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Abstract

Mathematical modeling of population and transmission dynamics of an infectious disease

considered a critical theoretical epidemiology method provides a strong understanding of the

virus dynamics. This dissertation studies the Hepatitis B Virus Infection dynamical behavior

with different approaches using mathematical modeling and dynamic systems theory.

Firstly, we propose an autonomous differential equations system, where all the parameters

are constants. We show the basic solution properties, such as the existence and uniqueness

of solutions, and as with any population model, we show that the solution is always positive.

Next, we show the system has exactly two equilibrium points. We then discuss the stability

analysis at each equilibrium point, then we obtain sufficient conditions that make the system

exponentially stable by constructing an appropriate Liponouv function.

Secondly, we consider the case where the target cells’ production rate is time-dependent,

making the system nonautonomous. We use tools from the nonautonomous dynamical sys-

tems to show the solution exists, unique, and stay positive for all time. Then we prove that

the system has a pullback absorbing and a positively invariant set, which implies the system

has a unique global pullback attractor that guarantees the existence of entire solution. How-

ever, the results provide sufficient conditions for the existence of nonautonomous attractors and

Singleton attractors.

Thirdly, We consider the HBV infection model with stochastic perturbation, and we inves-

tigate the longtime dynamics behavior of the stochastics model. First, we show the existence,

uniqueness, and positiveness of solutions. For the stability analysis, we prove that if the repro-

ductive number corresponding to the deterministic system R0 < 1 and the parameters satisfy

some conditions, then the system is almost surely exponentially stable. Furthermore, we pro-

vide sufficient conditions that guarantee that a unique stationary ergodic distribution exists for

R0 > 1, which implies the stochastic model’s stability around the endemic equilibrium of the

corresponding deterministic model by constructing suitable stochastic Lyapunov functions.

ii



Finally, we provide numerical results to illustrate and support the theoretical results of this

study. All the simulation codes are written using MATLAB.
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Chapter 1

Introduction.

Hepatitis B is a liver infection disease is transmitted by blood or other body fluids from

an infected to an uninfected person. It is considered one of the major diseases in the world. It

is difficult to know when you became infected during the initial infection. Symptoms include

vomiting, yellowing, fatigue, dark urine, and abdominal pain. These symptoms often last for a

few weeks and rarely cause initial infection death. Symptoms of disease onset may take from 30

to 180 days. People who develop the disease at birth have a 90% chance of getting the disease

while less than 10% of the patients appear after the age of five. Most chronic sufferers have no

symptoms, but over time complications may appear more serious, including liver cirrhosis and

liver cancer. Such complications can lead to 15 to 25% of those with the disease [5].

In the USA there are more than 1.2 million cases of Hepatitis B virus, and about 350

million in the world are carrying the virus, it is considered a common disease. To read more

see [5, 6].

There are five viruses causing hepatitis, which are virus A, B, C, D, and E. Hepatitis A and

E transmitted through contaminated food, water, or stool of an infected person. Hepatitis B and

C are transmitted via an infected person’s blood; these viruses might cause cute and chronic

hepatitis. Viruses B and D might also be transmitted through body contact with an infected

person. The most popular hepatitis in the united states is the Hepatitis B virus, which is the one

we are going to study its dynamics behavior here in this thesis.

Mathematical Modeling of Virus Dynamics. Mathematical modeling plays a large role in

understanding many phenomena in the world, for example in epidemiology it provides an
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understanding of the underlying mechanisms that influence the spread of disease and, in the

process, it suggests control strategies. For within-host virus dynamics, mathematical models

based on an understanding of biological interactions can also provide nonintuitive insights into

the dynamics of the host response to viruses and can suggest new avenues for experimenta-

tion. Ordinary Differential Equations, Partial differential equations, and Integral Equations are

usually used to model virus dynamics or any other world phenomena. Most virus dynamical

models are developed from the Basic Virus Infection Model (BVIM) [1].

Basic Virus Infection Model (BVIM) is a general mathematical model for a basic dynamic

of virus-host cell interaction was developed [10–12]. Figure 1 shows the basic idea of the virus

replication. The BVIM is considered to be the simplest model to understand the interaction

between virus that carries the disease and the host cells, introduced by Nowak [10] as follows:



dx
dt

= λ− µ1x− βxz

dy
dt

= βxz − µ2y

dz
dt

= py − µ3z

(1.1)

where x, y and z are numbers of uninfected cells, infected cells and free virus, respectively.

The parameters a, b, c are the death rates of the uninfected cells, infected cells and free virus,

respectively. β is the constant rate between uninfected x cells and the free virus z. λ represents

a constant production of the uninfected cells. We get infected cells ”y” when the virus ”z”

attacks the healthy cells ”x” at the rate of βxz which will die at the rate of µ2y. The free virus

produced from the infected cells

The system 1.1 has two equilibrium points

• disease-free equilibrium (λ/µ1, 0, 0), and

• endemic equilibrium

(x∗, y∗z∗) = (
µ2µ3

βp
,
λ

µ2

− µ1µ3

βp
,
λp

µ2µ3

− µ1

β
.) (1.2)
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Figure 1.1: Virus Replication

To study the stability analysis of system 1.1, we need to introduce and construct the basic

reproduction number.

Basic Reproduction Number. The basic reproduction number (sometimes called basic re-

production rate or basic reproductive ratio, denoted as which is used for measuring the trans-

mission potential of a disease. It is thought of as the number of secondary infections produced

by a typical case of the infection in a population that is totally susceptible. However, it ca be

measured by counting the number of secondary cases following the introduction of an infection

into a totally susceptible population. There are several factors that affect the basic reproduction

number such as: (1) the rate of contacts in the host population; (2) the probability of infection

being transmitted during contact; (3) the duration of infectiousness. Generally, for an epidemic

to occur in a susceptible population, R0 must be greater than 1, so that the number of cases is

increasing. If R0 < 1, the number of cases decreases.

The system 1.1 has a basic reproductive ratio R0 = βλk
abc

.

• If R0 < 1 then the infection cells will decrease.

• If R0 > 1 then the infection cells will increase.
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The immune response plays important role since it reduces the virus load. Adding the

immune response affect to the system 1.1 we get the following extended model

ẋ = λ− µ1x− βxz

ẏ = βxz − µ2y − pyw

ż = ky − µ3z

ẇ = dyw − µ4w

(1.3)

where w is the magnitude of the Cytotoxic T Lymphocytes (CTL) which has a rate of prolifer-

ation dyw, and rate of decay lw.

There are some other simple models that have been introduced see [10–12].

The model 1.3 has been modified by Perelson and Nelson [11] by adding the logistic term

to the first equation in the system 1.1, the models becomes

ẋ = λ− µ1x− px(1− x+ y

Xmax

)

ẏ = −µ2y + kxz

ż = −µ3z +Nβy

(1.4)

where, µ1, µ2, and µ3 are the death rate of the healthy cells x, infected cells y and the free

virus z respectively. p is growth rate, Xmax is the carrying capacity. These are not the only

models that have been introduced to understand the behavior of the HBV virus, there many

other models some of which have partial differential equations instead of ordinary differential

equations.

In the second chapter, we discuss the autonomous HBV model, where all the parameters

are constants. We use concepts and theorems from the theory of autonomous dynamical sys-

tems, which is now a well-established area, but still, we consider it to understand the behavior

of many dynamic systems.

In the third chapter, we study a nonautonomous HBV model; by that means, one or some

of the parameters must be time-dependent; we consider the case when the production number

4



λ is time-dependent λ(t). We introduce some preliminary concepts from the theory of nonau-

tonomous dynamical systems that we need to study the stability analysis.

In the fourth chapter, we extend the deterministic model in chapter 2 to be a stochastic

model by including standard white noise, making the model more realistic; we introduce some

concepts from Stochastic Differential Equations and Probability Theory. We prove some basic

solutions properties to the stochastic systems (existence, uniqueness, and positiveness). We also

discuss the stability in probability for the disease-free equilibrium. We show the existence of the

unique ergodic stationary distribution, which leads to the stability of the endemic equilibrium.

Finally, at the end of each chapter, we present numerical simulations to support our theo-

retical results, where all the parameter sets satisfy sufficient conditions of each model stability.

All the simulation codes are written in MATLAB.
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Chapter 2

Autonomous HBV Infection Model

This chapter discusses the autonomous case of the HBV infection model, where all the

parameters are constants. We start by showing the basic properties of solutions, such as exis-

tence, uniqueness, and positiveness of solutions. We then discuss the stability analysis using

tools from dynamic systems theory; at the end of this chapter, we show numerical simulations

to support the theoretical results.

2.1 Model Formulation

We denote x(t) the uninfected "Target" cells, y(t) the infected cells, and z(t) the free virus

at any time t. x(t) has a constant production rate λ and death rate µ1, and when the virus z(t)

attacks x(t) that produces infected cells y(t) at rate (1−η)β, death rate µ2, assuming that there

are some infected cells recovered at rate q. y(t) produces a new free virus z(t) at rate (1− ε)p,

and death rate µ3. Putting all of these information together we get the following model



dx
dt

= λ− µ1x− (1− η)βxz + qy

dy
dt

= (1− η)βxz − µ2y − qy

dz
dt

= (1− ε)py − µ3z

(2.1)

Table 2.1 summarized all the parameters in 2.1.

