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Abstract

The slow coloring game is played by two players, Lister and Painter, on a graph G. In

round i, Lister marks a nonempty subset of V (G), which we’ll call M . By doing this he scores

|M | points. Painter responds by deleting a maximal independent subset of M . This process

continues until all vertices are deleted. Lister aims to maximize the score, while Painter aims to

minimize it. The best score that both players can guarantee is called the slow coloring number

or sum-color cost of G, denoted s̊(G).

Puleo and West [1] found that for an n-vertex tree T , s̊(T ) ≤ b3n
2
c, and that the maximum

is reached when T contains a spanning forest with vertices of degree 1 or 3. This implies that

graphs with a perfect matching have a slow coloring number bounded by s̊(G) ≥ 3n
2

. We find

a stronger lower bound for cyclic permutation graphs. Given a cyclic permutation graph Gσ,

σ ∈ Sk, we show s̊(Gσ) ≥ 3n
2

+ 1.
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Chapter 1

Introduction

This thesis studies the slow coloring game [2] which is played between two players, Lister

and Painter, on a graph G. In each round of the game, Lister marks a nonempty subset of the

graph, which we’ll call M , and scores |M | points. Painter then chooses a maximal independent

subset of M to delete. This process continues until all the vertices are deleted. Lister seeks

to maximize the score and Painter seeks to minimize it. The best score that each player can

guarantee is called the slow coloring number, or sum-color cost of G, s̊(G).

Slow coloring, also called online sum-paintability, is a recent problem that comes from

a history of coloring parameters. These other variations of coloring can help us to better un-

derstand the slow-coloring game and sum-color cost. We postpone formal definitions of these

concepts for Section 1.1 in favor of an informal discussion. A proper coloring of a graph, G, is

an assignment of colors to the vertices of G such that adjacent vertices must get distinct colors.

List coloring, introduced independently by Erdos-Rubin-Taylor [3] and Vizing [4, 5], gives the

graph a list assignment L, such that each vertex v receives a list of L(v) available colors. A

graph is L-colorable if it has a proper vertex coloring using the colors from the lists assigned

by L(v). Choosability looks at the largest sizes of these lists: A graph is f -choosable, for a

function f : V (G)→ N, if it is L-colorable for every list assignment L such that |L(v)| ≥ f(v)

for all v. It is k-choosable for an integer k if it is f -choosable when f(v) = k for all v. Instead

of looking at the least size of the lists, we can look at the least sum, or average, of the list sizes.

And so we have sum-choosability, first defined and studied by Isaak [6]. The sum-choosability

of G is χSC(G), the minimum
∑

(f(v)) over all f such that G is f -choosable. [6]
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We can take list coloring, and introduce an online factor– revealing the lists of vertices

little by little. To model worst possible behavior, we can view this as a game with the same

players and round structure described in relation to slow coloring. In round i, Lister marks a

subset of M vertices of the graph. We can view this marking as revealing all of the vertices

with color i in their lists. Painter then chooses an independent subset of M to receive color

i. In comparison with slow coloring however, we score this game differently: Lister tries to

maximize the amount of times that a vertex is chosen, thus revealing the entire hidden list

before Painter colors it. We note here the connection to choosability, where we’re concerned

with the largest list on any vertex. For a function f determining the list sizes for the vertices,

Lister wins if some vertex v is marked more than f(v) times. Painter wins by coloring all the

vertices before this happens. Thus, Painter wins the f -painting game by preventing a vertex

v from being marked more than f(v) times. If so, then the graph is f -paintable. A graph is

k-paintable if it is f -paintable for the function f(v) = k for all v, and the paintability of a

graph is the least such k. Paintability was independently introduced by Schauz [7] and Zhu

[8] Just as in choosability, we can study the least sum, or average, of this property– the sum-

paintability of G, studied first by Carraher, Mahoney, Puleo, and West [9]. Denoted χSP (G),

the sum-paintability of a graph G is the least value of
∑

(f(v)) such that G is f -paintable.

