishers were provided with a US$150 reward for the return of a conventionally 

tagged Red Snapper.  Posters advertising the reward were displayed at local bait shops, 

boat ramps, and marinas.  Ten Red Snapper were conventionally tagged and released at 

each reef.  To reduce the likelihood of fishers targeting reefs with high-reward tagged 

Red Snapper, reefs at which conventional tagging occurred were not repeated among 

years.  All conventional tagging reefs were at depths of 18 to 41 m (Figure 2-2).  If a reef 

did not appear to have a Red Snapper density large enough to tag 10 individuals, a new 

reef was selected.  If Red Snapper were abundant at a reef, up to three additional fish 

were tagged to replace individuals that had been internally hooked or surface released.  

During each year, all Red Snapper were tagged between January 1 and May 25, allowing 

at least six days to recover before the June 1 opening date of the federal recreational Red 

Snapper season. 

Immigration and emigration were important variables used to add and remove 

transmitter-tagged fish available for capture and estimate mortalities at VPS sites, but 
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migration did not affect mortality estimations for conventionally tagged fish.  If a 

conventionally tagged Red Snapper emigrated from its tagging reef, it was still available 

for capture.  In support of this assumption, all fisher-reported capture locations were 

within the Alabama continental shelf study area.  Likewise, immigration was assumed to 

be equal to emigration of Red Snapper on the Alabama continental shelf and did not 

affect conventional tagging mortality estimates. 

Tagging mortality rates were determined for transmitter-tagged Red Snapper and 

applied to the conventionally tagged fish.  These tagging mortality rates were determined 

from transmitter-tagged fish that became stationary within six days of release.  Any 

transmitter-tagged fish that emigrated from the VPS sites in less than six days after 

release were removed from mortality estimates. 

The telemetry method used in the present study detected a fish when it was caught 

by a fisher but not reported.  Some recaptured fish were not reported due to intentional 

fisher behavior, while some unreported fish were due to external tag loss; therefore, the 

nonreporting rate that was estimated for transmitter-tagged fish also included tag loss.  

Any transmitter-tagged fish returned by fishers without the external tag were used to 

estimate tag loss and nonreporting for conventionally tagged fish.  For example, some 

returns were due to fishers finding the transmitter in fish that had lost the external portion 

of the tag and would not have been reported in the conventional-tagging study.  Thus, the 

final nonreporting rate was based on Red Snapper that were returned without an external 

tag and fish that were identified as caught by the VPS telemetry and unreported.  The 

probability of nonreporting increased with time at liberty, as some of the nonreporting 

was attributable to tag loss.  Therefore, all harvested transmitter-tagged Red Snapper 
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were binned by days at liberty, and the percentage reported was used to adjust 

conventional tag returns based on time at liberty. 

Fishing mortality for tagged Red Snapper was calculated for each year of the 

study.  In the known fate model used for transmitter-tagged Red Snapper, mortalities 

were estimated based on the number of fish available during weekly intervals over the 

year.  In contrast, for conventionally tagged fish, only mark-and-recaptures were known, 

and the timing of tagged fish losses due to fisher nonreporting and natural mortality were 

unknown.  Therefore, F for conventional tagged fish was calculated on an annual basis: F 

= –ln (S), where S is the probability of surviving fishing mortality over the year.  The 

number of fish available for capture was the number of fish tagged minus the tagging 

mortality rate observed in the transmitter-tagged fish.  The number of Red Snapper 

caught each year was the number reported by fishers adjusted by the nonreporting rate 

from transmitter-tagged fish with the same amount of time at liberty.  If a tagged fish was 

reported as caught and released with the tag in place, it remained in the analysis.  If a 

tagged fish was reported as released with the tag removed, it was removed from the 

number of tagged fish available.  The number of fish remaining after subtracting captured 

individuals, was reduced by the annual natural mortality rate, and carried over as 

available for capture in the next year’s estimate.  Fishing mortality for conventionally 

tagged fish was calculated with new fish tagged each year included in the number 

available for capture (i.e., a single F for all fish released over the course of the study) and 

with fish released each year treated in separate annual analyses (i.e., for fish released in 

2015, 2016, and 2017). 
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Differences in tag return rates among reef types were examined for the first 

calendar year when a conventionally tagged fish was at liberty with a chi-square test.  

Three reef type comparisons were examined: 1) availability to public (i.e., published 

versus unpublished locations), 2) reef size (small [<25 m2] or large [>25 m2]), and 3) 

proximity to shore (near, 13 – 33 km; far, 33 – 65 km).  A reef with a published location 

was defined as any reef with coordinates available from the Alabama Department of 

Conservation and Natural Resources (ADCNR 2016a) or oil-gas platforms that were 

visible above the water. 

 

Red Snapper harvest estimate within the study area 

The present study distributed tagged Red Snapper nearly equally among different 

reef types (i.e., equal numbers of fish tagged on large versus small reefs).  However, Red 

Snapper were not evenly distributed among these reef types.  To estimate F for Red 

Snapper in the present study area, the capture rates for conventionally tagged fish 

released on large (> 25 m2) and small (< 25 m2) reefs were combined with a stock size 

estimate for Red Snapper by reef type (Szedlmayer et al. 2020b).  This stock size 

estimate included fish greater than 406 mm TL, at depths of 18 to 55 m, and was also 

used to calculate the total number of Red Snapper harvested from the study area each 

year (Szedlmayer et al. 2020b).  To calculate F based on reef size, conventionally tagged 

fish were only considered available for recapture in the year they were released.  This 

increased the probability that Red Snapper were still resident on their tagging reef.  The 

tagging mortality and fisher nonreporting rates observed for transmitter-tagged fish were 

applied to the number of fish available and recaptured from each reef type.  To increase 
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sample size, fish tagged in 2015 and 2016 were pooled to estimate a single F for each 

reef type.  Conventionally tagged fish released in 2017 were not included in this estimate 

of F due to small sample size and changes in fishing regulations for the private vessel 

sector of the recreational fishery.  To estimate F for the Red Snapper stock over the 

present study area, the different F values for large and small reefs were applied to the 

different density estimates by reef type: that is, 6% of the Red Snapper reside on large 

reefs and 94% on small reefs (Szedlmayer et al. 2020b).  The resulting F was applied to 

the estimated stock size of 1,074,720 Red Snapper greater than 406 mm off coastal 

Alabama to obtain a mean annual harvest of Red Snapper in 2015 and 2016.  The harvest 

estimate was then partitioned into sectors of the fishery by the percentage of conventional 

tags returned by each fishing sector over the duration of this study. 

 

Results 

 

Transmitter-tagged Red Snapper 

On January 1, 2015, there were 26 active transmitter-tagged Red Snapper on the 

VPS sites.  In 2015, two previously transmitter-tagged Red Snapper entered the study 

when the VPS site was installed on R6, and 24 new Red Snapper were tagged with 

transmitters.  Five of the newly-tagged Red Snapper emigrated from the VPS sites within 

the six-day tagging recovery period for a total 47 transmitter-tagged fish in 2015.  Among 

these transmitter-tagged fish, 14 were returned by fishers, six were caught by fishers and 

not reported, three emigrated, three active fish were removed when the VPS site at R3 

was removed, and 21 fish remained active at the end of the year.  In 2016, an additional 
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15 Red Snapper were tagged with transmitters, of which one emigrated within the six-day 

tagging recovery period and one suffered a tagging mortality for a total of 34 transmitter-

tagged fish in 2016.  Among these transmitter-tagged fish, 10 were caught and returned 

by fishers, one was caught and not reported, 13 emigrated and 10 remained active at the 

end of the year. 

In 2017, seven new Red Snapper were tagged with transmitters, of which one 

suffered a tagging mortality and two emigrated within the six-day tagging recovery 

period.  One transmitter-tagged Red Snapper, tagged at a reef site that was not a VPS site, 

immigrated onto a VPS site.  An additional three transmitter-tagged Red Snapper re-

entered the study when the R2 VPS site was moved to R3, and three fish that had 

emigrated in 2016 returned to the VPS sites in 2017, for a total of 21 transmitter-tagged 

Red Snapper on VPS sites in 2017.  Among these Red Snapper, three were caught and 

reported by fishers, one was caught and not reported, one was removed when the VPS 

site was removed from R2, nine emigrated, and seven remained active at the end of the 

study.  No natural mortalities were detected during the three years of the present study; 

that is, no transmitters became stationary at the VPS sites after the six-day recovery 

period.  At the time of writing, 15 of the 22 Red Snapper defined as emigrating from the 

VPS sites were later returned by fishers, confirming that these individuals were alive 

when they emigrated from the VPS site, as opposed to having been consumed by a 

predator. 

The F estimates for transmitter-tagged Red Snapper were: F = 1.17 in 2015, F = 

0.46 in 2016, and F = 0.37 in 2017 (Figure 2-3).  Among the 46 transmitter-tagged Red 

Snapper released from 2015 to 2017, a 5.3% tagging mortality rate was observed within 
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six days of tagging, with two mortalities and eight emigrants (fate unknown) and 36 

transmitter-tagged fish surviving and remaining on VPS sites longer than six days.  

Among the 65 transmitter-tagged Red Snapper tracked (i.e., included fish released prior 

to 2015), no natural mortalities were observed on the VPS sites (instantaneous natural 

mortality [M] = 0).  As M in a population cannot be zero, a natural mortality rate of M = 

0.1 was used for conventionally tagged fish.  This value was chosen based on the natural 

mortality rates of M = 0.04 observed by Williams-Grove and Szedlmayer (2016b), M = 

0.1 reported by Topping and Szedlmayer (2013) and M = 0.1 used in Red Snapper stock 

assessments (SEDAR 2013, 2018). 

 

Fisher nonreporting 

Conventionally tagged Red Snapper were at liberty for 0 to 346 days in the first 

year, 221 to 712 days in their second year and 593 to 1,077 days in their third year.  In 

the present study, 35 transmitter-tagged Red Snapper were caught, while present on a 

VPS site.  Of these, four Red Snapper were at liberty longer than the conventionally 

tagged fish (1,169 to 1,496 days) and were not used for fisher nonreporting estimates.  

Among the remaining 31 captured Red Snapper; 21 were reported with their external tag 

intact, three were reported without an external tag (reported due to implanted transmitter), 

and seven were unreported.  Thus, these recaptured, transmitter-tagged fish indicated that 

the nonreporting rates were 16.7% during the fish’s first season at liberty (three not 

reported out of 18 fish caught at liberty for less than 346 days), 33.3% in the fish’s 

second season at liberty (five not reported out of 15 caught at liberty for 221 to 712 days), 

and 42.9% in the fish’s third season at liberty (three not reported out of seven caught at 
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liberty for 593 to 1,077 days).  Therefore, the number of conventionally tagged fish 

reported by fishers each year was increased in fishing mortality estimates to account for 

nonreporting and tag loss.  The number of conventionally tagged fish reported the same 

year they were released was multiplied by 1.2, the number of fish reported that were 

released the previous year was multiplied by 1.5, and the number of fish reported that 

were released two years previous was multiplied by 1.75 to obtain the total number of 

conventionally tagged Red Snapper harvested each year. 