Notice that η and ε are small positive fractions between 0 and 1, then (1 − η) > 0 and

(1− ε) > 0, also all other parameters β, q, p, µ1, µ2 and µ3 are positive.
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Parameter Description
λ Production rate of uninfected cells x.
µ1 Death rate of x-cells.
µ2 Death rate of y-cells.
µ3 Free virus cleared rate.
η Fraction that reduced infected rate after treatment with anti-viral drug.
ε Fraction that reduced free virus rate after treatment with anti-viral drug.
p Free virus production rate y-cells
β Infection rate of x-cells by free virus z.
q Spotaneous cure rate of y-cells by non-cytolytic process.

Table 2.1: Parameters descriptions

Notations Through out this thesis we will consider the following.

• R3 = {(x, y, z)| x, y, z ∈ R}, and R3
+ = {(x, y, z) ∈ R3| x ≥ 0, y ≥ 0, z ≥ 0}.

• If u = (x, y, z)T ∈ R3 then the system (2.1) can be written as

du(t)

dt
= f(u(t)) (2.2)

where

f(u(t)) = f(x(t), y(t), z(t)) =


λ− µ1x− (1− η)βxz + qy

(1− η)βxz − µ2y − qy

(1− ε)py − µ3z

 (2.3)

and u0 = u(t0) = (x(t0), y(t0), z(t0)) = (x0, y0, z0).

2.2 Properties of Solutions

In this section we prove some basic properties of solutions (existence and uniqueness),

since the we are studying a population model, we need ensure that the solution is always posi-

tive.

2.2.1 Existence, Uniqueness, Positiveness

In this subsections we show the existence and uniqueness of system 2.1 solutions.
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Theorem 2.2.1 (Local Existence). For any given t0 ∈ R and (x0, y0, z0) ∈ R3
+ there exists

Tmax = Tmax(t0, x0, y0, z0) such that the system from (2.1) has a solution (x(t; t0, x0, y0, z0), y(t; t0, x0, y0, z0), z(t; t0, x0, y0, z0))

on [t0, t0 + Tmax). Furthermore, If Tmax <∞ then the solution will blow up, i.e.,

lim sup
t→Tmax

(|x(t0 + t; t0, x0, y0, z0)|+ |y(t0 + t; t0, x0, y0, z0)|+ |z(t0 + t; t0, x0, y0, z0)|) = +∞

(2.4)

Proof. It is clear that this function f(u(t)) in equation 2.3 is continuous and its derivatives with

respect to x, y and z are also continuous. Therefore, we have the system (2.1) has a unique local

solution.

It is well known that solutions of the ordinary differential equations may blow up in finite

time.

Since the system 2.1 is a population system, then it is very important to make sure that the

solution is always positive.

Lemma 2.2.2. suppose (x(t0), y(t0), z(t0)) ∈ R3
+ is the initial vlaue of the system 2.1, then the

solution (x(t), y(t), z(t)) is positive for all t ∈ [t0, t0 + Tmax).

Proof. By contradiction suppose not, then there exists τ ∈ [t0, t0 + Tmax) such that x(t) >

0, y(t) > 0 and z(t) > 0 on [t0, τ) this implies one of the following cases

(i) x(τ) = 0 and y(τ) > 0 (ii) x(τ) > 0 and y(τ) = 0 (iii) x(τ) = 0 and y(τ) = 0

Now we will show that none of the above cases is possible.

Claim Case (i) is not possible.

Proof. From the basic definition of the derivative we have.

dx

dt
(τ) = lim

t→τ

x(t)− x(τ)

t− τ
= lim

t→τ

x(t)

t− τ
≤ 0 → (1)

8



from the first equation in 2.1 we have

dx

dt
(τ) = λ(τ)− µ1x(τ)− (1− η)βx(τ)v(τ) + qy(τ)

= λ(τ) + qy(τ) ≥ py(τ) > 0 → (2)

That a contradiction, therefore, case(1) is not possible.

Claim Case (ii) is not possible.

Proof. We know that

dy

dt
(τ) = lim

t→τ

y(t)− y(τ)

t− τ
= lim

t→τ

y(t)

t− τ
≤ 0 → (3)

from the second equation in 2.1 we have

dy

dt
(τ) = (1− η)βv(τ)x(τ) > 0 → (4)

from (3) and (4) we have a contradiction, thus, case(2) is not possible.

Similarly, case(iii) is also not possible.

Notice that, z(t) has explicit solution that depends on y(t), thus, if y(t) is positive that

implies z(t) is also positive for all t ≥ t0.

Therefore, the statement in the lemma is correct.

Now we show the global existence of solution, which is enough to show that the solution

of the system 2.1 is bounded

Theorem 2.2.3 (Global Existence "Boundedness"). For given t0 ∈ R and (x0, y0, z0) ∈ R3
+,

the solution (x(t), y(t), z(t)) exists for all t ≥ t0 and moreover,

0 ≤ x(t) + y(t) ≤M and 0 ≤ z(t) ≤ eµ3(t−t0)z0 + (1− ε)M
(

1− e−µ3(t−t0)

µ3

)

9



where M = Max
{
x0 + y0 ,

λ
min(µ1,µ2)

}
Proof.

It is enough to show that |x(t)|+ |y(t)| <∞ on (t0 , t0 + Tmax).

By adding the first two equations in 2.1 we get

dx

dt
+
dy

dt
= λ− µ1x− µ2y (2.5)

≤ λ−min{µ1, µ2}[x(t) + y(t)]. (2.6)

Let v(t) = x(t) + y(t) the equation 2.5 becomes

v(t) ≤ λ−min{µ1, µ2} v(t).

By the ODE comparison principle we have

v(t) ≤Max

{
v0 ,

λ

min(µ1, µ2)

}

then 2.4 implies that Tmax = +∞.

It is clear that for t large we have

v(t) ≤ λ

min{µ1, µ2}

Which means both x(t) and y(t) are bounded. It is clear that z(t) is also bounded directly by

solving the third equation in system 2.1.

10



2.3 Equilibrium Solutions.

The equilibria of the system 2.1 is all the points in R3 such that ẋ = ẏ = ż = 0, this is

implies the following equations

λ− µ1x− (1− η)βxz + qy = 0

(1− η)βxz − µ2y − qy = 0

(1− ε)py − µ3z = 0

By solving the above system of equations we found that the system 2.1 has only two two

equilibrium points which are

1. Disease-free equilibrium (x̄0 , ȳ0 , z̄0) =
(
λ
µ1
, 0 , 0

)
and

2. Endemic equilibrium

(x̄ , ȳ , z̄) =

(
µ1µ3(µ2 + p)

qβµ2(1− η)(1− ε)
,
λ

µ2

− µ1µ3(µ2 + p)

qβµ2(1− η)(1− ε)
,
qλ(1− ε)
µ2µ3

− µ1(µ2 + p)

βµ2(1− η

)

2.4 Stability Analysis.

In the previous section we have seen that the system 2.1 has exactly two (disease-free and

epidemic) equilibrium points. In this subsection we will discuss the stability analysis of the

system 2.1 at each equilibrium point.

Lemma 2.4.1. The system 2.1 is exponentially stable at its equilibrium points (x̄, ȳ, z̄) if the

following conditions hold


2µ1 + (1− η)βz̄ > (1− η)β λ

min(µ1,µ2)
+ q

2µ2 + q > (1− η)β
(
z̄ + λ

min(µ1,µ2)

)
+ (1− ε)p

2µ3 > (1− ε)p+ (1−η)λβ
min(µ1,µ2)

(2.7)
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Proof. In fact, it is enough to show that

|x− x̄| → 0, |y − ȳ| → 0, and |z − z̄| → 0, as t→∞ (2.8)

Since x− x̄, y − ȳ, and z − z̄ satisfies the system 2.1. From system 2.1 we have



d
dt

(x− x̄) = −(µ1 + (1− η)βz̄)(x− x̄) + q(y − ȳ)− (1− η)βx(z − z̄)

d
dt

(y − ȳ) = (1− η)βz̄(x− x̄)− (q + µ2)(y − ȳ) + (1− η)βx(z − z̄)

d
dt

(z − z̄) = (1− ε)p(y − ȳ)− µ3(z − z̄)

(2.9)

Now, let X = x− x̄, Y = y − ȳ and Z = z − z̄ then system 2.9 becomes

dX

dt
= −(µ1 + (1− η)βz̄)X + qY − (1− η)βxZ (2.10)

dY

dt
= (1− η)βz̄X − (q + µ2)Y + (1− η)βxZ (2.11)

dZ

dt
= (1− ε)pY − µ3Z (2.12)

Now, sinceX = X+−X−, whereX+ andX− are the positive and negative part of the function

