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Tracking uses models of the real environment to estimate the past and present and

even predict the future state of a moving object from noisy observations of uncertain

origin. In a tracking scenario the most critical problem is that of data-association. This

topic has received considerable attention in the literature and a number of solutions have

been proposed. This dissertation considers the problem of tracking highly maneuvering

target(s) using multiple sensors in the presence of clutter. A set of noble algorithms are

developed to handle this problem.

First, the basic interacting multiple model (IMM) approach has been combined

with probabilistic data association (PDA) to develop an IMMPDA (interacting multiple

model probabilistic data association) algorithm with simultaneous measurement update

(SMU) for tracking a maneuvering target in clutter with multiple sensors.

Second, we extend our noble SMU algorithm to a more practical tracking scenario,

that of tracking a maneuvering target with asynchronous (in-sequence but time delayed)

measurements. A state-augmented approach is developed to estimate the time delay
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between a local sensor (assumed to be collocated and synchronized with a central pro-

cessor) and a remote sensor (assumed to be separately located and not synchronized

with a central processor).

Third, we address one of the most important issues for target tracking in a multisen-

sor fusion network: out-of-sequence measurements (OOSM). However, this dissertation

is not concerned with different sampling rate among sensors. Instead, we focus on a

suboptimal filtering algorithm dealing with possibly time delayed, out-of-sequence mea-

surements (OOSM) with a fixed relative time-delay (we assume that sampling rate are

all the same for all sensors) among sensor measurements. A state-augmented approach

is also developed to improve tracking performance with the possible presence of OOSM.

The filtering algorithm is developed by OOSM updating with IMMPDA for the target.

Finally, we consider tracking of multiple highly maneuvering targets using multiple

sensors with possibly unresolved measurement. When multiple targets move temporarily

in close formation, it possibly gives rise to a single detection due to the resolution limita-

tions of the sensor. Assuming that there are possibly unresolved measurements from at

least two targets (i.e., measurement association with more than two targets simultane-

ously), any measurement therefore is either associated with a target, a group of merged

targets, or caused by clutter. The filtering algorithm is developed by applying the basic

IMM approach and the joint probabilistic data association with merged measurements

(JPDAM) technique and coupled target state estimation.
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Chapter 1

Introduction

Target tracking is the estimation (the process of selecting the value of interest from

indirect, inaccurate and uncertain observations) of the states (position, velocity, acceler-

ation, etc.) of moving objects (plane, missile, submarine, etc.) both at the current time

(filtering) and at any point in the future (prediction) based on remote measurements

obtained from sensor(s). The objective of target tracking is to collect sensor data from

a field of view (FOV) containing potential target information and then to partition the

sensor data into sets of observations or tracks that are originated from the same sources.

Different types of sensors can be employed to obtain remote measurements. Active

sensors observe objects by illuminating them with an energy source and measuring the

reflected energy. On the other hand, passive sensors observe objects by measuring char-

acteristic emissions of the object. The sensors may be located at a fixed location or on

moving platforms. The system block diagram of target tracking and the corresponding

mathematical view of state estimation are shown in Fig. 1.1 and Fig. 1.2, respectively.

Note that, in Figs. 1.1 and 1.2, the measurements are the only variables to which the

estimator has access and are affected by the error sources in the form of measurement

noise [12].

Solution of the target tracking problem requires the simultaneous completion of

two tasks: estimation and data association. Estimation can be viewed as the process of

finding the best model parameters to describe the observed data. The process of assigning

observations to each target track is referred to as data association. There are many
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Figure 1.1: An outline of the components of a tracking system [12, page 5]

Figure 1.2: A mathematical view of the state estimation problem [12, page 2]
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different approaches to both estimation and data association, and these are generally

the distinguishing features that give rise to different tracking algorithms. Details of

these tasks are discussed in Chapter 2. In this chapter we present an overview of general

target tracking problems, some specific issues of target tracking problem, and main

contributions of our works.

1.1 Overview of Target Tracking Problems

1.1.1 Data Association Techniques

Target tracking algorithms have continued to receive significant attention over the

past fifty years. The problem of target tracking dealing with noise corrupted measure-

ments has attracted significant attention since World War II. In 1955, Wax [1] formulated

the problem of track formation, track maintenance, and track rejection based on the prob-

lem of detecting the path of a particle in a bubble chamber, but this paper was written

before the adoption of Kalman filtering techniques for recursive target state estimation.

In 1960, Kalman published his famous paper [2] describing a recursive solution to the

discrete-data linear filtering problem. Since then, the Kalman filter has been the subject

of extensive research and application, particularly in the area of autonomous or assisted

navigation. It was recognized by Sittler [3] in 1964 that there can be an uncertainty

associated with the origin of the measurements in target tracking. This is called the

data association problem; a measurement may not have originated from the target of

interest.

In the early 70’s papers by Bar-Shalom [4, 5] and Singer [6, 7] began the develop-

ment of the modern tracking systems which combined the data association and Kalman
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filtering theory. In 1975, the paper by Bar-Shalom and Tse [5] introduced a suboptimal,

computationally-bounded extension of the Kalman filter to cases where measurements

were not always available or multiple measurements were simultaneously returned from

the sensor. This extension was termed the probabilistic data association filter (PDAF).

The PDAF is a Bayesian technique that incorporates clusters of measurements that could

have originated from a single target into an updated state estimate for the target. It led

to fewer lost tracks in the presence of clutter when compared to the nearest neighbor

(NN) technique of data association where only the closest measurement to the predicted

measurement was considered to have originated from the target and used to update the

state estimate of the target [5]. Two years later from [5], the multiple hypothesis testing

(MHT) technique was introduced by Reid [8, 9]. This approach splits an existing track

into multiple tracks when more than one measurement is available for the target. How-

ever, in this dissertation we are not concerned with the MHT technique, but instead we

focus on the PDAF technique because it has been recognized as one of the best subopti-

mal data association approaches in terms of combined accuracy and computational cost

[27]. The theory behind the PDAF is discussed in Chapter 2.

In the early 1980’s, as an extension of PDAF, the joint probabilistic data association

filter (JPDAF) was introduced by Fortmann et al. [10] to deal with the multiple target

tracking situation. The JPDAF is identical to the PDAF except for the extra computa-

tion of the association probabilities for all observations and all tracks. The JPDAF was

fairly successful in simulations at tracking multiple targets travelling in close proximity.

However, when two targets are “closely” spaced, they may give rise to a single detection

due to the resolution limitations of the sensor. For instance, in radar ranging, returns

4



from multiple targets could fall in the same range cell, resulting in one unresolved de-

tection only. This violates a principal assumption of the JPDAF: a measurement can

originate from at most one target. Standard tracking algorithms that ignore such a phe-

nomenon can lead to poor performance in multiple target tracking. As a consequence

of the study of this problem, Chang and Bar-Shalom [11] introduced the joint proba-

bilistic data association with merged measurements (JPDAM) technique in 1984. Under

the Bayesian framework, there are two basic methods of track estimation with merged

measurements in multiple target environments [12]: JPDAM and MHT. The MHT fil-

ter associates feasible measurements to track and forms multiple hypotheses for track

extension. It is a measurement-oriented approach whereas JPDAM is a target-oriented

approach. Moreover, MHT is a multiscan approach utilizing several scans of measure-

ments to make data association decisions. MHT makes hard decisions where highly

improbable hypotheses are pruned to reduce the computational burden. On the other

hand, the JPDAM filter is a single scan approach which does not make hard decisions;

rather it updates a track with a weighed sum of the measurements which could have

originated from the target in track. The basic theory and simulation of the JPDAM are

developed in Chapter 6. Looking ahead in this dissertation, the JPDAM technique has

better performance than JPDAF especially in terms of the track estimation accuracy

and the loss of tracks when two targets are “closely” spaced and may give rise to a single

detection.

1.1.2 Estimation Algorithms

Optimal techniques, such as the Kalman filter, provide accurate results during cer-

tain motions but also cause large errors during target motions which are not modeled in

5



the Kalman filter. Moreover, the discrete-time Kalman filter requires sensor measure-

ments at every time step, which is not always possible in target tracking scenario. After

the data association problem had been first addressed by the PDAF, several multiple

model tracking methods appeared in the early 1980’s. The idea behind a multiple-model

approach versus a traditional adaptive filter such as the Kalman filter was that traditional

techniques would respond too slowly in abruptly changing environments [12, 13]. Opti-

mal multiple model techniques were replaced by suboptimal techniques as memory re-

quirements and computational time grew exponentially for the optimal approaches. The

suboptimal estimation techniques introduced included the generalized pseudo-Bayesian

(GPB1), second-order generalized pseudo-Bayesian (GPB2), detection-estimation algo-

rithm (DEA), random sampling algorithm (RSA), and the interacting multiple model

(IMM). The differences in these estimation approaches were how and when the multiple

models were combined (also known as hypothesis pruning).

The GPB1 and GPB2 algorithms were introduced to combine the history of target

models by Ackerson and Fu [14] in 1970. In the GPB methods, the hypothesis pruning

was performed after the filtering step. The GPB2 differed from the GPB1 by including

knowledge of the previous possible mode transitions, as modeled by a Markov chain. In

the late 1970’s, both DEA and RSA approaches were proposed for the switching environ-

ment problem and well detailed in [15] and [16], respectively. Tugnait [17] provided good

overviews where suboptimal hypothesis pruning techniques, including the GPB, DEA,

and RSA methods, are compared. These pruning techniques involved approximating

sums of Gaussian distributions by a single Gaussian distribution, but were presented

before the widespread adoption of IMM techniques.
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The IMM algorithm was introduced by Blom [18] in 1984. He and Bar-Shalom

[19, 20] further developed the idea of IMM in a couple of papers in the late 1980’s.