 

Conventionally tagged Red Snapper 

A total of 774 conventionally tagged Red Snapper were released on 83 reefs 

(Table 2-1; Figure 2-2).  There were 280 conventionally tagged fish harvested and 

reported by fishers (Table 2-2), three were reported caught and released with the tag in 

place (one of these fish was subsequently caught again by the same fisher who had 

released it), and three were reported released with the tag removed.  Recreational fishers 

on private vessels returned the highest number of conventionally tagged fish, while 

commercial and recreational fishers on for-hire vessels caught fewer conventionally 

tagged fish at similar levels (Table 2-2). 

Fishing mortality estimates determined for the conventionally tagged Red 

Snapper were lower when surface-released and internally hooked fish were included in 

the calculation (Table 2-3).  This indicated that surface-released and internally hooked 

fish experienced higher mortalities due to tagging.  Therefore, surface-released and 

internally hooked Red Snapper were not included in further analyses.  The fishing 

mortality observed among conventionally tagged fish was highest in 2015, intermediate 
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in 2016 and lowest in 2017 (Table 2-3).  When the conventionally tagged fish released 

each year were analyzed separately, fish tagged in 2015 had higher F values compared 

with fish released in 2016 and 2017, and fish released in 2017 had the lowest F values 

(Table 2-3).  The probability that a conventionally tagged Red Snapper would be returned 

in the same calendar year it was released was significantly higher for fish tagged at large 

reefs compared with small reefs (χ2 = 38.93, df = 1, P < 0.001; Table 2-4), higher on reefs 

with published locations than on reefs with unpublished locations (χ2 = 19.32, df = 1, P  < 

0.001; Table 2-4), and higher on reefs that were closer to shore compared with reefs that 

were further from shore (χ2 = 7.85, df = 1, P  = 0.005; Table 2-4). 

 

Fishing mortality and harvest estimates 

In 2015 and 2016, 115 out of 328 fish released at the seafloor (excluding surface- 

released and internally hooked fish) on large reefs were returned by fishers in the same 

year as they were released, and 46 out of 317 fish released at the seafloor on small reefs 

were returned in the same year as they were released.  After application of the telemetry- 

based estimates of tagging mortality and fisher nonreporting rates, the fishing mortality 

estimates were F = 0.59 for large reefs and F = 0.20 for small reefs.  When applied to the 

Red Snapper distribution estimate that 6% reside on large reefs and 94% reside on small 

reefs (Szedlmayer et al. 2020b), the total F = 0.22 in the present study area.  The absolute 

density estimate was 1,074,720 Red Snapper greater than 406 mm in the present study 

area (5,973 km2; Szedlmayer et al. 2020b), which indicated a mean annual harvest of 

212,237 Red Snapper greater than 406 mm for 2015 and 2016.  In the present study, 

commercial fishers returned 18.6 % and recreational fishers returned 81.4 % of all 
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recaptured conventionally tagged Red Snapper.  Thus, commercial fishers harvested 

39,476 Red Snapper, and recreational fishers harvested 172,761 Red Snapper each year 

in the present study area. 

 

Discussion 

 

Recreational fishers on privately owned vessels accounted for 64% (179/280) of 

the conventionally tagged Red Snapper returned despite being assigned only 28% of the 

total Red Snapper quota in the Gulf of Mexico and the shortest federal fishing seasons 

(NOAA 2015).  However, in the present study, we may have underestimated F for the 

commercial Red Snapper fishery, because all tagging took place in the spring, before the 

federal recreational seasons began in June.  In contrast, commercial fishers were subject 

to an individual transferable quota (ITQ) with a year-round fishing season, and most 

(63%, 33/52) of the conventionally tagged fish returned by commercial fishers were 

caught in the spring before the start of the recreational fishing season.  Thus, commercial 

fishing was occurring when not all the conventionally tagged fish were available for 

capture.  However, transmitter-tagged Red Snapper were available for capture all year, 

and only one recapture of a transmitter-tagged Red Snapper was reported by a 

commercial fisher.  Also, most (75%, 6/8) of the transmitter-tagged fish that were caught 

and not reported were caught while the federal recreational fishing seasons were open.  

Thus, it was unlikely that commercial fishers harvested substantially greater numbers of 

Red Snapper within the study area compared with the observed rate of 18.6%.  This 

difference between recreational and commercial tag returns indicated that while the Gulf 
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of Mexico Red Snapper quota was divided relatively evenly between commercial (51%) 

and recreational (49%) fishers, off coastal Alabama in the northern Gulf of Mexico, Red 

Snapper were primarily harvested by recreational fishers. 

The fishing mortality rates observed in both the conventionally tagged and 

transmitter-tagged Red Snapper declined in each year of the study.  In transmitter-tagged 

fish, one possible cause for the reduction in F from 2015 to 2016 was the relocation of 

the VPS site at R3 to another site, because R3 was subjected to heavy fishing mortality.  

The reduction in fishing mortality observed in the conventionally tagged Red Snapper 

was possibly caused by a violation of the assumption that the tagged individuals intermix 

evenly with the population (Ricker 1975).  This was apparently not the case for Red 

Snapper.  The present study and several other telemetry-tagging studies (Topping and 

Szedlmayer 2011b; Williams-Grove and Szedlmayer 2016a), have observed high 

residency for Red Snapper on reefs, with some individuals still present at the original 

tagging reef up to 1,096 days after release (Williams-Grove and Szedlmayer 2016a).  

Thus, an important variable affecting the probability that a Red Snapper will be 

recaptured is the particular reef site where released.  If the reef is heavily fished, the 

tagged fish on that reef will undergo heavy fishing mortality.  If a selected reef is 

subjected to low fishing effort, fishing mortality for those fish will be low.  The present 

study indicated that Red Snapper were more likely to be caught on reefs that were large, 

had published locations, and were closer to shore.  In relation to the decrease in F from 

2015 to 2016, in 2016 a higher proportion of the conventionally tagged Red Snapper 

were released on reefs that were small (61%), unpublished (67%) and further offshore 

(66%; i.e., reefs that received lower fishing pressure), compared with 2015 tagging reefs 
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(38% small, 58% unpublished, 44% offshore).  This result was similar to the observation 

that fish tagged in 2015, but still available for recapture in 2016, had the same high F as 

in 2015, while fish tagged in 2016 had lower F in 2016.  This supports the contention that 

the reefs selected for tagging in 2015 simply received higher fishing effort than reefs 

selected in 2016. 

In 2017 sample sizes for both the conventionally tagged and transmitter-tagged 

fish were reduced, with only 25 conventionally tagged fish and 21 transmitter-tagged fish 

released.  The federal private vessel recreational season, which accounted for most of the 

tag returns, was 10 days in 2015 and 11 days in 2016 (NOAA 2015, 2016).  The 2017, 

federal private vessel recreational season was three days (NOAA 2017a), but the season 

was reopened for an additional 39 days later in the year (NOAA 2017b).  This longer 

season may have alleviated some of the effects of the derby-style fishery and actually 

reduced harvest, or the confusion caused by reopening the season may have reduced 

fishing effort.  Some fishers may have been unaware of the additional fishing 

opportunities or unable to fish because they had not planned their trips in advance.  

However, the present study’s low sample size in 2017 makes it difficult to determine 

whether the lower F values observed in 2017 were due to reduced fishing effort or 

whether there were not enough tagged fish available for fishers to catch. 

Red Snapper may spend multiple years on the same reef where they were tagged 

and released (Topping and Szedlmayer 2011b; Piraino and Szedlmayer 2014; Williams-

Grove and Szedlmayer 2016a).  This lack of movement or lack of mixing represents a 

challenge, as tagged individuals will be slow to disperse.  It means that the number, 

location, and type of reefs where Red Snapper were tagged, and not just the number of 
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tagged fish, are important variables in a Red Snapper tagging study.  The present study 

tagged Red Snapper with relatively equal numbers of fish on each reef type, as opposed 

to tagging Red Snapper on different reef types in the proportions observed in the study 

area.  However, the present tagging results were combined with reef type density 

estimates (Szedlmayer et al. 2020b) to calculate F for the Red Snapper stock in the study 

area.  The result was an estimate of F = 0.22 that was lower than observed F estimates 

from either the telemetry study or the conventional tagging. 

The differences in tag return rate by reef type observed in the present study are of 

interest to organizations and natural resource managers who deploy artificial reefs.  Red 

Snapper were more likely to be harvested on reefs that were large, had published 

locations, or were closer to shore.  If the goal of an artificial reef program is to increase 

fishing or harvest opportunities for fishers, it would be more beneficial to build large 

reefs, which seem to be popular among fishers.  If the goal of an artificial reef project is 

to increase biomass, or to provide refuge from harvest, it would be more effective to 

build small reefs, place them further from shore, and not publish their locations. 

The telemetry methods used in the present study were able to directly determine 

tagging mortality.  This was a major advantage over conventional tagging techniques, in 

which the survival of a tagged fish can only be confirmed by its recapture.  However, the 

greatest difficulty with telemetry were high costs and relatively low sample sizes.  

Another possible difficulty was increased stress caused by implanting a transmitter 

compared with less invasive conventional tagging.  If the tagging mortality rate for 

conventionally tagged fish was substantially lower than for transmitter-tagged fish, 

fishing mortality would be overestimated.  However, the tagging mortality rate observed 
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in transmitter-tagged fish was low (5.3%) as a result of the cage-release method (Piraino 

and Szedlmayer 2014), and all conventionally tagged fish were also cage released, 

indicating that tagging mortality effects had little effect on F estimates. It is notable that 

without cage release methods, tagging mortality rates can be very high (39%) as 

previously reported by Piraino and Szedlmayer (2014). 

No natural mortalities were detected in transmitter-tagged Red Snapper for the 

duration of the present study.  One explanation was that fishing mortality was high in the 

transmitter-tagged fish, and the fish were caught before they had a chance to die of 

natural causes.  Another possibility was that a sample size of 65 transmitter-tagged fish 

was too small for natural mortalities to be detected.  A third possibility was that natural 

mortalities were being misidentified as emigrations when the transmitter of a deceased 

fish exits the VPS site in the stomach of a predator or in a drifting carcass.  However, 

predators such Sandbar Shark Carcharhinus plumbeus, Bull Shark C. leucas, and Nurse 

Shark Ginglymostoma cirratum, have been tagged and released with transmitters in the 

same study area and have very different tracking patterns compared with Red Snapper 

(Altobelli and Szedlmayer in press).  Also, over the three years of the present study, 22 

fish were classified as emigrations from the VPS data.  Among these fish that emigrated, 

15 were later caught and returned by fishers and confirmed that these fish were alive 

when they left the VPS site.  This left seven transmitter-tagged Red Snapper that 

emigrated with unknown fates, and even if all of these individuals were natural 

mortalities and not emigrations, the conclusion of low natural mortality (M = 0.1) was 

still valid. 
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A high reward (US$150) was paid for the return of all tagged fish in the present 

study.  This contributed to the high reporting rates observed for both transmitter-tagged 

and conventionally tagged Red Snapper.  The telemetry techniques used in the present 

study proved effective at directly measuring fisher nonreporting.  However, the study 

design did not allow separation of intentional nonreporting behavior of fishers and non-

reporting caused by tag loss.  Although the reporting rate was high, 83% in the first year 

at liberty, it should be noted that it was not 100%.  It was unlikely that all nonreporting 

observed in the present study were due to tag loss, and studies that assumes 100% 

reporting because of a high reward will underestimate exploitation rates (Pollock et al. 

