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Abstract

Complex numbers and quaternions have a wide array of applications. This paper begins

by briefly going over the history of complex numbers and quaternions, bringing up little known

facts on main discoverers. Then, we dive into their important properties in relation to the

navigation applications we will go over. We will see their application in navigation can greatly

minimize time, work and error in various fields of navigation.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 The Imaginary Number i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Properties of Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Trigonometrical Surveying . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Celestial Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Space Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 3D Game Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



List of Figures

2.1 Werke: Volume 10 Part 1, page 405 . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Figure 1 in Argand’s 1806 Publication . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 The Complex Plane with a Unit Circle . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Wessel’s Complex Plane from his Trigonometrical Surveying Report of 1787 . 17

2.6 Wessel’s Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Wessel’s Original Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Wessel’s Figure 2 Modified . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Stereographic Projection Figure . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Gimbal Lock Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Quaternion Rotation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Quaternion Interpolation Example . . . . . . . . . . . . . . . . . . . . . . . . 44

v



List of Tables

3.1 Quaternion Multiplication Table . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



Chapter 1

The Imaginary Number i

1.1 Introduction

The imaginary number i is a fairly known idea today. Many cannot finish a secondary education

without the understanding i2 = −1. Why do we continue to call this result imaginary? Let’s

consider
√

4. We understand this is equivalent to 2 since 22 = 4. Now, let’s consider
√
−1.

There is no number one can square to receive a negative result. Yet, while there is no real

solution,
√
−1 has many real-world uses. One use is in many forms of navigation, as we will

see throughout this paper. The use of this number will be seen to significantly improve the time

and accuracy of calculations needed in navigation. Many who came across the result
√
−1

would respond as Simon Stevin of Bruges who stated, ”There are enough legitimate things to

work on without need to get busy on uncertain matter.” But, there are a few mathematicians

whose time to note and consider negative square roots allowed for it to become the essential

number that it is today.

1.2 History

In 50 AD, Heron of Alexandria was studying frustrums. In his book, Stereometria, he ques-

tions how high a frustrum is given the side lengths of the base, the top square, and the edge

connecting the two. He came up with the equation

h =
√
c2 − (a−b)2

2

In his first example, he uses a = 10, b = 2, c = 9 which yields the answer 7. He then tried

another example a = 28, b = 4, and c = 15. In his book, he records the solution
√

63. But, we

can see the true solution, given his equation, is
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h =
√

152 − (28−4)2
2

=
√

225− 288 =
√
−63.

It is unsure if it was a deliberate error or simply a mistake while recording his answer, but

this is the earliest known recorded work with a negative square root as a result. Unfortunately,

there is no known evidence of Heron further pursuing this result.

In the Ars Magna, published in 1545, Cardan mentions a solution to the quadratic equation

x(10− x) = 40. He states, ”Putting aside the mental tortures involved, multiply 5 +
√
−15 by

5 −
√
−15 making 25 - (-15), whence the product is 40.” This is how he receives credit as the

mathematician to introduce complex numbers. He leaves his solution at that with a comment

about the arithmetic being ”as refined as it is useless.” He too does not further pursue what was,

at the time, a peculiar solution. However, he does stumble upon a similar situation in his book

when explaining a method to solve cubic equations of the form

y3 + py = q

He finds the solution to equations of this form with what is now known as Cardan’s for-

mula. While Cardan still receives most credit for this formula, he did not come up with this

formula on his own. Niccolò Fontana, also known as Tartaglia, first introduces this formula in

a contest. While the formula was leaked to Cardan, he promised to leave it out of his book.

Evidently, he does not uphold this promise

x = a− b =
3

√
q
2

+
√

q2

4
− p3

27
+

3

√
q
2
−
√

q2

4
− p3

27

What he discerns with this formula is when ( q
2
)2 is less than (p

3
)3, the result will be a

negative square root. While he did make note of this, he does not resolve it. It isn’t until Rafael

Bombelli publishes his book Algebra in 1572 that we see some attempt to reason with these

unexplained solutions. Consider the equation
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x3 = 15x+ 4

Using Cardan’s formula, or Cardan-Tartaglia’s formula to be fair, let p = −15 and q = 4. Then,

x =
3

√
4
2

+
√

42

4
− (−15)3

27
+

3

√
4
2
−
√

42

4
− (−15)3

27

reduces to

x = 3

√
2 +

√
4− −3375

27
+ 3

√
2−

√
4− 3375

27

resulting in

x = 3
√

2 +
√
−121 + 3

√
2−
√
−121

However, Bombelli knew there were real solutions to this equation: 4,−2+
√

3,−2−
√

3. This

is what one calls an ”irreducible case,” which is a situation in which Cardan’s formula makes

impossible solutions when real solutions exist. This problem lead him to the ingenious idea to

express how the imaginary solution could result in the equation’s real solution. He began by

setting

3
√

2 +
√
−121 = a+ b

√
−1 and 3

√
2−
√
−121 = a− b

√
−1

where a > 0 and b > 0. Rearranging the expression

2 +
√
−121 = (a+ b

√
−1)3

= a3 + 3a2b
√
−1 + 3ab2(

√
−1)2 + b3(

√
−1)3

= a(a2 − 3b2) + b(3a2 − b2)
√
−1

where a(a2− 3b2) = 2 and b(3a2− b2) = 11. Then a = 2 and b = 1 are the only solutions that

will satisfy both conditions. This leads to
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x = 3
√

2 +
√
−121 + 3

√
2−
√
−121

= 3

√
(2 +

√
−1)3 + 3

√
(2−

√
−1)3

= (2 +
√
−1) + (2−

√
−1) = 4

With this, Bombelli demonstrated that through the square root of negative numbers, real

solutions could be achieved. He can also be noted as one of the first to give a name to the square

root of negative numbers rather than just trying to solve their arithmetic as is. He called
√
−1

plus of minus and −
√
−1 minus of minus and noted their arithmetic as follows:

”Plus by plus of minus, makes plus of minus.

Minus by plus of minus, makes minus of minus.

Plus by minus of minus, makes minus of minus.

Minus by minus of minus, makes plus of minus.

Plus of minus by plus of minus, makes minus.

Plus of minus by minus of minus, makes plus.

Minus of minus by plus of minus, makes plus.

Minus of minus by minus of minus makes minus.” [4]

After Bombelli’s discoveries, a shift is seen in Mathematicians’ attitude on imaginary

numbers. In 1629, Albert Girard notices, while solving polynomials, that he can have ”impos-

sible” solutions. In one of his examples, he uses

x4 + 3 = 4x

and states there are four factions: 0, 0, 4, and 3. The two remaining solutions have the

property that their sum is -2 and their product is 3 which leads to the solutions

−1±
√
−2

4



Girard then goes on to explain his belief in the value of this solution stating, ”they are

good for three things: for the certainty of the general rule, for being sure that there are no other

solutions and for its utility.”

Shortly after, in 1637, Rene Descartes introduces the terms real and imaginary in relation

to the discussion of the square root of negative numbers. In his book, La Geometrie, he states,

”neither the true roots nor the false are always real; sometimes they are, however, imaginary;

namely, whereas we can always imagine as many roots for each equation as I have predicted,

there is still not always a quantity which corresponds to each root so imagined. Thus, while we

may think of the equation x3 − 6xx+ 13x− 10 = 0 as having three roots, yet there is just one

real root, which is 2, and the other two, however, increased, diminished, or multiplied them as

we just laid down, remain always imaginary.”

