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Abstract

Automating visual inspection is rapidly finding its way into non-invasive industrial and med-

ical processes. In this work, we address detection automation opportunities in the task of inter-

preting both medical and industrial images, we combine domain knowledge with state-of-the-art,

domain-independent methods such as Convolutional Neural Networks (CNN) to address them.

Specifically, we address two problems in additive manufacturing and one in medical imaging as

described below. We provide a method to improve the resolution of and automate the extraction

of local and global porosity features from XCT images of additively manufactured Ti-6Al-4V. We

also address the automation issues in characterizing local roughness features, particularly the cur-

vature of microscopic surface pits observed in microscopy images of AM Ti-6Al-4V. Finally, we

developed a deep learning model to automate the task of detection and segmentation of different

muscles in images obtained from MRI of the lower back.
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Chapter 1

Introduction

Automatic visual inspection is rapidly finding its way into non-invasive industrial and medical pro-

cesses. This development especially benefits from increasingly powerful computers and reasonably

priced imaging technologies. Visual inspection means inspecting by looking. On the one hand, vi-

sual inspection can ensure specific quality characteristics, and on the other hand, it can be used

to detect and analyze variations, anomalies and patterns. Nearly all industrially produced goods

are visually inspected during manufacturing, assembly and/or transportation [8]. In the health care

industry, radiologists and pathologist inspect a large number of medical images in order to detect

patterns and anomalies. Traditionally, industrial and medical inspection tasks are either carried out

by specialized personnel, appropriately trained for this, or by regular employees in addition to their

regular duties.

Although the human visual system, consisting of the eyes and brain, has numerous astonishing

capabilities that surpass machines in many ways, visual inspection carried out by humans comes

with some unavoidable disadvantages. Tediousness, fatigue, lack of objectivity and reproducibility,

and costliness in terms of both time and money are among the most important disadvantages of

manual inspection [8]. For example, in the health care industry, the abundance of data and the

progress in imaging has changed how radiologists interpret images. For a single patient with

multiple trauma, a radiologist typically views 4000 CT scan images, leading to fatigue [36].

As a result, it is desirable to automate visual inspection where saving time and human effort

is possible. A good automated system works without fatigue, provides objective and reproducible
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results, and allows a complete and detailed documentation. In the last few decades, computer

vision has been used to detect large defects in industrial parts or to characterize surface texture. In

health care, Watson, an IBM prototype for artificial intelligence, can identify pulmonary embolism

on CT images and detect abnormal wall motion on echocardiography [36].

In this dissertation, we address detection automation opportunities in the task of interpreting

both medical and industrial images. To do this, we combine domain knowledge with state-of-

the-art, domain-independent methods such as Convolutional Neural Networks (CNN) and deep

Generative Adversarial Neural Networks (GAN) to address those tasks. In Chapter 2 we provide

some background on both the imaging technologies and image processing methods relevant to this

dissertation. Then, in the remaining chapters, we use these technologies and methods to address

automatic image interpretation in two problems in additive manufacturing and one in medical

imaging, as described below.

In Chapter 3, we automate extraction of local and global porosity features from X-ray CT

(XCT) images of additively manufactured (AM) parts of titanium alloy Ti-6Al-4V. We developed

a methodology for utilizing the data obtained from XCT in order to visualize and extract features of

porosity from two sets of low- and high- resolution scans. We first developed a deep GAN model

to improve the resolution of the low-resolution images. We then developed a method that extracts

3-dimensional contours as a representation of pores. Finally, features of position, size, shape and

orientation of the pores are extracted. In order to characterize orientation of the pore, we propose

an ellipsoid estimation to calculate how much a pore extends in three dimensions. The features

can be used to classify pores and investigate their effect on mechanical properties such as fatigue

failure and crack initiation. The main contributions of this work are:

• Developing a deep GAN model to improve the resolution of low-resolution XCT images of

AM parts, using high-resolution XCT images for training.

• Developing a framework to characterize pores using numerical features that can be used in

classification algorithm, such as size, shape and spatial orientation of individual pores.
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In Chapter 4, we address automation of characterizing surface roughness features, particularly

curvature of microscopic surface pits, in microscopy images of AM parts made of Ti-6Al-4V.

Here, we extract geometric features of individual valleys in order to investigate their relationship

with fatigue failure and crack initiation points. We developed a method to extract both traditional,

and newly proposed global roughness parameters of the whole surface from images collected using

microscopy. Additionally, local roughness parameters are also extracted and used to estimate the

elastic stress concentration factor. The contributions of this chapter are:

• Automating the currently laborious process of extracting valley radii in roughness data, re-

sulting in significant time reduction while maintaining accuracy and objectivity.

• Using valley radii together with other automatically extracted features of the valleys to pre-

dict fatigue life.

• Data-intensive statistical analysis of the effects of different microscopic imaging scenarios

on surface roughness parameters.

Finally, in Chapter 5, we move from additive manufacturing to medical images. In this study, we

automate the task of detection and segmentation of different muscles in images obtained from MRI

of lower back. This automated method facilitates, among other tasks, the analysis of mechanical

interactions between muscles for a considerably larger number of individuals. The contributions

of this chapter are:

• Development of a deep CNN model to segment muscles from a stack of MRI images.

• Using the model to automate the process of calculating lever arms and other biomechanical

measurements.

In all three of the applications above, we developed tools that can handle large image data from dif-

ferent parts/individuals. The three models developed automate the measurement and interpretation

of the data, leading to significant time efficiency and equal or higher accuracy of measurements

compared to traditional manual approaches.
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Chapter 2

Technologies and Methods

This chapter is intended to give the reader the necessary background information necessary to more

easily follow subsequent chapters. It is divided into two sections. The first section discussed the

technologies involved to obtain the images analyzed. The second section provides an overview of

Convolutional Neural Networks and associated methods used throughout the dissertation.

2.1 Visual inspection and imaging technologies

We start this section with an overview of non-invasive technologies. Next, we discuss applications

of imaging, especially X-ray Computed Tomography (XCT) in additive manufacturing (AM). We

then deal with imaging techniques in surface roughness analysis and roughness parameters used to

characterize roughness. Finally, we provide a history of imaging in medical settings and provide

some recent works on applications of AI in the field of image analysis and segmentation for human

vertebrae.

At the most fundamental form, non-destructive testing (NDT) involves visual inspection – or

simply looking at the specimen using a system or set of criteria for evaluation to find defects. Some

non-destructive techniques were initially developed for clinical applications. An example of a non-

destructive testing technique that has been transferred over from a medical context to an industrial

context is digital radiography. This method provides immediate feedback to health care practi-

tioners, particularly dentists, by sending scans to a computer in real-time. Other technological

4



improvements in non-destructive methods that have been transfered over from medical equipment

advances to manufacturing settings include phased array ultrasonic testing, and endoscopy.

In a similar manner, NDT tools the were developed to address industrial applications have

been repurposed to be used in medical contexts. For example, medical ultrasound was first used

in industry before it was used for medical imaging. Anohter is example is provided in [51] which

discusses how an industial NDT method that is used for electronic components can be transfered

over for medical imaging with high accuracy.

Seen in this light, non-destructive testing can be considered an interdisciplinary field that

involves researches that have different interests and aims.

In both medical and industrial settings, the purpose of performing non-invasive tests is similar.

Early and accurate diagnosis in medicine leads to a more effective treatment, in some cases even

preventing a health issue. In industry, detecting possible failures by non-destructive techniques

helps avoid accidents and plan repairs at convenient times, which minimizes down time.

The difference between the two disciplines is that in industry, non-destructive testing provides

a tool for designers to improve the product by experimenting with different designs. In medicine,

one cannot change the design but might be able to improve the patient’s life. Although medical

and industrial imaging occur in different settings and address different issues, they both fall in the

same category of non-invasive evaluation in terms of the mechanisms involved. According to [23],

such methods have five essential features:

• Providing energy from an external source to the test object.

• Possibly, as a result of defects in the part, the energy distribution in the test object changes

• Detecting the change in energy properties by a sensitive detector.

• Measuring and recording energy readings from the detector

• Interpreting the results and deciding whether the part is defective or not

It is the automation of that last step that this dissertation is concerned with.
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2.1.1 Non-destructive evaluation in manufacturing

Imaging in industrial settings falls into the category of non-destructive evaluations (NDE). NDE

can be defined as a set of methods used to examine an object without reducing its usefulness in

the future. Historically, the term NDT was used to refer to a pass/fail mechanism for parts and

components. It was usually used for finding large defects which lead to the rejection of the part.

Breakthroughs in NDT technology resulted in the ability to detect smaller defects and it could

be used to evaluate the probability of failure of the part given features of the defects leading to

the broader term NDE. Later, a basic change in philosophy required designers to incorporate the

probability of failure in the design of the product to produce a part that is robust to component

failure. This led to the emergence of the field of fracture mechanics. Now flaw detection was not

enough and flaw features needed to be gathered to serve as an input to fracture mechanics models

to predict the remaining life of the components. This led to the emergence of terms of Quantitative

NDE (QNDE) and Non-destructive Characterization (NDC). One categorization of NDE methods

provided in [47] is as follows:

1. EM radiation, including • X-ray and Gamma ray • Optical testing with visible photons • Ther-

mal or Infrared imaging • Gigahertz-Terahertz Waves

2. Acoustic Energy, including • Ultrasonic testing • Acoustic Emission

3. Tracer, including • Dye penetrant • Magnetic Particle inspection • Leak testing • Nuclear

Tracers (Medicine)

4. Eddy Current

Our work in Chapters 3 and 4 can be categorized as Non-destructive Characterization (NDC). The

goals of NDC and QNDE include determining fundamental micro-structural characteristics such as

grain size, porosity and texture, or the mechanical properties related to them such as fatigue, creep,

and fracture toughness. In such applications, industrial imaging is generally used for two kinds

of features. The first involves capturing surface features such as roughness, which we explore in
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Chapter 4. The methods used include various microscopy techniques as well as laser scanning. The

second kind of feature involves characterizing the interior parts that are impossible or extremely

difficult to access non-invasively, which is addressed in Chapter 3. These use imaging methods

including Magnetic resonance imaging (MRI), Computed Tomography (CT) and its variants.

2.1.2 Non-destructive imaging techniques applied to additive manufacturing parts

As will be discussed in Chapter 3, it is desirable to find a quick non-destructive means of measure-

ment to investigate porosity of additively manufactured metallic parts that is fast and cost-efficient.

Such non-destructive methods can also be incorporated into AM quality control. X-ray computed

tomography (XCT) has emerged as a novel tool that can capture images of AM parts with high

sensitivity to internal defects. Using such images, it is possible to extract pore features and to use

these features for indirectly predicting fatigue failure resistance of AM parts [70].

In Chapter 3, we use XCT images of internal structure of AM parts to characterize their fatigue

failure in terms of the distribution of pores inside them. Our work is novel in the sense that it uses

a resolution-improvement technique and introduces new characterization features such as convex

hulls and minimum-volume bounding ellipsoids to characterize the size and orientation of pores,

which will then help pick out individual pores that can potentially serve as crack initiation sites.

2.1.3 Non-invasive measurements in medicine and ergonomics

According to [57], any measurement system that does not physically breach the skin or enter the

body deeply through an external orifice is considered non-invasive. Throughout the history of

medicine, up to the end of the nineteenth century, most medical diagnoses had to be invasive.

In the past 50 years, however, non-invasive medical imaging systems have gained tremendous so-

phistication and effectiveness, largely due to the evolution of 2-D and 3-D digital signal-processing

algorithms implemented on modern computers.

The main imaging techniques used on humans include X-rays images, Computed Tomography

(CT), Magnetic Resonance Imaging (MRI), Ultrasound imaging, Positron Emission Tomography,
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Single-photon Emission Tomography, and Optical Coherence tomography. The first medical image

was published by Wilhelm Roentgen in 1895, which was an X-ray (although not named X-ray at the

time) radiograph from his wife’s hand. A few months later, the first clinical use of X-rays occurred

in 1896 ([60, 47]). For a long time, this type of radiography, called projection radiography, which

mapped the 3-dimensional structure of the body to a 2-dimensional plane was used [47].

