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Abstract

With the advancement of next-generation sequencing technology, numerous disease/

phenotypic associations with the human microbiome and human genome are uncovered and

revealed. In this dissertation, we take advantage of this and explore these association pat-

terns using machine learning methods. We first design a deep learning method MDeep for

microbiome-based prediction by considering both the taxon abundance and phylogenetic

tree. MDeep models the taxonomic rank by the convolutional layers and captures the phylo-

genetic correlation on each taxonomic rank via the convolutional operation. Our simulations

and real data analysis demonstrate that MDeep outperforms competing methods in both

regression and binary classifications. In order to explore the diseases/ phenotypic associ-

ations with the human genome, we propose two machine learning frameworks. The first

framework, WEVar, is a supervised learning framework by integrating the pre-computed

scores from representative existing scoring methods, which will benefit from each individual

method by automatically learning the relative contribution of each method and produce an

ensemble score for the final prediction. Using simulation and real data studies, we show

both context-free WEVar and context-dependent WEVar outperform the individual scoring

methods on the state-of-the-art benchmark datasets. Furthermore, we find WEVar can pri-

oritize experimentally validated non-coding variants in an LD block. The second framework,

DeepMFIVar, is a deep multimodal learning framework for the functional interpretation

of genetic variants. DeepMFIVar learns a predictive model linking DNA sequence context

and clinical information to quantitative epigenetic signals. The mutation effect of the 210

million genetic variants is generated by the difference of the predicted epigenetic signal for

the reference and for alternative alleles. The application to DNA methylation and histone

modification demonstrate that DeepMFIVar can accurately predict locus-specific epigenetic
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signals using DNA sequence and clinical information, and it is also capable of prioritizing

variants for downstream experiments.
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mode, the training variant set is selected from one specific context of interest

(i.e. disease, tissue, cell type), to train a model for functional prediction of

variants from the same context. In the training phase, WEVar compiles the

training set with labelled functional and non-functional variants and annotate all

variants with precomputed functional scores from representative scoring methods.

For each method, the raw scores are transformed using kernel density function

(KDE) for both functional and non-functional variant sets respectively. Using

these transformed scores as predictive features, a constrained ensemble model is

trained. In the testing phase, precomputed functional scores of testing variants

are transformed based on the estimated KDE in the training phase and then serve

as input features for trained ensemble model to predict the ensemble WEVar

score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 (A) Pairwise Pearson correlations between precomputed functional scores among

scoring methods for the integrated causal regulatory variants collected from Li et

al. [84]. (B) Average regression coefficient estimated by WEVar in the training

phase in 50 simulations. (C) Average prediction performance by WEVar on the

independent testing datasets. X axis presents AUPR; Y axis presents AUROC;

the bubble size represents COR. AUPR, AUROC and COR are averaged in the

testing phase in 50 simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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3.3 Evaluation of context-free WEVar and integrated scoring methods. Context-free

WEVar is trained using the integrated functional regulatory variants collected

by Li et al. [84], which include variants in HGMD, ClinVar, OregAnno and

fine-mapping candidate causal SNPs for 39 immune and non-immune diseases

with a total of 5,247 positive variants and 55,923 negative variants. Context-

free WEVar is tested on the state-of-the-art benchmark datasets, which include

i) Allelic imbalanced SNPs in chromatin accessibility with a total of 8,592 posi-

tive variants and 9,678 negative variants (Allelic imbalanced SNPs); ii) Uniformly

processed fine-mapping eQTLs from 11 studies with a total of 31,118 positive vari-

ants and 36,540 negative variants (Fine mapping eQTLs); iii) GWAS noncoding

SNPs with a total of 19,797 positive variants and twice number of negative vari-

ants (GWAS SNPs) [IWscore]; iv) Manually curated experimentally validated

regulatory SNPs with a total of 76 positive variants and 156 negative variants

(Experimentally validated regulatory SNPs); v) MPRA validated variants in lym-

phoblastoid cells with a total of 693 positive variants and 2,772 negative variants

(MPRA variants in GM12878 lymphoblastoid); vi) MPRA validated variants in

erythrocytic leukemia cells with a total of 342 positive variants and 1,368 nega-

tive variants (MPRA variants in K562 leukemia). We further remove variants on

sex chromosome or with missing precomputed scores. X axis presents AUPR; Y

axis presents AUROC; the bubble size represents COR. . . . . . . . . . . . . . . 56
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3.4 Evaluation of context-dependent WEVar and integrated scoring methods on state-

of-the-art benchmark datasets, which include Allelic imbalanced SNPs, Fine map-

ping eQTLs, GWAS noncoding SNPs, Experimentally validated SNPs, MPRA

validated variants in GM12878 lymphoblastoid cells and MPRA validated vari-

ants in K562 leukemia cells. We further remove variants on sex chromosome

or with missing precomputed scores. To restrict the training and testing vari-

ants are from the same context, for each dataset, we randomly split the dataset

into ten-folds with nine-folds as the training set and one-fold as the testing set.

Context-dependent WEVar is trained on the nine-folds and independently eval-

uated on the left one-fold. AUC, AUCPR and COR are calculated and averaged

in the ten replicates for each method. X axis presents AUPR; Y axis presents

AUROC; the bubble size represents COR. . . . . . . . . . . . . . . . . . . . . . 57

3.5 Prediction performance comparison between context-dependent WEVar and in-

tegrated scoring methods on the CAGI benchmark datasets. In CAGI, 2,873

SNVs with 345 as positive set and 2,528 as negative set. The testing set contains

a total of 2,808 SNVs with 348 positive variants and 2,460 negative variants. We

further remove SNVs on sex chromosome or with missing precomputed scores in

both sets. (A) Context-dependent WEVar is first trained on the training set and

evaluated on the testing set. (B) Similarly, we switch the training and testing

set and perform an additional independent evaluation. The figure presents the

AUPR, AUROC, and COR. X axis presents AUPR; Y axis presents AUROC;

bubble size represents COR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Weight estimation for all benchmark datasets. WEVar identifies a parsimonious

set of scoring methods that play major contribution to functional prediction for

most datasets. The only exceptions are GWAS noncoding SNPs and MPRA

variants in K562 leukemia cells, where there is a universal solution. . . . . . . . 64
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3.7 Prediction performance comparison between context-free WEVar and context-

dependent WEVar across six independent testing datasets. X axis presents

AUPR; Y axis presents AUROC; bubble size represents COR; solid bubble rep-

resents context-dependent WEVar; transparent bubble represents context-free

WEVar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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(chr17:4870893) scores higher than three LD-linked GWAS SNPs rs1060431 (chr17:4840868,
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pvalue=3.98x10−9), which are mapped to SPAG7 and associated with Platelet
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pvalue=6.03x10−20) associated with Systemic lupus erythematosus. Moreover,
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causal regulatory variants are defined as variants with significant differential ex-

pression between two alleles (FDR<0.2) in MPRA experiments in both K562

leukemia cells and SK-SY5Y neuroblastoma cells. For each causal regulatory

variant, we extend the risk locus by considering all variants in LD (r2 >0.2). As

a result, rs34877519 (chr3:2554612) is successfully prioritized by obtaining the

score higher than any variant in the risk locus including GWAS SNPs rs11708578

(chr3:2515894, pvalue=7.08x10−11) and rs17194490 (chr3:2547786, pvalue=1.00x10−11);

rs7927437 (chr11:123395987) receives the highest score among all variants in the

risk locus including GWAS SNP rs77502336 (chr11:123394636, pvalue=3.98x10−10);

rs7779548 (chr7:137074540) scores higher than any variant in the risk locus in-

cluding GWAS SNP rs3735025 (chr7:7:137074844, pvalue=3.98x10−12); rs6498914

(chr16:63699425) achieves the highest score among all variants in the risk locus in-

cluding GWAS SNP rs2018916 (chr16:63700508, pvalue=7.08x10−9). The causal

regulatory variants validated by MPRA are marked purple. LD-linked GWAS

SNPs are marked red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xvi



3.10 WEVar prioritizes causal regulatory variants associated with multiple traits and

validated by multiple platforms. We benchmarkWEVar on state-of-the-art datasets,

which are generated from different studies and consists of regulatory variants ex-

perimentally validated by different functional assays. We define the risk locus

by considering all variants in LD (r2 >0.2) for each validated causal regulatory
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Chapter 1

Introduction

1.1 Background

With the development of next-generation sequencing technologies and the advancement

in machine learning, the computational models have been at the heart of many recent break-

throughs in the human microbiome and the human genome studies. Machine learning models

complement biological experiments by providing the capacity to make accurate predictions

on unseen samples and to summarize predictive features that elucidate the mechanisms of

important biological or pathological processes. In this dissertation, we study machine learn-

ing methods for exploring disease / phenotypic association patterns with human microbiome

and human genome, two research areas where traditional methods based on biological ex-

periments fall short in power and efficiency.

The human microbiome, a collection of microbes that live in and on our bodies, includ-

ing bacteria, archaea, viruses, and eukaryotes[1], plays a critical role in human health and

disease. Numerous human microbiome studies revealed that the abnormal change of relative

abundances of microbiota could lead to various diseases such as infection (e.g. Clostridium

difficile, Helicobacter pylori, Bacterial vaginosis), liver diseases (e.g. acute-on-chronic liver

failure), gastrointestinal malignancy (e.g. gastric cancer, colorectal cancer), metabolic dis-

orders (e.g. obesity, type 2 diabetes), autoimmune diseases (e.g. Crohn’s disease) and even

mental or psychological diseases (e.g. autism spectrum disorder). Due to the decreasing cost

of next-generation sequencing technologies, large-scale microbiome datasets with more than

hundreds’ samples are generated recently from modern high-throughput sequencing. Large-

scale datasets allow researchers to employ more sophisticated modeling methods such as
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machine learning approaches to study the relationship between the microbiome and various

phenotypes and diseases.

In this thesis, we develop a novel deep learning prediction method MDeep (microbiome-

based deep learning method) to predict disease and clinical outcomes. Conceptually, MDeep

designs convolutional layers to mimic taxonomic ranks with multiple convolutional filters on

each convolutional layer to capture the phylogenetic correlation among microbial species in

a local receptive field and maintain the correlation structure across different convolutional

layers via feature mapping. Taken together, the convolutional layers with its built-in con-

volutional filters capture microbial signals at different taxonomic levels while encouraging

local smoothing and preserving local connectivity induced by the phylogenetic tree. We

demonstrate that MDeep outperforms competing methods in both regression and binary

classifications by simulation studies and real data applications.

A gene is a sequence of nucleotides. Genes are transcibed to RNA, and then translated

to proteins which can be considered as "workhorses" of the cell, with all the functions

necessary for life. However, over 98% of the human genome is not used to encode proteins,

these non-coding elements, especially non-coding genetic variants play a crucial role in gene

regulation as they might disrupt the promoter or enhancer regions and thus have an impact

on the gene expression. The abnormal expressed genes may result in different kinds of

diseases. To discover these functional genetic variants, numerous genome-wide association

studies (GWAS) have been carried out to find the disease risk variants [2, 3]. However,

these studies are limited by the sample size and linkage disequilibrium, which will mask true

causal variants from the neural ones. Therefore, post-GWAS computational methods for fine

tuning and prioritizing these regulatory variants is demanded. In the past ten years, multiple

computational approaches have been established to accomplish such tasks [4]. Most of these

methods can be roughly divided into three categories: (i) supervised learning methods that

attempt to separate known disease variants from putative benign variants using a variety

of genomic features [5, 6, 7]; (ii) unsupervised learning algorithms that try to integrate
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these different annotations into one measure of functional importance[8]; (iii) evolutionary

methods that consider data on genetic variation together with functional genomic data and

aim to predict the effects of non-coding variants on fitness[6, 9, 10, 11].

In this thesis, we develop two machine learning frameworks for genetic variants. The

first framework, WEVar ( Weighted Ensemble framework for predicting functional non-

coding Variants), is a supervised learning framework by integrating the pre-computed scores

from representative existing scoring methods. The second framework, DeepMFIVar ( Deep

Multimodal Learning framework for Functional Interpretation of genetic Variants), learns a

predictive model linking DNA sequence and clinical information to quantitative epigenetic

signals.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows. The next chapter presents a new

deep learning method for predicting disease and clinical outcomes by using human micro-

biome. In Chapter 3, we describe WEVar, a new weighted ensemble learning framework, to

predict and prioritize functional relevant non-coding variations. In Chapter 4, we introduce

a multimodal deep learning model, DeepMFIVar, that accurately predicts DNA methyla-

tion ratio and histone modification from the DNA sequence context and clinical outcome.

Chapter 5 concludes the dissertation and points out future research.
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Chapter 2

MDeep: a novel deep learning method for predictive modeling of microbiome data

2.1 Introduction

Human microbiota, including bacteria, archaea, viruses, and eukaryotes, colonizes the

human body and affects host physiology to a great extent. The composition and function

of microbiota vary across different body sites, ages, genders, races, and dietaries of the host

[12]. The roles of human microbiota playing in human health are usually summarized in

three aspects. First, the microbiota could potentially aid the digestive system by more effi-

ciently extracting energy from food and harvesting nutrients [13, 14] as microbiota provides

humans with enzymes and biochemical pathways [13] produced by versatile metabolic mi-

crobial genes that are far more than found in human genome. Second, the human microbiota

protects its host against invasive pathogens by providing a physical barrier, producing an-

timicrobial substances or involving in competitive exclusion [15, 16]. Third, the microbiota

is essential in the induction, training, and function of the host immune system [17, 18]. As a

consequence, dysbiosis of human microbiota, that is the abnormal change of relative abun-

dances of microbiota, could lead to various human diseases such as infection (e.g. Clostridium

difficile, Helicobacter pylori, Bacterial vaginosis), liver diseases (e.g. Acute-on-chronic liver

failure), gastrointestinal malignancy (e.g. Gastric cancer, Colorectal cancer), metabolic dis-

orders (e.g. Obesity, Type 2 diabetes), autoimmune diseases (e.g. Crohn’s disease) and even

mental or psychological diseases (e.g. Autism spectrum disorder) [19].

16S rRNA gene-target sequencing is a cost effective metagenomic sequencing technology,

which has been widely in microbiome studies for mainly uncovering bacteria and archaea

by sequencing the structural components of the ribosome (V1-V9) that could be used as a

molecular clock to identify phylogeny [20]. The raw sequencing reads could be processed
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using established bioinformatics pipelines such as Quantitative Insights Into Microbial Ecol-

ogy (QIIME) [21], which clustered the reads into operational taxonomic units (OTUs) at

different taxonomic levels. As a result, the processed microbiome data are generated, con-

sisting of an OTU abundance matrix with rows as samples and columns as OTUs along

with a phylogenetic tree based on which the phylogenetic information among OTUs could

be inferred.

As human microbiota is closely associated with human health, it is natural to use the

OTUs as "biomarkers" to predict host phenotypes or clinic outcomes. It should be noted

that microbiome data is usually high-dimensional (more OTUs than samples), over-dispersed

(large variability) and sparse (excessive zeros in the OTU abundance matrix). These data

characteristics make robust machine learning models such as Random Forest [22] a desirable

microbiome-based prediction model, which deals with high-dimensional features by randomly

sampling a subset of features in each decision tree to reduce the possibility of overfitting and

the final prediction is the aggregated predictions of all trees. Moreover, modern regression

methods such as Lasso [23], MCP [24],and Elastic Net [25] are designed in nature for high-

dimensional classification and regression and have been widely used in microbiome-based

prediction [26, 27, 28]. These regression models usually incorporate a sparse penalty to select

the most predictive taxa in the training set and thus improve the prediction performance in

the testing set using the selected taxa.

Although these methods adopt different approaches to address the high dimensional

prediction task, they are limited in exploring the phylogenetic relationship among taxa. The

phylogenetic tree is an informative prior as the microbial community changes are not ran-

domly distributed but tend to occur in clades at varying phylogenetic depths corresponding

to different taxonomic ranks. In other words, the tree could provide a phylogenetically cor-

related structure among taxa, based on which we can cluster and aggregate taxa abundance

to achieve better predictive performance. Moreover, the cluster size and signal density also

vary. For diseases such as colorectal cancer or arthritis [29, 30], few marker taxa are found to
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be associated to the disease state, whereas effects on the overall composition are very mild.

In contrast, obesity and inflammatory bowel disease are associated with marked changes in

the overall composition [31, 32]. Taken together, an optimized prediction model should have

robust prediction performance across different cluster size and signal density.

Recently, deep learning methods especially convolutional neural network (CNN) have

been widely used in bioinformatics for various prediction tasks: (i) predicting genomic regions

such as TF-DNA binding sites [33, 34] and modification sites [35]; (ii) predicting genomic

features such as non-coding RNAs [36] and enhancer [37]. (iii) predicting genomic signals

such as gene expression [38] and DNA methylation [39] (iv) predicting regulatory variants

[40, 33]. The advantages of CNN lie on its ability of capturing the local correlations of fea-

tures, enhancing the local connectivity across different levels and reducing the parameters via

convolutional operations, which improve the prediction performance. In these studies, CNN

achieves an overall better prediction than other methods and the sample size of training set

usually ranges from thousands [36] to millions [40]. However, the prediction performance of

CNN is rarely exploited when the sample size of training set is as few as hundreds. Moreover,

a recent CNN-based deep learning method Ph-CNN has been proposed to perform the task

of binary classification with the consideration of phylogenetic tree [41]. However, the CNN

architecture of Ph-CNN is not optimized. In addition, the utilization of phylogenetic tree

based on finding neighbors of each OTU via MultiDimensional Scaling projection is compu-

tationally intensive, which limits the scalability of Ph-CNN to high-dimensional microbiome

data. Importantly, Ph-CNN is only designed for binary outcome only. Considering these,

a computational efficient deep learning-based prediction, which can utilize the phylogenetic

tree, for the purpose of predicting both continuous and binary outcome, is in demand.

In this work, we develop MDeep, a novel Microbiome-based deep learning method, for

predicting continuous and binary outcome by utilizing both the taxon abundance and phy-

logenetic tree. Based on an evolutionary model, MDeep is designed to model the taxonomic

rank by the convolutional layer and capture the phylogenetic correlation on each taxonomic
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rank via the convolutional operation. The main contributions of MDeep can be summa-

rized as: i) predicting both continuous and binary outcome; ii) utilizing the phylogenetic

information besides taxon abundance for improving prediction accuracy; iii) obtaining an

overall better prediction than other methods especially CNN without using the phylogenetic

tree in a conducted comprehensive simulation study with considerations of signal density,

cluster size and informativeness of phylogeny; iv) outperforming existing methods in real

datasets including CNN and Ph-CNN. To the best of our knowledge, MDeep is the first

deep learning approach that can efficiently utilize the phylogenetic tree in predicting both

continuous and binary outcome. Importantly, this is the first study systematically explor-

ing the prediction performance of deep learning approaches in a comprehensive simulation

study, which will inform deep learning-based approaches’ favorable scenario, that is, dense

and large-clustered signals. We believe MDeep will be a valuable addition to the microbiome

research community.