2001; Sackett and Catalano 2017). 

The Alabama Department of Conservation and Natural Resources implemented 

regulations that required recreational fishers to report all Red Snapper harvested and 

landed in Alabama starting in 2014.  The resulting estimates of recreational Red Snapper 

harvest in Alabama were 129,810 Red Snapper in 2015 (ADCNR 2015) and 178,894 Red 

Snapper in 2016 (ADCNR 2016b).  The present study estimated a very similar mean 

annual recreational harvest of 172,761 Red Snapper, only 3 % (6,133 fish) different from 

the 2016 ADCNR estimate.  The fact that these two independent estimates of harvest 

were essentially the same indicated that an accurate estimate of Red Snapper harvest by 

recreational fishers in Alabama was achieved. 

In conclusion, the present study used high-quality telemetry data to calculate 

calibration rates for a high-reward, conventional tagging study.  Without these 

calibrations, the results of the conventional tagging study would have been less certain.  

Similarly, without the higher sample sizes provided by the conventional tagging study, 
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the results of the telemetry study alone may have been biased due to small sample sizes.  

However, both the conventional tagging and telemetry methods may have overestimated 

exploitation rates, because tagged Red Snapper were not distributed among different reef 

types in proportion to their abundance in the population.  To address this difficulty, an 

accurate estimate of Red Snapper distribution within the present study area was applied 

from a fishery-independent survey (Szedlmayer et al. 2020b) to calibrate the results of 

this tagging study.  Similarly, the Red Snapper distributions could be applied to select 

reef types prior to starting a new Red Snapper tagging study. 
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Table 2-1.  The number of reefs (N) and the number of Red Snapper released by different 

methods for each year.  Internal = number of fish tagged that were internally hooked, but 

left the release cage.  Surface = number of fish that failed to leave the release cage and 

were released at the sea surface.  Bottom = number of fish that left the release cage on the 

seafloor.  Internally hooked fish that failed to leave the release cage were not included in 

the analysis and are not shown. 

Year N Internal Surface Bottom Total 

2015 38 3 29 328 360 

2016 42 12 51 317 380 

2017 3 1 8 25 34 

Total 83 16 88 670 774 
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Table 2-2.  The number of conventionally tagged Red Snapper harvested and reported by 

fishers in each fishing sector each year. 

 Year  

Fishing Sector 2015 2016 2017 Total 

Commercial 17 13 22 52 

Charter for Hire 15 25 9 49 

Private Recreational 70 81 28 179 

Total 102 119 59 280 
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Table 2-3.  Instantaneous fishing mortality (F) for conventionally tagged Red Snapper by 

year.  Fishing mortalities were estimated for fish that were not internally hooked or 

surface released (Bottom Release), all fish released (All Fish), only fish that were 

internally hooked or surface released (Problem Release) and bottom released fish tagged 

each year (2015, 2016, 2017).  All F rates were calculated with an instantaneous natural 

mortality rate (M) = 0.1. 

 F by Year Caught 

Released 2015 2016 2017 

Bottom Release 0.45 0.37 0.30 

All Fish 0.45 0.33 0.26 

Problem Release 0.41 0.15 0.10 

2015 0.45 0.45 0.32 

2016 – 0.32 0.31 

2017 – – 0.16 
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Table 2-4.  Number of conventionally tagged Red Snapper that were harvested and 

reported in the same year they were released by reef size (large > 25 m2 ; small < 25 m2), 

availability (reefs with published versus unpublished locations), and distance from shore 

(inshore reefs were less than 33 km from land; offshore reefs were 33 to 65 km from 

land). 

Reef Type Tagged Returned % 

Large 328 115 35 

Small 342 49 14 

Published 243 83 34 

Unpublished 427 81 19 

Inshore 349 101 29 

Offshore 321 63 20 

Total 670 164 24 
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Figure 2-1.  Location of the telemetry receiver array, 23 to 35 km south of Dauphin 

Island Alabama, United States, in the northern Gulf of Mexico.  Sites with single 

receivers are shown with gray circles, and VPS sites consisting of five receivers are 

shown with black circles. 
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Figure 2-2.  Locations of reefs where conventionally tagged Red Snapper were released 

in 2015 (circles), 2016 (triangles) and 2017 (squares).  The solid line represents the 

division between reefs that was considered close (< 33 km) and far (33 – 65 km) from 

shore. 
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Figure 2-3.  Survival (S) of transmitter-tagged Red Snapper from fishing mortality by 

year: (a) 2015, (b) 2016 and (c) 2017.  Dashed line shows proportion of fish surviving 

fishing mortality after each weekly interval.  Instantaneous fishing mortality rates (F) 

were calculated from S at 52 weeks.  Points and error bars (SE) were conditional 

estimates of S for time intervals with a mortality event. 
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Chapter 3: 

A comparison of home range, site fidelity and mortality of Red Snapper, Lutjanus 

campechanus, on artificial and natural reefs in the northern Gulf of Mexico. 

 

Abstract 

 

For the main purpose of improving fishing opportunities, artificial reefs have been 

widely deployed in the northern Gulf of Mexico.  Red Snapper, Lutjanus campechanus, is 

a dominant component on these artificial reefs and highly targeted by both recreational 

and commercial fishers.  However, questions remain about the function of artificial reefs 

and how they compare to natural reef structure.  In the present study acoustic telemetry 

was used to compare movement patterns, site fidelity and mortality rates of Red Snapper 

between fish residing on natural and artificial reefs.  Red Snapper had similar mortality 

rates, site fidelity and movement patterns on natural and artificial reefs.  These measures 

also had similar relations to changing seasons and temperature on these two reef types.  

Diel patterns in home range differed among individual reefs.  There was a significant 

interaction effect when home range was compared between diel periods and depth, with 

the largest home rages observed on shallow (< 20 m) reefs at night, and the smallest 

home ranges observed at deep (> 20 m) reefs at night.  Red Snapper residing on larger 

reefs had larger home ranges and fish on natural reefs had larger home ranges than fish 

on artificial reefs.  The present study observed similar Red Snapper behaviors on artificial 

and natural reefs and indicated that these two reef types have similar ecological functions 

for Red Snapper.  Importantly, fishing mortality rates were nearly identical on both reef 
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types and provided little evidence that artificial reefs disproportionally concentrate Red 

Snapper and increase exploitation compared to natural reefs. 

 

Introduction 

 

Artificial reefs have been deployed around the world.  However, questions remain 

about the functional ecology of artificial reefs and marine fish populations.  For example, 

do artificial reefs increase fishery production, or simply aggregate existing fishery 

resources making them easier to exploit (Bohnsack 1989; Grossman et al. 1997; Bortone 

1998).  In the northern Gulf of Mexico, Red Snapper are often one of the most abundant 

species on artificial reefs (Strelcheck et al. 2005; Gallaway et al. 2009; Jaxion-Harm and 

Szedlmayer 2015; Jaxion-Harm et al. 2018).  Many artificial reefs have been constructed 

in the northern Gulf of Mexico both intentionally, and as the result of offshore energy 

production, creating Red Snapper fisheries in areas where they would otherwise not exist 

(Minton and Heath 1998; Shipp and Bortone 2009; Streich et al. 2017).  For example, 

Szedlmayer et al. (2020b) estimated that 1.78 million individual Red Snapper > 330 mm 

Total Length [TL] were resident in an area off the Alabama coast with extensive artificial 

reefs but few natural reefs.  Gallaway et al. (2020) estimated 1.94 million age-2+ Red 

Snapper resided on oil and gas platforms in the northern Gulf of Mexico in 2017.  

Considering these high abundances of Red Snapper on artificial reefs, it is important to 

determine if artificial reefs have similar ecological functions compared to natural reefs, or 

are they causing faster depletion by concentrating the species and increasing fishing 

mortality. 
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Acoustic telemetry is an advantageous method that can provide detailed 

descriptions of habitat use, residency, and site fidelity in marine fishes (Reubens et al. 

2013; Piraino and Szedlmayer 2014; Wolfe and Lowe 2015).  Telemetry can also be used 

to measure mortality, as the fate of tracked individuals can often be determined 

(Hightower et al. 2001; Heupel and Simpfendorfer 2002; Pollock et al. 2004; Mudrak and 

Szedlmayer 2020b).  Several studies have used telemetry to study Red Snapper 

movements (Williams-Grove and Szedlmayer 2020), but most of these studies examined 

movements around artificial reefs.  Exceptions were a few studies that tracked Red 

Snapper on both artificial and natural reef sites (Topping and Szedlmayer 2011b, 2013; 

Froehlich et al. 2019; Getz and Kline 2019).  However, the natural reef studied by 

Topping and Szedlmayer (2011b; 2013) differed from most natural reefs in the northern 

Gulf of Mexico in that the structures were old tree trunks surrounding a drowned 

riverbed, rather than natural rock outcrops.  Also, the earlier telemetry methods used by 

Topping and Szedlmayer (2011b; 2013) did not allow for fine scale positioning.  

Froehlich et al. (2019) primarily tracked fish on a large artificial reef, with a few natural 

rock reef patches on the perimeter.  However, the transmitter-tagged Red Snapper spent 

little time on the natural reefs or were not detected on natural reefs due to the location of 

the natural reefs on the periphery of the receiver array.  The third study that used 

telemetry to compare Red Snapper behaviors between natural and artificial reefs was not 

capable of measuring fine scale movements (Getz and Kline 2019). 

Thus, there is little information available on comparing the habitat use patterns of 

Red Snapper between artificial and natural reefs.  The purpose of the present study was to 

compare home range sizes, site fidelity, diel behaviors, and mortality rates of Red 
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Snapper between natural and artificial reefs.  All reefs were examined over similar areas 

and time periods, 15 to 52 km south of coastal Alabama, United States, on the continental 

shelf in the northern Gulf of Mexico.  The present study provides a comparison of the 

functional ecology of artificial and natural reefs for Red Snapper that will help in the 

evaluation of the utility of artificial reef deployments. 