X, and also we have

XX+ = (X+ −X−)X+ = X2
+

−XX− = −(X+ −X−)X− = X2
−

(X+ ±X−)2 = X2
+ +X2

− = |X|2

This implies that

ẊX+ =
1

2

d

dt
X2

+ and − ẊX− =
1

2

d

dt
X2
−

Now multiplying equation 2.10 by X+ gives

ẊX+ = −[µ1 + (1− η)βz̄]XX+ + qY X+ − (1− η)βxZX+

12



1

2

d

dt
X2

+ = −[µ1 + (1− η)βz̄]X2
+ + qY X+ − (1− η)βxZX+ (2.13)

If we multiply equation 2.10 by X− we get

1

2

d

dt
X2
− = −[µ1 + (1− η)βz̄]X2

− + qY X− + (1− η)βxZX− (2.14)

adding equation 2.13 and equation 2.14 we get

1

2

d

dt
(X2

+ +X2
−) = −[µ1 + (1− η)βz̄](X2

+ +X2
−) + qY (X+−X−) + (1− η)βxZ(X+−X−)

1

2

d

dt
|X|2 = −[µ1 + (1− η)βz̄]|X|2 + q(Y+ − Y−)(X+ −X−) + (1− η)βx(Z+ − Z−)(X+ −X−)

= −[µ1 + (1− η)βz̄]|X|2 + q(Y+X+ + Y−X− − Y−X+ − Y+X−)

+(1− η)βx(X+Z− +X−Z+ −X+Z+ −X−Z−)

≤ −[µ1 + (1− η)βz̄]|X|2 +
1

2
qY 2

+ +
1

2
qX2

+ +
1

2
qY 2
− +

1

2
X2
− − q(Y−X+ + Y+X−)

+
1

2
(1− η)βx(X2

+ + Z2
− +X2

− + Z2
+)− (1− η)βx(X+Z+ +X−Z−)

≤ −[µ1 + (1− η)βz̄]|X|2 +
1

2
q|Y |2 +

1

2
(1− η)βx|X|2 +

1

2
q|X|2 +

1

2
(1− η)βx|Z|2

−q(Y−X+ + Y+X−)− (1− η)βx(X+Z+ −X−Z−)

Thus,

1

2

d

dt
|X|2 ≤− [µ1 + (1− η)βz̄ − 1

2
q − 1

2
(1− η)βx]|X|2 +

1

2
q|Y |2 +

1

2
(1− η)βx|Z|2

− q(Y−X+ + Y+X−)− (1− η)βx(X+Z+ −X−Z−)

(2.15)
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Similarly, by using the same computational technique we got

1

2

d

dt
|Y |2 ≤1

2
(1− η)βz̄|X|2 − [(q + µ2)− 1

2
(1− η)βz̄ − 1

2
(1− η)βx]|Y |2 +

1

2
(1− η)βx|Z|2

− (1− η)βz̄(X+Y− +X−Y+)− (1− η)βx(Z+Y− + Z−Y+)

(2.16)

and

1

2

d

dt
|Z|2 ≤ −[µ3 −

1

2
(1− ε)]|Z|2 +

1

2
(1− ε)p|Y |2 − (1− ε)p(Y+Z− + Y−Z+) (2.17)

Now, by adding 2.15 , 2.16 and 2.17 we get

1

2

d

dt

(
|X|2 + |Y |2 + |Z|2

)
≤−

[
µ1 +

1

2
(1− η)βz̄ − 1

2
q − 1

2
(1− η)βx

]
|X|2

−
[
µ2 +

1

2
q − 1

2
(1− η)βz̄ − 1

2
(1− η)βx− (1− ε)p

]
|Y |2

−
[
µ3 −

1

2
(1− ε)p− (1− η)βx

]
|Z|2 − [q(Y+X− + Y−X+)

+ (1− η)βx(X+Z+ +X−Z−) + (1− η)(X+Y− +X−Y+)

(1− η)βx(Z+Y−Z−Y+) + (1− ε)p(Y+Z− + Y−Z+)]

(2.18)

Therefore,
d

dt

(
|X|2 + |Y |2 + |Z|2

)
≤ −ν1|X|2 − ν2|Y |2 − ν3|Z|2 −W (2.19)

where

ν1 = 2µ1 + (1− η)βz̄ − (1− η)βx− q

ν2 = µ2 + q − (1− η)βz̄ − (1− η)βx− (1− ε)p

ν3 = 2µ3 − (1− ε)p− (1− η)βx

W = q(Y+X− + Y−X+) + (1− η)βx(X+Z+ +X−Z−) + (1− η)(X+Y− +X−Y+)

+(1− η)βx(Z+Y−Z−Y+) + (1− ε)p(Y+Z− + Y−Z+)
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Condition 2.21 guaranteed that ν1, ν2, an ν3 are always positive. SinceW ≥ 0 then the inequity

4.2.2 still holds after removing W .

Now Let k = minn {ν1, ν2, ν3} and let V (t) = |X(t)|2 + |Y (t)|2 + |Z(t)|2 then the

inequality 4.2.2 becomes
dV (t)

dt
≤ −kV (t)

0 ≤ V (t) ≤ V0e
−kt −→ 0 as t→∞ (2.20)

2.4.1 Stability at disease-free equilibrium

Substituting (x̄, ȳ, z̄) = (λ/µ1, 0, 0) in condition 2.7 we get the following conditions


2µ1 > (1− η)β λ

µ∗
+ q

2µ2 + q > (1− η)β λ
µ∗

+ (1− ε)p

2µ3 > (1− ε)p+ (1−η)λβ
µ∗

(2.21)

where µ∗ = min(µ1, µ2)

Theorem 2.4.2. The autonomous dynamic systems 2.1 is exponentially stable if the conditions

2.21 satisfied.

Proof. Consider the Lyapunov function

V (x, y, z) =
1

2
[(x− λ/µ1)2 + y2 + z2]

which is clearly positive, and by following the some computations in the proof of Lemma 2.4.1

we get V ′ ≤ 0. That completed the proof.
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2.4.2 Stability at the endemic equilibrium

Substituting the endemic equilibrium ((x̄ , ȳ , z̄)) where


x̄ = µ1µ3(µ2+p)

qβµ2(1−η)(1−ε) ,

ȳ = λ
µ2
− µ1µ3(µ2+p)

qβµ2(1−η)(1−ε) ,

z̄ = qλ(1−ε)
µ2µ3

− µ1(µ2+p)
βµ2(1−η)

(2.22)

in condition 2.7 we get the following conditions


µ1µ2µ3 + (1− ε)(1− η)λβq > (1−η)λβµ2µ3

min(µ1,µ2)
+ qµ2µ3 + pµ1µ3

2µ2
2 + µ1µ2 + pµ1 + q > (1−η)(1−ε)βλq

µ3
+ (1−η)λβ

minµ1,µ2

2µ3 > (1− ε)p+ (1−η)λβ
min(µ1,µ2)

(2.23)

Theorem 2.4.3. The solution of system 2.1 is exponentially stable at the endemic equilibrium

2.22 if conditions 2.23.

.

Proof. The proof follows by Lemm 2.4.1.

2.5 Numerical Results

Some numerical results are presented in this section to support the stability analysis result

of the autonomous system 2.1. All the simulation code have been written in MATLAB.

2.5.1 Autonomous Case at disease-free equilibrium

At the disease-free equilibrium point (λ/µ1, 0, 0), parameters have to satisfy condition

2.21, where parameters in Table 2.2 satisfied that and result represented as follows.
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Table 2.2: List of parameters that satisfied conditions 2.21

parameters λ µ1 µ2 µ3 β η ε p q

values 9.8135 2 3 7 0.2 0.2 0.5 0.01 5

Figure 2.1: Autonomous case solution at disease-free equilibrium

2.5.2 Autonomous Case at epidemic equilibrium

Table 2.3: List of parameters that satisfied conditions 2.23

parameters λ µ1 µ2 µ3 β η ε p q

values 100 5 7 2 0.7 0.2 0.2 2 6

17



Figure 2.2: Autonomous case solution at epidemic equilibrium

If any of the stability conditions did not hold then we get completely different results see

Figure 2.4.

Figure 2.3: Autonomous case solution a when the inequities in 2.21 or ?? did not hold
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Chapter 3

Nonautonomous HBV Model

This chapter considers the nonautonomous HBV infection model; we discuss the case

where the production number λ is time-dependent. We provide first some preliminary of

Nonautonomous Dynamical Systems. Then we discuss the stability analysis. The proof follows

by Lemm 2.4.1.

3.1 Preliminary

Before discussing the stability analysis of the nonautonomous HBV infection model, let

us first introduce some basic concepts from the theory of nonautonomous dynamic systems that

we need to understand the HBV model analysis. We start with some definitions and theorems

from [22–24].

The autonomous dynamical system formulation as a group or semi-group of mappings

depends on the fact that such systems depend only on the elapsed time t− t0 since starting and

not directly on the current time t or starting time t0 themselves. For a nonautonomous system

both the current time t and starting time t0 are important rather than just their difference.

There are several ways to formulate a nonautonomous dynamic systems (Process, Skew

product follow), in this study we focus on the process formulation [22].

Consider the initial value problem of a non-autonomous ODE.

du(t)

dt
= f(t, u(t)), u(t0) = u0. (3.1)
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The solution φ(t, t0, u0) of equation 3.1 depends on the actual time t and the initial time t0.