2.2 Methods

2.2.1 Encoding phylogenetic information by convolutional operation

Before we introduce the deep learning predictive model, we introduce a phylogeny-

induced correlation structure Cp×p among taxa based on a evolutionary model [42], which is

defined as,

Cp×p(ρ) = e−2ρDp×p (2.1)

where D denotes the pairwise patristic distance between taxa (e.g. the length of the shortest

path between two taxa in the tree) that could be estimated by the function cophenetic in

the R package ape that takes a phylogenetic tree as the input. ρ ∈ (0,∞) characterizes the

evolutionary rate: fast evolution corresponds to a large ρ (a small C). Alternatively, ρ can

be interpreted as a parameter that controls the phylogenetic depth at which the taxa are
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grouped: a larger cluster at a lower phylogenetic depth indicates a larger ρ (a smaller C).

In other words, a large ρ represents a small phylogenetic correlation among taxa and large

clusters, making the tree less informative. Because a phylogenetic depth corresponds to a

taxonomic rank, ρ has a similar effect as taxonomic grouping conceptually, where taxa at

different taxonomic ranks are grouped together according to their taxonomy. Without loss

of generality, we fix ρ as 2 here without being tuned.

2.2.2 Microbiome-based deep learning architecture

MDeep is essential a Phylogeny-Regularized Convolutional Neural Network, which is

composed of multiple convolutional layers followed by fully-connected layers. The taxa are

clustered based on C before the taxon abundance is passed into the network. Following the

input layer, convolutional layers are designed to include the phylogenetic correlation across

different phylogenetic depths as much as possible (Fig 2.1). Since the phylogenetically cor-

related taxa are grouped, convolutional operation is more efficient to capture phylogenetic

correlation in the local receptive field, and thus encouraging local smoothing. Notably, con-

volutional layers not only bring a solution to high-dimensional input variables by reducing

the number of parameters but also allow to encode the phylogenetic information in the local

receptive fields, which encourages spatially local input patterns. Additionally, convolutional

layers encourage local connectivity in the way of making hidden nodes only receive input

from only a restricted subarea of the previous convolutional layer. In contrast to convolu-

tional layers, fully-connected layers exploit the nonlinear and high-order interactions among

input features globally, further improving the feature representation. In sum, MDeep maxi-

mizes the feature representation of microbiome data to improve the prediction performance

potentially.

To incorporate the phylogenetic tree information via convolutional operations more ef-

ficiently, Mdeep first clusters taxa on the first convolutional layer based on C, which will

make the phylogenetically correlated taxa close to each other. MDeep then adopts multiple
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Figure 2.1: (A) The conceptual analogy between MDeep and taxonomic levels of the phy-
logenetic tree. OTUs on the species level are clustered based on the evolutionary model.
This clustering step makes convolutional operation capture OTUs highly correlated in the
phylogenetic tree. The number of hidden nodes decreases as the convolutional layer moves
forward, reflecting the taxonomic grouping. (B) Input layer, convolutional layers, fully-
connected layers and output layer of MDeep. There are three convolutional layers and three
fully-connected layers in MDeep. The output layer, connected to the last fully-connected
layer, contains a single node for continuous outcome and two nodes for binary outcome.
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one-dimensional convolutional kernels to capture the phylogenetic correlations of taxa on

each convolutional layer. Specifically, we let the training set in a batch consist of n labeled

samples (x, y)n, where x is a taxon abundance vector of size p, y ∈ {0, 1} for binary classifi-

cation and y ∈ {−∞,+∞} for regression. MDeep uses nf filters, each of which has length

l. Each filter will perform sliding window operations with stride s for consecutive movement

from position 1 to
[
p
s

]
across p taxa, resulting in a feature map Z of dimension nf ×

[
p
s

]
.

Specifically, Z could be derived from x and W as:

Z = fconv(x) (2.2)

zij = f(bj +
l∑

k=1

Wkjxi+k−1) (2.3)

where zij is the feature map from ith position (i ∈ {1, ...,
[
p
s

]
}) of input and jth filter

(j ∈ {1, ..., nf}). W of dimension nf × l is a matrix of weights for nf filters with each row

corresponding to an individual filter. bj is a bias term specifically for filter j and f is a

non-linear function such as the hyperbolic tangent.

The conceptual analogy between MDeep and taxonomy can be viewed in Fig 2.1A,

where each convolutional layer mimics a taxonomic rank such that the input layer represents

species level with each node corresponding to a species, followed by multiple convolutional

layers starting from the representation of a lower phylogenetic/taxonomic level (e.g. genus)

to a higher phylogenetic/taxonomic level (e.g. order). Multiple convolutional filters operate

on each convolutional layer to encourage local smoothing, and feature maps between adjacent

convolutional layers are restricted by the local connectivity, which resembles the scenarios

that nearby taxa on the lower phylogenetic/taxonomic level are more likely close to each

other on the higher phylogenetic/taxonomic level. In addition, the dimension of feature map

decreases with a series of convolutional operations across multiple convolutional layers. The

decreased dimension of feature map via convolutional operation mimics the structure of the
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phylogenetic tree, where the dimension of taxa decreases as the taxonomic rank increases,

corresponding to phylogenetic depth from high to low (Fig 2.1B).

The feature map of the last convolutional layer is flattened as the input for the feed-

forward neural network consisting of several fully-connected layers. The dimension of the

fully-connected layer also decreases with the neural network moving forward in order to

capture the high-order and nonlinear interactions of the features.

The output layer, connected to the last fully-connected layer, contains a single neuron

for continuous outcome and two nodes for binary outcome. For binary outcome, the output

is further passed through a sigmoid function to produce the prediction probability for y = 1,

defined as p(y = 1|x). The prediction probability for y = 0 can be obtained by p(y = 0|x) =

1− p(y = 1|x) accordingly.

Prediction Mean Squared Error (PMSE) defined as lc = 1
n

∑n
i=1(yi− ŷi)2, is used as the

cost function for regression, whereas, cross entropy defined as lc = − 1
n

∑n
i=1(yilog(p(yi =

1|x) + (1 − yi)log(p(yi = 0|x)), is used for binary classification. The objective function is

fo = min(W)lc + λ
∑
||W||2, where λ is the tuning parameter for the l2 penalty of W. fo

is used to minimize the training error and thus update the network parameters via a back-

propagation algorithm. Specifically, MDeep adopts Adaptive Moment Estimation [43] as the

optimizer in the process of back-propagation since it is an improved version of stochastic

gradient descent method by computing adaptive learning rate for each weight.

An appropriate network architecture is essential to the model fitting: deep layers with

many parameters will cause overfitting while shallow layers with few parameters will result in

underfitting. Considering the sample size of a typical microbiome study is relatively smaller

compared to a traditional CNN prediction task, it is feasible to manually select the optimal

number of convolutional layers and fully-connected layers. To be specific, we start with a

single convolutional layer and incrementally increase the number of convolutional layers with

systematic exploration of the number of hidden nodes and dropout rates to find a proper

architecture. We stop adding convolutional layers when increasing the number of layers does
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not improve prediction performance. We use the same procedure to select the number of

fully-connected layers. The network architecture ends up with three convolutional layers

followed by three fully-connected layers.

To improve generalization and to prevent overfitting, we leverage the dropout-layer

technique and L2 regularization for W in the cost function. Each fully-connected layer is

followed by a dropout layer to avoid overfitting [44]. Specifically, 50% hidden neurons in the

fully-connected layer are randomly dropped out.

Altogether, MDeep is a neural network consisting of one input layer, three convolutional

layers, connected with three fully-connected layers and one output layer (Fig 2.1B). Each

convolutional layer or fully-connected layer is activated by the hyperbolic tangent function.

There are 64 kernels in each convolutional layer. The kernel size is 8 and the stride is 4. We

run MDeep multiple epochs in the training. In an epoch, the whole training set is split into

multiple batches and each batch pass forward and backward through the network. Here, we

set batch size 16 and number of epochs 2000. When the objective function converges after

multiple epochs, estimated parameters are stabilized and finalized. Given a testing sample,

the trained MDeep f(x) = net3(conv3(x)) computes the prediction probability for binary

classification and prediction values for regression.

2.2.3 Performance evaluation

We use R2 and PMSE as the evaluation metric for regression, and R2, AUC (Area Under

the Curve) along with Sensitivity, Specificity, Accuracy, Precision, F1 score and Matthews
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Correlation Coefficient (MCC) for binary classification. These metrics are defined as,

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

Accuracy =
TP + TN

TP + TN + FP + FN

F1 =
2× Precision× Recall

Precision + Recall

MCC =
TP× TN− FP× FN√

(TP + FN)× (TP + FP)× (TN + FN)× (TN + FP)

In the above formula, TP and TN are the numbers of positive and negative samples

that are correctly classified, FN and FP are the numbers of positive and negative samples

that are mis-classified. Sensitivity or Recall (∈ [0, 1]) is the proportion of true positives that

are correctly predicted among all true positives. Specificity (∈ [0, 1]) is the proportion of

true negatives that are correctly predicted among all true negatives. Precision (∈ [0, 1]) is

the proportion of true positives that are correctly predicted among all predicted positives.

Accuracy is the proportion of correctly predicted samples (TP and TN) among all samples.

F1 (∈ [0, 1]) considers both the Precision and Recall. MCC (∈ [−1, 1]) indicates the corre-

lation between predicted labels and true labels: +1 represents a perfect prediction, 0 means

random guess and -1 indicates total disagreement between prediction and truth.

2.3 Simulation Studies

2.3.1 Simulation Strategy

We conduct comprehensive simulation studies to evaluate the prediction performance

of MDeep along with other competing methods for both regression and binary classification.

We synthetically generate 200 independent samples in the training set and an equal number

of 200 independent samples in the testing set, respectively. The two classes are restricted
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to be balanced in both training and testing set for binary classification. By assuming that

OTU abundance follows a Dirichlet-multinomial distribution (DM), we estimate parame-

ters including dispersion and mean proportion from a real human upper respiratory tract

microbiome data [45] consisting of 778 OTUs from 60 samples. Using these estimated pa-

rameters, we generate the read counts parametrically based on DM and the total read count

is drawn from a negative binomial distribution with the mean of 5000 and the dispersion of

25. The OTU abundance is further normalized into proportion by dividing the total read

counts. We then generate the outcome based on the abundance of outcome-associated OTUs

(“aOTUs") that form in different number of outcome-associated OTUs (“aClusters") with

different cluster size. We further evaluate the effect of number of clusters and cluster size on

the prediction performance.

2.3.2 Constructing outcome-associated OTU clusters

For an informative tree, aOTUs are more likely clustered and have a similar magnitude

and the same direction of effect to the outcome. In other words, aOTUs form outcome-

associated clusters (“aClusters") to have an impact on the outcome. Since the density of

aClusters and the size of aClusters may also vary, we therefore systematically investigate

how cluster size and density of aClusters affect the prediction performance of MDeep along

with other methods in the simulation study. In addition, we evaluate the effect of an non-

informative tree on the prediction performance of MDeep, where clustered aOTUs have an

opposite direction of effect to the outcome. To be specific, the parameters are set as follows,

• Cluster Size: aOTUs are clustered at different phylogenetic depths, resulting in differ-

ent sizes of aClusters. We cluster OTUs into 50, 20, 10 clusters based on C, representing

small, medium and large aClusters.

• Signal density: proportion of aClusters of all clusters, which is chosen, which is chosen

from 10%, 20%, 40% to represent low, medium and high signal density.
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Noninformative phylogenyS2

C2

Figure 2.2: Illustration for the simulation strategy. S1 (informative phylogeny): all OTUs
in C1 or C3 have the same effect size in same effect direction to the outcome. S2 (non-
informative phylogeny), the adjacent OTUs in C1 or C3 have opposite effects to the outcome.
C1 and C3 are two aClusters. C2 is a non-aCluster. Red circles represent aOTUs having
positive effects to the outcome while blue circles represent aOTUs having negative effects to
the outcome.

• Informativeness of phylogeny: for an informative tree (Scenario 1 or S1), we allow

aOTUs in each aCluster have the same effect in the same direction to the outcome.

For a non-informative tree (Scenario 2 or S2), we let adjacent aOTUs in an aCluster

have opposite effects to the outcome, which violates the assumption that closely related

aOTUs have similar biological functions and thus have similar effects to the outcome

(Fig 2.2).

2.3.3 Generating outcomes based on aClusters

We denote Al as the set containing indices of lth aCluster among m aClusters (l ∈

1, ...,m), xij represents the jth OTU abundance in sample i, and ηi is the expected outcome
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value of sample i, which can be generated based on the following linear relationship,

ηi =
m∑
l=1

(
∑
k∈Al

xik)βl (2.4)

βl ∼ N(0, σ2
b ) (2.5)

Notably, βl is sampled from a centered normal distribution and thus the effect of an aCluster

can be either positive or negative.

We add random error from another centered normal distribution to obtain the contin-

uous outcome yi for ith sample,

yi = ηi + εi, ε ∼ N(0, σ2
ε ) (2.6)

We perform inverse logit transformation to ηi to obtain probability πi, based on which

the binary outcome yi for ith sample is generated from a Bernoulli distribution,

yi ∼ Bern(πi),where πi =
eηi

1 + eηi
(2.7)

We set σ2
β 2 for continuous outcome and 4 for binary outcome. For continuous outcome,

we adjust σ2
β and σ2

ε jointly to control the signal-to-noise ratio that fixed the percentage of

variability explained by OTUs.

2.3.4 Competing Methods, Model Selection and Evaluation

We compare MDeep to sparse regression models including Lasso and Elastic Net (Enet),

and machine learning models such as Random Forest (RF), feed-forward neural network (NN)

and CNN. NN, CNN and MDeep are implemented in TensorFlow that is an open source

artificial intelligence library developed by Google. The details of selecting number of hidden

layers, fully-connected layers and other parameters of MDeep are described in the Method
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section. Sparse regression models such as Lasso and Enet are implemented in glmnet R

package. RF is implemented in randomForest R package with the default parameter setting.

Particularly, NN, designed with the same number of fully-connected layers as in MDeep,

is used as a baseline comparison to MDeep for demonstrating the advantages of convolutional

operation to capture local correlations of OTUs at different phylogenetic depths and at the

same time reduce possible overfitting. Since a typical CNN does not automatically exploit

the phylogenetic information, we also include a typical CNN with the same architecture as

MDeep as a comparison to demonstrate the importance of utilizing the phylogenetic infor-

mation. Specifically, we randomly shuffle OTUs in the input layer of CNN instead of forcing

phylogenetically correlated OTUs clustered as in MDeep. In this way, each convolutional op-

eration will likely include both aOTUs and non-aOTUs, making the convolutional operation

less effective.

Optimal tuning parameter of Lasso and Enet is selected based on five-fold cross-validation

(5-CV). In 5-CV, the whole training set is divided into 5-folds, where 4-folds is used to train

the model and 1-fold is used to obtain the metric for evaluating prediction performance of the

trained model. Specifically, we used PMSE (Predicted Mean Square Error) as the metric for

regression and AUC (Area Under the Curve) for binary classification. The optimal tuning

parameter is chosen based on the average metric in 5-CV and a final model is fitted using the

whole training set with the optimal tuning parameter. To evaluate an independent testing

set, we use R2 and PMSE for regression; R2 and metrics including Sensitivity, Specificity,

Accuracy, Precision, F1 score, and MCC for binary classification. In each simulation setting,

50 training and testing sets are generated and the average metric is reported.

2.3.5 Additional data transformation and data generation strategy

We also apply CLR (centered log ratio transformation) to relative OTU abundance for

evaluating the impact of data transformation on compositional data[46]. Additionally, we

use negative binomial distribution with considering the microbial correlations in the data
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Figure 2.3: Prediction performance measured by R2 for (A) continuous outcome and (B)
binary outcome in the simulation study. Scenario1 (S1) represents informative phylogeny and
Scenario2 (S2) represents non-informative phylogeny. Cluster-S, -M, and -L represent small,
medium and large clusters. Signal-L, -M, and -H represent low, medium and high signal
density, respectively. The whisker shows the standard deviation of R2 for each method.

generation [47]. First, we estimate the microbial correlation from the real dataset using

MAGMA[48]. Second, we generated correlated multivariate normal data with mean as 0

and correlation matrix as the estimated microbial correlations. Third, correlated multivariate

normal data is transformed to the copula space using the cumulative distribution function

(CDF) of the standard normal distribution. Last, correlated OTU counts following negative

binomial distribution is generated by the inverse CDF of negative binomial distribution

performed on the values obtained in the copula space. We then perform CLR on the relative

OTU abundance.

2.3.6 Results of prediction for continuous outcome

Overall Comparison: When the phylogeny is informative, regardless of signal den-

sity and cluster size, MDeep outperforms other methods overall by obtaining a higher R2
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(Fig 2.3A) and lower PMSE (Fig 2.6A) across different scenarios and signal densities. Par-

ticularly, when the cluster size is large or the signal density is high, MDeep has an enormous

advantage over other methods due to its ability for exploiting the phylogenetic structure.

The improved prediction by MDeep confirms the benefits of encoding the phylogenetic in-

formation via the convolutional operation. Especially, NN does not perform well either due

to overfitting or inability to utilize the phylogenetic information. MDeep has a significant

performance gain than a typical CNN without considering the phylogenetic information, in-

dicating the importance to include phylogeny in the predictive modeling. Moreover, it is

expected and observed that other methods achieve similar performance between S1 & S2 as

they are not able to utilize phylogenetic information. In contrast, the prediction performance

of MDeep deteriorates in S2 compared to S1. Nevertheless, MDeep still outperforms other

methods in general and has a clear advantage over other methods even when the tree is

non-informative. These observations indicate the fact that utilization of phylogenetic infor-

mation improves MDeep’s prediction performance, while has little effect on methods without

considering the tree.

Signal Density: For each cluster size, we observe an overall decrease in R2 when

the signal density increases in both S1 and S2, which can be explained by the result of

decreasing individual effects with an increasing number of aOTUs while the percentage of

variability explained by aOTUs is fixed. This reduction in individual effects is unfavorable

for both sparse regression methods and tree-based methods. The decreasing R2 of sparse

regression methods is attributed to weaker individual effects of more aOTUs, a scenario where

sparse regression methods tend to have a low sensitivity and specificity to identify aOTUs.

