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Abstract

This thesis presents a vehicle agnostic steering controller for path following. Many active

safety systems, such as collision avoidance and lane centering, as well as all SAE Level 2+

autonomous vehicles, rely on a lateral controller to follow a desired path. The vehicle agnostic

path following controller presented in this thesis is comprised of two adaptive controllers in

a cascaded architecture, with the outer loop controlling the path dynamics and the inner loop

controlling the vehicle dynamics. First, some commonly used tire models and lateral vehicle

models are introduced. Next, a sensitivity analysis is performed on a variety of lateral con-

trollers under the influence of model uncertainties. This analysis is used to develop the vehicle

agnostic path following controller, which is tested in simulation at multiple velocities on a

sedan, an SUV, a pickup truck, and a minivan. In simulation, the controller is able to adapt

to each platform and achieve good lane keeping performance around a curvy track at a wide

range of speeds. The controller is then implemented and validated in real-time on a Lincoln

MKZ, a Class-8 Peterbilt 579 cab, and a Peterbilt 579 with a loaded trailer. During a double

lane change maneuver, the vehicle agnostic path following controller maintains maximum path

tracking errors of approximately half a meter with all three of these setups. The controller is

also implemented on a 1/10th scale RC car using a vision-based lane centering system to gen-

erate the reference path. Even on this scaled platform, the controller is able to follow the lane

lines at multiple speeds, with maximum lookahead errors of 15 cm. Overall, the controller is

shown to perform well on four simulated platforms and four experimental platforms at a range

of longitudinal speeds, demonstrating the flexibility of the path following controller.
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Chapter 1

Introduction

1.1 Motivation

Automobiles are an integral part of everyday life for most Americans. In the United States,

automobiles outnumber the number of driving age adults [1, 2]. As beneficial and indispensable

as motor vehicles are, they also have brought a significant cost of life. Over the last 20 years,

an average of over 38,000 people per year have died from motor vehicle crashes in the United

States [3, 4]. Multiple studies have associated over 90% of these crashes as the result of human

driving error [5].

Advances in vehicle autonomy promise a safer future on the roads. Passive safety systems

such as airbags, seat belts, and crumple zones have worked to save countless lives but do

nothing to prevent the accident. Active safety systems, on the other hand, attempt to prevent

accidents from ever occurring. Advanced Driver-Assistance Systems (ADAS) include features

on vehicles such as adaptive cruise control (ACC), lane keeping systems (LKS), electronic

stability control (ESC), anti-lock brake systems (ABS), and more. These systems have been

estimated to have saved over 600,000 lives from the year 1960 to 2012 [6]. Electronic stability

control alone has been able to greatly reduce the number of fatal single car accidents [7]. The

result of vehicle safety systems can be seen in Figure 1.1, where the number of deaths per mile

driven has decreased greatly with the addition of passive and active safety systems [8].

Many of these ADAS systems qualify as low levels of vehicle autonomy and provide

the foundation for full autonomous driving. The increasing availability of cheaper sensors,

actuators, and powerful embedded computing platforms over the last ten years has lead to the
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Figure 1.1: United States Motor Vehicle Fatalities.
Used with permission from the NSC [8].

adoption of automated driving features in almost every new car sold today. Furthermore, every

major car manufacturer has put a huge emphasis and investment into achieving high levels of

autonomy in the near future [9–16].

While safety is the strongest motivator for vehicle autonomy, there are numerous sec-

ondary benefits. Autonomous vehicles can increase the efficiency and reduce the costs for the

trucking industry. They have the ability to reduce traffic greatly, allow people to work during

their commutes, improve parking, and many more benefits [17]. The combination of these

and the safety benefits has sparked the autonomous vehicle (AV) industry in the last 15 years,

including many fast-growing startups.

The Society of Automotive Engineers (SAE) defines six levels of vehicle autonomy [18].

Level 0 is where the human driver is performing almost all driving tasks. Systems that provide

warnings or emergency braking fall into this category. Most of the convenience and safety

features found on new cars today fall into Level 1 and 2. These systems require the driver to

maintain focus on driving, but the vehicle handles some parts of the driving task itself, such as

lane centering or adaptive cruise control. Level 3 takes this a step further to where the driver is

fully disengaged from the operation of the vehicle but must be ready to drive when requested.
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Lastly, levels 4 and 5 are what most people consider driverless vehicles, where the human is

just a passenger. These levels are explained in more detail in Figure 1.2.

Figure 1.2: SAE Levels of Automation [18].

This thesis focuses on robust path following for an autonomous driving. Path following

is the ability of a vehicle to follow a given reference path, such as the center of a lane or a

specific route between two locations. Path following control is an integral component of any

level 2 or higher autonomous system. The path following controllers are also known as steering

controllers because they calculate the required steering commands for a vehicle to follow the

reference path. In a lane keeping system, the steering controller uses inputs from a camera or

other sensors to make the vehicle follow the center of the lane. Steering controllers are also

needed for any waypoint path following, such as in Level 2 class-8 truck platooning [19] or

automated farming [20]. For this work, the driver is assumed to be completely hands-off and

the steering done solely by the controller such as in a Level 2 or higher system.
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1.2 Related Work

A wide range of architectures for steering control have been used for lane keeping and path

following. Simple open loop controllers relying only on the vehicle kinematics have been used

successfully [21], but do not incorporate any state feedback. Using a kinematic based steering

controller, Stanford won the 2005 DARPA grand challenge (Figure 1.3) [22]. Proportional

integral derivative (PID) controllers include feedback on the desired states, but require time

intensive tuning [23, 24]. Dynamic model inversion has also been used to create a higher

performance controller without as much tuning, but this requires thorough knowledge of the

vehicle model [25].

Figure 1.3: Stanley, the winner of the 2005 DARPA Grand Challenge [22].

More complex controllers exist that achieve better tracking performance through using

lookahead error for the feedback, instead of the error at the vehicle body [26]. The lookahead

distance provides damping to the system and is one of the most commonly used methods.

However, the lookahead distance must be selected carefully or unwanted behavior including

oscillations can occur [27]. This is dependent on the longitudinal velocity as well as other

parameters.

Performance can also be improved by using model predictive control (MPC). MPC pre-

dicts the vehicle response into the future and optimizes the inputs over a time horizon to achieve
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the desired output [28, 29]. The first input command is sent and the process is then repeated at

each time step. MPC can incorporate hard and soft constraints from the actual system [30]. The

complexity in solving the optimization relegated MPC to industrial applications until recently,

when more powerful computing platforms became available. Nonlinear model predictive con-

trol (NMPC) can increase the fidelity of the prediction even more, but at the cost of computation

time for the optimization [31, 32].

The above methods all require an accurate vehicle model, but often the model parameters

are extremely difficult to estimate. In addition, unmodeled disturbances from road bank, wind,

and other external forces can cause performance and stability guarantees to be violated. One

proposed way of guaranteeing performance in the face of model inaccuracy is to design the

control law around the ”center of percussion” where the rear lateral forces are eliminated [33].

This was shown to perform well even under very dynamic maneuvers. Another robust method

is to incorporate the quadratic stabilization technique and input constraints. This allows a four

wheel steer vehicle to limit wheel slip and have good lane keeping performance even under the

disturbances from air drag and road curvature [34].

A different approach for control at the limit of handling was to prescribe a desired velocity

vector at the center of gravity at each time step. The vector field created is then analyzed in the

context of limited friction and acceleration in order to determine a constrained vector. This is

then used as the reference to the controller. This method was able to show asymptotic stability

even at the limits of tire grip [35].

All of these robust methods were able to maintain performance and stability during limit

handling and while under the influence of unmodeled disturbances. However, they still rely on

a fairly accurate vehicle model without too much uncertainty. On the other hand, adaptive con-

trollers are designed to handle very large amounts of model uncertainty while still maintaining

stability. This uncertainty can be from many sources such as nonlinearities, time-varying mod-

els, coupled dynamics, unknown disturbances, and measurement noise. Adaptive controllers

typically change the controller gains based on system variations or parameter estimation algo-

rithms. They have been used extensively in aerospace applications, especially where the system

dynamics can change rapidly and there is constant excitation.
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A very simple adaptive controller, where the lookahead distance is adapted based on the

vehicle model and longitudinal speed, was able to show improved path tracking abilities under

a wide range of speeds [36]. While this method could handle model variation due to velocity

differences, it still assumed that the other vehicle parameters were known well. An adaptive

approach using a self tuning regulator was shown to work well when the vehicle parameters

were unknown but assumed to belong to a compact known set [37]. This works as long as one

can bound the vehicle parameters with certainty, but breaks down otherwise.

Most adaptive control also requires persistent excitation in order for the controller to con-

verge asymptotically. Some classical modifications that are done to adaptive control in order to

improve its robustness such as σ-modification [38], e-modification [39], and a projection oper-

ator [40]. These ensure the weight matrix used to calculate the adaptive gains is bounded even

when there is unstructured uncertainty. Another way of guaranteeing stability with unmodeled

dynamics is using model reference adaptive control with added robustness terms as described

in [41]. These controllers add stability in the presence of unmodeled dynamics and lack of

excitation, but in doing so relax the performance.

An alternative method to handle the lack of persistent excitation is by using concurrent-

learning adaptive control, which restricts the weight updates so that the response to current data

is not outweighed by stored data [42]. If the uncertainty can be modeled as a combination of

nonlinear bases, radial basis function neural networks can be effectively used as the adaptive

elements. This method is able to guarantee exponential convergence of the neural network

parameters to values very close to the ideal values, without requiring persistent excitation [43].

Even the adaptive controllers that handle model uncertainty rely on an estimate of the

dynamic model. This is feasible if the vehicle type is not changed drastically, but this thesis

proposes using the principles of adaptive control to design a steering controller that requires

no vehicle model information. This controller will also be vehicle agnostic, able to handle a

wide range of ground vehicle types without re-tuning. This will be a significant contribution

considering the time and expense associated with tuning lateral controllers.
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1.3 Research Contributions

A list of the contributions of this thesis are shown below.

• A survey of commonly used vehicle and tire models

• A sensitivity analysis on a range of lateral vehicle controllers to determine which methods

are more affected by model uncertainty

• A new control architecture that is vehicle independent with good path tracking perfor-

mance

• A real-time experimental implementation of the vehicle agnostic path following con-

troller and results from RTK-GPS path following and vision-based lane keeping on a

wide range of vehicle types

1.4 Thesis Outline

This chapter provided the motivation and background of this research. Chapter 2 goes through

the coordinate frames, tire models, and vehicle models used in this thesis. Chapter 3 conducts a

sensitivity analysis of five lateral controller types by measuring each of their performance under

model parameter uncertainty. Chapter 5 presents the vehicle agnostic path following controller

formulation and architecture. Chapter 6 discusses the simulation and experimental setup. It

also describes the path generation methods for the various experiments. Then, the results of the

simulation and real-world experiments are given. Lastly, chapter 6 provides some conclusions

and insights that were made from this research.
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Chapter 2

Ground Vehicle and Tire Modeling

For safe design and control of autonomous vehicles, most of the initial testing and proof of

concept must be done in simulation. Simulation environments reflect aspects of the real-world

environment without the safety, financial, and legal risks involved in experimental testing. A

simulation requires a model of the vehicle, whether formulated empirically or derived theo-

retically based on the vehicle’s physical parameters. Furthermore, model-based controllers

typically need an accurate model to guarantee performance and stability.

Generally, two types of models are used for most path following control: a lateral vehi-

cle model and a tire model. The lateral model represents the motion of the vehicle due to the

external forces. A tire model is another integral part of formulating the vehicle dynamics. As

the only interface between the ground and the vehicle, the majority of the lateral and longitu-

dinal forces are transferred through the tires. The following section will discuss the coordinate

frames used to define the vehicle and its environment. The next section introduces a few com-

monly employed tire models. Lastly, models of the vehicle itself will be presented in an order

of increasing complexity.

2.1 Coordinate Frames

Autonomous vehicles require a frame of reference to understand their motion within the envi-

ronment around them. This section defines a set of coordinate frames and associated notation

that will be used throughout the remainder of this thesis. All of these coordinate systems are

three-dimensional Cartesian systems using the right-handed convention. Note, however, many
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non-Cartesian frames are also used in practice, such as the geodetic system (latitude-longitude-

altitude). The primary coordinate systems used in this thesis are the vehicle frame, the tire

frame, the navigation frame, the global frame, and the camera frame.

2.1.1 Vehicle Frame

The vehicle frame used follows the standards established by SAE J670 [44] and ISO 8855

[45]. This system is body-fixed with the origin at the vehicle center of gravity (CG), the x-axis

extends out the front of the vehicle, the y-axis comes out the passenger side, and the z-axis

down out the floor pan. This can be seen in Figure 2.1 with the x, y, and z axes in blue, green,

and red respectively.

Figure 2.1: Vehicle-Fixed Coordinate System.

Vehicle model from [46].

Rotation angles are also defined based on these axes and are defined as positive when in

the counterclockwise direction according to the right hand rule. A rotation about the x-axis is

referred to as roll and is denoted by φ. A rotation about the y-axis is referred to as pitch and

is denoted by θ. A rotation about the z-axis is referred to as yaw or heading, is denoted by ψ,

and its derivative is denoted as ψ̇ or r. Note that this follows the commonly used Euler angle

notation.

The vehicle frame is used to derive the vehicle models presented in Section 2.3. The

terms longitudinal and lateral refer to the x and y vehicle axes, respectively. Additionally,
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reference path inputs for control systems are frequently expressed in the vehicle frame, making

the control formulations simpler.

2.1.2 Tire Frame

A tire coordinate system is also instrumental to the derivation of a vehicle model, tire model,

and controller of a vehicle. The origin of the tire frame is fixed to the center of the wheel. The

x-axis extends forward out the front of the tire parallel to the ground, and the y-axis extends

to the right out of the wheel center. The front wheels are rotated around the tire z-axis as the

vehicle is steered. The steering angle is the angle between the vehicle x-axis and the tire x-axis

and will be referred to as δ in the following sections. Figure 2.2 shows how the tire frame is

oriented relative to the vehicle and the navigation frame.

Figure 2.2: Vehicle and Tire Coordinate Frame Relative to NED.

2.1.3 Navigation Frame

The vehicle’s motion and position is usually measured within a local navigation frame. This

thesis employs the North-East-Down (NED) convention traditionally used in aerospace and

control applications. The NED coordinate system defines a tangent plane along the surface

of the earth aligned with the North and East directions. Figure 2.2 shows the vehicle within

the NED frame. Heading is defined as the angle between the navigation frame N -axis and the

10



x-axis of the vehicle. Often the origin of the NED frame is aligned with the initial position of

the vehicle and the North-axis is aligned with the initial heading instead of true north.

2.1.4 Global Frame

When the vehicle is travelling a long distance, the NED frame is insufficient to measure the

path of the vehicle due to the curvature of the earth. For these applications and for systems

relying on GPS measurements, the Earth-Centered, Earth-Fixed (ECEF) coordinate system is

used [47]. This is officially defined by WGS84 as the origin at the earth’s center of gravity, the

Z-axis out the North Pole, the X-axis out the intersection of the Prime Meridian and Equator,

and the Y -axis 90◦ East also along the Equator. This is depicted in Figure 2.3 as well as a

NED frame relative to the ECEF frame. By knowing just the origin of the NED frame in ECEF

coordinates and the initial heading, simple transformations between the two frames can be

made. This is particularly useful in converting GPS positions and velocities into the navigation

frame.

Figure 2.3: North-East-Down and Earth-Centered, Earth-Fixed Coordinate Systems.

2.1.5 Camera Frame

Chapter 5 presents a camera-based path generation system. This system employs a camera that

is rigidly fixed to the roof of the car and used the modern camera coordinate system shown in
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Figure 2.4. This coordinate system defines the Z-axis as forward out the center of the camera,

the Y -axis as down, and the X-axis to the right. To transform between the camera frame and

the vehicle frame, the lever arm and orientation between the two must be known.

Figure 2.4: Camera Coordinate System.

Figure from OpenCV [48].

2.2 Tire Models

Tires are one of the most important components of a vehicle because they transmit all major

forces to the vehicle except air drag and the force due to gravity. Figure 2.5 shows the ex-

ternal forces transmitted to the vehicle through the tires. Note that the smaller friction forces

are lumped together here into the rolling resistance term, Frr. Fx controls the longitudinal

motion of the car along the driving surface and is comprised of the thrust force to the driven

tires and the breaking force to all tires. The lateral forces to all tires, Fy, determine the path

the vehicle follows and is therefore the most important to the following chapters. The normal

force to each tire, FN , determines the ride quality and also affects the available traction for Fx

and Fy. Additionally, each tire has only a very small contact area to transmit these interdepen-

dent forces. Therefore, an accurate tire model is instrumental to useful simulation and higher

dynamic control.