Finally, in 1972, this method was extended to XCT by Godfrey Hounsfield. He used math-

ematical methods for image reconstruction, which had been developed by Allan Cormack. Pro-

jection tomography and CT both use the transmission imaging modality, since they transmit elec-

tromagnetic waves through the body, which are then attenuated in intensity to form an image on

an sensitive surface, capturing the internal structure of the body. Projection radiography mainly

uses an X-ray tube, to generate an X-ray pulse that passes through the body. CT, unlike projection

radiography, uses multiple projections of the same tissue that are collected from different angles by

moving the X-ray source around the body. These projections are fed to a computer which produces

an image of a single plane through the object with other planes eliminated ([60, 47]). This XCT

technology was later adopted in industry for NDT and NDC purposes that are discussed in Section

2.1.2.

Magnetic Resonance Imaging (MRI) is and imaging method that is based on the phenomenon

of nuclear magnetic resonance, first described by Felix Bloch and Edward Purcell. Application of

MRI in medical imaging was first suggested in 1971 by Raymond Damadian. Magnetic resonance

scanners work by exposing the body to a strong magnetic field. The vast number of hydrogen

atom nuclei in the body are then aligned with the field. By partially exciting regions of the body,

these alignments are disturbed, leading to the generation of electromagnetic signatures that can be

detected by an antenna [47].

Our work in Chapter 5 falls in the category of non-invasive measurements of lower-back spine

and muscles. We used stacks of images captured using MRI and applied a deep learning model to

segment the various muscles in the images.
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2.2 Deep Learning, Convolutional and Generative Adversarial Neural Networks

In this section we give an overview of the machine learning techniques used in this dissertation.

Traditional Neural Networks (NNs) can be considered functions that transform an input vector into

an output vector via several (hidden) layers. In each layer, a linear transformation is followed by

a non-linear transformation called an activation function. Each cell in the hidden layers is called

a neuron. The layers in a traditional neural network are also called fully connected layers. In a

fully connected layer, each neuron in a layer is connected to all the neurons in the next layer. In

other words, a single neuron in a fully connected layer is a linear combination of all the neurons in

the previous layer that goes through a non-linear activation function. Figure 2.1-left demonstrates

the architecture of traditional Neural Network models. In recent years, Convolutional Neural Net-

works (CNN) have gained wide acceptance especially in image processing applications. CNNs

were originally inspired by the work of Hubel & Wiesel [34, 33] on cats’ visual cortex. They

discovered that many neurons react only to stimuli that come from a certain area of visual field

and a particular geometric feature (vertical, horizontal, corner, etc.). LeCun et al. [39] had one of

the first applications of CNNs, where they developed the now well-know LeNet-5 architecture to

recognize handwritten digits. The main difference of CNNs from traditional Neural Networks is

that they also include a convolutional layer in their architecture. The input to a convolutional layer

is (in the context of image processing) usually a stack of 2D matrices (as opposed to a 1d vector

in the case of traditional NNs). A neuron in a convolutional layer is connected to only a small,

usually rectangular, area in the previous layer, called the receptive field of the neuron. A neuron in

the output of a convolutional layer is a convolution (element-wise linear combination) of neurons

in the input layer that are within its receptive field and a filter. The size of the filter is the same as

the size of the receptive field and is a hyper-parameter of the layer, which is usually decided via

experimentation. Figure 2.1-right illustrates the mechanism of a convolutional layer.

9



Figure 2.1: (left) A traditional neural network (right) A convolutional layer [41]

Neural Networks comprise one or more (hidden) layers between input and output variables.

Deep Neural Networks (DNNs) are neural networks that have more that one hidden layer be-

tween the input and output layers [7]. At the time of this writing, the deepest model recorded

was GoogleNet [74] with 22 hidden layers. DNNs, specially deep CNNs have had ample use in

imaging processing. The volume of works has been so large that several survey papers have been

published over the past few years on their architectures [46, 6, 3] and applications [46, 50]. In

the rest of this section, we provide a brief introduction to convolutional neural networks. For fur-

ther information regarding CNNs and deep neural networks please refer to [24] from which the

following introduction is also adapted.

For the task of multi-class classification, the final layer usually goes through a SoftMax ac-

tivation function which assigns a probability to each class. Rectified Linear Unit (ReLU) and its

variations (leaky ReLU, ELU, etc.) are popular activation functions that are usually used for hid-

den layers. The idea behind these activation functions is to keep the neuron intact if its value is

non-negative; otherwise, attenuate its negativity.

A neural net is trained by minimizing a loss function. A loss function is a differentiable

function that measures the difference between the model output and observed data. For the task

of classification, cross-entropy loss function is a common function to use. A common technique
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used for minimizing loss functions is gradient descent, which iteratively modifies parameters of a

function so that it is reduced at each iteration. An iteration is sometimes called an epoch.

One of the benefits of introducing convolutional layers in neural networks is that it results

in a significantly lower number of parameters required to train the model as compared with a

fully connected model with the same number of layers, since each neuron is only connected to

the neurons in its receptive field in the previous layer. The output of a convolutional layer can

be composed of a stack of 2D matrices, called feature maps, that are each the result of the inputs

convolved with a different filter. In this manner, several same-scale image features (vertical line,

horizontal lines, corners, etc.) can be learnt at the same time. As the feature maps through the

layers of a CNN, more complicated image features can be captured via the filters.

2.3 Generative Adversarial Neural Networks

In Chapter 3, we use Generative Adversarial Networks (GANs) to improve the resolution of XCT

images. GANs were proposed by [25] in 2014. Conceptually, GANs consist of two different NNs,

a generator and a discriminator. The generator, as the name implies, generates new artifacts such

as images, videos, sound, etc. The discriminator is usually a binary classifier whose task is to

detect whether the artifact was generated (label = 1) by the generator or is a real artifact (label = 0).

These two networks compete with each other in a way that improves both. Figure 2.2 demonstrates

how a typical GAN is designed. Training GANs is usually done in iterations in which:

• first the generator produces some images,

• only the discriminator is trained using the generated images and (preferably) with label 1

and equal number of real images with label 0,

• then the generator is trained such that the discriminator yields 1 for all generated images. In

this stage, only the generator is trained and the discriminator is only used to obtain labels.
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Figure 2.2: A conceptual GAN design

Note that at no stage are the generator and discriminator trained simultaneously. In fact, the

generator never directly sees any real image. The only information available to the generator is the

loss that is back-propagated through the discriminator.

If trained properly, the generator will be able to generate new data that looks like real data.

Training GANs, however, has proved not to be easy. There has been, and still is, works to under-

stand the dynamics of GANs [61, 37, 38]. For example, [61] proposed Deep Convolutional GANs

(DCGANs) and provided guidelines on the best practices to train a more stable GAN.

2.3.1 GAN-based Super Resolution

As is discussed in Section 3.2.2, we’ll use a GAN model proposed in [68], called SRGAN to im-

prove the resolution of XCT scans taken from AM specimens. This model is a Super Resolution

model. Super-resolution (SR) is a machine learning technique that refers to the task of estimating

a high-resolution version of an image from a lower-resolution version [40]. SR has a wide vari-

ety of applications including improving the resolution of satellite, medical, facial, and text images

[56]. In recent years there have been advancements in using Generative Adversarial Networks

(GANs) for SR. For example, [15], designed a GAN-based deep architecture to improve the res-

olution of MR images, while [49] developed a GAN model, named GAN-CIRCLE (Constrained
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by the Identical, Residual, Cycle Learning Ensemble), to improve the quality of both CT and MR

images. A model was developed by [86] to improve the resolution of satellite images. The reader

is encouraged to refer to the several survey papers have been published that deal with the topic of

GAN-based SR[85, 4, 44] for a much larger list of applications.
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Chapter 3

Porosity analysis and resolution improvement of XCT images of additively manufactured metallic
parts

Abstract

A major challenge for the continued adoption of metallic parts produced via additive manufactur-

ing (AM) is the uncertainty in their micro-structural and mechanical properties. Fatigue failure

resistance is one of these properties that is highly dependent on the microstructure of the parts,

specifically defects such as pores and un-melted regions. Size, shape, and orientation of pores

in a part play a role in their fatigue life. It is important, therefore, to characterize these features.

Information regarding porosity of specimens can be obtained via XCT. However, obtaining high-

resolution XCT images is costly and time-consuming. In this chapter, we use a deep Generative

Adversarial Network (GAN) to improve the resolution of XCT images. We then present a frame-

work for automatically extracting porosity information including size and shape from XCT images.

We also propose using minimum-volume bounding ellipsoid to capture the spatial orientation of

pores. A data set, consisting scans with the resolution of 2.9µm, was obtained via XCT. For a

small sub-volume of the part, a scan with the resolution of 0.7µm was also obtained. We then

used the 0.7µm images to improve the resolution of 2.9µm image Using our porosity framework,

we showed that improving resolution does not help much in finding undetected pores, but among

the pores that were detected, no significant difference was found between pore features of the im-

ages with improved resolution and those of the high-resolution images. On the other hand, these

features were significantly different in low-resolution images.
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3.1 Introduction

Metallic parts produced via laser/powder-based additive manufacturing (AM) methods, such as

laser-powder bed fusion (L-PBF), have appeal to industries such as aerospace, biomedical, nuclear,

and more – as they can be customized for specialized applications (low production volumes). How-

ever, a major challenge against the continued adoption of AM by such industries is the surrounding

uncertainty in micro-structural and mechanical properties of AM parts [43, 79]. Fatigue life is of

major concern in such industries, where it is crucial for parts to have high resistance under dy-

namic loading for prolonged periods. Like the mechanical properties of any metallic part, fatigue

failure depends on microstructure [65, 72]. The microstructure in AM parts is primarily driven by

thermal history experienced during AM (and subsequent heat treatments, if any), i.e. melt pool

temperature, thermal gradient, cooling rate, cyclic reheating.

Thermal history, in turn, depends on powder characteristics, and process parameters, such

as laser power, laser speed, layer thickness, and more [9, 66]. These process-property relation-

ships inherent to AM parts, however, are difficult to discern due to the rapidness, small-scale and

machine-variation inherent to AM. Even under fixed, optimized process parameters, any change

in build/design parameters, such as part size and build orientation, may cause variation in micro-

structural, and consequently, mechanical characteristics. The first step in finding the structure-

property relationships between microstructure and mechanical properties of AM parts is to develop

an understanding of the microstructure itself [16].

Fatigue failure starts from defects that serve as crack initiation sites. These defects are typi-

cally either in the form of pores [87] which are quasi-spherical in shape and occur due to entrapped

gas from the AM process, or as un-melted regions, which are irregularly shaped, have low volume

and appear due to lack of fusion between neighboring layers. Optimizing AM process parame-

ters in order to minimize fatigue failure is an important goal for metallic parts that are to be used

in critical applications common to the aerospace and biomedical industries. Unfortunately, direct

measurement of porosity is complicated for two primary reasons. First, not all pores have the same
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impact on fatigue resistance. The size, shape and orientation of each individual pore can contribute

differently to crack initiation and thus to fatigue failure. Therefore, simple measures such as over-

all density do not serve as good predictors of fatigue resistance. It is necessary to develop more

detailed pore characterization methods to accurately predict a part’s resistance to fatigue. The sec-

ond challenge in measuring porosity is that it is difficult to accurately take physical measurements

of the pores in an AM part. Direct destructive experiments on representative samples can be used

to achieve this goal; however, it is desirable to find a quicker means of measurement that is not

destructive and more cost-efficient. Such non-destructive methods can also be incorporated into

AM quality control.

The most commonly used destructive method to gather information regarding the micro-

structural formation of AM parts is microscopy, in which a micrograph of a cross-section of the

part is analyzed. X-ray Computed Tomography (XCT) is one of the most common non-destructive

methods. In this method, the part is placed between an X-ray source on one side and a screen

sensitive to X-rays (e.g. silver halide) on the other side. As the X-ray travels through the part, it is

attenuated based on its structure and casts a 2D image on the screen. By rotating the part in small

angular increments, the 2D image captures more details of the part structure. Finally, the image is

processed by algorithms that provide a 3D reconstruction of the part’s internal structure. Gener-

ally, an X-ray-produced 3D reconstruction is presented as stacks of 2D gray-scale images where a

more attenuated pixel is assigned a lower value than a less attenuated one. More attenuated pixels

represent voids.

Spierings et al. [71] have made many insightful comparisons between the aforementioned

methods. Microscopy provides highly detailed information about pore size, shape and distribution

in a particular cross-section of the part [12, 88]. However, it fails to provide information about

other sections of the part. Pores are not uniformly distributed in an AM part [80], therefore, results

of microscopy for a particular cross-section cannot be generalized to other sections. On the other

hand, XCT provides useful information about the distribution of the pores and can provide data

descriptive of pore position and shape. However, XCT does not provide high-resolution images
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to capture smaller pores that can be observed via microscopy. XCT images also suffer from the

presence of artifacts such as Poisson noise and rings around a center of rotation [10].