In 1674, Gottfried Wilhelm von Leibniz wasn’t satisfied with the work of Bombelli on

Cardan-Taraglia’s formula involving the irreducible case. This leads him to try and factor a

polynomial with only real coefficients into irreducible factors with a degree of one or two. He

then factors x4 + a4 into

(x2 + a2
√
−1)(x2 − a2

√
−1)

Leading to

(x− a
√
−
√
−1)(x− a

√
−
√
−1)(x+ a

√√
−1)(x− a

√√
−1)

Although untrue, this leads him to believe that no nontrivial combination of linear factors can

result in a real divisor. This is not the only work he did with imaginary numbers. He also solved

√
6 =

√
1 +
√
−3 +

√
1−
√
−3

While this looks interchangeable with Bombelli’s solutions involving his real root 4, Leib-

niz’s contemporaries were still amazed with this calculation.
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In 1748, 10 years after he had gone completely blind, Leonhard Euler publishes his book

Introductio in Analysin Infinitorum. Throughout his book, he works with real and then imagi-

nary solutions. His most notable work with imaginary numbers was when he decided to plug

the imaginary number in for x in the equation e(xπ). While he was the mathematician to intro-

duce the letter i as a representation for the
√
−1, he had not come up with it yet. Instead, he

left throughout his calculations
√
−1 as is. When he plugged in

√
−1z in for x in the series for

ex, he knew

ex = 1 + x
1

+ x2

2·1 + x3

1·2·3 + x4

1·2·3·4 ...

substiting
√
−1z results in

e
√
−1z = 1 + (

√
−1z)
1

+ (
√
−1z)2
2·1 + (

√
−1z)3
1·2·3 + (

√
−1z)4

1·2·3·4 + (
√
−1z)5

1·2·3·4·5 ...

and then simplifying with the knowledge (
√
−1)2 = −1

e
√
−1z = 1 + (

√
−1z)
1
− z2

2·1 −
√
−1z3
1·2·3 + z4

1·2·3·4 +
√
−1z5

1·2·3·4·5 ...

and then, separating terms without imaginary numbers from terms with imaginary num-

bers, we get

e
√
−1z = (1− z2

2·1 + z4

1·2·3·4 ...) + ( (z)
1
− z3

1·2·3 + z5

1·2·3·4·5)
√
−1...

As Euler points out, the real part is the same as the expansion for cos(x) and the imaginary

part is the expansion for sin(x). This leads him to what is now known as the ”Euler’s formula”

e
√
−1z = cos(z) +

√
−1sin(z)

6



More on Euler and his famous formula will be presented in the next chapter. In a memoir pre-

sented in 1777, he, at-last, introduces the use of the letter i as a representation of the imaginary

number
√
−1, but this was towards the end of his life, and so it was not used in many of his

originally published books, instead using
√
−1, though many translated copies after 1777 will

go ahead and make this replacement.
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Chapter 2

Complex Numbers

2.1 Introduction

A complex number is defined as a number of the form z = a + bi where a and b are real

numbers and i is the solution to
√
−1. We see this form used throughout history in the previous

section. But, the name for this form, known as a complex number, wasn’t coined until Gauss.

Figure 2.1, taken from Gauss’ Werke, shows his explanation of the term.

Figure 2.1: Werke: Volume 10 Part 1, page 405
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This translates to

”Complete knowledge of the nature of an analytic function must also include insight into its

behavior for imaginary values of the arguments. Often the latter is indispensable even for a

proper appreciation of the behavior of the function for real arguments. It is therefore essential

that the original determination of the function concept be broadened to a domain of

magnitudes which includes both the real and the imaginary quantities, on an equal footing,

under the single designation complex numbers.” [13]

2.2 Properties of Complex Numbers

Complex numbers generally hold the same properties as real numbers, except for i2 = −1.

Consider two complex numbers z1 = a+ bi and z2 = c+ di. Then,

For addition,

z1 + z2 = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i (2.1)

For subtraction,

z1 − z2 = (a+ bi)− (c+ di) = (a− c) + (b− d)i

For multiplication,

z1 · z2 = (a+ bi) · (c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (bc+ ad)i

To understand division let us first understand the complex conjugate of a complex number.

A complex conjugate, denoted as z̄ of a complex number, z, is the same as the complex

number given, except the imaginary part is the opposite sign of the complex number given. For

example, consider the complex number z = a+ bi, then the complex conjugate is

z̄ = a− bi

Now, to divide complex numbers, one would write the complex numbers in fraction form,

then multiply the numerator and denominator of the fraction by the denominator’s complex

conjugate. For example, consider dividing z1 = a+ bi by z2 = c+ di. Then,
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z1
z2
= a+bi

c+di(
c−di
c−di) =

ac−adi+bci−bdi2
c2+d2

= ac+bd
c2+d2

+ bc−ad
c2+d2

i

For the norm, aka modulus, let z = a+ bi, then the norm is

|z| = |a+ bi| =
√
a2 + b2

2.3 Complex Plane

Poplar nicknames for the complex plane include the Gaussian plane or Argand plane, however,

another mathemetacian by the name of Casper Wessel visualized the complex plane before

either. In 1629, Albert Girard proposes the idea of putting negative numbers on a line. He also

was one of the first people to recognize imaginary roots of an equation, but there is no written

publications of him putting the two ideas together. Then, in a letter he wrote in 1673, John

Wallis mentions the idea of giving a ”negative square” a placement on a plane since, just as

impossibly, negative lengths have a place on the line. This idea gets executed in 1799 when a

cartographer, Caspar Wessel, published graphical representations using complex numbers prior

to either Gauss or Argand. This will be seen in more detail in Section 2.4.1. Since he was not

an academic, unfortunately, his work went unnoticed for quite some time.

Figure 2.2: Figure 1 in Argand’s 1806 Publication

In 1806, Argand anonymously publishes Essai sur une maniere de representer les quan-

tites imaginaires dans les constructions geometriques. In it, under section 4 of his paper, he
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includes a plane with a circle drawn in it centered at K, seen in Figure 2.2 [5]. He describes the

figure as KA being a positive unit, KI being a negative unit, KE representing the value
√
−1,

and KN representing the value −
√
−1. The pages in his paper fully describing this figure can

be found in the Appendix.

Modern views of the complex plane parallel that of Wessel and Argand, with the only

difference being in notation. We take a horizontal line to be the real axis with a vertical line

perpendicular to that of the real line to be the imaginary line. We can use this plane to consider

a complex number number z = a + bi with a being the real value and b being the imaginary

value, as seen in Figure 2.3 [16]. We can use this plane to visualize properties of complex

numbers.

Figure 2.3: The Complex Plane

Let us now consider some examples of complex numbers and their graphical representa-

tion [12]

Let z1 = 3 + 5i and z2 = 4− 3i. Adding z1 to z2 using equation (2.1) results in,

3+5i+4-3i= 7+2i

The graphic representation of these values would be

11



Now, let z1 = 1 + i and z2 = 3 + i, multiplying z1 to z2 brings about

(1 + i)(3 + i) = 2 + 4i

Dividing 2+4i by 1+i

2+4i
1+i = (2)(1)+(4)(1)

12+12 + (4)(1)−(2)(1)
(12)+(12)

= 6
2 + 2

2

= 3 + i

The graphic representation of these values would be

The complex plane can also be used to represent rotations. First, we will start with the

famous Euler’s identity and formula. Most textbooks or articles mentioning this identity and

formula describe it with adjectives like ”the most important” and ”the most beautiful formulae.”