Define

R2
≥ := {(t, t0) ∈ R2 : t ≥ t0}

Definition 3.1.1 (Process formulation, [22].). A process is a continuous mappings φ(t, t0, )̇ :

Rn → Rn which satisfies the initial and evolution properties as follows

i. φ(t0, t0, u0) = u0 for all u0 ∈ Rn.

ii. φ(t2, t0, u) = φ(t2, t1, φ(t1, t0, u)). for all t0 ≤ t1 ≤ t2 and u0 ∈ Rn.

Definition 3.1.2 (Invariant, Positive Invariant, and Negative Invariant families for process). Let

φ be a process on Rn. A family A = {A(t) : t ∈ R} of nonempty subsets of Rn is said to be:

1. Invariant with respect to φ, or φ-invariant if

φ(t, t0, A(t0)) = A(t) for all t >≥ t0.

2. Positive Invariant, or or φ-Positive invariant if

φ(t, t0, A(t0)) ⊂ A(t) for all t >≥ t0.

3. Negative Invariant, or or φ- negative

φ(t, t0, A(t0)) ⊃ A(t) for all t >≥ t0.

Definition 3.1.3 (Nonautonomous Attractivity). Let φ be a process. A nonempty, compact

subset A of Rn is said to be

i. Forward attracting if

lim
t→∞

dist(φ(t, t0, u0), A(t)) = 0 for all u0 ∈ Rn and t0 ∈ R ,
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ii. Pullback attracting if

lim
t→−∞

dist(φ(t, t0, u0), A(t)) = 0 for all u0 ∈ Rn and t0 ∈ R .

Definition 3.1.4. A family B = {B(t) : t ∈ R} of nonempty compact subsets of Rn is called

pullback obserbing family for the process φ if for each t1 ∈ R and every family D = {D(t) :

t ∈ R} of nonempty subset of Rn there exists some T = T (t1,D ∈ R+ such that

φ(t1, t0, D(t0)) ⊆ B(t1) for all t+ 0 ∈ R with t0 ≤ t1 − .T

Theorem 3.1.5. If the process φ on Rn has a φ-invariant pullback absorbing family B =

{b(t) : t ∈ R} of non-empty compact subset of Rn, then φ has a unique global pullback attrac-

tor A = {A(t) : t ∈ R}.

Notice that, a pullback attractor consists of entire solutions.

Definition 3.1.6. A nonautonomous dynamical system φ satisfies the uniform strictly contract-

ing property if for each R > 0, there exist positive constants K and α such that

|φ(t, t0, x0)− φ(t, t0, y0)|2 ≤ Ke−α(t−t0)|x0 − y0|2 (3.2)

for all (t, t0) ∈ R2
≥ and x0, y0 ∈ B̄(0;R), where B̄ is a closed ball centered at the origin with

radius R > 0.

Remark. The uniform strictly contracting property, together with the existence of a pullback

absorbing, implies the existence of a global attractor that consists of a single entire solution.
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3.2 Model Formulation

When the productive number λ in 2.1 is time-dependent λ(t), that changes the system

from autonomous to a nonautonomous model represented as follows



dx
dt

= λ(t)− µ1x− (1− η)βxz + qy

dy
dt

= (1− η)βxz − µ2y − qy

dz
dt

= (1− ε)py − µ3z

(3.3)

which can be written as

du(t)

dt
= f(t, u(t)), where u(t) = (x(t), y(t), z(t))T ∈ R3, and t ∈ R.

with initial condition u0 = (x0, y0, z0)T

3.3 Solution Properties

The existence of local solution follows from the fact that f(t, u(t)) is continuous and its

derivative is also continuous. The following Lemma prove the positiveness

Lemma 3.3.1. Let λ : R→ [λm , λM ], then for any (x0, y0, z0) ∈ R3
+ := {(x, y, z) ∈ R3 : x ≥

0, y ≥ 0, z ≥ 0} all the solutions of the system (3.3 - 3.3) corresponding to the initial point

are:

i. Non-negative for all

ii. Uniformly bounded.

Proof. i. The proof is similar to the positiveness of the autonomous case that introduced

earlier.

ii. Set ‖X(t)‖1 = x(t) + y(t) + z(t), if we combine the three equations in (3.3 - 3.3) we

get:

ẋ(t) + ẏ(t) + ż(t) = λ(t)− µ1x− (µ2 − (1− ε)p)y − µ3z (3.4)
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assume µ2 > (1− ε)p and let α = minµ1, µ2 − (1− ε)p, µ3, then we get

d

dt
‖X(t)‖1 ≤ λM − α‖X(t)‖1 (3.5)

this implies that

‖X(t)‖1 ≤ max{x0 + y0 + z0,
λM
α
} (3.6)

Thus, the set Bε = {(x, y, z) ∈ R3
+ : ε ≤ x(t) + y(t) + z(t) ≤ λM

α
+ ε} is positively

invariant and absorbing in R3
+.

3.4 Stability Analysis

This section discusses the stability analysis of the systems 3.3; first, we show the uniform

strictly contracting property, then we prove that the system has a positively absorbing set. Then

we provide sufficient conditions that make the system 3.3 stable.

Theorem 3.4.1. The nonautonomous system (3.3 - 3.3) satisfies a uniform strictly contracting

property, if µ2 > (1− ε)p.

Proof. Let


(x1, y1, z1) = (x(t, t0, x

1
0), y(t, t0, y

1
0), z(t, t0, z

1
0))

and (x2, y2, z2) = (x(t, t0, x
2
0), y(t, t0, y

2
0), z(t, t0, z

2
0))

(3.7)

and are two solutions of the system (3.3 - 3.3 ) by similar computational in autonomous case

we get



d
dt

(x1 − x2) = −(µ1 + (1− η)βz1))(x1 − x2) + q(y1 − y2)− (1− η)βx2(z1 − z2)

d
dt

(y1 − y2) = (1− η)βz1(x1 − x2)− (q + µ2)(y1 − y2) + (1− η)βx(z1 − z2)

d
dt

(z1 − z2) = (1− ε)p(y1 − y2)− µ3(z1 − z2)

(3.8)

23



Now, let X = x1 − x2, Y = y1 − y2 and Z = z1 − z2 then system 3.8 becomes

dX

dt
= −(µ1 + (1− η)βz1)X + qY − (1− η)βx2Z (3.9)

dY

dt
= (1− η)βz1X − (q + µ2)Y + (1− η)βx2Z (3.10)

dZ

dt
= (1− ε)pY − µ3Z (3.11)

This implies that

1

2

d

dt
|X|2 ≤− [µ1 + (1− η)βz1 −

1

2
q − 1

2
(1− η)βx2]|X|2 +

1

2
q|Y |2 +

1

2
(1− η)βx2|Z|2

− q(Y−X+ + Y+X−)− (1− η)βx(X+Z+ −X−Z−)

(3.12)

Similarly, by using the same computational technique we got

1

2

d

dt
|Y |2 ≤1

2
(1− η)βz1|X|2 − [(q + µ2)− 1

2
(1− η)βz̄ − 1

2
(1− η)βx2]|Y |2 +

1

2
(1− η)βx2|Z|2

− (1− η)βz − 1(X+Y− +X−Y+)− (1− η)βx(Z+Y− + Z−Y+)

(3.13)

and

1

2

d

dt
|Z|2 ≤ −[µ3 −

1

2
(1− ε)]|Z|2 +

1

2
(1− ε)p|Y |2 − (1− ε)p(Y+Z− + Y−Z+) (3.14)
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Now, by adding 2.15 , 2.16 and 2.17 we get

1

2

d

dt

(
|X|2 + |Y |2 + |Z|2

)
≤−

[
µ1 +

1

2
(1− η)βz1 −

1

2
q − 1

2
(1− η)βx2

]
|X|2

−
[
µ2 +

1

2
q − 1

2
(1− η)βz1 −

1

2
(1− η)βx2 − (1− ε)p

]
|Y |2

−
[
µ3 −

1

2
(1− ε)p− (1− η)βx

]
|Z|2 − [q(Y+X− + Y−X+)

+ (1− η)βx(X+Z+ +X−Z−) + (1− η)(X+Y− +X−Y+)

(1− η)βx2(Z+Y−Z−Y+) + (1− ε)p(Y+Z− + Y−Z+)]

(3.15)

Since x2 and z1 are bounded, assume that γ2 = max{x2} and γ1 = max{z1}.

Therefore,
d

dt

(
|X|2 + |Y |2 + |Z|2

)
≤ −ν1|X|2 − ν2|Y |2 − ν3|Z|2 −W (3.16)

where

ν1 = 2µ1 + (1− η)βγ1 − (1− η)βγ2 − q

ν2 = µ2 + q − (1− η)βγ1 − (1− η)βγ2 − (1− ε)p

ν3 = 2µ3 − (1− ε)p− (1− η)βγ2

W = q(Y+X− + Y−X+) + (1− η)βx(X+Z+ +X−Z−) + (1− η)(X+Y− +X−Y+)

+(1− η)βx(Z+Y−Z−Y+) + (1− ε)p(Y+Z− + Y−Z+)

Let α = min{ν1, ν2ν3}, then equation 3.16 becomes

d

dt

(
|X|2 + |Y |2 + |Z|2

)
≤ −α(|X|2 + |Y |2 + |Z|2)−W (3.17)
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Which have a solution

|X|2 + |Y |2 + |Z|2 ≤ Ke−α(t−t0)(|X0|2 + |Y0|2 + |Z0|2) (3.18)

Notice that, for ν1, ν2, ν3 to positive following conditions must hold.