Analysis of the effect of process parameters on the microstructure of AM parts using the

aforementioned porosity measurement methods is becoming highly popular in the literature [65].

Ziolkowski et al. [90] used XCT to characterize porosity in 316L stainless steel produced by Se-

lected Laser Melting (SLM). Parts were intentionally built to have large pores that can be captured

via XCT. They reported aggregate pore characteristics in terms of their size (diameter and area) and

shape (sphericity). Total porosity was calculated based on the ratio of the area of pores detected

and the total area of the material. They also provided a comparison between XCT and microscopy

data made from the same cross-section.

Wang et al. [84] used both XCT and the Archimedes Method to analyze AISI 304L stain-

less steel parts produced using laser-based directed energy deposition (DED). They compared the

results from the two methods and provided discussion on the validity of each of them. The sub-

jectivity of thresholding in the XCT method was discussed; meaning that each pixel (with values

between 0 and 65,535) cannot be directly used to determine whether a pixel can indicate a pore or

not. A threshold value can be chosen and all the pixels having intensities below such a value can

be considered black and all the pixels higher than this value considered white. Using this method,

all black pixels in the resulting thresholded image can be labeled as pores. Without further infor-

mation, these threshold values are determined arbitrarily; however, Slotwinski et al. [70] used a

microscopic cross-section as a basis of comparison and tried to manually change the threshold so

that an acceptable thresholded image could be created and the same threshold was used for all other

images. In one of the most recent efforts toward characterizing porosity of AM parts via X-ray CT

data, Wang et al. [84] tried to characterize porosity by examining sphericity of the pores. They

only managed to characterize pores that had been intentionally inserted during fabrication and thus

were uncommonly large, while in practice, pores of such size rarely occur.

Thompson et al. [78] provided a thorough literature review on applications of XCT in AM,

including porosity analysis. They mentioned the work of Leuders et al. [42] on relating porosity of
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fatigue performance in SLM-processed Ti-6Al-4v by examining as-build and heat- treated (HIP)

samples. They showed poor accuracy in failure prediction which they believed was caused by high

defect density in SLM parts. Thompson et al. [78] also mentioned the work of Tammas-Williams

et al. [75] in investigating the use of XCT to measure porosity distribution on fatigue performance

in Ti–6Al–4VEBM. They concluded that although XCT cannot capture small pores, it is capable

of capturing of larger pores that are more likely to contribute to fatigue failure. Their study also

showed that XCT porosity measurement can be accurate down to a pore size of ∼ 5µm.

Obtaining high-resolution XCT images is time-consuming and costly. The time a typical XCT

session takes depends on the desired resolution and the size of the specimen. A high-resolution

XCT will provide more detailed porosity information but getting a high-resolution XCT from a

large part might take hours. On the other hand, one of the main objectives of AM is to be able

to build ready-to-use as-built parts without the need for long post-processing or inspections. It is

therefore desirable to strike a compromise between resolution and time.

In this chapter, we use XCT images of the internal structure of AM parts and provide a detailed

characterization of the pores inside them. We discussed how generative adversarial networks can

be used to improve resolution of images in 2.3. In this work, we first used a super-resolution

(SR) model, namely SRGAN [40] to improve the resolution of CT images. Then, we use a novel

method using minimum-volume bounding ellipsoid to capture size, location, and the 3D orientation

of pores.

SRGAN uses GANs made up of deep Convolutional Neural Networks (CNNs) to train gener-

ators and discriminators. SR can significantly reduce the cost of XCT in terms of time and money

since lower resolution images can be used to achieve the same porosity measurements as higher

resolution ones. These two contributions together will help in identifying individual pores that

have the potential to serve as crack initiation points.

Our results showed slight improvement in the number of pores detected as compared to the

benchmark high-resolution images. More specifically, among the 38 pores detected in the high-

resolution image, only 14 were detected in the low-resolution image. This number increased to
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18 when the resolution was improved. However, the main contribution of SR was that the pores

detected in images with improved resolution were much closer in features to the high-resolution

pores compared to low-resolution images. More specifically, features capturing pore area, volume,

elongation, and sphericity were significantly different between the same pores in the low- and high-

resolution images while they were not significantly different (with α=0.05) when the resolution

was improved.

3.2 Materials and Methods:

3.2.1 Data

In this study we use a dataset of XCT data obtained from a Laser Power Bed Fusion (L-PBF) AM

part to develop a novel means for measuring internal porosity. In L-PBF, thin layers of powder are

applied to a build surface and melted and merged by a laser beam. The dataset was scanned by

X-ray CT at the resolution of 2.9 µm with partial scanning of 0.7 µm for a small region of interest

inside the specimen using the powerful Zeiss® Xradia 520 Versa imaging system. We refer to the

2.9µm resolution image stack as sample D1 and the 0.7µm image stack as sample D2.

A framework for extracting porosity information from XCT images and characterizing each

individual pore using several measurements is proposed. The framework can be applied to either

the raw XCT image data, or after the Super-Resolution algorithm has been applied to the XCT data.

A three-dimensional (3D) reconstruction of the specimen is rendered in order to visually charac-

terize part porosity. Geometric features of individual pores including size, sphericity and spatial

orientation, are extracted in order to quantify the likelihood of them serving as crack-initiation sites

using existing fatigue theory. The methodology is designed to be general enough to work with a

wide array of data sources. As long as the input data is a stack of 2D images, each representing a

thin layer of the part, regardless of what source it comes from, the framework can be applied to it.

The material selected for analysis was Ti-6Al-4V produced via L-PBF. The L-PBF system

used herein was the EOS M290 and default process parameters of 280 W laser power, 1200 mm/s
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scan speed and 140µm hatch distance were employed. Virgin powder (LPW) with a size distribu-

tion of 15-45 µm was used. A Dog-bone specimen was built in the vertical orientation consisting

of a gage section. The gage section of the specimen is 2mm × 2mm × 2mm.

3.2.2 Super-resolution Model

In this chapter, we are using the SRGAN architecture presented in [40]. This network consists

of a generator network (G) and a discriminator network (D). The inputs to the generative net-

work are the lower-resolution images (ILR) and the outputs are generated high-resolution images

(G
(
ILR
)
). The inputs to the discriminator are a set of generated high-resolution images with la-

bel 0 mixed with original high-resolution images with label 1. The task of the discriminator, as

the name denotes, is to determine whether the inputs are generated or original. The task of the

generator network on the other hand, is to deceive the discriminator network to mistake generated

images for original ones. This is the general design of generative adversarial networks proposed

in Goodfellow et al [25]]. The discriminator uses a simple binary cross-entropy loss function to

detect generated or original images. This is called adversarial loss. The loss function of the gener-

ative network is more involved. Traditionally, a simple Mean Squared Error (MSE) loss function

would have been used to measure the difference between G(ILR) and the high-resolution image

(IHR). The authors of [40] improved this loss by introducing VGG loss. VGG is a deep network

with an architecture proposed in [69] that is already trained to classify images. VGG loss is defined

as the MSE between feature representations of G
(
ILR
)

and IHR via a pre-trained VGG network

as presented in [69]. The feature representations are the values of the hidden layers as an image

is fed forward in a network. This is illustrated in Figure 3.1. In a traditional MSE loss, only the

Euclidean distance between inputs (marked in the orange box) is used as a loss function. In a VGG

loss, the Euclidean distance between (some of) the feature maps are also added (marked with the

red box).

We used the SRGAN architectures within the default hyper-parameters for both the generative

and adversarial models.
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Figure 3.1: VGG loss

Our data consists of a stack of 422 pairs of low- and high-resolution images (respectively

corresponding to D1 with the resolution of 2.9µm and D2 with resolution of 0.7µm mentioned

above). Of those images, 253 (60%) were picked randomly for training and 42 images were used

for validation. The remaining 127 images were used for testing. High- vs low-res image pairs were

made by putting together the high-res images and the part of low-res images that correspond to the

same sub-volume. Figure 3.2 illustrates the relationship between low- and high-resolution images.

These pairs were then used to train the model (for pairs in the training set), to validate the model

(pairs in the validation set), and to evaluate its performance (pairs in the testing set).

The model was developed using TensorFlow [2]. Training was performed on a Tesla K80

GPU with 32GB memory. The training process took approximately 10 hours before the early

stopping criteria was activated. The early stopping criteria activated when the loss function didn’t

improve on the validation data set for 30 consecutive epochs.

3.2.3 Pore Detection and Graphical Representation

For the image analysis, it was assumed that the voxels adjacent to each other belong to the same

pore in the part. Hence, an important step was extracting sets of adjacent voxels. Two voxels

v1 = [x1, y1, z1] and v2 = [x2, y2, z2] are adjacent if and only if |x1 − x2| ≤ 1,|(y1 − y2)| ≤ 1 ,

|(z1 − z2)| ≤ 1 and (x1 − x2)(y1 − y2)(z1 − z2) = 0. Also, let P1 and P2 denote two pores, if v1

and v2 are adjacent and v1 ∈ P1 and v2 ∈ P2 , then P1 = P2.

The extracted pore locations provide a means to quantify how pores are scattered throughout

a specimen. However, in order to investigate the effects of porosity on properties such as fatigue
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Figure 3.2: Relationship between low- and high-resolution images. The reconstructed 3d version
of the low-resolution images is depicted on the top left corner while the high-resolution image is
shown in the top right-corner. The bottom image shows how the high-resolution image only covers
a small sub-volume of the low-resolution data.
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failure resistance, more quantitative measures are required. Features such as porosity ratio, which

is the ratio of the total volume of all pores to total volume of the specimen can be very helpful.

In general, parts with higher porosity tend to have lower fatigue failure resistance ([81, 87]). Al-

though porosity ratio is an important measure, it may not be a sufficient predictor of fatigue failure

resistance since fatigue failures can start from a single pore and develop from there. Global infor-

mation about porosity does not provide any insight into local features of particular pores. These

features include position, size, shape and orientation of the pores. In order to obtain this valuable

information, a means to mathematically characterize such features is needed. The rest of this sec-

tion presents some features that can be extracted from detected pores and describes our procedures

to extract them. The size of the pore in voxels is one of these features. This feature can be directly

calculated by counting the voxels in a pore. The position of the pore can also be calculated by

finding the geometric centroid of the pore.

Shape: Estimating the geometric shape of the pore can help with feature extraction such as

area and perimeter. The minimum surrounding convex hull can act as a good geometric represen-

tation of the pore. The convex hull or convex envelope of a set of points X in a Euclidean space

is the smallest convex set that contains X. The convex hull provides some insight into the shape

of the pore; however, the convex hull representation will result in losing some information about

pore shapes that are not convex. It is assumed that this loss of information is negligible with re-

spect to the complexity that is posed by trying to serve non-convex representations of the pores.

In addition, following the logic of the Murakami’s approach [54], an irregular pore — if its size

is critical — would quickly develop into a crack with convex shapes as the stress intensity factor

along a crack edge tends to be constant

Convexity: Knowing whether a pore is convex is important in itself. It can be a measure of

how accurate an estimation based on using a convex hull is for the pore. The convexity measure

can be obtained by dividing the volume of the pore in voxels by the volume of the convex hull

surrounding the pore.
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α =
Vp
Vh

(3.1)

where Vp and Vh are volume as number of voxels and volume of the convex hull respectively.

If a pore is actually convex then its volume should be almost equal to the volume of its convex hull,

thus having a convexity close to 1. On the other hand, if the pore is non-convex, then the volume

should be less than that of its convex hull, leading to a convexity smaller than 1.

Sphericity: Pores that are spherical are less likely to initiate cracks leading to failure due to

fatigue rather than flat or long pores [66, 87]. Hence measures of sphericity and elongation are

needed. The sphericity (ψ), a popular measure defined by Wadell [83], of a pore is the ratio of the

surface area of a sphere (with the same volume as the given pore) to the surface area of the pore:

ψ =
π

1
3

(6Vp)
2
3

Ap
(3.2)

where Vp is volume of the pore and Ap is the surface area of the pore. The sphericity of a

sphere is unity by definition and, a particle which is not a sphere has a sphericity less than 1.

Elongation: A simple measure of elongation is:

E =
A3
p

V 2
p

(3.3)

where Vp is volume of the pore and Ap is the surface area of the pore. A perfect sphere

has elongation value of 36π. A very long shape with low width and height also has a very large

elongation value since volume falls at a much greater rate than surface area.