Differing from the GPB techniques, the hypothesis pruning was performed before each

filtering step after information was shared among the various filters. Thus, like the GPB2

method, the IMM considers the previous possible mode transitions, but unlike the GPB2

method, the IMM requires not n2 but n filters, where n is the number of models being

considered. It was shown in [19] that the GPB2 and IMM produced slightly smaller

tracking errors than the GPB1 during non-maneuvering target motion, but achieved

significantly smaller tracking errors during maneuvering motion. In view of the fact that

the IMM is conceptually similar to the GPB2 but its computational load is similar to that

of the GPB1 [19], the IMM is superior to both the GPB1 and GPB2 when considering

computational complexity and tracking accuracy. The basic theory behind the IMM is

discussed in Sec. 2.2.

1.1.3 Combination of IMM and PDA

In the process of tracking a maneuvering target, for cases when measurements are

not always available for the Kalman filter, or multiple measurements for a target exist,

Houles and Bar-Shalom [21] introduced the combination of the IMM and the PDAF in

the late 1980’s. In [21] the IMM algorithm is combined with the PDA filter in a multiple

sensor scenario to propose a combined IMM/MSPDAF (interacting multiple model/

multisensor probabilistic data association filter) algorithm. This algorithm considers an

estimation of the target state at present time k given measurements up to time k (on

state filtering). This combination is detailed in [21].
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In [10, 22] multiple targets in clutter (but without using switching multiple mod-

els) have been considered using JPDA filter which, unlike the PDA filter, accounts for

the interference from other targets. Most recently, various versions of IMM/JPDA fil-

ters for multiple target tracking using switching multiple models have been presented

in [23, 24, 25, 26]. While [24, 26] present uncoupled filters (i.e., assumes that different

target states are mutually independent conditioned on the past measurements), [23, 25]

present coupled filters (i.e., assume that there exists “shared” measurements, yielding

cross-covariances which reflect the correlation between the targets’ state estimation er-

rors). In addition, while Blom and Bloem [23] presented an “exact” JPDA coupled filter

for non-switching models using the framework of a linear descriptor system, for switch-

ing models, they also presented IMM/JPDA uncoupled filter approximations [24]. In

[25], Tugnait presented an IMM/JPDA coupled filtering algorithm where a simulation

example resulted in fewer target swapping compared with uncoupled IMM/JPDA. As

noted in [27], IMMPDA filter is in general superior to IMM/MHT filter when the asso-

ciated computational cost and performance are considered. Therefore, our emphasis will

be on IMM/JPDA techniques. Neither [11] nor [28] consider multiple switching kine-

matic models for maneuvering targets; rather they are limited to single (non-switching)

kinematic models per target to achieve much enhanced performance.

When two targets are “closely” spaced, they may give rise to a single detection due

to the resolution limitations of the sensor. For instance, in radar ranging, returns from

multiple targets could fall in the same range cell, resulting in one unresolved detection

only [11, 28]. Standard tracking algorithms that ignore such a phenomenon can lead

to poor performance in multiple target tracking [11, 28]. Despite its importance, prior

work on tracking with unresolved measurements and modeling of resolution capability of
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a sensor in particular is sparse. Prior work includes [11] and [28] and references therein.

In [11] the resolution phenomena related to tracking have been treated on the basis of

a grid of resolution cells “frozen” in space. In [28] the resolution capability of the event

that two targets are unresolved is conditioned on the relative distance between the two

targets in terms of the measured variables (range, azimuth, etc.). A simple Gaussian

shape is assumed which captures the sensor behavior in a mathematically tractable way.

While [11] considers JPDA for data association, [28] exploits MHT.

In Chapter 6, we propose to use sensor resolution modeling of [28] in conjunction

with JPDAM coupled filtering and IMM approach (see [25] for tracking with resolved

measurements scenario).

1.2 The Main Issues of Target Tracking Problem

The main issues of target tracking problem discussed in this dissertation can be

summarized as follows.

1.2.1 Tracking a Maneuvering Target

Traditional target tracking assumes that the states of the target of interest satisfy

a certain kinematic model. However target model uncertainty typically exists because

generally the target of interest is not a cooperating target in that it does not follow a

predefined trajectory [27]. Basically the uncertainty in the model can be modeled by

additive noise which compensates for the modeling inaccuracy. This approach works

fairly well when the target kinematics can be closely approximated by a single model.
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Therefore, if a certain model truly describes the kinematics of the target, a Kalman

filter gives the optimal solution for tracking in the sense of minimizing the mean-square

error in state estimation. The optimal Kalman filter yields large errors when the target

is moving with nearly-constant speed and the noise variance is very high. However, in

some cases, a target can maneuver and can exhibit different kinematic characteristics

from time to time. For example, a military aircraft can perform many kinds of abrupt

maneuvers. In that case, a single model cannot describe completely the behavior of the

target, and the estimates based on a single model often lead to poor performance of the

state estimates or loss of track.

The idea of using multiple models for describing the different motion phases of the

target comes from the above impracticality of the filter. For instance, if a constant

velocity model is used to describe the behavior of the target all the time, the selection

of additive noise variance which models the uncertainty in the model is difficult. If the

variance of the noise is small and the target undergoes rapid acceleration or sharp turn,

this model suffers the loss of track of the target because the small noise variance can not

cover properly those maneuvers. On the other hand, if the variance of the noise is large,

it would be able to track those maneuvers but estimation accuracy would be degraded.

The interacting multiple model (IMM) estimator has become well accepted in the

literature [12, 22, 29, 30, 33] as the best approach for tracking a maneuvering target.

1.2.2 Tracking a Target in Presence of Clutter

In target tracking, there exist various kind of “undesired” measurements (clutter)

obtained from the sensor which are not generated from the actual target of interest.
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This clutter (e.g., interfering radar echoes caused by objects such as clouds, sea waves,

etc.) can degrade the tracking accuracy severely. Ideally, this measurement uncertainty

can be described by a random model. However, in practice, there exists clutter that is

persistent or somewhere between random and persistent [12]. We will only consider ran-

dom clutter in the sequel. In the worst case, there exists no true measurement detected

by the sensor, and only clutter may be present as measurement data. This cluttered

environment complicates the target tracking problem by introducing uncertainty in the

measurement origin. As a consequence of this measurement uncertainty, errors can be

made in association of measurements to existing tracks. Hence one has to consider data

association techniques to determine whether the true measurement originated from the

target (Does a given measurement come from the target of interest, or is it a clutter or

interference from the nearby target?).

The simplest way to deal with multiple measurements is to use NN (nearest neigh-

bor) filters which, at any given moment, use the NN measurement as if it were the mea-

surement coming from the target of interest. Thus it discards all other measurements for

the final state estimation of the target of interest. But sometimes NN measurement may

not originate from the target of interest and could be clutter. This happens when clutter

density is high. So it is not a robust approach, as it often leads to loss of track [12]. The

other way to deal with multiple measurements is to associate each measurement with a

weight according to the probability that a given measurement could have originated from

the target of interest. This is a Bayesian approach. More specifically, a validation region

(hypersphere) centered at the predicted measurement (based on previous state estimate)

is established. A validation process of all the measurements in the current scan is carried

out. Only those measurements falling within the validation region are considered so that
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this process eliminates highly improbable measurements. The validation process needs

an appropriate model to describe the clutter. Once the clutter model is established, a

data association process can be developed accordingly. An effective data association ap-

proach in a Bayesian framework is that of probabilistic data association (PDA) [22, 33]

which is discussed in Sec. 2.3.

1.2.3 Tracking a Target using Multiple Sensors

The objective of using multiple sensors for target tracking is to improve the accuracy

of tracking (i.e., infrared sensors only measures the direction of arrival, hence radar can

be used together to measure the distance of the target, or at least two infrared sensors

at different locations can be used to obtain the position of a target). In this dissertation,

we restrict our attention to radar and infrared sensors.

• Radar Sensors

Radar (radio detection and ranging) sensor is mostly used as an active sensor since

it initiates the energy and detects the target reflections. It is well known that

radar’s all-weather performance and excellent kinematic measurement capabilities

allow it to play a dominant role in any multisensor tracking system. This active

nature of the radar is the primary factor that makes it such an effective sensor.

Since the source of the energy is the radar itself, the nature of the returned target

signal is at least partially under control of the radar operator. The range res-

olution and aperture size of the radar is primarily determined by the frequency

band used by the radar. It is also possible to use the sensor in a passive mode,

searching for targets emitting radar signals which is often referred as radar warning
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receivers (RWR). The measurement model for a 2-D radar sensor considered in this

dissertation is

z = h (x) =



R

θ


+ w

where x is the system state, z is the (true) measurement vector, w is the measure-

ment noise, R is the range, and θ is the azimuth angle. A common model for the

measurement noise is to assume an additive white Gaussian noise model.

• Infrared Sensors

The passive nature of the infrared (IR) sensors leads to distinct advantages and

disadvantages. The excellent measurement accuracy of the IR sensors makes them

an important element of any multiple sensor tracking system. Emphasis in military

applications on reduced target signatures places new emphasis on the development

of IR system in mainly two ways. First, use of active sensors must be minimized

since the use of active sensors potentially uncovers one’s existence (e.g., the en-

emy can easily detect radar tracking by using RWR). Second, the enemy’s efforts

at reduced RCS (radar cross section) signature and advanced ECM (electronic

countermeasures) increase the need to exploit other target signatures such as its

infrared emissions. In addition, the use of IR sensors enhances resolution capability

for closely spaced targets, accurate angle measurements, and resistance to ECM.

The measurement model for this sensor considered in this dissertation is

z = h (x) =



θ

φ


+ w

13



where θ is the azimuth angle and φ is the elevation angle.