 

Methods 

 

Study area and receiver array design 

Red Snapper were tracked on small artificial reefs, gas platforms, and natural 

reefs.  The small artificial reefs examined in the present study were the same reefs and 

receiver array described in previous telemetry studies (Piraino and Szedlmayer 2014; 

Williams-Grove and Szedlmayer 2016a, 2016b, 2017; Herbig and Szedlmayer 2016; 

Mudrak and Szedlmayer 2020b).  The small artificial reef sites (n = 26) consisted of steel 

cage artificial reefs (2.5 x 1.3 x 2.4 m) that were deployed from 2006 to 2010 at 

unpublished locations (Figure 3-1).  Distances between steel cages ranged from 1.4–1.6 

km and water depth ranged from 18 to 35 m.  Three of these small artificial reefs had 

Vemco positioning systems (VPS, Vemco Ltd, Nova Scotia) consisting of five receivers 

(VR2W, Vemco, Nova Scotia), and were included in the present study starting on 

January 1, 2018.  The remaining 23 steel cage reefs had single receivers.  At VPS site R3, 

two additional steel cage reefs were located 150 m northeast and 270 m to the northwest 

of the central steel cage reef for a total reef area of 18 m2.  The VPS site at R4 also 

encompassed an additional concrete pyramid reef 160 m to the northwest of the central 
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steel cage reef yielding a total reef area of 10.5 m2.  The VPS site at R6 contained no 

other reef structures, for a total reef area of 6 m2.  To compare Red Snapper movement 

behaviors on different reef types, an additional five VPS receiver arrays were deployed 

on two gas platforms and three natural reefs (Figure 3-1). 

The first gas platform site (P1) was included in the present study starting May 4, 

2018 following a previous study (Everett et al. 2020).  This platform was a large complex 

comprised of three connected platforms each separated by 40 m.  The total area 

encompassed by P1 was 1,454 m2.  The second VPS site at a platform (P2) was started on 

May 23, 2018 and contained a single platform with four legs and a 337 m2 area.  These 

platforms are visible above the water’s surface and are well-known by local fishers.  The 

first VPS site (N1) at a natural reef was started on June 6, 2018 and is a locally well-

known fishing location (Southeast Banks) that consists of many low vertical relief natural 

rock outcrops (0.5 m) that are distributed over an area of approximately 237,700 m2.  The 

second VPS site (N2) at a natural reef was started on August 6, 2018 at another well-

known fishing location (Southwest Rock) and consisted of two rock outcrops with areas 

of 111 and 34 m2, 8 m apart, with 1 m of vertical relief.  An additional two rock outcrops 

with 5 and 13 m2 areas were located 80 m southeast of the larger outcrops at N2, for a 

total area of 163 m2 of reef within the VPS site.  The third VPS site (N3) at a natural reef 

was started on June 12, 2019 at an unpublished reef location and consisted of a rock 

outcrop with an area of 152 m2 and 1 m vertical relief.  Site N3 also had an additional 

rock outcrop with an area of 29 m2 that was located 65 m to the south of the larger 

outcrop, for a total reef area of 181 m2 for this VPS site (Table 3-1). 
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Each small artificial reef VPS site (N = 3) had a center receiver (VR2W, Vemco, 

Nova Scotia) positioned 20 m north of the reef and four additional receivers placed 300 

m north, south, east, and west of the center receiver (Piraino and Szedlmayer 2014).  

Each VR2W VPS receiver also had a synchronization tag (Vemco V16-6x, transmission 

delay 540-720 s) placed 1-m above the receiver to allow for synchronization of the 

receiver clocks.  All VPS sites on natural reefs (N = 3) and platforms (N = 2) had VRTx 

receivers with built in synchronization tags (Vemco, Nova Scotia).  Receiver arrays on 

natural reefs were identical to the arrays on small artificial reef VPS sites.  The VPS 

receiver arrays on the platforms included six receivers: with a center receiver placed 20 m 

north of each platform, and additional receivers placed 300 m to the northeast, northwest, 

southeast, and southwest of the center receiver and one receiver placed 415 m south of 

the center receiver (Everett et al. 2020). 

All receivers were moored 4.5 m above the seafloor.  Temperature loggers (U22-

001, Onset Incorporated) were placed both adjacent to the receiver, and 0.25 m from the 

seafloor.  The temperature loggers sampled at 1-hour intervals, with data retrieved and 

loggers replaced at the same time as the receivers at each VPS site.  When possible, 

temperature, salinity and dissolved oxygen were also measured from a surface vessel 

operated YSI meter (Model 6920 or Exo2, YSI Incorporated) at each VPS site during 

field site visits.  A control transmitter was also placed on a mooring buoy within each 

VPS site.  The control transmitter estimated the accuracy of VPS calculated positions and 

determined time periods when the receivers failed to detect transmitters due to 

environmental conditions, high background noise or receiver malfunction.  The VPS 

receivers were retrieved by SCUBA divers and detection data were downloaded every 66 
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to 208 days.  Data from the surrounding single receivers were downloaded every 348 to 

392 days. 

 

Tagging and release procedures 

Red Snapper were captured with hook-and-line, with an 8/0 barbless circle hook 

(L2004F, Eagle Claw), baited with Gulf Menhaden Brevoortia patronus, attached to a 1 

m 45 kg leader and a 27 kg mainline.  All tagged Red Snapper were larger than the 

minimum size limits in place during the 2018 – 2020 fishing seasons for commercial (330 

mm TL) and recreational (406 mm TL) fisheries. 

After capture, Red Snapper were anesthetized in 150 mg Tricaine 

Methanesulfonate (MS-222)/L seawater for 90 seconds in a 70 L tank.  Fish were 

weighed (to nearest 0.1 kg) and measured (mm standard length [SL], fork length [FL] and 

TL).  Subsequently, a unique transmitter (Vemco V16-6x-R64k, transmission delay = 

20–69 s) was surgically implanted into the peritoneal cavity through a vertical incision 

above the ventral midline.  The incision site was sealed with absorbable, plain gut sutures 

(Ethicon 2-0, metric 3), and an intramuscular injection of 0.4 ml/kg of 250 mg/ml 

oxytetracycline solution was administered as a prophylactic antibiotic treatment and to 

serve as a time mark for otolith annual increment validation studies (Szedlmayer and 

Beyer 2011; Szedlmayer et al. 2020a).  An externally visible tag (Floy FM-95W internal 

anchor tag) was inserted into the peritoneal cavity, for recognition as a transmitter-tagged 

fish by fishers.  After tagging was completed, Red Snapper were placed in a 185 L 

seawater tank for recovery.  Tagged fish were released after they displayed active 

movements and recovery from the anesthesia (Topping and Szedlmayer 2011a, b, 2013; 
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Piraino and Szedlmayer 2014; Williams-Grove and Szedlmayer 2016a, b, 2017; Mudrak 

and Szedlmayer 2020b).  Fishers were provided a US$150 reward for the return of a 

tagged Red Snapper.  Posters advertising the reward were displayed at local bait shops, 

boat ramps and marinas. 

All tagged Red Snapper were released on the seafloor with a cage (Piraino and 

Szedlmayer 2014; Williams et al. 2015).  This plastic-coated wire mesh cage (62 x 62 x 

84 cm) protected fish from predators as the fish was lowered to the seafloor.  After the 

cage reached the seafloor, a door automatically opened.  Fish were provided an 

opportunity to exit the cage for at least 15 min on their own initiative before the cage was 

retrieved.  A tagged Red Snapper that had not exited the cage after cage retrieval was not 

released.  No fish were tagged if dissolved oxygen was < 2.5 ppm at the seafloor. 

 

Fish positions 

To calculate a fish position, the transmitter must be simultaneously detected by at 

least three receivers.  The receivers were placed at distances of 300 m from the center 

reef site in the present VPS sites, which provided a high detection efficiency as 100 % of 

transmitter signals were detected at 400 m (Piraino and Szedlmayer 2014).  Fish positions 

were based on the time differential of the transmitter’s signal arrival among receivers and 

prior to May 2019 were calculated by Vemco post-processing (Vemco Ltd, Nova Scotia).  

Starting in May 2019 all subsequent fish positions were calculated with Fathom software 

(Innovasea, Nova Scotia).  To reduce signal collisions, the maximum number of active 

transmitters within a VPS site at one time was limited to 10 (Topping and Szedlmayer 

2011b).  This limitation included transmitter-tagged Red Snapper, control transmitters, 
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stationary transmitters, and transmitter-tagged Gray Triggerfish, Balistes capriscus, 

within each VPS site (Herbig and Szedlmayer 2016; McKinzie et al. 2016). 

 

Mortality and residency estimates 

Calculated fish positions and transmitter detection patterns were used to 

determine the fate of transmitter-tagged Red Snapper (Topping and Szedlmayer 2013; 

Williams-Grove and Szedlmayer 2016b).  If a Red Snapper was caught by a fisher, the 

tracking patterns had continuous detections of the fish around a reef that was followed by 

an abrupt disappearance near the reef and a lack of detections on surrounding receivers.  

Fisher returns were used to validate telemetry-identified fishing mortalities.  If a Red 

Snapper emigrated from a VPS site, the tracking data indicated continuous detections 

around the reef, followed by a series of positions sequentially moving away from the reef, 

with the final detections of the transmitter recorded on either the north, east, south, or 

west receiver.  Emigration patterns could also be subsequently confirmed by detections 

on surrounding receivers.  A fish was classified as emigrated if it was absent from the 

VPS site for more than three days.  If a transmitter-tagged fish became stationary within 

the first six days after tagging it was considered a tagging mortality, while fish that 

became stationary after six days were considered natural mortalities.  Any emigration 

within six days of tagging was considered tagging stress, and these fish were not included 

in residency or mortality estimates.  False detections were removed from the analysis 

following previously developed detection criteria (Pincock 2012; Williams-Grove and 

Szedlmayer 2016a, b). 



 

 

86 

 

Mortality and residency rates for any Red Snapper still alive within the VPS sites 

after a six-day tagging recovery period were estimated with a known fate model applied 

with the program MARK (White and Burnham 1999; Topping and Szedlmayer 2013; 

Williams-Grove and Szedlmayer 2016b; Mudrak and Szedlmayer 2020b).  Annual 

estimates were based on weekly time intervals for each year.  The MARK program 

calculated survival estimates based on the maximum likelihood binomial (MLE; Edwards 

1992).  In this model, survival was estimated from conditional probabilities of surviving 

specified events (i.e., fishing, natural mortality, or emigration).  For example, the 

probability of surviving a mortality event was determined by calculating the number of 

individuals at risk of dying and the number of individuals that survived for each time 

interval.  Fish that underwent an event not under consideration were removed (i.e., “right 

censored”).  For example, when fishing mortality (F) was estimated, all emigrations and 

natural mortalities (M) were removed. 