12



Figure 2.5: External Forces Acting on a Car.

Tires generate their lateral and longitudinal tire forces through slip. Slip is the relative

motion between the tire contact patch and the driving surface. The amount of force that is

generated by a tire is a function of its slip, which changes with a given load, pressure, and other

tire parameters. Since this thesis focuses on the path following of a vehicle, the tire side-slip

angle (α) will be the most important for tire modeling as it is needed to accurately depict lateral

force acting on the vehicle. Side slip angle is defined as the angle between the tire’s direction

of motion and its x-axis as defined in Section 2.1.2. The tire models discussed in the next few

sections are not analytical models, but common semi-empirical fits based on testing data.

2.2.1 Linear Tire Model

For low slip situations, a linear tire model is an extremely simple but accurate tire represen-

tation. The linear tire model defines the lateral force of the tire as the tire cornering stiffness

parameter (denoted Cα) multiplied by the tire slip angle (α) as shown in Equation (2.1).

Fy(α) = −Cα · α (2.1)

Tire cornering stiffness is affected by a variety of factors such as tire size, construction, width,

tread pattern, inflation pressure, and load. Of these, load and inflation pressure have the most

dramatic effect [49].

The more complex models described below also contain this linear region, however the

linear model becomes inaccurate a higher degrees of slip because the tire eventually reaches a

peak force threshold at a limited slip value. This can still be approximated simply by adding a
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saturation limit to the linear model as shown in Equation (2.2).

Fy(α) =


−Cα ∗ α, if α < αmaxforce

Fymax, otherwise
(2.2)

The linear model and the linear model with saturation limits are shown below in Figure 2.6

with tire force on the y-axis and slip angle on the x-axis.

Figure 2.6: Linear Tire Model.

2.2.2 Brush-Fiala Model

A non-linear tire model can increase the fidelity of the overall vehicle model. The Brush-Fiala

tire model is a simple non-linear model that was analytically derived but is easy to fit to tire

system identification data because it still only relies on two parameters, Cα and µ [50]. Cα is

the same tire cornering stiffness as the linear tire model and µ is a friction parameter that can

be tweaked to match the peak force. Equation (2.3) shows the mathematical representation of
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the Brush-Fiala model.

Fy(α) =


−Cα tan(α) + C2

α

3µFz
|tan(α)| tan(α)

− C3
α

27µF 2
z

tan3(α), if |α| < arctan
(

2µFz
Calpha

)
−µFzsgn(α), otherwise

(2.3)

An example Brush-Fiala tire curve can be seen in Figure 2.7. Chapter 3 uses the Brush-Fiala

model as the nonlinear tire model for the controller sensitivity analysis.

Figure 2.7: Brush-Fiala Tire Model.

2.2.3 Pacejka Magic Model

The ”Magic Formula” tire model is the name for several versions of a semi-empirical tire

model created by Pacejka and Bakker [51–53]. Since its inception, it has been considered

the gold standard for vehicle dynamicists, race teams, video game developers, and automotive
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manufacturers. Equations (2.4-2.6) below show the general formulation of this model [49],

y = D sin [C arctan (Bx− E (Bx− arctanBx))] (2.4)

Y (X) = y(x) + SV (2.5)

x = X + SH (2.6)

where

Y : output variable Fx or Fy
X : input variable tan(α) or κ

and

B : stiffness factor
C : shape factor
D : peak value
E : curvature factor
SH : horizontal shift
SV : vertical shift.

Figure 2.8 shows the Pacejka tire model plotted for various load conditions but identical

tire parameters. While this model is considered to be the most accurate of those discussed, its

complexity is the primary drawback. The number of parameters and the difficulty in intuitively

estimating them makes achieving a good empirical fit more challenging. Because of this, the

Pacejka Magic Model was not used in this thesis.
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Figure 2.8: Pacejka Magic Tire Model.

2.3 Ground Vehicle Models

This section contains some commonly used vehicle models, increasing in complexity from a

simple kinematic model up to dynamic models with many degrees of freedom (DOF). While

the more complex models are great for producing high fidelity simulations and controllers, the

simpler models are often employed for control and other instances when computation time is

a major factor such as real-time implementations. A mixture of both kinematic and dynamic

vehicle models will be used in the following chapters, depending on the needs of each applica-

tion. Note that all of the employed models constrain the vehicle to planar motion, disregarding

the effects of pitch, roll, and other weight transfer.

2.3.1 Kinematic Bicycle Model

The most commonly used model accumulates the forces on each axle into a single tire repre-

senting the left and right tire, neglecting the track width of the vehicle. This is known as the

bicycle model and is the basis for the derivation of the kinematic model in this section, the
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understeer gradient model in the next section, and the dynamic bicycle model in Section 2.3.3.

The bicycle model is shown in Figure 2.9.

Figure 2.9: Kinematic Bicycle Model.

When the four wheel vehicle model is reduced into the bicycle model, the steering angle is

assumed to be the average of the left and right steer angles. Due to rigid body assumptions, the

lateral velocities at each axle are unaffected by using the bicycle model. In order to derive the

models in the next three sections, some additional variables must be defined. The wheelbase

length (L) is the sum of the distance from the CG to the front axle (a) and the distance from the

CG to the rear axle (b). If R is the radius from the CG to the point that the vehicle is driving

around, the geometry shows that at steady state, the yaw rate is equal to the magnitude of the

velocity divided by R as shown in Equation (2.7).

ψ̇ =
|~V |
R

(2.7)
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Since the sideslip angle can be related to R in Equation (2.8) as well as steering angle (δ) and

wheelbase (L) in Equation (2.9), the turning radius can be eliminated from Equation (2.7) [54].

sin(β) =
b

R
(2.8)

β = arctan

(
b tan(δ)

L

)
(2.9)

ψ̇ =
|~V | sin(β)

b
(2.10)

ψ̇ =
|~V | sin

(
arctan

(
b tan(δ)

L

))
b

(2.11)

This model can be used in this form or simplified even further if the small angle approx-

imation is applied to the steering angle shown in Figure 2.9. The small angle approximation

states that sin θ ≈ tan θ ≈ θ and cos θ ≈ 1 for θ < 20◦. This a fair assumption considering the

steering angle rarely exceeds 20◦ when driving above extremely slow speeds, resulting in the

following relationship for yaw rate (2.12).

ψ̇ =
|~V |
L

tan(δ) =⇒ ψ̇ =
|~V |
L
δ (2.12)

When driving at higher speeds or under transient maneuvers, the kinematic bicycle model

is less accurate than the models discussed throughout the rest of the chapter. Nevertheless,

the simplicity and ease of determining wheelbase length makes the kinematic model a strong

candidate for many real-world implementations.

2.3.2 Understeer Gradient Model

In order to derive a more accurate steady state model, individual slip angles, α, are defined for

each axle as shown in Figure 2.10. This better matches real vehicles because it allows each axle

to slip different amounts and tires must have slip to generate force as shown in the tire models

section previously.
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Figure 2.10: Dynamic Bicycle Model.

The forces and moments can be summed about the vehicle center of gravity. These equa-

tions can then be simplified through the assumption of steady state cornering (ψ̈ = V̇y = 0).

∑
Fy = m

(
V 2
x

R
+ V̇y

)
=⇒ Fyf cos δ + Fyr = m

(
V 2
x

R
+ V̇y

)
= m

(
V 2
x

R

)
(2.13)∑

Mz = Izzψ̈ =⇒ aFyf cos δ − bFyr = Izzψ̈ = 0 (2.14)

Using the vehicle’s geometry, expressions for the slip angles can be formulated as shown in

Equations (2.15-2.16).

αf = arctan

(
Vy + aψ̇

Vx

)
− δ (2.15)

αr = arctan

(
Vy − bψ̇
Vx

)
(2.16)
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Again, a small angle approximation will simplify the model without greatly reducing its accu-

racy because slip angles typically stay very small in most driving scenarios.

αf =

(
Vy + aψ̇

Vx

)
− δ (2.17)

αr =

(
Vy − bψ̇
Vx

)
(2.18)

Equations (2.17-2.18) can be solved for Vy and set equal to each other to yield a single equation

below.

δ + αf −
aψ̇

Vx
= αr +

bψ̇

Vx
(2.19)

δ =
Lψ̇

Vx
+ αr − αf (2.20)

Finally, since Vx ≈ Rψ̇, the steer angle equation can be reduced even further.

δ =
L

R
+ αr − αf (2.21)

This model (2.21) can be used directly with a nonlinear tire model. However, using the

linear tire model, steering angle can be directly related to lateral acceleration as shown in

Equation (2.22).

δ =
L

R
+

(
mbV 2

x

LCαfR
− maV 2

x

LCαrR

)
(2.22)

Since steady state cornering was assumed (V̇x = V̇y = 0), the only lateral acceleration is

from the centripetal component which simplifies the expression further. First, Wf is defined as

weight on the front axle, Wr as weight on the rear axle, and ay as the lateral acceleration.

mb

L
= Wf ,

ma

L
= Wr

V 2
x

R
= ay (2.23)
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These can be substituted into Equation (2.22) to get Equation (2.24).

δ =
L

R
+

(
Wf

Cαf
− Wr

Cαr

)
ay (2.24)

The term understeer gradient, Kus, is defined as the ratio of the weight on each axle to the

tire cornering stiffness.

Kus =

(
Wf

Cαf
− Wr

Cαr

)
(2.25)

The understeer gradient is often defined in the units of deg
gaccel

or rad
gaccel

. Equation (2.24) can be

simplified further using the understeer gradient.

δ =
L

R
+Kusay (2.26)

Using Equation (2.7), Equation (2.26) can be solved for yaw rate which yields the following

equation.

ψ̇ =
V

L+KusV 2
δ (2.27)

A positive understeer gradient (Kus > 0) implies that a vehicle will have more front tire

slip in a corner and will have to apply increasingly more steering than the simple kinematic

model shows as the lateral accelerations increase. This is referred to as an understeer vehicle.

Inversely, a negative understeer gradient (Kus < 0) implies that a vehicle will have more rear

tire slip in a corner and will have to apply less steering than predicted in the kinematic model

as the lateral accelerations increase. This is called an oversteer vehicle.

While this model is more complex than the kinematic model, it still makes many assump-

tions such as steady state cornering, using the linear tire model, and the small angle approxima-

tion. However, constant radius or constant velocity tests can be run to empirically determine the

understeer gradient of a vehicle without needing to know the values of tire cornering stiffness

and CG location, making it a desirable choice of model for many applications.
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2.3.3 Dynamic Bicycle Model

The linear dynamic bicycle model removes the assumption of steady state cornering and is one

of the most widely used models [55]. It is very accurate under most circumstances includ-

ing transient maneuvers when the vehicle parameters are well known. Again, the formulation

begins with the summing of the forces and moments about the z-axis in Figure 2.10.

aFyf cos δ − bFyr = Izzψ̈ (2.28)

Fyf cos δ + Fyr = m

(
V 2
x

R
+ V̇y

)
(2.29)

The linear tire model (2.1) allows the forces to be converted into slip angles.

Izzψ̈ = −aCαfαf cos δ + bCαrαr (2.30)

m

(
V 2
x

R
+ V̇y

)
= −Cαfαf cos δ +−Cαrαr (2.31)

Equations (2.17-2.18) are then used so that the model is in terms of body velocities and ro-

tation rate. The small angle approximation asserts that cos δ ≈ 1 for angles under 20◦ resulting

in the following equations.

Izzψ̈ = −aCαf

(
Vy + aψ̇

Vx
− δ

)
+ bCαf

(
Vy + bψ̇

Vx

)
(2.32)

m

(
V 2
x

R
+ V̇y

)
= −Cαf

(
Vy + aψ̇

Vx
− δ

)
− Cαf

(
Vy + bψ̇

Vx

)
(2.33)

These equations are then solved for yaw acceleration and lateral acceleration and rearranged to

be functions of yaw rate, lateral velocity, and steering angle.

ψ̈ =
−(a2Cαf + b2Cαr)

IzzVx
ψ̇ +
−(aCαf − bCαr)

IzzVx
Vy +

aCαf
Izz

δ (2.34)

V̇y =

(
−(aCαf − bCαr)

mVx
− Vx

)
ψ̇ +
−(Cαf + Cαr)

mVx
Vy +

Cα
m
δ (2.35)
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The dynamic bicycle model can be used in this form, converted to a transfer function, or

put into a state space representation. The state variable formulation is shown in Equation (2.36)

and will be used in later chapters.

 ψ̈
V̇y

 =

 −C2

IzzVx
−C1

IzzVx

−C1

mVx
− Vx −C0

mVx


 ψ̇
Vy

+

aCαfIzz

Cαf
m

 δ (2.36)

where

C0 = Cαf + Cαr (2.37)

C1 = aCαf − bCαr (2.38)

C2 = a2Cαf + b2Cαr (2.39)

This dynamic bicycle model still assumes a linear tire model and steady state longitudinal

speed. However, under most typical circumstances, these assumptions are not violated so this

is a valid model for most scenarios. The dynamic bicycle model is also more accurate than

the prior models if the model parameters are close to the true values. Vehicle mass and CG

location are straightforward to measure, but tire cornering stiffness and vehicle inertia can be

very difficult to estimate. Thus, in practice, the dynamic bicycle is not the optimal choice of

vehicle models when these parameters are unknown. The trade-off between model complexity

and parameter accuracy is explored in Chapter 3.

2.3.4 Higher Order Models

Many higher fidelity models exist and are used extensively in simulation and other applications.

The nonlinear dynamic bicycle model can be easy implemented and provides a good alternative

to the linear bicycle model, if one has knowledge of the vehicle parameters and a nonlinear

tire model. Four-wheel models that do not make the planar motion assumption and include

weight transfer to provide even more accurate dynamics, but the roll and pitch stiffnesses can be

even more difficult to estimate than the tire cornering stiffnesses [56]. Many visual simulation

software packages include very high fidelity vehicle dynamics modeling, such as Gazebo [57],
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CarSim [58], AirSim [59], and CarMaker [60]. These simulation environments use physics

engines to model the system as different bodies of mass and the interactions between them

[61]. Chapter 5 of this thesis uses Gazebo as the simulation environment due to the higher

fidelity dynamics and Software-In-the-Loop (SIL) capabilities.
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Chapter 3

Controller Sensitivity Analysis

This chapter investigates the sensitivity of a wide variety of lateral vehicle controllers to dy-

namic model parameter uncertainties. The following sections will describe the sensitivity anal-

ysis setup, derive each controller and present its results, and formulate conclusions and take-

aways from the sensitivity analysis.

3.1 Introduction

A steering controller is needed to keep an autonomous vehicle following a reference path.

These controllers range from simple kinematic controllers to more sophisticated nonlinear

model predictive controllers. However, complexity is not always necessary for successful op-

eration. For example, the steering controllers on the vehicle that won the 2005 DARPA Grand

Challenge (Stanford) and the vehicle that won the 2007 DARPA Urban Challenge (CMU) both

utilized simple kinematic models [62]. Since then, the improvement in computing power has

fueled research interests into more complex optimal control methods.

To explore the benefits and drawbacks of different steering controllers when the vehicle

dynamics contain structured uncertainties, a sensitivity analysis was performed in MATLAB

[63]. Structured uncertainties are when the internal parameters of the plant model are uncertain

causing correlated perturbations in the response. This sensitivity analysis was designed to

evaluate the strengths and weaknesses of various controller types and to ultimately inform the

design of a high performance vehicle independent path following controller. The controllers

were evaluated based on their mean lateral errors, max lateral errors, and stability. The types

of controllers tested include kinematic control, classical model-based pole placement control,
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feedforward-feedback lookahead error control, model predictive control, and model reference

adaptive control.

Each controller type in this chapter was tested against a double lane change path. The

double lane change was chosen because it is repeatable, designed to excite the dynamics of the

vehicle, and produces high slip values. It follows the standard set by International Standard

ISO 3888-2 and shown below in Figure 3.1.

Figure 3.1: ISO Double Lane Change Maneuver.

Figure directly from [64].

3.1.1 Reference Path Generation

Two path interpolation methods were investigated to create the reference path for the double

lane change. First, Piecewise Cubic Hermite Polynomial (PCHIP) interpolation [65] was used

to create the desired path shown in Figure 3.2. This was originally chosen because PCHIP in-

terpolation creates a trajectory with minimal overshoot and oscillation. However, using PCHIP

created a path that contained points where the curvature increased immediately from zero to a

large value, causing the derivative of curvature to be infinite at these points. This can be seen in

the right subplot where the curvature is plotted along the path. As a result, all of the controllers

were less smooth because the vehicle could not react to the instantaneous change in curvature.

This ”jerky” behavior would not be desirable as a passenger of a vehicle.