Unlike single sensor case, multiple sensors introduce the problems of temporal and

spatial characteristics of the measurement data. Sensors may not always be located

at the same place. Hence measurements available at the sensors could be at different

time instants. So sensors may be either synchronous (ideal case), which means that

the sampling times of all sensors are the same and there is no delay (timing mismatch)

among sensors, or asynchronous, which means that the sampling times may vary or

there is delay (timing mismatch) from each other. This gives rise to architectural issues

of the sensor network, and one may carry out the estimation process in a centralized

way (estimation at one central node, called the master node) or in a decentralized way

(estimation at each sensor locally and then obtain global estimate by track fusion) [27].

If sensors are distant from each other, then there could be delay in the estimation

due to data transmission time and channel bandwidth issues. So one has to deal with

synchronous as well as asynchronous measurement data to obtain the estimate. Usually

if synchronous measurement data is available from all the sensors then either ‘parallel

updating’ (updating state by processing data from all the sensors simultaneously at the

same time) or ‘sequential updating’ (updating state based on the available measurement

data from that particular sensor) can be carried out. In [34], it has been shown that

those two schemes are equivalent (for linear models) if provided sensors are synchronized

and measurement noise across the sensors are uncorrelated (a realistic assumption).

But parallel updating is computationally more expensive than sequential updating. On

the other hand, if the sensors are not synchronized, then one has to deal with possible

OOSM (out of sequence measurements). This asynchronous measurements case has been
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considered in [12, 35, 36, 37] and a noble state-augmented algorithm to deal with OOSM

is presented in Chapter 5.

1.2.4 Tracking Multiple Targets

The presence of multiple targets in the detection range of sensors (also called the

scope) makes the target tracking very complicated by introducing the additional uncer-

tainty in the origin of the measurement. One has to solve the data association problem

to determine whether the available measurement is generated from one of the targets

present in the scope and from which target it originated. Data association in a multiple

target scenario is carried out by considering all the targets simultaneously.

Since each target can constitute a “persistent” interference to other targets, it is

a great challenge to track multiple targets moving close to each other. The merged

measurement case arise when two (or more) targets are so “close” that the sensor detects

them as one target due to a lack of resolution (see Fig. 1.3). The objective of the

multitarget tracking is to partition the sensor data into sets of observations, or tracks,

produced by the same source (target). Once tracks are formed and confirmed, the

task is to maintain each track. All of the above target tracking issues have already

been studied by numerous researchers and, as a consequence, many effective solutions

have been provided for these problems. However, more effective and cheap algorithms

are still required to improve the estimation accuracy and to reduce the computational

cost. Compared to single target tracking, multitarget tracking is a very complicated

and computationally intensive process. When there are n targets in the detection range

(scope) of the sensors, the measurement origin uncertainty problem is the worst one as the
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Figure 1.3: An example of origin uncertainties and validation regions: Ẑ1
k and Ẑ2

k are pre-
dicted measurements from target 1 and target 2 at time k, respectively. The parameters
of the ellipses are determined by the covariance matrices of Ẑ1

k and Ẑ2
k . Measurement Z1

k

originates from target 1 or clutter. Z3
k originates from target 2 or clutter. Z2

k originates
from target 1 or target 2 or both (in case of merged measurement) or clutter.

number of combinations of association of measurement and target increases dramatically.

An objective of our research is to develop advanced signal processing algorithms for

multiple target tracking by exploiting filtering theory and data association techniques.

There are mainly two approaches to deal with the merged measurement problem.

• Multiple hypothesis tracker (MHT)

No prior knowledge is needed about the number of targets. One has to consider

simultaneously all the targets and also consider simultaneously all the scans of

measurements. The main theme of MHT is that it evaluates the probabilities that

there is a target from which a sequence of measurements have originated. It is
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called a measurement-oriented approach. The more complex MHT provides im-

proved performance, but it is difficult to implement and in cluttered environments

a large number of hypotheses may have to be maintained, which requires extensive

computational resources.

• Joint probabilistic data association(JPDA)

The JPDA techniques are based on PDA (probabilistic data association), which

uses a weighted average of all the measurements falling inside a track’s validation

region (i.e., gating) at the current time to update the track state. In this approach,

it is assumed that the number of targets is known already. The tracks of these

targets have already been formed. The task is to evaluate the measurement-to-

target association probabilities for the latest set of measurements and then obtain

the state estimates by combining those measurements. It is called a target-oriented

approach. These techniques give much better performance than the simpler data

association techniques (i.e., NN filter) and requires less computational resources

than MHT approach.

• JPDA with merged measurements (JPDAM)

When multiple targets are close enough in the measurement range, they will give

merged (unresolved) measurement due to the resolution limitation of sensor. Since

the JPDA algorithm can track targets with measurements originating from one of

the targets in track or clutter, additional data association for the merged measure-

ments needs to be done in JPDA technique. To deal with the possibility that a

17



measurement originated from more than one target, JPDAM can be applied. JP-

DAM uses a probabilistic model and corresponding data association for the merged

measurements.

1.3 Contributions

Our contributions in this dissertation are:

IMMPDA simultaneous measurement update for a maneuvering target track-

ing using multiple sensors

We present a noble suboptimal filtering algorithm for tracking a highly maneuver-

ing target in a cluttered environment using multiple sensors. The filtering algorithm is

developed by applying the basic IMM approach and the PDA technique to a two sensor

(radar and infrared) problem for state estimation for the target. A simultaneous mea-

surement update approach is followed where the raw sensor measurements are passed

to a fusion node and fed directly to the target tracker. A multisensor (MS) PDA is

developed for parallel sensor processing for target tracking under clutter. The algorithm

is illustrated via a highly maneuvering target tracking simulation example where two

sensors, a radar and an infrared sensor, are used. Compared with an existing IMMPDA

filtering algorithm with sequential sensor processing, the proposed algorithm achieves

significant improvement in the accuracy of track estimation.

IMMPDA simultaneous measurement update for a maneuvering target track-

ing with delayed but in-sequence measurements

We extend IMMPDA simultaneous measurement update algorithm to possibly asyn-

chronous (in-sequence but time delayed) measurements. A state augmented approach is
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developed to estimate the time delay between local and remote sensors. A multisensor

probabilistic data association filter (PDAF) is developed for parallel sensor processing for

target tracking under clutter. Compared with an existing IMMPDA filtering algorithm

with the assumption of synchronous measurements sensor processing, the proposed algo-

rithm achieves considerable improvement (especially in the case of larger delays) in the

accuracy of track estimation.

IMMPDA simultaneous measurement update with possibly out-of-sequence

measurements

We propose a suboptimal filtering algorithm dealing with possibly time delayed,

out-of-sequence measurements (OOSM) with a fixed relative time-delay among sensor

measurements. The filtering algorithm is developed by applying the basic IMM approach,

the PDA technique, and OOSM updating for the target. A state augmented approach is

developed to improve tracking performance with the presence of OOSM. A multisensor

PDA filter is developed for parallel sensor processing for target tracking under clutter.

The algorithm is illustrated via a highly maneuvering target tracking simulation example

where two sensors, a radar and an infrared sensor, are used. Compared with an exist-

ing IMMPDA filtering algorithm with in-sequence only sensor processing, the proposed

algorithm achieves considerable improvement in the accuracy of track estimation.

Multitarget tracking with possibly merged measurements

We propose a noble suboptimal filtering algorithm for tracking multiple maneuvering

targets in a cluttered environment using multiple sensors. This algorithm is an extension

of IMM/JPDA filtering algorithm [25] to deal with possibly merged measurements. We
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concentrate on the case of two targets which temporarily move in close formation. The

filtering algorithm is developed by applying the basic IMM approach and the joint prob-

abilistic data association with merged measurements (JPDAM) technique and coupled

target state estimation to a Markovian switching system. The algorithm is illustrated

via a simulation example involving tracking of two highly maneuvering, at times closely

spaced, targets with possibly unresolved measurements. Compared with an existing

IMM/JPDA filtering algorithm developed without allowing for merged measurements

[25], the proposed algorithm achieves significant improvement in the accuracy of track

estimation during target merging period.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows:

In Chapter 2, we elaborate on some basic target tracking algorithms, mainly the

Kalman filter, IMM filter, and PDA filter. Theory associated with those algorithms

serves as the foundation for our contributions. Chapter 3 presents a noble suboptimal fil-

tering algorithm for tracking a highly maneuvering target in a cluttered environment us-

ing multiple sensors. We develop a noble algorithm “simultaneous measurement update

using IMMPDA filtering”. The proposed algorithm provides significant improvement

over an existing standard IMMPDA filtering algorithm with sequential sensor processing

especially tracking a maneuvering target. In Chapter 4, we extend the proposed filtering

algorithm to the asynchronous measurement case. Compared with an existing IMM-

PDA filtering algorithm with the assumption of synchronous (no delay) measurements

sensor processing, the proposed algorithm achieves considerable improvement (especially
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in the case of larger delays) in the accuracy of track estimation. A suboptimal filtering

algorithm dealing with possibly time delayed, out-of-sequence measurements (OOSM)

with a fixed relative time-delay among sensor measurements is presented in Chapter 5.

In Chapter 6, we focus on multitarget tracking problem with possibly merged measure-

ments. The simulation example shows significant improvement in the position estimate

compared to the multisensor tracking by IMM/JPDA coupled filtering algorithm of [25].

Finally, Chapter 7 presents the future work that we would like to continue in the area.
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Chapter 2

Basic Target Tracking Algorithms

In this chapter we review some basic algorithms. We divide the problem of track-

ing into state estimation and data association. We briefly describe some existing state

estimation algorithms: Kalman filter, extended Kalman filter, and interacting multiple

model (IMM) algorithms. For data association, the probabilistic data association filter

(PDAF) is briefly described in this chapter. This is background work and is quite useful

in later chapters where we discuss our contributions.