And while it is credited to Euler, there is no known writing of the exact following, but from his

Introductio in Analysin Infinitorum, one can deduce
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eπi + 1 = 0 (2.2)

and

exi = cos(x) + isin(x) (2.3)

Rewriting (2.2), one can see a rotation of π results in -1. Looking at equation (2.3) and

referring to our identities,

a=cos(π) and b = sin(π),

giving us the coordinates (−1, 0) as to be expected.

Now, consider we want to rotate this coordinate 90◦ counterclockwise. Converting this

to radians, we want to rotate by π
2
. Recall from Chapter 1 that i0 = 1, i1 = i, 12 = −1 and

i3 = −i. Looking at Figure 2.4 [16], we see a rotation of 90 degrees is equivalent to multiplying

a complex number by i. From this we can infer that a rotation of 90◦ from (−1, 0) will move

us to (0,−i). We can check this by multiplying (−1, 0), or −1, by i which does result in −i, or

(0,−i), as expected.

Figure 2.4: The Complex Plane with a Unit Circle

Complex Numbers can also be represented in what is known as polar form. Consider a

complex number number z = a+ bi in the form

13



z = rcos(θ) + irsin(θ) (2.4)

where a = rcos(θ) and b = rsin(θ), r is the radius and is equivalent to |z| and θ is the

angle from the real axis to the line formed between the origin and the complex number z. The

angle θ is also known as the argument of z, written as

arg(z)

where

In Quadrant 1 θ = tan−1( b
a
) s.t. a, b > 0

In Quadrant 2 & 3 θ = tan−1( b
a
) + π s.t. a < 0

In Quadrant 4 θ = tan−1( b
a
) + 2π s.t. a > 0, b < 0

We can rewrite equation (2.4) in regard to angle since, by trigonemetric identities,

cos(θ) = a
r

and sin(θ) = b
r
.

We can also rewrite (2.4) in exponential form using (2.3)

z = rcos(θ) + irsin(θ) = r(cos(θ)− isin(θ))

z = r(eiθ) = reiθ

This is what we also call polar form. Let us explore the complex identities now in polar

form. Let z1 = r1e
iθ1 and z2 = r2e

iθ2

For the product,

z1z2 = r1r2e
iθ1eiθ2

r1r2e
i(θ1+θ2)

r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

14



The product of z1z2 then has a norm

|z1z2| = r1r2

and the argument

arg(z1z2) = θ1 + θ2

For the quotient,

z1
z2

= r1e
iθ1

r2eiθ2

= r1
r2
ei(θ1−θ2)

= r1
r2

[cos(θ1 − theta2) + isin(θ1 − θ2)]

The norm of the quotient is then

|z1z1 | =
r1
r2

and the argument is

arg( z1
z2

) = θ1 − θ2

Referring back to our product and quotient example, let us first convert z1, z2 and z3 into

polar form

z1 = 1 + i = 1.4142(cos(45◦) + isin(45◦) = 1.4142ei(45
◦)

z2 = 3 + i = 3.1623(cos(18.4349◦) + isin(18.4349◦) = 3.1623ei(18.4349
◦)

z3 = 2 + 4i = 4.4721(cos(63.4349◦) + isin(63.4349◦) = 4.4721ei(63.4349
◦)

Let us multiply z1 and z2 using polar form. We will do this by looking at what would the

norm and argument of the product be. The norm of the product is

norm|z1z2| = 1.41421× 3.16228 = 4.4721

15



and the argument of the product is

arg(z1z2) = 45◦ + 18.4349◦ = 63.4349◦

This would lead to the value 4.4721. Let us see if this equivalates to the solution found

multiplying in complex number form. We will do this by using the Pythagorean theorem a2 +

b2 = c2

c2 = 22 + 42 = 20

c =
√

20 ≈ 4.4721

This does indeed. Now let us consider dividing z3 by z1 using polar form. We will do this

by looking at the norm and argument of the difference. The norm of the difference is

norm| z3
z1
| = 4.4721

1.4142
= 3.1623

and the argument of the difference is

arg( z3
z1

) = 63.4349◦ − 45◦ = 18.4349◦

This leads to the solution 3.1623. Let’s compare this with the solution in complex number

form by again using the pyathagorean theorem.

c2 = 32 + 12 = 10

c =
√

10 = 3.1623

Again, we see the solutions parallel one another.

2.4 Applications

2.4.1 Trigonometrical Surveying

When Caspar Wessel was working as a trigonometrical surveyor, he discovered one could

use complex numbers to simplify the calculations needed. The job entailed determining the po-

sition of a triangular net of points through heavy trigonometric calculations. Since calculations
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would have to be rounded as the solution found tended to contain long or infinite decimals, a

series of corrections would be applied to reach a higher accuracy. These calculations found

would then be compared to others’ calculations to compensate for less accurate geographical

measurements to obtain a more reliable map. Wessel believed complex numbers could simplify

these trigonometrical calculations on the triangular nets.

As early at 1787, there is documentation of Wessel having the idea to use complex numbers

to represent direction in a plane. To understand his illustration of a complex plane, one should

first understand the use of the observatory in surveying. Astronomical knowledge was consid-

ered essential to surveying. So, it was considered important that the Round Tower Observatory,

in the heart of Copenhagen, was modernised so it would equal principal observatories in Eu-

rope. This made the Observatory the origin of triangulation, making it important to determine

it’s position in order to coordinate with measurements in other countries. In his Trigonometrical

Surverying Report of 1787, we see him take an arbitrary coordinate point, (p,
√
−1m), from

the Observatory coordinate system and connect it to f, whose line creates the tangent plane of

the Observatory labeled T (cosw +
√
−1w) [3].

Figure 2.5: Wessel’s Complex Plane from his Trigonometrical Surveying Report of 1787
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One can see the line labeled tangent to the Observatory meridian represents the real axis

and the perpendicular represents the imaginary axis. Unfortunately, in this paper he does not go

into detail about this figure, but this figure seems to parallel ideas we know about stereographic

projection, which will be discussed in the next section. What we can take from this figure,

along with his work in ”Analytical Representation of Direction,” is his understanding of how the

complex plane would work and examples of how he may apply this knowledge to triangulation.

We can see from his ”Analytical Representation of Direction,” Wessel understood the

complex identities. He was able to state how the complex plane could be drawn with two

perpendicular lines, one real and one imaginary, and explained that if you consider 1 to be

0 degrees, -1 to be 180 degrees, ε to be 90 degrees and −ε to be 270 degrees, how taking

two imaginary units would lead to -1, or ε · ε = −1. From this information, and figure 2.5,

one can allude to what an image of this description would be, as seen in figure 2.6 [3]. He

also understood that, given a segment ab and another segment bc such that ab and bc share a

common endpoint that ac could be considered the sum of the two segments. Then

ac = ab+ bc

or, when ca = −ac.