As a result, the identified OTUs cannot explain an enough percentage of variability of the

outcome, leading to decreasing prediction performance. The deteriorating performance of RF

can be explained by an insufficient tree depth to accommodate an expansion of aOTUs when

the signal density increases, resulting in a potential underfitting. However, the increase of

signal density imposes little adverse effect on either NN, CNN or MDeep, which indicates the
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neural network architecture is robust across different levels of signal density. This robustness

may be attributable to two reasons. First, neural architecture does not assume sparsity in

the model while utilizes the information of all aOTUs via feature mapping across multiple

layers. Second, the dropout technique employed in fully-connected layers and regularization

technique for the weights can further reduce the potential risk of overfitting when the signal

is sparse. In all, MDeep has an overall better prediction than other methods across various

levels of signal density. To justify the significant improvement of MDeep, we perform a

paired wilcoxon test between R2 of MDeep and R2 of any other method in each scenario.

We find that MDeep achieves an overall statistically significant improvement over any other

method in each scenario (pvalue<0.05) except in the “Cluster-S, Signal-L" scenario where

MDeep, Lasso and Enet have comparable performance.

Cluster Size: It is noteworthy that reducing cluster size decreases the phylogenetic

information. We thus observe that the improved prediction of MDeep over other methods is

diminishing as the cluster size becomes small. When signal density is low and the cluster size

is small (“Cluster-S, Signal-L"), the prediction performance of MDeep is on par with other

sparse regression models, and the improved prediction of MDeep over other methods increases

as the cluster size increases. The trend is similar when the signal density is medium or high.

Clearly, MDeep benefits more from a large aCluster because the convolutional operation will

mostly capture aOTUs from a large aCluster, however, may include irrelevant OTUs when

the aCluster is small.

OTU-level β:In reality, the effect size of aOTUs may vary within each aCluster. Thus,

we perform an additional simulation study to investigate whether MDeep is robust when β of

aOTUs varies within each aCluster. Without loss of generality, we choose the scenario when

cluster is large and signal density is high (Cluster-L and Signal-H) for continuous outcome.

In order to add the variability to the cluster-level β, we sample OTU-level β in each aCluster

from a normal distribution with cluster-level β as mean and 0.1 as standard deviation. As
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expected, prediction performance remains similarly between cluster-level β and OTU-level

β (Fig 2.3A).

Table 2.1: Prediction performance in binary classification (Cluster-L, Signal-L)

Scenario NN RF Lasso Enet MDeep

Sensitivity
S1 0.6620 0.6534 0.7208 0.7290 0.8188
S2 0.6794 0.6730 0.7480 0.7460 0.7904

Specificity
S1 0.6692 0.6586 0.7346 0.7350 0.8254
S2 0.6582 0.6508 0.7432 0.7442 0.772

Accuracy
S1 0.6656 0.6560 0.7277 0.7320 0.8221
S2 0.6688 0.6619 0.7456 0.7451 0.7812

Precision
S1 0.6709 0.6594 0.7387 0.7406 0.8271
S2 0.6702 0.6593 0.7437 0.7455 0.7777

MCC
S1 0.3354 0.3139 0.4588 0.4665 0.6468
S2 0.3420 0.3250 0.4935 0.4921 0.5644

F1 scores
S1 0.6622 0.6544 0.7251 0.7310 0.8210
S2 0.6712 0.6649 0.7429 0.7443 0.7827

2.3.7 Results of prediction for binary outcome

We repeat the same simulations for the binary classification. Compared to regression, we

find the overall trends of MDeep are similar in each setting. However, there are some changes

of other methods. First, performance of NN and CNN is improved and both are superior

to RF (Fig 2.3B). Second, MDeep benefits more by exploiting the phylogenetic information

demonstrated by more improved prediction in S1 over S2 between binary classification and

regression. In addition to R2, we also include other metrics (Fig 2.6B, Table 2.1). Based

on all evaluation metrics, we conclude that MDeep is consistently superior to other methods

when the cluster size is relatively high or signal is relatively dense, and comparable to other

methods in other scenarios. Without loss of generality, we use R2 as the metric to evaluate

the significant improvement of MDeep. We find that MDeep achieves an overall statistically

significant improvement over any other method in each scenario by using paired wilcoxon
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signed rank test (pvalue<0.05) except in the “Cluster-S, Signal-L" scenario where MDeep,

Lasso and Enet are comparable.

2.3.8 Results of additional data transformation and generation

The simulation results for using CLR as data transformation are presented in Fig 2.8A,

B. Though CLR does not necessarily improve the prediction performance compared to rela-

tive OTU abundance (Fig 2.3), the overall trend still holds. MDeep still has a clear advantage

over other methods when the tree is informative and is comparable to other methods when

the tree is non-informative. In addition, simulation results for data generated from negative

binomial distribution with considering the microbial correlations have the similar trends as

the results from Dirichlet multinomial distribution (Fig 2.8 C, D).

2.4 Application of MDeep in real datasets

We apply MDeep along with other methods aforementioned to three real datasets. The

first dataset is acquired from a study that explores how gut microbiome varies across age and

topography [49]. The second dataset is obtained from a longitudinal comparative study that

investigates the fecal microbiome of monozygotic (MZ) and dizygotic (DZ) twins pairs born

in Malawi who became discordant for kwashiorkor [50]. The third dataset is taken from a

study which investigates the role for intestinal bacteria in rheumatoid arthritis[51]. To incor-

porate the phylogenetic information via the convolutional operation, we apply hierarchical

agglomerative clustering (HAC) algorithm to the phylogeny-induced correlation structure

C, which is inferred from the phylogenetic tree. In this way, phylogenetically related OTUs

will be close to each other and irrelevant OTUs will be far apart from each other. HAC is

an unsupervised clustering algorithm, which will group OTUs in a ‘bottom-up’ approach,

where each OTU is considered as a cluster in the bottom and merged with close OTUs

to form new clusters and move up to form a hierarchy. Therefore, no number of clusters

needs to be specified and no membership needs to be assigned for OTUs since they will be
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ordered in a hierarchical structure automatically. In addition, hierarchical clustered OTUs

can potentially reflect the taxonomic grouping of OTUs.

2.4.1 Predicting chronological age based on gut microbiome of individuals in

USA

In this study, there are 531 individuals (115 from Malawi, 100 from Venezuela, and 316

from the USA). Gut microbiome of all the individuals are profiled using 16S rRNA gene-

targeted sequencing and the datasets are deposited to Qiita [52] with assigned study ID

850. We first download and process the datasets using QIMIE, resulting in a total of 14,170

OTUs. The phylogenetic tree is constructed using FastTree [53]. We then use individuals

in USA for the prediction task as the sample size is relatively large for the deep learning

approach. Subsequently, we carry out a series of data pre-processing steps as described in [54],

consisting of i) removing outlier samples; ii) removing less informative and noisy OTUs(OTU

prevalence < 10%; median non-zero counts < 10); iii)normalizing zero-inflated OTU counts

using GMPR [55]; iv) replacing outlier counts using winsorization with 97% quantile; v)

reducing the influence of highly abundant taxa counts by square-root transformation. As

a result, we have 308 individuals profiled with 1087 OTUs for model training and testing.

The final phylogenetic tree is tuned accordingly with 1087 leaves left and correlation matrix

C1087×1087 is calculated based on the tree.

We treat age as either a continuous outcome or a binary outcome to evaluate the pre-

diction performance for both regression and binary classification. Specifically, for regression,

ages of all individuals are directly treated as continuous outcomes; for binary classification,

we classify all the individuals to three age groups, namely, baby (age≤3 years, n=54), child

(3<age<18 years, n=125), and adult (age≥18 years, n=129) [54]. Particularly, we evalu-

ate the prediction performance in classifying two age groups: “baby vs child" and “child vs

adult". We exclude "baby vs adult", an easy case where all methods have superior and indis-

tinguishable prediction performance due to the drastically distinct microbiome composition.
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In contrast, adjacent age periods such as “baby vs child" or “child vs adult" are ideal for

identifying the difference of the prediction performance among different methods.

We compare MDeep to other methods aforementioned. In addition, we include Ph-

CNN as a comparison for binary classification as it is only designed for binary outcome.

To incorporate the phylogenetic information via the convolutional operation, we adopt the

hierarchical agglomerative clustering algorithm (HAC) to cluster the OTUs based on their

phylogenetic correlation, making phylogenetically related OTUs close to each other and

irrelevant OTUs far apart from each other. We choose HAC as default clustering algorithm

because no number of clusters needs to be specified and hierarchical clustered OTUs could

potentially reflect the taxonomic grouping of OTUs. Moreover, we compare the MDeep to

CNN without using the phylogenetic information by randomly shuffling OTUs. To evaluate

the prediction performance, we randomly split the dataset into two sets with 80% as the

training set and the rest 20% as the testing set. Tuning parameter selection and model

fitting are performed on the training set and prediction performance is evaluated on the

testing set. We repeat the randomization 50 times and report the metrics: R2 and PMSE

for regression; R2, sensitivity, specificity, accuracy, precision, F1 score, and MCC for binary

classification.

For continuous prediction of age, the overall trends of prediction performance of all

methods are similar to the simulation study, where MDeep ranks top by achieving the highest

R2 and lowest PMSE, followed by Enet. RF and NN do not perform well. Importantly,

MDeep outperforms CNN, which indicates an improved prediction is achieved by utilizing

the phylogenetic information (Fig 2.4A, 2.9A). In addition, we perform a paired wilcoxon

test between R2 of MDeep and R2 of any other method and find that MDeep achieves an

overall statistically significant improvement over any other method (pvalue<0.05).

For binary classification of age groups, MDeep obtains the highest R2 in the compar-

isons of both “baby vs child" and “child vs adult" (Fig 2.4B, C). In addition, other metrics

further demonstrate the MDeep’s superb performance overall (Fig 2.7B,C and Table 2.2).
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Figure 2.4: Prediction performance of chronological age based on gut microbiome of individ-
uals in USA: (A) R2 for all ages (B) R2 for “Baby vs Child" (C) R2 for “Child vs Adult".
Prediction performance of gender based gut microbiome of Malawian twins: (D) R2 for male
and female. The blue dashed line the mean value of R2 for MDeep. The whisker shows the
standard deviation of R2 for each method.

Except Ph-CNN, neural network architecture is consistently robust in the "Baby vs Child"

comparison, where MDeep, NN and CNN perform better than the others (Fig 2.4B). In

contrast, the relative performance of NN compared to CNN and MDeep is deteriorated sig-

nificantly in the "Child vs Adult" comparison (Fig 2.4C) because of potential overfitting.

Ph-CNN has overall worst performance in both binary classification tasks maybe because of

the neural network architecture is suboptimal or the phylogenetic information is not fully

exploited. Altogether, MDeep has the best prediction performance overall in predicting age

values and classifying age groups. In addition, the accurate prediction of age based on hu-

man gut microbiome further validates the hypothesis that the composition of human gut

microbiome changes with age [56]. Finally, the paired wilcoxon signed rank test between

R2 of MDeep and R2 of any other method demonstrates that MDeep achieves a statistically
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Table 2.2 Prediction performance of gender based on gut microbiome of Malawian twin
pairs. BC represents "Baby vs Child"; CA represents "Child vs Adult".

Type Lasso RF NN Enet CNN MDeep

Sensitivity
BC 0.9856 0.9856 0.9920 0.9784 0.9904 0.9896
CA 0.7531 0.7669 0.7977 0.7808 0.8123 0.8254

Specificity
BC 0.8018 0.8327 0.8691 0.8636 0.8764 0.8891
CA 0.7736 0.7712 0.776 0.8112 0.8176 0.8160

Accuracy
BC 0.9294 0.9389 0.9544 0.9433 0.9556 0.9589
CA 0.7631 0.7690 0.7871 0.7957 0.8149 0.8208

Precision
BC 0.9216 0.9329 0.9469 0.9438 0.9493 0.9544
CA 0.7826 0.7803 0.7917 0.8165 0.8276 0.8286

MCC
BC 0.8334 0.8568 0.8933 0.8674 0.896 0.9041
CA 0.5317 0.5405 0.5774 0.5957 0.634 0.6459

F1 scores
BC 0.9516 0.9577 0.9684 0.9601 0.969 0.9712
CA 0.7634 0.7717 0.7924 0.7956 0.8172 0.8242

significant improvement of prediction over any other method in the comparison of “child vs

adult" (pvalue<0.05), and over Ph-CNN, Lasso, RF and Enet in the comparison of “baby

vs child" (pvalue<0.05). To sum up, based on the results of both regression and binary

classification, MDeep has the overall best prediction performance for the chronological age.

2.4.2 Predicting gender based on gut microbiome of human twins

One previous research shows that dysbiosis of gut microbiota is involved in metabolic

syndrome development, which has a different incidence between men and women [57]. In light

of this, we seek to study whether the composition of gut microbiome is different between male

and female discordant for kwashiorkor. To achieve this, we treat gender as a binary outcome

and classifying gender based on gut microbiome using the dataset collected from twin pairs

in Malawi. This dataset is also conducted with 16S rRNA gene-targeted sequencing and

deposited in Qiita with study ID 737. We download and process the dataset, resulting in

4321 OTUs profiling a total of 1041 twins (including MZ and DZ) consisting of 483 females,
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512 males and 46 samples with missing gender information. After aforementioned data pre-

processing steps are performed, we have 995 individuals profiled with 2291 OTUs for the

binary classification task. Accordingly, the phylogenetic tree is constructed using FastTree

[53] and truncated with the final number of leaves the same as the number of left OTUs.

Thus, a correlation matrix C2291×2291 is calculated based on the tree.

Table 2.3 Prediction performance for gender based gut microbiome of human twins with
kwashiorkor

Lasso RF NN ENet CNN MDeep

Sensitivity 0.802 0.812 0.8504 0.8153 0.8274 0.8227
Specificity 0.7352 0.7468 0.7315 0.802 0.8001 0.8263
Accuracy 0.7695 0.7804 0.7915 0.8086 0.8136 0.8235
Precision 0.7667 0.7775 0.7743 0.8165 0.8173 0.8364
MCC 0.5384 0.5604 0.5864 0.6166 0.6271 0.6475

F1 score 0.7827 0.7931 0.8088 0.815 0.8212 0.8284

For binary classification of gender, MDeep significantly outperforms other any method

by achieving a much higher R2 (pvalue<0.05) via a paired wilcoxon signed rank test. Neural

network architectures are superior to sparse regression methods and RF, where MDeep, NN

and CNN obtain a higher R2 (Fig 2.4D). However, Ph-CNN still does not perform well.

Moreover, MDeep maintains the overall top performance across various evaluation metrics

(Fig 2.7D and Table 2.3). The accurate classification of gender indicates that composition

of gut microbiome is different between men and women affected by kwashiorkor. In other

words, there is a sex-dependent effect on shaping the gut microbiome.

2.4.3 Predicting rheumatoid arthritis based on human microbiome

Besides traits (e.g. age and gender), we also apply MDeep to a disease-related study,

which investigates the role for intestinal bacteria in Rheumatoid arthritis (RA) [50]. In this

study, there are four groups of samples, which are new-onset rheumatoid arthritis (NORA),

chronic, treated rheumatoid arthritis (CRA), psoriatic arthritis (PsA), and healthy controls
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(HLT) with sample size 44, 26, 16 and 28 respectively. The prediction task is the binary

classification of NORA from HLT. Since NORA has been found associated with fewer marker

taxa (e.g. Prevotella copri), the dataset is helpful to evaluate whether MDeep could maintain

robust performance in the unfavorable scenario, where only a fewer marker taxa are associ-

ated with the outcome. The dataset is analyzed by MOTHUR [51], resulting in 997 OTUs

and a phylogenetic tree built by FastTree [45]. After aforementioned data pre-processing

steps are performed, an OTU abundance matrix consisting of 887 OTUs and the corre-

sponding phylogeny-induced correlation structure C887×887 are obtained for model training

and testing.

Figure 2.5: Prediction performance of new-onset rheumatoid arthritis on human microbiome:
R2 for new-onset rheumatoid arthritis and healthy. The blue dashed line the mean value of
R2 for MDeep. The whisker shows the standard deviation of R2 for each method.

For the binary classification for NORA from HLT, MDeep still remains the highest R2

(2.5). The improvement of MDeep over other methods is significant (pvalue<0.05 via a paired

Wilcoxon signed-rank test). We also find that overall performance of neural network-based

approaches (MDeep, NN, CNN) outperforms sparse regression models (Elastic Net, Lasso

and Random Forest). Additionally, MDeep maintains the overall top performance across

various evaluation metrics (Fig 2.10 and Table 2.4). The accurate classification of NORA
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Table 2.4 Prediction performance of NORA based on human intestinal microbiome

Lasso ENet RF Ph-CNN CNN NN MDeep

Sensitivity 0.8682 0.8145 0.8831 0.7556 0.8473 0.8393 0.8407
Specificity 0.4177 0.6466 0.6208 0.5919 0.6468 0.6651 0.7166
Accuracy 0.6686 0.73 0.7629 0.6886 0.7657 0.7686 0.7857
Precision 0.699 0.7726 0.7741 0.7468 0.7907 0.7953 0.8245
MCC 0.2986 0.463 0.5245 0.7377 0.515 0.5193 0.5642

F1 score 0.7542 0.7756 0.8089 0.398 0.8066 0.8063 0.8188

from HLT strengthens the claim that MDeep will maintain robust performance even if the

signal is sparse, where only a fewer marker taxa are associated with the outcome.

2.4.4 Computational performance

Comparing MDeep and Ph-CNN, the two deep learning models that utilize the phy-

logenetic information, we find MDeep provides superior computational performance since

clustering phylogenetically related OTUs only based on the evolutionary model using HAC.

Ph-CNN, on the other hand, relying on MultiDimensional Scaling projection, is much more

computationally intensive. To demonstrate this, we benchmark the computational perfor-

mances of MDeep and Ph-CNN on a server consisting of dual 8-core Xeon Sandy Bridge

E5–2670 processors with 64 GB system memory. We use the processed dataset collected

from twin pairs in Malawi consisting of 995 individuals profiled with 2291 OTUs. Without

loss of generality, we record the time of first 100 epochs in one batch in the training process

for classifying gender. We find that Ph-CNN runs slowly, which is as nearly as 90 times

of the number of epochs. In contrast, the running time of MDeep is stable and increases

little (Table 2.13, Fig 2.8). For example, in first 100 epochs, Ph-CNN takes 8879 seconds,

compared to 57 seconds from MDeep, that is, MDeep is 158 times faster than Ph-CNN. Sim-

ilarly, MDeep is 8 times, 42 times and 121 times faster than Ph-CNN in first 1, 10 and 50

epochs. This observation indicates that the gain of computational efficiency is more evident
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when the number of epochs increases for MDeep compared to Ph-CNN. Overall, MDeep not

only outperforms Ph-CNN in binary classification but also in computational performance.