In order to alleviate these issues, a smoothing spline was implemented [66] to create the

desired path. A smoothing spline is another path interpolation method that guarantees smooth
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Figure 3.2: Piecewise Cubic Hermite Polynomial (PCHIP) Path Generation.

transitions in curvature values. The smoother curvature translates to smoother steering actu-

ation which better matches the driving behaviors of humans in the real-world [67]. Different

parameters for the path creation were tested until the desired path shape was achieved. As

shown below on the right in Figure 3.3, the curvature no longer increases from zero to a high

curvature instantaneously. Instead, the curvature is always following a linear increase or de-

crease. This has the added benefit of having much lower maximum curvature values. This

allows the vehicle to follow the path with smoother steering inputs and lower yaw rates.

Figure 3.3: Smoothing Spline Path Generation.

28



As expected, the lower curvatures of the smoothing spline result in lower overall steering

angles and smoother vehicle yaw rates. This can be seen in Figure 3.4, which shows a com-

parison of the yaw rates and heading during the double lane change with the lookahead error

controller described later in Section 3.4. The left shows the PCHIP method of path generation

and the right side shows the smoothing spline method. Based on these results, the smoothing

spline was used as the reference path for the remainder of Chapter 3. The lower steering angles

and decreased steer angle rates help to stay below saturation limits present on an experimental

vehicle. Additionally, having smoother and more gradual changes in yaw rate makes for a more

comfortable vehicle to ride in and has a lower chance of upsetting the vehicle’s balance.

Figure 3.4: Vehicle Response to PCHIP vs. Smoothing Spline.

3.1.2 Simulation Setup

To perform the sensitivity analysis, each controller follows the double lane change reference

path. The controller calculates the input steering angle desired based on a nominal vehicle

model. Then the steering input calculated from the controller is simulated through the dynamic

bicycle model with a nonlinear Brush-Fiala tire model. The simulation model has uncertainties

ranging from -50% to +50% of the nominal value for each parameter. The nominal values

of the bicycle model parameters and the modified values used in the sensitivity analysis are

shown below in Table 3.1. Each run only has a single parameter changed to clearly see which

parameters have the most effect on the performance of the controller. The results shown are

from simulations with a longitudinal speed of 10 m/s.
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Table 3.1: Parameters used for sensitivity analysis.

Dynamic Bicycle Model Parameters

Percent from Nominal -50% -25% Nominal +25% +50%

Front Tire Cornering Stiffness (N/rad) 60000 90000 120000 150000 180000

Rear Tire Cornering Stiffness (N/rad) 92300 138450 184600 230750 276900

Distance from CG to Front Axle (m) 0.6285 0.9427 1.2570 1.5712 1.8855

Distance from CG to Rear Axle (m) 0.7965 1.1947 1.593 1.9912 2.3895

Vehicle Mass (kg) 928.5 1392.7 1857 2321.3 2785.5

Vehicle Inertia (Kg ·m2) 2146 3219 4292 5365 6438

*Tire cornering stiffnesses are per axle

The following sections contain the formulation, performance, and analysis of each con-

troller type. The last section in this chapter provides the conclusions that were drawn from this

sensitivity analysis.

3.2 Kinematic Control

Kinematic controllers have been used widely in robotics and driving applications. Kinematic

control uses the kinematic equation of the system, inverting it to calculate the input needed to

achieve the desired state. In the case of autonomous driving, the input is steering angle and the

desired state is typically a yaw rate command. This type of control is commonly used when the

dynamics are negligible such as low speed driving. In low speed situations there is very little

tire slip, and inverse kinematic control is an effective solution. It is also popular compared to

more advanced controllers because only wheelbase length and current speed need to be known

to calculate the steering angle for a desired yaw rate. The following two sections will derive

the kinematic control law and present the sensitivity analysis results.
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3.2.1 Control Formulation

To formulate the kinematic controller, Equation (2.12) from Chapter 2 is used to calculate a

steering angle (δ) for a given a yaw rate command (ψ̇cmd).

|~V |
L

tan(δ) = ψ̇cmd (3.1)

tan δ =
L · ψ̇cmd
|~V |

(3.2)

δ = arctan
L · ψ̇cmd
|~V |

(3.3)

If the vehicle sideslip angle is assumed to be very small, the velocity can be approximated

as longitudinal velocity.

|~V | ≈ Vx =⇒ δ = arctan
L · ψ̇cmd
Vx

(3.4)

To determine the yaw rate command that should be input to the kinematic controller, the

path dynamics controller derived later in Chapter 4 was used. This is shown in Equation (3.5),

but it is not the focus of this section.

ψ̇cmd = −kp · eLA + κ · Vx (3.5)
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3.2.2 Results

The kinematic controller had a max error of 0.2585 meters and a mean error of 0.1271 meters

when simulated with the nominal values. The lateral errors and the steering angle input from

the controller during this run can be seen in Figure 3.5.

Figure 3.5: Kinematic Controller Nominal Model Performance.

Figure 3.6 below shows the sensitivity of the kinematic controller to inaccuracies of each

of the dynamic bicycle model parameters. Each solid line represents the maximum lateral

error compared to the reference path when performing the double lane change. The dotted

lines represent the mean lateral error from the reference path during the same maneuver. The

individual line colors represent the various parameters that were changed in the simulation

model. The horizontal axis represents the change to each parameter, and the vertical axis

represents the error due to the inaccuracy in the given parameter.

The kinematic controller’s max and a mean errors (0.2585 meters and 0.1271 meters)

when simulated with the nominal values can be seen where the change to vehicle parameter

is 0% along the x-axis. The darker blue line shows the vehicle response to inaccurate front

tire cornering stiffness Cαr. Front tire cornering stiffness greatly increased error when it was
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Figure 3.6: Kinematic Controller Sensitivity to Model Inaccuracy.

decreased, probably because the tires could not generate the required force to make the maneu-

ver. When increased, however, the error actually decreased, due to the front tires producing

more force than expected by the controller, which caused the vehicle to respond quicker to the

reference signal. The rear tire cornering stiffness Cαr (orange) did not greatly affect the lateral

error, but this could be different in an oversteer vehicle.

The distance from the CG to the front axle a shown by the yellow line did not have much

effect on the lateral error when overestimated, but did increase error significantly when un-

derestimated. The most significant degradation in controller performance was seen when the

distance from the CG to the rear axle b was inaccurate. This can be seen by the purple line

which increases dramatically when b was overestimated or underestimated. This resultis ex-

plained through Equation (2.12) because the kinematic model only relies on the wheelbase

length L, which is greatly affected by inaccuracies in a and b. The observation that b caused a

larger increase in error was at least partially due to the nominal value being larger meaning that

any percentage change was larger than the equivalent change to a.

The vehicle mass m (green) decreased error when decreased below nominal and increased

error when it was increased. Vehicle inertia about the z-axis (light blue) had a similar effect as
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mass, but to a much lesser extent. This is logical since both of these vehicle characteristics act

to decrease response when they are larger. Conversely, when mass and inertia are decreased

they increase the nimbleness of the vehicle.

Overall, Cαf , a, and b had the largest effect on controller performance. The individual

simulation runs and detailed results can be found in the appendices in Section A.1.

3.3 Dynamic Bicycle Model Pole Placement

The dynamic bicycle model controller is a feedback controller on the yaw rate designed with

classical control methods. The second-order linear dynamic bicycle model derived in Chapter

2 is employed and used to calculate the controller gains for desired closed loop eigenvalues

(poles). This method is also commonly used, but takes more of the vehicle dynamics into

consideration than the kinematic controller.

The formulation of this controller and the results of the sensitivity analysis are shown in

the following sections.

3.3.1 Control Formulation

The controller was formulated in state space. First, the dynamic bicycle model from Chapter

2 and the nominal values from Table 3.1 were used to form the state matrices as shown in

Equations (3.63.7) below.

 ψ̈
V̇y

 =

 −(a2Cαf+b
2Cαr)

IzzVx

−(aCαf−bCαr)
IzzVx

−(aCαf−bCαr)
mVx

− Vx −(Cαf+Cαr)

mVx


 ψ̇
Vy

+

aCαfIzz

Cαf
m

 δ (3.6)

 ψ̈
V̇y

 =

−15.3322 3.3371

−2.2871 −16.4028


 ψ̇
Vy

+

35.1445

64.6204

 δ (3.7)

The desired system response was a settle time of 0.5 seconds and a damping ratio of

0.707, because these parameters gave the best performance when compared to other simulation

runs with different values for settle time and damping. The closed loop eigenvalues for these
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response characteristics were then calculated as follows.

ωn =
4.6

0.707 · 0.5
(3.8)

ωd = ωn ·
√

1− 0.7072 (3.9)

sdes = −.707 · ωn ± ωd · i (3.10)

sdes = −9.2000± 9.2028i (3.11)

Because the simulation is run in the discrete domain at 100 Hz, both the vehicle model

and the desired eigenvalues were converted to the discrete domain as shown below in Equations

(3.12-3.14).

 ψ̇k+1

V̇yk+1

 =

 0.8575 0.0285

−0.0195 0.8484


 ψ̇k
Vyk

+

0.3355

0.5923

 δk (3.12)

zdes = esdes·Ts (3.13)

zdes = 0.9082± 0.0838i (3.14)

To determine the controller gains K, the characteristic equation is solved for the desired eigen-

values. This can be done manually by solving for K in (3.15) or in MATLAB with the place

function.

|zI − Ad +Bd ·K| = 0 (3.15)

To ensure the closed loop system has a DC gain of one, the non-zero reference scaling

values are calculated. A DC gain of one ensures that at steady state the output yaw rate would

match the yaw rate command. Note, Cd =

[
1 0

]
, Dd = 0.

Nx

Nu

 =

Ad − I Bd

Cd Dd


−1 0

1

 (3.16)
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The final equation for commanded steering angle is formulated in Equation (3.17).

δk = Nu · ψ̇cmdk −K ·


 ψ̇k
Vyk

−Nx · ψ̇cmdk

 (3.17)

The same outer loop from the kinematic controller was used to determine the yaw rate com-

mand that should be input into the pole placement controller, Equation (3.5), shown below for

easy reference.

ψ̇cmd = −kp · eLA + κ · Vx (3.18)

3.3.2 Results

The pole placement controller had a max error of 0.1396 meters and a mean error of 0.0698

meters when simulated with the nominal values. The lateral errors and the steering angle input

from the controller during this run can be seen in Figure 3.7.

Figure 3.7: Dynamic Bicycle Model Pole Placement Controller Nominal Model Performance.
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The pole placement controller designed with the second order dynamic bicycle model was

expected to have lower errors than the kinematic controller, since the model is higher fidelity.

Figure 3.8 below shows the sensitivity of the dynamic bicycle model pole placement controller

to inaccuracies of each of the dynamic bicycle model parameters. For an explanation of the

plot, refer to Section 3.2.2.

Figure 3.8: Dynamic Bicycle Model Pole Placement Controller Sensitivity to Model Inaccu-
racy.

The pole placement controller’s max error of 0.1396 meters and mean error of 0.0698 me-

ters when simulated with the nominal values is shown where the change in vehicle parameter

is 0% along the x-axis. The expectation that the errors would be lower than those of the kine-

matic controller was true with the nominal parameter values. When the model was known, the

max and mean errors were half those of the kinematic controller. When the parameters were

uncertain, however, the improvements in performance disappeared.

Front tire cornering stiffness Cαr (darker blue) greatly increased error when it was over-

estimated, but only slightly increased the error when it was underestimated. As can be seen by

the orange line, the rear tire cornering stiffness Cαr had a similar effect but to a lesser degree.

The increase in error when overestimating tire cornering stiffness was likely because the tires

could not generate the lateral force needed.
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The distance from the CG to the front axle a (yellow) had a significant effect on the

lateral error when inaccurate, especially when it was overestimated. Again, inaccuracies in the

distance from the CG to the rear axle b produced the most substantial errors. This can be seen

by the purple line which shows large errors when bwas overestimated or underestimated. These

large sensitivities of the dynamic bicycle model controller to a and b are likely due to the large

difference in understeer gradient between the nominal model and the simulated model. This

changes the DC gain between steering and yaw rate for a given speed and shows the importance

of these parameters if using this type of controller.

The vehicle mass m (green) increased error significantly when it was either overestimated

or underestimated. Vehicle inertia Izz about the z-axis (light blue) had much less effect on

performance than any of the other parameters.

Even though the pole placement controller had very low errors when used with the nomi-

nal model, it was extremely sensitive to inaccuracies in Cαf , a, b, and m. Overall, it was more

sensitive than the kinematic controller and produced higher errors when the model was inac-

curate. The individual simulation runs and detailed results can be found in the appendices in

Section A.2.

3.4 Lookahead Error Feedforward-Feedback Controller

The lookahead error feedforward-feedback controller is a control architecture based on au-

tonomous racing research done by Stanford University’s Dynamic Design Lab (DDL) [68].

This controller was designed to have low lateral and heading errors, even when the car is in

high dynamic situations such as racing or aggressive driving. It is composed of two parts: a

feedforward portion that calculates the required steering angle to follow the path profile, and a

feedback component that corrects any lateral or heading deviation. The block diagram of this

controller can be seen in Figure 3.9. The following two sections will go through the derivation

of the lookahead error feedforward-feedback control law and present the sensitivity analysis

results.
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Figure 3.9: Feedforward-Feedback Controller Block Diagram.

3.4.1 Control Formulation

The first component of the controller is the feedforward term that determines the steering angle

needed to hold the current path profile. To determine this, the desired lateral tire forces in order

to hold the curvature (κ) of the road must be calculated. Curvature κ is the inverse of the radius

of the path. The lateral forces are calculated based on steady state cornering, shown below in

Equations (3.19-3.20).

Fyf =
m · b
L
· V 2

x · κ (3.19)

Fyr =
m · a
L
· V 2

x · κ (3.20)

Then an inverted tire model is used to convert the desired lateral tire forces into desired

tire slip angles. This can be done with either a linear tire model or nonlinear tire model, as

shown below.

Linear Tire Model: Nonlinear Tire Model:

αf =
Fyf
Cαf

αf = f−1
tire(Fyf ) (3.21)

αr =
Fyr
Cαr

αr = f−1
tire(Fyr) (3.22)
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The desired tire slip angles to hold the road profile are then used to calculate the feedforward

steering angle with Equation (3.23).

δFFW = L · κ− αf + αr (3.23)

To determine the feedback steering angle, the lateral error e and heading error ∆ψ are

first defined by Figure 3.10. The lookahead distance xla is a distance projected out in front of

the vehicle that is used to calculate the lateral lookahead error. Lookahead distance is a tuning

parameter that acts similar to damping in the system, keeping it from becoming oscillatory.

However, if it is set too high, it can cause the vehicle to cut corners, leading to more error.

Figure 3.10: Schematic of Error States
Adapted from [69].

The error states e and ∆ψ are used to calculate the lookahead error ela. This value is the

lateral error between the lookahead point to the tangent of the path.

eLA = e+ xLA ·∆ψ (3.24)

Lookahead error is then multiplied by a proportional gain kp to determine the steering command

that will decrease the lookahead error.

δFB = −kp · eLA (3.25)
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The total steering input is then calculated by summing the feedback and feedforward steering

terms.

δTotal = δFFW + δFB (3.26)

In order to improve path tracking when larger sideslip angles are occuring, such as in high

dynamic maneuvers, a steady state sideslip angle can be added to the controller formulation.

This is shown below in Equations (3.27-3.28).

βSS = αFFWr + b ∗ κ (3.27)

δFB = −kp (eLA + xLA (∆Ψ + βSS)) (3.28)

This modification did not make any significant difference in the simulations that were run in

this thesis, so it was left out for simplicity. However, under more extreme scenarios or higher

speeds, adding this term may be necessary.
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3.4.2 Results

The lookahead error feedforward-feedback controller had a max error of 0.1836 meters and a

mean error of 0.0900 meters when simulated with the nominal values. The lateral errors and

the steering angle input from the controller during this run can be seen in Figure 3.11.

Figure 3.11: Lookahead Error Controller Nominal Model Performance.

The lookahead error feedforward-feedback controller was expected to have much better

path following performance than the prior two controllers because it feeds forward the curvature

and looks at the path ahead. This allows it to steer proactively, instead of only reacting to the

errors. Additionally, it relies on the vehicle model only for the feedforward portion. Figure

3.12 below shows the sensitivity of the lookahead error feedback-feedforward controller to

inaccuracies of each of the dynamic bicycle model parameters. For an explanation of the plot,

refer to Section 3.2.2.
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Figure 3.12: Lookahead Error Controller Sensitivity to Model Inaccuracy.