2µ1 + (1− η)βb1 > (1− η)β
λM

min(µ1, µ2)
+ q (3.19)

2µ2 + q > (1− η)β

(
b1 +

λM
min(µ1, µ2)

)
+ (1− ε)p (3.20)

2µ3 > (1− ε)p+
(1− η)βλM
min(µ1, µ2)

(3.21)

Theorem 3.4.2. Suppose λ : R → [λm , λM ], where 0 < λm < λ −M < ∞, is continuous,

then the system (3.3 - 3.3 ) has a pullback attractor A = {A(t) : t ∈ R} inside R3
+.

Moreover, if µ2 > (1−ε)p, and the conditions (3.19 - 3.21 ) hold then the solution of the system

is exponentially stable.

3.5 Numerical Results

3.5.1 Nonautonomous Case

Figure 3.1 shows the solutions of the system 3.3 using an appropriate set of parameters

that satisfied the necessary conditions. We approximate the healthy cells’ productive function

by λ(t) = cos(2t+ π/3) + 10, which is a positive and bounded function. On the interval [0, 5]

for the other parameters in the table 3.1.

Table 3.1: Set of parameters that satisfy the required conditions

µ1 µ2 µ3 β η ε p q λM

2 3 7 0.2 0.2 0.5 0.01 5 12
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Figure 3.1:

3.5.2 Comparison between Autonomous and Nonautonomous solutions

The set of parameters in table 3.2 was chosen very carefully such that the required con-

ditions hold. But when we run the simulation for autonomous and nonautonomous using the

same set of parameters we got completely different results, see Figures 3.2 and 3.3.

Table 3.2: This set of parameters satisfy both Auto/nonatunamous conditions

µ1 µ2 µ3 β η ε p q λM

6 7 0.1 0.3 0.5 0.1 5 10 20
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Figure 3.2: The result is showing the stability of the nonautonomous model

Figure 3.3: The free virus solution z(t) blowup

These results show that the nonautonomous systems are more accurate than the nonau-

tonomous systems.
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Chapter 4

Stochastic HBV Model

All the previous studies and experimental data showed the importance of stochastic noise

in evolution models, including the Hepatitis B virus infection dynamics. The stochastic model

gives more realistic results than the deterministic model.

4.1 Model Formulation

In chapter 2, we introduced the deterministic model 2.1 and we have discussed its stability

analysis. In this chapter we consider the importance of stochastic noise, and we include white

noise in the parameters of system 2.1 by replacing µ1 → µ1−σ1dW1(t), µ2 → µ2−σ2dW2(t),

and µ3 → µ3−σ3dW3(t), whereW1, W2, andW3 are independent standard Brownian motions.

They satisfy W1(0) = W2(0) = W3(0) = 0. Hence, the stochastic system corresponding to

system 2.1 has the following form.

dx(t) = (λ− µ1x− (1− η)βxz + qy)dt+ σ1xdW1(t) (4.1)

dy(t) = ((1− η)βxz − µ2y − qy)dt+ σ2ydW2(t) (4.2)

dz(t) = ((1− ε)py − µ3z)dt+ σ3zdW3(t) (4.3)

All other parameters are defined in the Table 2.1.

The system (4.1 - 4.3) can be written as

dut = f(u(t), t)dt+B(u, t)dW , t ≥ 0 (4.4)
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with the initial u0 ∈ R3, where, u(t) = (x(t), y(t), z(t)),

f(u, t) =


λ− µ1x− (1− η)βxz + qy

(1− η)βxz − µ2y − qy

(1− ε)py − µ3z

 , B(u, t) =


σ1x 0 0

0 σ2y 0

0 0 σ3z

 , and dW =


dW1

dW2

dW3



4.2 Preliminary.

Before we discuss the solution properties and stability analysis of the stochastic system

(4.1-4.3), we would like to introduce some of the definitions and theorems that we need in this

study, all of these concepts are from [2].

In general, equation 4.4 can be written as d-dimensional stochastic equation in the com-

plete probability (Ω,F ,P) with a filtration {Ft}t≥0 as

dut = f(u, t)dt+B(u, t)dW , t ≥ 0 (4.5)

where f(u, t) : Rd × [t0, T ] → Rd and B(u, t) : Rd × [t0, T ] → Rd×n are Borel measurable,

the white noise W (t) = (w1(t), w2(t), · · · , wn(t)) ∈ Rn, t ≥ 0. Let 0 ≤ t0 ≤ T <∞, and the

initial value u0 to be Ft0-measurable Rd random variable such that E|u0|2 < ∞, equation 4.5

known as stochastic differential equation of Itô type.

Definition 4.2.1 ( [2], page 48 ). The stochastic process {u(t)}0≤t0≤T in Rd is said to be a

solution of equation 4.5 if the following properties hold

i. {u(t)} is a continuous and Ft-adapted;

ii. {f(u(t), t)} ∈ L1([t0, T ];Rd) and {B(u(t), t)} ∈ L2([t0, T ];Rd×n);

iii. equation 4.5 holds for every t ∈ [t0, T ] with probability 1.

A solution {u(t)} is said to be unique if for any other solution {ū(t)} we have the following

condition

P{u(t) = ū(t) for all t0 ≤ t ≤ T} = 1
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Lemma 4.2.2. for any v > 0, the following inequality hols

v ≤ 2(v + 1− ln(v))− (4− 2 ln 2)

Proof. The proof is straight forward, since the function f(v) = v+ 2− 2 ln(v) has a minimum

at v = 2.

In general, d-dimensional stochastic equation can be written as

du(t) = f(u(t), t)dt+B(u(t), t)dW (t) (4.6)

where u(t) = (x1(t), x2(t), · · · , xd(t)) with the initial u(t0) = u0 ∈ Rd, and W(t) is the

m-dimensional white noise defined on a complete probability space (Ω,F , {Ft}t≥0,P).

Itô Formula Define a differential operator L to be

L =
∂

∂t
+
∑
i

= 1dfi(u, t)
∂

∂xi
+

1

2

d∑
i,j=1

[W T (u, t)W (u, t)]ij
∂2

∂ui∂uj

Now, let V (u, t) be a nonnegative twice differentiable function define on Rd × [t0,∞),

when the operator act on V , we get:

LV = Vt + Vufi(u, t) +
1

2
trace[W T (u, t)VuuW (u, t)]

where vt = ∂V
∂t

, Vu = ( ∂V
∂x1
, ∂V
∂x2
, · · · ∂V

∂xd
), and Vuu =

(
∂2V
∂ui∂uj

)
d×d

.

Then Itô formula defined as

dV = LV (u(t), t)dt+ Vu(u(t), t)B(u(t), t)dW (t) (4.7)

Now we will discuss the solution properties of the system (4.1 - 4.3 ) .
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4.3 Existence, Uniqueness, and Positiveness of Solution.

When we study the dynamics of a population model the most important properties are to

show that the solution is global and positive for all time t ≥ 0. The coefficients of the above

stochastic system are locally Lipschiz and satisfy the linear growth condition (see [?])

Theorem 4.3.1. For any initial value u0 ∈ R3
+, there exists a unique solution for the system

(4.1 - 4.3) for all t ≥ 0. Furthermore, the solution will remain positive for all time t ≥ 0 with

probability 1, i.e., u(t) ∈ R3
+ for all t ≥ 0 almost surely.

Proof. It is clear that we have a unique local solution since all the coefficients of the equations

(4.1 - 4.3) are continuous and locally Lipschiz, in other word for any initial u0 ∈ R3
+, there is

a unique local solution u(t) ∈ R3
+ for all t ∈ [0, τ). To show the solution is global we need to

show that τ =∞ almost surely.

Let n0 ≥ 0 be large enough such that u0 ∈ [1/n0, n0], and let n > n0 and define

τn = inf{t ∈ [0, τ) : u(t) /∈ (1/n, n)}

Now we want to show that τn is an empty set, and we assume also that inf Φ = ∞. Clearly

τn is an increasing sequence as n increased. Let τ∞ = limn→∞ τn, we have τ∞ < τ a.s. by

definition.