Since paintability deals with how many times a vertex is marked, and the size of its list,

we are not focused on specific colors the vertices get. Because of this, as first noted in [9], we

can view paintability in the following way: Painter allots tokens to the vertices of G, according

to a functionf(v), corresponding to the size of their lists. Every time Lister marks a vertex,

a token is removed. When all the tokens of a vertex have been used, then the vertex has

been marked f(v) times. If a vertex is marked more than f(v) times (having no tokens left

to ”pay”), Lister wins the game. In this fashion, sum-paintability is the least amount of total

tokens used. If continue this concept and look at sum-paintability in an online progression, we

arrive at slow coloring. In slow coloring, rather than assigning tokens beforehand according to

f , Painter can distribute tokens to the vertices as the game progresses. This allows Painter to

reserve tokens, and use them as needed, perhaps on especially difficult vertices. Thus, we can

see that s̊(G) ≤ χSP (G), since Painter can always play according to the function defined by
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χSP (G). Here again, we can see that the specific color of the vertices marked does not affect

the parameter, and for each round i, we can use a different color i. Thus deleting a vertex in

round i, as we discussed earlier, is a model for assigning it color i.

Since slow coloring is such a new parameter, relatively little is known about it. It was first

introduced by Mahoney, Puleo, and West in 2017 [2] where they provided a general upper and

lower bound on s̊ according to the graph’s number of vertices and its independence number.

They also found results for specific cases, such as when the independence number is two, for

n-vertex trees and complete bipartite graphs. In 2018, Gutowski, et al, [10] studied the property

on several classes of sparse graphs including k-degenerate, acyclically k-colorable, planar, and

outerplanar graphs.

Around the same time, Puleo and West [1] published results studying slow coloring on

trees. They developed an algorithm to compute the slow coloring number for a tree and pro-

duced results characterizing n-vertex trees with the largest and smallest values. They proved

two theorems in particular that will be useful for our results:

Theorem 1.1. [1] For every n-vertex tree T ,

n+
√

2n ≈ n+ un−1 = s̊(K1,n−1) ≤ s̊(T ) ≤ s̊(Pn) = b3n
2
c

where ur = max{k : tk ≥ r} for tk =
(
k+1
2

)
, k, r ∈ N.

Theorem 1.2. [1] If T is an n-vertex forest, then s̊(T ) = b3n
2
c (the maximum) if and only if

T contains a spanning forest in which every vertex has degree 1 or 3, except for one vertex of

degree 0 or 6 when n is odd.

A natural corollary of this is that any graph with a perfect matching has one of these

spanning forests as a subgraph. Since more edges would only push the sum-color cost higher,

this becomes a lower bound for classes of graphs with a perfect matching. Cyclic permutation

graphs, discussed in Chapter 2, are one such class of graphs. Created by two copies of a cycle

of length k, with vertices joined together according to a permutation σ ∈ Sk, a perfect matching

can be found from all the permutation edges. Also, since these graphs will always have an even
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number of vertices with n = |V (G)| = 2k, then for a cyclic permutation graph Gσ, we have

s̊(Gσ) ≥ 3n
2

.

In this paper, we use a Lister strategy to guarantee a higher bound for cyclic permutation

graphs:

Theorem 1.3. For any permutation σ ∈ Sk, the sum-color cost of the cyclic permutation graph

Gσ is bounded by

s̊(Gσ) ≥ 3n

2
+ 1

At the end of this paper, we include some results on the existence of disjoint cycles within

the cyclic permutation graphs. Although they are not necessary for the proof of our main result,

they are interesting and demonstrate proficiency in using probabilistic methods.

1.1 Definitions

Definition. A graph, G, is a set of elements, V (G), called vertices, and a set of unordered pairs

of these elements, E(G), called edges.

Definition. A pair of vertices are said to be adjacent if they are endpoints of the same edge.

A subset of vertices of a graph G is independent if none of those vertices are adjacent. The

independence number α(G) of a graph is the size of the largest independent subset of G.

Definition. A proper coloring of a graph, G, is an assignment of colors to the vertices of G in

which vertices that are adjacent to each other must get distinct colors. The chromatic number

χ(G), is the least amount of colors that can be used to produce a proper coloring on a graph.

Definition. A list assignment for a graph, G, is a function L that assigns every vertex v a list

of colors L(v). A graph is L-colorable if it has a proper vertex coloring using the colors from

the lists assigned by L(v). A graph is k-choosable if it is L-colorable whenever |L(v)| ≥ k for

all vertices of the graph. The choosability, or list chromatic number, of a graph G is χl(G): the

least k such that G is k-choosable.