The lookahead error feedforward-feedback controller had a max and mean errors can be

seen where the x-axis is zero. These mean and max errors are in between the kinematic con-

troller and the pole placement controller. However, unlike the first two controllers, this con-

troller was very robust to parameter inaccuracy. This is likely due to only the feedforward term

relying on the model parameters.

Shown with the darker blue line and orange line, the front tire cornering stiffness Cαr

and rear tire cornering stiffness Cαr both slightly increased error when underestimated and

slightly decreased error when overestimated. These error changes are very small compared to

the previous two controllers.

The distance from the CG to the rear axle b followed the same trend as the tire cornering

stiffnesses and can be seen by the purple line. While it did have the largest effect of the vehicle

parameters, it was still very small compared to the other controllers. The distance from the CG

to the front axle a had an even smaller impact on the controller performance. The error was

slightly increased when a was overestimated and slightly decreased when underestimated. This

can be seen by the yellow line.
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The vehicle mass m (green) increased error slightly when it was overestimated and de-

creased it when underestimated. Vehicle inertia Izz about the z-axis (light blue) acted in the

same manner, but again made the least difference overall.

The lookahead error feedforward-feedback controller was extremely resilient to model

uncertainty and performed well under all conditions presented. Using the error states for the

feedback and the required steady state steering to follow the curvature for the feedforward

lessened the reliance on the dynamic model. At the same time it maintained great path tracking

capabilities. Even with the most extreme inaccuracies, the lateral error remained below 0.3 m.

This would be more than acceptable for most real-world driving applications. The feedforward-

feedback architecture helped inform the design of the vehicle agnostic controller in Chapter 4.

The individual simulation runs of the sensitivity analysis and detailed results can be found in

the appendices in Section A.3.

3.5 Model Predictive Control

Model Predictive Control (MPC) is a form of control that determines the optimum control

input to follow a reference signal over a period of time. This differs from a Linear Quadratic

Regulator (LQR), another form of optimal control, because it performs the optimization over a

finite time period instead of an infinite time period. The time period is referred to as the time

horizon H and is always shifting forward over time. Because of this property, MPC is also

referred to as receding horizon control.

MPC uses a dynamic model of the system to predict the response of the system in the

future to optimize the control input sequence based off a cost function. The control horizon

Nc determines how many sequences of control inputs in the future the MPC calculates. The

prediction horizon Np refers to how far forward the controller predicts the system response

[70]. Model predictive control can also be done with nonlinear dynamics (NMPC) [32].

The optimization is typically done by minimizing a cost function that includes penalties

on control effort, output error, and any constraints to the system. Only the first input of the

control sequence determined by the optimization is used and then the optimization routine is
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repeated. The complexity of the optimization problem as well as the fact that must be iter-

ated through every time step has traditionally restricted the use of Model Predictive Control

to slower systems such as chemical plants and factory environments. However, the massive

increase in computing power available and efficient optimization libraries over recent years has

increased the interest in using MPC for faster dynamic systems, such as autonomous vehicles

and aerial platforms. The next few sections will go through the derivation of the bicycle model

in path coordinates, the formulation of an unconstrained model predictive controller based on

this dynamic model, and the results of the sensitivity analysis using the MPC algorithm.

3.5.1 Model Derivation in Path Coordinates

In order to have the model predictive controller optimally control the vehicle to the reference

path, the linearized dynamic bicycle model was transformed into the navigation frame. The

states chosen to be penalized by the MPC’s cost function J are the lateral error and the heading

error. These states and their derivatives are used as the new state vector.

First, the yaw rate needed to follow the path during steady-state cornering rss is calculated

in Equation (3.29) where r = ψ̇.

rss = κ · Vx (3.29)

The variable κ represents the reference path curvature and is defined as the change in angle

over a unit arc length. This is also equivalent to one divided by the radius of the turn.

κ =
dθ

ds
=

1

R
(3.30)

Lateral acceleration during steady state can then be shown to be equal to the yaw rate multiplied

by the longitudinal velocity.

V̇y = rss · Vx (3.31)
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With e as the lateral error of the vehicle’s CG to the path, the second derivative of error is then

found.

ë = V̇y + Vx(r − rss) (3.32)

The path yaw rate subtracted from the current vehicle yaw rate would be equal to the rate of

change of the heading error θ̇e.

θ̇e = r − rss (3.33)

θ̈e = ṙ − ṙss (3.34)

Equation (3.33) can be plugged into Equation (3.32) to put the lateral error in terms of heading

error.

ë = V̇y + Vxθ̇e (3.35)

ė = Vy + Vx sin θe (3.36)
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Now the linear dynamic bicycle model equations derived in Chapter 2 are inserted into

Equations (3.34-3.35) and rearranged.

V̇y = ë− Vx ∗ θ̇e (3.37)

=
−(cαf + cαr)

m ∗ Vx
(ė− Vx ∗ θe) +

(
b ∗ cαr − a ∗ cαf

m ∗ Vx
− Vx

)(
θ̇e + rss

)
+
cαf
m
δ (3.38)

ë =
−(cαf + cαr)

m ∗ Vx
ė+

(cαf + cαr)

m
θe +

(
b ∗ cαr − a ∗ cαf

m ∗ Vx

)
θ̇e

+

(
b ∗ cαr − a ∗ cαf

m ∗ Vx
− Vx

)
rss +

cαf
m
δ (3.39)

ṙ = θ̈e + ṙss (3.40)

=

(
b ∗ cαr − a ∗ cαf

Iz ∗ Vx

)
(ė− Vx ∗ θe)−

(
a2 ∗ cαf + b2 ∗ cαr

Iz ∗ Vx

)(
θ̇e + rss

)
+
a ∗ cαf
m

δ

(3.41)

θ̈e =

(
b ∗ cαr − a ∗ cαf

Iz ∗ Vx

)
ė+

(
a ∗ cαf − b ∗ cαr

Iz

)
θ −

(
a2 ∗ cαf + b2 ∗ cαr

Iz ∗ Vx

)
θ̇e

−
(
a2 ∗ cαf + b2 ∗ cαr

Iz ∗ Vx

)
rss +

a ∗ cαf
m

δ − ṙss (3.42)
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The above equations are then put into state space for use as the dynamic matrix A for

MPC.



ė

ë

θ̇e

θ̈e


=



0 1 0 0

0
−(cαf+cαr)

m∗Vx
cαf+cαr

m

b∗cαr−a∗cαf
m∗Vx

0 0 0 1

0
b∗cαr−a∗cαf

Iz∗Vx
a∗cαf−b∗cαr

Iz

−(a2∗cαf+b2∗cαr)
Iz∗Vx





e

ė

θe

θ̇e



+



0

cαf
m

0

a∗cαf
Iz


δ +



0

b∗cαr−a∗cαf
m∗Vx − Vx

0

−(a2∗cαf+b2∗cαr)
Iz∗Vx


rss (3.43)

3.5.2 Control Formulation

To formulate the model predictive controller, the state equation above must be discretized. The

difference equation that represents this system is shown below in Equation (3.45).

xd(k + 1) = Adxd(k) +Bdu(k) (3.44)

y(k) = Cdxd(k) (3.45)

This is then reformulated to represent the change in states based on the change in input.

∆xd(k + 1) = xd(k + 1)− xd(k) (3.46)

= Ad∆xd(k) +Bd∆u(k) (3.47)
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An augmented matrix is formed with the measurement y being the lateral offset from the path.

This augmentation embeds an integrator in the MPC, which helps to drive the error to zero.

∆xd(k + 1)

y(k + 1)

 =

 Ad 0

CdAd 1


∆xd(k)

y(k)

+

 Bd

CdBd

∆u(k) (3.48)

y(k) =

[
0 1

]∆xd(k)

y(k)

 (3.49)

As alluded to in the introduction to this section, the prediction horizonNp is the number of

time steps that the MPC predicts the states forward, and the control horizon Nc is the number

of time steps the control sequence is optimized for. The values used for the sensitivity analysis

are shown below.

Np = 10, Nc = 5

The predicted output over the prediction horizon and the control sequence for the control hori-

zon are denoted by Y and ∆U , respectively. The current time step is ki.

Y = [y(ki+ 1 | ki), y(ki+ 2 | ki), ..., y(ki+Np | ki)]T (3.50)

∆U = [∆u(ki), ∆u(ki+ 1), ..., ∆u(ki+Nc − 1)]T (3.51)

This can be refactored into the form:

Y = Fx(ki) + Φ∆U (3.52)
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where,

F =



CA

CA2

CA3

...

CANp


, Φ =



CB 0 0 ... 0

CAB CB 0 ... 0

CA2B CAB CB ... 0

... ... ... ... ...

CANp−1B CANp−2B CANp−3B ... CANp−NcB


. (3.53)

The cost function used to minimize error from the reference path and control effort is

defined as J .

J = (RS − Y )T (RS − Y ) + ∆UT R̄∆U (3.54)

RT
S =

[
1 1 ... 1

]
1×Np

r(ki), R̄ = rwINc×Nc , rw = weight on input (3.55)

Where unconstrained, as in this sensitivity analysis, the optimum control sequence has the

analytical solution shown below in Equation (3.56) [70].

∆U = (ΦTΦ + R̄)−1ΦT (RS − Fx(ki)) (3.56)

The first input of the optimal control sequence ∆U is used on every time step as the

controller output for the sensitivity analysis. Since it recalculates a new control sequence at

each time step, the model predictive controller is better able to account for disturbances in the

system and model uncertainties.
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3.5.3 Results

The model predictive controller had a max error of 0.1556 meters and a mean error of 0.0601

meters when simulated with the nominal values. The lateral errors and the steering angle input

from the controller during this run can be seen in Figure 3.13.

Figure 3.13: Model Predictive Controller Nominal Model Performance.

The model predictive controller was expected to have similar path following performance

as the pole placement controller with the nominal model, but much more robust to model in-

accuracies. This is because it also uses the same dynamic bicycle model in the prediction, but

propagating the states forward when optimizing the steering input should allow it to recover

from deviations much quicker. Figure 3.14 below shows the sensitivity of the model predictive

controller to inaccuracies of each of the dynamic bicycle model parameters. For an explanation

of the plot, refer to Section 3.2.2.

The model predictive controller’s errors when simulated with the nominal values can be

seen where the x-axis is zero. This was very similar to the pole placement controller and lower

than all the other controllers. It performed much better than the pole placement controller and
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Figure 3.14: Model Predictive Control Sensitivity to Model Inaccuracy.

kinematic controller when the model was perturbed. This is likely because of the prediction

step and control optimization, which allows any deviations to be corrected sooner.

The front tire cornering stiffness Cαf had a moderate effect on the controller performance

when overestimated significantly. This was probably due to the tire not being able to generate

enough lateral force through the front tire and understeering. However, even in this case, the

vehicle stayed below a third of a meter of lateral error from the path. The rear tire cornering

stiffness Cαr had almost no effect on the controller performance.

Likewise, uncertainty in the distance from the CG to the front axle a caused no controller

performance degradation. In contrast, the distance from the CG to the rear axle caused the

vehicle to become unstable when overestimated by a factor of two. When barely overestimated

or when underestimated, error in b had very little effect on performance. This was probably

due to the car becoming very oversteer when b was much shorter than expected and the model

predictive controller prediction step to be unrepresentative of the real dynamics.

The controller was able to handle inaccuracies in the mass m and vehicle inertia about

the z-axis Izz very well and very little change in performance were observed due to them.

The model predictive controller was resilient to most of the parameter inaccuracies, with the
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exception of large errors in b. Neglecting that case, the MPC kept the max lateral error less than

a third of a meter, which is very good under most circumstances. This placed it as the second

most robust controller behind the lookahead error controller. The individual simulation runs

and detailed results for the MPC simulation can be found in the appendices in Section A.4.

3.6 Model Reference Adaptive Control

Adaptive control methods are able to adapt the control laws themselves in order to mitigate er-

rors from varying conditions and model uncertainties. They are very common in aerospace ap-

plications where the dynamics change significantly as fuel is burned. Additionally, in aerospace

there are many high order dynamics and model uncertainties [71]. Adaptive control relies on

the Lyapunov stability criterion to derive its update laws.

There are many forms of adaptive controllers but most fall within the categories of indirect

and direct adaptive control. Indirect adaptive control relies on a parameter estimation algorithm

to learn the dynamic model of the system. As the model of the system is learned, the control

law changes because it depends on the model. Direct adaptive control directly modifies the

control law without any system identification module [72]. This is the type of adaptive control

that is studied in this section.

Model reference adaptive control (MRAC) was the specific form of direct adaptive con-

trol implemented. MRAC simulates a reference model and controller that provides the desired

closed loop performance. Then, the control inputs determined by this nominal controller are

used as the input for the actual uncertain system. The error between the response of the uncer-

tain system and the reference model is used in the adjustment mechanism to adapt the controller

to drive the error between the two systems to zero. The high level architecture of model refer-

ence adaptive control can be seen in Figure 3.15.
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Figure 3.15: Model Reference Adaptive Control.

Model reference adaptive control is advantageous because it can handle high levels of

system uncertainty and nonlinearity [73]. Additionally, it does not rely on any parameter esti-

mation algorithm. The MRAC control law can guarantee asymptotic stability and performance,

if the assumptions made in the derivation are not violated.

The following sections go through the derivation of the adaptive control law used and

present the sensitivity analysis results for the MRAC algorithm.

3.6.1 Control Formulation

To formulate the MRAC controller, first the reference model and nominal controller must be

designed. An estimate of the vehicle model (A and B matrices) and pole placement with the

desired eigenvalues is used to calculate the nominal controller gains.

Am = Aest −Best ·K1 (3.57)

Bm = Best ·K0 (3.58)

The closed loop response of this system provides the matrices of the reference model. The

controller output is given to be u(t), where R(t) is the reference signal (yaw rate command).

u(t) = K0(t) ·R(t)−K1(t) · x(t) (3.59)
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Next, the error dynamics between the uncertain system and the nominal system are de-

rived.

e = x− xm (3.60)

ė = ẋ− ẋm = Ax+Bu− Amxm −BmR (3.61)

The nominal controller from above is used to replace the input signal u.

ė = Ax+B(K0R−K1x)− Amxm −BmR + (Amx− Amx) (3.62)

ė = Am(x− xm) + (BK0 −Bm)R + (−BK1 + A− Am)x (3.63)

The following mismatch functions f1 and f2 are defined in Equations (3.64-3.65) in order to

simplify the expression.

f1 = BK0 −Bm (3.64)

f2 = −BK1 + A− Am (3.65)

To ensure stability, the error between the uncertain model and reference model must al-

ways go to zero. This can be proven for a some example cases. First, if f1 and f2 = 0, then

ė = Ame which means e is asymptotically stable, since Am was designed to be a stable plant.

Also, if f1R + f2x = 0, then ė = Ame. To ensure e → 0, f1 → 0, and f2 → 0, Lyapunov’s

Criterion is applied to find the cases which ensure this stability. For the Lyapunov candidate

function, “energy” is chosen:

V (e, f1, f2) =
1

2
(e2 + f 2

1 + f 2
2 ) (3.66)

V̇ =
dV

dt
< 0⇒ energy is always decreasing (3.67)

V̇ = eė+ f1ḟ1 + f2ḟ2 (3.68)
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Equation (3.63) is then substituted in for ė.

V̇ = e(Ame+ f1R + f2x) + f1ḟ1 + f2ḟ2 (3.69)

V̇ = Ame
2 + f1(ḟ1 +Re) + f2(ḟ2 + xe) (3.70)

If (ḟ1 + Re) and (ḟ2 + xe) are zero, then V̇ = Ame
2 which is negative semidefinite.

Therefore, the error is bounded. To ensure that the error always goes to zero, Barbalat’s Lemma

is applied. Barbalat’s Lemma states:

• Let f(t) : R→ R be differentiable and has a finite limit as t→ inf. If ḟ(t) is uniformly

continuous then ḟ(t)→ as t→ inf.

• If ḟ(t) is bounded then f(t) is uniformly continuous.

Through this Lemma, it can be proven that if V (t) : R→ R is twice differentiable, has a finite

limit, and its second derivative is bounded then V̇ (t)→ 0 as t→ inf. Therefore, in this system,

the error will go to zero and f1 and f2 are bounded.

To find how to adapt the controller gains, the derivatives of f1 and f2 are taken.

f1 = BK0 −Bm f2 = −BK1 + A− Am (3.71)

ḟ1 = BK̇0 ḟ2 = −BK̇1 (3.72)

ḟ1 +Re = 0 ḟ2 + xe = 0 (3.73)

K̇0 = −Re
B

K̇1 =
xe

B
(3.74)

Since the system is uncertain, B is unknown, and the adaptation gains are set as a parameter.

K̇0 = −γ0Re K̇1 = γ1xe (3.75)

Finally, to determine the yaw rate command that should be input to the model reference adaptive

controller, the same outer loop from the kinematic controller and pole placement controller was
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used (3.5). It is also shown below for reference.