Fishing and natural mortality rates were calculated with a staggered entry model, 

while residency estimates were based on a common start date (Topping and Szedlmayer 

2011b, 2013; Williams-Grove and Szedlmayer 2016a, b).  Survival curves were tested for 

significant differences between reef types with a log rank test (Pollock et al. 1989).  

Differences in fish return rates to artificial and natural reef sites after emigrating were 

compared with a chi square test.  Mortality rates were not calculated for 2020 due to 

limited data for that year; but tracking data from 2020 were used in site fidelity and 

residency estimations.  Median residence time was defined as the period when 50% of the 

tagged Red Snapper were still present, while site fidelity was the percentage of tagged 

fish remaining at their VPS site one year after release (Schroepfer and Szedlmayer 2006; 
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Topping and Szedlmayer 2011b; Herbig and Szedlmayer 2016; Williams-Grove and 

Szedlmayer 2016a). 

 

Home range area 

Fish positions were analyzed with the R program (R Core Team 2020) to 

calculate 95% kernel density estimate (KDE) areas by monthly time intervals for each 

fish, and by total night and day diel periods for each month for each fish (Venables and 

Ripley 2002; Calenge 2006; Piraino and Szedlmayer 2014; Williams-Grove and 

Szedlmayer 2016a).  Home range areas were compared among VPS sites, between 

natural and artificial reef types, and over diel and seasonal time periods.  Home range 

areas were also compared to mean monthly bottom temperatures measured at each VPS 

site.  All statistical analyses were computed in Statistical Analysis Software (SAS 9.4, 

North Carolina, United States), with generalized linear mixed models (proc GLIMMIX) 

with fish as a random factor (i.e., a fish was repeatedly measured over time) and assumed 

negative binomial distributions (Venables and Dichmont 2004; Seavy et al. 2005; Bolker 

et al. 2009).  After significant differences were detected with the mixed models, a Tukey 

Kramer test was used to show specific differences.  Seasons were divided into summer 

(June through August), fall (September through November), winter (December through 

February) and spring (March through May).  Diel periods were compared as day and 

night based on astronomical twilight times throughout the year obtained from the NOAA 

Solar Calculator website (https://www.esrl.noaa.gov/gmd/grad/socalc/).  Diel periods 

were also compared by two depth zones, i.e., shallow VPS sites that were less than 20 m 
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and deep VPS sites greater than 20 m.  Mean monthly KDEs for all fish on each VPS site 

were compared to total reef area within each VPS site with linear regression. 

 

Results 

 

Fish tagging and tracking 

The present study started on January 1, 2018 and 16 transmitter-tagged Red 

Snapper from previous studies were still active and included here (Williams-Grove and 

Szedlmayer 2016a, b, 2017; Mudrak and Szedlmayer 2020b; Everett et al. 2020).  The 

present study tagged an additional 181 Red Snapper with transmitters.  Among these 

newly transmitter-tagged Red Snapper, 24 (13.2%) were not released due to surgical 

complications or because the fish failed to leave the release cage.  Thus, there were 157 

transmitter-tagged Red Snapper released.  Among released Red Snapper, eight fish (5%) 

suffered tagging mortalities within six days of release and 10 fish (6.4%) emigrated 

within the six-day tagging recovery period and were not used in analysis.  Thus, the 

present study tracked 155 transmitter-tagged Red Snapper (139 present study + 16 from a 

previous study) for more than six days and obtained 7,270,329 accurate locations.  

Among tracked Red Snapper, 59 were caught and reported by fishers, 11 were caught and 

not reported, five suffered natural mortalities, 51 emigrated, one fish was reported caught 

and released which caused the fish to emigrate, and 28 fish were still active at end of the 

study. 

 

Fishing mortality, natural mortality and residency 
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In 2018, 12 Red Snapper were caught and returned by fishers, and one (7.7%) was 

caught and not reported.  In 2018, overall F = 0.68 (95% CI = 0.25 to 1.47) among the 56 

Red Snapper that were tracked and available for recapture.  Fishing mortality in 2018 was 

not significantly different between reef types with F = 0.67 (95% CI = 0.23 to 1.48) 

among 38 Red Snapper tracked on artificial reefs, and F = 0.65 (95% CI = 0.32 to 1.13) 

among 18 Red Snapper tracked on natural reefs (df = 1, χ2 = 0.46, P = 0.496). 

In 2019, 43 Red Snapper were caught and returned by fishers, and nine (17.3%) 

were caught and not reported.  In 2019, overall F = 2.07 (95% CI = 1.50 to 2.69) among 

123 Red Snapper tracked.  Fishing mortality in 2019 was not significantly different 

between reef types with F = 2.18 (95% CI = 1.44 to 3.00) among 87 Red Snapper tracked 

on artificial reefs, and F = 2.00 (95% CI = 1.11 to 3.05) among 36 Red Snapper tracked 

on natural reefs (df = 1, χ2 = 0.01, P = 0.907). 

In 2018, no transmitters became stationary after the six-day recovery period, 

resulting in M = 0 for all reefs that year.  In 2019, three transmitters became stationary 

after 8,245, and 654 days from their tagging date.  One of these Red Snapper died on a 

natural reef, and two died on artificial reefs.  These mortalities indicated a total natural 

mortality in 2019 of M = 0.11 (95% CI = 0.03 to 0.32).  Natural mortality in 2019 was 

not significantly different between reef types with M = 0.07 (95% CI = 0.01 to 0.43) on 

natural reefs and M = 0.11 (95% CI = 0.02 to 0.40) on artificial reefs (df = 1, χ2 = 0.04, P 

= 0.833).  At the time of analyses, 19 of the 51 (37.2%) Red Snapper that were defined as 

emigrants from the telemetry data were returned by fishers, which confirmed that these 

individuals were alive when they emigrated as opposed to suffering a predation event. 
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The single fish that emigrated after being caught and released was right censored 

from residency estimates, because the stress of being captured likely caused the fish to 

emigrate.  Overall, Red Snapper median residency time was 21 weeks, and site fidelity 

was 0.43 ± 0.05 (95% CI = 0.34 – 0.54; N = 155 fish).  Site fidelity and residency 

survival curves were not significantly different between reef types (df = 1, χ2 = 0.98, P = 

0.323).  On artificial reefs median residency time was 26 weeks and site fidelity was 0.48 

± 0.06 (95% CI = 0.36 – 0.60; N = 108 fish), and on natural reefs median residency time 

was 18 weeks and site fidelity was 0.33 ± 0.09 (95% CI = 0.17 – 0.53; N = 47 fish).  Fish 

that emigrated from natural reefs were significantly more likely to return than fish that 

emigrated from artificial reefs (df = 1, χ2 = 6.03, P = 0.014).  On natural reefs, 21 fish 

emigrated and nine (43%) later returned to the natural reef site after absences of 5 to 154 

days.  On artificial reefs, 41 fish emigrated and six (15%) of these later returned to the 

artificial reef site after absences of between 5 and 173 days. 

Several observations were made of group emigrations, where multiple fish 

emigrated from the same reef site on the same day.  On June 2, 2018, four fish left P1 

with the last detection of each fish ranging between 01:03 and 02:23 CDT.  Two of these 

fish were last detected within one minute of each other.  Among the four fish that 

emigrated, two returned three to five days after emigrating, while the other two did not 

return.  A second group emigration was observed at P1 on May 16, 2019 when two fish 

emigrated between 02:04 and 03:00 CDT.  Both fish were later caught and reported by 

fishers 16 and 51 days after they emigrated.  At P2, 62% (8 of 13) of transmitter-tagged 

Red Snapper present emigrated between May 12, 2019 and May 24, 2019.  Two fish 

emigrated on May 12, 2019 at 02:01 and 02:11 CDT, and both were caught and reported 
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by fishers outside of the VPS site, 20 and 76 days after emigrating.  An additional three 

fish emigrated at 06:21, 07:33 and 07:34 CDT on 16 May 2019.  Among these three 

emigrants, one moved to P1 after 174 days, one was caught and reported by a fisher 30 

days after emigrating, and one did not return.  Lastly, three fish emigrated between 23:42 

and 23:59 CDT on May 24, 2019.  Among these three emigrants, one returned 14 days 

after emigrating, one was caught and reported eight days after emigrating, and one did 

not return.  On R4, three fish emigrated between 13:08 and 13:11 on February 13, 2019.  

Among these three emigrants, two were caught and reported by fishers 108 and 299 days 

after emigrating and one returned 173 days after emigrating.  On N2, two fish emigrated 

at 00:35 and 05:55 on March 10, 2020, and had not returned or been reported caught at 

the end of the study.  None of these emigrations corresponded to major storm events, i.e., 

wave heights > 2 m. 

 

Home range 

Monthly KDE areas significantly differed among individual reefs (F7, 771 = 58.61, 

P < 0.0001; Figure 3-2; Figure 3-3), and were significantly larger on natural reefs (least 

square mean ± standard error; 17,098.00 ± 1,648.26) compared to artificial reefs 

(3,999.33 ± 256.66; F1, 766 = 157.39, P < 0.0001).  There was a significant positive linear 

relation between reef area and mean monthly KDE area (F1, 7 = 62.57, P = 0.0002, r2 = 

0.9125).  Diel home range varied among individual reefs (Table 3-2).  There was a 

significant interaction between diel period and depth, with the largest home ranges 

observed on shallow (< 20 m) sites at night, and the smallest home ranges at deep (> 20 

m) sites at night (F3, 1660 = 66.56, P < 0.0001; Figure 3-4). 
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Mean monthly bottom temperatures ranged from 16.7 to 28.6 °C.  Observed 

dissolved oxygen concentrations within 1 m of the seafloor during site visits ranged from 

0.44 to 7.50 ppm, and salinity ranged from 30.16 to 36.12 ppt.  Monthly KDE areas were 

significantly larger in the warmer fall and summer seasons compared to the cooler spring 

and winter seasons on artificial reefs (F3, 542 = 13.13, P < 0.0001), natural reefs (F3, 224 = 

18.45, P < 0.0001), and on all reefs combined (F3, 769 = 31.55, P < 0.0001; Figure 3-5).  

Similarly, there was a significant positive relation between monthly KDE area and mean 

monthly bottom temperature on artificial reefs (F1, 544 = 38.66, P < 0.0001), natural reefs 

(F1, 226 = 107.63, P < 0.0001), and on all reefs combined (F1, 765 = 116.94, P < 0.0001). 