2.5 Discussion

In this work, we develop a microbiome-based deep learning model, MDeep for predicting

both continuous and binary outcomes. The effectiveness of the proposed model relies on

its ability to maximize the utilization of the information in the microbiome data, which

consists of both phylogenetic tree and the OTU abundance. First, MDeep exploits the

phylogenetic information by clustering OTUs based on phylogenetic correlation before the

input layer. This strategy induces the local smoothing, which is phylogenetically correlated

OTUs will be more likely captured together by the convolutional operation in the local

receptive field. Second, MDeep encourages the local connectivity in the feature mapping,

where phylogenetically related OTUs at a lower taxonomy are more likely maintained close

to each other at a higher taxonomy.

We carry out comprehensive simulations to evaluate the prediction performance with

the considerations of cluster size, signal density, and informativeness of the phylogenetic

tree. As a result, MDeep favors the scenarios of dense and large-clustered signals where it

outperforms other methods and it is still comparable to others as the signal density and

cluster size decreases. Especially, MDeep not only has a superior prediction performance

to NN and CNN with a similar network architecture, but also superior to sparse regression

models and random forest. This observation strengthens the benefit of exploiting phyloge-

netic information in predictive modeling. Moreover, the same observation persists when the

tree is uninformative, which demonstrates the robustness of MDeep. In reality, a noisy or

mis-specified tree is not uncommon because of an inappropriate tree construction method

or inconsistency between DNA sequence similarity and biological similarity. In the analysis
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of two real datasets, MDeep keeps the trends to outperform other methods overall. Par-

ticularly, MDeep outperforms Ph-CNN, another deep learning method that also utilizes the

phylogenetic information, in binary classification. In addition, MDeep computes much faster.

Although CNN has been widely used to improve the prediction performance with a

relatively large sample size ranging from thousands to millions, we demonstrate here that

CNN can potentially achieve a high prediction accuracy when the sample size is moderate

(e.g. hundreds). This is achieved by developing a "shallow" neural network architecture

with a few convolutional layers and fully-connected layers.

We use mapped reads of OTUs as the feature representation. Notably, reference-free

or alignment-free approach is an alternative feature representation approach of microbiome

data. Kmers of raw reads can be directly used as features and phylogenetic tree can be

constructed based on Kmers [58, 59]. This approach has the benefit of skipping computa-

tionally costly sequence alignments required in OTU-picking, thus making the process of

training a prediction model more efficient. The comparison between OTU-based and Kmer-

based MDeep needs further investigations.
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2.6 Appendix

2.6.1 Supplementary figures

A B

Figure 2.6: Prediction performance measured by PMSE for continuous outcome (A) and
AUC for binary outcome (B) in the simulation study. Scenario1 (S1) represents informative
phylogeny and Scenario2 (S2) represents non-informative phylogeny. Cluster-S, -M, and -L
represent small, medium and large clusters. Signal-L, -M, and -H represent low, medium
and high signal density, respectively.
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Figure 2.7: Prediction performance measured by R2 for continuous outcome when the tree
is informative when cluster is large and signal density is high (Cluster-L and Signal-H). One
cluster-level β indicate aOTUs within a aCluster have the same β value. Multiple OTU-
level β indicate aOTUs within a aCluster have different β values, which are generated from
a normal distribution with cluster-level β as mean and 0.1 as standard deviation.
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Figure 2.8: R2 for continuous-outcome (A) and binary-outcome(B) simulations across dif-
ferent signal levels and scenarios when the abundance of associated OTU clusters is low. S1:
phylogeny-informative scenarios, and S2: phylogeny-non-informative scenarios; Cluster-S,
-M, and -L represent small, medium and large clusters, and Signal-L, -M, and -H represent
low, medium and high signal density, respectively.
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Figure 2.9: Prediction performance of chronological age based on gut microbiome of indi-
viduals in USA (A, B, C): (A): PMSE for all ages (B) AUC for “Baby vs Child" (C) AUC
for “Child vs Adult". Prediction performance of gender based gut microbiome of Malawian
twins (D): AUC for male and female. The blue dashed line the mean value of the metric of
MDeep.

Figure 2.10: Prediction performance of new-onset rheumatoid arthritis on human micro-
biome: AUC for new-onset rheumatoid arthritis and healthy.
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Figure 2.11: Running time comparison between Ph-CNN and MDeep

A B

Figure 2.12: (A):Running time comparison among all the methods but Ph-CNN. (B): Mem-
ory usage comparison among all the methods.
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2.6.2 Supplementary tables

Table 2.5: Prediction performance in binary classification (Cluster-S, Signal-L). Top per-
formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity S1 0.692 0.7100 0.7306 0.7906 0.7932 0.8018
S2 0.6844 0.7024 0.7402 0.7814 0.7906 0.7744

Specificity S1 0.6924 0.6978 0.7336 0.7960 0.7848 0.8032
S2 0.6984 0.7128 0.7470 0.7988 0.7936 0.7924

Accuracy S1 0.6922 0.7039 0.7321 0.7933 0.7890 0.8025
S2 0.6914 0.7076 0.7436 0.7901 0.7921 0.7834

Precision S1 0.6956 0.7019 0.7327 0.7975 0.7892 0.8044
S2 0.6966 0.7113 0.7461 0.7974 0.7944 0.7915

MCC S1 0.3877 0.409 0.4658 0.5894 0.5803 0.6065
S2 0.3861 0.4164 0.4889 0.5824 0.5858 0.5688

F1 scores S1 0.6906 0.7049 0.7302 0.7921 0.7897 0.8021
S2 0.6873 0.7058 0.7418 0.7878 0.7914 0.7814

Table 2.6: Prediction performance in binary classification (Cluster-S, Signal-M). Top per-
formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity S1 0.7072 0.6842 0.7162 0.7648 0.7678 0.7768
S2 0.6796 0.6836 0.7178 0.7530 0.7620 0.7698

Specificity S1 0.6462 0.6696 0.7332 0.748 0.7526 0.7964
S2 0.7046 0.6798 0.7302 0.7736 0.7796 0.7526

Accuracy S1 0.6767 0.6769 0.7247 0.7564 0.7602 0.7866
S2 0.6921 0.6817 0.7240 0.7633 0.7708 0.7612

Precision S1 0.6694 0.6744 0.7294 0.7531 0.7571 0.7956
S2 0.7023 0.6827 0.728 0.7703 0.7775 0.7590

MCC S1 0.3575 0.3552 0.4508 0.5146 0.5217 0.5759
S2 0.3887 0.3649 0.4498 0.5279 0.5429 0.5247

F1 scores S1 0.6847 0.678 0.7215 0.7576 0.7616 0.7842
S2 0.6866 0.6816 0.7214 0.7606 0.7687 0.7628
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Table 2.7: Prediction performance in binary classification (Cluster-S, Signal-H). Top per-
formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity S1 0.6824 0.6558 0.7222 0.7238 0.7232 0.7884
S2 0.6904 0.6800 0.7246 0.7384 0.7336 0.7544

Specificity S1 0.7048 0.6686 0.7326 0.7374 0.7354 0.7886
S2 0.6830 0.6532 0.7176 0.7278 0.7216 0.7450

Accuracy S1 0.6936 0.6622 0.7274 0.7306 0.7293 0.7885
S2 0.6867 0.6666 0.7211 0.7331 0.7276 0.7497

Precision S1 0.7028 0.6655 0.7322 0.7353 0.7334 0.7908
S2 0.6901 0.6633 0.7208 0.7311 0.7253 0.7490

MCC S1 0.3910 0.3253 0.4572 0.4629 0.4598 0.5789
S2 0.3783 0.3348 0.4442 0.4676 0.4564 0.5016

F1 scores S1 0.6890 0.6597 0.7252 0.7281 0.7272 0.7882
S2 0.6858 0.6701 0.7211 0.7336 0.7285 0.7501

Table 2.8: Prediction performance in binary classification (Cluster-M, Signal-L). Top per-
formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity S1 0.6778 0.6844 0.7192 0.7514 0.7548 0.8204
S2 0.6740 0.6966 0.715 0.7522 0.7636 0.7914

Specificity S1 0.6844 0.6508 0.7116 0.7562 0.7574 0.8114
S2 0.6834 0.6784 0.7152 0.7520 0.7436 0.7788

Accuracy S1 0.6811 0.6676 0.7154 0.7538 0.7561 0.8159
S2 0.6787 0.6875 0.7151 0.7521 0.7536 0.7851

Precision S1 0.6890 0.6635 0.7150 0.7572 0.7577 0.8154
S2 0.6872 0.6862 0.7158 0.7530 0.7540 0.7833

MCC S1 0.3674 0.3368 0.4323 0.5097 0.5138 0.6336
S2 0.3629 0.3768 0.4317 0.5061 0.5086 0.5730

F1 scores S1 0.6786 0.6725 0.7158 0.7524 0.7547 0.8167
S2 0.6754 0.6899 0.7141 0.7513 0.7561 0.7855
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Table 2.9: Prediction performance in binary classification (Cluster-M, Signal-M). Top per-
formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity S1 0.6770 0.6858 0.7334 0.7420 0.7470 0.8358
S2 0.6788 0.6892 0.7270 0.7600 0.7648 0.7834

Specificity S1 0.7134 0.6498 0.7266 0.7608 0.7604 0.8474
S2 0.7072 0.6818 0.7398 0.7590 0.7614 0.7962

Accuracy S1 0.6952 0.6678 0.7300 0.7514 0.7537 0.8416
S2 0.693 0.6855 0.7334 0.7595 0.7631 0.7898

Precision S1 0.7071 0.6634 0.7300 0.7569 0.7586 0.8472
S2 0.7036 0.6846 0.7384 0.7603 0.7637 0.7966

MCC S1 0.3959 0.3373 0.4617 0.5042 0.5093 0.6848
S2 0.3902 0.3722 0.4688 0.5207 0.5277 0.5821

F1 scores S1 0.6864 0.6731 0.7303 0.7483 0.7513 0.8405
S2 0.6871 0.6858 0.7310 0.7588 0.7631 0.7882

Table 2.10: Prediction performance in binary classification (Cluster-M, Signal-H). Top per-
formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity S1 0.6836 0.6498 0.7252 0.7140 0.7042 0.8082
S2 0.6938 0.6664 0.7332 0.7088 0.7092 0.7594

Specificity S1 0.6792 0.648 0.7048 0.7024 0.7036 0.8064
S2 0.6796 0.6476 0.7232 0.7178 0.726 0.7546

Accuracy S1 0.6814 0.6489 0.715 0.7082 0.7039 0.8073
S2 0.6867 0.657 0.7282 0.7133 0.7176 0.7570

Precision S1 0.6850 0.6506 0.7130 0.7082 0.7059 0.8106
S2 0.6877 0.6557 0.7276 0.7174 0.7235 0.7574

MCC S1 0.3688 0.2993 0.4327 0.4181 0.4093 0.6178
S2 0.3773 0.3156 0.4577 0.4282 0.4365 0.5156

F1 scores S1 0.6793 0.6486 0.7171 0.7097 0.7037 0.8075
S2 0.6869 0.6594 0.7294 0.7116 0.7152 0.7572
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Table 2.11: Prediction performance in binary classification (Cluster-L, Signal-M). Top per-
formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity S1 0.6808 0.6636 0.7098 0.7134 0.7136 0.8264
S2 0.6940 0.6746 0.7106 0.7346 0.7430 0.7764

Specificity S1 0.6836 0.643 0.7094 0.7322 0.7336 0.8320
S2 0.6770 0.6544 0.7176 0.746 0.7456 0.7768

Accuracy S1 0.6822 0.6533 0.7096 0.7228 0.7236 0.8292
S2 0.6855 0.6645 0.7141 0.7403 0.7443 0.7766

Precision S1 0.6876 0.6515 0.7132 0.7293 0.7301 0.8328
S2 0.6843 0.6627 0.7180 0.7447 0.7462 0.7797

MCC S1 0.3693 0.3081 0.4221 0.4479 0.4490 0.6605
S2 0.3743 0.3304 0.4298 0.4821 0.4898 0.5554

F1 scores S1 0.6793 0.6561 0.7091 0.7192 0.7202 0.8282
S2 0.6864 0.6674 0.7130 0.7383 0.7436 0.7764

Table 2.12: Prediction performance in binary classification (Cluster-L, Signal-H). Top per-

formed method in each metric is bold.

Scenario NN RF CNN Lasso ENet MDeep

Sensitivity
S1 0.6986 0.6684 0.7094 0.6952 0.7036 0.8196

S2 0.7058 0.6582 0.7186 0.7008 0.7032 0.7702

Specificity
S1 0.6994 0.6310 0.7124 0.6958 0.6984 0.8400

S2 0.6804 0.6214 0.7208 0.7026 0.7098 0.764

Accuracy
S1 0.699 0.6497 0.7109 0.6955 0.7010 0.8298

S2 0.6931 0.6398 0.7197 0.7017 0.7065 0.7671

Precision
S1 0.7052 0.6462 0.7134 0.698 0.7017 0.8386

S2 0.6935 0.6356 0.7222 0.7026 0.7089 0.7680

MCC
S1 0.4036 0.3010 0.4240 0.3930 0.4036 0.6616

S2 0.3921 0.2806 0.4416 0.4049 0.4142 0.5362

F1 scores
S1 0.6966 0.6557 0.7095 0.6948 0.7013 0.8278

S2 0.6945 0.6458 0.7185 0.7004 0.7050 0.7676
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Table 2.13: Running time comparison between Ph-CNN and MDeep (Unit is second)
Num of Epochs 1 10 50 100

Ph-CNN 163 1012 4712 8879
MDeep 21 24 39 57
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Chapter 3

WEVar: a weighted ensemble learning framework for annotating and prioritizing

non-coding genetic variants

3.1 Introduction

Determining the functional consequences of noncoding variants is still a challenge in ge-

netics research. Different from coding variants that have effects on protein coding, the func-

tional consequences of noncoding variants are still elusive. In the past decade, genome-wide

association studies (GWASs) have uncovered thousands of genetic variants that influence

risk for complex human traits and diseases, among which more than 90% are noncoding.

Moreover, quantitative trait locus (QTL) analyses have identified “xQTLs” [60] affecting

molecular phenotypes such as eQTLs [61] for gene expression; mQTLs [62] for DNA methy-

lation; aseQTLs [63] for allele-specific expression; dsQTLs [64] for DNase I sensitivity and

sQTLs [65] for alternative RNA splicing. However, identification of these causal variants is

still difficult because of the limitation of sample size and linkage disequilibrium, which may

mask true causal ones. In addition, functional interpretations aimed at delineating these

causal genetic variants and biological mechanisms underlying the observed statistical asso-

ciations have lagged. Therefore, one key task for post-GWAS study is on not only refining

the identification of causal variants but also improve the derivation of biological meaning.

Although majority of noncoding variants remains underexplored, the functional conse-

quences of noncoding variants are believed to disrupt the normal regulatory mechanisms in

promoter and enhancer regions and therefore impact the downstream gene expression in tis-

sue/cell type specific manner, which may result in the onset of various diseases. For example,

the prevalence of TERT promoter mutations has been established in melanoma, gliomas and

bladder cancer [66]. Moreover, novel MYB-binding motifs created by somatic mutations in
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the intergenic region resulted in a super-enhancer upstream of the TAL1 oncogene in a subset

of T cell acute lymphoblastic leukaemia [67]. Regarding Alzheimer’s disease (AD), though

coding variant APOE-ε4 is unequivocally the most significant genetic risk factor for AD [68,

69], it does not fully explain the AD risk conferred by APOE and the surrounding regions.

Additionally, a combination of risk alleles from multiple variants with small effect sizes re-

sults in aggregate effects, thus contributing to a higher AD risk [70, 71]. Since the change

of regulatory activities can be measured by the epigenomic profiles, epigenomic profiles are

widely used as a hallmark to evaluate the functional consequence of noncoding variants.

As an example, a recent data analysis shows that active chromatin marks (H3K27ac and

H3K4me1), repressive chromatin marks (H3K9me3 and H3K27me3) have different signals in

the neighborhoods of a risk variant, rs3024505 associated with type 1 diabetes, and a be-

nign variant rs114490664 [72]. These examples demonstrates epigenomic information could

play an important role in predicting and interpreting noncoding variants, which function in

regulatory activities.

The rapid development of massively parallel sequencing technologies enable thousands

of “multi-omics" data available at large-scale public consortia such as the Encyclopedia of

DNA Elements (ENCODE) [73], Roadmap Epigenomics [74] and the International Human

Epigenome Consortium [75]. These consortia collect whole-genome wide sequencing fea-

tures measuring different biological activities such as histone modifications (e.g. ChIP-seq),

methylation (e.g. MeDIP-seq, methylation array, WGBS), chromatin accessibility (DNase-

seq) and chromatin interactions (Hi-C) across hundreds of different tissues and cell types.

Moreover, it has been shown that many GWAS SNPs associated with many diseases and

QTL SNPs of multiple tissues are located within these noncoding regions with coverages

from ENCODE and Roadmap Epigenomics datasets [72, 76, 77]. Therefore, the enriched

collection of these “multi-omics" data make possible the functional annotation of genetic

variants and lead to the development of computational methods for predicting functional

variants. Taking advantages of these “multi-omics" data, dozes of computational methods
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have been developed to annotate and prioritize functional noncoding variants [5, 6, 9, 7, 11,

10, 8]. These methods are developed using different machine learning or statistical models,

training variants and variant annotations derived from these “multi-omics" data. Supervised

learning approach, such as GWAVA [5], CADD [6], DANN [9], FATHMM-MKL [7]), LIN-

SIGHT [11]), FunSeq2 [10], DIVAN [72] and TIVAN [77], is essentially a binary classification

task: putative or experimentally validated variants are labelled as positive and benign vari-

ants are labelled as negative. Different from the supervised approaches, a common practice

of unsupervised methods such as Eigen[8] is to integrate variant annotations into one func-

tional score, which measures the functional importance. For most of the existing methods,

genome-wide precomputed functional scores for all known noncoding variants such as 1000

Genomes Project [78] are provided. Users can obtain these scores by providing a list of

variants identifiers or arbitrary genomic regions. Usually, a large score indicates the variant

could be more functional.