ψ̇cmd = −kp ∗ eLA + κ · Vx (3.76)

3.6.2 Results

The model reference adaptive controller had a max error of 0.3995 meters and a mean error

of 0.1574 meters when simulated with the nominal values. The lateral errors and the steering

angle input from the controller during this run can be seen in Figure 3.16.

Figure 3.16: Model Reference Adaptive Controller Nominal Model Performance.

The model reference adaptive controller was expected to be stable for all parameter vari-

ations, but to have worse path tracking capabilities in the double lane change because the con-

troller requires excitation for the gains to adapt and converge to their steady state values. Figure

3.17 below shows the sensitivity of the model reference adaptive controller to inaccuracies of

each of the dynamic bicycle model parameters. For an explanation of the plot, refer to Section

3.2.2.
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Figure 3.17: Model Reference Adaptive Control Sensitivity to Model Inaccuracy.

The model reference adaptive controller’s nominal performance can be seen where the x-

axis is zero. This was the highest max and mean error with the nominal parameters out of the

tested controllers. The MRAC showed its strength when the parameters were changed, staying

stable for each scenario.

The front tire cornering stiffness Cαf (darker blue) had almost no effect on the controller

performance. The orange line shows the rear tire cornering stiffness Cαr which slightly in-

creased the lateral error when underestimated.

The distance from the CG to the front axle a (yellow) had very little effect on the path

following performance. The distance from the CG to the rear axle b caused significant error

when underestimated as seen by the purple line. However, the error decreased significantly

when b was decreased, possibly because an oversteer vehicle produces much more excitation

which is necessary for a model reference adaptive controller to work well.

The vehicle mass m (green) and the vehicle inertia about the z-axis (light blue) had very

little effect on controller performance. Overall, the only parameter which made a significant

difference in controller performance was b, but regardless of the parameter values, the controller
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always remained stable. The individual simulation runs and detailed results can be found in the

appendices in Section A.5.

The lower nominal performance of the model reference adaptive is understandable con-

sidering that MRAC is designed to improve over time. As more excitation and time passes, the

MRAC is able to refine the controller gains to better make the real system match the reference

system. Therefore, a double lane change maneuver may not be enough for the gains to converge

to their final values.

In order to give the opportunity for the model reference adaptive controller to converge,

another sensitivity analysis was done with the nonlinear bicycle model. For this experiment, a

sine wave yaw command input was used instead of a double lane change maneuver. This was

chosen because it better simulates a series of excitation so that the controller can fully converge.

Like the prior sensitivity analysis, each vehicle parameter was varied ±50% and the sys-

tem’s performance and stability was analyzed. Under every variation, the controller remained

stable and the error converged to zero while under excitation or not. Additionally, since the

above sensitivity to b implied that understeer gradient had a large effect, the parameters were

adjusted to create a very understeer vehicle and a very oversteer vehicle in order to show the

most extreme cases. From the understeer gradient model in Chapter 2, it can be seen that the

vehicle will be most understeer when the distance from the CG to the rear axle and the rear tire

cornering stiffness is increased, and the distance from the CG to the front axle and the front tire

cornering stiffness is decreased. For a vehicle with the most oversteer, the distance from the

CG to the rear axle and the rear tire cornering stiffness is decreased, and the distance from the

CG to the front axle and the front tire cornering stiffness is increased.

Figure 3.18 below shows the MRAC response to the oversteer vehicle case. In this plot r

is the reference yaw rate signal sent to the controller, xm is the nominal model response, and

x is the system response. The controller rapidly drives the error to zero even under such an

extreme case. The vehicle was very oversteer in this instance, but the high excitation from the

unstable plant quickly drove the controller gains to steady state. The response also converges

quickly to the reference model as shown closer in Figure 3.19.
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Figure 3.18: MRAC Response to Sine Input for Oversteer Vehicle.

Figure 3.19: MRAC Response to Sine Input for Oversteer Vehicle (Zoomed from Figure 3.18).

Figure 3.20 below shows the MRAC response to understeer vehicle case. The controller

eventually drives the error to zero, however, because of the lower excitation from the extremely

understeer vehicle, this takes much longer. The controller gains are also much slower to con-

verge. Nevertheless, the response is still driven to the reference model as shown closer in Figure

3.21.
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Figure 3.20: MRAC Response to Sine Input for Understeer Vehicle.

Figure 3.21: MRAC Response to Sine Input for Understeer Vehicle (Zoomed from Figure 3.20).

Overall, the model reference adaptive control worked well. It always maintained stability

and was able to drive the error to zero. It performed much better when there is larger and longer

excitation as shown in the second portion of the sensitivity analysis. Without strong enough

or prolonged excitation, the controller gains and the error do not converge, and the errors are

larger as seen in the Figure 3.17.
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3.7 Sensitivity Analysis Conclusions

In general, the controllers were most affected by the vehicle parameters that determine the un-

dersteer gradient (a, b, Cαf , Cαr). The kinematic and dynamic bicycle model pole placement

controllers were very sensitive these parameters as well as mass. The model predictive con-

troller was more robust, but still affected by b and Cαf . The model reference adaptive controller

was robust as well, only being sensitive to b. The lookahead error feedforward-feedback con-

troller performed best overall and was not very sensitive to any parameter.

The kinematic controller remained stable, except when the distance from CG to rear axle b

was decreased by 50%. This implies that kinematic control may not work well when controlling

an oversteer vehicle in transient maneuvers. The other parameters increased the lateral error,

but remained stable and followed the path well. The kinematic controller seemed to achieve

the commanded yaw rate well, with a short time delay.

The dynamic bicycle model pole placement controller was better able to account for the

transience of the double lane change and provided lower nominal errors, but this came at a cost.

The pole placement controller was the most sensitive to parameter uncertainties and had huge

spikes in error when the model was incorrect. For acceptable performance with the classical

pole placement controller, either an accurate model or a lot of tuning is necessary.

The lookahead error feedforward-feedback controller’s robustness was extremely impres-

sive. This makes sense when looking at its formulation, since only the feedforward term was

directly calculated using the vehicle model. The feedback term was calculated using the looka-

head error, which allows for both the lateral error and heading error to be taken into consid-

eration. The controller was hand tuned using the nominal model, but the performance did not

degrade much with the varied models. However, if the vehicle type was changed drastically

(e.g. from a passenger car to a tractor trailer), this may not be the case.

With the model predictive controller, the front tire cornering stiffness was only detrimental

when overestimated because the tires could not handle the lateral forces required by them.

When the vehicle became oversteer from distance b being decreased by 50%, the MPC had the

potential to become unstable. The model predictive control was very robust to mass, inertia,
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distance a, and rear tire cornering stiffness. This is due to the controller recalculating new

optimal control inputs at every time step as the vehicle response does not match the prediction,

correcting any variation from the path.

The model reference adaptive control had higher nominal errors but was able to maintain

stability under every scenario. The only parameter that had much effect was the distance b, but

the MRAC was still able to follow the path and showed no signs of instability. In the additional

simulation run with the sine input, it was clear that excitation levels have an extremely signif-

icant bearing on the performance of a model reference adaptive controller. An unstable plant

such as an oversteer vehicle works better than an understeer vehicle because the extra excitation

causes the controller gains to converge quicker.

The sensitivity analysis provided in this chapter was able to provide a great deal of in-

sight into the advantages and disadvantages of each type of controller tested. The simulation

was a low fidelity environment with a highly idealized situation allowing to quickly test the

various control architectures. In the real world, unmodeled dynamics and disturbances are al-

ways present, and there is usually a combination of parameter uncertainties. Nevertheless, this

data was extremely useful in informing the formulation of the vehicle agnostic path following

controller designed in Chapter 4 and tested in Chapter 5.

63



Chapter 4

Vehicle Agnostic Path Following Controller

The primary goal of this thesis was to design a vehicle path following controller that is able to

work on a wide variety of platforms. Some of the controllers in the sensitivity analysis were

able to handle small amounts of model inaccuracy, but would not be able to handle vehicles

that varied drastically. However, human drivers are able to go from driving a small sports car

to a large truck without having any knowledge of the vehicle models. For the formulation of

the vehicle agnostic controller presented in this chapter, the driving behaviors of humans was

mimicked in the controller logic.

The human driving dynamics can be simplified into two components. First, the controller

should only need very limited vehicle information to be able to control a wide variety of vehi-

cles. Second, the controller should have similar path following dynamics and smoothness as a

human. The following section discusses the formulation and decision making process behind

the vehicle agnostic controller.

4.1 Control Formulation

To achieve the desired human driving characteristics, the path dynamics and the vehicle yaw

dynamics of the vehicle were separated. The controller employs a cascaded architecture with

the adaptive path dynamic controller on the outer loop and the adaptive yaw dynamic controller

on the inner loop. This can be seen in Figure 4.1.

The cascaded architecture isolates the vehicle dynamics from the path dynamics. Since the

path dynamics are vehicle independent, they can be set to match the path dynamics of typical

human driving. Similar to the lookahead error feedforward-feedback controller in Chapter 3,
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Figure 4.1: Path Following Controller Block Diagram.

the path dynamic controller relies on the lookahead error and the curvature of the reference

path. The lookahead error can be defined in terms of lateral error and heading error as shown

previously in Equation (3.24) and restated below.

eLA = elat + xLA ·∆ψ (4.1)

If the reference path is rotated into the vehicle frame, the lookahead error is simply the

y-component of path point where the xpath = xLA. The curvature of the path is equal to the

change in heading in two path points divided by the arc length between the two points. This

can be approximated as shown below.

κ =
ψb − ψa√

xb − xa + yb − ya
(4.2)

In order to mimic human driving behaviors, the lookahead distance xLA is calculated based

on the vehicle speed and reference path profile. The lookahead distance acts like damping in

the system and is increased as a function of longitudinal velocity. This replicates how a driver

on the interstate looks further ahead than they do when driving slowly through a parking lot.

This formulation also helps to reduce the lag in vehicle response as the speed increases.

Hingwe and Tomizuka proposed a controller that calculates the optimal lookahead distance

as a quadratic function of longitudinal velocity [36]. This holds at higher speeds, but at lower

speeds a linear relation achieved better results. Therefore, in this thesis the lookahead distance
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was calculated as shown in Equation (4.3).

xLA(Vx) =


0.05 · V 2

x , if Vx > 15m
s

0.75 · Vx, otherwise
(4.3)

Additionally, the lookahead distance is increased as the curvature of the path decreases.

This is similar to how human drivers should look further ahead on a straight road than a tight,

twisty one. To replicate this behavior, when the path curvature is below a threshold that is

approximately straight, the lookahead distance calculated above is increased by 25%.

The path dynamics controller then calculates the yaw rate needed to follow the curvature

of the road under steady state cornering ψ̇FFW . This is done by multiplying the curvature at

the point nearest to the vehicle with the vehicle’s longitudinal velocity Vx.

ψ̇FFW = κ · Vx (4.4)

To correct for deviation from the reference path due to the transience of a maneuver or other

disturbances, a corrective feedback yaw rate, ψ̇FB, is calculated by multiplying the lookahead

error by a proportional gain.

ψ̇FB = −Kp · eLA (4.5)

The feedforward and feedback terms are added together to determine the total commanded yaw

rate, ψ̇cmd.

ψ̇cmd = ψ̇FFW + ψ̇FB (4.6)

This calculated yaw rate is then sent to the inner loop which calculates the steering angle

command needed to achieve the desired yaw rate. This yaw rate controller must be able to

handle the vehicle dynamics and adapt to completely different vehicle types. Initially, for
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the inner loop, the model reference adaptive control from Section 3.6 was implemented in

ROS/C++ and tested in Gazebo.

However, moving the algorithm to a higher fidelity simulation brought to light some weak-

nesses. First, without a direct measurement of the lateral velocity, the MRAC reference model

and the uncertain vehicle model did not closely match. Also, under normal driving there is not

persistent excitation that is necessary for the controller gains to converge quickly. Because of

these issues and the inherent unstructured uncertainties, the model reference adaptive controller

sometimes became unstable after a certain amount of time.

To combat these issues and the reliance on a dynamic bicycle reference model, an adap-

tive controller based on a simpler model was designed to control the yaw rate. It uses the same

principles as the previous model reference adaptive controller, but employs the kinematic bicy-

cle model instead of the dynamic bicycle model. It also uses indirect adaptive control where a

parameter is estimated in order to adapt the controller, instead of direct adaptive control where

the controller gains are adapted directly with no estimation algorithm. This was done so that

the controller could be validated with some intuition.

The kinematic model only relies on the wheelbase length and steering ratio, instead of

the six parameters of the dynamic bicycle model. This greatly reduces the difficulty in getting

a good estimate of the model. It is also easy to take an accurate measurement of wheelbase

length to initialize the system. The indirect form of MRAC used for the yaw control estimates

an effective wheelbase length, Leff , in order to adapt the kinematic controller. This effective

wheelbase is used to estimate the DC gain of the uncertain system and is essentially a function

of the wheelbase, steering ratio, understeer gradient, and disturbances.

To calculate the steering command for a given yaw command, first, the steering angle from

the nominal yaw controller is calculated as shown below in Equation (4.7).

δcmd = arctan
Leff · ψ̇cmd

Vx
(4.7)

Next, the predicted nominal response is represented as a first order delay with DC gain of one

using the previous commanded yaw rate ψ̇−
cmd, the previous actual yaw rate ψ̇−

cmd, and a filter
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coefficient Cdelay. This coefficient is a function of the time step Ts and the filter time constant

τ as shown below.

Cdelay =
Ts
τ

(4.8)

The nominal yaw rate at the given time step is then calculated with the difference equation

shown below, which represents the delay in the steering actuator and vehicle yaw dynamics.

ψ̇nom = ψ̇−
act + (ψ̇−

cmd − ψ̇
−
act) · Cdelay (4.9)

ψ̇nom = ψ̇−
act(1− Cdelay) + ψ̇−

cmd · Cdelay (4.10)

The error between the actual model and the reference model is represented by eψ̇.

eψ̇ = ψ̇act − ψ̇nom (4.11)

This error between the models is multiplied by the adaptation gain, γ, which is a tuning pa-

rameter that determines how quickly the system adapts the effective wheelbase. This equation,

represented below, results in the change in effective wheelbase ∆Leff .

∆Leff = −γ · eψ̇ (4.12)

The change in effective wheel base is then added to the previous estimate to achieve the new

estimate. The process then starts over by calculating the next steering command with Equation

(4.7) using the updated effective wheelbase.

Leff = L−
eff + ∆Leff · Ts (4.13)
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4.2 Software Architecture

This system was implemented using the Robotic Operating System (ROS) in C++ and Python.

Figure 4.2 shows the ROS nodes and communication channels.

Figure 4.2: Vehicle Agnostic Controller ROS Software Architecture.

First, the reference path in the vehicle frame is sent from the path planning node to the

adaptive path following controller node. The path following node calculates the desired yaw

rate which is then sent to the adaptive yaw controller node. The adaptive yaw control node

calculates a commanded steer angle and sends it to the DBW node.

The DBW node converts the vehicle commands to CAN messages and sends them to

the vehicle through the Controller Area Network (CAN) bus, utilizing the original equipment

manufacturer steering motor, throttle actuator, and brake actuator. The DBW node also receives

CAN messages containing important vehicle state information, which it converts to a more

usable form to be used by the control nodes.

This modular architecture allows the vehicle agnostic controller to be used for different

applications by only switching out the path planning node. The controller can also be quickly
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implemented on any vehicle with a ROS interface to the CAN bus with drive-by-wire capabili-

ties and access to vehicle states. In the next chapter, the controller is used on four different ve-

hicles in simulation as well as three different platforms in experimental testing with no changes

made to the controller between the applications.
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Chapter 5

Simulation and Experimentation

This chapter presents the simulation and experimental results for the vehicle agnostic path

following controller presented in Chapter 4. The first section presents the setup and results of

the controller when tested on four vehicles in the simulation environment. The next section

discusses the experimental setups for the real-time implementation on the drive-by-wire test

vehicles. This is followed by analysis of the behavior and error dynamics of typical human

driving for comparison to the controller. The fourth section presents the two reference path

generation techniques used for the real-world testing. The last section presents the experimental

results for both test scenarios.

5.1 Simulation

This section describes the vehicles, environment, and results of the vehicle agnostic path fol-

lowing controller when tested in simulation.