Definition. For a function f : V (G) → N, we define the f -painting game in the following

way. In round i, Lister marks a subset M of vertices of G. Painter responds by deleting an
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independent subset of M . If Painter can ensure that no vertex v gets marked more than f(v)

times, then the graph is f -paintable. The paintability of a graph G is the smallest positive

integer k such that G is f -paintable whenever f(v) ≥ k. The sum-paintability of G, denoted

χSP (G), is the least value of
∑

(f(v)) such that G is f -paintable.

Definition. Following [11], we write Sk for the symmetric group on the elements {1, . . . , k}.

Given σ ∈ Sk, we define a cyclic permutation graphGσ as the graph with vertex set {v1, . . . , vk, w1, . . . wk}

and the edge set

{v1v2, , . . . , , vkv1, w1w2, . . . , wkw1} ∪ {viwσ(i) : 1 ≤ i ≤ k}

. We call the subset of edges {viwσ(i) : 1 ≤ i ≤ k} permutation edges, and the complement of

this subset cycle edges.

Definition. For two sets A,B, the symmetric difference of A and B is the set of elements that

are in exactly one of A,B, denoted A⊕B := (A−B) ∪ (B − A)

Definition. For a family of probability spaces, (Ωn, Pn), indexed by n, PropertyQ holds asymp-

totically almost surely as n→∞ if P (Property Q holds)→ 1 as n→∞.
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Chapter 2

Cyclic Permutation Graphs

There are several known ways in which we can view groups as graphs, and vice versa. The

most notable of these are Cayley Graphs, which are built from a group and its generating set.

Rather than building a graph out of a generating set, Chartand and Harary [12] introduced

permutation graphs, which take two disjoint copies of a graph of size |V (G)| = k, and join the

vertices of these copies together according to a permutation σ ∈ Sk. Ringeisen [13] considered

the subset of these where G is a cycle of length k: cyclic permutation graphs. Since we’re

joining two cycles of length k, we note that |V (Gσ)| = n = 2k. We can also see that these

graphs are 3-regular.

Figure 2.1: A cyclic permutation graph Gσ, with σ = (1, 3, 2, 5) ∈ S5.

Lemma 2.1. For σ ∈ Sk, k ≥ 3, the cyclic permutation graph Gσ is 3-connected.

Proof. Let Gσ be the cyclic permutation graph composed of two cycles of length k. We’ll call

the two cycle copies C1 and C2. Let x, y ∈ V (Gσ). We delete {x, y} and show that Gσ is still

connected.

6



First consider if x and y belong to the same cycle copy, say C1. To find a path between a

vertex on C2 and another vertex on C2, you simply move along the cycle, since no vertices on

that copy were deleted. Every remaining vertex in C1 has a permutation edge connecting it to

C2, so we can get from any vertex in C1 to any vertex in C2. We can also get from any vertex

in C1 to any other vertex in C1 by moving to C2 via the permutation edge, moving along C2,

and then returning to C1 using another permutation edges.

Next we consider if x and y belong to different cycles, say x ∈ C1 and y ∈ C2. By deleting

{x, y}, we delete two permutation edges. However, since k ≥ 3, at least one permutation edge,

remains. We only deleted one vertex from each cycle, so both C1−x and C2−y are connected.

Since these are connected, and joined by at least one permutation edge, there is a path between

every pair of vertices in the remaining graph.

There are three main observations we want to make concerning cyclic permutation graphs.

The first is the above lemma: these graphs are 3-connected. The second is that a perfect match-

ing can always be found on these graphs by taking all the permutation edges. And finally, since

these graphs always have an even number of vertices, n = |V (Gσ)| = 2k, by Theorem 1.2,

s̊(Gσ) ≥ 3n
2

.
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Chapter 3

Main Result

Recall that σ ∈ Sk and Gσ is the cyclic permutation graph on cycles of length k. Lister chooses

the permutation pairs i, σ(i) and j, σ(j). Painter replies by deleting an independent subset of

the marked vertices, D. We may assume, as observed by [2], that Painter deletes a maximal

independent subset, so we may assume |D| = 2. To delete a maximal independent subset of

Lister’s choice, Painter deletes one each of the selected pairs. We call the graph after Painter’s

response Gσ− = Gσ −D.