 

Discussion 

 

Mortality 

Fishing mortality was high (F ranged from 0.65 to 2.18) for the duration of the 

present study.  However, fishing mortality was similar between the natural and artificial 

reef sites.  These similar fishing mortalities between reef types are surprising because 

three of the five artificial reef sites were small with unpublished locations.  These small 

unpublished reefs would be expected to have lower fishing mortality, presumably 

because fewer fishers know their locations (Mudrak and Szedlmayer 2020b).  However, 

they also support smaller numbers of Red Snapper compared to the larger reefs 

(Szedlmayer et al. 2020b).  Therefore, it appears that even if only a small number of 

fishers are able to locate a small artificial reef, they are still able to exert high fishing 

mortalities on the fish residing on that particular reef. 
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Natural mortality was low and similar to the natural mortality of M = 0.1 used in 

fishery management (SEDAR 2018).  The natural mortality of M = 0.11 measured in 

2019 may even be an overestimate, because one of the fish that died did so only eight 

days after tagging and may have been a delayed tagging mortality.  Also, the fish that 

died after 654 days did so on a Saturday when recreational Red Snapper season was open.  

This suggests that the fish may have suffered a release mortality and that the fisher did 

not report the catch, possibly because the fish’s external tag had been shed.  The 

telemetry methods used here were unable to separate natural and release mortalities if the 

catch was not reported by the fisher (Hightower et al. 2001).  If transmitter-tagged fish 

died due to release mortality, fishing mortality would be underestimated, while natural 

mortality would be overestimated.  Fortunately, there were few transmitters that became 

stationary and the possible error in fishing and natural mortality estimates is low. 

If a transmitter-tagged Red Snapper was preyed upon and the transmitter leaves 

the VPS site inside of a predator, the event may be misinterpreted as an emigration 

resulting in an underestimate of natural mortality.  However, tracking patterns of 

potential Red Snapper predators, e.g., Bull Sharks, Carcharhinus leucas, and Sandbar 

Sharks, Carcharhinus plumbeus, show very different movement patterns compared to 

Red Snapper and these differences can be used to separate predation events from 

emigrations events (Altobelli and Szedlmayer in press).  One of the fish lost from the 

VPS sites less than six days after tagging subsequently showed tracking patterns similar 

to those reported for sharks and indicated a shark predation event.  Also, the release cages 

used here failed to protect at least two transmitter-tagged Red Snapper from predation by 

bottlenose dolphin, Tursiops truncates, as observed in video recordings from inside the 
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cages.  One of the preyed upon Red Snapper subsequently showed a tracking pattern 

similar to shark movement patterns, while the transmitter of the other fish remained 

stationary within the array.  These preyed upon fish did not affect mortality estimates 

because they suffered mortality less than six days after tagging.  However, they do 

indicate that it is possible to identify predation events if the predator stays within the 

tracking array long enough for detection of movement patterns.  In the present study, 

37% of the Red Snapper that were classified as emigrations were later returned by 

fishers, confirming that they were alive when they left the VPS site.  These fisher returns 

reduced the number of fish that could have been preyed upon and misidentified as 

emigrations. 

 

Residency and site fidelity 

Site fidelity was not significantly different between natural and artificial reefs.  

However, fish that emigrated from natural reefs were more likely to later return to the 

reef than fish that emigrated from artificial reefs.  The site fidelities observed in the 

present study were lower than previously reported estimates (Topping and Szedlmayer 

2011b; Piraino and Szedlmayer 2014; Williams-Grove and Szedlmayer 2016a).  A 

substantial difference here from two of these previous studies was that several reef types 

were examined here compared to only small steel cage reefs in previous studies (Piraino 

and Szedlmayer 2014; Williams-Grove and Szedlmayer 2016a).  For example, Everett et 

al. (2020) observed similar lower site fidelity on oil and gas platforms, which was one of 

the reef types in the present study.  Another possible cause of the lower residency and site 

fidelity was the higher fishing mortality observed over the present study period compared 
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to these previous studies.  The large number of transmitter-tagged Red Snapper 

prematurely removed by fishers (removed before they would have emigrated on their 

own initiative) may make the residency and site fidelity estimates lower than would occur 

without fishing mortality.  For example, in 2019 the probability that a fish residing on the 

VPS sites would be harvested by a fisher was 87.4 % per year, this left few transmitter-

tagged fish available for long term site fidelity estimates.  Residency and site fidelity 

could have been higher if these fish were not removed by fishers and may have more 

closely matched previous estimates that were observed under lower fishing mortality 

rates (Topping and Szedlmayer 2011b; Piraino and Szedlmayer 2014; Williams-Grove 

and Szedlmayer 2016a). 

 

Group emigrations 

Previous movement studies of Red Snapper have observed multiple emigrations 

on the same day.  These multiple emigrations were attributed to tropical storms (Topping 

and Szedlmayer 2011b), and low temperatures in the winter (Topping and Szedlmayer 

2011b; Williams-Grove and Szedlmayer 2016a).  The present study observed multiple 

group emigrations by Red Snapper, but they did not occur during storm events.  Most of 

the emigrations occurred in May and June rather than with minimum bottom 

temperatures observed in the winter.  Therefore, it is unclear what caused these fish to 

emigrate. 

Low dissolved oxygen is an event that might cause Red Snapper to emigrate, but 

low dissolved oxygen concentrations (< 2.5 ppm) were only observed on site visits in 

August and September 2019 and did not correspond to the group emigrations.  Also, fish 
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were still present on sites P1, P2, N1 and R6 when dissolved oxygen concentrations were 

below < 1 ppm at the bottom.  This indicated that Red Snapper remaining on the reefs 

and likely survived low dissolved oxygen concentrations by moving higher up in the 

water column rather than emigrating. 

A notable group emigration was observed on the platforms in May 2019, when 

multiple fish emigrated from both P1 and P2 on the same day.  This indicated that Red 

Snapper were responding to the same environmental or biological factors on separate 

reefs in the same geographic area.  However, it is unknown what factor caused the fish to 

emigrate.  In the present study, several of the group emigrations were detected within 

minutes of each other, suggesting that the Red Snapper may have emigrated together as a 

school.  This is important because there is a lack of information on schooling behavior in 

Red Snapper despite the well-known aggregations around reef structure.  Unfortunately, 

the time intervals between fish positions were too long (most > 10 min) to confirm that 

the fish were traveling together, and once the fish left the VPS site further associations 

were undetermined.  Telemetry methods that provide more positions over shorter time 

periods (e.g., < 1 minute) would be required to measure how Red Snapper interact with 

each other on the same reef.  Also, larger VPS arrays would be needed to determine how 

long fish remain together after moving to other reefs. 

 

Diel patterns in home range 

Previous studies have indicated different Red Snapper diel movement patterns, 

with studies observing larger home ranges at night (Szedlmayer and Schroepfer 2005; 

Topping and Szedlmayer 2011a, b), larger areas during the day (Piraino and Szedlmayer 
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2014) and both patterns depending on the particular reefs (Williams-Grove and 

Szedlmayer 2016a; Everett et al. 2020).  In the present study both patterns were observed 

with larger home ranges at night at four reef sites, larger home ranges in the day at two 

reef sites, and no difference between day and night at two reef sites.  Also, patterns of 

larger area use during night or day were not consistent between reefs of the same type.  

For example, among natural reefs, one reef had larger home ranges at night and two reefs 

had larger home ranges in the day.  Among artificial reefs three reefs had larger home 

ranges at night, while no significant differences were detected at two reefs.  Thus, it is 

difficult to attribute diel patterns to reef type.  In addition, there was a significant 

interaction between reef depth zone and diel periods with the largest home ranges 

observed at night at the shallower reef sites, and the smallest home ranges observed 

during the night at the deeper reef sites.  As previously suggested, there may be increased 

visibility due to less light attenuation at the shallower reefs at night making nocturnal 

foraging more advantageous, or there may be differences in prey availability at the 

different reef sites due to differences in substrate (Williams-Grove and Szedlmayer 

2016a).  However, the depth range examined in the present study is relatively small 

compared to the range of depths occupied by Red Snapper and future studies should 

examine Red Snapper movements over greater ranges in depth. 

 

Home range area by season, reef, and reef type 

As in previous studies, Red Snapper had larger home ranges in months with 

warmer water temperatures (Piraino and Szedlmayer 2014; Williams-Grove and 

Szedlmayer 2016a; Froehlich et al. 2019; Getz and Kline 2019; Everett et al. 2020).  
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Unlike diel behaviors that differ among studies, and even individual reefs, increased 

home range with increasing temperatures appears to be a consistent pattern in Red 

Snapper behavior.  Importantly, home range areas increased with temperature on both 

natural and artificial reefs.  This is another similarity in Red Snapper movement behavior 

between the two reef types, and further evidence that natural and artificial reefs perform 

similar functions for this species. 

Monthly KDE areas were significantly greater on natural reefs than on artificial 

reefs.  Part of this difference is related to reef size, rather than ecological differences 

between artificial and natural reefs, as the natural reefs were larger than most of the 

artificial reefs.  However, fish on the natural reefs N2 and N3 had larger home ranges 

than fish on the artificial reefs P1 and P2, even though P1 and P2 had more reef area.  

One possible explanation for this pattern is that there is additional reef habitat that was 

not included in reef area estimations on the N2 and N3 reef sites.  These natural reef sites 

appear in areas where rock formations lie close to the surface of the substrate and there 

were many low relief rocks scattered around some of the larger rock outcrops.  This was 

observed to the northwest of the N2 site and within the N1 site.  These scattered low 

relief rock outcrops were not included in the estimates of reef area within each VPS site 

due to the difficulty in detecting and mapping such small structures.  Therefore, the rock 

reef area within the natural reef sites may have been underestimated in reef to home 

range area comparisons.  These low relief structures may provide prey resources in the 

form of reef fish and invertebrate species consumed by Red Snapper, thus causing Red 

Snapper in the natural reef sites to travel further to take advantage of these resources.  

These low relief reef structures may also act as reef bridges that allow the fish to access 
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more area without having to stray away from reef structure.  In contrast, artificial reefs 

typically do not have additional reef structure past the discrete boundaries of the 

individual reef.  Without additional reef structures, Red Snapper on artificial reefs 

typically have access to less reef area and less open habitat surrounding the reef without 

leaving the predation refuge provided by reef structure resulting in smaller home ranges. 

Froehlich et al. (2019) tracked Red Snapper on a large artificial reef complex 

composed of a sunken vessel and 4,800 concrete culverts.  This study reported larger 

KDE area estimates than any previous Red Snapper study.  After accounting for 

differences in methods, some of the KDE areas for individual fish on the N1 and N2 sites 

fell within the lower range of KDE areas observed by Froehlich et al. (2019).  However, 

Froehlich et al. (2019) did not use VPS positioning, and based home range areas on 

center of activity methods and this less precise method may at least in part account for 

some of the differences.  However, based on the larger KDE areas on the larger reefs in 

present study, and the larger KDE areas observed by Froehlich et al. (2019), it appears 

that increasing the amount of available reef structure within a given area will increase the 

home range of Red Snapper.  In turn, Froehlich et al. (2019) did report two non-

overlapping areas of use for transmitter-tagged Red Snapper within their artificial reef 

complex.  If the spacing among reefs or other physical barriers did not cause these non-

overlapping home range areas, then these areas reported by Froehlich et al. (2019) may 

be approaching the upper limit for Red Snapper. 