0 = ab+ bc+ ca (2.5)

Figure 2.6: Wessel’s Complex Plane
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Figure 2.7: Wessel’s Original Figure
2

Figure 2.8: Wessel’s Figure 2 Modi-
fied

He even explains that a line segment on his complex plane, a + εb could be represented

with

a = rcosv and b = rsinv,

then,

a+ εb = r(cosv + εsinv) (2.6)

While we know when working with he imaginary unit, Wessel denoted it as ε, the follow-

ing calculations will use the letter ”i”. And, when explaining how to find unknown elements

in a polygon, he created a system of abbreviations using roman numerals, as can be seen in

Figure 2.7, but to understand the math behind his calculations, I find it better to use letters as

traditionally used in finding information on complex numbers and polygons, as seen in Figure

2.8. Let the inner polygon angles be represented by their capital letter. In other words, at point

a, let the inner polygon angle be A. Let the length ab in figure (2.8) represent itself. Then,

bc deviates from ab by 180−B

cd deviates from ab by (180−B) + 180 + C, or by 360− (A+ C)
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da deviates from ab by 180 + A

Using (2.5) and (2.6), the above can be rewritten as

|ab|+|bc|[cos(180−B)+isin(180−B)]+|cd|[cos(360−(B+C))+isin(360−(B+C))]

+|da|[cos(180 + A) + isin(180 + A)] = 0 (2.7)

where A+B + C +D = 360

This formula is how Wessel would obtain unknown elements in a quadrangle during his

surveying. An example of how he would apply (2.7) goes as follows:

Consider quadrangle (2.8) where angles A, B, and side |cd| are unknown. and let us

consider we are just looking for B. We must rewrite (2.7) so that |cd| no longer is a coefficient

to a complex number. This is done by multiplying cos(B+ c) + isin(B+C) to (2.7) resulting

in:

|ab|[cos(B + C) + isin(B + C)] + |bc|[cos(180 + C) + isin(180 + C)] + |cd|+

|ad|[cos(180−D) + isin(180−D)] = 0

This works only if the imaginary part’s coefficient is equal to 0, or:

|ab|sin(B + C) + |bc|sin(180 + C) + |ad|sin(180−D) = 0

Now, the only unknown left would be B, making it easy to find.

2.4.2 Celestial Navigation

The complex plane can be used to simplify measurements found in celestial navigation. Celes-

tial Navigation involves measuring altitudes of either the Sun, Moon, planets, or stars versus

either a reference horizon or visible horizon. Then, a series of sight reduction corrections must
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be used to come to a more accurate result of the position the user is at. These corrections can

be simplified significantly with the use of the complex plane and stereographic projection.

Consider a sphere, like in Figure (2.9), with a North Pole, labeled N, and South Pole,

labeled S, and lying it on the complex plane so that the South Pole intersects the complex plane

at it’s origin [14]. Now, if one chooses a point on the sphere, like p in (2.9), and creates a

line intersecting the point p and the North pole, one will find a point the line intersects on the

complex plane as well, labeled zp in (2.9). The point found on the complex plane is the image

of the point taken on the sphere. There is also a circle centered at p shown in (2.9). This circle

maps to a circle on the complex plane centered at zc rather than zp except when p is either the

North pole, N, or South pole, S. This is an example of operations carried out in stereographic

projection.

Figure 2.9: Stereographic Projection Figure

Now let us consider the p’s coordinates to be latitude, L, and longitude λ, then the image,

zp, can be written as:

zp = tan(
π

4
+
L

2
)eiλ (2.8)

The South Pole, S, maps to zero on the complex plane, the longitude at 0 maps to the real

axis, and as this longitude increases, the mapping follows in an anticlockwise direction. Note
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that when L = 90 degrees, tan(π
4

+ L
2
) is undefined. When finding points closer to the North

Pole, N, one should consider the complex plane to intersect the North Pole and use the function:

zp = tan(
π

4
− L

2
)e−iλ (2.9)

One use of this complex equation is in computing the altitude and azimuth of a celestial

body. This was essential for celestial navigators. To find the altitude and azimuth, the observer

would need the latitude and longitude of their current location. They would then convert these

coordinates to radians and input them into

a = e
−iλ
2 , (2.10)

b = tan(
π

4
+
L

2
)ei(

λ
2
+π) (2.11)

and into equation (2.8) when working with values closer to the South Pole

z = tan(
π

4
+
δ

2
)e−i(GHA) (2.12)

or into equation (2.9) when working with values closer to the North Pole

z = tan(π
4
− δ

2
)ei(GHA)

where L = δ and λ = −GHA

The values a,b and z are then used to perform a bilinear rotation using the equation

T (z) =
ax+ b

−bz + a
(2.13)

This will lead to a complex number

ω = tan(π
4
− h

2
)eiZ

where h is the celestial body’s altitude and Z is it’s azimuth
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An example of the application of this complex equation. Saint-Hilaire [14] takes an alti-

tiude sight of the star Vega at 8 o’clock on October 24, 1874. The longitude and hour angles

were measured from the meridian of Paris and are:

L = 35◦30′N , λ = 9◦30′W

Next, we convert the values to radians and substitute these values into equations (2.10)

and (2.11).

a = e
−iλ
2

= e−
i0.1658062789

2

= cos(−0.16580627892 )− isin(−.16580627892 )

= 0.99656550249 + 0.08280820749i

and

b = tan(π
4

+ L
2
)ei(

λ
2
+π)

b = tan(π4 + 0.6195918845
2 )ei(

0.1658062789
2 +π)

= 1.941619979169439ei3.224495793039793

b = −1.934951490 + 0.160782070i

For Equation (2.12), we will find the location of the star Vega at this time on this day using

reference to Greenwich.

GHA = 62◦16′00′′, δ = 38◦40′13′′
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First we will convert these values to radians for easier calculation.

GHA = 1.0867583476, δ = 0.6749236699

Next, we will input these values into Equation (2.12)

z = tan(π
4

+ δ
2
)e−i(GHA)

z = tan(π
4

+ 0.6749236699
2

)e−i(1.0867583476)

z = 2.081111817929621e−i1.842040022620980

z = 0.968460094− 1.842040022i

Values a, b, and z are then applied to Equation (2.13)

T (z) =
az+b
−bz+a

T (z) = (0.996565502+0.082808207i)(0.968460094−1.842040022i)+(1.934951490+0.160782070i)
(−1.934951490−0.160782070i)(0.968460094−1.842040022i)+(0.996565502−0.082808207i)

T (z) = 0.134118059− 0.355732135i = 0.380174967115913e−i1.210256048409223

Then Z is,

Z = −1.210256049739083

Then, to find h, we rewrite our equation for ω
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T (z) = ω = tan(π
4
− h

2
)eiZ

0.380174967115913ei1.210256048409223

ei1.210256048409223
= ω = tan(π

4
− h

2
)

π
4
− h

2
= tan−1(0.380174967427535)

h = (tan−1(0.380174967427535)− π
4
) ∗ −2 = 0.844196544474261

Converting Z and h back to degrees we have:

Z = 69◦20′33.2′′W

h = 48◦22′8′′

Saint- Hilaire’s findings yielded similar results with error due to less significant figures

used

Z = 69◦20′W

h = 48◦22′15′′

2.4.3 Global Positioning System

The Global Positioning System, or GPS, is a navigational system that uses satellite signals to fix

the location of a radio receiver on or above the earth’s surface. There are many uses of complex

numbers in this intricate navigational system, but we will explore a use in GPS signals.

Using polar form of complex numbers, we get what is known as an ”imaginary exponen-

tial” used in the study of GPS signals and receivers[11]

x(t) = Aej(2πf0t+θ)

where A stands for amplitude, j represents
√
−1, f0 for frequency, t for time, and θ for the

phase.