Figure 3.1: An example of Lister’s choice on Gσ.
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Figure 3.2: Examples of Painter’s possible replies, creating Gσ− .

For our main result, we rely heavily on the following Lemma.

Lemma 3.1. For any Painter reply D with |D| = 2, the graph Gσ− has a spanning forest, F ,

in which all vertices have degree 1 or 3.

For now, we will assume this lemma, and prove our main result.

Theorem 3.2. For any permutation σ ∈ Sk, the sum-color cost of the cyclic permutation graph

Gσ is bounded by

s̊(Gσ) ≥ 3n

2
+ 1

Proof. Lister starts by marking the permutation pairs i, σ(i) and j, σ(j). Let D be the indepen-

dent subset deleted by Painter with, as noted before |D| = 2. We call the graph after deletion

Gσ− , which has |V (Gσ−)| = n − 2. By Lemma 3.1, Gσ− has a spanning forest in which all

vertices have degree 1 or 3. Thus by Theorem 1.2,

s̊(Gσ−) ≥ 3

2
(n− 2) =

3

2
n− 3

Playing an optimal strategy on Gσ− , the final score s̊ achieved by Lister against this reply

is bounded from below by

s̊(Gσ) ≥
(

3

2
n− 3

)
+ 4 =

3

2
n+ 1

Since this bound holds no matter which vertices Painter deletes in response to our Lister’s

choice, we conclude that
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s̊(Gσ) ≥ 3

2
n+ 1.

We now prove the supporting Lemma.

Proof. Consider the vertices that were adjacent to the deleted vertices by permutation edges,

call them β-vertices. Note that after deletion, there are two β-vertices. We construct F as

follows: Let F0 be the set of all permutation edges remaining in Gσ− , and let P be a path

between the β-vertices. By Lemma 2.1 at least one such path exists. We construct F1 to be the

symmetric difference of F0 and E(P ):

F1 = F0 ⊕ E(P ).

Figure 3.3: Construction of F1. Top left: F0, top right: β-path, bottom: F .
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Note that, by the definition of symmetric difference,

dF1(v) = dF0(v) + dP (v) (mod 2).

We claim that the vertices of F1 have degree 1 or 3. To see this, we’ll consider each type

of vertex. First, consider a β-vertex, vβ . Since β-vertices no longer have a permutation edge,

dF0(vβ) = 0. Since they are an endpoint of the β-path, dP (vβ) = 1. Thus dF1(vβ) = 1 (mod 2).

Now consider all the remaining vertices. Let v be a vertex that is not a β-vertex. Since v

retains its permutation edges in Gσ− , dF0(v) = 1. Also, dP (v) is even: if the vertex is disjoint

from the β-path, then dP (v) = 0; if the vertex belongs to the β-path, then dP (v) = 2. Thus for

non-β-vertices, dF1(v) = 1 (mod 2). Hence every vertex has odd degree in F1. This implies

that every vertex in F1 has degree either 1 or 3, since G has maximum degree 3.

Finally, we remove cycles, should any exist. Let C be a cycle contained in F1. Let F =

F1 ⊕ E(C) = F1 − E(C). If F1 contains more than one cycle, we can continue to take

symmetric differences until all are removed. Each cycle can only contribute degree 2 to any

vertex in F1. Thus removing any cycle maintains the fact that all vertices have odd degree. And

so Gσ− contains a spanning forest of vertices of degree 1 or 3.
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Chapter 4

Probabilistic Methods

Originally, we believed in order to prove our sum-color cost bound for cyclic permutation

graphs, there would need to be two disjoint cycles (using permutation edges) within the graph–

see the figure below. In this section, we use probabilistic methods to show that these disjoint

cycles exist for large enough k. It turned out that our proof did not rely on these cycles, however,

the result is interesting and demonstrates a mastery of these techniques.

For our results here, we rely heavily on Chebyshev’s Inequality, as formulated in [14].

Lemma 4.1. [14] (Chebyshev’s Inequality) Let X be a random variable on a finite probability

space. For any real t > 0,

P (|X − E(X)| ≥ t) ≤ V (X)

t2

Let Gσ be the cyclic permutation graph of σ ∈ Sk. Label the vertices of each cycle

{1, . . . , t, . . . , k} with t = k
2
.