5.1.1 Simulation Vehicles

Software-in-the-loop (SIL) testing was performed in order to ensure the control architecture

would perform well before being implemented on the MKZ in real time. Dataspeed provides a

Gazebo vehicle model and ROS interface that mimics that of the actual car, allowing for seam-

less transition between simulation and real-world testing. Figure 5.1 shows the ROS interface

used in simulation. This is nearly identical to the one used on the DBW vehicle, allowing the

same control stack to be used on both with no modification.
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One difference between the two interfaces is the /gazebo node which replaces the

/can_node and controls the car based on the CAN messages. The /gazebo node also

publishes simulated sensor data and ground truth data. The only other difference is that the

received and transmitted CAN messages (/can_bus_dbw/can_rx and /can_bus_dbw/

can_tx) are in the /vehicle namespace. This SIL testing allows the majority of software

errors to be discovered before being implemented on the vehicle.

Figure 5.1: Gazebo MKZ DBW ROS node.

To test how the controller would perform on a variety of vehicle platforms, three other

Dataspeed Gazebo models were used in addition to the MKZ. These models were the Ford

F150, Chrysler Pacifica, and Jeep Grand Cherokee. The Gazebo models and some basic vehicle

information can be seen in Figure 5.2. These models were chosen because they represent

various types of vehicles: sedans, trucks, minivans, and SUVs.
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Figure 5.2: Gazebo Models used for SIL Testing.

5.1.2 Simulation Environment

The environment used to test the controller is a Gazebo world with a test track consisting of

right and left turns of various radii. The track contains markings for 12foot(3.66m) wide

lanes. A section of the track can be seen in Figure 5.3. The reference path for the controller

input is generated by the Dataspeed lane detection system that creates a path in the center

of the lane and publishes it with the ROS message type nav_msgs/Path. This message

structure consists of multiple poses with type /geometry_msgs/Pose, each corresponding

to a specific location along the path. Each pose contains the x, y, z position in the vehicle

frame and quaternion orientation. This can be seen from the simulated camera’s perspective in

Figure 5.4. The red and green lines represent detected lane lines, while the thin pink line is the

generated reference path for the control system.

The vehicle can also be visualized relative to the reference path in RViz, a 3D visualization

tool in ROS [74]. This can be seen in Figure 5.5 and was useful for the simulation and real world

testing in this chapter.
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Figure 5.3: Portion of Gazebo Simulation Test Track.

Figure 5.4: Gazebo Reference Path Generation.

Figure 5.5: RViz Visualization of Vehicle with Path.
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5.1.3 Results

The vehicle was run around the entire Gazebo track at constant speeds with runs from 5 m/s to

17.5 m/s. The controller was used throughout the entire run. To determine controller tuning, the

proportional gain in the outer loop was tested at a range of values to minimize the lateral error.

The final value used for this for this gain was 0.15. The adaptive gain was set to 10, a value

high enough so the controller would converge within a couple turns, but low enough that the

changes were gradual. This prevented the car balance from being upset mid-corner. The first

order delay time constant τ of the yaw dynamics reference model was set to a conservative 0.1

seconds. The adaptive gain can be increased and the time constant decreased if more aggressive

control is desired.

The plots below (Figures 5.6-5.10) show the lookahead error at the closest path point in

the camera’s field of view. The lookahead distance at this point is approximately 8 meters, and

therefore, the lateral error shown is much higher than the true lateral error at the CG. Although

this value is not the true error, it provides insight into how the vehicle is performing and serves

as a baseline to compare directly against the on-road lane keeping tests where there is no truth

value available.

The controller was tested with each of the four vehicles at each of the six speeds for five

minutes. The effective wheelbase was initialized at 2 meters for each run to determine if the ef-

fective wheelbase would be able to converge to the true value for each scenario. The controller

assumes a steering ratio of 14.8 (the steering ratio of the MKZ), so the effective wheelbase

of the Lincoln MKZ should match the wheelbase, or 2.85 m, if the understeer gradient is ne-

glected. The other models had different steering ratios so the expected effective wheelbase

(again neglecting understeer gradient) would be equal to the wheelbase multiplied by the steer-

ing ratio and divided by 14.8 as shown in Equation (5.1).

Leff =
L · steering ratio

14.8
(5.1)

The Ford F150 has a wheelbase of 3.67m and a steering ratio of 18.0, so the truth effective

wheelbase should be 4.463m. The Chrysler Pacifica has a wheelbase of 3.08m and a steering
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ratio of 16.2, so the truth effective wheelbase should be 3.371m. Lastly, the Jeep Grand Chero-

kee has a wheelbase of 2.91m and a steering ratio of 15.15, so the truth effective wheelbase

should be 2.978m.

Figure 5.6 below displays the lookahead errors and effective wheelbase lengths during

the runs with a longitudinal velocity of 5 m/s. The bottom subplot shows that the effective

wheelbase for each vehicle reached the truth value (dotted lines) within a few turns. The initial

plateau from 0 to 40 seconds was due to a lack of excitation along the straight section of

the track that the vehicle started on. Once the effective wheelbases reached steady state, the

lookahead errors stayed below 1 meter for all vehicles. The small steady state error was likely

due to unmodeled dynamics which are treated as disturbances to the controller, but this had

little effect on the performance. Qualitatively, the vehicles all stayed inside the lane lines, even

before the effective wheelbases converged. Figure 5.7 shows that the adaptive yaw controller

was able to follow the commanded yaw rate very closely for the duration of the runs, especially

once the effective wheelbase converged.

Figure 5.6: Simulation Lookahead Error at 5 m/s.
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Figure 5.7: Simulation Yaw Rate Error at 5 m/s.

Figure 5.8 below displays the lookahead errors and effective wheelbase lengths during the

runs with a longitudinal velocity of 10 m/s. The effective wheelbase for each vehicle reached

the steady state truth value within a few turns. Once the effective wheelbases reached steady

state, the lookahead errors stayed below 1.7 meters for all vehicles. Qualitatively, the vehicles

all stayed inside the lane lines throughout the runs. Figure 5.9 shows that the adaptive yaw

controller was able to follow the commanded yaw rate closely for the duration of the runs.
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Figure 5.8: Simulation Lookahead Error at 10 m/s.

Figure 5.9: Simulation Yaw Rate Error at 10 m/s.

Figure 5.10 below displays the lookahead errors and effective wheelbase lengths during

the runs with a longitudinal velocity of 15 m/s. The bottom subplot shows that the effective

wheelbase for each vehicle reached the truth value within a few turns. Once the effective
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wheelbases reached steady state, the lookahead errors stayed below 1.7 meters for all vehicles.

Qualitatively, the vehicles all stayed inside the lane lines, even before the effective wheelbases

stabilized. Figure 5.11 shows that the adaptive yaw controller was able to follow the com-

manded yaw rate closely for the entire runs.

Figure 5.10: Simulation Lookahead Error at 15 m/s.

Figure 5.11: Simulation Yaw Rate Error at 15 m/s.
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Additional plots and analysis of the simulation runs performed at 7.5 m/s, 12.5 m/s, and

17.5 m/s can be found in Appendix B. The root mean square error (RSME) of the vehicle yaw

rate to the commanded yaw rate was also calculated for each vehicle. Figure 5.12 shows that at

5 m/s the RSME yaw error was around 0.025-0.031 rad/s for each of the vehicles. At the other

end of the spectrum, at 17.5 m/s the RSME yaw error was between 0.042 and 0.045 rad/s.

These yaw rate errors are good considering the range of vehicles and velocities, and the

lookahead errors were comparable to the lookahead errors observed during the human driving

analysis. These tests also showed that the controller was able to handle an effective wheelbase

initialization that was very far from the truth value. Nevertheless, the closer the initialization

was to the true value, the quicker the effective wheelbase reached its steady state value.

Figure 5.12: Simulation Yaw Rate Root Mean Square Error.
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5.2 Experimental Setup

Three drastically different vehicle platforms were used to test the vehicle agnostic path follow-

ing controller. This was done to validate the flexibility of the controller on vehicles ranging

from a small RC car up to a class-8 truck. This section goes through the hardware and software

setup of each platform.

5.2.1 Lincoln MKZ

One platform used for the real-world experiments is a Dataspeed 2017 Lincoln MKZ [75] as

shown in Figure 5.13. This vehicle is fully drive-by-wire (DBW), meaning the steering, throttle,

brake, and gear can all be controlled electronically. Dataspeed also provides a ROS software

interface to the vehicle CAN bus. The CAN interface allows vehicle sensor data and states

to be read directly from the vehicle engine control unit (ECU). It also allows control signals

to be sent to the OEM actuators for steering, throttle, and brake, without having to add any

aftermarket actuators.

Figure 5.13: Dataspeed Lincoln MKZ.

The ROS graph for the CAN interface can be seen below in Figure 5.14. The gate-

way to the vehicle is the /vehicle/dbw_node, which sends and receives CAN messages.

Vehicle sensor data such as wheel speeds, vehicle IMU data, and vehicle GPS data is re-

ceived through the /can_bus_dbw/can_rx topic and is converted to easy to use forms
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in the /vehicle/dbw_node. Other information from the MKZ actuators, such as steer-

ing angle, steering velocity, throttle position, brake position, and gear selection, are han-

dled in the same way. Commands published from the control software stack are sent to

the vehicle/dbw_node and converted to CAN messages. These are then published on

the /can_bus_dbw/can_tx topic. These CAN topics are sent and received from the

/can_node which represents the physical hardware connection with the vehicle CAN port.

Figure 5.14: MKZ DBW ROS Interface.

The /vehicle/ulc_node is unused and deactivated since all the control commands

are sent directly from the controller. Any time the drive-by-wire capabilities are being used for

longitudinal or lateral control, the ROS topic /vehicle/dbw_enabled must be set to true

so that the /vehicle/dbw_node will send commands.

The sensor suite used for the following tests with the Lincoln MKZ includes a Memsense

3020 IMU, NovAtel GPS receiver, and Intel RealSense D435 camera. Each of these is con-

nected to a central Linux computer in the trunk of the MKZ. The CAN gateway is also attached

to the main computer. The RealSense Camera is mounted on the roof of the car along the ve-

hicle x-axis. The NovAtel receiver is in the trunk of the vehicle, while the antenna is mounted

to the vehicle’s roof. This setup can be seen in Figure 5.15. For vehicle following, a Cohda

Wireless DSRC radio can be used for vehicle-to-vehicle (V2V) communication. The computer

and all of the sensors are powered by the power distribution system that outputs the required
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DC voltage for each system. The MKZ has a measured wheelbase of 2.85 m and a steering

ratio of 14.8.

Figure 5.15: MKZ Hardware Setup [31].
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5.2.2 Peterbilt 579

The second experimental platform used in this chapter was a Peterbilt 579. The 579 is a class-8

tractor trailer for long haul trucking and can be seen in Figure 5.16. The hardware suite on the

truck includes a Memsense 3020 IMU, NovAtel GPS, Codha DSRC radio, Delphi RADAR,

and a Linux computer. The computer calculates the controller outputs and sends them to the

truck ECU through the CAN bus. All of the hardware is powered through an inverter connected

to the truck main power. The 579 has a measured wheelbase of 6.1 m from the front axle to

halfway between the rear axles and a steering ratio of 18.2.

Figure 5.16: Peterbilt 579.
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5.2.3 F1TENTH Car

An F1TENTH autonomous racing car was used as a third experimental platform for the vehi-

cle agnostic path following controller [76]. The chassis, motor, and steering servo are from a

1/10th scale Traxxas Slash 4x4 RC car as shown below in Figure 5.17. This car was outfit-

ted with a sensor suite consisting of a Sparkfun Razor 9DOF IMU, Rplidar A2 single channel

LiDAR, and an Intel RealSense D435 camera. The computation takes place on an on-board

NVIDIA Jetson Xavier NX with everything powered by rechargeable NiMH batteries. The

throttle and steering commands are sent to the motors through a VESC-6+ MK III motor con-

troller. The F1TENTH car has a measured wheelbase of 0.32 m.

Figure 5.17: F1TENTH RC Car.
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5.3 Reference Path Generation

Generating a desired reference path to follow is the first step for real-world testing. This chap-

ter outlines two methods used for this: vision-based lane detection and RTK-GPS waypoint

following. The vision-based system uses a camera to detect lane markings to create a center

reference path. This was implemented on the vehicles in real-time using the Intel RealSense

D435 camera and the Zed camera. The GPS waypoint path generation uses a NovAtel GPS

receiver to record the desired reference path and a TDCP-INS algorithm to provide vehicle

states. This could be used on or off road to follow a predetermined route or to follow another

connected vehicle such as in vehicle platooning. This reference path is transformed into the

frame of the controlled vehicle and sent to the path following node.

5.3.1 RTK-GPS Reference Path

GPS points were used to generate the path for the waypoint following system. To do this Real

Time Kinematic (RTK) GPS points were taken along the NCAT skid pad in an ISO standard

double lane change maneuver. RTK uses the data from a surveyed static GPS base station to

remove errors from the data taken on the moving receiver. It does this by differencing the code

and carrier measurements to give the position of the moving receiver relative to the base station,

providing centimeter level measurement accuracy [77]. This highly accurate path was used as

the input to the path following controller.

A Time Differenced Carrier Phase (TDCP) algorithm was fused with inertial measure-

ments from an IMU to enable the vehicle to know its relative location to the path. The TDCP

algorithm is similar to the RTK corrections described above, but it uses successive measure-

ments from the same receiver to determine a differential measurement, which gives very ac-

curate position changes because clock errors and atmospheric effects are canceled out. These

measurements are combined with the IMU measurements in an EKF to provide a high fre-

quency estimate of the vehicle position relative to the path [78]. The reference path was rotated

to the initial orientation of each run, so that there were no variations in initial conditions and
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all measured errors resulted from the controller alone. An RViz visualization of the vehicle

relative to the reference path during a test run can be seen in Figure 5.18

Figure 5.18: Visualization of Path Following on Skidpad.
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5.3.2 Vision-Based Lane Keeping

A vision based system was designed to create a reference for a lane keeping system. The system

provided the same outputs as lane detection node used in simulation. Two major versions of

this system were implemented: a lightweight system using classical image processing methods

and a deep neural network.

The classical image processing method reads in raw images from an Intel RealSense D435

camera (Figure 5.19). Next, a color threshold is applied to find white and yellow lane markings.

A Sobel filter [79] is applied to find regions with high gradients [80]. These are combined into

a binary mask, shown in Figure 5.20. The processed image then had an inverse perspective

warp applied to generate a bird’s eye view, as seen in Figure 5.21 [81].

Figure 5.19: Unfiltered Raw Image.
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Figure 5.20: Color Threshold and Sobel Operator Applied to Image.

Figure 5.21: Inverse Perspective Warp.
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Polynomials were fitted to the detected pixels, creating the lane line estimates. Both sec-

ond and third order polynomial fits were tested, but there was no visible improvement in per-

formance so a second-order polynomial was used in the final implementation. The lines were

interpolated to form a center reference line which was used as the controller input. Figure 5.22

shows the polynomials transformed and overlaid on the input image, creating a visualization of

the detected lane [82].

Figure 5.22: Classical Lane Detection Output.

The classical lane detection method was mostly accurate in detecting lanes but contained

noise in the estimate as it was lighting dependent. However, this noise was filtered by the

controller and had minimal effect on the lane keeping performance. The system lost the lane

on tight corners, even when higher order polynomials were used. This was due to limited field

of view (FOV) on the camera and the lost data when performing a perspective warp. For more

details on the image processing refer to [83–85].
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To improve the robustness of the lane detection system, a convolutional neural network

(CNN) was designed to replace the classical lane detection system. This system was based on a

simplified version of VGG-16 [86]. The image from the camera is input into the encoder, which

takes an input and converts it to a tensor. The output tensor is fed into two decoders, which

converts a tensor into a desired output. Both the encoder and decoder were CNNs. The first

decoder performs binary segmentation on each pixel in the image. Each pixel that corresponds

to a lane line is given a value of one. The second decoder performs instance segmentation,

differentiating multiple lane lines. This architecture can be seen in Figure 5.23.

Figure 5.23: Lane Detection Network Architecture [87].

The network was trained on a combination of the TuSimple dataset [88] and some hand-

labeled data recorded in the Auburn area. The TuSimple dataset contains 7000 one-second-long

video clips, each with 20 frames. These were all recorded in daytime with good or medium

weather conditions. The data was recorded along 2-lane, 3-lane, and 4-lane highways. Figure

5.24 provides examples of the TuSimple dataset. This provided the majority of the training

data but lacked rainy conditions and yellow lane lines. To alleviate this, data was collected

in the Auburn area that included yellow lane lines and rainy conditions. The images were

hand-labeled to augment the TuSimple data.
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Figure 5.24: Images from the TuSimple dataset [88].

This system performed well and was able to reliably extract the lane lines. Figure 5.25

shows the output of the lane detection system overlaid on the input image.

Figure 5.25: Lane Detection Output [87].