Nevertheless, it has been shown that prediction performance of existing methods show

poor concordance on the state-of-the-art benchmark datasets [79], The potential reasons lie

on two aspects. First, they are trained using different training variants and variant annota-

tions to predict functional noncoding variants in different context (e.g. disease, phenotype),

making one method trained using variants in one context have suboptimal prediction for

variants in another context. Second, these methods utilize specific algorithms tailored to

specific scenarios, limiting the generalizability. For example, GWAVA is developed using

pathogenetic variants collected from The Human Gene Mutation Database (HGMD) [80] and

thus is used to predict pathogenetic variants; FunSeq2 is specifically designed for predicting

noncoding regulatory variants in cancer. Therefore, an ensemble approach that combines the

predictions of all these methods in a weighted scheme could offer a more powerful approach

than each method. The weights of each individual methods, which reflects the contribu-

tions of methods in the prediction task, can be adaptively learnt in different context, which

improves the generalizability and flexibility.
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Here, we developed a supervised learning method WEVar (Weighted Ensemble frame-

work for predicting functional noncoding Variants), which integrates representative scoring

methods in a constrained optimization framework. Specifically, the precomputed scores of

these methods are treated as features with two constraints: the summation of weights of exist-

ing methods are required to be one; a L2-norm is further imposed on the weights for smooth-

ing the estimates. Apparently, there are several advantages of WEVar. First, compared to

individual scoring method using hundreds or thousands of features, WEVar directly utilizes

the precomputed scores and thus reduces number of features dramatically. Second, WEVar

leverages existing methods by adaptively learning the contributions of each method, thus

optimizing the prediction performance. Last but most importantly, WEVar has two modes:

“context-free” and “context-dependent”. Context-free WEVar is used for predicting variants

with unknown context. Context-dependent WEVar can further improve the prediction when

variants in training and testing set are in the same context. The “context-dependent” mode

allows to accurately predict cell type/tissue-specific functional consequences of noncoding

variants, which is of great interest. Using simulation and real data studies, we demonstrate

both context-free WEVar and context-dependent WEVar outperform the individual scoring

methods on the state-of-the-art benchmark datasets. Importantly, context-dependent WE-

Var further improves the prediction when the number of training variants is large enough.

Furthermore, we find WEVar can prioritize experimentally validated noncoding variants in

a LD block.

3.2 Materials

WEVar is developed directly on top of precomputed functional score, which is an opti-

mally integrative metric representing for thousands of functional annotations, from mul-

tiple individual scoring methods. Using these integrative functional scores directly will

decrease the number of features in the model development and thus avoid the challenge
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Figure 3.1: Overview of the WEVar. WEVar aims to predict functional noncoding variants,
which has two modes: “context-free” and “context-dependent”. For “context-free" mode, the
training variant set is chosen from a curated set of functional regulatory variants from diverse
context to train a model for functional prediction of variants from unknown or heterogeneous
context. For “Context-dependent" mode, the training variant set is selected from one specific
context of interest (i.e. disease, tissue, cell type), to train a model for functional prediction of
variants from the same context. In the training phase, WEVar compiles the training set with
labelled functional and non-functional variants and annotate all variants with precomputed
functional scores from representative scoring methods. For each method, the raw scores
are transformed using kernel density function (KDE) for both functional and non-functional
variant sets respectively. Using these transformed scores as predictive features, a constrained
ensemble model is trained. In the testing phase, precomputed functional scores of testing
variants are transformed based on the estimated KDE in the training phase and then serve
as input features for trained ensemble model to predict the ensemble WEVar score.

high-dimensional data and multicollinearity. We will outline the details of WEVar in the

following sessions.

3.2.1 Obtaining precomputed functional scores

We download base-level genome-wide precomputed functional scores from all possible

substitutions of single nucleotide variants (SNVs) in the human reference genome (GRCh37/hg19)

from scoring methods including CADD [6], DANN [9], FunSeq2 [10], FATHMM-MKL [7],

Eigen [8] and LINSIGHT [11]. In addition, we use three sets of precomputed scores from

GWAVA (i.e. GWAVA_region, GWAVA_TSS, GWAVA_unmatched) for all SNVs in 1000
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Genomes Project [78]. We choose these scoring methods to integrate into WEVar because

they are widely used and mostly representative. Since the precomputed score of LINSIGHT

is on region level, we assign all variants in the region with the same region-level score. More

details for the source of these precomputed scores can be found in Table 3.1.

3.2.2 Assembling variants in training and testing set

For context-free WEVar, the training variant set compiles a curated set of 5,247 causal

regulatory variants including i) deleterious or pathogenic noncoding variants from the Human

Gene Mutation Database (HGMD) [80] and ClinVar [81] ii) validated regulatory noncoding

variants from the OregAnno [82] and iii) candidate causal SNPs for 39 immune and non-

immune diseases in the fine-mapping study [83] obtained from Li et al. [84]. The compiled

variants are associated with different traits, have functional consequence in different tis-

sues and cell types, and reside in different noncoding regions such as promoters, enhancers,

5’UTRs and 3’UTRs, making them ideal as a training set to predict functional consequence

of noncoding variants from unknown or heterogeneous context. Accordingly, we collect six

state-of-the-art benchmark independent variant sets from a wide range of context. Among

them, three variant sets are collected from Li et al. [84], which include experimentally val-

idated regulatory variants, expression quantitative trait loci (eQTL) [85] (FDR<0.1%) and

allelic imbalanced SNPs [86] (FDR<0.1%) Moreover, GWAS significant noncoding SNPs

are collected from NHGRI-EBI GWAS Catalog [87] (pvalue<10−5). Furthermore, two col-

lected regulatory variant sets are validated by massively parallel reporter assays (MPRAs)

in GM12878 lymphoblastoid cells [88] and K562 leukemia cells [89]. For context-free WE-

Var, these variant sets are used for independent testing. For context-dependent WEVar, we

divide each variant set into ten folds with nine-folds as training set and one-fold as testing

set.
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3.3 Methods

3.3.1 Statistical learning framework of WEVar

The workflow of WEVar is illustrated in Figure 3.1, which consists of four steps: (i) Cre-

ating the compiled training variant set (ii) Obtaining the precomputed functional scores for

training variants (iii) Transforming the functional scores (iv) Training a constraint ensemble

model.

Creating compiled training variant set

Depending on the purpose, we compile the training set for either ‘context-free‘ or

“context-dependent" WEVar, as described in the section “Assembling variants in training

and testing set".

Obtaining precomputed functional scores for training variants

Precomputed functional scores are retrieved from representative scoring methods includ-

ing CADD, DANN, Eigen, FunSeq2, FATHMM-MKL, LINSIGHT and GWAVA for variants

in the training set, as described in the section “Obtaining precomputed functional scores".

Transforming precomputed functional scores

Precomputed functional scores of integrated scoring methods are on different scales,

which may result in different effect sizes of weight estimates by WEVar. However, the

resulted different weight estimates are not due to different contributions of integrated scoring

methods but because of the systematic bias induced by score scale. Therefore, it is important

to perform a normalization step to make functional scores from different scales comparable.

To integrate different scores are on the same scale, for each jth scoring method, we estimate

two probability density functions (PDF) using kernel density estimation (KDE) based on

the empirical distribution of the normalized scores for positive variant set and negative set
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respectively. As a result, PDF of the positive set denoted as pj(s|+) approximates the

probability that a variant will have a prediction score s given the variant is functional (+),

while PDF of the negative set denoted as pj(s|−) approximates the probability that a variant

will have the same prediction score s given the variant is nonfunctional (-). Therefore, we

use the ratio of two PDFs for the given ith variant, which is essentially the Bayes factor, to

represent the likelihood the variant is functional versus nonfunctional. To stabilize the scale

of the likelihood, we further take a logarithm of the ratio as the transformed score xNij as:

xNij = log
pj(xij|+)

pj(xij|−)
(3.1)

where xij is the raw functional score of the ith variant in the jth scoring method; pj(xij|+)

and pj(xij|−) are probability density of xij in positive and negative set respectively.

Training a constraint ensemble model

Using the transformed scores, we will fit a constraint ensemble model, which is essentially

a Constrained Penalized Logistic Regression model. Let xN ∈ Rp be the transformed scores

of a variant for all scoring methods and y ∈ {−1,+1} be the variant label. The conditional

probability of the variant being functional given xN can be formulated as:

p(y = 1|xN) =
1

1 + exp(−y(w>xN) + b)
(3.2)

where w ∈ Rp is a weight vector, which contains the regression coefficients, and b ∈ R

is the intercept. The likelihood function for n variants from both positive and negative

set is defined as
∏n

i=1 p(yi|xNi ). The objective function, which is the average of negative

log-likelihood, is defined as:

f(w,b) = − 1

n
log

n∏
i=1

p(yi|xNi ) (3.3)
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By minimizing the objective function, we can estimate w and b as:

minimize
w,b

f(w, b) (3.4)

We further apply two constraints to the log-likelihood function. First, the weight of each

scoring method is larger or equal to 0, indicating all scoring methods will contribute neutrally

or positively to the prediction. Second, the sum of all weights equals to 1, which is a

reasonable assumption for the summation of contributions from all scoring methods. In

addition, to leverage all scoring methods by avoiding a sparse solution, we add an L2-norm

to the objective function. Finally, we have the L2-norm regularized objective function with

the two constraints as:

minimize
w,b

f(w, b) + λ||w||2

subject to
p∑
j=1

wj = 1

wj ≥ 0, j = 1, . . . , p.

(3.5)

where λ ≥ 0 is the tuning parameter for L2-norm, which can be optimized from cross-

validation in the training phase.

To minimize the loss function with equality and inequality constraints, we first rewrite

the loss function as the standard form:

minimize
w,b

f(w, b) + λ||w||2

subject to hk(w) ≤ 0, k = 1, . . . , p.

l(w) = 0

(3.6)

We then introduce Generalized Lagrange function to relax two constraints, which is formu-

lated as:

L(w, b, α, β) = f(w, b) + λ||w||2 +

p∑
k=1

αkhk(w) + βl(w) (3.7)
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In this way, the dual problem is easier to solve compared with the primal problem. The

primal solution can be constructed from the dual solution as:

g(α, β) = minL(w, b, α, β) (3.8)

The Lagrange dual function can be considered as a pointwise maximization of some affine

functions so it is always concave. The dual problem is always convex even if the primal

problem is not convex, which can be easily solved by gradient-based methods.

Testing phase

In the testing phase, given variants be annotated precomputed functional scores from

all scoring methods, which will be further transformed through the estimated KDE in the

training phase. The transformed scores will serve as input features for trained ensemble

model to predict the ensemble WEVar score.

Implementation

We adopt the SciPy [90], a Python scientific computing library, to perform the kernel

density estimations, and CVXPY [91], a Python-embedded modeling library for convex

optimization, to estimate constrained weights from the objective function.

Software availability

WEVar is implemented in a standalone software toolkit available at (https://github.

com/lichen-lab/WEVar), which mainly consists of i) a compiled data package including pre-

computed scores for all SNVs (GRCh37/hg19) in 1000 Genomes Project across all integrated

scoring methods; ii) a model package of pre-trained context-free and context-dependent WE-

Var models; and iii) a Python software package to perform the functional prediction using

pre-trained models or re-train a new model. To use a pre-trained model, WEVar will take
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compiled data package and genomic coordinates of testing variants as input. Alternatively,

WEVar will take compiled data package and genomic coordinates of training variants to

re-train a new WEVar model.

3.4 Results

First, we will perform a simulation study to evaluate the accuracy of weight estimation

by WEVar for all integrated scoring methods and investigate whether the prediction per-

formance of WEVar is improved compared to individual scoring method. Second, we will

evaluate the context-free functional prediction and context-dependent functional prediction

on the state-of-the-art benchmark datasets respectively. Third, we will apply WEVar to

prioritize experimentally validated causal regulatory variants in multiple risk loci associated

with multiple traits.

3.4.1 Evaluation of WEVar in a simulation study

Evaluation metrics

The performance of all scoring methods is evaluated using area under the receiver op-

erating characteristics curve (AUROC), the area under the precision-recall curve (AUPR)

and Pearson correlation between predicted and true labels (COR). AUROC and AUPR are

metrics based on the ranks of the predicted scores. COR has the additional ability to mea-

sure how the predicted values are correlated with the true labels. Using different probability

cutoffs, AUROC measures the trade-off between the true positive rate and false positive

rate. AUPR compares the trade-off between the true positive rate and precision. AUROC is

preferred for balanced class, whereas AUPR is more appropriate for imbalanced class. Since

we have both balanced and unbalanced testing datasets, we present both metrics.
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Figure 3.2: (A) Pairwise Pearson correlations between precomputed functional scores among
scoring methods for the integrated causal regulatory variants collected from Li et al. [84]. (B)
Average regression coefficient estimated by WEVar in the training phase in 50 simulations.
(C) Average prediction performance by WEVar on the independent testing datasets. X axis
presents AUPR; Y axis presents AUROC; the bubble size represents COR. AUPR, AUROC
and COR are averaged in the testing phase in 50 simulations.

Simulating correlated functional scores and variant labels

We conduct a simulation study to evaluate whether WEVar can estimate contribution

of each individual scoring method accurately and whether WEVar can improve prediction

performance compared to each individual scoring method. Since the functional scores of

different methods have an overall positive correlation (Figure ??A), we simulate functional

scores of all scoring methods with consideration of the score correlation. Using the simulated

scores, we generate a total 10, 000 variants with an equal size of functional and nonfunctional

variants in the training set. Similarly, we independently generate an equal number of 10, 000

variants in the testing set for prediction evaluation. We then apply WEVar to retrain a

model in the training set and predict WEVar scores in the testing set. Using WEVar scores

and true labels in the testing set, we will calculate AUROC, AUPR and COR. We repeat

the whole procedure 50 times and obtain the average of all evaluation metrics.

Specifically, using the integrated causal regulatory variant set collected from Li et al.

[84], we calculate a p × p variance-covariance matrix R of precomputed functional scores
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among all integrated scoring methods, where p is the number of scoring methods. We cluster

these methods based on Pearson correlation and find that these methods have different levels

of disagreement, indicating that performance of these methods show poor concordance on the

benchmark dataset (Figure ??A). Not surprisingly, GWAVA_Unmatched, GWAVA_Region

and GWAVA_TSS are clustered together since they use the same positive training variant

set. Surprisingly, FATHMM-MKL has the lowest correlation with all the other methods.

Indeed, this observation highlights the rationale why a weighted ensemble strategy proposed

by WEVar is essential to improve the prediction because it is able to upweight the scoring

methods fit in current context while down-weight the unfit others. We further perform

Cholesky decomposition on R as:

R = C · C> (3.9)

where C is a p× p lower triangular matrix with real positive diagonal entries. To maintain

the correlations of simulated scores, we generate the correlated functional scores X as the

product between C> and random variable d, which is sampled from an independent normal

distribution as:

X = d · C>, d ∼ N(0, 1). (3.10)

where xij as the functional score of ith noncoding variant in jth scoring method. ηi, which

is the weighted average score of ith variant, can be generated as:

ηi =

p∑
j=1

xij · βj (3.11)

where βj is the weight associated with jth method. Without loss of generality, we manually

assign 0.6 to β2, 0.3 to β6, 0.1 to β5, and 0 to the rest. We then perform inverse logit

transformation to ηi to obtain probability πi, based on which the binary label yi for ith
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variant is generated from a Bernoulli distribution as:

yi ∼ Bern(πi), where πi =
eηi

1 + eηi
. (3.12)

Results of the simulation study

In the simulation study, we will evaluate whether WEVar can truly discover the con-

tributions of individual scoring method by comparing the estimated regression coefficients

(β̂) with the assigned true values (β). To fit a WEVar model, the optimal tuning parameter

for L2-norm is selected using fivefold cross-validation (5-CV), where the whole training set

is divided into five-folds, where four-folds is used to train the model and one-fold is used to

obtain the evaluation metric i.e. AUROC. The optimal tuning parameter is chosen based

on the average AUROC from 5-CV, and a final model is fitted using the whole training

set with the optimal tuning parameter. To evaluate the performance of the final model an

independent testing set, we use all evaluation metrics AUROC, AUPR and COR.

As a result, we find that the estimated weights are nearly unbiased to the underlying

truths (Figure ??B), which suggests that WEVar can discover the contribution of each indi-

vidual scoring method correctly when the functional scores of these methods are correlated.

With accurate contribution estimation, WEVar can significantly improve the prediction per-

formance in the independent testing (Figure ??C) by achieving the highest AUROC, AUPR

and COR. Overall, the simulation results validate the benefit of exploiting different scoring

methods in an integrative weighted scheme.

3.4.2 Context-free functional prediction

Overview of context-free WEVar

We first introduce context-free WEVar, which is trained using integrated causal regula-

tory variants collected from Li et al. [84]. We call this WEVar mode “context-free" because
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Figure 3.3: Evaluation of context-free WEVar and integrated scoring methods. Context-
free WEVar is trained using the integrated functional regulatory variants collected by Li et
al. [84], which include variants in HGMD, ClinVar, OregAnno and fine-mapping candidate
causal SNPs for 39 immune and non-immune diseases with a total of 5,247 positive variants
and 55,923 negative variants. Context-free WEVar is tested on the state-of-the-art bench-
mark datasets, which include i) Allelic imbalanced SNPs in chromatin accessibility with a
total of 8,592 positive variants and 9,678 negative variants (Allelic imbalanced SNPs); ii)
Uniformly processed fine-mapping eQTLs from 11 studies with a total of 31,118 positive
variants and 36,540 negative variants (Fine mapping eQTLs); iii) GWAS noncoding SNPs
with a total of 19,797 positive variants and twice number of negative variants (GWAS SNPs)
[IWscore]; iv) Manually curated experimentally validated regulatory SNPs with a total of
76 positive variants and 156 negative variants (Experimentally validated regulatory SNPs);
v) MPRA validated variants in lymphoblastoid cells with a total of 693 positive variants and
2,772 negative variants (MPRA variants in GM12878 lymphoblastoid); vi) MPRA validated
variants in erythrocytic leukemia cells with a total of 342 positive variants and 1,368 negative
variants (MPRA variants in K562 leukemia). We further remove variants on sex chromosome
or with missing precomputed scores. X axis presents AUPR; Y axis presents AUROC; the
bubble size represents COR.

these variants are not limited to a specific context but have a broad definition of function-

ality across a wide range of context. These variants are either experimentally validated or
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Figure 3.4: Evaluation of context-dependent WEVar and integrated scoring methods on
state-of-the-art benchmark datasets, which include Allelic imbalanced SNPs, Fine mapping
eQTLs, GWAS noncoding SNPs, Experimentally validated SNPs, MPRA validated variants
in GM12878 lymphoblastoid cells and MPRA validated variants in K562 leukemia cells. We
further remove variants on sex chromosome or with missing precomputed scores. To restrict
the training and testing variants are from the same context, for each dataset, we randomly
split the dataset into ten-folds with nine-folds as the training set and one-fold as the testing
set. Context-dependent WEVar is trained on the nine-folds and independently evaluated on
the left one-fold. AUC, AUCPR and COR are calculated and averaged in the ten replicates
for each method. X axis presents AUPR; Y axis presents AUROC; the bubble size represents
COR.

highly putative causal variants associated with different diseases, molecular phenotypes or

clinical outcomes, which are located in different noncoding regions such as promoters, en-

hancers, 5’UTRs and 3’UTRs. The diverse context and widespread genomic locations of

these variants make it potentially powerful to predict functional noncoding variants when

the context is unknown or heterogeneous. To demonstrate the generality of context-free
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WEVar, we evaluate it on the independent benchmark datasets containing noncoding vari-

ants of different functionalities and from diverse context. We also remove any duplicated

variants overlapped with training dataset from each independent testing dataset, which can

prevent potential overfitting. To verify the effectiveness of the weight strategy, besides all

scoring methods WEVar integrates, we also include “Unweighted average" as a comparison,

which is the unweighted average of min-max normalized precomputed functional scores from

the integrated methods. In the training phase of WEVar, tuning parameter for L2-norm

is selected using 5-CV. For all methods, AURPC, AUCPR and COR are reported on each

independent testing dataset.