Orientation and Surrounding Ellipsoid: The orientation of the pores is also of interest. Flat

or long pores that are perpendicular to the direction of dynamic loading are more likely to cause

fatigue failure than the pores that are perpendicular to the load. Extracting orientation of pores

in 3D space can be achieved by fitting an ellipsoid on pore voxels. An ellipsoid can capture the

orientation of the pore in 3D space by providing 3 perpendicular vectors that indicate extension of

the ellipsoid in the space.

24



The general equation of an ellipsoid is:

(X − C)T A (X − C) (3.4)

where C is a vector of size 3 and denotes the center of the ellipsoid and A is a 3 × 3 matrix. The

eigenvalues of A, (r1, r2, r3) represent radii of the ellipsoid while the eigenvectors (v1, v2, v3) of

A represent the directions of the three radii in Cartesian coordinates. The radii values determine

elongation of the fitted ellipsoid in the direction of the three axes in Cartesian coordinates. We

used the algorithm discussed in Moshtagh and others [53] in order to extract minimum-volume

enclosing ellipsoid of pores.

3.3 Results

3.3.1 Super-resolution

Figure 3.3-top demonstrates an example of model output for a layer in the test set. The left-most

image is the original lower-resolution image (2.9µm resolution). The middle image is the output of

the model given the lower-resolution image. Finally, the right-most image is the original high-res

image (0.7µm). Note that this particular high-res image was not used in training the model and

was part of the test set. You can see how improving resolution reduces noise and increases the

contrast of the pore, so it becomes detectable. This is corroborated by the bottom images which

depict the detected pores from each image.

Porosity

The main goal of the task of super-resolution in this context was to increase the contrast of the

pores so that automatic pore detection will detect the pores more easily and accurately. As a result,

in order to evaluate the performance of the model, we compared the porosity detection between

the three cases: low-resolution, improved resolution, and high-resolution. Several different metrics
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Figure 3.3: A comparison of pores detected from the same section in the three images (low-
resolution, improved resolution, and high-resolution images)

were used in order to compare detected pores. In the rest of this subsection, we list these metrics

and reports the performance of the model based on these metrics.

Visual comparison

Figure 3.3 illustrates the pores detected from the three images from the same section. Note how the

pore is detected in the image with improved resolution (second row) while it remains undetected in

the original low-resolution image. A closer look at the low-resolution image reveals that the pore

is present there as well, but due to higher noise in surrounding areas, it was also dismissed as noise

by the automatic method as well. In Figure 3.4, we have reconstructed 3D formation of pores for

low-, improved- and high-resolution images. A visual study of the figure shows that the shapes

and relative positions of pores in the improved resolution image are closer to the high-resolution

image than the pores in the low-resolution image. This observation is quantitatively investigated

in the following subsections.

26



Figure 3.4: 3D formation of pores detected

Description
True Positive Pixel correctly classified as pore
True Negative Pixel correctly classified as not pore
False Positive Pixel incorrectly classified as pore
False Negative Pixel incorrectly classified as not Pore

Table 3.1: Definitions of true positive, true negative, false positive and false negative in the context
of pore pixel prediction

Pixel-wise pore detection

For a pixel, we denote true positive, true negative, false positive and false negative with TP , TN,

FP, and TN respectively and classify them as listed in Table 3.1.

Note that we consider the high-resolution image as ground truth that provides exact informa-

tion about pixels. Given the aforementioned terms, we then compute accuracy (A), precision (P ),

and recall (R) respectively as follows:

A =
TP + TN

TP + TN + FP + FN
(3.5)

P =
TP

TP + FP
(3.6)

R =
TP

TP + FN
(3.7)
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Accuracy Precision Recall
Low Resolution ∼1 0.56 0.31

Improved Resolution ∼1 0.77 0.53

Table 3.2: Pixel-wise detection metrics

In informal terms, accuracy is a measure of how many pixels were correctly predicted. Preci-

sion measures how much trust can we have that when the model says a pixel is a pore, it actually is

a pore while recall means when the model says a pixel isn’t a pore, how likely it is that this is the

case. Table 3.2 lists performance metrics of the model in terms of pixels considered to be pores.

We compared low-resolution and improved-resolution images in terms of accuracy, precision, and

recall for evaluating the performance of our model.

The results of accuracy, precision, and recall are listed in Table 3.2. As can be seen, accuracy

is very high. This is because pore pixels are much fewer than non-pore pixels and even if a model

predicts all pixels as non-pore, it still acquires a very large accuracy. Therefore, accuracy cannot

serve as a good metric for this particular task. Precision and recall, on the other hand, provide

much better performance metrics. We can see that both measures improved as a result of resolution

improvement procedure. Precision improved from 56% to 77% and recall improved from 31% to

53%. However, the relatively low values of precision and recall even for the improved-resolution

image (77% and 53% respectively) show that resolution improvement did not result in an image

that is exactly the same as the high-resolution image in terms of pore detection.

Number of pores detected

As is shown in Table 3.3, among the 38 pores detected in the high-resolution image (considered

the ground truth), 14 were detected by the low-resolution image and 18 were detected by the

improved-resolution image (after super-resolution was applied). This means that, although there is

an improvement as a result of the resolution improvement procedure, still more than half of pores

go undetected. However, this result is expected to some extent. If the pore is not at all present in the

low-resolution image, there is little hope that it can be revealed due to resolution improvement. It
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Number of Pores Detected
High Resolution 38
Low Resolution 14

Improved Resolution 18

Table 3.3: Comparing images in terms of number of pores predicted

should be mentioned that not all pores are the same in terms of their contribution to fatigue failure.

Small pores are less likely to serve as crack initiation points than large ones. On the other hand,

fatigue failure is usually associated with larger pores. As a result, the points that are detected in the

mid-resolution and improved-resolution images are much more likely to serves as crack initiation

points than the ones that are missed. In other words, although improving resolution doesn’t capture

all the pores, it does capture the most important ones.

3.3.2 Pair-wise pore feature comparison:

We matched the pores detected from the low-resolution and improved-res images with the pores

detected from the high-res image. These pairs of pores (14 pairs for the low-resolution image and

18 pairs for the high-res image) were then compared in terms of the pore features discussed in the

previous section, treating the latter as the ground truth. Figure 3.5 illustrates an example how the

improved resolution helps bring the pore features closer to the high-resolution image. In this figure,

pore voxels are plotted along with the minimum-volume bounding ellipsoid. It can be seen that

by improving resolution the pore shape was improved. In addition, the pore’s spatial orientation

became more aligned with the real (high-resolution image) pore as can be viewed from the axes of

the bounding ellipsoid.

To measure the performance of the model, we take the high-resolution image as the ground

truth and then compare the lower-resolution image with improved-resolution image (the output

of the super-resolution procedure) in terms of how close they are to the ground truth. Following

the same criteria, for each of lower- and improved-resolution images, we extracted pore features

of those pores that were matched with the high-resolution images and conducted t-tests on the

difference of the average of each performance metric between the lower- or improved resolution
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Figure 3.5: Visual comparison of a single matched pore.

Feature Low-resolution Improved resolution
mean p-value mean p-value

Convex Hull Area 32.91 0.01 8.58 0.06
Convex Hull Volume 14.86 0.01 6.38 0.13

Ellipsoid Area 37.26 0.04 8.47 0.17
Ellipsoid Elongation 1.02 0.04 -0.05 0.82

Ellipsoid Volume 21.08 0.04 10.46 0.23
Pore Elongation 1.36 0.01 0.03 0.89
Pore Sphericity -0.02 0.01 0 0.59

Pore Volume 38.14 0 12.72 0.03

Table 3.4: Matched pore feature comparisons between the low-resolution image and the improved-
resolution image.

images versus the ground truth (high resolution images). The results of the tests are listed in Table

3.4. As can be viewed, p-values for the low-resolution pore features are all smaller than α = 0.05,

leading to a rejection of the null hypothesis that the features drawn from lower resolution images

are statistically similar to the ground truth high resolution images. On the other hand, for the image

with improved resolution, except for pore volume with p-value of 0.03, all other features have p-

values larger that α = 0.05, which means we can’t reject the null hypothesis that they are similar.

This means that if a pore is detected in an image with improved resolution, its features are much

more similar to ground truth than in the original low-resolution image. In fact, the pores detected

and characterized in the improved resolution images (with the super resolution algorithm applied)

are statistically equivalent to the pores identified in the high-resolution images, while the pores

detected and characterized in the lower resolution image are not.
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3.4 Conclusion

In this chapter, we provide a method to improve the resolution of XCT porosity images captured

from additively manufactured parts using deep generative adversarial networks. we also discussed

several important metrics that capture 3D porosity in an AM part. In particular, we proposed

using minimum area bounding ellipsoid to capture size, shape, and the 3D alignment of pores

with respect to the specimen. We then used these metrics to compare the results for resolution

improvement to the high-resolution baseline. We observed some improvement in terms of the

number of pores detected. However, we noticed that among the pores that were detected, the

images with improved resolution were much more similar in terms of porosity metrics to the high-

resolution pores. The resolution-improvement model can be used to while dramatically reduce the

time it takes to analyze specimens via XCT. The proposed metrics provide a tool to identify most

important pores in terms of fatigue failure. The two methods together, provide a strong framework

for non-destructive tests for metallic parts in additive manufacturing.
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Chapter 4

An Automated Method for Geometrical Surface Characterization for Fatigue Analysis of Additive
Manufactured Parts

Abstract

Recent interest to implement additive manufactured parts into structural applications has created

a critical need to better understand the fatigue behavior of these parts. Alloys such as Ti-6Al-4V

are popular in the aerospace and biomedical industries due to their superior strength to weight ra-

tio and biocompatibility. Previous works have associated fatigue behavior with surface roughness

parameters, especially radius of curvature of notches. It is therefore important to develop a fast,

reliable and consistent methodology for extracting such parameters. In this paper, we provide an

automated method for quickly extracting surface roughness parameters of the whole surface, in-

cluding a novel method to extract radius of curvature of valleys using image processing techniques

and optimization. We then use the extracted parameters in data-driven analysis. We investigate the

effect of microscopy resolution and surface area sampling on the measured parameters. Finally,

results on fatigue life prediction indicates that the automated method of calculating radii of cur-

vature yields similar results as that of manually extracted radii while taking a significantly shorter

time.

4.1 Introduction

Additive manufacturing methodologies have seen significant progress in recent years in production

of net shapes for aerospace and biomedical applications. In particular, additive manufacturing has
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gained a significant amount of interest in aerospace and biomedical sectors with Ti-6Al-4V alloy

being prominently used in both these industries. Studies have shown that surface roughness can

have significant adverse effects on fatigue life of laser powder bed fused (L-PBF) Ti-6Al-4V .

Addressing undesirable surface roughness, however, remains a challenging problem in metallic

additive manufacturing. Although laser-based powder bed fusion produces parts with relatively

better surface roughness due to the small size of particles and thinner layer thickness [18, 27, 22,

31], as-built parts manufactured via this method still demonstrate earlier fatigue failure compared

to machined parts. Fatigue resistance of Ti-6Al- 4V parts was improved almost to their fatigue

endurance limits as high as 450 MPa [26] when they were highly machined and polished.