Then, by using equation (2.4), one can get
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Aej(2πf0t+θ) = A(cos(2πf0t+ θ) + jsin(2πf0t+ θ)

By adding the conjugate,

Aej(2πf0t+θ) +Ae−j(2πf0t+θ) = A(cos(2πf0t+ θ) +A(cos(2πf0t+ θ) + jsin(2πf0t+ θ)− jsin(2πf0t+ θ)

Aej(2πf0t+θ) + Ae−j(2πf0t+θ) = 2Acos(2πf0t+ θ)

Rearranging,

Acos(2πf0t+ θ) = A
2
(ej(2πf0t+θ) + e−j(2πf0t+θ))

= Re{Aej(2πf0t+θ}

When subtracting the conjugate,

Aej(2πf0t+θ) −Ae−j(2πf0t+θ) = A(cos(2πf0t+ θ)−A(cos(2πf0t+ θ) + jsin(2πf0t+ θ) + jsin(2πf0t+ θ)

Aej(2πf0t+θ) − Ae−j(2πf0t+θ) = 2Ajsin(2πf0t+ θ)

Rearranging,

Asin(2πf0t+ θ) = A
2j

(ej(2πf0t+θ) − Ae−j(2πf0t+θ))

= Im{Aej(2πf0t+θ}

One use of this function in relation to GPS signals is it’s involvement in ambiguity func-

tions. An ambiguity function allows for satellite detection and estimation of received signal

parameters, these parameters being the code phase offset and Doppler frequency. The code

phase offset is the signal used for timing measurements, allowing to improve the accuracy of

GPS. The Doppler effect is the ”apparent change in the transmission frequency of the received

signal and is experienced whenever there is any relative motion between the emitter and re-

ceiver of wave signals”[2]. The ambiguity function is

R̃(4τ,4fD) = 1
TCO

∫ 0

TCO
x(t− τ)x(t− τ̂)ej(2π4fDt+4θ)dt
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Where j is the imaginary unit, TCO is the coherent averaging time, x is code from a

satellite, τ is the code phase offset,4fD is the Doppler Error,4τ is the code phase error, and

4θ is the phase of the signal such that

4θ = δθ − θ̂

where δθ is the input phase and θ̂ is the receiver’s best estimate of phase. To estimate the

Doppler frequency and the code phase offset, one first needs to understand the equation

S̃ = SI(4τ,4fD,4θ) + jSQ(4τ,4fD,4θ)

where

SI(4τ,4fD,4θ) =
√
CD
TCO

∫ TCO
0

c(t− τ)x(t− τ̂)cos(2π4fDt+4θ)dt

and

SQ(4τ,4fD,4θ) =
√
CD
TCO

∫ TCO
0

c(t− τ)x(t− τ̂)sin(2π4fDt+4θ)dt

Rewriting S̃ in exponential form we get

S̃ =
√
CDej4θR̃(4τ,4fD)

The GPS Reciever takes the magnitude of this equation to remove the two ”nuiance pa-

rameters” D, the data bit, and4θ, the carrier phase offset

S̃ = S2
1 + S2

Q = C|R̃(4τ,4fD)|2

This can then be used to estimate the Doppler frequency and code phase offset.
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Chapter 3

Quaternions

3.1 Introduction

An Irish Mathematician by the name of William Rowan Hamilton was so intrigued by how

complex numbers worked in two-dimensional geometry that he wanted to discover “triplets”

that would work the same way, but in 3D. Alas, he never could come up with a working model

of this. Instead, he discovered the 4-D division algebra he named quaternions. He carved the

equation i2 = j2 = k2 = ijk = −1 into the Brougham Bridge where he had his eureka moment

in 1843 [7].

Quaternion Plaque on Brougham Bridge

We can easily read about his success with the quaternion, but there is little explanation on

his failure with the creation of three dimensional numbers. According to a paper published on
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the University of London website, Hamilton wanted his triples to work in a similar manner to

complex numbers. The problem with this is he could not define the multiplication for triples,

as he did for quaternions stated earlier. Let us take a 3 dimensional number t = a+ bi+ cj and

lets assume i2 = j2 = ij = −1 Then

ij = −1

iij = −1i

i2j = −i

−j = −i

j = i

jj = ij

j2 = −1

ijj = −1j

ij2 = −j

−i = −j

i = j

If i = j, then the 3 dimensional number t=a+bi+cj is the same as t=a+(b+c)i, which is just

a complex number, losing that third value we need. There are numerous methods to define the

initial value equivalencies, but after 8 years of trying to define it, I believe we can take William

Howard’s word that defining such a number would prove difficult if even possible.

It is important to note that while Hamilton is the first known person to define quaternions

algebraically and give the system a name, a mathematician by the name of Benjamin Olinde

Rodrigues actually understood and geometrically explained what we call quaternions before

Hamilton. In 1840, he published a paper describing how one could represent one rotation and

then another by one rotation about a third axes. He expressed this solution using a scalar and

a 3D axis, which Hamilton didn’t discover for a couple of years after his quaternion discovery.

While Rodrigues’ paper was published before Hamilton’s discovery, the paper was known by

few.
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3.2 Properties

Quaternions can be compared to their 2D counterpart, the complex number. As we know, a

complex number consists of a real part and imaginary part, denoted by a + bi. Quaternions

consist of one real and three imaginary parts and can be denoted in three ways:

q = x+ iy + jz + kw

q = s+ v

q = [s, v]

where i2 = j2 = k2 = −1, s, x, y, and z ∈ R, and v ∈ R3

And while quaternions have a similar way of carrying out mathemematical operations, a curious

fact to note is quaternions non-commutative properties. Unlike complex numbers, where abi =

bia, changing the placement of a variable during multiplication with quaternions can cause a

sign flip. For example,

Let’s consider ijk=-1

iijk = i− 1

i2jk = −i

−jk = −i

jk = i

However, kj=-i as you can see below

ijkk = −1k

ijk2 = −k

−ij = −k

ij = k

ijj = kj

ij2 = kj

−i = kj
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Likewise j=ki, –j=ik , k=ij and –k=ji as seen below in the table below [15].

Table 3.1: Quaternion Multiplication Table

While quaternions aren’t commutative, they do hold associative properties.

i(jk) = (ij)k

i(i) = (k)k

−1 = −1

Other properties include:

The identity qe = 1

The conjugate q∗ = x− yi− zw − wk

The length of a quaternion (aka norm) |q| =
√
qq∗

The inverse of a quaternion q−1 = q∗

|q|2

Quaternions are able to be added and multiplied similarily to complex numbers. Lets

consider

z1 = a1 + ib1 and z2 = a2 + ib2 where z1, z2 ∈ C

And

q1 = x1 + iy1 + jz1 + kw1 and q2 = x2 + iy2 + jz2 + kw2 where q1, q2 ∈ H
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Just as

z1 + z2 = (a1 + a2) + i(b1 + b2)

We can add quaternions by combining like terms, for example

q1 + q2 = (x1 + x2) + i(y1 + y2) + j(z1 + z2) + k(w1 + w2)

Also, just as we can multiply complex numbers with the understanding that i2 = −1, we

can multiply quaternions with the understanding i2 = j2 = k2 = ijk = −1. Manipulating this,

as seen earlier, we can also understand i = jk,j = ik, and k = ij

Then, just as two complex numbers can be multiplied,

z1z2 = (a1 + ib1)(a2 + ib2)

= a1a2 + i(a1b2 + a2b1) + i2b1b2

= (a1a2 − b1b2) + i(a1b2 + a2b1)

quaternions can similarly be multiplied,

q1 · q2 = (x1 + iy1 + jz1 + kw1)(x2 + iy2 + jz2 + kw2) (3.1)

= x1x2 + ix1y2 + jx1z2 + kx1w2 + iy1x2 + i2y1y2 + ijy1z2 + iky1w2 + jz1x2 + jiz1y2 +

j2z1z2 + jkz1w2 + kw1x2 + kiw1y2 + kjw1z2 + k2w1w2

= x1x2 + ix1y2 + jx1z2 + kx1w2 + iy1x2 − y1y2 + ky1z2 − jy1w2 + jz1x2 − kz1y2 − z1z2 +

iz1w2 + kw1x2 + jw1y2 − iw1z2 − w1w2

q1 · q2 = (x1x2 − y1y2 − z1z2 − w1w2) + i(x1y2 + y1x2 + z1w2 − w1z2)

+j(x1z2 − y1w2 + z1x2 + w1y2) + k(x1w2 + y1z2 − z1y2 + w1x2)

Now let’s look at properties of inverse:
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q∗

|q|2 = x−yi−zj−wk√
((x+yi+zj+wk)(x−yi−zj−wk))

= x−yi−zj−wk
(x+yi+zj+wk)(x−yi−zj−wk)

= x−yi−zj−wk
x2−xyi−xzj−xwk+xyi−y2i2−yzij−ywik+xzj−yzji−z2j2−zwjk+xwk−wyki−wzkj−w2k2

= x−yi−zj−wk
x2−xyi−xzj−xwk+xyi+y2−yzk−ywj+xzj+yzk+z2−zwi+xwk+wyj+wzi+w2

= x−yi−zj−wk
x2+y2+z2+w2

To divide quaternions, we multiply one quaternion to the inverse of the quaternion to be

divided.