Results of functional prediction between context-free WEVar and integrated

scoring methods

We start to compare the prediction performance between WEVar and its integrated

scoring methods on three datasets, which consist of putatively functional variants based

on statistical association (Figure 3.3). The first dataset, which is produced by Maurano

et al. [86] and processed by Li et al. [84], contains 8,592 significant allelic imbalanced

SNPs of chromatin accessibility (FDR<0.1) as the positive set and 9,678 frequency-matched

background SNPs around nearest transcription start sites of randomly selected genes as the

negative set. We observe that WEVar obtains the largest AUROC, AUPR and COR (0.894,

0.852, 0.644) with substantial improvements over each individual scoring method (Table

3.2). Following WEVar, LINSIGHT, GWAVA_Unmatched and Unweighted average have

an overall comparable performance. However, the COR of LINSIGHT is much lower (0.255)

compared to GWAVA_Unmatched (0.535) and Unweighted average (0.559). Surprisingly,

FATHMM_MKL also has the lowest COR (0.053). Moreover, CADD and DANN, which

utilize the same training set, have comparable but poorest performance among all meth-

ods (CADD: 0.639, 0.610, 0.228; DANN: 0.634, 0.563, 0.236). Interestingly, the prediction

performance of GWAVA_Unmatched, GWAVA_TSS and GWAVA_Region are discordant
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even if they use the same positive training set (GWAVA_Unmatched: 0.875, 0.823, 0.535;

GWAVA_TSS: 0.840, 0.796 0.559; GWAVA_Region: 0.723, 0.691, 0.382).

The second dataset consists of eQTLs in 11 studies across 7 tissues identified from Brown

et al. [85] and processed by Li et al. [84]. The positive set consists of 31,118 significant eQTL

SNPs (FDR<0.1) and the negative set contains 36,540 frequency-matched background SNPs

around nearest TSS of randomly selected genes. We observe that WEVar has the largest

COR and comparable AUROC and AUPR to GWAVA_Unmatched (WEVar: 0.816, 0.781,

0.509; GWAVA_Unmatched: 0.821, 0.781, 0.476) (Table 3.3). Moreover, both WEVar and

GWAVA_Unmatched have clearly advantages over other scoring methods. For example,

they improve nearly 0.04 AUROC and 0.09 AUPR over LINSIGHT, and 0.07 AUROC and

0.07 AUPR over Unweighted average. Particularly, there is substantial improvement of

nearly 0.1 COR to Unweighted average and over 0.3 to LINSIGHT. Notably, the relative

performance of GWAVA_Region drops dramatically and it has the lowest AUROC (0.574).

FATHMM_MKL still has the lowest COR (0.047) followed by CADD and DANN (0.126,

0.1500).

The third dataset collects 19,797 GWAS significant noncoding SNPs from NHGRI-EBI

GWAS Catalog [87] as positive set and twice number of variants in the negative set, which are

randomly sampled from all noncoding variants in 1000 Genomes project with minor allele

frequency (MAF) ≥ 5% [IWscore]. The relative prediction performance of all methods

are similar to the first dataset of allelic imbalanced SNPs. WEVar outperforms all scoring

methods by obtaining the highest AUROC, AUPR, and COR. FATHMM_MKL have the

lowest COR, while CADD and DANN have the lowest AUROC and AUPR (Table 3.4).

In addition to the three datasets comprised of putatively functional noncoding variants

derived from association analyses, we compare the prediction performance between WEVar

and all scoring methods on three datasets consisting of experimentally validated regulatory

variants. The first dataset include 81 experimentally validated regulatory SNPs curated by Li

et al. [84]. We find the trends of prediction performance for all methods still holds similarly
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to allelic imbalanced SNPs and GWAS significant noncoding SNPs, where WEVar obtains

the largest AUROC, AUPR and COR (0.912, 0.865, 0.718) followed by GWAVA_Unmatched

(0.901, 0.828, 0.649) and Unweighted average(0.883, 0.789, 0.617) (Table 3.5).

The other two datasets contain processed causal regulatory variants validated by MPRAs

in two cell lines [92]. The first MPRA dataset includes 665 variants with genomic loci

annotation in Ensembl database as positive set, which are selected out of 842 expression-

modulating variants that show significantly differential allelic expression in GM12878 lym-

phoblastoid cells [88]. The negative set contains 2,772 control variants tested by MPRA

but neither allele showed significant effects on expression (Bonferroni corrected pvalue>0.1).

The second MPRA dataset consists of 339 positive variants that cause significant change

of expression via targeted motif disruption in enhancers in K562 erythrocytic leukemia

cells (pvalues<0.05) [89]. The negative set contains 1,359 control variants without caus-

ing significant change (pvalues>0.1). As a result, WEVar has comparable performance with

top-performed GWAVA_Unmatched in predicting MPRA validated regulatory variants in

GM12878 lymphoblastoid cells (WEVar: 0.674, 0.412, 0.286 vs GWAVA_Unmatched: 0.677,

0.445, 0.317) (Table 3.6). WEVar achieves largest AUROC and AUPR in predicting MPRAs

validated regulatory variants in K562 leukemia cells (Table 3.7).

Clearly, context-free WEVar has the overall best performance on the state-of-the-art in-

dependent testing datasets, which demonstrate its robustness and generality to predict func-

tional noncoding variants across a wide range of context. FollowingWEVar, GWAVA_Unmatched,

Unweighted average and FunSeq2 have superior performance to others. In contrast, CADD,

DANN and FATHMM_MKL perform poorly. Particularly, FATHMM_MKL suffers from

a low COR. Notably, integrating scores in a weighted scheme indeed boosts the prediction

performance as demonstrated by the improvement of WEVar over Unweighted average.
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3.4.3 Context-dependent functional prediction

Overview of context-dependent WEVar

Different from context-free functional prediction, context-dependent functional predic-

tion happens when a context-dependent WEVar is trained and the training and testing

variants are from the same context. We develop “context-dependent" mode for WEVar be-

cause functional variants are usually studied in a cell type/tissue-specific way. The context-

matching between training and testing variants may improve the prediction power. We

demonstrate the prediction performance of context-free WEVar first, followed by a compar-

ison between context-free and context-dependent WEVar to demonstrate the advantage for

WEVar by being context-dependent.

Results of functional prediction between context-dependent WEVar and inte-

grated scoring methods

We use the same benchmark datasets to evaluate context-free functional prediction. To

restrict the training and testing variants from the same context, we randomly split each

dataset into ten-folds with nine-folds as the training set and one-fold as the testing set.

Tuning parameter for L2-norm is selected in the training set using 5-CV with AUROC as

the evaluation metric. A final context-dependent WEVar is fitted using the whole training

set with the selected tuning parameter and makes the functional prediction on the testing

set. AUROC, AUPR and COR are calculated by comparing prediction scores and true labels

of variants in the testing set. We use leave-one-fold-out by selecting nine-folds as training

set and one-fold as testing set ten times. Accordingly, the whole procedure is repeated ten

times and all evaluation metrics are reported as average.

We observe that context-dependent WEVar outperforms all scoring methods by obtain-

ing the highest AUROC, AUPR and COR across all the benchmark datasets (Figure 3.4 and
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Figure 3.5: Prediction performance comparison between context-dependent WEVar and in-
tegrated scoring methods on the CAGI benchmark datasets. In CAGI, 2,873 SNVs with 345
as positive set and 2,528 as negative set. The testing set contains a total of 2,808 SNVs with
348 positive variants and 2,460 negative variants. We further remove SNVs on sex chromo-
some or with missing precomputed scores in both sets. (A) Context-dependent WEVar is
first trained on the training set and evaluated on the testing set. (B) Similarly, we switch
the training and testing set and perform an additional independent evaluation. The figure
presents the AUPR, AUROC, and COR. X axis presents AUPR; Y axis presents AUROC;
bubble size represents COR.

Table 1.2-1.7). Moreover, we observe similar trends between context-dependent and context-

free functional prediction, where WEVar, GWAVA_Unmatched and Unweighted average are

the top-performed methods, while CADD, DANN and FATHMM_MKL have overall poor

performance.

To further objectively gauge the performance of context-dependent WEVar, we utilize

the training and testing variant set in the first part of challenge of Critical Assessment of

Genome Interpretation eQTL challenge (CAGI) [93] derived from MPRA validated regula-

tory variants from GM12878 lymphoblastoid cells [88]. The variants selected by CAGI show

significant level of transcriptional activity for either of two alleles. Specifically, the level of

transcriptional activity is measured by differential abundance of transcripts versus plasmid

input. Based on the FDR cutoff 0.01, a binary label is generated to indicate whether or not

at least one of the two alleles of the variant exhibits a significantly high transcriptional activ-

ity (i.e. labeling 1 if FDR<0.01, otherwise, 0). As a result, the training set consists a total
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of 2,873 SNVs with 345 as positive set and 2,528 as negative set. The testing set contains

a total of 2,808 SNVs with 348 positive variants and 2,460 negative variants. We further

remove SNVs on sex chromosome or with missing precomputed scores in both sets. Besides

following the original training and testing procedure, we further carry out an additional

comparison by switching the training and testing set.

Consistent with our previous findings, context-dependent WEVar has superior perfor-

mance to other scoring methods in both comparisons by achieving the highest AUROC,

AUPR and COR, followed by GWAVA_Unmatched and Unweighted average (Figure 3.5,

Table 3.9 3.8). Moreover, CADD and DANN have the overall poorest performance. The

additional independent evaluation further strengthens the advantage of context-dependent

WEVar in predicting functional noncoding variants by benefiting from matched context in

training and testing set.

Besides improving the functional prediction, another important characteristic of WE-

Var is that it can identify the informative predictors that play the major contribution to

the functional prediction among all integrated scoring methods. Consequently, we find that

sets of informative predictors are different across benchmark datasets (Figure 3.6, Table

3.10). In most cases, WEVar identifies a parsimonious set of scoring methods that dominate

the functional prediction especially FunSeq2 and GWAVA_Unmatched are two ubiquitous

major contributors. Moreover, GWAVA_TSS is an additional major contributor for Allele

imbalanced SNPs, Experimentally validated regulatory SNPs and integrated causal regula-

tory variants used by context-free WEVar. Regarding MPRA validated regulatory variants

in GM12878 lymphoblastoid cells, Eigen is the additional method that has a major con-

tribution. Similarly, GWAVA_Region and Eigen are two additional major contributors for

two comparisons for CAGI training and testing variants. However, for GWAS noncoding

SNPs and MPRA validated regulatory variants in K562 leukemia cells, there is a ubiquitous

solution, where the contributions of all methods are relative uniform. These findings demon-

strate that considering context-specificity in WEVar leads to different weight estimates and
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Figure 3.6: Weight estimation for all benchmark datasets. WEVar identifies a parsimo-
nious set of scoring methods that play major contribution to functional prediction for most
datasets. The only exceptions are GWAS noncoding SNPs and MPRA variants in K562
leukemia cells, where there is a universal solution.

result in different sets of informative predictors. These observations also suggest that it is

important to obtain an optimal weights when integrating different scoring methods, as the

non-uniform weights estimated by WEVar lead improved functional prediction across bench-

mark datasets. Additionally, this point has been validated by both simulation and real data

applications that WEVar outperforms the Unweighted average.
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Figure 3.7: Prediction performance comparison between context-free WEVar and context-
dependent WEVar across six independent testing datasets. X axis presents AUPR; Y axis
presents AUROC; bubble size represents COR; solid bubble represents context-dependent
WEVar; transparent bubble represents context-free WEVar.

Results of comparison between context-free and context-dependent functional

prediction

We hypothesize that considering context-specificity and context-matching context be-

tween training and testing variants in “context-dependent" WEVar will likely improve the

predictive power for functional prediction. To validate this hypothesis, we directly compare

the results of functional predictions between context-free and context-dependent WEVar on

the aforementioned state-of-the-art benchmarking datasets (Figure 3.7, Table 3.2-3.7).

For MPRA validated variants in GM12878 lymphoblastoid cells, context-dependent WE-

Var significantly outperforms context-free WEVar with large performance gain in around 5%

AUPR and 8% COR but modest gain in AUROC. Similarly, context-dependent WEVar also

achieves a large improvement by increasing about 4% AUPR and 4% COR but slightly im-

provement of AUROC for MPRA validated variants in K562 leukemia cells. Moreover, the

improvement of context-dependent WEVar is evident demonstrated by nearly 5% and 3%

increase in COR but slightly increase in AUROC and AUPR for both Fine mapping eQTLs
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and Allele imbalanced SNPs. In addition, context-dependent WEVar has a modest improve-

ment of all metrics for GWAS noncoding SNPs. However, there is a lack of improvement

on Experimentally validated regulatory SNPs, which could be explained by the small sam-

ple size of training set. This observation indicates that a large training set is necessary to

improve the predictive power for context-dependent functional prediction. Overall, the com-

parisons between context-dependent and context-free WEVar validate the hypothesize that

considering context-specificity and context-matching will improve the functional prediction.

However, this improvement depends on the availability of enough sample size for training a

robust context-dependent WEVar.

3.4.4 Prioritization of causal regulatory variants by WEVar on benchmarking

datasets

To demonstrate the application of WEVar in studying complex traits, we apply genome-

wide functional scores of all noncoding variants in 1000 Genomes Project precomputed by

context-free WEVar for fine-mapping analysis in risk loci. The diverse benchmarking datasets

are generated from different experiments and study different traits, which are able to test

the robustness of WEVar in prioritizing causal regulatory variants in risk loci.

Noncoding variants modulating gene expression

We evaluate WEVar on reported “expression-modulating variants” (emVars), which have

been validated to show differential gene expression between alleles, from the MPRA study in

GM12878 lymphoblastoid cells [88]. To assess whether these emVars with a strong linkage to

GWAS SNPs can be prioritized by WEVar score, we create an extended LD block (r2 >0.2)

utilizing ldproxy [ldlink] to extract variants from all reference populations within the LD

block, which are further assigned WEVar score.

Consequently, WEVar is able to prioritize emVars in exampled LD blocks (Figure 3.8

and Table 3.11). For example, emVar rs4790718 (chr17:4870893) scores higher than three
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LD-linked GWAS SNPs rs1060431 (chr17:4840868, pvalue=2x10−26), rs6065 (chr17:4836381,

pvalue=2x10−12) and rs571461910 (chr17:4869143, pvalue=3.98x10−9), which are mapped to

SPAG7 and associated with Platelet counts. Similarly, emVar rs922483 (chr8:11351912) is

successfully prioritized by the highest score among all LD-linked variants including GWAS

SNP rs2736340 (chr8:11343973, pvalue=6.03x10−20) associated with Systemic lupus erythe-

matosus. Moreover, emVar rs56316188 (chr8:59323811) scores higher than GWAS SNP

rs2859998 (chr8:59324162, pvalue=1x10−7), which is mapped to UBXN2B and associated

with narcolepsy with cataplexy. Additionally, emVar rs306587 (chr10:30722908) is pri-

oritized among LD-linked variants including one GWAS SNP rs1042058 (chr10:30728101,

pvalue=6x10−11). Overall, these examples demonstrate that WEVar can successfully pri-

oritize experimentally validated regulatory variants that modulate gene expression among

LD-linked putatively causal GWAS SNPs, indicating that WEVar can potentially aid the

fine mapping analysis.

Causal regulatory variants associated with Schizophrenia

Schizophrenia, typically diagnosed in the late teens years to early thirties, is a mental

disorder characterized by disruptions in thought processes, perceptions, emotional respon-

siveness, and social interactions. Schizophrenia is one of the top 15 leading causes of dis-

ability worldwide [94, 95] and estimated international prevalence of schizophrenia among

non-institutionalized persons is 0.33% to 0.75% [96]. Although GWAS has identified numer-

ous noncoding schizophrenia-associated variants hypothesized to affect gene transcription,

the causal regulatory variants are still elusive. To experimentally evaluate the regulatory

potential of these GWAS SNPs and LD-linked variants, a recent study [97] screens several

schizophrenia loci from a large GWAS cohort-Schizophrenia Working Group of the Psy-

chiatric Genomics Consortium, using MPRA experiments in both K562 leukemia cells and

SK-SY5Y neuroblastoma cells.
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Figure 3.8: WEVar can prioritize noncoding variants modulating gene expression. The non-
coding variants are “expression-modulating variants” (emVars) identified from MPRA study
in GM12878 lymphoblastoid cells. We create an extended LD block (r2 >0.2) to include em-
Vars and LD-linked GWAS SNPs. As a result, rs4790718 (chr17:4870893) scores higher
than three LD-linked GWAS SNPs rs1060431 (chr17:4840868, pvalue=2x10−26), rs6065
(chr17:4836381, pvalue=2x10−12) and rs571461910 (chr17:4869143, pvalue=3.98x10−9),
which are mapped to SPAG7 and associated with Platelet counts. Similarly, rs922483
(chr8:11351912) is successfully prioritized by the highest score among all variants includ-
ing GWAS SNP rs2736340 (chr8:11343973, pvalue=6.03x10−20) associated with Systemic
lupus erythematosus. Moreover, rs56316188 (chr8:59323811) scores higher than GWAS SNP
rs2859998 (chr8:59324162, pvalue=1x10−7), which is mapped to UBXN2B and associated
with narcolepsy with cataplexy. Additionally, rs306587 (chr10:30722908) is prioritized among
LD-linked variants including one GWAS SNP rs1042058 (chr10:30728101, pvalue=6x10−11).
emVars are marked purple. LD-linked GWAS SNPs are marked red.

We apply context-free WEVar functional scores to discover causal regulatory variants

associated with Schizophrenia. Briefly, we define “causal regulatory variants" as variants with

significant differential expression between two alleles with a FDR cutoff 0.2. For each causal

regulatory variant, we extend the risk locus by considering all variants in LD (r2 >0.2). We

further obtain precomputed context-free WEVar score for all variants in the risk locus. As

a result, WEVar successfully prioritizes causal regulatory variants in the risk loci by assign-

ing them the highest WEVar score (Figure 3.9 and Table 3.12). For example, rs34877519
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(chr3:2554612) is successfully prioritized by obtaining the score higher than any variant

in the risk locus including GWAS SNPs rs11708578 (chr3:2515894, pvalue=7.08x10−11)

and rs17194490 (chr3:2547786, pvalue=1.00x10−11); rs7927437 (chr11:123395987) receives

the highest score among all variants in the risk locus including GWAS SNP rs77502336

(chr11:123394636, pvalue=3.98x10−10); rs7779548 (chr7:137074540) scores higher than any

variant in the risk locus including GWAS SNP rs3735025 (chr7:7:137074844, pvalue=3.98x10−12);

rs6498914 (chr16:63699425) obtains the highest score among all variants in the risk locus in-

cluding GWAS SNP rs2018916 (chr16:63700508, pvalue=7.08x10−9). Overall, these findings

demonstrates that causal regulatory variants are not necessary the GWAS lead SNPs but the

LD-linked variants. In addition, WEVar is a powerful tool in post-GWAS analysis to pin-

point the causal regulatory variants in the risk loci, which cannot be identified by a standard

GWAS approach.