2.1 Kalman Filter

Kalman filter theory is fundamental for the development of target tracking algo-

rithms. Given a collection of sensor measurements, it is often possible to determine

several optimal state estimates based on different optimality conditions which can be

stated in terms of the probability density function (pdf) of the states given the obser-

vation. Hence, the problem of state estimation can be formulated by calculating the

probability density of the state. Under general conditions, it is not possible to obtain

a closed-form solution to the problem of state estimation. However, when the system

is linear and the random variables are assumed to be Gaussian, a closed-form solution

can be obtained. Under this conditions, the optimal estimator is the Kalman filter and

it is usually specified as a finite length algorithm based on a recursion of the mean and

covariance of the state. It can be applied to both continuous and discrete linear sys-

tems. The target of interest, which is being tracked, is continuous by nature, but the
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processor, which runs the tracking algorithm, is discrete. The original Kalman filter [2]

was defined in continuous-time, but a discrete version also derived after [2]. Since the

discrete Kalman filter is only used in this dissertation, we briefly describe the steps for

implementing a Kalman filter in discrete time domain.

2.1.1 Discrete-Time Kalman Filter

Consider a discrete time linear dynamic system with additive white Gaussian noise

that models the disturbances. The discrete time index is denoted by k. A general

time-varying state space model for the Kalman filter is

xk+1 = Fkxk +Gkuk + vk (2.1)

where

xk = the state vector of dimension nx at time k

Fk = nx × nx transition matrix

Gk = nx × nu input distribution matrix

uk = a known input vector of dimension nu

vk = the random process noise vector of dimension nx.

It is assumed that vk is the sequence of zero-mean white Gaussian process noise with

covariance

E{vjv′k} = Qjk = Qδjk (2.2)
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where E{.} denotes the expectation, ′ denotes the transpose operation and δjk is the

Dirac delta function. The statistical model of the measurement is described by

zk = Hkxk + wk (2.3)

where zk is the mx-dimensional measurement vector, Hk is the mx × nx observation

matrix, and wk is zero mean white Gaussian measurement noise with covariance

E{wjw′k} = Rjk = Rδjk. (2.4)

Since a complete knowledge of the statistical model constitutes the knowledge of Fk, Gk,

Qk, Hk, and Rk, these system matrices are assumed known and can be time varying. The

initial condition of the state x0 is a random variable with known mean x̄0 and covariance

P0. Process noise vk, measurement noise wk, and initial state x0 are assumed to be

mutually independent. Define x̂k|j (:= E{xk|Zj}) as an estimate of the state vector xk

based upon the knowledge of the measurements up to time j where Zj := {z1, z2, · · · , zj}.

Specially, k > j denotes a predicted estimate, k < j denotes a smoothed estimate, and

k = j denotes a filtered estimate. The goal is to estimate the state xk based on all the

available measurements up to time k. If the mean square error is chosen as the cost

criterion, then Kalman [2] has shown that the estimate of the state xk minimizing its

cost is

x̂k|k := E{xk|Zk} (2.5)

where

Zk := {z1, z2, · · · , zk} (2.6)
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is the measurement sequence up to the current time k. The uncertainty in the estimate

is indicated by the state covariance, which is computed as covariance of the estimation

error

Pk|k := E{[xk − x̂k|k][xk − x̂k|k]′|Zk}. (2.7)

Note from (2.5) that, under the Gaussian assumption for the initial state and all the

noise signals entering the system, the Kalman filter is the optimal MMSE (minimum

mean-square error) state estimator:

x̂MMSE
k = arg min

x̂k

E
{

(x̂k − xk)T (x̂k − xk) |Zk
}
. (2.8)

The solution to this problem is obtained by differentiating the expected value with respect

to the estimate x̂k:

∂
∂x̂k

[
E
{

(x̂k − xk)T (x̂k − xk) |Zk
}]

= ∂
∂x̂k

[∫∞
−∞ (x̂k − xk)T (x̂k − xk) p

(
xk|Zk

)
dxk

]

= 2
∫∞
−∞ (x̂k − xk) p

(
xk|Zk

)
dxk.

(2.9)

From the last line of Eqn. (2.9), it can be derived as

∫ ∞
−∞

(x̂k − xk) p
(
xk|Zk

)
dxk

∣∣∣∣
x̂k=x̂MMSE

k

= 0. (2.10)

Thus the MMSE-estimate can be obtained as (from the fact that
∫∞
−∞ p(xk|Zk)dxk = 0)

x̂MMSE
k =

∫ ∞
−∞

xkp
(
xk|Zk

)
dxk = E

{
xk|Zk

}
(2.11)
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which is equal to the Kalman filter equation of (2.5). The derivation of the Kalman

filter can be found in [39, 40, 41]. Since the Kalman filter updates the state whenever a

measurement arrives and is a recursive algorithm, we only list one cycle of the Kalman

filter in this dissertation. Assume that, at time k, the following are available: the state

estimate x̂k−1|k−1 and the associated error covariance Pk−1|k−1. Now when measurement

zk is available at time k, the estimate update at time k is obtained as follows.

Prediction

The state estimates and its covariance estimates are first predicted from time k− 1

to time k. The state prediction is

x̂k|k−1 := E{xk|Zk−1} = Fk−1x̂k−1|k−1 +Gk−1uk−1. (2.12)

The state prediction covariance is

Pk|k−1 := E{[xk − x̂k|k−1][xk − x̂k|k−1]′|Zk−1}

= Fk−1Pk−1|k−1F
′
k−1 +Qk−1. (2.13)

The measurement prediction is

ẑk|k−1 := E{zk|Zk−1} = Hkx̂k|k−1. (2.14)
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Update

When the measurement at time k is obtained, the measurement residual or innova-

tion is first computed as

νk := zk − ẑk|k−1. (2.15)

This measurement residual is a Gaussian random variable with zero mean and covariance

Sk := E{νkν ′k|Zk−1} = HkPk|k−1H
′
k +Rk. (2.16)

The state estimate is updated as

x̂k|k = x̂k|k−1 +Wkνk (2.17)

where Wk is the filter gain defined as

Wk := Pk|k−1H
′
kS
−1
k . (2.18)

Finally, the covariance of updated state estimate can be obtained as

Pk|k := E{[xk − x̂k|k][xk − x̂k|k]′|Zk} = Pk|k−1 − Pk|k−1H
′
kS
−1
k HkPk|k−1

= [I −WkHk]Pk|k−1 = Pk|k−1 −WkSkW
′
k. (2.19)

That is, one may notice from (2.19) that the predicted covariance described in (2.13) is

now reduced because the new information brought to the system allows a more accurate

estimate. Note from (2.18) that the Kalman gain Wk is (from a simplistic scalar point
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of view) “proportional” to the state prediction variance and “inversely proportional”

to the innovation variance. Hence, the Kalman gain is “large” if the state prediction is

inaccurate (has a large variance) and the measurement is accurate (has a relatively small

variance). This “large” Kalman gain indicates a “rapid” response to the measurement

in updating the state, while a “small” gain yields a “slower” response to the measure-

ment. In the frequency domain a large/small Kalman gain properties correspond to a

higher/lower bandwidth of the Kalman filter [13].

2.1.2 Extended Kalman filter

One of the main problems with the standard Kalman filter is the requirement of

a linear measurement equation (2.3). This problem makes the standard Kalman filter

impractical in most tracking situations. Typically the measurements do not contain the

target position in Cartesian coordinates. For instance, a radar can measure the range

and the azimuth angle, and a passive sensor such as infrared sensor might give the

azimuth and elevation angles only. Therefore, when tracking problems are not linear so

the Kalman filter cannot be used directly, one can approximate the nonlinear equation by

linearizing around a point and solving for the linearized system with a Kalman filter. This

approach is referred to as the extended Kalman filter (EKF). It is basically an extension

of the linear Kalman filter described in the previous section and allows nonlinear state

transition and measurement equations. Unfortunately, this filter is no longer optimal.

Hence, in complex tracking circumstances the performance may be degraded significantly.
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One Cycle of the EKF

The update equation for the EKF is nearly the same as the linear Kalman filter

(LKF). The state prediction (2.12) and measurement predictions (2.14) are replaced by

the corresponding nonlinear equations. That is, the state is predicted as

x̂k|k−1 = f(x̂k−1|k−1) +Gk−1uk−1. (2.20)

When the measurement equation is nonlinear, i.e., the predicted equation (2.14) is re-

placed by

ẑk|k−1 = h(x̂k|k−1). (2.21)

In the covariance equations the nonlinear function cannot be used. Therefore, the func-

tions are to be linearized first. It would also be possible to compute the Taylor series of

the functions and use the desired number of terms [13]. The linearization corresponds to

taking only the first term of each series. Details are well explained in [13]. The Jacobian

of the state transformation function f(·) is evaluated at the previous estimate:

Fk =
∂f(x)
∂x

∣∣∣∣
x=x̂k−1|k−1

. (2.22)

Similarly, the Jacobian of the measurement function is computed. It is evaluated at the

predicted state:

Hk =
∂h(x)
∂x

∣∣∣∣
x=x̂k|k−1

. (2.23)

The above linearizations in (2.22) and (2.23) may degrade the performance of the filter

significantly. Especially in passive (i.e., infrared sensor) tracking, valuable information
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can be lost when equation (2.23) applied. If more terms of the Taylor were used, the

accuracy could be improved with extra computations.

Note from the EKF equations that the Kalman gain computation and the resulting

update of the state estimates to form x̂k|k are dependent on the initial estimates x̂k|k−1.

Therefore, there may be a tendency for the EKF to diverge if the initial estimate is

inaccurate. It means that in the case where several quantities are measured, the order of

processing measurements should be considered for better estimate. This is in contrast to

the LKF where all measurements can be processed simultaneously or in any order with

no effect on the resultant accuracy.