Let q1 = a+ bi+ cj + dk and q2 = x+ yi+ zj + wk, then

q1
q2

= q1q
−1
2 = a+ bi+ cj + dk × x−yi−zj−wk

x2+y2+z2+w2

= (a+bi+cj+dk)(x−yi−zj−wk)
x2+y2+z2+w2

= ax−ayi−azj−awk+bxi−byi2−bzji−bwik+cjx−cyji−czj2−cwjk+dkx−dyki−dzkj−dwk2
x2+y2+z2+w2

= ax−ayi−azj−awk+bxi+by−bzk−bwj+cxj−cyk+cz+cwi+dxk+dyj−dzi+dw
x2+y2+z2+w2

= (a+by+cz+dw)+(−ay+bx+cw−dz)i+(−az−bw+cx+dy)j+(−aw−bz−cy+dx)k
x2+y2+z2+w2

If we multiply a quaternion by it’s own inverse, will the value be equivalent to multiplying

the inverse by a quaternion?

Let q = x+ yi+ zj + wk

33



And as simplified above

q∗

|q|2 = x−yi−zj−wk
x2+y2+z2+w2

qq∗

|q|2 = (x+yi+zj+wk)(x−yi−zj−wk)
x2+y2+z2+w2

= x2+y2+z2+w2

x2+y2+z2+w2 = 1

This shows that multiplying the inverse from the left or multiplying it from the right will

yield the same result of 1. This means a quaternion multiplied by its multiplicative inverse is

commutative, an unexpected fact given normally multiplying quaternions is not commutative.

Quaternions and inverse quaternions have the possibility of being zero divisors. This is in

part by the norm of a quaternion,|q| =
√
qq∗. There is a theorem that states “The quaternion

algebra ( (a,b)
F

) is a division algebra if and only if its norm formN : (a,b
F

)F satisfiesN(q) = 0⇒

q = 0, i.e. the norm form is anisotropic.” By this theorem, we can consider the contrapositive.

If the norm does not satisfy N(q) = 0 ⇒ q = 0, then the quaternion algebra is not a division

algebra. This means there can be cases where the quaternion and it’s inverse being multiplied

is not equal to 0 and taking the norm will become 0, but note this means it will not be a division

algebra.

3.3 Rotations

Quaternions have proved to be a great help in advancing computer games, robotics, and

spaceflight to name a few. With it, programmers can avoid gimbal lock. A gimbal is defined as

”a mechanism, typically consisting of rings pivoted at right angles, for keeping an instrument

such as a compass or chronometer horizontal in a moving vessel or aircraft.” The gimbals that

would result in a gimbal lock are three ring gimbals in which each ring represents a different

axis allowing for 3d rotations. A gimbal lock is the loss of a degree of freedom when two

axes get into a parallel figuration causing all new rotations to only occur about the axis not
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parallel. Figure 3.1 shows on the left an object where the three gimbals are in an independent

configuration and therefore with three degrees of freedom [9]. On the right shows two of the

axles having got into a parallel configuration, leaving the object only able to move around a

vertical axis and therefore being gimbal locked [10].

Figure 3.1: Gimbal Lock Example

The most notable occurance of gimbal lock would be Apollo 11. In a race against time,

NASA scientists decide to use a three gimbal mechanism instead of four gimbals. According

to Paul Fjeld, a writer of the Apollo Lunar Surface Journal, ”If the middle (Z) gimbal was +-

90 degrees roll, the inner gimbal axis would be coincident with the outer gimbal axis and you

would loose a dimension. Near that point, in a closed stabilization loop, the torque motors could

theoretically be commanded to flip the gimbal 180 degrees instantaneously. Instead, in the LM,

the computer flashed a ’gimbal lock’ warning at 70 degrees and froze the IMU at 85 degrees,

flashing an unfriendly ’no att’ light. Then it waited for a realignment.” [6] Quaternions are a

solution to this problem of gimbal lock by allowing one to take a single rotation equivalent to

the set of three gimbal rotations that, if done in the wrong order, creates the problem of gimbal

lock.

Unit Quaternions are able to represent any rotations in R3 where
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q = w + xi+ yj + zk

and

w2 + x2 + y2 + z2 = 1

The real part of the equation, w, is thought of as a scalar part while the rest of the equation,

xi + yj + wk, is thought of as an imaginary part, or the vector part. The i, j, and k axis are

all perpendicular to each other and the real axis. To rotate an object in 3D, you would need

a vector, a point p, and the degrees with which you are trying to rotate the object. You will

then multiply the sine of half the angle to the vector and then add the cosine of the half the

angle needed to create the quaternion that will represent the rotation of this object. This can be

written as:

p = ai+ bj + ck

and

q = cos(
θ

2
) + sin(

θ

2
)(xi+ yj + zk) (3.2)

where x2 + y2 + z2 = 1

Note that we must divide the angle to be rotated around in equation (3.2) by 2 to accurately

implement the given angle. This is because we apply the quaternion twice, as will be seen next.

To carry out the rotation you would multiply q to p and then take that product and multiply it

to the inverse of q, also known as conjugating p by q. This can be written as:

qpq−1 (3.3)

or
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(cos( θ
2
) + sin( θ

2
))(xi+ yj + zk) · (ai+ bj + ck) · −(cos(

θ
2
)+sin( θ

2
)(xi+yj+zk))

|cos( θ
2
)+sin( θ

2
)(xi+yj+zk)|2

Multiplying two quaternions has an equivalent relationship to scaling one quaternion by

the magnitude of the other and then applying a 4 dimensional rotation. This can be written as:

q1 · q2 = ( q1
||q1||)||q1|| · q2

While a quaternion, q, and the negative of that quaternion, or –q, represent the same

rotation, the rest of the relationships between rotations and quaternions are unique. As we

learned earlier, quaternion multiplication is not commutative. Representing it with rotations,

you can see how quaternions are not commutative visually. For example, consider cube i in

Figure 3.2. If the cube is rotated 45◦ around the x-axis and then 45◦ around the y-axis, it results

in ii. If cube i is rotated 45◦ around the y-axis first, and then rotated around the x-axis by 90◦,

it results in cube iii. As one can see, cubes ii and iii are in two different positions [5].

Figure 3.2: Quaternion Rotation Example

3.4 Applications

3.4.1 Space Navigation

To properly navigate an aircraft, it is essential to understand the aircraft’s rotations to properly

translate the compass. To do this, it is essential to predict the aircraft’s rotation movements

37



before they are executed. These directions can be expressed as vectors emerging from the

cockpit, described in the aircraft’s frame. One way to do this would be to use Euler angles, but

this is very costly and the calculations are more involved and complex, creating an oppurtunity

for greater error. A less expensive way to calculate rotations would be to use quaternions.