To complete this proof we need to show that τ∞ = ∞ a.s. with implies that τ = ∞. By

contradiction if the statement is not true then there is a pair of constant T > 0 and ε ∈ (0, 1)

such that P{τ∞ > T} > ε which means there is an integer n1 > n0 such that

P{τn < T} ≥ ε for all n ≥ n1. (4.8)

Now let us define a function G(u) as

V (u(t)) = V (x(t), y(t), z(t)) = x+ 1− lnx+ y + 1− ln y + z + 1− ln z
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which is a non-negative function because of the inequality v+1− ln v ≥ 0 see [3]. By applying

Itô formula on G(u) we get

dV = [(1− 1

x
)(λ− µ1x− (1− η)βxz + qy)

+(1− 1

y
)((1− η)βxz − µ2y − qy)

+(1− 1

z
)((1− ε)py − µ3z) +

1

2
(σ2

1 + σ2
2 + σ2

3)]dt

+σ1(x− 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3

= [λ− µ1x− (1− η)βxz + qy − λ

x
+ µ1 + (1− η)βz + q

y

x

+(1− η)βxz − µ2y − qy − (1− η)β
xz

y
+ µ2 + q

+(1− ε)py − µ3z − (1− ε)py
z

+ µ3]dt+
1

2
(σ2

1 + σ2
2 + σ2

3)]dt

+σ1(x− 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3

= [λ+ µ1 + µ2 + µ3 + q +
1

2
(σ2

1 + σ2
2 + σ2

3) + (1− ε)py + (1− η)βz

−(µ1x+ µ2y + µ3z +
λ

x
+
qy

x
+ (1− η)

βxz

y
)]dt

+σ1(x− 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3

this implies that

dV ≤ [λ+ µ1 + µ2 + µ3 + q +
1

2
(σ2

1 + σ2
2 + σ2

3) + (1− ε)py + (1− η)βz]dt

+σ1(x− 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3

Let a = λ+ µ1 + µ2 + µ3 + q + 1
2
(σ2

1 + σ2
2 + σ2

3), and b = max{(1− ε)p, (1− η)β} and

since we have v ≤ v + 1− ln v then we get

dV (t) ≤ [a+ bV (t)]dt+ σ1(x− 1)dW1 + σ2(y − 1)dW2 + σ3(z − 1)dW3
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let c = max{a, b} and integrate the above inequalty, if t1 ≤ T we get

∫ τn∧t1

0

dV (u(t)) ≤
∫ τn∧t1

0

c(1 + V (u(t)))dt

+

∫ τn∧t1

0

σ1(x− 1)dW1 +

∫ τn∧t1

0

σ2(y − 1)dW2 +

∫ τn∧t1

0

σ3(z − 1)dW3

by definition this implies that

EV (u(τn ∧ t1)) ≤ V (u0) + E

∫ τn∧t1

0

c(1 + V (u(t)))dt,

≤ V (u0) + ct1 + cE

∫ τn∧t1

0

V (u(t))dt,

≤ V (u0) + cT + cE

∫ t1

0

V (τn ∧ t1)dt,

= V (u0) + cT + c

∫ t1

0

EV (τn ∧ t1)dt,

From the Gronwall inequality we have

EV (τn ∧ t1) ≤ c1 = (V (u0) + cT )ecT (4.9)

Set Ωn = {τn ≤ T} for n ≤ n1 and by inequality 4.8, P (Ωn) ≥ ε. Notice that there is some

of x, y, or z such that u(τn, ω) = n or 1/n, for every ω ∈ Ω that means V (u(τn, ω)) is greater

than n− 1− ln(n) and 1
n

+ 1− ln(1/k) = 1
n

+ 1 + ln(n), i.e.,

V (u(τn, ω)) ≥ [n− 1− ln(n)] ∧ [(1/n) + 1 + ln(n)] .

from the inequalities 4.8 and 4.9 we get

c1 ≥ E[1Ωn(ω)V (u(taun, ω))]

≥ E ([n− 1− ln(n)] ∧ [(1/n) + 1 + ln(n)]) ,

where 1Ωn is the indicator function of Ωn, passing the limit for n →∞ gives c1 = ∞ which a

contradiction. Therefore τ∞ =∞ a.s., which complete the proof.
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4.4 Stability Analysis

In this section we discuss the stability analysis of the system (4.1 - 4.3), but first let us

recall some definitions and theorems that we need in this process, you can find more details

in [2] and [24].

Definition 4.4.1 ( [2], page 110, 119). (i) The trivial solution of equation 4.5 is said to be

stable in probability if for every ε ∈ (0, 1) and r > 0 there is δ = δ(ε, r, t0) > 0 such that

P{|u(t; t0, u0)| < r for all t ≥ t0} ≥ 1− ε

whenever |u0| < δ. Otherwise, it is said to be stochastically unstable.

(ii) The trivial solution is said to be stochastically asymptotically stable if it is stochastically

stable and for every ε ∈ (0, 1) and r > 0 there is δ = δ(ε, r, t0) > 0 such that

P{ lim
t→∞

u(t; t0, u0) = 0} ≥ 1− ε

whenever |u0| < δ.

(iii) The trivial solution is said to be stochastically asymptotically stable in the large if it is

stochastically stable and, moreover, for all u0 ∈ Rd and r > 0 there is δ = δ(ε, r, t0) > 0

such that

P{ lim
t→∞

u(t; t0, u0) = 0} = 1.

(iv) The trivial solution of equation 4.5 is said to be almost surely exponentially stable if

lim
t→∞

sup
1

t
ln |u(t; t0, u0)| < 0

for all u0 ∈ Rd.

Notice in our system the first equation 4.1 has no direct equilibrium point in R, but for

4.2 and 4.3 they do have equilibrium point at (y, z) = (0, 0). In the following theorem we will
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show that the trivial solution (0, 0). For now let us focus on y, z and we will come back to x and

show it is stable in distribution. The coming theorem shows that 4.2 and 4.3 are exponentially

stable, under certain conditions on the parameters.

Theorem 4.4.2. In the system (4.1− 4.3), y(t) and z(t) are almost surely exponentially stable

if the following conditions hold:

(a) (1− ε)p− q − µ2 + 1
2
σ2

2 < 0;

(b) [(1− η)βγ − µ3][(1− ε)p− q− µ2] ≤ [1− ε)p− q− µ2 + 1
2
σ2

2][(1− η)βγ − µ3 + 1
2
σ2

3].

where γ = max{x}.

Proof. By adding equations 4.2 and 4.3 we get

d(y + z) = [((1− ε)p− µ2 − q)y + ((1− η)βx− µ3)z] dt+ σ2ydW2 + σ3zdW3 (4.10)

Define V (y, z) = ln(y(t) + z(t)) for y, z ∈ R+, then Itô formula gives

dV =

[
1

y + z
[((1− ε)p− q − µ2)y] +

1

y + z
[((1− η)βx− µ3)z] +

1

2

σ2
2y

2

(y + z)2
+

1

2

σ2
3z

2

(y + z)2

]
dt

+
y

y + z
σ2dW2 +

z

y + z
σ3dW3

=
1

(y + z)2

[
(y + z)[((1− ε)p− q − µ2)y + ((1− η)βx− µ3)z] +

1

2
σ2

2y
2 +

1

2
σ2

3z
2

]
+

y

y + z
σ2dW2 +

z

y + z
σ3dW3

≤ 1

(y + z)2

[
(y + z)[((1− ε)p− q − µ2)y + ((1− η)βγ − µ3)z] +

1

2
σ2

2y
2 +

1

2
σ2

3z
2

]
+

y

y + z
σ2dW2 +

z

y + z
σ3dW3,

=
1

(y + z)2


(
y z

)(1− ε)p− q − µ2 + 1
2
σ2

2 (1− η)βγ − µ3

(1− ε)p− q − µ2 (1− η)βγ − µ3 + 1
2
σ2

3


y
z




+
y

y + z
σ2dW2 +

z

y + z
σ3dW3
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If the theorem conditions hold, then the matrix

(1− ε)p− q − µ2 + 1
2
σ2

2 (1− η)βγ − µ3

(1− ε)p− q − µ2 (1− η)βγ − µ3 + 1
2
σ2

3


is negative-definite, that means it has negative eigenvalue, let λmax be the largest eigenvalue

then the above inequality can be written as

dV (y, z) ≤
[
−|λmax|

1

(y + z)2
(y2 + z2)

]
dt+

σ2y

y + z
dW2 +

σ3z

y + z
dW3

Using the fact that y2 + z2 ≥ 2yz we get (y2 + z2)/(y + z)2 ≥ 1/2. Hence

dV = d ln(y(t) + z(t)) ≤ −1

2
|λmax|dt+

σ2y

y + z
dW2 +

σ3z

y + z
dW3

By integrating the above inequality, and using the fact from [2] that

lim sup
t→∞

1

t
|Wi(t)| = 0 for i = 2, 3,

we get

lim sup
t→∞

1

t
ln(y(t) + z(t)) ≤ −1

2
|λmax| < 0 almost surely

This completes the proof.

Remark 4.4.3. We got stability of the components y and z without the help of the productive

number R0 whether R0 < 1 or R0 > 1. Notice also the conditions in Theorem 4.4.2 can not

hold in the deterministic case when σ2 = σ3 = 0.

Now, we want to show the stability of the first component x(t), we will show that x(t) is

stable in distribution, which means it is stable around the mean value λ/µ1. Before doing that

let us first introduce some of the Lemmas that we need.