Causal regulatory variants associated with multiple traits and validated by mul-

tiple platforms

We benchmark WEVar on state-of-the-art datasets, which are generated from multiple

studies for different traits such as Cleft lip/palate, heart, hair color and breast cancer and

consists of regulatory variants experimentally validated by different functional assays. Simi-

lar to previous analyses, we define the risk locus by considering all variants in LD (r2 >0.2)

for each regulatory variant. Consequently, WEVar is able to prioritize regulatory variants in

each risk locus (Figure 3.10 and Table 3.13).

Specifically, rs6801957 (chr3:38767315, pvalue=9x10−9), located in intronic region of

SCN10A, has been validated by BAC reporter system and 4C-seq to modulate cardiac

SCN5A expression [98]. Consistent with the experimental validation, WEVar assigns the

highest score to rs6801957 in the risk locus, which also includes multiple GWAS SNPs

rs6795970 (chr3:38766675, pvalue=1x10−58), rs7433306 (chr3:38770639, pvalue=1x10−14),

rs6790396 (chr3:38771925, pvalue=2x10−39), rs6599255 (chr3:38796415, pvalue=2x10−10)
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Figure 3.9: WEVar can prioritize causal regulatory variants associated with Schizophre-
nia. causal regulatory variants are defined as variants with significant differential expression
between two alleles (FDR<0.2) in MPRA experiments in both K562 leukemia cells and
SK-SY5Y neuroblastoma cells. For each causal regulatory variant, we extend the risk lo-
cus by considering all variants in LD (r2 >0.2). As a result, rs34877519 (chr3:2554612)
is successfully prioritized by obtaining the score higher than any variant in the risk lo-
cus including GWAS SNPs rs11708578 (chr3:2515894, pvalue=7.08x10−11) and rs17194490
(chr3:2547786, pvalue=1.00x10−11); rs7927437 (chr11:123395987) receives the highest score
among all variants in the risk locus including GWAS SNP rs77502336 (chr11:123394636,
pvalue=3.98x10−10); rs7779548 (chr7:137074540) scores higher than any variant in the risk
locus including GWAS SNP rs3735025 (chr7:7:137074844, pvalue=3.98x10−12); rs6498914
(chr16:63699425) achieves the highest score among all variants in the risk locus including
GWAS SNP rs2018916 (chr16:63700508, pvalue=7.08x10−9). The causal regulatory variants
validated by MPRA are marked purple. LD-linked GWAS SNPs are marked red.

rs6798015 (chr3:38798836, pvalue=2x10−12) and rs10428132 (chr3:38777554, pvalue=1x10−68).

We further evaluate another variant rs227727 (chr17:54776955, pvalue=7.3x10−8), which is

mapped to 17q22 NOG locus and found associated with Cleft lip/palate. The NSCL/P-

associated allele of rs227727 significantly decreases the nearby enhancer activity compared

to the unassociated allele, which is experimentally validated by quantitative reporter assays

transfected with a luciferase reporter vector [100]. Similarly, rs227727 is prioritized with
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Figure 3.10: WEVar prioritizes causal regulatory variants associated with multiple traits and
validated by multiple platforms. We benchmark WEVar on state-of-the-art datasets, which
are generated from different studies and consists of regulatory variants experimentally vali-
dated by different functional assays. We define the risk locus by considering all variants in LD
(r2 >0.2) for each validated causal regulatory variant. As a result, rs6801957 (chr3:38767315,
pvalue=9x10−9), which is validated to modulate cardiac SCN5A expression [98], has been as-
signed the highest score in the risk locus, which also includes multiple GWAS SNPs rs6795970
(chr3:38766675, pvalue=1x10−58), rs7433306 (chr3:38770639, pvalue=1x10−14), rs6790396
(chr3:38771925, pvalue=2x10−39), rs6599255 (chr3:38796415, pvalue=2x10−10) rs6798015
(chr3:38798836, pvalue=2x10−12) and rs10428132 (chr3:38777554, pvalue=1x10−68). The
NSCL/P-associated allele of rs227727 (chr17:54776955, pvalue=7.3x10−8, which is mapped
to 17q22 NOG locus and found associated with Cleft lip/palate, significantly decreases
the nearby enhancer activity compared to the unassociated allele. Similarly, rs227727 is
prioritized by obtaining the highest score in the risk locus. rs12821256 (chr12:89328335,
pvalue=4x10−30) is located in a regulatory enhancer in the upstream of lncRNA LINC02458,
which has been experimentally validated to alter the binding site of lymphoid enhancer-
binding factor1 (LEF1) transcription factor. Again, rs12821256 scores highest in the risk
locus, which supports the experimental finding. A breast cancer risk SNP rs11055880
(chr12:14410734), which resides in an intergenetic enhance, has been validated by CRISPR-
Cas9 approach [99] to have endogenous regulatory activities on expression of ATF7IP. Con-
sistently, rs11055880 obtains the highest score among all variants in the risk locus. The
studied variant is marked purple, and the LD-linked variants are marked red.

the highest score in the risk locus. The next evaluated variant rs12821256 (chr12:89328335,

pvalue=4x10−30) is located in a regulatory enhancer in the upstream of lncRNA LINC02458.

71



It has been experimentally validated that rs12821256 is associated with hair color by alter-

ing the binding site of lymphoid enhancer-binding factor1 (LEF1) transcription factor. The

altered binding site of LEF will reduce LEF responsiveness and enhancer activity in cultured

human keratinocytes [101]. Again, rs12821256 scores highest in the risk locus, which is sup-

ported by the experimental finding. The last investigated variant is a breast cancer risk

SNP rs11055880 (chr12:14410734), which resides in an intergenetic enhancer and validated

by CRISPR-Cas9 approach [99] to have endogenous regulatory activities on expression of

ATF7IP. Consistently, rs11055880 obtains the highest score among all variants in the risk

locus.

Overall, the consistency between experimental validations and prioritization results

based on WEVar score demonstrates the capability and robustness of WEVar to priori-

tize functional noncoding variants in a LD-linked risk locus. The robustness is reflected by

the successful prioritization of heterogeneous variants, which are located in various genomic

regions, associated with different traits, and validated by different functional assays.

3.5 Discussion

In this work, we develop a statistical learning framework “WEVar" to predict functional

noncoding variants by integrating representative scoring methods in an optimized weighted

scheme. The development of WEVar is motivated by the existing gap of strong discordant

performance of existing methods on state-of-the-art benchmark datasets, as shown by the

inconsistent prediction performance of these methods on the integrated causal regulatory

SNPs (Figure 3.2A).

Overall, the advantages of WEVar lies on several aspects. First, existing approaches,

either supervised or unsupervised, are developed using thousands of functional annotations

derived from multi-omics data deposited in large national consortia such as ENCODE and

Roadmap Epigenomics. Different from existing methods, WEVar is developed on top of
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these methods by directly utilizing genome-wide precomputed functional scores, which col-

lapse multi-dimensional functional annotations into a single score. Therefore, without losing

information of functional annotations, direct application of the functional scores of existing

approaches significantly reduces the dimensionality of feature space in model development

of WEVar. Second, WEVar will identify informative predictors in an optimized weighted

scheme and thus can leverage the advantages of different approaches, which likely lead to

improved prediction performance compared to each integrated individual scoring method.

Third, WEVar offers two modes: “context-free” and “context-dependent". Each mode has its

favorite scenario. We adopt a comprehensive training set [84], which integrates curated causal

SNPs, located in different genomic regions, collected from different sources and associated

with different traits to develop context-free WEVar. The large sample size, diverse context

and genomic locations as well as heterogeneous trait association of these training variants

make context-free WEVar powerful to predict functional noncoding variants with unknown

or heterogeneous context. In contrast, training variant set of context-dependent WEVar is

derived from the same context i.e. tissue-, cell type-, disease-specific. The context-specificity

of training set makes context-dependent WEVar prefer the scenario when noncoding variants

in training and testing set are from the same context, which may lead to improvement of

functional prediction.

We perform a real data-based simulation study by considering the inherent correlations

of precomputed functional scores among integrated scoring methods. The results demon-

strate that WEVar outperforms individual scoring method and can estimate the contributions

of integrated scoring methods accurately, which may explain the improved performance of

WEVar. Next, we evaluate context-free functional prediction and context-dependent func-

tional prediction respectively on state-of-the-art benchmark datasets, which include three

variant sets containing putatively causal regulatory variants derived from statistical asso-

ciations (i.e. Allelic imbalanced SNPs, Fine mapping eQTLs, GWAS significant noncoding
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SNPs), and three datasets consisting of experimentally validated regulatory variants (i.e. Ex-

perimentally validated regulatory SNPs, MPRA validated variants in GM12878 lymphoblas-

toid cells, MPRA validated variants in K562 leukemia cells). Besides evaluating context-

dependent WEVar in each benchmark dataset by dividing it into training and testing set, we

adapt an independent training and testing set from CAGI. Consequently, both context-free

and context-dependent WEVar achieve an overall improvement of functional prediction com-

pared to integrated scoring methods across all datasets. Specifically, WEVar outperforms

Unweighted average, indicating the benefit of exploiting the optimized contributions of indi-

vidual scoring method. GWAVA_Unmatched and Unweighted average are top-performed.

In contrast, DANN, CADD and FATHMM_MKL always perform poorly. By comparing

context-free and context-dependent WEVar on the same benchmark datasets, we find that

context-dependent WEVar improve the functional prediction compared to context-free WE-

Var except for Experimentally validated regulatory SNPs possibly to the small sample size

of training set. This observation indicates that being context-dependent improves the func-

tional prediction and a large sample size is needed for make this improvement.

Another important characteristic of WEVar is that it can identify predictors that play

major contribution to the functional prediction. As a result, major contributors are differ-

ent across benchmark datasets. In most cases, WEVar identifies a parsimonious set of scoring

methods that dominate the functional prediction especially FunSeq2 and GWAVA_Unmatched

are two ubiquitous major contributors. However, for GWAS noncoding SNPs and MPRA

validated regulatory variants in K562 leukemia cells, there is a ubiquitous solution, where

the contributions of all methods are relative uniform. These findings demonstrate that both

estimated weights and major contributors vary from context to context. Thus, it is impor-

tant to obtain an optimal weights when integrating different scoring methods, as the non-

uniform weights estimated by WEVar lead improved functional prediction across benchmark

datasets. Additionally, this point is validated by both simulation and real data applications

that WEVar outperforms the unweighted average of functional scores.
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To demonstrate the application of WEVar in complex traits, we apply WEVar in the fine

mapping analysis to evaluate whether it can successfully prioritize causal regulatory variants

among LD-linked noncoding variants. By using precomputed WEVar score directly, variants

assigned the highest score in a risk locus is considered to be prioritized. By using three

benchmarking datasets of experimentally validated regulatory variants, we find that WEVar

can prioritize regulatory variants modulating gene expression in GM12878 lymphoblastoid

cells, associated with Schizophrenia and multiple traits such as Cleft lip/palate, heart, hair

color and breast cancer. These findings demonstrate that WEVar can prioritize functional

noncoding variants in risk loci and therefore alleviate the limitation of current GWAS, where

the true causal SNPs may be masked by LD.

WEVar is a flexible approach, which can be further extended and improved by both

integrated scoring methods and training variant set. In the current implementation, we

include several representative scoring methods that are most popular in this field. With

the rapid development post-GWAS analysis, there are other powerful methods developed or

developing can be integrated into WEVar to further improve the prediction performance.

The flexibility of WEVar is also reflected on the training variant set. With the affordability

and popularity of functional assays such as massively parallel reporter assays (MPRAs) and

clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing, more

experimentally validated functional variants can be discovered and integrated into WEVar

to improve the predictive power.

3.6 Appendix

3.6.1 Supplementary tables
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Table 3.1: Download link for precomputed scores from individual scoring methods

GWAVA ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/v1.0/
CADD http://cadd.gs.washington.edu/download
DANN https://cbcl.ics.uci.edu/public_data/DANN/
FATHMM-MKL https://github.com/HAShihab/fathmm-MKL
FunSeq2 http://funseq2.gersteinlab.org/downloads
Eigen https://xioniti01.u.hpc.mssm.edu/v1.0/
LINSIGHT https://github.com/CshlSiepelLab/LINSIGHT

Table 3.2: Allelic imbalanced SNPs

Context-free Context-dependent

Functional Score AUROC AUPR COR AUROC AUPR COR

Eigen 0.754 0.731 0.410 0.754 0.732 0.410

CADD 0.639 0.610 0.228 0.639 0.611 0.228

DANN 0.634 0.563 0.236 0.634 0.564 0.236

FATHMM_MKL 0.752 0.690 0.053 0.752 0.692 0.053

FunSeq2 0.827 0.788 0.467 0.827 0.788 0.467

GWAVA_Region 0.723 0.691 0.382 0.723 0.691 0.382

GWAVA_TSS 0.840 0.796 0.559 0.840 0.796 0.559

GWAVA_Unmatched 0.875 0.823 0.535 0.875 0.824 0.535

LINSIGHT 0.883 0.823 0.255 0.883 0.824 0.257

Unweighted average 0.857 0.825 0.559 0.857 0.826 0.559

WEVar 0.894 0.852 0.644 0.902 0.870 0.698
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Table 3.3: Fine mapping eQTLs
Context-free Context-dependent

Functional Score AUROC AUPR COR AUROC AUPR COR

Eigen 0.652 0.614 0.256 0.652 0.614 0.256
CADD 0.581 0.533 0.126 0.581 0.533 0.126
DANN 0.586 0.511 0.150 0.586 0.511 0.150
FATHMM_MKL 0.662 0.586 0.047 0.662 0.586 0.047
FunSeq2 0.737 0.690 0.348 0.737 0.690 0.348
GWAVA_Region 0.574 0.554 0.142 0.574 0.554 0.142
GWAVA_TSS 0.691 0.672 0.341 0.691 0.672 0.341
GWAVA_Unmatched 0.821 0.784 0.476 0.821 0.784 0.476
LINSIGHT 0.780 0.693 0.146 0.780 0.694 0.146
Unweighted average 0.750 0.715 0.412 0.748 0.712 0.408
WEVar 0.816 0.781 0.509 0.829 0.792 0.539

Table 3.4: GWAS noncoding SNPs
Context-free Context-dependent

Functional Score AUROC AUPR COR AUROC AUPR COR

Eigen 0.576 0.367 0.119 0.576 0.367 0.119
CADD 0.528 0.330 0.052 0.528 0.330 0.052
DANN 0.520 0.309 0.034 0.520 0.310 0.034
FATHMM_MKL 0.570 0.350 0.015 0.570 0.351 0.015
FunSeq2 0.582 0.376 0.132 0.582 0.377 0.132
GWAVA_Region 0.554 0.352 0.091 0.554 0.353 0.091
GWAVA_TSS 0.576 0.358 0.117 0.576 0.359 0.117
GWAVA_Unmatched 0.583 0.362 0.109 0.583 0.362 0.109
LINSIGHT 0.575 0.364 0.064 0.575 0.365 0.064
Unweighted average 0.586 0.373 0.137 0.587 0.374 0.138
WEVar 0.596 0.376 0.142 0.607 0.391 0.168
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Table 3.5: Experimental validated regulatory SNPs
Context-free Context-dependent

Functional Score AUROC AUPR COR AUROC AUPR COR

Eigen 0.801 0.686 0.501 0.816 0.722 0.502
CADD 0.739 0.539 0.288 0.757 0.571 0.323
DANN 0.703 0.470 0.329 0.694 0.505 0.305
FATHMM_MKL 0.758 0.584 0.347 0.776 0.639 0.364
FunSeq2 0.820 0.744 0.567 0.823 0.739 0.567
GWAVA_Region 0.752 0.676 0.464 0.748 0.678 0.430
GWAVA_TSS 0.862 0.803 0.613 0.856 0.778 0.599
GWAVA_Unmatched 0.901 0.828 0.649 0.896 0.832 0.663
LINSIGHT 0.820 0.647 0.308 0.825 0.671 0.318
Unweighted average 0.883 0.789 0.617 0.881 0.796 0.614
WEVar 0.912 0.865 0.718 0.902 0.861 0.705

Table 3.6: MPRA variants in GM12878 lymphoblastoid
Context-free Context-dependent

Functional Score AUROC AUPR COR AUROC AUPR COR

Eigen 0.601 0.364 0.228 0.602 0.368 0.228
CADD 0.567 0.240 0.087 0.567 0.249 0.087
DANN 0.544 0.254 0.060 0.546 0.256 0.060
FATHMM_MKL 0.568 0.272 0.022 0.569 0.274 0.112
FunSeq2 0.649 0.390 0.275 0.652 0.395 0.278
GWAVA_Region 0.601 0.321 0.169 0.600 0.325 0.168
GWAVA_TSS 0.635 0.292 0.190 0.635 0.295 0.190
GWAVA_Unmatched 0.677 0.445 0.317 0.676 0.451 0.316
LINSIGHT 0.662 0.331 0.144 0.663 0.335 0.144
Unweighted average 0.646 0.404 0.280 0.642 0.396 0.270
WEVar 0.674 0.412 0.286 0.685 0.459 0.363
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Table 3.7: MPRA variants in K562 leukemia
Context-free Context dependent

Functional Score AUROC AUPR COR AUROC AUPR COR

Eigen 0.579 0.251 0.109 0.582 0.263 0.111
CADD 0.540 0.211 0.047 0.539 0.218 0.047
DANN 0.545 0.216 0.068 0.548 0.225 0.070
FATHMM_MKL 0.553 0.258 0.065 0.554 0.265 0.067
FunSeq2 0.615 0.278 0.165 0.617 0.287 0.165
GWAVA_Region 0.577 0.229 0.100 0.576 0.242 0.100
GWAVA_TSS 0.597 0.243 0.126 0.598 0.249 0.128
GWAVA_Unmatched 0.608 0.267 0.150 0.608 0.278 0.152
LINSIGHT 0.565 0.224 0.066 0.571 0.233 0.069
Unweighted average 0.591 0.246 0.125 0.593 0.261 0.128
WEVar 0.622 0.276 0.149 0.635 0.315 0.185

Table 3.8: CAGI (A)