Example: Tracking a target moving at constant velocity using EKF

Consider a system with the following state space model

xk+1 = Fkxk +Gkvk (2.24)

with the state vector consisting of position [xk yk zk]
T in Cartesian coordinates in meters

where ẋk := dxk
dt and

xk = [xk ẋk yk ẏk zk żk]
T . (2.25)
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If a target is moving at constant velocity, the corresponding system matrices would be

[12]

Fk =




1 T 0

0 1 0

0 0 1

0 0 0

0 0 0

T 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 T

0 0 1




, Gk =




T 2
/
2

T

0

0

0

0

0

0

T 2
/
2

T

0

0

0

0

0

0

T 2
/
2

T




(2.26)

where T is the sampling rate (in second). Assuming a 2-D radar being used for target

tracking, the sensor measurement of range (R) and azimuth angle (φ) can be defined as

zk = h (xk) + wk =



R

φ


 =




√
x2
k + y2

k + z2
k

tan−1 (yk/xk)


+ wk (2.27)

where wk is zero-mean Gaussian noises with the covariance matrix of measurement noise

Rk =



σ2
R 0

0 σ2
φ


 . (2.28)

The linearized measurement matrix Hk can be obtained as

Hk =
∂h(x)
∂x

∣∣∣∣x=x̂k|k−1

=




∂R
∂xk

∂R
∂ẋk

∂R
∂yk

∂R
∂ẏk

∂R
∂zk

∂R
∂żk

∂φ
∂xk

∂φ
∂ẋk

∂φ
∂yk

∂φ
∂ẏk

∂φ
∂zk

∂φ
∂żk



xk=x̂k|k−1
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Figure 2.1: The trajectory of the target (true vs. estimated)

=



cosθ̂cosφ̂ 0 cosθ̂sinφ̂ 0 sinθ̂ 0

− sinφ̂

R̂cosθ̂
0 cosφ̂

R̂cosθ̂
0 0 0


 (2.29)

where

R̂ =
√
x̂2
k|k−1 + ŷ2

k|k−1 + ẑ2
k|k−1 (2.30)

φ̂ = tan−1

(
ŷk|k−1

x̂k|k−1

)
(2.31)

θ̂ = tan−1


 ẑk|k−1√

(x̂2
k|k−1 + ŷ2

k|k−1)


. (2.32)

The target trajectories of both true and estimated target state are shown in Fig. 2.1.

The true target is flying with constant velocity from the upper right corner to lower left

corner. Position measurements (range and bearing) of the target are sampled with period
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Figure 2.2: Performance of the Kalman filter (read top-to-bottom): (a) RMSE in velocity.
(b) RMSE in position

T=1s, and measurements (range and bearing) error variance of σ2
R = (20m)2 and δ2

φ =

(0.002rad)2. The results for tracking a non-maneuvering target in terms of the root mean

square errors (RMSE) in velocity and position are presented in Fig. 2.2 based on 100

Monte Carlo runs. Fig. 2.2 shows that EKF works well in tracking of a non-maneuvering

target. As seen from above example, traditional target tracking problems can be solved

using EKF. However, in case of tracking a maneuvering target, since the Kalman filter

uses permanently a large process noise to cover the maneuver, it would respond too

slowly in abruptly changing environments [13]. To handle maneuvering targets, multiple

models can be used for the possible hypotheses. Bar-Shalom et al. [12, 13] provided

good overviews where the Kalman filter and interacting multiple model (IMM) filter are

compared. In the following section, the IMM approach to state estimation is presented.
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2.2 Interactive Multiple Model

As mentioned above, a single model sometimes cannot describe the dynamics of a

system very well. Hence it is useful to introduce multiple models to describe complete

behavior of the target motion. One important issue for a multiple model is to reduce

the number of hypotheses. This can be done by pruning or merging techniques. For

example, if the number of models is n, there are nk+1 different model paths available at

time k. Since the number of model paths for the optimal estimation grows exponentially

in time, it is not feasible in real applications. To solve this computational cost problem,

a suboptimal algorithm is needed. As one of the most efficient suboptimal algorithms,

the IMM algorithm has continued to receive increasing attention over the past twenty

years. There are many sources that provide a detailed discussion of IMM algorithms

[12, 13, 21, 33, 42]. In the following discussion, an optimal solution for the multiple model

approach to state estimation is given and then some practical suboptimal solutions are

presented.

2.2.1 Optimal Solution

In the multiple model (MM) approach it is assumed that the dynamics of the system

at any time can be described by one of a finite number of given models. Such systems

are called hybrid, since there exist both the discrete (modeling) uncertainties and con-

tinuous (noise) uncertainties. If it is assumed that the mode switching occurs only at

the sampling time (state update time), the model switching of the whole system can

be described as a Markovian switching system. Suppose that there are n hypothesized

models, M1,M2, · · · ,Mn for the system and the event that model M j is in effect during
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the sampling period ending at time tk (i.e., the sampling period (tk−1, tk]) is denoted by

M j
k . When event M j

k is effective, the system is modeled as

xk = F jk−1xk−1 + vjk−1 (2.33)

and

zk = Hj
kxk + wjk. (2.34)

When the jth model is correct (the system is in mode M j), the initial (prior) mode

probability is denoted by (i.e., at k=0)

P [M j
0 ] = µj0 for j = 1, 2, · · · , n (2.35)

with
n∑

j=1

µj0 = 1 (2.36)

is assumed to be known. The switching of the model is governed by a Markov chain with

known model transition probabilities

pij := P [M j
k |M i

k−1]. (2.37)

The l-th possible model history (sequence of models) through time k is denoted as

M̃ l
k = {M j0

0 ,M
j1
1 , · · · ,M jk

k } for l = 1, 2, · · · , nk+1 (2.38)
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where 1 ≤ ji ≤ n for i = 0, 1, · · · , k. Note that the number of histories (nk+1) increases

exponentially with time k. By the total probability theorem, it follows that the con-

ditional pdf of the state at time k is obtained as a Gaussian sum with exponentially

increasing number of terms

p(xk|Zk) =
nk+1∑

l=1

p(xk|M̃ l
k, Z

k)P [M̃ l
k|Zk]. (2.39)

Since p(xk|M̃ l
k, Z

k) is Gaussian with mean E(xk|M̃ l
k, Z

k), which can be obtained via a

Kalman filter, it follows that

E(xk|Zk) =
nk+1∑

l=1

E(xk|M̃ l
k, Z

k)P [M̃ l
k|Zk]. (2.40)

Noticing that (2.40) is the optimal solution for the state estimate, it is clear that the

number of filters needed to implement (2.40) increases exponentially with time k, which

makes the optimal approach impractical. In order to develop a computationally feasible

approach, consider the conditional probability of each model history M̃ l
k. It follows from

Bayes’ formula that

µ̃lk := P [M̃ l
k|Zk[= P [M̃ l

k|zk, Zk−1]

=
1
c
p(zk|Zk−1, M̃ l

k)P [M̃ l
k|Zk−1] (2.41)

where c is a normalization constant such that
∑nk+1

l=1 µ̃lk = 1. Equation (2.41) can be

rewritten as

µ̃lk =
1
c
p(zk|Zk−1, M̃ l

k)P [M j
k , M̃

s
k−1|Zk−1]
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=
1
c
p(zk|Zk−1, M̃ l

k)P [M j
k |M̃ s

k−1, Z
k−1]P [M̃ s

k−1|Zk−1]

=
1
c
p(zk|Zk−1, M̃ l

k)P [M j
k |M̃ s

k−1]µ̃sk−1 (2.42)

If the current model M jk
k depends only on the previous model M jk−1

k−1 , (2.42) can be

simplified further as

µ̃lk =
1
c
p
(
zk|Zk−1, M̃ l

k

)
pijµ̃

s
k−1 (2.43)

where M i
k−1 is the last model of the sequence M̃ s

k−1.

According to [13], the advantage of an optimal estimator is that the best utilization

of the data and the knowledge of the system and the disturbances can be guaranteed,

but on the other hand, the disadvantages of the estimator are that it is possibly sensitive

to modeling errors and requires higher computational cost compared to a suboptimal

estimator. Therefore optimal multiple model techniques need to be replaced by subop-

timal techniques as memory requirements and computational time grow exponentially

for the optimal approaches. The main idea of suboptimal multiple model techniques is

to combine the multiple models (also known as hypothesis pruning). Fig. 2.3 presents a

comparison of the number of filters required between optimal and suboptimal solutions

(i.e., interacting multiple model (IMM) algorithm). As shown in Fig. 2.3, the number

of filters needed to implement the optimal estimator increases exponentially with time

k (see (2.40)) while the number of filters needed to implement the suboptimal estimator

increases linearly with time k (see (2.59)), which makes the suboptimal solution approach

more practical.
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Figure 2.3: Optimal solution (circle) vs suboptimal solution (diamond: interacting mul-
tiple model (IMM) algorithm) in term of the number of filters required

2.2.2 Basic IMM Algorithm

The IMM algorithm of [30], has been found to offer a good compromise between the

computational and storage requirements and estimation accuracy [29, 43]. Our future

work is also based on the IMM approach. So in the following section we describe the

basic IMM algorithm. The IMM algorithm [30] for state filtering is based on running n

“mode-matched” state estimation filters which exchange information (interact) at each

sampling instant. It assumes that the conditional probability density p(xk|M j
k , Z

k) is

a Gaussian with mean x̂jk|k := E{xk|M j
k , Z

k} and the covariance P jk|k := E{[xk −

x̂jk|k][xk−x̂jk|k]′|M j
k , Z

k}. In reality, the density p(xk|M j
k , Z

k) is Gaussian sum containing

nk terms.
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As the algorithm is well explained in [29, 30, 43], we briefly outline the basic steps in

‘one cycle’ (i.e., processing needed to update the new measurement) of the IMM filtering

algorithm. We follow Table I of [29] for the most part.

Assumed available: It is assumed that following is available at the beginning of the state

estimate update cycle ending at time k: the state estimate x̂jk−1|k−1 := E{xk−1|M j
k−1, Z

k−1},

the associated covariance P jk−1|k−1, and the conditional mode probability µjk−1 := P [M j
k−1|Zk−1]

at time k − 1 for each j ∈ Mn := {1, 2, · · · , n}. For k = 1, we take initial condition

x̂j0|0 = x̄j0, P j0|0 = P j0 and µj0 = P [M j
0 ].