Theorem 4.2. Let k = 2t, and let σ be a uniform random permutation from Sk. Asymptotically

almost surely, there exist distinct i, j ∈ {1, ..., t} such that σ(i), σ(j) ∈ {1, ..., t}, and there

exist distinct i′, j′ ∈ {t+ 1, ..., k} such that σ(i′), σ(j′) ∈ {t+ 1, ..., k}, for t sufficiently large.

Proof. We prove the first statement, and the second statement follows with a similar argu-

ment. Since the descriptions of these vertices rely solely on the permutation σ, we think of

i, j, σ(i), σ(j) as elements of this permutation. We call an element i ∈ {1, . . . , t} good if it

satisfies the above, that is, if σ(i) ∈ {1, . . . , t}.

Let Ai be the event that i ∈ {1, . . . , t} is good. Let Xi be its indicator random variable,

i.e.
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Xi =


1 if σ(i) ∈ {1, . . . , t}

0 if σ(i) /∈ {1, . . . , t}

Note that P (σ(i) ∈ {1, . . . , t}) = 1
2

and so E(Xi) = 1
2
. Let X be the number of good

elements. Then X =
∑t

i=1Xi and

E(X) = E

(
t∑
i=1

Xi

)
=

t∑
i=1

(E(Xi)) =
t

2

We use Chebyshev’s Inequality to show that almost surely there exist two good elements.

To do this we first find the variance of X .

Since Xi is an indicator random variable, we have

V (Xi) = E(X2
i )− E(Xi)

2 = E(Xi)− E(Xi)
2 =

1

2
−
(

1

2

)2

=
1

4

For the covariance we have

C(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

=
1

2

(
t− 1

2t− 1

)
− 1

4

=
−2

16t− 8

To see this, note that, E(XiXj) = P (Ai and Aj) = P (Ai)P (Aj|Ai) where P (Ai) = t
2t

=

1
2

and P (Aj|Ai) = t−1
2t−1 .

Thus the variance of X is as follows:
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V (X) =
∑
i

V (Xi) +
∑
i 6=j

C(XiXj)

=
t

4
+

((
t

2

))(
−2

16t− 8

)
≤ t

4
+

(
(t− 1)2

2

)(
−2

16t− 8

)

We use Chebyshev’s Inequality and consider P (X ≤ 1). X ≤ 1 would require |X −

E(X)| ≥ E(X)− 1. Thus we have,

P (X ≤ 1) ≤ P (|X − E(X)| ≥ E(X)− 1)

≤ V (X)

(E(X)− 1)2

≤
t
4

+ (t−1)2
2

( −2
16t−8)

( t
4
− 1)2

≤
t+ (−2t

2+2t−1
32t−16 )

t2

16
− t

2
+ 1

=
480t2 − 224t− 16

32t3 − 272t2 + 640t− 256

So as t → ∞, P (X ≤ 1) → 0 and almost surely there exist at least two good elements.

Since two good elements exist within the permutation, we have that corresponding vertices

within the graph, and so we achieve our disjoint cycles as described before.
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Chapter 5

Future Interests

Since slow coloring is such a recently defined parameter, there are many interesting directions

to follow in studying it. As discussed in [13], there are other types of permutation graphs: we

can take two copies of any graph and join the copies according to a permutation [12]. Thus

first point of interest would be seeing how to modify this result for other types of permutation

graphs (or all permutation graphs).

This leads us to begin thinking about other types of algebraically generated graphs, such

as Cayley graphs. The algebraic structures of Cayley graphs lend themselves to high connec-

tivity, which suggests a higher sum-color cost. We can also look to expand on the probabilistic

work we’ve done, seeing what structure and connectivity we can guarantee for a graph through

probabilistic methods.

The final and most interesting future question is if our result can be directly generalized to

graphs that have a perfect matching and are (2k+ 1)-connected. We see that our result extends

to this idea that for k = 1, such graphs have sum-color cost, s̊(G) ≥ 3n
2

+ k. Therefore we

conjecture the following.

Conjecture 5.1. Let G be a graph with a perfect matching. If G is (2k + 1)-connected, then

s̊(G) ≥ 3n

2
+ k
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