 

Differences between natural and artificial reefs 
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Opponents of artificial reefs argue that artificial reefs simply attract fish away 

from natural reefs, and concentrate fish making them easier to harvest (Bohnsack 1989; 

Grossman et al. 1997; Bortone 1998).  While the smaller home range size of Red Snapper 

on artificial reefs might support the notion that artificial reefs concentrate fish, the similar 

fishing mortalities observed on the natural and artificial reef sites indicate that fish were 

not at higher risk of fishing mortality on artificial reefs.  Rather, it appears that if fishers 

are able to locate a reef (either natural or artificial) the fish on that reef will be subject to 

high fishing mortality.  The natural reefs used in present study were well-known to 

fishers, and thus afforded little protection from fishing mortality.  Similarly, the small 

artificial reefs used here had been in the same location for over eight years, and while the 

locations of these reefs were not published, it appears that enough fishers had located 

these reefs over time to cause high fishing mortality.  Thus, both reef types were exposed 

to high rates of exploitation. 

If artificial reefs attract Red Snapper away from natural reefs, then telemetry 

should detect fish leaving natural reefs and taking up residence on artificial reefs.  In the 

present study, the only fish movement detected between sites was from one platform to 

another platform.  It could not be determined whether the other 61 fish that emigrated 

(98%) moved to artificial reefs, natural reefs or open habitats.  However, 97% of the reefs 

in the study area are artificial (Szedlmayer et al. 2020b).  Therefore, if Red Snapper have 

no preference for natural or artificial reef habitat, there is a 97% probability that an 

emigrating fish moved to an artificial reef.  This makes it difficult in the present study to 

determine if Red Snapper emigrating from natural reefs prefer to colonize natural or 

artificial reefs, because there are few natural reefs available.  However, the present study 
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observed similar site fidelities on both reef types indicating little tendency for Red 

Snapper to leave natural reefs in favor of the abundant artificial reefs. 

An increasing number of studies indicate that it is uncommon for adult Red 

Snapper to make large scale movements or migrations (Szedlmayer and Shipp 1994; 

Watterson et al. 1998; Williams-Grove and Szedlmayer 2016a).  Thus, in the adult stage 

if artificial reefs did attract Red Snapper away from natural reefs, it would consist of 

movements of individuals between reefs at relatively small spatial scales.  These small-

scale movements would likely be inconsequential to the Red Snapper population.  If 

artificial reefs did in fact attract Red Snapper away from natural reefs, it would likely 

occur when juvenile Red Snapper transition from low relief juvenile habitat to high relief 

adult habitat at age-1 or age-2 (Szedlmayer and Lee 2004; Gallaway et al. 2009).  For 

example, in the northeast Gulf of Mexico, high quality juvenile habitat exists in areas that 

are relatively shallow and close to shore (Szedlmayer and Conti 1999; Szedlmayer and 

Lee 2004; Mudrak and Szedlmayer 2020a), but there are few high relief natural reefs in 

the surrounding area.  If the artificial reefs in these areas were not available, Red Snapper 

would need to migrate to the edge of the continental shelf to locate the higher relief 

natural reef needed as adults (Gardner et al. 2001; Szedlmayer et al. 2020b).  The 

construction of the Alabama artificial reef zones provided these young adults with 

suitable higher relief habitat in areas closer to their juvenile habitat (Minton and Heath 

1998).  This may intercept fish, and hold them in areas closer to shore, where they can be 

more easily exploited.  If the Red Snapper population were recruitment limited rather 

than habitat limited, this interception of young adults would cause lower Red Snapper 

densities on natural reefs located farther offshore. 
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While the attraction of Red Snapper away from natural reefs may have ecological 

consequences, there would be little effect on spawning stock biomass because the Red 

Snapper fishery is managed with a total allowable catch quota (SEDAR 2018).  If Red 

Snapper were intercepted by the Alabama artificial reef zones and held closer to shore, 

fishery regulations may need to be increased because less time and fuel is required to 

reach the fishing grounds, which increases access to the fishery, but total harvest would 

remain the same.  So, while it is unclear if artificial reefs increase Red Snapper 

production, there is little risk of attraction of fish away from natural reefs harming a well-

managed fishery. 

The objective of the present study was to use telemetry to compare the mortality 

rates, site fidelity, diel behaviors, and home range area of Red Snapper residing on 

artificial and natural reefs in the same geographic area.  Red Snapper on artificial and 

natural reefs had similar mortality rates, site fidelity, and behavioral responses to seasonal 

and environmental changes.  Diel behaviors showed different patterns among individual 

reefs, but these differences were not consistent for artificial or natural reef types.  The 

main difference in Red Snapper behavior identified between natural and artificial reefs 

was that Red Snapper on natural reefs had larger home ranges than Red Snapper on 

artificial reefs.  Thus, Red Snapper use both natural and artificial habitats in similar ways.  

Practically, if resource managers desire to make artificial reefs function more like natural 

reefs, they should consider placing multiple small artificial reefs within close proximity 

to allow fish to increase their home ranges similar to patterns observed here on natural 

reefs. 

 



 

 

103 

 

References 

 

Altobelli, A. N., and S. T. Szedlmayer. in press. Migration and residency of Sandbar, 

Atlantic Sharpnose, Bull, and Nurse Sharks in the Northern Gulf of Mexico. N. 

Am. J. Fish. Manag. DOI: 10.1002/nafm.10501 

 

Bohnsack, J. A. 1989. Are high densities of fishes at artificial reefs the result of habitat 

limitation or behavioral preference? Bull. Mar. Sci. 44:631–645. 

 

Bolker, B. M., M. E. Brooks, C. J. Clark, et al. 2009. Generalized linear mixed models: a 

practical guide for ecology and evolution. Trends Ecol. Evol. 24:127–135. 

 

Bortone, S. A. 1998. Resolving the attraction-production dilemma in artificial reef 

research: some yeas and nays. Fisheries 23(3):6–10. 

 

Calenge, C. 2006. The package adehabitat for R software: tool for the analysis of space 

and habitat use by animals. Ecol. Model. 197:516–519 

 

Edwards, A. W. F. 1992. Likelihood: expanded edition. Baltimore, MD: Johns Hopkins 

Univ. Press. 

 

Everett, A. G., and S. T. Szedlmayer. 2020. Movement patterns of red snapper Lutjanus 

campechanus based on acoustic telemetry around oil and gas platforms in the 

northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 649: 155–173. 

 

Froehlich, C. Y. M., A. Garcia, and R. J. Kline. 2019. Daily movement patterns of red 

snapper (Lutjanus campechanus) on a large artificial reef. Fish. Res. 209:49–57. 

 

Gallaway, B. J., S. T. Szedlmayer, and W. J. Gazey. 2009. A life history review for red 

snapper in the Gulf of Mexico with an evaluation of the importance of offshore 

petroleum platforms and other artificial reefs. Rev. Fish. Sci. 17:48–67. 

 

Gallaway B. J., S. Raborn, K. McCain, T. Beyea, S. Default, A. Conrad, K. Kim. 2020. 

Explosive removal of structures: fisheries impact assessment. New Orleans (LA): 

US Department of the Interior, Bureau of Ocean Energy Management. Contract 

No.: M16PC00005. Report No.: OCS Study BOEM 2020-038. 149 p. 

 

Gardner, J. V., P. Dartnell, K. Sulak, B. Calder, and L. Hellequin. 2001. Physiography 

and late Quaternary-Holocene processes of northeastern Gulf of Mexico outer 

continental shelf off Mississippi and Alabama. Gulf Mex. Sci. 19:132–157. 

 

Getz, E. T., and R. J. Kline. 2019. Utilizing accelerometer telemetry tags to compare red 

snapper (Lutjanus campechanus [Poey, 1860]) behavior on artificial and natural 

reefs. J. Exp. Mar. Biol. and Ecol. 519:151–202. 



 

 

104 

 

 

Grossman, G. D., G. P. Jones, and W. J. Seaman Jr. 1997. Do artificial reefs increase 

regional fish production? A review of existing data. Fisheries 22:17–23. 

 

Herbig, J. L., and S. T. Szedlmayer. 2016. Movement patterns of Gray Triggerfish, 

Balistes capriscus, around artificial reefs in the northern Gulf of Mexico. Fish. 

Manag. Ecol. 23:418–427. 

 

Heupel, M. R., and C. A. Simpfendorfer. 2002. Estimation of mortality of juvenile 

blacktip sharks, Carcharhinus limbatus, within a nursery area using telemetry 

data. Can. J. Fish. Aquat. Sci. 59:624–632. 

 

Hightower, J. E., J. R. Jackson, K. H., and Pollock. 2001. Use of telemetry methods to 

estimate natural and fishing mortality of striped bass in Lake Gaston, North 

Carolina. Trans. Am. Fish. Soc. 130:557–567. 

 

Jaxion-Harm, J., and S. T. Szedlmayer. 2015. Depth and artificial reef type effects on size 

and distribution of Red Snapper in the Northern Gulf of Mexico, N. Am. J. of 

Fish. Manag. 35:86–96. 

 

Jaxion-Harm, J., S. T. Szedlmayer, and P. A. Mudrak. 2018. A comparison of fish 

assemblages according to artificial reef attributes and seasons in the northern Gulf 

of Mexico. Am. Fish. Soc. Symp. 86:23–45. 

 

McKinzie, M. K., S. T. Szedlmayer, and J. L. Herbig. 2016. Telemetry estimates of site 

fidelity and residency for Gray Triggerfish, Balistes capriscus, around artificial 

reefs in the northern Gulf of Mexico. Proc. Gulf Caribb. Fish. Inst. 68:64–65. 

 

Minton, R. V., and S. R. Heath. 1998. Alabama’s artificial reef program: building oasis in 

the desert. Gulf Mex. Sci. 1:105–106. 

 

Mudrak, P. A., and S. T. Szedlmayer. 2020a. Juvenile Red Snapper, Lutjanus 

campechanus, densities on small artificial reefs to estimate year-class strength. In 

Red Snapper biology in a changing world, ed. S. T. Szedlmayer, and S. A. 

Bortone, 27–46. Boca Raton, FL: CRC Press. 

 

Mudrak, P. A., and S. T. Szedlmayer. 2020b. Fishing mortality estimates for red snapper, 

Lutjanus campechanus, based on acoustic telemetry and conventional mark-

recapture. In Red Snapper biology in a changing world, ed. S. T. Szedlmayer, and 

S. A. Bortone, 75–94. Boca Raton, FL: CRC Press. 

 

Pincock, D. G. 2012. False detections: what they are and how to remove them from 

detection data. Halifax, NS: Vemco. 

 



 

 

105 

 

Piraino, M. N., and S. T. Szedlmayer. 2014. Fine-scale movements and home ranges of 

Red Snapper around artificial reefs in the northern Gulf of Mexico. Trans. Am. 

Fish. Soc. 143:988–998. 