Therefore, it is necessary to garner a more comprehensive understanding of the surface rough-

ness in order to characterize the fatigue life of as-built additively manufactured parts. In this work,

we provide a comprehensive framework to extract surface roughness parameters obtained from

microscopy. The framework includes preprocessing of surface height information obtained from

microscopy, and efficient, automatic extraction of surface roughness parameters. The framework

covers all traditional roughness profile parameters such asRa/Sa,Rv/Sv,Rq/Sq, andRp/Sp, as well

as hybrid parameters consisting of multiple parameters such skewness (Rsk/Ssk), and the kurtosis

(Sku/Rku) of the profiled lines. The main contribution of this framework in terms of surface rough-

ness parameters is providing an automatic method to compute 2d and 3d radii of curvature for

local minima (also called valleys or pits) as well as introduction of roughness mode as a method

to correct for maximum profile valley depth (Rv). We used the framework to characterize the sur-

face roughness of laser-based powder bed fusion Ti-6Al-4V specimens using images taken from

a 3D optical microscope. We used statistical techniques to investigate the effect of microscopy

resolution and surface area sampling on surface parameter measurements. We then used the radii

of curvature to predict fatigue life for parts and compared them to a previous study in which radii

were computed manually and showed that the results are statistically not different.
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Description 1D 2D
Arithmetical mean height Ra Sa

Root mean square deviation Rq Sq
Maximum profile valley depth Rv Sv
Maximum profile peak height Rp Sp

Distance between the mean and the mode Rmode Smode
Skewness Rsk Ssk
Kurtosis Rku Sku

Radius of Curvature of the valleys ρp ρs

Table 4.1: : Surface Roughness Parameters List

4.1.1 Surface roughness parameters

As mentioned earlier, in this work, we compute roughness parameters from an image taken via

microscopy. These parameters are listed in Table 4.1. Each parameter listed in the table is com-

puted via in both 1D and 2D dimensions. For 1D computations, each W×H 2D surface image is

considered to consist of W linear roughness profiles of size H. Figure 4.1 illustrates the relation-

ship between roughness image and roughness profile. Roughness parameters are then computed

for each profile and the results reported either as a vector or described via a statistics such as mean

or median. For example, 1D maximum valley depth,Rv, is computed by subtracting global minima

from mean roughness of each linear profile. In such a way, we’ll get a different Rv for each of

the W linear profiles. As to 2D computations, The measurements are taken from the surface as a

whole. For example, 2D maximum valley depth, Sv, is computed by subtracting global minima

of the surface from mean roughness of the whole surface. Here, we’ll have a single value for the

whole surface.

The framework provided here computes all the parameters listed in Table 4.1 in an automated

fashion. One of the main contributions of this work is that we use a novel method to compute

radius of curvature for all 1D and 2d valleys in the profile. The following subsection discusses the

importance of radii of curvature and discusses models that use it for fatigue life prediction.
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Figure 4.1: A surface roughness image(top) with a single profile selected via a red line. The
roughness profile corresponding to the heigh of the surface on the red line is plotted in the bottom
image
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4.1.2 Radii of Curvature

Pegues. et. al. [59] proposed an approach for estimating the effect of surface roughness on the

fatigue strength of additive manufactured Ti-6Al-4V using an approximation of the fatigue notch

factor, which was previously used to incorporate roughness in fatigue life in [5]. The fatigue notch

factor is expressed by the following equation:

K̄f = 1 +
n
(
Ra

ρ̄10

)(
Rt

RzISO

)
1 + γ

ρ̄10

(4.1)

where n accounts for changes in stress state (n = 1 for shear and n = 2 for tension), γ is a

material characteristic length [87] and Ra, Rt, RzISO, and ρ̄10 are mean roughness, max peak-to-

valley roughness, 10-point height roughness, and 10-point valley radii respectively. For the results

in [58] n = 2 was used for the stress state and g was considered as the average acicular grain width

of 1.5 µm. The surface roughness parameters are calculated using Equations 4.2-4.5:

Ra =
1

l

∫ l

0

|y| (4.2)

Rt = |ymax − ymin| (4.3)

RzIso =
1

5

(
5∑
i=1

yi-max +
5∑
j=1

yj-min

)
(4.4)

ρ̄10 =
1

5

(
5∑
j=1

ρj-min

)
(4.5)

In Equation 4.5, ρj-min are the radii of the five deepest valleys. In order to completely analyze

the effect of roughness on fatigue, these radii should be calculated for all roughness profiles. A

typical surface roughness image can consist of hundreds to thousands of such profiles, making the

measurements of these radii extremely cumbersome, if not impossible. An automated method is
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therefore desired not only to improve the time it takes to extract radii, but also to provide objective,

reliable and consistent results that don’t depend on individual judgements.

In this paper, we propose an objective, consistent, automated technique for extracting each

radius of curvature of valleys as described in the proceeding section. The method significantly

reduces the time it takes to find the radii, while providing results that are comparable to manually

computed radii. The proposed technique is aimed at reducing the time to manually measure the

surface characteristics while improving the repeatability of the calculations to obtain accurate and

consistent roughness measurements. These results can then be used as inputs for models that

predict mechanical properties. Using an objective, repeatable method to calculate the inputs allows

researchers to compare different models fairly.

4.2 Material and methods

4.2.1 Data pre-processing

The images were converted from CSV format to a binary format. A pixel in a 500x image rep-

resents approximately a 0.429 × 0.429µm2 surface area. The images were appropriately down-

sampled so each pixel represents 1× 1µm2. Further smoothing was done by applying a 2D Gaus-

sian kernel of size 5× 5 and a standard deviation of 1 to the images. Slight smoothing is necessary

in order to remove raggedness that might be caused by noise. Sometimes the specimens may not be

aligned exactly parallel to the image frame. Such misalignments were programmatically detected

and fixed since it can significantly influence the SR parameters. Figure 4.2 shows misalignments

correction for the image of an specimen. The alignment was performed by fitting a line to the

upper edge of the specimen in the image. The upper edge is detected via adaptive thresholding

which separates the specimen from the background. A rotation angle can be extracted from the

slope of the line. Finally, the image is rotated by this angle in the opposite direction, resulting in

an upper edge with angle 0.

In addition, as part of microscopy artifacts, the surface of the parts may not be flat. For

example, it might be slightly tilted from one side to the other as illustrated in Figure 4.2. These tilts
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Figure 4.2: The descriptions of before and after the misalignment correction

were also programmatically detected and corrected. The procedure of tilt adjustment is performed

by regressing a 2D plane to the surface of the image in the form of

aX2 + bY 2 + cX + dY = Z (4.6)

where X and Y are pixel coordinates and Z is the intensity of the pixel in the image. a,

b, c, and d are parameters that are estimated by regression. Finally, a correction is made on the

intensities subtracting estimated intensity from the actual intensity of each pixel:

Z
′
= Z −

(
aX2 + bY 2 + cX + dY

)
(4.7)

Figure 4.3 contains 3D and 2D demonstrations of how tilt adjustment works. The top and

bottom images of Figure 4.3(a) illustrate the same location with original and tilted views. Note

how the coloring of minima and maxima changes before and after tilt. In order to verify the

alternation of height numerically, the 2D profile of Figure 4.3(a) was generated as shown in Figure

4.3 (b). This figure illustrates the average pixel intensities over the x-axis in the image before and

after tilting is performed. Note how the intensity profile is flattened after the process. In this study,
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all height data acquired from images had passed through the above steps to ensure consistency in

SR analysis.

4.2.2 Radius of curvature of valleys

Given a surface roughness profile containing point height data, obtained e.g. through microscopy,

our method extracts radii of curvature for valleys. This is done by approximating the radius of

curvature at the base of a valley which can be considered a local minimum in the roughness profile.

Radius of curvature (R) of a curve at point x can be analytically computed using the following

equation:

R =

∣∣∣∣∣∣
(
1 + f

′
(x)2) 3

2

f ′′ (x)

∣∣∣∣∣∣ (4.8)

Where f ′
(x) and f ′′ (x) are first and second derivatives of the curve at point x. Note that if

x is a local minimum (or maximum), f ′
(x) = 0 and the above formula turns into R =

∣∣∣ 1
f”(x)

∣∣∣.
In a noisy roughness profile, computation of radius of curvature using f ′ and f ′′ values computed

numerically is highly unstable and prone to numerical errors since a roughness profile is provide

as a discrete set of data points and values of f’ and f” can change significantly from one data point

to and adjacent point. Therefore, there is a need for a more robust method that can be adapted to

various roughness profiles.

The computation of valley radii is done in three steps: In the first step, profiles are smoothed

and the coordinates of local minima (xi, yi) are extracted as valleys. A Gaussian kernel is used

for smoothing. The size of the kernel is determined as a fraction (one fifth) of the average valley

widths. The valley widths are determined as the distance between the beginning and the end of

the valley that is below one standard deviation of the mean roughness. These local minima are

then filtered such that only the lowest ones are chosen. The criterion for filtering is that a point is

dropped if yi > Ra − σy where σy =
√

1
l

∫ l
0

(y −Ra)
2 is the standard deviation of the profile. We

denote M as the set of all valleys that are selected in this step. This process is illustrated in Figure
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Figure 4.3: (a) 3D demonstration of tilt correction and (b) 2D profiled line before and after
tilt/alignment correction with numerical height values.
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Figure 4.4: Valley local minima (valleys) that fall below one standard deviation of average rough-
ness in a roughness profile.

4.4. In this figure, the valley widths are depicted using black lines. The Gaussian smoothing kernel

and the neighborhood from which the local minima are extracted both use kernels sizes that are

one fifth of average valley widths. We denote this kernel size with l.

In the second step, for each valley in M a neighborhood is chosen for fitting a circle. This

is done by finding the nearest inflection points, that is, the point that the second derivative of the

profile changes sign, on the two sides of the valley. This neighborhood ensures that a concave set

of points are used to fit a circle. In order to guarantee that the neighborhood is symmetric relative to

the local minima, the shorter distance from the two inflection points is chosen and mirrored to the

other side of the valley (local minima). The neighborhood size normally does not exceed the size

of the kernel used to find the local minima (l). In rare cases where this happens the neighborhood

is shrunk to have size l ( l
2

on either side of the local minimum). Figure 4.5 illustrates the process

of choosing the neighborhood. We let Ni denote the points that comprise a neighborhood of the

i-th valley in M .

Finally, for each valley i, a circle is fit to the points in Ni. In order to account for different

scales and keep numerical stability, the points in Ni are first normalized into N ′i . A circle is then

fit to the normalized points and the resulting circle is transformed back to an ellipse in the scale of

data points. Finally, the radius of curvature of the data points is computed by finding the radius of

curvature at the base of the transformed ellipse. The rest of this section provides more detail on

this process and provides illustrated examples of results obtained by following this methodology.

Normalization of points in Ni is done using the following formulae:
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Figure 4.5: Process of choosing a neighborhood for a typical valley. In order to maintain symmetry,
the closest inflection point to the local minimum is chosen (in this case the inflection point that is
to the right) and mirrored on the other side of the minimum.
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x′ij =
xij − x̄i
σxi

,y′ij =
yij − ȳi
σyi

(4.9)

Where x̄i and ȳi are means of the coordinates of the points in Ni and σxi and σyi are stan-

dard deviations of the points. The circles are then found by minimizing an objective function

f (cxi, cyi, ri) where (cxi, cyi) is the center of the circle and ri is its radius. The function is ex-

pressed by the following equation:

f
(
c′xi, c

′
yi, r

′
i

)
=

1

|N ′i |
∑

(x′ij ,y′Ij)∈Ni

√
r′2ij − r′2i + λtij (4.10)

where r′2ij =
(
x′ij − c′xi

)
+
(
y′ij − c′yi

)
and λtij is a penalty term which forces the circle perime-

ter to align with curve points as opposed to having points inside the circle. tij is 0 if r′i < r′ij and

1 otherwise and λ is a large (>500) penalty coefficient. Non-linear optimizers, such as gradient

descent can be used in order to find optimal values of c′xi ,c
′
yi

, and r′i.

c′xi ,c
′
yi

, and r′i are fit to the scaled transformations of the points in Ni and need to be trans-

formed back to the same scale as the points in Ni. This is done by performing the following

transformation:

cxi = c′xi × σxi + x̄i (4.11)

cyi = c′yi × σyi + ȳi (4.12)

ri = r′i ×
σ2
xi

σ2
yi

(4.13)
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Figure 4.6: Valley radii for a roughness profile. The golden horizontal line separates the valleys
that are one standard deviation below ȳ.

Note that the result of transforming the circle
(
c′xi , c

′
yi
, r′i
)

back to scale is not a circle but an

ellipse whose center is at (cxi , cyi) and its radii are (r′iσxi , r
′
iσyi). The radius of curvature at the

base of an ellipse with radii (r1, r2) is r21
r2

. Plugging in r′iσxi and r′iσyi results in equation 4.2.2.

Results of the automated extraction method for a single profile are illustrated in Figure 4.6,

where four sections of a roughness profile are plotted along with the circles fit on the deepest

valleys. It can be observed that the extraction method successfully locates the deepest valleys from

each profile.

4.3 Experimental Results

4.3.1 Statistical Analysis of SR parameters

We conducted statistical analysis on roughness images taken from 17 specimens. Traditional pa-

rameters as well as mode, skewness, kurtosis and radius of curvature of valleys where computed.