Step 1: Interaction − mixing of the estimate from the previous time

In this stage, the main objective is to reduce the number of hypotheses from n2

to n. At the end of the interaction stage, n conditioned state estimates x̂0j
k−1|k−1 :=

E{xk−1|M j
k , Z

k−1} (j ∈ Mn) and the associated covariances are obtained. The details

are as given below :

predicted mode probability:

µj−k := P [M j
k |Zk−1] =

n∑

i=1

pijµ
i
k−1 (2.44)

mixing probability:

µi|j := P [M i
k−1|M j

k ,Zk−1] = pijµ
i
k−1/µ

j−
k (2.45)

mixed estimate:

x̂0j
k−1|k−1 := E{xk−1|M j

k , Z
k−1} =

n∑

i=1

x̂ik−1|k−1µ
i|j (2.46)
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covariance of the mixed estimate:

P 0j
k−1|k−1 := E{[xk−1 − x̂0j

k−1|k−1][xk−1 − x̂0j
k−1|k−1]′|M j

k , Z
k−1} (2.47)

=
n∑

i=1

{P ik−1|k−1 + [x̂ik−1|k−1 − x̂0j
k−1|k−1][x̂ik−1|k−1 − x̂0j

k−1|k−1]′}µi|j

Step 2: Prediction and Filtering (∀j ∈Mn):

While the mixed state estimate is the estimate of the state at time k − 1, the pre-

dicted state is the estimate of the state at time k without the current measurement zk

being available. The details of this stage are given below:

state prediction:

x̂jk|k−1 := E{xk|M j
k , Z

k−1} = F jk−1x̂
0j
k−1|k−1 (2.48)

covariance of state prediction:

P jk|k−1 := E{[xk − x̂jk|k−1][xk − x̂jk|k−1]′|M j
k , Z

k−1}

= F jk−1P
0j
k−1|k−1F

j′
k−1 +Gjk−1Q

j
k−1G

j′
k−1 (2.49)

measurement prediction:

ẑjk|k−1 := Hj
kx̂

j
k|k−1 (2.50)

measurement residual (innovations)

νjk := zk − ẑjk|k−1 (2.51)
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measurement residual covariance (innovation covariance):

Sjk := E{νjkνjk
′|Zk−1} = Hj

kP
j
k|k−1H

j
k

′
+Rjk (2.52)

Kalman gain:

W j
k := P jk|k−1H

j
k

′
Sjk
−1

(2.53)

filtered state estimate:

x̂jk|k = x̂jk|k−1 +W j
kν

j
k (2.54)

covariance of filtered state estimate:

P jk|k := E{[xk − x̂jk|k][xk − x̂jk|k]′|Zk}

= P jk|k−1 −W j
kS

j
kW

j
k

′
(2.55)

likelihood function:

Λjk = N
(
νjk; 0, Sjk

)
(2.56)

where

N (x; y, P ) = |2πP |−1/2exp
[
−1

2
(x− y)′P−1(x− y)

]
(2.57)

and |A| is the determinant of the matrix A.

Updating mode probability:

µjk = P [M j
k |Zk] =

µj−k Λjk
n∑
i=1

µi−k Λik
. (2.58)
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Step 3: Combination of the mode-conditioned estimates

In the combination stage, a single lumped state estimate given all measurements

up to the current time is obtained as well as the associated covariance. The final state

estimate update at time k is given by

x̂k|k := E{xk|Zk} =
n∑

j=1

x̂jk|kµ
j
k (2.59)

and its covariance is given by

Pk|k := E{[xk − x̂k|k][xk − x̂k|k]′|Zk}

=
n∑

j=1

{
P jk|k + [x̂jk|k − x̂k|k][x̂jk|k − x̂k|k]′

}
µjk. (2.60)

2.2.3 Target Dynamic Models

We discuss important target tracking models to be used in the IMM algorithm. The

main focus is on the state dynamics and process noise. An example of a set of kinematic

models describing a maneuvering target is shown in Fig. 2.4. To describe the motion of

the target as closely as possible, as shown in Fig. 2.4, it is essential to select the set of

models properly. The motion of a target can be modeled with an accurate, high-order

model if the type of target can be determined from the sensor measurements. The use of

a small number of low-order models can effectively track many types of targets through

various moving situations. In this section a class of widely used models derived from

simple equations of motion (constant velocity and constant acceleration) are discussed.

There are mainly two classes of discretized kinematic models: discretized continuous-time
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M1-> M2
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M1-> M2

model switch
M2-> M1

model switch
M2-> M1

Model M1: constant velocity
Model M2: coordinate turn w/ constant acceleration

Figure 2.4: An example of a set of kinematic models describing a maneuvering target
using two models: 1) constant velocity model and 2) coordinate turn with constant
acceleration model.

kinematic models (discretized model is generated via a continuous-time white process

noise) and direct discrete-time kinematic models (it is directly defined in discrete-time

domain and the noise is a discrete-time process noise) [13]. We mainly focus on direct

discrete-time kinematic models as follows:

Piecewise Constant Wiener Process Acceleration Model

Assume that there is an object moving in a 3-dimensional Cartesian space plane

with non-zero acceleration. Let the state vector at time kT (T = sample period)

xk = [ξk ξ̇k ξ̈k ηk η̇k η̈k ζk ζ̇k ζ̈k]
′

(2.61)

where ξk, ηk and ζk are the Cartesian position coordinates, and where the velocity

components are denoted by ξ̇k, η̇k and ζ̇k, and where the acceleration components are

denoted by ξ̈k, η̈k and ζ̈k. The state dynamics for the piecewise constant Wiener process
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acceleration model can be approximated using Taylor series expansion:

f (t) = f (t0) + ḟ (t0) (t− t0) + f̈ (t0)
(t− t0)2

2!
+ · · · . (2.62)

Let t = (k + 1)T and t0 = kT . Then

ξk+1 = ξk + ξ̇kT + ξ̈k
T 2

2 + pξk, (2.63)

ξ̇k+1 = ξ̇k + ξ̈kT + vξk, (2.64)

ξ̈k+1 = ξ̈k + aξk. (2.65)

Define

xk (ξ) :=




ξk

ξ̇k

ξ̈k



, xk :=




xk (ξ)

xk (η)

xk (ζ)



, wk (ξ) :=




pξk

vξk

aξk



, and wk :=




wk (ξ)

wk (η)

wk (ζ)



.

(2.66)

From Eqns. (2.62)-(2.66), the state dynamics for the piecewise constant Wiener process

acceleration model can be written as in (2.67) [13]. (Note that, only in this section,

we denote “wk” (instead of “vk”) as the process noise at time k to distinguish it from

velocity components in (2.64) and (2.66).)

xk+1 = Fkxk +Gkwk (2.67)
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where

Fk =




Fk (ξ) 0 0

0 Fk (η) 0

0 0 Fk (ζ)



, Fk (ξ) = Fk (η) = Fk (ζ) =




1 T 1
2T

2

0 1 T

0 0 1




(2.68)

and

Gk =




Gk (ξ) 0 0

0 Gk (η) 0

0 0 Gk (ζ)



, Gk (ξ) = Gk (η) = Gk (ζ) =




1
2T

2

T

1



. (2.69)

Piecewise Constant White Acceleration Model

Assume that there is an object moving in a 3-dimensional Cartesian space plane

with constant speed (zero acceleration). Let the state vector at time kT (T = sample

period)

xk = [ξk ξ̇k ηk η̇k ζk ζ̇k]
′
. (2.70)

Then similar to Eqns. (2.62)-(2.66),

ξk+1 = ξk + ξ̇kT + pξk, (2.71)

ξ̇k+1 = ξ̇k + vξk. (2.72)
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Define

xk (ξ) :=



ξk

ξ̇k


 , xk :=




xk (ξ)

xk (η)

xk (ζ)



, wk (ξ) :=



pξk

vξk


 and wk :=




wk (ξ)

wk (η)

wk (ζ)



.

(2.73)

From Eqns. (2.70)-(2.73), the state dynamics for the piecewise constant Wiener process

acceleration model can be written as [13]

xk+1 = Fkxk +Gkwk (2.74)

where

Fk =




Fk (ξ) 0 0

0 Fk (η) 0

0 0 Fk (ζ)



, Fk (ξ) = Fk (η) = Fk (ζ) =




1 T

0 1


 (2.75)

and

Gk =




Gk (ξ) 0 0

0 Gk (η) 0

0 0 Gk (ζ)



, Gk (ξ) = Gk (η) = Gk (ζ) =



T

1


 . (2.76)

Coordinated Turn Model

Assume that there is an object moving in a xy plane with constant speed and turning

with a constant angular rate (i..e., coordinated turn in aviation language) [13, 44]. Let
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the state vector

xk = [ξ ξ̇ η η̇]
′

(2.77)

where ξ and η are the Cartesian position coordinates, and where the velocity components

are denoted ξ̇ and η̇. If we assume a constant speed ν =
√
ξ̇2 + η̇2 and a constant angular

rate Ω = φ̇ (Ω > 0 implies a counterclockwise turn), where we have

ξ̇ = νcos(φ), η̇ = νsin(φ). (2.78)

Now the acceleration (with ν̇ = 0) components are

ξ̈ =
d

dt
ξ̇ = −νΩ sin (φ) = −Ωη̇ (2.79)

η̈ =
d

dt
η̇ = −νΩ cos (φ) = −Ωξ̇. (2.80)

The state equation can be expressed as

x (t) =
d

dt




ξ

ξ̇

η

η̇




=




ξ̇

−Ωη̇

η̇

Ωξ̇




. (2.81)
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By discretizing the system, it gives

xk+1 =




1 sin(ΩT )
Ω 0 −1−cos(ΩT )

Ω

0 cos (ΩT ) 0 − sin (ΩT )

0 1−cos(ΩT )
Ω 1 sin(ΩT )

Ω

0 sin (ΩT ) 0 cos (ΩT )




xk +Gkwk. (2.82)

This allows us to generate the state trajectories for such turns. These coordinated turns

are very common for any flying objects.