To rotate with quaternions, one needs the rotation quaternion

Qn(θ) = (cos(θ/2), nsin(θ/2))

where n is a given unit row vector and θ is a given angle.

A double multiplication will be applied using rotation quaternions:

(0, x′) = Qn(θ)(0, x)Q−n(θ) (3.4)

Where x is a given vector.

Let’s consider an example in which a vector (2,0,0) needs to be rotated by 90 degrees

about the y axis [8]. Using equation (3.4)

(0, x′) = (cos(90
2

), (0, 1, 0)sin(90
2

))(0, (2, 0, 0))(cos(90
2

), (0,−1, 0)sin(90
2

)

= (
√
2
2
, (0, 1, 0)

√
2
2

)(0, (2, 0, 0))(
√
2
2
, (0,−1, 0)

√
2
2

)

= 1
2
(1, 0, 1, 0)(0, 2, 0, 0)(1, 0,−1, 0)

= (1, 0, 1, 0)(0, 1, 0, 0)(1, 0,−1, 0)

Now applying equation (3.1)

= (0, 1, 0,−1)(1, 0,−1, 0)

(0, 0, 0,−2)

This idea can be implemented to determine the aircraft’s axes so that a pilot may know

information like where the compass direction will lie, where ”up/down” is, and, if another

aircraft is nearby, where it could be seen from their point of view.

38



Given vectors N, E, D, which stands for north, east, and down respectively, we will convert

these values to to vectors x,y and z which describes the aircraft’s axes. Let

N=


−0.429

0.379

0.820

, E=


−0.663

−0.749

0

, D=


0.614

−0.543

0.572



Now let x0 = N, y0 = E, andz0 = D.

In this example, we want to rotate the aircraft axes around z0 by 45 degrees, and then

rotate about our new y0, called y1, by 20 degrees.

First,we will find x1, y1, and z1 we will use equation (3.4)

For x1

x1 = (cos(45/2), z0sin(45/2)(0, x0)(cos(45/2),−z0sin(45/2)

x1 = (0.9239, 0.2350,−0.2078, 0.2189)(0,−0.4290, 0.3790, 0.8200)(0.9239,−0.2350, 0.2078,−0.2189)

x1 = (0,−0.7716,−0.2615, 0.5797)

For y1

y1 = (cos(45/2), z0sin(45/2)(0, y0)(cos(45/2),−z0sin(45/2)

y1 = (0.9239, 0.2350,−0.2078, 0.2189)(0,−0.6630,−0.7490, 0)(0.9239,−0.2350, 0.2078,−0.2189)

y1 = (0,−0.1660,−0.7978,−0.5798)

For z1
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z1 = (cos(45/2), z0sin(45/2)(0, z0)(cos(45/2),−z0sin(45/2) = z0

z1 = (0, 0.614,−0.543, 0.572)

Note that rotating z around itself does not change it’s location.

Now, we will rotate x1, y1, and z1 around y1 to get x, y, and z needed.

For x,

x = (cos(20/2), y1sin(20/2)(0, x1)(cos(20/2),−y1sin(20/2)

x = (0.9848,−0.0288,−0.1244,−0.1212)(0,−0.7716,−0.2615, 0.5797)(0.9848, 0.0288, 0.1244, 0.1212)

x = (0,−0.9279,−0.0246, 0.3739)

For y,

y = (cos(20/2), y1sin(20/2)(0, y1)(cos(20/2),−y1sin(20/2)

y = y1

Note: rotating around y1 around the y-axis does not change it’s location

For z,

z = (cos(20/2), y1sin(20/2)(0, z1)(cos(20/2),−y1sin(20/2)

z = (0.9848,−0.0288,−0.1244,−0.1212)(0, 0.6140,−0.5430, 0.5720)(0.9848, 0.0288, 0.1244, 0.1212)

z = (0, 0.3079,−0.6190, 0.7230)
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Now we convert the quaternions back to vector form, resulting in

x=


−0.9279

−0.0246

0.3739

, y=


−0.1660

−0.7978

−0.5798

, z=


0.3079

−0.6190

0.7230



More detailed calculations done in Matlab can be found in Appendix A.This solution

help to give a set of components required to allow another aircraft to have coordinates specific

coordinates in the frame of our aircraft. To find the coordinates of the other aircraft within the

frame of our aircraft, we take the dot product of our solution to a vector representing the other

aircraft relative to us. This vector is

rthem←us =


−725

−921

92


where r is in km.

3.4.2 3D Game Navigation

Similarly to Aerospace navigation, computer graphics rely on quaternions to rotate objects

in 3D simulations, video games, robots and virtual reality. And, just as Apollo 11 had a problem

with gimbal lock, computer games can also run into this problem, and avoid it with quaternions.

In any of the above computer graphics situations, to properly navigate through, one needs

smooth rotations. If one rotates a character in a 3D game simulation if the object isn’t able to

smoothly turn, ie when rotating the character to the left it goes straight to a 90 degree turn with

no ability to turn it any degree between, the controller would not be able to properly navigate

the character through the game. Interpolating quaternions allow for smooth rotations giving the
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character the ability to turn with more precision. Normally one starts with a given vector. The

spherical interpolant for a vector is

v = sin(1−t)θ
sinθ v1 + sintθ

sinθ v2

Simply replacing v1 and v2 with q1 and q2. the spherical interpolant for quaternions is:

qs =
sin(1− t)θ

sinθ
q1 +

sintθ

sinθ
q2 (3.5)

where

q1 = [s1, x1i+ y1j + z1k]

q2 = [s2, x2i+ y2j + z2k]

and

θ = cos−1( q1·q2
|q1||q2|)

or, if working with unit-norm quaternions,

θ = cos−1(s1s2 + x1x2 + y1y2 + z1z2) (3.6)

Then, we will substitute qs into equation (3.3) using the vector method below:

p′ =


2(s2 + x2)− 1 2(xy − sz) 2(xz + sy)

2(xy + sz) 2(s2 + y2)− 1 2(yz − sx)

2(xz − sy) 2(yz + sx) 2(s2 + z2)− 1



xp

yp

zp

 (3.7)

where [0, p′] = qpq−1

Let’s consider a simple example [17]. Let v1 = (0, 1, 0) and v2 = (1, 0, 0) Consider two

scenerios: a point at (0,1,1) that is rotated 90 degrees about v1 and then a point at (0,1,1) that is

rotated 90 degrees about the v2.
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q1 = [cos1
2
θ, sin1

2
θv1]

q1 = [cos(45), sin(45)j]

q1 = [
√
2
2
,
√
2
2
j]

q2 = [cos1
2
θ, sin1

2
θv2]

q2 = [cos(45), sin(45)i]

q2 = [
√
2
2
,
√
2
2
i]

Then, by (3.6)

θ = cos−1(
√
2
2

√
2
2

) + (0)(
√
2
2

) + (
√
2
2

)(0) + (0)(0))

θ = cos−1(
√
2
2

√
2
2

) = 60◦

Now, to find the mid-way point between two interpolated quaternions where t=0.5, one

would use (3.5)

qs = sin((1−0.5)(60))
sin(60) [

√
2
2 ,
√
2
2 j] + sin((0.5)(60))

sin(60) [
√
2
2 ,
√
2
2 i]

qs =
1
2√
3
2

[
√
2
2 ,
√
2
2 j] +

1
2√
3
2

[
√
2
2 ,
√
2
2 i]

qs = 1√
3
[
√
2
2 ,
√
2
2 j] + 1√

3
[
√
2
2 ,
√
2
2 i]

qs = [
√
2√
3
, 1√

6
i+ 1√

6
j]