Both 2d and 3d scenarios were studied. In 2d measurements, the parameters were computed for

each profile in the roughness image (∼ 6000 profiles each side) of specimens. In the 3d case, the

parameters were extracted from the whole surface. Using the extracted parameters, we conducted

statistical analysis to test several hypotheses that are discussed in the rest of this section. In subsec-

tion 3.1, we discuss the effect of microscopy resolution on SR parameters. In subsection 3.2, we

study the effect of surface subsampling. Finally, in subsection 3.4, we validate the results of our
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Variation ρ10
p-iso Ra Rq Rv Rp ρ10

s-iso sa sq sv sp

p-value 0.00 0.02 0.02 0.00 0.00 0.0 0.02 0.02 0.00 0.00

Table 4.2: P-values for different metrics based on t-tests comparing 1000x and 500x resolution
images

automatic method for calculating valley radius of curvature by comparing fatigue life predictions

with a previous work.

4.3.2 Comparing different resolutions

The first question we wanted to answer was what microscopy resolution would be the best resolu-

tion to work at. Ideally, we would want to have images with highest resolution; however, increasing

resolution, also increases (probably more than linearly) the time it takes to perform microscopy for

a part. In the case of our analysis, we compared parameters from a 1000x vs a 500x resolutions for

a single part.

Our results show that all parameters except for radii of curvature are relatively the same in both

1000x and 500x. This does not mean that the difference between parameters is not significant. In

fact t tests for all parameters, as listed in Table 4.2, show significant differences in the parameters.

This significant difference is because we considered a very large pool of profiles (∼ 5000) in this

study. However, this significance doesn’t mean that the SR parameters are not close between the

two resolutions. In fact, a close look at Figure 4.7 shows that Ra, Rz, and Rv values are less that

1µm different from each other. This difference for Rz is slightly higher and close to 3µm. These

differences are relatively small compared to the value of these SR parameters. What we mean

by “relatively the same” is that the relative error between measurements is low. As to radii of

curvature, the radii extracted from 1000x are lower (5µm on average) that the 500x images. This

can be because the valleys in the 500x image tend to be smoother due to the lower resolution, that

is, 1000x captures some extra sharp valleys that the 500x image doesn’t.
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Figure 4.7: The bar plots of several SR parameters based on the height data measured by 500X and
1000X magnifications.

4.3.3 The effect of sub-areas

Sometimes, the entire area of the gage section of the specimen cannot be scanned due to the

limitations the microscopy technology, time limitations, etc. Therefore, we decided to study the

effect of scanning only a subsection of the specimen and generalizing the extracted SR parameters

to the whole part. In order to examine the differences, statistical analysis regarding the effect

of sub-area on resulting SR measurements was conducted. The original microscopy image was

divided into multiple sub-areas as schematically described with different colors in Figure 4.8(a).

SR parameters of each sub-area were investigated and plotted in corresponding colors as shown in

Figure 4.8(b). In this image, the length of the colored bars are average measurements over all the

parts. The black error bars on top of the color bars are 95% confidence intervals associated with

each measurement.

As can be viewed in Figure 4.8 and is listed in Table 4.3, half-length measurements yield

similar values of Ra, Rq, but provide lower values of Rv and Rp. This is because information
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Variation/Metric ρ10
p-iso Ra Rq Rv Rp ρ10

s-iso sa sq sv sp

25% area vs Whole Surface 0.02 0.22 0.18 0.01 0.02 0.03 0.16 0.13 0.03 0.02
25% length vs Whole Surface 0.00 0.25 0.20 0.01 0.06 0.02 0.18 0.17 0.01 0.05
25% width vs Whole Surface 0.12 0.26 0.24 0.17 0.58 0.14 0.19 0.23 0.21 0.56
50% length vs Whole Surface 0.17 0.18 0.16 0.16 0.00 0.15 0.21 0.30 0.11 0.01
50% width vs Whole Surface 0.28 0.95 0.99 0.71 0.49 0.27 0.97 1.04 0.69 0.50
50% area vs Whole Surface 0.01 0.01 0.30 0.00 0.06 0.01 0.33 0.44 0.01 0.02

Table 4.3: : t-test p-values for difference in SR parameters between different surface subsample
images and the whole surface

about the whole profile length is lost when the length is divided. As a result the left and right

sides end up having different peak values. Overall, however, this effect is relatively consistent

between specimens; that is, Rv and Rp remain in the same order as the original full-scale images.

Therefore, it was expected that measuredRv andRp values for the two halves to be slightly smaller

that what they actually are on the whole surface. This will not affect relative SR comparisons since,

if these values are smaller in part A than in part B, then actual values are also smaller in A than B.

The conclusion here is that although cutting the length of the specimen in half and measuring SR

parameters separately for the two halves affects the measured parameters, they remain relatively

the same between parts so a comparison of SR parameters still can be made using half-lenths

microscopic images.

4.3.4 Radii of curvature

We used two methods to validate the automatic method of computing radius of curvature. We used

both synthetic data and actual roughness data for the purpose. The synthetic method is useful since

the radii of curvature are known beforehand, so the the results can be easily validated. To test the

results using actuall roughness data, we can only compare the effect they have on the fatigue life

predictions that are computed via analytical models.

In order to test against synthetic data, the proposed method of fitting circles was tested on

local minima of randomly generated polynomial curves of degrees 2 and 3. For each polynomial

degree, 1000 expressions were generated using coefficients that were randomly generated from
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Figure 4.8: (a) Schematically described sub-areas with various colors. (b) SR parameters of each
sub-areas with corresponded colors.
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values between 0 and 100. For example, to generate a single random polynomial of the third

degree, 4 coefficients a, b, c, and d were randomly generated and the expression ax3 + bx2 +cx+d

evaluated. The radius of circles extracted was then compared to analytically computed radius of

curvature at the local minima that were computed using the formula 1
f”2(x)

where x is the location of

the minima. The relative error was then measured. For polynomials of the third degree, the mean

relative error was 0.0836 with standard deviation of 0.0893 and for polynomials of the second

degree, mean relative error was 0.0166 with standard deviation of 0.0016. These results show that

the fit circles are highly reliable measures of radius of curvature.

In order to validate using real roughness data, the fatigue life estimations by Pegues et al. [59]

were reproduced using automatically extracted valley radii. In that paper, the authors provided fa-

tigue life predictions of the endurance limit, using K̄f (as defined in Equation 4.1), for two sets of

roughness geometries, denoted AB1 and AB2. Using basic machine design principles, the authors

then estimated the fatigue strength at 1000 cycles which has been traditionally used to signify the

transition from low cycle to high cycle fatigue. A straight line fit in log-log coordinates is then con-

structed to estimate the stress-life curve. The important thing to note here is that only the smooth

surface finish endurance limit, ultimate tensile strength, grain size, and roughness parameters are

used to estimate the stress-life curves and that no fatigue data from the as-built surfaces are used

in the predictions. Comparing the prediction curves with results from the destructive tests, it can

be observed that the curve is slightly non-conservative. However, the predictions give reasonable

results which, coupled with appropriate safety factors, may be useful in design given no available

fatigue results are obtainable.

A comparison of the predictions from the automated method and predictions of [59], manual

method are demonstrated in Figure 4.9. Graphs of the same color are predictions of fatigue life

for parts with the same roughness geometries, with the dashed line corresponding to the manual

method and solid lines corresponding to the automated method. Table 4.4 provides quantitative

comparisons of the two methods in terms of mean squared errors (MSE) of the predicted fatigue

life from the actual observations. As can be seen, the automated method can provide an accurate
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Figure 4.9: A comparison of fatigue life computations from Pegues et al. and the automated
method proposed herein.

Automatic Method Manual Method
AB1 MSE 1883 3042
AB2 MSE 2547 2774

Table 4.4: A quantitative comparison of the manual and automatic methods of radii extraction
using minimum squared errors

and reliable alternative for manually extracted radii in prediction of fatigue life. For both surface

conditions, the automated method closely matches the results of the manual method. Furthermore,

the automatic approach moves the predictive line closer to the fatigue data. The higher accuracy

can be due to the fact that the automated method used a larger number of profiles to obtain valley

radii. However, additional experiments are required to determine whether one method is consis-

tently more accurate than the other. We can conclude that this approach can significantly reduce

the time to obtain the radii measurement while also reducing the ambiguity inherent to manually

measuring each radius.

4.4 Conclusions

In this study, a framework is developed to automatically compute surface roughness parameters

from microscopy surface images. In particular, an automated approach is developed for predicting

the effect of surface roughness on fatigue failure by analyzing surface roughness in metallic parts.

Surface data is collected using digital focal variation microscopy and after adjustments for tilt
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and misalignment, the roughness parameters are automatically extracted. The proposed extraction

method can not only reduce the time costs required for manual measurements but, more impor-

tantly, also remove judgement element from the measurement, ensuring repeatability in the results

despite the operator performing the experiments. The results of the framework are used in several

data-intensive statistical analyses. In particular, the effect of microscopy resolution and surface

sampling on SR parameters were studied. Finally, the effective stress concentration and fatigue

notch factors for the AM surfaces were estimated using the model proposed in [58] and valley

radii computed via the framework. Results show that fatigue life predictions using the automated

method are comparable to results from manually extracted radii.
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Chapter 5

Muscle Recognition in lower-back MRI Using CNN

Abstract

The purpose of this research is to automate the process of identifying lower back muscles in 2-D

Magnetic Resonance Images (MRIs) and subsequently calculating size, location and effective lever

arms using Convolutional Neural Networks (CNNs). Currently, lever arm calculations typically

rely on human-delineated manual traces of the various low back muscles. Some of these muscles

cannot be easily distinguished using MRIs and require trained analysts to reliably trace them. It

is therefore possible for analysts to trace images differently. In this study, we use deep learning to

trace these muscles. We expect this work will facilitate the study of lower back pain by leading to

an automated tool that reduces tracing times significantly, thereby providing more objectivity and

robustness to biomechanical calculations. Our model predicts muscles with an overall accuracy of

over 99%, average precision of 80% and overall recall of 89%. This results in predicting lever-

arms with an average absolute error of less than 8% (0.5 cm). It also reduces the time required to

trace images by 98%.

5.1 Introduction

Low back pain (LBP) is one of the most prevalent musculoskeletal disorders (MSDs) in the U.S.

and the rest of the world [32]. In fact, 31% of the overall incidence rate of non-fatal occupational

injury and illnesses for all workers (public and private sector) is related to MSDs such as sprains
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and strains [1]. According to Hales and Bernard [24], more than 80% of the occupational workers

experience issues related to LBP during their lives. According to global burden disease study [82],

low back pain is the leading contributing factor for overall years lived with disability (YLDs).

The cost of low backpain treatment is significant. Dieleman et al. [20] estimated that total low

back pain costs, including direct and indirect costs, was around $87.6 billion U.S. dollars from

1996 through 2013. According to the 2018 Liberty Mutual Workplace Safety Index, overexertion

related injuries costs $13.67 billion dollars in direct costs alone [35].

LBP risk factors are multifactorial, and result from a combination of physical (biomechan-

ical), psychosocial, and personal factors [17]. Deros et al [19] associated MSDs with manual

material handling (MMH) activities. These types of occupational factors increase stresses on low

back structures [17]. It is important to understand how a particular body part responds to external

forces. If applied forces and moments exceed a structure’s capacity, then pain or injury is more

likely to occur [29].

A first step to addressing the LBP problem is to characterize the process leading to it. Biome-

chanical models have been developed to analyze internal reaction of the body against external

forces during work [77]. Biomechanical models are often used in ergonomics to estimate forces

and moments in various body parts during MMH tasks. Most often, the low back is the focus of

studies because it bears significant loads and is frequently injured. Unfortunately, many biome-

chanical assessment tools share a fundamental model assumption, a simplified description of the

lower lumbar musculoskeletal structures, failing to accommodate the large variations in these struc-

tures, such as the spinal geometry [76] and the paraspinal muscle mass and lever arm length [29].

McGill and Norman [52] had raised concerns about the accuracy of anatomical features used

as a basis in biomechanical modeling. Hansen et al. [30] reviewed historical publications to iden-

tify anatomy of the back muscles how they are used in biomechanical modeling. The authors

emphasized the reliability of collecting muscle lever (moment) arms and their respective cross-

sectional areas and their importance for calculating forces and moments generated by muscles and

borne by skeletal structures. Some studies used mean values for muscle lever arms, however; the
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adequacy of such crudely estimated muscle lever arms may not be sufficient [30, 55]. Measuring

lever arms of each muscle group involved in MMH tasks for each individual with high accuracy is

the best way to accurately estimate the loading of intervertebral discs for those specific individuals.