2.3 Probabilistic Data Association Filter

The multiple model approach discussed above section is effective when we track a

single target under the assumption that measurements of the target are available at all

time steps from the sensor(s). This assumption means that we must be able to associate

measurements from sensor(s) to each target of interest before we do any filtering. In

addition, in the case of multiple radar returns received at the radar sensor, it is possible

for sensor(s) to miss the radar return from the target of interest for several consecutive

scans. Therefore, we must not only associate the available measurements with existing

target tracks but also consider the cases when there is no measurement available for the

target of interest.

The basic algorithms discussed so far in the previous section do not take into ac-

count the problem of measurement origin uncertainty. In this section we discuss the

basic probabilistic data association filter (PDAF) that was proposed by Bar-Shalom in

[5]. PDAF is a Bayesian technique that handles these two issues: measurement origin

48



uncertainty and no measurement available for the target. It is mainly used for tracking

a single target in the presence of clutter. For tracking multiple targets, the same ap-

proach of PDA has been extended to JPDA (joint probabilistic data association) [10].

In JPDA one has to do data association jointly by considering simultaneously all the

targets present in the surveillance region. Details about JPDA are given in Chapter 6.

Here we give the basic PDA algorithm of [5]. PDA algorithm calculates the association

probabilities of each validated measurement to the target at the current time. It is usu-

ally combined with a proper tracking filter to track a single target in clutter. Let us

discuss now the validation of measurements.

2.3.1 Measurement Validation

Assume that there is a target whose track has been initialized. One can then set up

a validation gate [12], based on predicted measurement and residual covariance obtained

in the appropriate filter prediction stage. A key assumption is that the past informa-

tion about the true target state conditioned on the past measurements is summarized

approximately by

p(xk|Zk−1) = N (xk; x̂k|k−1, Pk|k−1). (2.83)

In addition, the true measurement conditioned on the past measurements is also Gaussian

distributed with probability density function given by

p(zk|Zk−1) = N (zk; ẑk|k−1, Sk). (2.84)
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The validation region is given by

V(k, γ) :=
{
z : [z − ẑk|k−1]′S−1

k [z − ẑk|k−1] ≤ γ
}

(2.85)

with gate threshold γ. The gate probability

PG := P [zk ∈ V(k, γ)] (2.86)

gives the probability that the true measurement will fall within the validation region.

The probability PG is a function of γ and the dimension of the measurement nz. The

volume V of the validation region V corresponding to the threshold γ is given by [12]

Vk = cnzγ
nz
2 |Sk|

1
2 (2.87)

where cnz is the volume of the unit hypersphere of dimension nz (c1 = 2, c2 = π, c3 =

4π/3, etc.). Therefore, an increase in the design parameter, cnz or Sk, will increase the

size of the validation area. Practically we take γ = 16 and the corresponding PG = 0.9989

(or 0.9997) when nz = 3 (or 2). The following assumptions are made [12]:

(AS1) Among the possibly several validated measurements, at most one of them can be

target originated provided the target is detected and the corresponding measurement

falls within the validation gate.

(AS2) All the remaining measurements are assumed to be due to clutter or false alarm

and modeled as independent and identically distributed (i.i.d.) with uniform spatial

distribution.

(AS3) Target detection occurs independently over time with known probability PD.
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2.3.2 PDA approach combined with Kalman filter

The following section discusses how to apply the PDA to a typical Kalman filter

which tracks a single target in clutter. From among all the raw measurements at time

k, i.e.,

Zk := {z(1)
k , z

(2)
k , · · · , z(mk)

k }, (2.88)

define the set of validated measurement at time k as

Yk := {y(1)
k , y

(2)
k , · · · , y(m̄k)

k } (2.89)

where m̄k is total number of validated measurement at time k. And

y
(i)
k := z

(j)
k 1 ≤ i ≤ j ≤ mk (2.90)

where 1 ≤ m̄k ≤ mk when m̄k 6=0. The cumulative set of validated measurements is

denoted by

Zk := {Y1, Y2, · · · , Yk}. (2.91)

We also define set of association events [12]

θik = yik is originated from the target: i = 1, · · · , m̄k

θ0
k = none of the measurements is originated from the target. (2.92)

Note that the events {θik}m̄ki=0 are mutually exclusive and exhaustive based on (AS1).

Now the estimate of the state xk conditioned on the above events is obtained by the
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total probability theorem as

x̂k|k := E{xk|Zk}

=
m̄k∑

i=0

E{xk|θik, Zk}P [θik|Zk] (2.93)

=
m̄k∑

i=0

x̂ik|kβ
i
k

where xik|k := E{xk|θik, Zk} is the updated state conditioned on the event that the i-th

validated measurement is correct and βik := P [θik|Zk] is the association probability with

this event. The conditional state estimate based on measurement i being correct is

x̂ik|k = x̂k|k−1 +Wkν
i
k i = 1, · · · , m̄k (2.94)

where the innovations

νik := zik − ẑk|k−1 (2.95)

and gain

Wk := Pk|k−1H
′
kS
−1
k . (2.96)

The final state update equation is

x̂k|k = x̂k|k−1 +Wkνk (2.97)

where the combined innovations

νk :=
m̄k∑

i=1

βikν
i
k. (2.98)
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For i = 0 (when no measurement is originated from the target of interest), we have

x̂0
k|k = x̂k|k−1, where the updated state estimate is identical to the predicted state. The

covariance associated with the updated state is [12]

Pk|k = Pk|k−1 − (1− β0
k)WkSkW

′
k +Wk(

m̄k∑

i=1

βikν
i
kν

i′
k − νkν ′k)W ′k. (2.99)

2.3.3 Summary

In this chapter we briefly discussed the background work needed to understand the

fundamentals of target tracking. The Kalman filter provides the optimum solution in

the MMSE sense, but its application is limited to a single model. For the multiple

model approach, suboptimal algorithms such as IMM filter are applicable. To tackle the

measurement origin uncertainty, one has to combine the IMM filter with data association

techniques like PDA. Tracking a target using multiple sensors can improve the tracking

accuracy. With this background work we are ready to discuss our noble algorithms in

the following chapters.
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Chapter 3

Multisensor Tracking of a Maneuvering Target in Clutter using

IMMPDA Filtering with Simultaneous Measurement Update

In this chapter, we present a suboptimal filtering algorithm for tracking a highly

maneuvering target in a cluttered environment using multiple sensors. The filtering algo-

rithm is developed by applying the basic interacting multiple model (IMM) approach and

the probabilistic data association (PDA) technique to a two sensor (radar and infrared,

for instance) problem for state estimation for the target. A simultaneous measurement

update approach is followed where the raw sensor measurements are passed to a central

processor and fed directly to the target tracker. A multisensor probabilistic data associ-

ation filter is developed for simultaneous measurement update (SMU) for target tracking

under clutter. A past approach using SMU has ignored certain data association proba-

bilities leading to an inaccurate implementation. Another existing approach applies only

to non-maneuvering targets. The algorithm is illustrated via a highly maneuvering tar-

get tracking simulation example where two sensors, a radar and an infrared sensor, are

used. Compared with an existing IMMPDA filtering algorithm with sequential sensor

processing, the proposed algorithm achieves significant improvement in the accuracy of

track estimation.

3.1 Introduction

We consider the problem of tracking a maneuvering target in clutter. This class of

problem has received considerable attention in the literature [5, 12, 21, 22, 44, 45]. We
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develop a simultaneous measurement update technique by applying the basic interacting

multiple model (IMM) algorithm and probabilistic data association (PDA) technique.

The switching multiple model approach has been found to be quite effective in modeling

highly maneuvering targets [12, 14, 21, 29, 30, 33, 45]. In this approach various “modes”

of target motion are represented by distinct kinematic models, and in a Bayesian frame-

work, the target maneuvers are modeled by switching among these models controlled by

a Markov chain. To accommodate the fact that the target can be highly maneuvering,

we will follow a switching multiple model formulation as in [12, 21, 29, 30, 33] and refer-

ences therein. It is assumed that a track has been formed (initiated) and our objective

is that of track maintenance. In [21] such a problem has been considered using multiple

sensors, PDA and switching multiple models. The optimal solution (in the minimum

mean-square error sense) to target state estimation, given sensor measurements and ab-

sence of clutter, requires exponentially increasing (with time) computational complexity;

therefore, one has to resort to suboptimal approximations. For the switching multiple

model approach, the IMM algorithm of [30] has been found to offer a good compromise

between the computational and storage requirements and estimation accuracy [29]. In

the presence of clutter, the measurements at the sensors may not all have originated

from the target of interest. Therefore, one has to account for measurements of uncertain

origin (target or clutter?). In this case one has to solve the problem of data association.

An effective approach in a Bayesian framework is that of PDA [12, 22]. Here too, in a

Bayesian framework, one has to resort to approximations to reduce the computational

complexity, resulting in the PDA filter [5, 12, 21, 22, 45].

In [21] the IMM algorithm has been combined with the PDA filter in a multiple

sensor scenario to propose a combined IMM/MSPDAF (interacting multiple model/
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multisensor probabilistic data association filter) algorithm. While [21] uses sequential

updating of the state estimates with measurements (i.e., updating the state estimates

sequentially with measurements from different sensors), the multisensor approach of [45]

falls in the category of simultaneous measurement update, or parallel sensor processing,

where the raw measurements from all sensors are passed to a central processor to be

processed simultaneously (i.e., updating the state estimates with all the measurements

at the same time as if they were from a single sensor). Sequential updating results in

computational savings but this approach is not necessarily the best. For linear systems,

both sequential and parallel updating methods are algebraically equivalent but the par-

allel updating is computationally more expensive [12]. Ref. [45] uses SMU but has some

errors: during data association, all measurements at the same time from different sensors

are assumed to be either from clutter or from the target. The possibility that a measure-

ment from sensor 1 may be from target while the measurement from sensor 2 may be

clutter-induced (and vice-versa) is implicitly not allowed in [45] - this is clearly incorrect.