The neural network was put into a ROS node to communicate results to the rest of the

vehicle. The output was sent to a path planning node which applied random sample consensus

(RANSAC) [89] to reject outliers. Then, a second order polynomial was fit to each filtered lane
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line. An inverse perspective warp mapped samples of the polynomials to the navigation frame.

These two lane lines are interpolated to find the center line path points and orientations, which

was then used as the input to the controller. If one lane line is missing, the path planning node

places the center line at an offset to the right or left of the detected lane line, depending on

which lane marker was lost. Figure 5.26 shows the a visualization of the output from the lane

detection and path planning node. The blue points represent the left lane, the red represents the

right lane, and the green points are the interpolated center line.

Figure 5.26: Lane Keeping Path Planning Output [87].

The CNN based lane detection system qualitatively performed well, but was extremely

computationally expensive. In order to run in real time, a high quality GPU is needed. It also

lost the lane lines in tight corners when the lanes leave the camera field of view (FOV). This

issue was present in both lane detection systems but can be mitigated with a wider FOV camera

or by fusing the inputs from multiple cameras. The CNN based lane detection system was also

used to test the controller, but because the classical image processing system had sufficient

accuracy and ran in real time even without GPU usage, it was used to produce the results in the

following section.

93



5.4 Human Driving Analysis

In order to establish a performance baseline for the vehicle agnostic path following controller,

human driving data was recorded. This data was collected for multiple drivers performing a

double lane change as well as typical back-road driving. The next two sections will present the

results of the human driving data.

5.4.1 Double Lane Change

Cones for a double lane change maneuver were set up along the RTK-GPS path described

in Section 5.3.1. Four drivers manually drove the Peterbuilt 579 truck through the cones at

approximately 5 m/s. Each driver performed a minimum of three runs. The lateral errors

measured during these tests by the TDCP-INS system as well as the steering inputs from each

driver can be seen in Figure 5.27.

All four drivers had fairly consistent errors and steering profiles between their own runs,

but somewhat differed from driver to driver. The first driver had maximum lateral errors in the

1.0-1.5 m range for each run. The second driver had maximum lateral errors of about 1.0-2.0

m. The third driver was the most consistent, with lateral errors for each run falling between 1.1

m and 1.4 m. The fourth driver had errors ranging from 1.0-1.6 m.

While this data only represents one maneuver for one vehicle, some basic information can

still be extracted from it. First, each driver had a max lateral error of approximately 1.0 m for

their best run at 5 m/s. For the vehicle agnostic path following controller to successfully mimic

human driving, it should have similar or less errors at the same speed. Second, each human

driver had mostly smooth and consistent steering input. The vehicle agnostic path following

controller should therefore also provide smooth and consistent steering.
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Figure 5.27: Human Driving Double Lane Change.

5.4.2 Lane Keeping

For the lane keeping system presented in this chapter, the reference path is determined by

detecting lane lines and interpolating between them for the center line. This method only

provides lookahead errors and no truth error at the vehicle CG. In order to compare the errors
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of the vehicle agnostic controller to those of a human driver, data was collected for multiple

drivers while driving down the same stretch of curvy road. The drivers were instructed to drive

normally at speeds well below the limit of handling and each driver drove in both directions

down the section of road.

Figures 5.28 and 5.29 show that even with different drivers, the steering angle inputs be-

tween drivers were extremely consistent along the same route. It also shows the max lookahead

errors were around 1.5 meters with a lookahead distance of 8 meters. The mean lookahead error

was approximately 0.5 meters. These values were used as the baseline in which to compare the

vehicle agnostic lane keeping system analyzed later in this chapter. While this is not enough

data to fully characterize human driving, the goal was to achieve a ballpark number for typical

lookahead error and steering response, and use it to compare controller errors along similar

sections of curvy road when using the lane keeping system.

Figure 5.28: Human Driving Lookahead Error Northbound.
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Figure 5.29: Human Driving Lookahead Southbound.
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5.5 Experimental Results

This section presents the experimental results obtained by testing the vehicle agnostic path

following controller in real-time on the Dataspeed Lincoln MKZ, Peterbilt 579 class-8 truck,

and F1TENTH car. For each test, the experimental procedure will be described followed by the

results and a brief description of the results.

5.5.1 RTK-GPS Reference Path Following

A double lane change was used as the reference path to test the path following abilities of the

controller. This path was chosen because it is standardized, and it excites the dynamics of the

vehicle. A full description of this maneuver was provided previously in Figure 3.1. The double

lane change was run on the NCAT skid pad at multiple velocities ranging from 5 m/s to 10 m/s.

Longitudinal velocities above this were not considered due to space constraints. The tests were

performed on the Dataspeed MKZ, the Peterbilt 579 cab, and the Peterbilt 579 with a trailer.

The MKZ on the NCAT skid pad as well as the reference path can be seen in Figure 5.30.

The longitudinal velocities were controlled using a PID controller on the MKZ and manually

controlled on the Peterbilt.

Figure 5.30: Double Lane Change Maneuver on NCAT Skidpad.

The lateral control system takes in a set of RTK-GPS waypoints corresponding to the

double lane change. It uses the TDCP-INS estimation algorithm described earlier in this chapter

to locate the vehicle relative in global coordinates. This position and orientation is used to
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transform the reference path into the vehicle frame to be sent to the controller. The tuning of

the controller was the same as the tuning completed in simulation runs in Gazebo, as described

in Section 5.1.3. Figure 5.31 displays the position output from the TDCP-INS node during one

of the double lane change runs.

Figure 5.31: Vehicle Path During Double Lane Change.

A minimum of three runs were completed at each velocity. The plots below have three

runs at the stated velocities, overlaid on each other. The top subplot displays the lateral error

in meters between the TDCP-INS estimator position and the RTK-GPS reference path. The

bottom subplot shows the steering command calculated by the controller.

The first set of runs were completed using the Lincoln MKZ. The effective wheelbase was

initialized as the measured wheelbase (2.85 m). Figure 5.32 shows that at 5 m/s, the lateral

error is less than half a meter throughout the maneuver. The steering input from the controller

was also extremely smooth. All three runs were very consistent as well, with any differences

resulting from variations in initial position when the test was initiated. The effective wheelbase

stayed about the same, ending at 2.82 m. At 10 m/s the max lateral error remained around half a

meter for all three runs as shown in Figure 5.33. Again, the steering was exceptionally smooth

and consistent between runs. The effective wheelbase barely changed, ending up at 2.87 m.
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Figure 5.32: MKZ Controller Performance for 5 m/s Double Lane Change.
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Figure 5.33: MKZ Controller Performance for 10 m/s Double Lane Change.
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The next set of runs were completed using the Peterbilt 579. The first two sets of tests

were completed with the truck cab only, and the third was with a trailer attached as shown in

Figure 5.34. Since the truck has two rear axles, the effective wheelbase was initialized as the

average of the distance from the front axle to each rear axle (6.1 m). Note: the Peterbuilt had

opposite sign conventions on the steering motor than the MKZ.

Figure 5.34: Peterbilt 579 with Trailer on Skidpad.

When the truck was tested at 5 m/s, the max lateral error was approximately 0.5 meters,

which is comparable to the MKZ double lane change at this speed. The steering was still

smooth and consistent as seen in Figure 5.35. For the initial run, the effective wheelbase in-

creased throughout the maneuver significantly. Because the double lane change did not provide

enough persistent excitation for the effective wheelbase to converge in a single run, the maneu-

ver was run multiple times until the effective wheelbase reached a steady state value at this

speed. The blue lines show the first run, before the effective wheelbase had converged. The

red and yellow lines show two runs after the effective wheelbase converged. The final effec-

tive wheelbase value was about 8.78 m. However, even before convergence, the controller had

similar performance to the final runs and successfully handled the maneuver.
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Figure 5.35: Peterbilt Controller Performance for 5 m/s Double Lane Change.

Next, the same test was run with the Peterbilt at 8 m/s. This speed was as high as the truck

could accelerate to in the given space. The same procedure as previously for initializing the

effective wheelbase and letting it converge was performed. With the increased longitudinal ve-

locity, the initial run had a max lateral error of about 1.5 meters, as shown in Figure 5.36. After

the effective wheelbase converged to 8.75 m, the max lateral error dropped to about 0.5 meters.

This was comparable to the MKZ at this velocity and impressive given the aggressiveness of

the maneuver. At this velocity, the truck’s dynamics were stressed and it was nearing the limits

of the tires. The steering remained smooth for these runs.
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Figure 5.36: Peterbilt Controller Performance for 8 m/s Double Lane Change.

The last plot in this section shows the truck response with a trailer attached at 5 m/s. The

process of initializing the effective wheelbase at 6.1 m and completing runs until it converged

was repeated. With the trailer, the max lateral error was just over 0.5 meters both before and

after effective wheelbase convergence, as shown in Figure 5.37. This was equivalent to the

error of the cab with no trailer and the MKZ at this speed. The effective wheelbase converged

to 8.82 m, and the steering was smooth and consistent.

104



Figure 5.37: Peterbilt with Trailer Controller Performance for 5 m/s Double Lane Change.

Overall, the vehicle agnostic path following controller was successful at maintaining low

lateral errors at a variety of longitudinal velocities, while also mimicking the path following

behavior of a human driver. During the double lane change maneuvers, human drivers had

max lateral errors of over a meter. The controller produced errors around half a meter for each

vehicle platform during the same maneuver, even at higher speeds. The controller was able to

handle a passenger sedan, a Class-8 truck cab, and the Class-8 truck with trailer. The flexibility

to work across platforms combined with the smoothness of steering actuation validates the

vehicle agnostic path following controller.
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5.5.2 Vision-Based Lane Keeping

Finally, the vehicle agnostic path following controller was tested as part of a lane keeping sys-

tem, using the vision-based lane detection to generate the reference path. The tests were per-

formed using the F1TENTH platform. The lanes were created indoors using tape on the floor,

with a variety of curves to produce dynamic maneuvers. The lane keeping system was tested

on a 1/10th scale car to verify the flexibility of the controller on a wide variety of platforms.

Figure 5.38 shows the ROS software architecture of the lane keeping system. The camera

nodes publish the raw color image which is used by the lane detection node, which detects

the lanes and plans a path in the center for the vehicle to follow. The method used for path

planning is the same as the classical lane detection described previously in detail in Section

5.3.2. The controller takes in the target path and sends steering, throttle, and brake commands

to the drive-by-wire node. On a road vehicle, this node converts these into CAN messages and

sends them to the vehicle. In the case of the F1TENTH car, the drive-by-wire node represents

the motor controller, which converts the commands to voltages for the drive motor and steering

servo.

Figure 5.38: Lane Keeping System ROS Software Architecture.
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The lane keeping system was tested at speeds ranging from 0.5 m/s to 1.5 m/s. The fol-

lowing results show the lookahead error at the closest path point in the camera’s field of view.

The lookahead distance at this point is approximately 30 centimeters, so the true lateral error

at the CG is even lower. The vehicle can be seen during the lane keeping test in Figure 5.39.

Figure 5.39: F1TENTH Car During Lane Keeping.

Figure 5.40 shows the performance at 0.5 m/s. At this speed the lookahead error remained

below 10 cm and the vehicle remained close to the reference center line at all times. The

steering input from the controller was consistent between runs.
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Figure 5.40: F1TENTH LKS Performance at 0.5 m/s.

At 1.0 m/s the max lateral error was approximately 14 cm as shown in Figure 5.41. For

the most part, the vehicle stayed near the reference path with the spikes occurring when the

lane detection lost the path for short periods of the experiment.

Figure 5.41: F1TENTH LKS Performance at 1.0 m/s.
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When tested at 1.5 m/s, the max lateral error still remained below 15 cm, but the runs were

less consistent. At this speed, the lane detection had more instances of bad reference generation

which lead to spikes in error. This could be alleviated by further tuning the lane detection node

for indoor use. Nevertheless, when the path generation was good, the vehicle was able to stay

on the path as seen in Figure 5.42.

Figure 5.42: F1TENTH LKS Performance at 1.5 m/s.

Without fully modelling the vehicle dynamic parameters, the scaled equivalent speed can-

not be determined [90]. However, the lateral path tracking errors of the 1/10th scale car can

be compared to the human drivers in a full size car by converting the errors to a dimensionless

value by diving the lookahead error by the wheelbase length [91, 92].

e∗max =
emax
L

(5.2)

e∗max =
1.4m

2.85m
= 0.4912 [unitless] (5.3)
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The same is done with the F1TENTH car for each speed.

0.5 m/s: e∗max =
10cm

32cm
= 0.3125 [unitless] (5.4)

1.0 m/s: e∗max =
14cm

32cm
= 0.4375 [unitless] (5.5)

1.5 m/s: e∗max =
15cm

32cm
= 0.4687 [unitless] (5.6)

When put into dimensionless form, the lane keeping system on the F1TENTH car was able

to provide equivalent or better performance than human drivers. Additionally, the steering was

smooth and mostly consistent with the variations coming from the lane detection node. This

was also sufficient enough to keep the vehicle inside the lane lines at all times.

Overall, the vehicle agnostic path following controller was successful on both the lane

keeping system and during the double lane change tests. In both scenarios, the controller

maintained path tracking errors less than those seen in human driving. The vehicle agnostic

path following controller also worked on a wide range of simulated and experimental vehicle

platforms without changing the tuning while providing smooth steering inputs.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presented a vehicle agnostic path following controller that was able to mimic hu-

man driving characteristics. The models for vehicle and tire dynamics used in the thesis were

described in Chapter 2. Chapter 3 provided a sensitivity analysis of many common path fol-

lowing controller architectures to model uncertainty to determine the strengths and weaknesses

of each one. The results of the sensitivity analysis were used to inform the design of the new

vehicle agnostic path following controller presented in Chapter 4, the primary contribution of

this work. Chapter 5 validated the controller in simulation and real-time on a wide range of

vehicles.

The vehicle agnostic path following controller was shown to be able to control a sedan,

minivan, SUV, and pickup truck in a lane keeping scenario in simulation. This test was run

with each vehicle at a wide variety of speeds and with no controller tuning between scenarios.

The controller was intentionally initialized poorly in order to stress the system, but the con-

troller was robust to these initialization errors. In addition to being capable of keeping all the

vehicles inside their lanes, the controller was able to effectively estimate each vehicles effec-

tive wheelbase. The effective wheelbase was a value corresponding to the DC gain of the yaw

dynamics, comprised of the wheelbase length and the steering ratio. The effective wheelbase

was the primary parameter used to adapt the inner loop control law.

To test the controller on experimental platforms, two different reference path generation

methods were used. First, a RTK-GPS reference path generation model was presented, which
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could be used in a variety of applications such as truck platooning. In this method, a TDCP-

INS estimator is used to determine the vehicle state and rotate the global reference path into the

vehicle coordinate frame. Second, a vision-based lane keeping system was introduced. This

system uses either classical image processing or a deep neural network to detect the lane lines

in an image. These detected lines then have a polynomial fit to each one, and a path in the

center of the lane is then calculated by interpolating the two lane polynomials. This center path

is used as the reference input to the controller for a lane keeping system.

The vehicle agnostic path following controller was then implemented on three experimen-

tal platforms, a small 1/10th scale RC car, a typical passenger sedan, and a Class-8 tractor

trailer. This was done to test the flexibility of the controller to vehicles with drastically dif-

ferent dynamics. The controller was tested on the sedan and semi truck during a double lane

change maneuver. The controller performed well at all speeds with both vehicles. Additionally,

tests were run with the Class-8 truck while pulling a loaded trailer. The controller was robust

to each of these perturbations. Lastly, the controller was tested on the 1/10th scale car using

the lane keeping system. Even with this substantially smaller system, the controller performed

well, always keeping the car inside the lines at a range of velocities.

Based on the simulation and experimental results, the vehicle agnostic path following

controller was successful at achieving the objectives listed below.

• The system closely matched the performance and smoothness of human driving

• The system was vehicle independent

• The system required no tuning between platforms

• The system was robust to disturbances
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6.2 Future Work

Although the control system was able to meet the design requirements, there is plenty of room

for improvement and related future research. First, the path generation can be improved by

using clothoids or other methods that create a continuous reference path. This would provide a

few benefits over the current paths which consist of discrete points. A continuous path would

allow the adaptive lookahead distance to be used more precisely when finding the lookahead

error instead of searching for the nearest point. Having guaranteed continuity in the curvature

of the path would increase the smoothness of the feedforward portion of the controller. These

would provide for even smoother steering actuation and likely lower lateral errors.

Much more time could be spent finding optimal controller parameters. The method used

to adapt the lookahead error based on speed could be further investigated and fine tuned. Also,

the threshold and manner of varying lookahead distance based on road profile would benefit

from further investigation. The proportional gain, the adaptation rate, and the time constant

of the nominal model could be further optimized with more testing to increase path tracking

performance and robustness.