Functional Score AUROC AUPR COR

Eigen 0.5794 0.2279 0.1582

CADD 0.5453 0.1469 0.0579

DANN 0.5416 0.1541 0.0428

FATHMM_MKL 0.5692 0.1898 0.1367

FunSeq2 0.6113 0.2177 0.1696

GWAVA_Region 0.6042 0.2063 0.1436

GWAVA_TSS 0.6071 0.1622 0.1085

GWAVA_Unmatched 0.6398 0.2567 0.1908

LINSIGHT 0.6215 0.2119 0.1507

Unweighted average 0.6133 0.2493 0.1927

WEVar 0.6454 0.2761 0.2507
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Table 3.9: CAGI (B)

Functional Score AUROC AUPR COR

Eigen 0.5452 0.2278 0.1427

CADD 0.5391 0.1432 0.0441

DANN 0.5318 0.1449 0.0396

FATHMM_MKL 0.5425 0.1542 0.0738

FunSeq2 0.6142 0.2290 0.1790

GWAVA_Region 0.6191 0.2223 0.1627

GWAVA_TSS 0.6105 0.1790 0.1287

GWAVA_Unmatched 0.6348 0.3012 0.2076

LINSIGHT 0.6143 0.1776 0.0877

Unweighted average 0.6005 0.2403 0.1835

WEVar 0.6364 0.3129 0.2786
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Table 3.11: WEVar scores for emVars and LD-linked GWAS SNPs
emVars LD-linked GWAS SNPs

Variant ID WEVar score Variant ID WEVar score Variant ID WEVar score Variant ID WEVar score

rs4790718 0.9277 rs1060431 0.8191 rs6065 0.7259 rs571461910 0.6301

rs922483 0.9737 rs2736340 0.6289

rs56316188 0.9096 rs2859998 0.8530

rs306587 0.9349 rs1042058 0.7411

Table 3.12: WEVar scores for causal regulatory variants and LD-linked GWAS SNPs asso-

ciated with Schizophrenia

Regulatory variants LD-linked GWAS SNPs

Variant ID WEVar score Variant ID WEVar score Variant ID WEVar score

rs34877519 0.7312 rs17194490 0.4319 rs11708578 0.3068

rs7927437 0.8873 rs77502336 0.7125

rs7779548 0.9416 rs3735025 0.9255

rs6498914 0.5364 rs2018916 0.4039

Table 3.13: WEVar scores for regulatory variants associated with multiple traits and LD-

linked GWAS SNPs
Regulatory variants LD-linked GWAS SNPs

Variant ID WEVar score Variant ID WEVar score Variant ID WEVar score Variant ID WEVar score

rs6801957 0.8879 rs6795970 0.7892 rs7433306 0.6514 rs6790396 0.6444

rs6599255 0.5627 rs6798015 0.4522 rs10428132 0.3957

rs227727 0.8643

rs12821256 0.8426

rs11055880 0.8825
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Chapter 4

DeepMFIVar: a deep multimodal learning framework for functional interpretation of

genetic variants

4.1 Introduction

Identifying functional variants underlying disease risk is currently limited by the chal-

lenge of interpreting the functional consequences of genetic variants. In the past ten years,

thousands of loci associated with the risk of human disease have been identified by Genome-

wide association studies (GWAS) [102]. Moreover, quantitative trait locus (QTL) analysis

have uncovered “xQTLs” [60] affecting molecular phenotypes such as eQTLs [61] for gene

expression; mQTLs [62] for DNA methylation; aseQTLs [63] for allele-specific expression;

dsQTLs [64] for DNase I sensitivity and sQTLs [65] for alternative RNA splicing. However,

these studies are limited by the sample size and linkage disequilibrium [103, 104, 105], which

will mask true causal variants from the neural ones. Thus, integrating biological meaning

to this GWAS studies plays an important role in increasing the resolution of disease risk

associated region and interpreting GWAS results [106, 107, 108, 109]. Recent studies in

developing computational models that predict TF binding, chromatin accessibility, and hi-

stone modification from the genome sequence in the near region provide novel frameworks

for understanding the functional consequences of non-coding genetic variants. Most of these

models leverage advances in deep learning to predict the functional consequences by tak-

ing the DNA sequence context. These computation approaches only rely on the reference

genome and fail to model the contribution of genetic variance. However, the genetic varia-

tion and confounding factors (e.g., gender age) driving the epigenetic signal are essential for

molecular phenotypes (See Fig. 4.1), and introducing genetics and confounding factors into
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Figure 4.1: Histone modification (H3K9ac) from epigenetic assay (ChIP-seq) across multiple
individuals and genomic regions.

the computational model have the potential to improve prediction accuracy and increase the

power of variant impact predictions.

Here we introduce a deep multimodal learning framework for functional interpretation of

genetic variants (DeepMFIVar). Our framework is designed by (i) building a novel deep mul-

timodal learning framework by taking both DNA sequence context and patient-level clinical

and pathologic phenotypic information, (ii) performing model training on multiple epigenetic

experiments, (iii) integrating whole genome sequencing to create a personal genome sequence

for each individual, (iv) modeling quantitative variation across different individuals in the

epigenetic signals.
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4.2 Materials

4.2.1 Epigenomic datasets from human frontal cortex for aging and Alzheimer’s

disease

Epigenomic datasets comprise profiling assay experiments for DNA methylation for 202

individuals and ChIP-seq experiments for histone modifications (H3K9ac) for 196 individuals.

All individuals are part of the Religious Order Study (ROS) or the Memory and Aging

Project (MAP), two cohort studies of aging that includes brain donation at the time of

death. The clinical and pathologic phenotypic data of these individuals are also available

from “ROS-MAP” studies. The original data is downloaded from the Rush Alzheimer’s

Disease Center website (https://www.radc.rush.edu/). DNA methylation dataset consists

of methylation ratio at 415, 848 discrete CpG dinucleotides. These methylation profiles are

generated by the Illumina HumanMethylation450 beadset and a sample of the dorsolateral

prefrontal cortex obtained from each individual[110]. Histone modification (H3K9ac) dataset

comprises 2, 269, 524 H3K9ac regions. Peaks are detected for each sample individually by

MACS2 using the broad peak option. We employ a series of ChIP-seq quality measures to

remove low-quality samples, which results in 669 individual samples[110]. A combination of

different filters are applied to remove low-quality H3K9ac domains, i.e., i) the ChIP counts

are less than control counts, ii) P-value of Poisson test are less than 0.05. After quality

control, 141, 807 out of 2, 269, 524 remains.

4.2.2 Whole Genome Sequencing (WGS)

Individuals’ brain tissue DNA are acquired from the ROSMAP study. We download the

individual genotype calls in genomic VCF files. The reference genome sequence is modified

to generate the personal genome sequence based on variant calling files. We only consider

the single nucleotide polymorphisms and ignore the insertion and deletion.
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4.3 Methods

4.3.1 Constructing personal genome and clinical outcome as input

We construct the personal genome sequence using the GRCH37 reference genome with

sites modified according to the biallelic SNPs in the variant calling file (VCF) of the ROSMAP

study. For the homozygous alternate sites, we directly replace the reference allele with the

alternative allele. The heterozygous sites are represented by the IUPAC nucleotide codes.

For example, an A/G heterozygote is coded by the characters ’R’. Only biallelic SNPs are

considered, so we have six additional characters. Each homozygous site is one-hot encoded

into 4 × 1 matrix, with rows corresponding to A, G, C, and T. Heterozygous sites are encoded

with a value of 0.5 in the two corresponding rows.

We extract the genome sequence with a fixed distance from the CpGs site in the methy-

lation island and from the center of the H3K9ac domain for DNA methylation and histone

modification (H3K9ac), respectively. The extracted genome sequence are matched with the

methylation ratio, and histone modification reads. We use 1000 bp and 2000 bp sequence

length to extract regions from the personal genomes for DNA methylation and histone mod-

ification, respectively. We collect seven clinical and pathologic phenotypic features for each

individual. The detailed information is described in Table 4.2. We further apply minimax-

normalization on these phenotypic features.

4.3.2 DeepMFIVar

DeepMFIVar model consists of two major components: 1) Modality Embedding Sub-

networks that take input features and output a rich modality embedding. 2) Tensor Fusion

Layer explicitly that models the unimodal and bimodal interactions by using a Cartesian

product from modality embeddings.

The personal genomics subnetwork learns a rich representation of the personal DNA

sequence (Fig 4.2). To formally define our personal genomic subnetwork Ug , let x =
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Figure 4.2: Graphical illustration of the DeepMFIVar model

{x1, x2, x3, · · · , xm}, where m is the length of DNA sequence, be the one-hot encoding rep-

resentation of personal genomics.

A convolution layer acts as a motif scanner across the input matrix to produce a feature

map Xt for each convolution kernel. A BLSTM network[111] with a forget gate [112] is

employed to learn the orientation and spatial distances dependent motif representations,
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hx = {h1, h2, h3, · · · , hTx} according to the following LSTM formulation.



i

f

o

m


=



sigmoid

sigmoid

sigmoid

tanh


Wgd

XtWgc

ht−1

 (4.1)

ct = f � ct−1 + i�m (4.2)

ht = o⊗ tanh(ct) (4.3)

hx = [h1;h2;h3; · · · ;hTx ] (4.4)

hx is a matrix of sequence feature representations, and is then used as input to a fully-

connected network that generates sequence embedding zx

zx = Ug(x;Wg) (4.5)

where Wg is the set of all weights in the Ug network (including Wgd ,Wgc , and Wgfc).

Clinical subnetwork is a simple fully-connected neural network Uc. Let v = {v1, v2, v3, · · · , vp}

be the clinical and pathologic phenotypic features for each individual. v is passed to a fully-

connected network to generate clinical embedding zv :

zv = Uc(v;Wc) (4.6)

We build a fusion layer that disentangles unimodal and bimodal dynamics by modeling

each of them explicitly, which is defined as the following by the Cartesian product:

{
(zx, zv) | zx ∈

zx
1

 , zv ∈
zv

1

} (4.7)
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The extra constant scalar with value 1 is used to generate the unimodal and bimodal dy-

namics. This definition is equivalent to a differentiable outer product between sequence

representation zx and the clinical representation zv

Z =

zx
1

⊗
zv

1

 (4.8)

=

zx zx ⊗ zv

1 zv

 (4.9)

where ⊗ indicates the outer product between vectors. Z is a 2D matrix of all possible

combination of unimodal embeddings with three distinct subregions. The subregions zx and

zv are unimodal representations from modality embedding subnetworks forming unimodal

interations in tensor fusion layer. The other subregion zx⊗ zv captures bimodal interactions

in tensor fusion layer. After the multimodal fusion, Z will be flatten and fed to a fully

connect neural network which predicts outcome.

4.3.3 Model training and testing

DeepMFIVar model are trained using the Adam algorithm [43] with a minibatch size

of 256 to minimize the mean square error loss function on the training set. The weights in

convolutional and fully-connected layers are initialized by randomly Xavier uniform distri-

bution, and the orthogonal initialization is applied to initialize the weights in LSTM layers.

Validation loss is evaluated at the end of each training epoch to monitor convergence. To

improve generalization and to prevent overfitting, we leverage the dropout-layer technique

and L2 regularization for weights in the cost function. Each fully connected layer is followed

by a dropout layer to avoid overfitting [44]. Specifically, 50% hidden neurons in the fully

connected layer are randomly dropped out. The DeepMFIVar model is implemented by

Pytorch[113].
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Due to the strong positive correlation of epigenomic signals across individuals, we con-

duct a conservative method to split the dataset into training, validation, and testing sets to

guarantee the independence of the three partitions. The training set is composed of samples

on chromosome 1-8 from 60% of individuals. The samples on chromosome 17-22 from 20%

of individuals are used for hyper-parameter tuning and model selection, and the samples on

chromosome 9-16 from the last 20% are held-out for testing.

4.3.4 Variant effect prediction

Given a sequence variant, we predict the epigenomic signals within 1000bp with both

of the alternative and reference alleles. We evaluate the impact of the variant by calculating

the change of the predicted epigenomic signals:

δ = F(ref)−F(alt) (4.10)

and the change of log odds:

δlog = log
F(ref)

1−F(ref)
− log

F(alt)

1−F(alt)
(4.11)

where F is the DeepMFIVar model, and δ and δlog indicate the predicted functional score. We

obtain the coordinates and alleles of biallelic SNVs from whole-genome sequencing (WGS)

from gnomAD r2.1.1. We remove the multi-allelic sites, which results in a total of 217

million biallelic SNVs. For evaluating variant effects, the DeepMFIVar model is trained on

the dataset including all the chromosomes and individuals.

4.4 Results

We first evaluate the performance of DeepMFIVar to predict quantitative signals (i.e.,

DNA methylation and H3K9ac) from epigenetic experiments with sequence context and

clinical and pathologic phenotypic data. We further assess the performance of predicting
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Figure 4.3: Predicted DNA Methylation compared to observed DNA Methylation evaluated
on the test set

the impact of functional variants on epigenetic signals. Last, we evaluate the performance

of DeepMFIVar on data imputation of the RRBS DNA methylation. The epigenetic signal

prediction performance of DeepMFIVar is evaluated using Pearson correlation and Spearman

correlation between predicted signals and observed signals. The performance of prioritizing

functional and imputing DNA methylation ratio is assessed by using the area under the

receiver operating characteristics curve (AUROC).

4.4.1 DeepMFIVar predicts epigenetic signals from sequence context and clin-

ical outcome

DeepMFIVar combines the quantitative epigenetic signal across multiple individuals

with whole-genome sequencing into a single supervised machine learning task (Fig 4.2). We

first evaluate the ability of DeepMFIVar to predict the DNA methylation ratio of a CpG

site from its flanking sequence and clinical outcome. We train the DeepMFIVar model for

10 epochs, evaluating the mean square error on the validation set at the end of each epoch

to monitor training progress. We report the prediction results on the test dataset, where

the individuals and chromosomes are excluded from the training dataset (Table 4.1). The

91



Figure 4.4: Predicted H3K9ac signal compared to observed H3K9ac signal evaluated on the
test set

predicted DNA methylation ratio shows strong concordance with the observed methylation

ratio in the test set (Spearman correlation = 0.77, Pearson correlation =0.80)(Figure 4.3).

Similar to the evaluation of DNA methylation ratio predictions, we train the model on

the H3K9ac dataset for 10 epochs and to monitor training progress by the mean square

error on the validation dataset. The predicted H3K9ac signal also shows strong correlation

with the observed signals in the test set (Spearman correlation = 0.48, Pearson correlation

=0.65)(Figure 4.4).

4.4.2 Imputation of RRBS DNA methylation

Reduced representation bisulfite sequencing (RRBS) has been widely used to analyze

the genome-wide methylation profiles on a single nucleotide level. However, RRBS is still

challenging and expensive, compared with the Illumina Methylation Assay. Here, we use the

DeepMFIVar model trained on the dataset from Illumina microarray to impute the RRBS

DNA methylation ratio. The 50 RRBS datasets of immortal cell lines, including GM12878

and the WGBS dataset of GM12878, are obtained from the authors of Zeng et al. ([114]).

The datasets are downloaded from ENCODE website https://www.encodeproject.org/,
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Figure 4.5: AUC for DNA Methylation imputation for 50 ENCODE RRBS datasets

and multiple replicates for the same experiments are merged. We train our DeepMFIVar

model on the DNA methylation dataset we previously described in section 4.2.1, and test

on 50 ENCODE RRBS datasets. The results demonstrate that DeepMFIVar trained on

microarray DNA methylation dataset can accurately impute thos from RRBS by having the

average AUC 0.79 (Figure 4.5).
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4.5 Appendix

4.5.1 Supplementary figures

Figure 4.6: Pearson correlation heatmap of DNA methylation ratio across individuals
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Figure 4.7: Pearson correlation heatmap of histone modification (H3K9ac) across individuals
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4.5.2 Supplementary tables

Table 4.1: Summary of DNA methylation and histone modification datasets
Dataset Set Samples Chromsomes Number of Regions

Methylation
Training 122 chr1-8 7,790,310
Validation 40 chr17-22 1,431,360
Testing 40 chr9-16 1,447,120

H3K9ac
Training 118 chr1-8 7,686,284
Validation 39 chr17-22 1,368,549
Testing 39 chr9-16 1,620,801

Table 4.2: List of clinical and pathologic phenotypic outcome for each individual.
N Features Type
1 Gender Categorical
2 Education Continuous
3 Age at death Continuous
4 APOE genotype Categorical
5 Braak Stage Categorical
6 Clinical cognitive diagnosis summary at last visit Categorical
7 Final clinical consensus diagnosis Categorical
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Chapter 5

Conclusion and Future Work

In the era of ”Big Data”, the large-scale dataset generated by high-throughput sequencing

provides an opportunity to use more sophisticated modeling to explore the numerous disease/

phenotypic associations with the human microbiome and genome. In this dissertation, we

present a collection of machine learning approaches for analyzing genetic and genomic data.

Chapter 2 describes a novel deep learning approach named MDeep, which is designed

based on CNN, for performing either regression or binary classification. The novelty of

MDeep lies in its ability to exploit the phylogenetic tree, which is an important prior on

microbiome data. A comprehensive simulation study evaluates the performance of MDeep

along with other competing methods, considering factors such as cluster size, signal density,

and informativeness of the phylogenetic tree. As a result, MDeep favors scenarios with large

clusters and high signal density. Overall, MDeep is superior to other methods when the

tree is informative and still achieves a robust performance when the tree is uninformative.

Experimental results demonstrate that, for both regression and binary classification, MDeep

can achieve competitive performance, compared with classic CNN, Ph-CNN, which is an-

other CNN-based method utilizing the phylogenetic information, and other state-of-the-art

machine learning methods.

In Chapter 3, we propose a supervised learning framework by integrating the pre-

computed scores from representative existing scoring methods, which will benefit from each

individual method by automatically learning the relative contribution of each method and

produce an ensemble score for the final prediction. The framework consists of two modes.

The first “context-free” mode is trained using known causal variants from a wide range of
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contexts and is applicable to predict variants of unknown context. The second “context-

dependent” mode further improves the prediction when the training and testing variants are

from the same context. We evaluate the framework using both simulation and real datasets.

The results demonstrate WEVar outperforms each individual method. Moreover, we show

that the ensemble score successfully prioritizes experimentally validated non-coding variants.

In Chapter4, we develop a deep multimodal model to accurately predict locus-specific

epigenetic signals (DNA methylation and histone modification) by taking DNA sequence

and patient-level clinical outcomes. Given the predicted epigenetic signal for the reference

and alternative alleles at a locus, we generate a functional score for the 210 million variants

observed in previous sequencing projects. We demonstrate that DeepMFIVar can accurately

predict locus-specific epigenetic signals using DNA sequence and clinical information, and

DeepMFIVar is capable of prioritizing variants for downstream experiments
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