However, measuring all workers is not logistically practical. However, broadly sampling subjects

to build regressions to estimate biomechanically relevant structures using gross anthropometric

features (e.g., height, weight, sex, etc.) is feasible. However, comprehensively analyzing large

numbers of subjects is time consuming. Automating the analysis of the most tedious aspects of

these measures will save significant time. If this can be done without sacrificing too much accu-

racy, larger data sets with more varied subjects can be included in the dataset used for developing

equations to estimate low back body parameters.

Medical imaging techniques can be used to accurately measure the lever arms that carry

biomechanical forces for each individual. Imaging techniques including Magnetic Resonance

Imaging (MRI), computed tomography (CT), and X-ray scans have been commonly used in previ-

ous studies to obtain more precise data about muscle geometry [28]. However, these images do not

directly provide the lever arms of interest. The lever arms are typically calculated by measuring

the distance of the muscles’ centers of mass with respect to the spine. But, due to close proximity

of the muscles and partial overlapping, it is not easy to differentiate some of the muscles in MRIs

from each other and/or from neighboring tissues. Hence, an expert is required to trace the out-

lines of muscles (and the spine) on the MRI, to facilitate locating the centers of mass needed for

estimating the lever arms. This is a very monotonous and time-consuming process which can be

subject to human errors as well as subjective judgements by the tracer, particularly as the number

of images to be traced increases.

In this study, we develop a Machine Learning approach that uses Convolutional Neural Net-

works (CNN) to segment and trace these muscles (and the spine) automatically on raw MRI im-

ages. The CNNs were used to detect muscles and compute mechanical attributes of the muscle

automatically. This technique significantly reduces the time it takes to perform, musculoskeletal

biomechanical measurements while improving the objectivity of the task.
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Our method showed promising predictions for center of mass and lever arms. In our tests, for

both cases, 90% of the predictions were within 15% average absolute error (1 cm) as compared to

the manually traced muscles. A limitation of the CNN model is that segmented muscle areas tend

to be larger than the traced version. This problem is corrected via post-processing. 90% of the

postprocessed predicted muscle areas were within 20% of the traced muscle areas.

The remainder of this paper is organized as follows. Section 2 provides a brief introduction

to CNNs and discusses previous work on biomedical image analysis. In section 3, we provide

information on the methodology. We discuss how we preprocessed the raw MR images. CNN

model architecture, hyperparameters, and training are then explored. Finally, the postprocessing

technique is briefly discussed. In Section 4, we provide the results on the performance of our

developed methodology based on various metrics. Finally, in Section 5, we provide a conclusion

and paths for future improvements that can be applied to the method.

5.2 Recent applications of Deep CNNs in medical images

In the field of medical imaging, it is often desirable to automate the process of detection and seg-

mentation of regions of interest in images obtained by various techniques such as XCT or MRI.

Automation has the potential to reduce to cumbersome task of manually picking regions of inter-

est in an image and reduce the analysis time dramatically. According to Litjens et al. [45], such

automations started from simple rule-based expert systems from the 1970s to 1990s. Towards the

end of the 1990s, the progresses in the field of supervised learning made it possible to conduct sta-

tistical classification based on some feature vectors. These feature vectors were picked manually

depending on domain knowledge. More recently, deep learning approaches, such as Convolutional

Neural Networks (CNNs) have taken this a step further and delegate the task of finding optimal

features based on the data to the computer [45]. Litjens et al. [45] provides an extensive survey on

applications of deep learning in the field of medical imaging. It categorizes papers based on type

of images used (MRI, CT etc.), tasks (segmentation, detection, classification etc.) and application

area (pathology, brain, cardiac, etc.). It also listed papers dealing with musculoskeletal images.
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In a more recent work, Chea et. al. [14] have also conducted a survey on applications of deep

learning in musculoskeletal radiology. The mainly categorized papers based on tasks (lesion de-

tection, classification, segmentation, and non-interpretive tasks). Some of applications listed under

segmentation task include knee bone and cartilage segmentation, segmentation of the knee for age

assessment, and tissue segmentation.

There have been two general approaches to the segmentation problem in deep learning. The

first approach uses a patch of surrounding pixels to classify a pixel. This approach can be used on

scarce data since it divides each annotated image into hundreds or thousands of smaller patches

that can be used in training [45]. The second approach uses an end-to-end architecture to output

the segmented output directly. This approach, which was started by U-net [62], uses a much deeper

network which includes a conventional convolutional layer followed by mirrored up-convolution

(up-sampling) layers. Although this approach can be more accurate, it is much more difficult

to train. A major challenge to the application of deep learning in medical imaging is that deep

learning algorithms require large number of (mostly annotated) data points in order to be trained

properly, while medical images are very cumbersome to annotate. To solve this issue, some works

have used Transform Learning, in which some layers are borrowed from a model that is pre-trained

on other images in other fields. As an example, Cai et al. [11] used Transformed Deep Convolution

Networks to locate vertebrae. They trained their model on both MR and CT images with different

resolutions to improve the model’s discriminability. Their model’s output rotated bounding boxes

in order to locate each vertebra. Another work that tried to address limited training data was Zhang

et al. [89], where two CNN models were developed. The first model was trained in an unsupervised

manner on image patches in order to find inherent relationships and anatomical regions of interest.

The second model adds extra layers to the first (already trained) one to predict the coordinates

of anatomical regions of interest. Other works, however, claimed that models can be trained on

limited data sets. For example, Forsberg et al. [21] used clinically annotated lumbar and cervical

images in sagittal view to train a CNN that, in addition to labeling vertebra, locates centroids of

vertebra and inter-vertebral disks as wells as their outer edges. Although the training images came
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from archives of single institute, the model’s sensitivity, precision, and accuracy were all above

99%.

There have been works that used CNNs to increase the resolution of musculoskeletal MRI

[13]. Most research on medical images related to musculoskeletal disorders, however, tries to

address the problem of locating and labeling vertebrae. For example, one of the early works

that used CNNs to distinguish and locate vertebrae is Shen et al. [67]. They used two layers of

convolution followed by a max pooling and two fully connected layers. On the other hand, in

Suzani et al. [73], deep learning was used to localize and identify vertebrae at the same time. Their

approach shows 100% vertebra identification and a mean surface error of below 2.8 mm for 3D

segmentation and at the same time runs in a very short time. Lu et. al. [48] used a U-net based

CNN for vertebral segmentation and disc-level localization and stenosis grading. However, none

of these works tried to identify and measure all 11 muscles in a lower-back MRI.

In this paper, we take a different approach, from the aforementioned works. We use a stack

of images in sagittal view of lower back to identify and classify different muscle groups. To the

best of our knowledge, there has not been any model yet that achieved that goal. In addition to

muscle segmentation, we used the results to automate the task for lever arm calculation. The main

contribution of this work will be automating biomechanical measurements in general, leading to

quicker, more robust and accurate analysis.

5.3 Data Collection and Preparation

5.3.1 Experimental procedures

This was a retrospective study using previously acquired images. As such, the study was ruled

exempt by the local institutional review board and informed consent was waived. Furthermore,

the consent given by the participants in the original study allowed further use of the image data by

those investigators, who are among the authors of this paper.

The initial study from which we obtained the images had twenty-eight subjects (14 male

and 14 female) who participated in the research. The individuals were restricted to only Auburn
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University students. The inclusion criteria were that each individual met at the time were that each

participant must:

• be between 19-30 years of age

• have no previous lower-back injury

• no current significant lower-back pain symptoms

• have a BMI of no more than 30

• met the MRI safety requirements protocol of Auburn University MRI Research Center (i.e.,

no metallic objects in their body)

In that original study, the principal investigator (PI) was experienced in operating MRI machines

including a Level-3 MRI Safety Certification from the Auburn University MRI Research Cen-

ter (AUMRIC). MRI scans were performed using a 70cm Open Bore 3T scanner (MAGNETOM

Verio, Siemens AG, Erlangen, Germany).

5.3.2 Data

Figure 5.1 shows an example of MR images used in this paper. The data consists of a stack of 850

images from different cross-sections of the lower back from all the study participants. As in Figure

1, the data comes in pairs: the image on the left is the original raw MRI taken and the image on the

right is the same image with the muscles of concern traced, that is, their edges have been delineated

by an expert analyst using the Osirix© software (Rosset et al. [63]). It takes approximately 5 to 15

minutes for a trained analyst to trace a single MRI image on Osirix©.

Each pair of raw original and traced images can be denoted as (Io, Ia), where I o denotes the

original image and Ia denotes annotated (traced) image. Each traced image in the training set was

manually annotated by an expert. The raw image Io (with some preprocessing) will be the input to

the model and the traced image Ia (again, with some processing) will be the output. After an expert
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Figure 5.1: (left) A typical MR image. (right) The same image with the muscles of interest traced.

has annotated the image, they used the software to calculate the lever arms. Figure 5.2 illustrates

the three main steps in the lever-arm calculation procedure.

The CNN model is designed to substitute the manual tracing process and then directly cal-

culate the lever arms. From the stack of images, 269 images were used to train the model. This

training set was divided into 215 (80%) images that were used for the actual training and 58 (20%)

images that were used for validation. The remaining images were used as a test set.

5.3.3 Data Preprocessing

As a first step in preprocessing the images, the traced images I a in each pair (Io, Ia) must be

further modified. Their internal pixels need to be annotated (colored) with their corresponding

muscle class numbers. In Figure 5.2, muscle classes and the spine are annotated, and their lever

arm distances computed. These muscles are listed in table 5.1.

Note that class numbers are chosen arbitrarily, and classes can be picked in any order. The

images (both Io and Ia) need to undergo further preprocessing before they are ready to be fed to the

CNN models. The original images came in different size with height varying between 600 to 1200

pixels and width varying between 800 to 1400 pixels. As a result, in the first step, the images were
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Figure 5.2: Muscle class extraction from annotated images. First, the manual traces are converted
to binary masks representing muscle segmentation (top left). Second, the segments are assigned
to a muscle based on their relative position (top right). Finally, muscle features such as shape and
lever arms are computed from classified segments (bottom).

Muscle Name Class #
Background 0
Spine (disc) 1

Right Quadratus 2
Left Quadratus 3

Right Abdominis 4
Left Abdominis 5

Left Erector Spinae Mass Muscles (ESMM) 6
Right Erector Spinae Mass Muscles (ESMM) 7

Left Psoas 8
Right Psoas 9
Left Oblique 10

Right Oblique 11

Table 5.1: Muscle Names and their corresponding class numbers used in prediction

60



Figure 5.3: Muscle class Numbers overlayed on muscle segments. Generally, the data set consists
or two different formation of the same muscles. The first one (left) consists of 10 muscles and the
spine while the second one (right) consists of 8 muscles and the spine (left and right Quadratus are
not present)

resized to a 256 × 256 pixel image. We chose this dimension since it strikes a balance between

keeping the details of the image and training time. Doubling height and width of the images will

increase the size of the training data by 4 times, which significantly increases training time.

As can be viewed in Figure 5.3, the data set contains two types of images taken from different

spinal cross-sections. Note that the shared muscle numbers in the two images mean that they refer

to the same muscle (for example, muscle number 11 corresponds to right oblique in both images).

It is apparent how the sizes of muscles vary between the two images. In fact, there are ten muscles

visible on the image on the left, while only eight are present on the right. This contributes to the

complexity of muscle detection. Part of the value of our model is the fact that given enough train-

ing images from different cross-sections of the lower back, it can perform segmentation without

knowing which cross-section the image comes from.

5.4 Model Design

In this section, we describe our proposed model architecture, choice of hyperparameters and train-

ing conditions. Finally, we discuss how we deals with data imbalance inherent in the problem.
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Figure 5.4: CNN Model Architecture

We developed a semantic segmentation model, that is, it assigns a class number to each pixel

present in an input image. Figure 5.4 illustrates the architecture of the proposed model.

The model consists of seven convolutional layers (as in Figure 5.4, right) followed by four

transposed convolutional (up-sampling) layers. Each of the aforementioned layers except the out-

put layer are followed by batch normalization and an Exponential Linear Unit (ELU) activation

function. Since this is a pixel classification task, the output layer has a SoftMax activation func-

tion. There is a dropout regularization after the sixth convolutional layer. All convolutional layers

have a step of two, so the size of the image is halved as there is a skip layer where the result of

the first convolutional layer is added to the result of the third up-sampling layer. This is done to

provide finer-level information from the original image to the last up-sampling layer.