Then substituting into (3.7)

p′ =


2((
√
2√
3
)2 + ( 1√

6
)2)− 1 2(( 1√

6
)( 1√

6
)− (

√
2√
3
)(0)) 2(( 1√

6
)(0) + (

√
2√
3
)( 1√

6
))

2(( 1√
6
)( 1√

6
) + (

√
2√
3
)(0)) 2((

√
2√
3
)2 + ( 1√

6
)2)− 1 2(( 1√

6
)(0)− (

√
2√
3
)( 1√

6
))

2(( 1√
6
)(0)− (

√
2√
3
)( 1√

6
)) 2(( 1√

6
)(0) + (

√
2√
3
)( 1√

6
)) 2((

√
2√
3
)2 + (0)2)− 1




0

1

1
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p′ =


2
3

1
3

2
3

1
3

2
3
−2
3

−2
3

2
3

1
3




0

1

1



p′ =


1

0

1


Therefore the vector between our two scenarios at half-time would be at [1,0,1] as can be

seen in the figure below

Figure 3.3: Quaternion Interpolation Example

The more points in time the vector is interpolated, the smoother, and more accurate, a turn

will be. To get a visual idea of interpolation movements, let us begin by finding the quaternion

product of q1 and q2.

Let us begin with q1. Recall q1 = [
√
2
2
,
√
2
2
j]. Then using Equation (3.7),

p′1 =


2(
√
2
2

2
+ 02)− 1 2(0−

√
2
2

(0)) 2(0 + (
√
2
2

)(
√
2
2

))

2((0)(
√
2
2

) + (
√
2
2

)(0)) 2((
√
2
2

)2 + (
√
2
2

)2)− 1 2((
√
2
2

)(0)− (
√
2
2

)(0))

2((0)(0)− (
√
2
2

)(
√
2
2

)) 2((
√
2
2

)(0) + (
√
2
2

)(0)) 2((
√
2
2

)2 + (0)2)− 1




0

1

1
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p′1 =


0 0 1

0 1 0

−1 0 0




0

1

1



p′1 =


1

1

0



Then, with q2 = [
√
2
2
,
√
2
2
i] and using Equation (3.7),

p′2 =


2((
√
2
2

)2 + (
√
2
2

)2)− 1 2((
√
2
2

)(0)− (
√
2
2

)(0)) 2((
√
2
2

)(0) + (
√
2
2

)(0))

2((
√
2
2

)(0) + (
√
2
2

)(0)) 2((
√
2
2

)2 + (0)2)− 1 2((0)(0)− (
√
2
2

)(
√
2
2

))

2((
√
2
2

)(0)− (
√
2
2

)(0)) 2((0)(0) + (
√
2
2

)(
√
2
2

)) 2((
√
2
2

)2 + (0)2)− 1




0

1

1



p′2 =


1 0 0

0 0 −1

0 1 0




0

1

1



p′2 =


0

−1

1
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Looking at p′1, p′2 and p′ altogether, one can see below how the movements would be along a

3D space With p′1 representing when t=0, p′2 representing t=1, and p′ representing t=0.5.
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Appendix A
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6/5/20 7:20 PM C:\Users\alas...\thesisaerospaceexample.m 1 of 2

%Aerospace example
 
%finding y1. Note y=y1
c=cos(0.785398/2)
s=sin(0.785398/2)
 
z0= [0.614; -0.543; 0.572]
y0= [-0.663; -0.749; 0]
 
z0s= z0*s
 
qz0= [c ; z0s]'
 
qy0= [0; y0]'
 
qz0n=[c; -z0s]'
 
qprod1=quatmultiply(qz0,qy0)
 
qprod2=quatmultiply(qprod1,qz0n)
 
c2=cos(0.349066/2)
s2=sin(0.349066/2)
 
qy1=qprod2
 
y1= [-0.1660   -0.7162   -0.6978]
 
 
%finding x1 
 
c=c
s=s
 
qz0= qz0
qz0n=qz0n
 
x0= [0 -0.429 0.379 0.820]
 
qx1prod=quatmultiply(qz0,x0)
 
qx1prod2=quatmultiply(qx1prod,qz0n)
 
x1=qx1prod2
 
%finding x
 
xqy1=[c2 s2*y1]
 
xqy1n=[c2 -s2*y1]
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6/5/20 7:20 PM C:\Users\alas...\thesisaerospaceexample.m 2 of 2

 
qxprod=quatmultiply(xqy1,x1)
 
qxprod2=quatmultiply(qxprod,xqy1n)
 
x=qxprod2
 
% finding z Note: z1=z0
 
z0= [0 0.614 -0.543 0.572]
 
z1=z0
 
qzprod=quatmultiply(xqy1,z1)
qzprod2=quatmultiply(qzprod,xqy1n)
 
z=qzprod2
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MATLAB Command Window Page 1

>> thesisaerospaceexample
 
c =
 
    0.9239
 
 
s =
 
    0.3827
 
 
z0 =
 
    0.6140
   -0.5430
    0.5720
 
 
y0 =
 
   -0.6630
   -0.7490
         0
 
 
z0s =
 
    0.2350
   -0.2078
    0.2189
 
 
qz0 =
 
    0.9239    0.2350   -0.2078    0.2189
 
 
qy0 =
 
         0   -0.6630   -0.7490         0
 
 
qz0n =
 
    0.9239   -0.2350    0.2078   -0.2189
 
 
qprod1 =
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MATLAB Command Window Page 2

    0.0001   -0.4486   -0.8371   -0.3138
 
 
qprod2 =
 
   -0.0000   -0.1660   -0.7978   -0.5798
 
 
c2 =
 
    0.9848
 
 
s2 =
 
    0.1736
 
 
qy1 =
 
   -0.0000   -0.1660   -0.7978   -0.5798
 
 
y1 =
 
   -0.1660   -0.7162   -0.6978
 
 
c =
 
    0.9239
 
 
s =
 
    0.3827
 
 
qz0 =
 
    0.9239    0.2350   -0.2078    0.2189
 
 
qz0n =
 
    0.9239   -0.2350    0.2078   -0.2189
 
 
x0 =
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MATLAB Command Window Page 3

         0   -0.4290    0.3790    0.8200
 
 
qx1prod =
 
    0.0001   -0.6497    0.0636    0.7575
 
 
qx1prod2 =
 
         0   -0.7716   -0.2615    0.5797
 
 
x1 =
 
         0   -0.7716   -0.2615    0.5797
 
 
xqy1 =
 
    0.9848   -0.0288   -0.1244   -0.1212
 
 
xqy1n =
 
    0.9848    0.0288    0.1244    0.1212
 
 
qxprod =
 
    0.0155   -0.8636   -0.1473    0.4825
 
 
qxprod2 =
 
    0.0000   -0.9279   -0.0246    0.3739
 
 
x =
 
    0.0000   -0.9279   -0.0246    0.3739
 
 
z0 =
 
         0    0.6140   -0.5430    0.5720
 
 
z1 =
 

54



MATLAB Command Window Page 4

         0    0.6140   -0.5430    0.5720
 
 
qzprod =
 
    0.0195    0.4677   -0.5927    0.6553
 
 
qzprod2 =
 
    0.0000    0.3079   -0.6190    0.7230
 
 
z =
 
    0.0000    0.3079   -0.6190    0.7230
 
>> 
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