 

Pollock, K. H., S. R. Winterstein, C. M. Bunck, and P. D. Curtis. 1989. Survival analysis 

in telemetry studies: The staggered entry design. J. Wildl. Manage. 53:7–15. 

 

Pollock, K. H., H. Jiang, and J. E. Hightower. 2004. Combining telemetry and fisheries 

tagging models to estimate fishing and natural mortality rates. Trans. Am. Fish. 

Soc. 133:639–648. 

 

R Core Team. 2020. R: a language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna. Available: https://www.R-

project.org/. (February 2020). 

 

Reubens, J. T., F. Pasotti, S. Degraer, and M. Vincx. 2013. Residency, site fidelity and 

habitat use of Atlantic cod (Gadus morhua) at an offshore wind farm using 

acoustic telemetry. Mar. Environ. Res. 90:128–135. 

 

Schroepfer, R. L., and S. T. Szedlmayer. 2006. Estimates of residence and site fidelity for 

Red Snapper Lutjanus campechanus on artificial reefs in the northeastern Gulf of 

Mexico. Bull. Mar. Sci. 78:93–101. 

 

Seavy, N. E., S. Quader, J. D. Alexander, and C. J. Ralph. 2005. Generalized linear 

models and point count data: statistical considerations for the design and analysis 

of monitoring studies. In Bird conservation implementation and integration in the 

Americas: proceedings of the third international partners in flight conference, 

2nd volume, ed. C. J. Ralph, and T. D. Rich, 744–753. Albany, CA: U.S. Forest 

Service, Pacific Southwest Research Station, General Technical Report PSW-

GTR-191. 

 

SEDAR (Southeast Data Assessment Review). 2018. SEDAR 52: Gulf of Mexico Red 

Snapper stock assessment report, April 2018. SEDAR, North Charleston, SC. 

 

Shipp, R. L., and S. A. Bortone. 2009. A perspective of the importance of artificial 

habitat on the management of red snapper in the Gulf of Mexico. Rev. Fish. Sci. 

17:41–47. 

 

Streich, M. K., M. J. Ajemian, J. J. Wetz, J. D. Shively, J. B. Shipley, and G. W. Stunz. 

2017. Effects of a new artificial reef complex on Red Snapper and associated fish 

community: an evaluation using a before–after control–impact approach. Mar. 

Coast. Fish. 9:404–418. 

 

Strelcheck, A. J., J. H. Cowan Jr., and A. Shah. 2005. Influence of reef location on 

artificial-reef fish assemblages in the northcentral Gulf of Mexico. Bull. Mar. Sci. 

77:425–440. 



 

 

106 

 

 

Szedlmayer, S. T, and S. G. Beyer. 2011. Validation of annual periodicity in otoliths of 

Red Snapper, Lutjanus campechanus. Environ. Biol. Fishes 91:219–230. 

 

Szedlmayer, S. T., and J. Conti. 1999. Nursery habitats, growth rates, and seasonality of 

Age-0 Red Snapper, Lutjanus campechanus, in the northeast Gulf of Mexico. 

Fish. Bull. 97:626–635. 

 

Szedlmayer, S. T., and J. D. Lee. 2004. Diet shifts of juvenile Red Snapper (Lutjanus 

campechanus) with changes in habitat and fish size. Fish. Bull. 102:366–375. 

 

Szedlmayer, S. T., and R. L. Schroepfer. 2005. Long-term residence of red snapper on 

artificial reefs in the northeastern Gulf of Mexico. Trans. Am. Fish. Soc. 134:315–

325. 

 

Szedlmayer, S. T. and R. L. Shipp. 1994. Movement and growth of Red Snapper, 

Lutjanus campechanus, from an artificial reef area in the northeastern Gulf of 

Mexico. Bull. Mar. Sci. 55:887–896.  

 

Szedlmayer, S. T., E. J. Fedewa, and M. L. Paris. 2020a. Timing of opaque band 

formation and validation of annulus formation in otoliths of Red Snapper 

Lutjanus campechanus. In Red Snapper biology in a changing world, ed. S. T. 

Szedlmayer, and S. A. Bortone, 167–183. Boca Raton, FL: CRC Press. 

 

Szedlmayer, S. T., P. A. Mudrak, and J. Jaxon-Harm. 2020b. A comparison of two 

fishery- independent surveys of Red Snapper Lutjanus campechanus, from 1999–

2004 and 2011–2015. In Red Snapper biology in a changing world, ed. S. T. 

Szedlmayer, and S. A. Bortone, 249–274. Boca Raton, FL: CRC Press. 

 

Topping, D. T., and S. T. Szedlmayer 2011a. Home range and movement patterns of Red 

Snapper Lutjanus campechanus on artificial reefs. Fish. Res. 112:77–84. 

 

Topping, D. T., and S. T. Szedlmayer. 2011b. Site fidelity, residence time and 

movements of Red Snapper Lutjanus campechanus estimated with long-term 

acoustic monitoring. Mar. Ecol. Prog. Ser. 437:183–200. 

 

Topping, D. T., and S. T. Szedlmayer. 2013. Use of ultrasonic telemetry to estimate 

natural and fishing mortality of Red Snapper. Trans. Am. Fish. Soc. 142:1090–

1100. 

 

Venables, W., and B. Ripley. 2002. Random and mixed effects. Modern applied statistics 

with R. Springer, New York, NY. 

 

Venables, W. N., and C. M. Dichmont. 2004. GLMs, GAMs and GLMMs: an overview 

of theory for applications in fisheries research. Fish. Res. 70:319–337. 

 



 

 

107 

 

Watterson, J. C., W. F. Patterson, R. L. Shipp, and J. H. Cowan. 1998. Movement of Red 

Snapper, Lutjanus campechanus, in the north central Gulf of Mexico: potential 

effects of hurricanes. Gulf Mex. Sci. 16:92–104. 

 

White, G. C., and K. P. Burnham. 1999. Program MARK: Survival estimation from 

populations of marked animals. Bird Study 46:120–138. 
 

Williams, L. J., J. L. Herbig, and S. T. Szedlmayer. 2015. A cage release method to 

improve fish -tagging studies. Fish. Res. 172:125–129. 

 

Williams-Grove, L. J., and S. T. Szedlmayer. 2016a. Acoustic positioning and movement 

patterns of Red Snapper Lutjanus campechanus around artificial reefs in the 

northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 553:233–251. 

 

Williams-Grove, L. J., and S. T. Szedlmayer. 2016b. Mortality estimates for Red 

Snapper, Lutjanus campechanus, based on ultrasonic telemetry in the northern 

Gulf of Mexico. N. Am. J. Fish. Manage. 36:1036–1044. 

 

Williams-Grove, L. J., and S. T. Szedlmayer. 2017. Depth preferences and three-

dimensional movements of Red Snapper, Lutjanus campechanus, on artificial reef 

in the northern Gulf of Mexico. Fish. Res. 190:61–70. 

 

Williams-Grove, L. J., and S. T. Szedlmayer. 2020. A review of Red Snapper, Lutjanus 

campechanus, acoustic telemetry studies. In Red Snapper biology in a changing 

world, ed. S. T. Szedlmayer, and S. A. Bortone, 49–74. Boca Raton, FL: CRC 

Press. 

 

Wolfe, B. W., and C. G. Lowe. 2015. Movement patterns, habitat use and site fidelity of 

white croaker (Genyonemus lineatus) in the Palos Verdes Superfund Site, Los 

Angeles, California. Mar. Environ. Res. 109:69–80. 

 

 

 

 

 

 

 

 

 



 

 

108 

 

 

Table 3-1.  Summary of VPS sites showing reef type, depth (m), the number of known 

reefs within the VPS site, the combined area (m2) of the reefs within the VPS site, the 

start and end dates of the VPS site, and the number of Red Snapper tracked within each 

VPS site over the course of the study.  The number of individual reef structures within 

the N1 VPS site could not be enumerated.  The reef area within the N1 VPS site 

represents the outline of the area known to contain many small rock features. 

Site Type Published Depth Reefs Reef Area Start End Fish 

R3 Artificial No 18.6 3 18 1Jan18 4Apr20 13 

R4 Artificial No 25.9 2 10.5 1Jan18 3Apr20 26 

R6 Artificial No 25.2 1 6 1Jan18 26Mar20 22 

P1 Artificial Yes 16.2 3 1,454 4May18 5Jun20 19 

P2 Artificial Yes 18.2 1 337 23May18 17May20 28 

N1 Natural Yes 23.8 – 237,700 6Jun18 21Apr20 20 

N2 Natural Yes 19.5 4 163 6Aug18 17Mar20 22 

N3 Natural No 37.2 2 181 12Jun19 14Oct19 5 
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Table 3-2.  A representation of significant differences in least square mean diel KDE area 

with VPS sites sorted by depth. 

Site Depth (m) Larger Home Range Day (m2) Night (m2) P 

P1 16.2 Night 5,153 ± 419 6,302 ± 517 0.0001 

P2 18.2 Night 3,242 ± 196 6,174 ± 373 0.0001 

R3 18.6 Night 4,561 ± 604 3,419 ± 448 0.0067 

N2 19.5 Night 7,679 ± 711 11,230 ± 1,037 0.0001 

N1 23.8 Day 26,261 ± 2,386 20,976 ± 1,906 0.0001 

R6 25.2 No Difference 2,557 ± 294 2,508 ± 289 0.7608 

R4 25.9 No Difference 2,308 ± 363 2,204 ± 347 0.5365 

N3 37.2 Day 13,600 ± 1,752 8,012 ± 1,032 0.0001 
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Figure 3-1.  Locations of telemetry receivers, 15 to 52 km south of Dauphin Island, 

Alabama, United States, in the northern Gulf of Mexico.  Each artificial reef VPS site 

(gray circles) and natural reef VPS site (white circles) contained five receivers each, 

platform VPS sites (gray squares) contained six receivers each, and surrounding receivers 

(black circles) had only a single receiver at each location. 
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Figure 3-2.  Least square mean monthly 95% KDE ± SE (m2) for fish residing on each 

VPS site.  Different letters indicate significant differences (P ≤ 0.05). 
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Figure 3-3.  All VPS calculated fish positions (hollow circles) on R6, a small artificial 

reef where Red Snapper had the smallest home ranges observed in this study, and N1 a 

larger natural reef where the largest home ranges were observed.  Gray circles represent 

the locations of tracking receivers. 
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Figure 3-4.  Diel period and depth effects on Red Snapper, Lutjanus campechanus. Least 

square mean 95% KDE ± SE (m2) is displayed by depth (Shallow < 20 m; Deep > 20 m) 

and diel period.  Different letters represent significant differences (P ≤ 0.05). 
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Figure 3-5.  Least square mean 95% KDE ± SE (m2) by season for artificial reefs, natural 

reefs and all reefs combined.  Different letters represent significant differences (P ≤ 

0.05). 

 