A dropout layer following each convolutional layer controls overfitting. A dropout rate of 25%

was used in the fourth layer which means that in each iteration, 25% of the neurons are deactivated
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Layer Conv. 1 Conv. 2 Conv. 3 Conv. 4 Conv 5 Conv. 6 Conv. 7 Up. 1 Up. 2 Up. 3 Up. 4
# filters 16 32 64 128 128 256 12 16 16 16 12

Filter size (3, 3) (3, 3) (3, 3) (4, 4) (4, 4) (1, 1) (1, 1) (4, 4) (4, 4) (4, 4) (4, 4)

Table 5.2: Hyperparameters used to train the CNN model. (Conv and Up are short forms of
Convolutional Layer and Up-sampling layers respectively)

randomly, no matter what values they assume. This is a powerful technique to avoid overfitting

since it prevents the model from relying too much on any particular neuron and distributes acti-

vations among all neurons. Before each convolutional layer, the inputs are zero-padded such that

the size of its outputs remain the same as the size of its input. Without zero-padding, the input

will shrink as it moves forward in the network. As mentioned above, the input image Io and the

annotated image Ia are both 256× 256 pixels.

5.4.1 Hyperparameters

The hyperparameters for the convolutional and up-sampling layers are listed in Table 5.2. Note that

filters of size 1 × 1 are used for convolutional layers 6 and 7. In fact, these two layers could have

been replaced by fully connected layers with 256 and 12 neurons respectively. Using convolutional

layers will allow the model to process input images of any size. If only fully connected layer had

been used, only inputs of size 256× 256 could be used as inputs. This architecture is called a fully

convolutional network, that is, it only contains convolutional layers. The final up-sampling layer

has 12 filters, which equals the number of muscles plus the background. The background could be

called class zero or no-muscle class.

5.4.2 Accounting for data imbalance

A particularly important challenge that had to be addressed for the task of muscle segmentation

was that the majority of the pixels (∼ 90%) were not associated with any muscles (class zero). This

leads to a highly unbalanced dataset. Training a model on this data without addressing this issue

will result in misclassifications where accuracy is high, but precision and recall are low (Refer

to Section 4 for formal definitions of these terms). Two common approaches to this problem are
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Figure 5.5: Adding noise to the background to avoid unbalanced classes.

subsampling and class weights. Subsampling means taking samples from the data in a biased way,

such that class imbalance is reduced. This means picking fewer observations from the class with

the majority of instances. This approach is not suitable when it comes to images since an image is

a whole entity. Subsampling pixels in an image is simply impossible without changing the nature

of an image. Alternatively, class weights could be used to adjust for this issue by providing less

weight to the majority class. The loss function will then become a weighted sum of actual losses

multiplied by class weights. This approach, although possible, is computationally expensive and

requires developing a custom loss function.

The approach we used in this paper is simply replacing a portion of the no-muscle class with

white noise. In particular, we replaced 80% of the background pixels with random values from 1 to

11 (corresponding to the 11 muscles). This will reduce the no-muscle class frequency from∼ 90%

to ∼ 16%. The justification used here is that this noise does not provide any semantic information

to the model. The model cannot learn it and simply ignores it and focuses more on the part of the

image that actually demonstrates a pattern. This strategy is depicted in Figure 5.5.

64



Figure 5.6: Original segmented image (left) together with raw (middle) and post-processed (right)
segmentations.

5.4.3 Training

The model was developed using TensorFlow [2]. Training was performed on a Nvidia Tesla K80

GPU with 32GB memory. The training process took approximately 12 hours before the early

stopping criteria was activated. The early stopping criteria activated when the loss function didn’t

improve on the validation data set for 30 consecutive epochs.

5.4.4 Post-processing

Preliminary experiments revealed that the model was susceptible to predicting muscles “fatter”

than the actual muscles, that is the predicted muscle would cover, and exceed the boundaries of

the ground-truth image. For this reason, we implemented a post-processing strategy that performs

more fine-grained segmentation. The idea is that for each muscle, the post-processing procedure

performs another segmentation on the segmented area which eliminates background pixels from

the foreground. This is achieved via a direct implementation of the GrabCut foreground detection

technique, from the image processing literature [64]. A sample comparison of the ground truth,

raw prediction and post-processed prediction is given in Figure 5.6.
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Figure 5.7: A comparison of 90o lever arm distances from original traced (left) and post-processed
segmentations (right)

5.5 Results & discussion

We compared the model output with the original images in both the muscle prediction, as well as

the prediction of lever arms. Figure 5.7 presents an example. We are interested in the error of the

model both in terms of pixel-to-pixel prediction, as well as in the accuracy of the predicted outputs

(muscle centroids and lever arms).

5.5.1 Performance Metrics

We used accuracy, precision, and recall to evaluate the performance of our model. For a muscle

class i, we denote true positive, true negative, false positive and false negative with TPi , TNi,

FPi, and TNi respectively and compute them as follows:

TPi = nyp=yo=i (5.1)

TNi = nyp 6=i (5.2)
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FPi = nyp=i (5.3)

FNi = nyp 6=i (5.4)

Where yp and yo denote predicted and observed (traced) classes and ncondition is the number of

pixels that satisfy a certain condition. Given the above definitions accuracy, precision, and recall

for pixel i, denoted with Ai, Pi, and Ri respectively are computed as follows

Ai =
TPi + TNi

TPi + TNi + FPi + FNi

(5.5)

Pi =
TPi

TPi + FPi
(5.6)

Ri =
TPi

TPi + FNi

(5.7)

Our model achieved an overall accuracy on pixel classification of 95.33% on the training set,

93.1% on the validation set, and 92.5% on the test set. Accuracy is a good metric to measure the

overall performance of a model. Its downside, however, is that it works best in balanced datasets.

However, in unbalanced datasets, it becomes a poorer metric. Precision and recall can be used

in order to provide better understanding of the model and what it captures or misses. Precision

is a measure for the correctness of a positive prediction. Recall - or the true positive rate - is

the measure for how many true positives get predicted out of all the positives in the dataset. In

lay terminology, accuracy is a measure of how many pixels were correctly predicted. Precision

measures the level of trust that when the model says a pixel belongs to class i, it actually belongs

to that class. Recall means if a pixel is actually part of muscle i, how likely it is to be detected by

the model.
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muscle 1 2 3 4 5 6 7 8 9 10 11
Accuracy 99.75 99.86 99.87 99.68 99.71 99.62 99.56 99.83 99.80 99.45 99.67
Precision 81.88 71.94 70.73 62.00 65.29 89.27 89.76 87.41 85.01 88.36 84.38

Recall 98.00 89.15 88.23 85.10 88.40 89.17 86.12 93.19 92.73 84.99 93.06

Table 5.3: Accuracy, Precision, and Recall:

The performance metrics for each muscle in the model results are listed in Table 5.3. The

model exhibits high values in these three metrics for most of the muscles. Accuracy for individual

muscles is very high and close to 1, with a minimum of 99.45%. However, this can be attributed

to the highly unbalanced nature of the classification problem. “Unbalanced” here means that most

of the pixels in a typical image are background images with class 0 while all the other muscles

groups together account for a small part of the image. Accuracy, hence, cannot be considered as

a reliable metric in this case. Recall values are also high, with all classes having 85% or higher

recall. The lowest recall values belong to classes 4, 5, 8, and 9 (Abdominis and Psoas), which are

in the 85% range. However, considering the variety of shapes and sizes of these muscles in these

images (as seen in Figure 4), these values are actually relatively high. As to precision, for muscle

classes 1, and 6-11 it is relatively high (above 80%) while it is lower for classes 2-5 (Left and right

Quadratus and Abdominis). This can be because these muscles are relatively smaller and harder

to detect. Especially in the case of muscles 2 and 3 (Quadratus), they are positioned in between

larger muscles and are also not present in all the images, which makes the task of prediction more

difficult. However, if we censor the data to just the images where these muscles are clearly present

the precision measure for them also increases. Muscles 4 and 5 (abdominals) are also the most

subject to breathing artifacts (movement from breathing while subjects are in MRI machine).

These results indicate that the model is producing many true positives and few false negatives,

but also a relatively large number of false positives. While these metrics are not as high as studies

that have focused on identifying a single structure (such as vertebrae), they are relatively high when

comparing against works that identify such diverse structures. Furthermore, the objective of the

study is not to identify each pixel exactly, but rather size, location, and lever arm of each muscle.
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5.5.2 Lever arms, area, and centroids

One of the main goals for this task of muscle segmentations is computing geometric muscle metrics

such as centroids, areas, and lever arms. High true and false positives and low false negative means

that the predicted muscles will cover the original annotated muscles but be somewhat ‘fatter’,

covering some of the empty area around the original, leading to larger areas. However, this does

not necessarily affect centroids or lever arms in a specific direction. In order to measure the model’s

accuracy in predicting these metrics, we computed absolute difference between the measured and

predicted values of 90o lever arms, centroids, and areas. The absolute average differences of these

values are listed, for each muscle, in Table 5.4.

Table 5.4 shows that predicted centroid and lever arms are very close to the true measurements.

Differences in lever arms are less than 1 cm for all the muscles and close to 0.5 cm overall. You

can see that the relative difference between predicted and traced lever arms is below 10% (note that

the high relative lever arms for muscle group 1 is because the lever arm for this muscle group is

very small an close to 0). Similarly, the distance from the centroid of each muscle to the center of

the spine was predicted to within 1 cm on average, for each muscle. Areas, on the other hand, are

more different. Table 5.4 also shows both the average absolute difference (in cm2) as well as the

average relative difference of predicted post-processed area over true area. On average predicted

muscles are 15% to 22% larger than the manually measured (traced) muscles for muscle groups

1-5. This ratio improves a lot for muscles 5-11 which are below 10%. To summarize the results in

Table 5.4, the model results in lever arm distances that are within 10% of manually traced muscles.

As to area, for area of muscle groups 6-11. the areas are within 10% of each other but the model

tends to predict larger areas for muscle groups 1-5.

5.5.3 Speed-up

As mentioned earlier, it can take between 5 to 15 minutes for a person to trace a single MRI image

on Osirix©. Once the model is trained, it takes between 10s to 60s to segment the muscles in the
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Metric 1 2 3 4 5 6 7 8 9 10 11
Area absolute difference (cm2) 1.13 1.09 2.43 2.34 2.46 2.62 1.24 1.39 2.83 3.30 1.80

Area relative difference (%) 15.07 15.60 23.79 22.24 19.98 6.92 9.21 10.45 5.53 9.06 7.84
90◦ lever arm absolute difference (cm) 0.13 0.33 0.29 0.41 0.43 0.39 0.38 0.23 0.25 0.27 0.28
90◦ lever arm relative difference (%) 7.03 5.33 3.78 8.06 7.84 7.24 3.90 6.05 6.38 3.50 2.21

Centroid distance (cm) 0.41 0.44 0.75 0.68 0.57 0.71 0.39 0.49 0.64 0.66 0.48

Table 5.4: Lever arm, area, and centroid statistics. All values are median values across all predicted
muscles.

image. So, the speedup could be somewhere between 5x to 60x. This is a significant efficiency

improvement in terms of specialist time which can be used on analysis rather than preprocessing.

5.6 Conclusions and future work

In this paper, we have developed a CNN model to identify muscles in lower back MRIs. A set

of traced (annotated) muscles were used as ground truth for training. A seven-layer network was

used for the task. Using the located muscle pixels, muscle features such as area, centroid, and lever

arm distances were computed automatically. The model showed median predictions are within 8%

(0.5 cm) for lever arms and centroids. Predicted muscle areas were slightly larger compared to

the traced muscles (6%-24% larger on average depending on the muscle group). The results of

the model are dependent on the quality of input images. The model provides much more accurate

results for high-contrast MR images compared to blurry ones. Further work in this area includes

improving accuracy of the model by providing location information to the model. Once the muscles

(and spine) are detected, further features, such as spine and muscle health, obesity measures, etc.

can be extracted automatically.
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tigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting.

Metallurgical and materials transactions A, 46(9):3816–3823, 2015.

[43] P. Li, D. H. Warner, A. Fatemi, and N. Phan. Critical assessment of the fatigue performance of

additively manufactured Ti-6Al-4V and perspective for future research. International Journal

of Fatigue, 85:130–143, 2016.

[44] Xiaofang Li, Yirui Wu, Wen Zhang, Ruichao Wang, and Feng Hou. Deep learning methods

in real-time image super-resolution: a survey. Journal of Real-Time Image Processing, pages

1–25, 2019.

[45] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,

Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken,
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