Lemma 4.4.4. Let W1(t) be one-dimensional standard Brownian motion, then

E{eσ1(W1(t)−W1(s))} = e
σ21
2

(t−s), for s ≤ t.
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Proof. Let W = W1(t) −W1(s), from the definition of the Brownian motion, we have W ∼

N(0, t− s), thus

E{eσ1W} = E{eσ1(W1(t)−W1(s))} =

∫ ∞
−∞

eσ1w · 1√
2π(t− s)

· e−
w2

2(t−s) dw

=
1√

2π(t− s)

∫ ∞
−∞

e−
(w+σ1(t−s))

2

2(t−s) · e
σ21
2

(t−s) dw

= e
σ21
2

(t−s).

Lemma 4.4.5. Let x1(t) be a solution of

dx1(t) = (λ− µ1x1(t))dt+ σ1x1(t)dW1(t) (4.11)

then limt→∞E[x1(t)] = λ/µ1, for any initial x1(0) ∈ R+.

Proof. For any initial value x1(0) ∈ R+, there is a unique solution x1(t) of equation 4.11 which

as the following explicit form

x1(t) = x1(0)e−(µ1+ 1
2
σ2
1)t + λ

∫ t

0

e−(µ1+ 1
2
σ2
1)(t−s) · eσ1(W1(t)−W1(s)) ds

By taking the expectation of the above equation with the fact that W1(0) = 0 we get

E[x1(t)] = E

[
x1(0)e−(µ1+ 1

2
σ2
1)t + λ

∫ t

0

e−(µ1+ 1
2
σ2
1)(t−s) · eσ1(W1(t)−W1(s)) ds

]

By applying Lemma 4.4.5 we get

E[x1(t)] = x1(0)e−µ1t +
λ

µ1

(1− e−µ1t)

Thus,

lim
t→∞

E[x1(t)] =
λ

µ1
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Lemma 4.4.6. If x1(t) is a solution of equation 4.11, then for any initial value x1(0) ∈ R+ we

have the following

i. x1(t) admits a unique stationary distribution π.

ii. x1(t) satisfied the following

lim
t→∞

1

t

∫ t

0

x1(s)ds =

∫ ∞
0

x1πdx1 =

∫ ∞
0

f(x1)dx1 =
λ

µ1

Proof. i. Define a twice continuously differentiable function V (x1) = x1 − 1− lnx1, then

from Itô formula we get

LV (x1) = (1− 1

x1

)(λ− µ1x1) +
1

2
σ2

1 = −µ− 1− λ

x1

+ λ+ µ1 +
1

2
σ2

1.

By choosing sufficiently small ε and let D = (ε, 1/ε), then

LV (x1) ≤ −1, for any x1 ∈ Dc.

This completes the proof.

iii. From the ergodicity of x1 we get

P
{

lim
t→−∞

1

t

∫ t

0

x1(s)ds =

∫ ∞
0

x1π(dx1)

}
= 1

Hence

lim
t→−∞

1

t

∫ t

0

x1(s)ds =

∫ ∞
0

x1π(dx1) =

∫ ∞
0

f(x1)x1dx1 =
λ

µ1

, Almost surely.

where we used the fact limt→∞E[x1(t)] = λ/µ1.
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Theorem 4.4.7. Let (x(t), y(t), z(t)) be a solution of the system (4.1 − 4.3) and x1(t) is a

solution of equation 4.11, the under the condition of Theorem 4.4.2 we have

lim
t→∞

[x(t)− x1(t)] = 0 in probability. (4.12)

Proof. From the comparison theorem of stochastic differential equations, we have x(t) ≤ x1

i.e.,

x(t)− x− 1(t) ≤ 0 (4.13)

to complete this proof we need to show that lim inft→∞[x(t)−x1(t)] ≥ 0 a.s. Let us introduce

the following stochastic differential equation, which will help us in this proof

dxr(t) = [λ− (µ1 + r)xr(t)]dt+ σ1xr(t)dW1 (4.14)

with the initial xr(0) = x(0). Remember our main equation 4.1.

dx(t) = [λ− µ1x− (1− η)βxz + qy]dt+ σ1xdW1(t)

Recall equation 4.11

dx1(t) = (λ− µ1x1(t))dt+ σ1x1(t)dW1(t)

from the fact that

lim inf
t→∞

[x(t)−x1(t)] = lim inf
t→∞

(x(t)−xr(t))+(xr(t)−x1(t)] ≥ lim inf
t→∞

[x(t)−xr(t)]+lim inf
t→∞

[xr(t)−x1(t)].

we will prove the following claims.

Claim 1: lim inft→∞[x(t)− xr(t)] ≥ 0 a.s.
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Proof. By subtracting the above equation we get

d(x(t)− xr(t)) = [−µ1(x− xr) + rxr − (1− η)βxz + qy]dt+ σ − 1(x− xr)dW1

= [−(µ1 + r)(x− xr) + (r − (1− η)βz)x+ qy] dt+ σ1(x− xr)dW1.

which as a solution

x(t)− xr(t) = φ(t)

∫ t

0

φ−1(s)((r − (1− η)βz)x+ qy)dx(s)

where

φ(t) = e−(µ1+r+ 1
2
σ2
1)t+σ1W1(t).

From Theorem 4.4.2 we have that y(t)→ 0 and z(t)→ 0 a.s. as t→∞.

Thus, for all ω ∈ Ω, if t > T , then

x(t)−xr(t) = φ(t)

(∫ T

0

φ−1(s)((r − (1− η)βz)x+ qy)dx(s) +

∫ t

T

φ−1(s)((r − (1− η)βz)x+ qy)dx(s)

)

Hence x(t)− xr(t) ≥ φ(t)κ(T ), where

κ(T ) =

∫ T

0

φ−1(s)((ε− (1− η)βz)x(s) + qy(s))dx(s)

Since |κ(T )| <∞ and φ(t)→ 0 a.s.

Therefore,

lim inf
t→∞

[x(t)− xr(t)] ≥ 0 a.s. (4.15)

Claim 2: lim inft→∞[xr(t)− x1(t)] ≥ 0 a.s.

Proof. From equations 4.1 and 4.11 we have

d(xr(t)− x1(t)) = [−µ1(xr(t)− x1(t))− rxr]dt+ σ1(xr(t)− x1(t))dW (t).
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which has a solution in the form

xr(t)− x1(t) = −r
∫ t

0

xre
−(µ1+σ2

1/2)(t−s)−σ1(W1(t)−W1(s))ds

xr is the solution for equation 4.14, which has the following explicit form

xr = λ

∫ t

0

e−(µ1+r+σ2
1/2)(t−s)+σ1(W1(t)−W1(s))ds

Therefore,

|xr(t)− x1(t)| = r

∫ t

0

xre
−(µ1+σ2

1/2)(t−s)−σ1(W1(t)−W1(s))ds.

By taking the expectation and applying the result in Lemma 4.4.4 we get

E|xr(t)− x1(t)| = rE

[∫ t

0

xre
−(µ1+σ2

1/2)(t−s)−σ1(W1(t)−W1(s))ds

]
= r

∫ t

0

E
[
xre
−(µ1+σ2

1/2)(t−s)−σ1(W1(t)−W1(s))ds
]

= r

∫ t

0

E
[
xre
−(µ1+σ2

1/2)(t−s)
]
· E
[
e−σ1(W1(t)−W1(s))ds

]
= r

∫ t

0

e−µ1(t−s)E[xr]ds, Using Lemma 4.4.4.

But

E[xr] = λ

∫ t

0

e−(µ1+r)(t−s)ds ≤ λ

µ1 + r
.

Thus,

E|xr(t)− x1(t)| ≤ λre−µ1t

µ1 + r
(eµ1t − 1)

That means

lim
r
→ 0 lim

t
→ E|xr(t)− x1(t)| = 0

That implies

lim
r→0

lim
t→∞
|xr(t)− x1(t)| = 0 In probability. (4.16)
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Therefore, 4.13, 4.15, and 4.16 complete the proof.

Theorem 4.4.8. Let (x(t), y(t), z(t)) be the solution of the system (4.1 − 4.3) with the initial

(x(0), y(0), z(0)) ∈ R3
+, and assume that the conditions of Theorem 4.4.2 hold, then

lim
t→∞

1

t

∫ t

0

x(s)ds =
λ

µ1

, a.s. and x(t)→ π as t→∞,

where, x(t)→ π means the convergence in distribution.

Proof. The proof follows directly from Lemma 4.4.6 and Theorem 4.4.7.
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4.5 Existence of Ergodic Stationary Distribution.

Let U(t) be a Markov process in Rd represented by the following stochastic differential

equations.

dU(t) = f(U(t))dt+
n∑
k=1

Bk(U(t))dWk(t) (4.17)

The diffusion matrix is define as

A(u) = (aij(u)) , where aij(u) =
n∑
k=1

Bi
k(u)Bj

k(u) (4.18)

Lemma 4.5.1. (See [36,37]) The model 4.6 is positive recurrent if there exists a boundary open

subset D ⊂ Rd with a regular boundary and

(A1) There is a positive number M such that

d∑
i,j=1

aij(u)ξiξj ≥ |ξ|2, u ∈ D and ξ ∈ Rd. (4.19)

(A2) There exists a nonnegative C2-function V : Dc → R such that LV (u) < −θ for some

θ > 0, and any u ∈ Dc. Moreover, the positive recurrent process u(t) has a unique

stationary distribution π(·), and

P{ lim
T→∞

1

T

∫ T

0

f(U(t))dt =

∫
Rd
f(u)µ(du)} = 1 (4.20)

for all u ∈ Rd, where f(·) is an integrable function with respect to the measure π(·).