Some of the most interesting future work is in testing different types of controllers and

models in the inner loop of the controller. Replacing the simple kinematic based controller

with a model predictive controller has the potential to decrease the lateral path errors while

increasing robustness. Model predictive control showed greater disturbance rejection in the

sensitivity analysis than the kinematic controller. Implementing a simple MPC could be done

fairly easily while still using the effective wheelbase as the adaptive parameter. Higher or-

der nominal models or other controller types for the inner adaptive piece could also possibly

increase the performance, especially at the limit of handling.

This thesis only discussed the design and implementation of the lateral control portion of

path following, while a simple PID controller was used for the longitudinal control. However,

an implementation of the cascaded adaptive controller for longitudinal control could provide

similar performance and stability benefits as the lateral controller. This combined with the
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lateral steering controller would be an excellent candidate for applications with changing dy-

namics, such as a vehicle being loaded and unloaded.

Lastly, combining the vehicle agnostic path following controller with a perception and

path planning software stack would provide a modular and vehicle independent Level 3 or

higher autonomous system. This would add obstacle avoidance, allowing the system to be used

for hands-off highway driving or other applications.
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Appendix A

Additional Sensitivity Analysis Plots

This Appendix provides additional plots generated during the sensitivity analysis presented in

Chapter 3. Each section of this appendix provides the results from each controller tested. This

includes a table with the percent differences in max and mean lateral errors when compared to

the nominal case and a plot showing the position of the vehicle through the double lane change

maneuver and the errors for each run. These tables and plots are provided for each dynamic

bicycle model parameter and each controller.

A.1 Kinematic Control

Table A.1: Kinematic Controller Sensitivity to Front Tire Cornering Stiffness.

Front Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error 322.7256% 117.5685% 0% -63.7185% -68.3264%

Lateral Mean Error 231.5222% 90.4433% 0% -56.0324% -65.7493%
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Figure A.1: Kinematic Controller Sensitivity to Front Tire Cornering Stiffness.
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Table A.2: Kinematic Controller Sensitivity to Rear Tire Cornering Stiffness.

Rear Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error 56.9976% -24.5684% 0% 21.2026% 29.8571%

Lateral Mean Error 15.4529% -10.2711% 0% 12.4080% 18.3590%

Figure A.2: Kinematic Controller Sensitivity to Rear Tire Cornering Stiffness.
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Table A.3: Kinematic Controller Sensitivity to Distance from CG to Front Axle.

Distance from Front Axle to CG

-50% -25% ±0% +25% +50%

Lateral Max Error -8.9266% -28.0759% 0% 45.5338% 92.0615%

Lateral Mean Error -9.8690% -16.4082% 0% 30.3197% 61.9525%

Figure A.3: Kinematic Controller Sensitivity to Distance from CG to Front Axle.
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Table A.4: Kinematic Controller Sensitivity to Distance from CG to Rear Axle.

Distance from Rear Axle to CG

-50%* -25% ±0% +25% +50%

Lateral Max Error 389.3254% 45.0572% 0% 109.6969% 209.1717%

Lateral Mean Error 320.4830% 8.7196% 0% 67.0709% 131.4614%

* went unstable

Figure A.4: Kinematic Controller Sensitivity to Distance from CG to Front Axle.
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Table A.5: Kinematic Controller Sensitivity to Vehicle Mass.

Vehicle Mass

-50% -25% ±0% +25% +50%

Lateral Max Error -67.1839% -44.3518% 0% 50.1214% 101.8426%

Lateral Mean Error -57.6658% -33.3741% 0% 38.3969% 76.9420%

Figure A.5: Kinematic Controller Sensitivity to Vehicle Mass.

131



Table A.6: Kinematic Controller Sensitivity to Vehicle Inertia.

Vehicle Inertia about the Vertical Axis

-50% -25% ±0% +25% +50%

Lateral Max Error -12.0534% -11.0627% 0% 18.7419% 39.1621%

Lateral Mean Error -21.3320% -12.3113% 0% 19.3750% 44.9370%

Figure A.6: Kinematic Controller Sensitivity to Vehicle Inertia.
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A.2 Dynamic Bicycle Model Pole Placement

Table A.7: Dynamic Bicycle Model Pole Placement Sensitivity to Front Tire Cornering Stiff-

ness.

Front Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error 265.6480% 44.8797% 0% 26.9988% 76.4405%

Lateral Mean Error 215.3706% 58.6238% 0% 5.9065% 31.8951%

Figure A.7: Dynamic Bicycle Model Pole Placement Sensitivity to Front Tire Cornering Stiff-

ness.
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Table A.8: Dynamic Bicycle Model Pole Placement Sensitivity to Rear Tire Cornering Stiff-

ness.

Rear Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error 495.1428% 129.3531% 0% 16.8321% 97.1306%

Lateral Mean Error 328.0971% 100.2609% 0% 9.7209% 45.1294%

Figure A.8: Dynamic Bicycle Model Pole Placement Sensitivity to Rear Tire Cornering Stiff-

ness.
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Table A.9: Dynamic Bicycle Model Pole Placement Sensitivity to Distance from CG to Front

Axle.

Distance from Front Axle to CG

-50% -25% ±0% +25% +50%

Lateral Max Error 1615.3959% 52.3724% 0% 41.7685% 162.4251%

Lateral Mean Error 883.7134% 31.3123% 0% 48.8857% 126.3656%

Figure A.9: Dynamic Bicycle Model Pole Placement Sensitivity to Distance from CG to Front

Axle.

135



Table A.10: Dynamic Bicycle Model Pole Placement Sensitivity to Distance from CG to Rear

Axle.

Distance from Rear Axle to CG

-50% -25% ±0% +25% +50%

Lateral Max Error 858.2235% 404.3638% 0% 325.7266% 594.0291%

Lateral Mean Error 595.2393% 277.9231% 0% 212.8811% 484.8787%

Figure A.10: Dynamic Bicycle Model Pole Placement Sensitivity to Distance from CG to Front

Axle.
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Table A.11: Dynamic Bicycle Model Pole Placement Sensitivity to Vehicle Mass.

Vehicle Mass

-50% -25% ±0% +25% +50%

Lateral Max Error 451.1247% 136.1228% 0% 125.4351% 342.9053%

Lateral Mean Error 271.9236% 68.8859% 0% 107.5359% 250.8236%

Figure A.11: Dynamic Bicycle Model Pole Placement Sensitivity to Vehicle Mass.
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Table A.12: Dynamic Bicycle Model Pole Placement Sensitivity to Vehicle Inertia.

Vehicle Inertia about the Vertical Axis

-50% -25% ±0% +25% +50%

Lateral Max Error -36.5308% -37.3478% 0% 46.1689% 101.7763%

Lateral Mean Error -26.9263% -16.5193% 0% 36.7092% 93.4664%

Figure A.12: Dynamic Bicycle Model Pole Placement Sensitivity to Vehicle Inertia.
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A.3 Lookahead Error Feedback-Feedforward Control

Table A.13: Lookahead Error Controller Sensitivity to Front Tire Cornering Stiffness.

Front Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error -42.6600% -30.8900% 0% 25.9147% 41.6449%

Lateral Mean Error -47.1048% -26.0449% 0% 19.5667% 33.6581%

Figure A.13: Lookahead Error Controller Sensitivity to Front Tire Cornering Stiffness.
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Table A.14: Lookahead Error Controller Sensitivity to Rear Tire Cornering Stiffness.

Rear Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error -40.2367% -16.8213% 0% 9.7621% 16.4556%

Lateral Mean Error -28.9954% -10.0443% 0% 5.7898% 10.1955%

Figure A.14: Lookahead Error Controller Sensitivity to Rear Tire Cornering Stiffness.
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Table A.15: Lookahead Error Controller Sensitivity to Distance from CG to Front Axle.

Distance from Front Axle to CG

-50% -25% ±0% +25% +50%

Lateral Max Error 19.9366% 14.6252% 0% -19.9928% -37.4552%

Lateral Mean Error 25.1147% 13.6619% 0% -15.6155% -30.6208%

Figure A.15: Lookahead Error Controller Sensitivity to Distance from CG to Front Axle.
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Table A.16: Lookahead Error Controller Sensitivity to Distance from CG to Rear Axle.

Distance from Rear Axle to CG

-50% -25% ±0% +25% +50%

Lateral Max Error -24.0996% -28.2905% 0% 26.3384% 44.4573%

Lateral Mean Error -33.8382% -18.6184% 0% 18.6995% 34.7928%

Figure A.16: Lookahead Error Controller Sensitivity to Distance from CG to Front Axle.
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Table A.17: Lookahead Error Controller Sensitivity to Vehicle Mass.

Vehicle Mass

-50% -25% ±0% +25% +50%

Lateral Max Error 25.1487% 26.1422% 0% -26.6354% -48.5362%

Lateral Mean Error 37.3091% 23.8943% 0% -21.6194% -48.5637%

Figure A.17: Lookahead Error Controller Sensitivity to Vehicle Mass.
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Table A.18: Lookahead Error Controller Sensitivity to Vehicle Inertia.

Vehicle Inertia about the Vertical Axis

-50% -25% ±0% +25% +50%

Lateral Max Error 18.2489% 10.9044% 0% -15.2157% -20.1874%

Lateral Mean Error 10.8415% 5.9751% 0% -6.7691% -13.3448%

Figure A.18: Lookahead Error Controller Sensitivity to Vehicle Inertia.
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A.4 Model Predictive Control

Table A.19: MPC Sensitivity to Front Tire Cornering Stiffness.

Front Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error 106.6341% 38.5803% 0% -17.9141% -29.2562%

Lateral Mean Error 93.2763% 30.1062% 0% -17.9598% -27.5641%

Figure A.19: MPC Sensitivity to Front Tire Cornering Stiffness.
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Table A.20: MPC Sensitivity to Rear Tire Cornering Stiffness.

Rear Tire Cornering Stiffness

-50%* -25% ±0% +25% +50%

Lateral Max Error 17.1317% 4.3575% 0% -1.3302% -1.9239%

Lateral Mean Error 37.8536% -3.2005% 0% -4.0159% -4.5649%

Figure A.20: MPC Sensitivity to Rear Tire Cornering Stiffness.
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Table A.21: MPC Sensitivity to Distance from CG to Front Axle.

Distance from Front Axle to CG

-50% -25% ±0% +25% +50%

Lateral Max Error 14.7139% 3.3050% 0% 1.6186% 6.7938%

Lateral Mean Error 12.2618% 0.0312% 0% 2.5210% 8.8823%

Figure A.21: MPC Sensitivity to Distance from CG to Front Axle.
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Table A.22: MPC Sensitivity to Distance from CG to Rear Axle.

Distance from Rear Axle to CG

-50%* -25% ±0% +25% +50%

Lateral Max Error 850.9560% 26.0444% 0% 4.6793% 32.2816%

Lateral Mean Error 551.4695% 30.4607% 0% 19.2355% 38.4103%

* went unstable

Figure A.22: MPC Sensitivity to Distance from CG to Rear Axle.

148



Table A.23: MPC Sensitivity to Vehicle Mass.

Vehicle Mass

-50% -25% ±0% +25% +50%

Lateral Max Error -5.2265% -9.1503% 0% 13.7197% 29.0769%

Lateral Mean Error -15.6694% -14.1902% 0% 6.4247% 15.0244%

Figure A.23: MPC Sensitivity to Vehicle Mass.
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Table A.24: MPC Sensitivity to Vehicle Inertia.

Vehicle Inertia about the Vertical Axis

-50% -25% ±0% +25% +50%

Lateral Max Error -25.3448% -14.1412% 0% 20.5596% 44.2323%

Lateral Mean Error -26.8291% -13.6050% 0% 10.9468% 25.3582%

Figure A.24: MPC Sensitivity to Vehicle Inertia.
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A.5 Model Reference Adaptive Control

Table A.25: MRAC Sensitivity to Front Tire Cornering Stiffness.

Front Tire Cornering Stiffness

-50% -25% ±0% +25% +50%

Lateral Max Error 0.9961% 0.4855% 0% -0.2167% -1.0677%

Lateral Mean Error -0.1376% -0.0443% 0% -0.9665% -0.9332%

Figure A.25: MRAC Sensitivity to Front Tire Cornering Stiffness.
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Table A.26: MRAC Sensitivity to Rear Tire Cornering Stiffness.

Rear Tire Cornering Stiffness

-50%* -25% ±0% +25% +50%

Lateral Max Error -40.3929% -15.8747% 0% 10.6058% 17.7489%

Lateral Mean Error -41.1114% -17.9962% 0% 10.6246% 18.4777%

Figure A.26: MRAC Sensitivity to Rear Tire Cornering Stiffness.
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Table A.27: MRAC Sensitivity to Distance from CG to Front Axle.

Distance from Front Axle to CG

-50% -25% ±0% +25% +50%

Lateral Max Error 12.9998% 7.6768% 0% -7.9420% -16.6665%

Lateral Mean Error 12.6069% 9.2510% 0% -8.6830% -14.8298%

Figure A.27: MRAC Sensitivity to Distance from CG to Front Axle.
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Table A.28: MRAC Sensitivity to Distance from CG to Rear Axle.

Distance from Rear Axle to CG

-50%* -25% ±0% +25% +50%

Lateral Max Error -62.9670% -42.7566% 0% 41.2211% 77.7106%

Lateral Mean Error -57.2614% -47.0936% 0% 44.9714% 84.1349%

Figure A.28: MRAC Sensitivity to Distance from CG to Rear Axle.
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Table A.29: MRAC Sensitivity to Vehicle Mass.

Vehicle Mass

-50% -25% ±0% +25% +50%

Lateral Max Error 20.3097% 12.2888% 0% -13.9490% -30.9866%

Lateral Mean Error 19.4097% 14.0720% 0% -14.8172% -30.4124%

Figure A.29: MRAC Sensitivity to Vehicle Mass.
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Table A.30: MRAC Sensitivity to Vehicle Inertia.

Vehicle Inertia about the Vertical Axis

-50% -25% ±0% +25% +50%

Lateral Max Error -8.5953% -2.5102% 0% 0.8928% 1.3697%

Lateral Mean Error -6.4141% -1.6891% 0% 1.5117% 2.6278%

Figure A.30: MRAC Sensitivity to Vehicle Inertia.
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Appendix B

Additional Simulation Results

This appendix contains additional results of the vehicle agnostic path following controller when

tested in simulation at 7.5, 12.5, and 17.5 m/s. These tests were performed on Gazebo models of

a Lincoln MKZ, Ford F150, Chrysler Pacifica, and Jeep Grand Cherokee following the testing

procedure described in Section 5.1.

Figure B.1 below displays the lookahead errors and effective wheelbase lengths during the

runs with a longitudinal velocity of 7.5 m/s. Again, the effective wheelbase for each vehicle

reached the truth value within a few turns. As the speed was increased, the effective wheelbase

reached the steady state value quicker due to more excitation earlier in the run. This trend

continued throughout the rest of the speeds. Once the effective wheelbases reached steady

state, the lookahead errors stayed below 1.3 meters for all vehicles. Qualitatively, the vehicles

all stayed inside the lane lines for the entire runs. Figure B.2 shows that the adaptive yaw

controller was able to follow the commanded yaw rate very closely for the duration of the runs,

especially once the effective wheelbase converged.
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Figure B.1: Simulation Lookahead Error at 7.5 m/s.

Figure B.2: Simulation Yaw Rate Error at 7.5 m/s.

Figure B.3 below displays the lookahead errors and effective wheelbase lengths during

the runs with a longitudinal velocity of 12.5 m/s. The bottom subplot shows that the effective

wheelbase for each vehicle reached the truth value within a few turns. Once the effective

wheelbases reached steady state, the lookahead errors stayed below 1.7 meters for all vehicles.

Qualitatively, the vehicles all stayed inside the lane lines during the entire runs. Figure B.4
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shows that the adaptive yaw controller was able to follow the commanded yaw rate closely for

the duration of the runs.

Figure B.3: Simulation Lookahead Error at 12.5 m/s.

Figure B.4: Simulation Yaw Rate Error at 12.5 m/s.

Figure B.5 below displays the lookahead errors and effective wheelbase lengths during

the runs with a longitudinal velocity of 17.5 m/s. The bottom subplot shows that the effec-

tive wheelbase for each vehicle reached the truth value within a few turns. Once the effective
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wheelbases reached steady state, the lookahead errors stayed below 1.8 meters for all vehicles.

Qualitatively, the vehicles all stayed inside the lane lines, even before the effective wheelbases

converged. Figure B.6 shows that the adaptive yaw controller was able to follow the com-

manded yaw rate closely for the duration of the runs.

Figure B.5: Simulation Lookahead Error at 17.5 m/s.

Figure B.6: Simulation Yaw Rate Error at 17.5 m/s.

160