Theorem 4.5.2. Assume thatR0 > 1. Under conditions σ2
1 ≥ µ1−µ∗, σ2

2 ≥ µ2−µ∗+ 1
2
(1−ε)p,

and µ3 ≥ µ3 − 1
2
(1 − ε)p. The system (4.1 -4.3) has a unique ergodic stationary distribution

π(·).

Proof. We have seen that the system 4.1 - 4.3 has a unique positive solution x(t), y(t), z(t) for

any initial value (x0, y0, z0) ∈ R3
+.
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The diffusion matrix of the system is given by

A =


σ2

1x
2 0 0

0 σ2
2y

2 0

0 0 σ2
3z

2


Then

3∑
i,j=1

aij(u)ξiξj = σ2
1x

2ξ2
1 + σ2

2y
2ξ2

2 + σ2
3z

2ξ2
3 ≥M |ξ|2, (4.21)

where, M = min{σ2
1x

2, σ2
2y

2, σ2
3z

2}, thus condition (A1) satisfied.

Now, we want to show that condition (A2) is also satisfied by constructing a nonnnegative

Lyapunov function V such that LV < 0.

Consider the positive functions

V1(x, y) =
1

2
(x− x̄+ y − ȳ)2, and V2(z) =

1

2
(z − z̄)2

Now let

V (x, y, z) = V1(x, y) + V2(z) =
1

2
(x− x̄+ y − ȳ)2 +

1

2
(z − z̄)2

By applying Itô formula we get

LV1(x, y) = (x− x̄+ y − ȳ)(λ− µ1x− µ2y) +
1

2
σ2

1x
2 +

1

2
σ2

2y
2

since we have λ− µ1x̄− µ2ȳ = 0, ⇒ λ = µ1x̄+ µ2ȳ, then we get

LV1(x, y) = (x− x̄+ y − ȳ)[−µ1(x− x̄)− µ2(y − ȳ)] +
1

2
σ2

1x
2 +

1

2
σ2

2y
2,

= −µ1(x− x̄)2 − µ2(y − ȳ)2 − µ1(x− x̄)(y − ȳ)− µ2(x− x̄)(y − ȳ) +
1

2
σ2

1x
2 +

1

2
σ2

2y
2

By using the fact that, x2 ≤ 2(x− a)2 + 2a2, we get

1

2
σ2

1x
2 ≤ σ2

1(x− x̄)2 + σ2
1x̄

2 and
1

2
σ2

2y
2 ≤ σ2

2(y − ȳ)2 + σ2
2 ȳ

2

45



thus

LV1(x, y) ≤ −µ1(x− x̄)2 − µ2(y − ȳ)2 − 2µ∗(x− x̄)(y − ȳ) + σ2
1(x− x̄)2 + σ2

1x̄
2

+σ2
2(y − ȳ)2 + σ2

2 ȳ
2

where µ∗ = min{µ1, µ2}, and since −2µ∗(x− x̄)(y − ȳ) ≤ µ ∗ (x− x̄)2 + µ∗(y − ȳ)2, then

LV1(x, y) ≤ −(µ1 − µ∗ − σ2
1)(x− x̄)2 − (µ2 − µ∗ − σ2

2)(y − ȳ)2 + σ2
1x̄+ σ2

2 ȳ(4.22)

Similarly,

LV2(z) ≤ −(µ3 −
1

2
(1− ε)p− σ2

3)(z − z̄)2 +
1

2
(1− ε)p(y − ȳ)2 + σ2

3 z̄
2

Thus,

LV (x, y, z) = LV1(x, y) + LV2(z)

≤ −(µ1 − µ∗ − σ2
1)(x− x̄)2 − (µ2 − µ∗ − σ2

2)(y − ȳ)2 + σ2
1x̄+ σ2

2 ȳ

−(µ3 −
1

2
(1− ε)p− σ2

3)(z − z̄)2 +
1

2
(1− ε)p(y − ȳ)2 + σ2

3 z̄
2

= −(µ1 − µ∗ − σ2
1)(x− x̄)2 − (µ2 − µ∗ +

1

2
(1− ε)p− σ2

2)(y − ȳ)2 − (µ3 −
1

2
(1− ε)p− σ2

3)(z − z̄)2

+σ2
1x̄+ σ2

2 ȳ + σ2
3 z̄

2

= −k1(x− x̄)2 − k2(y − ȳ)2 − k3(z − z̄)2 + ω

where k1 = µ1 − µ∗ − σ2
1 , k2 = µ2 − µ∗ + 1

2
(1 − ε)p − σ2

2 , k3 = µ3 − 1
2
(1 − ε)p − σ2

3 , and

ω = σ2
1x̄+ σ2

2 ȳ + σ2
3 z̄

2

Since k1, k2, k3 are positive, and by the same computation in [38], we obtained

lim sup
t→∞

1

t

∫ t

0

[k1(x(s)− x̄)2 + k2(y(s)− ȳ)2 + k3(z(s)− z̄)2]ds ≤ ω.
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then the ellipsoid

k1(x− x̄)2 + k2(y − ȳ)2 + k3(z − z̄)2 + ω = 0

lies entirely in R3
+, so we can take any neighborhood D of this ellipsoid, such that

LV (u) < −θ, for all u ∈ Dc.

Therefore, condition (A2) also holds, and that completes the proof.

4.6 Numerical Results for the stochastic model

In this section we discuss some of the numerical results of the system (4.1−4.3) to support

our previous analytic result. The method we use is Euler-Maruyama method. The approximate

solution of the system we (4.1 - 4.3) can be written as follows

xk+1 = xk + (λ− µ1xk − (1− η)βxkzk + qyk)∆t+ σ1xk∆W1k (4.23)

yk+1 = yk + ((1− η)βxkzk − µ2yk − qyk)∆t+ σ2yk∆W2k (4.24)

zk+1 = zk + ((1− ε)pyk − µ3zk)∆t+ σ3zk∆W3k (4.25)

where ∆Wik = Wi(k+1) −Wik, for i = 1, 2, 3 which is normally distributed for more informa-

tion about this method see [29, 32]. We used Matlab to simulate above system.

After we have chosen the parameters carefully such that the sufficient and necessary con-

ditions in Theorem 4.4.2 hold, which are given below

parameters λ µ1 µ2 µ3 β η ε p q σ1 σ2 σ3

values 100 20 5 7 0.6 0.6 0.2 2 5 − − −

Table 4.1:

we are going to represent the following numerical results dependent upon the values of

σ1, σ2, and σ3.

When σ1 = σ2 = σ3 = 0 the stochastic model becomes deterministic, the solution given

as follows
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Figure 4.1: Stochastic model without noise
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Figure 4.2: Stochastic model without noise

Figure 4.3 represents the stochastic solution of x(t), y(t), and z(t) with the noise σ1 = 1.2,

σ2 = 0.9, and σ3 = 1.4 .
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Figure 4.3: Stochastic model with large noise
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Figure 4.4: Stochastic model with large noise

Figure 4.5 shows the difference between stochastic model and deterministic model. The

deterministic solution is represented by the dashed lines.
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Figure 4.5: Combining Stochastic and Deterministic Solutions
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Chapter 5

Conclusion

We have analyzed the stability of the HBV infection model using different approaches,

we considered the autonomous, nonautonomous, and stochastic HBV infection models, with

conclusions as follows.

Autonomous HBV Infection Model. We have studied the model 2.1 where all parameters

are time-dependent. We have shown the basic properties of solutions (existence, uniqueness,

and positiveness), then we found the system 2.1 has two (disease-free and endemic) equilibrium

points. Then we discussed the stability analysis at each of them, and we have got two necessary

conditions that ensure the stability of the system 2.1.

Nonautonomous HBV Infection Model. The nonautonomous theory has been used to dis-

cuss the HBV infection model when the production rate of the uninfected cells is time-dependent

λ(t), we have also shown here the basic properties of solutions, then we prove the system (4.1-

4.3) satisfied a uniform strictly contracting property when µ2 > (1 − ε)p, we prove also the

system has pullback attractor which exponentially stable under certain conditions.

Stochastic HBV Infection Model. We used tools from the stochastic dynamic systems to

study the stability analysis of the stochastic HBV infection model (4.23-4.25), before doing

that, we have shown the basic properties of solutions, then we studied the stability in two

different ways. First, we prove that system 4.24 and 4.25 are exponential stable at (0, 0), which

is still the equilibrium point for 4.24 and 4.25, then we shown that 4.23 is stable in probability
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under some conditions. Secondly, we prove the systems (4.23-4.25) have a unique ergodic

stationary distribution π(·).

Numerical Results. At the end of each chapter we have represented the numerical results of

the HBV infection models. All the simulations codes are written in MATLAB, the parameters

sets were chosen carefully such that the required conditions satisfied.
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