Ref. [46] allows for such distinctions (hypotheses), but it is limited to non-maneuvering

targets.

In this chapter, we extend the multisensor approach of [46] to maneuvering targets.

“Standard” assumptions are used for PDA filtering [12, 22]: a measurement can have

only one source; among the possibly several validated measurements, at most one of

them can be target-originated and the remaining validated measurements are assumed

to be due to false alarms or clutter, and are modeled as independently and identically

distributed (i.i.d) with uniform spatial distribution over the entire validation region.

The remainder of this chapter is organized as follows. Sec. 3.2 presents the ba-

sic implementation of simultaneous measurement update technique. Sec. 3.3 presents

56



the problem formulation for multiple model system. Sec. 3.4 describes the proposed

IMM/MSPDAF algorithm with simultaneous measurement update to multiple model

system. Simulation results using the proposed algorithm for a realistic problem are

given in Sec. 3.5. Finally, concluding remarks may be found in Sec. 3.6.

3.2 Simultaneous measurement update

In the simultaneous measurement update procedure, the state can be updated simul-

taneously with all the synchronized measurements observed from multiple sensors. We

consider a system of a 2-D radar and an infrared sensor located separately at [x1, y1, z1]

and [x2, y2, z2], respectively, and covering a common cluttered surveillance region that

is being traversed by a single non-maneuvering target. Assume that the target dynamic

equation can be described as

xk = Fk−1xk−1 +Gk−1vk−1. (3.1)

Assume that there are q synchronized sensors. At a given sampling time k, there are ml

measurements from each sensor l. The measurement from sensor l at time k is

zlk = H l
kxk + wlk for l = 1, · · · , q, (3.2)

where xk is the system state at tk and of dimension nx, zlk is the (true) measurement

vector (i.e., due to the target) from sensor l at tk and of dimension nzl, where H l
k is the

Jacobian matrix of hl evaluated at some value of the estimate of state xk. The process

noise vk−1 and the measurement noise wlk are mutually uncorrelated zero-mean white
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Gaussian processes with covariance matrices Qk−1 and Rlk, respectively. Note that, in

general, at any time k, some measurements may be due to clutter and some due to the

target, i.e., there can be more than a single measurement at time k at sensor l. The

measurement set (not yet validated) generated by sensor l at time k is denoted as

Z lk := {zl(1)
k , z

l(2)
k , · · · , zl(ml)k } (3.3)

where ml is the number of measurements generated by sensor l at time k. Variable

z
l(i)
k (i = 1, · · · ,ml) is the ith measurement within the set. The cumulative set of

measurements (not yet validated) from sensor l up to time k is denoted as Zk(l) :=

{Z l1, Z l2, · · · , Z lk}. In heavily cluttered environment, validation gates can be applied to

reduce the number of unwanted measurements for further processing. Following [12, 21],

one sets up a validation gate for sensor l centered at the predicted measurement, ẑlk.

Then measurement zl(i)k (i=1,2,· · ·,ml) is validated if and only if

[zl(i)k − ẑlk]′[Slk]
−1

[zl(i)k − ẑlk] < γ (3.4)

where γ is an appropriate threshold. The volume of the validation region with the

threshold γ is

V l
k := cnzlγ

nzl/2|Slk|
1/2

(3.5)

where nzl is the dimension of the measurement and cnzl is the volume of the unit hyper-

sphere of this dimension (c1=2, c2=π, c3=4π/3, etc.). Choice of γ is discussed in more

detail in [12, Sec. 2.3.2]. From among all the raw measurements from sensor l at time

k, i.e., Z lk := {zl(1)
k , z

l(2)
k , · · · , zl(ml)k }, define the set of validated measurement for sensor
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l at time k as

Y l
k := {yl(1)

k , y
l(2)
k , · · · , yl(m̄l)k } (3.6)

where m̄l is total number of validated measurement for sensor l at time k, and

y
l(i)
k := z

l(li)
k (3.7)

where 1≤ l1 < l2 < · · · < lm̄l ≤ ml when m̄l 6=0. The validated set of measurements of

sensor l at time k, which passed the validation gates will be denoted by Y l
k , containing

m̄l (≤ ml) measurement vectors. The cumulative set of validated measurements from

sensor l up to time k is denoted as

Y k(l) := {Y l
1 , Y

l
2 , · · · , Y l

k}. (3.8)

The cumulative set of validated measurements from all sensors up to time k is denoted

as

Zk := {Y k(1), Y k(2), · · · , Y k(q)}. (3.9)

After measurement validation processing, there still exists uncertainty regarding the

measurements’ origins. Define the association events (hypotheses) θa,bk (a and b are

integers) as follows (here we follow [46]).

• θ0,0
k : none of the measurements in Y 1

k or Y 2
k is target originated,

• θ0,b
k : only y2(b)

k in Y 2
k is a target measurement, all other measurements in Y 1

k or Y 2
k

are clutter, a = 0, b = 1, · · · , m̄2,
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• θa,0k : only y1(a)
k in Y 1

k is a target measurement, all other measurements in Y 1
k or Y 2

k

are clutter, a = 1, · · · , m̄1, b = 0,

• θa,bk : y1(a)
k and y2(b)

k in Y 1
k and Y 2

k , respectively, are target measurements, all other

measurements are clutter, a = 1, · · · , m̄1, b = 1, · · · , m̄2.

Therefore, there are a total of m̄1m̄2+m̄1+m̄2+1 possible association hypotheses, each

of which has an association probability. Define the innovations νa,bk as

ν0,0
k =




0nz1×1

0nz2×1


 , a = 0, b = 0

ν0,b
k =




0nz1×1

ν
2(b)
k


 , a = 0, b = 1, · · · , m̄2

νa,0k =



ν

1(a)
k

0nz2×1


 , a = 1, · · · , m̄1, b = 0

νa,bk =



ν

1(a)
k

ν
2(b)
k


 , a = 1, · · · , m̄1, b = 1, · · · , m̄2.

(3.10)

The covariance of the residual, νl(i)k := z
l(i)
k − ẑlk, is given by (assume q=2, the case

of 2 sensors)

S1
k := E{ν1(i)

k ν
1(i)′
k |Zk−1} = H1

kPk|k−1H
1′
k +R1

k (3.11)

S2
k := E{ν2(i)

k ν
2(i)′
k |Zk−1} = H2

kPk|k−1H
2′
k +R2

k (3.12)
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where H l
k is the first order derivative (Jacobian matrix) of hl(.) evaluated at the state

prediction x̂k|k−1. Note that (3.11) and (3.12) assume that zl(i)k originates from the

target. Since our approach to the problem deals with the multiple simultaneous mea-

surements arising from two separate sensors that are tracking a single target through

a common surveillance region, a method for combination of multiple measurements has

to be devised. In order to do this, the combined covariance Sk of the residual obtained

from (3.11) and (3.12), also need to be considered as follows:

Sk := E







ν

1(i)
k

ν
2(i)
k



[
ν

1(i)′
k ν

1(i)′
k

]
|Zk−1





=



H1
k

H2
k


Pk|k−1

[
H1′
k H2′

k

]
+



R1
k 0

0 R2
k


 . (3.13)

Define the association event probabilities as

βa,bk := P [θa,bk |Y 1
k , Y

2
k , Z

k−1]. (3.14)

Exploiting the diffuse model for clutter in [12, 21], it turns out that

β0,0
k = C

(1−PD1
PG1)(1−PD2

PG2)
(V 1
k

)m̄1(V 2
k

)m̄2
, a = 0, b = 0

β0,b
k = C

PD2(1−PD1
PG1)N

[
ν

2(b)
k

;0,S2
k

]

(V 2
k

)m̄2−1m̄2
, a = 0, b = 1, · · · , m̄2

βa,0k = C
PD1(1−PD2

PG2)N
[
ν

1(a)
k

;0,S1
k

]

(V 1
k

)m̄1−1m̄1
, a = 1, · · · , m̄1, b = 0

βa,bk = C
PD1

PD2
N
[
νa,b
k

;0,Sk
]

m̄1m̄2(V 1
k )m̄1−1(V 2

k )m̄2−1 , a = 1, · · · , m̄1, b = 1, · · · , m̄2

(3.15)
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where PD1 and PD2 are the detection probabilities that the sensors 1 and 2 detect the

target, respectively, PG1 and PG2 are the probabilities that the target is in the validation

region observed from sensors 1 and 2, respectively, C is a normalization constant such

that
∑m̄1
a=0

∑m̄2
b=0 β

a,b
k = 1. The related likelihood function is

Λk := p
(
Y 1
k , Y

2
k |Zk−1

)
=

m̄1∑

a=0

m̄2∑

b=0

p
(
Y 1
k , Y

2
k , θ

a,b
k |Zk−1

)
(3.16)

where using the Bayes’ formula, we obtain

p
(
Y 1
k , Y

2
k , θ

a,b
k |Zk−1

)
= p

(
Y 1
k , Y

2
k |θa,bk , Zk−1

)
P [θa,bk ]

=





(1−PD1
PG1)(1−PD2

PG2)
[V 1
k ]m̄1 [V 2

k ]m̄2
, a = 0, b = 0

(1−PD1
PG1)(PD2

PG2)/m̄2

PG2 [V 2
k ]m̄2−1 ×N

[
ν

2(b)
k ; 0, S2

k

]
, a = 0, b = 1, · · · , m̄2

(PD1
PG1)(1−PD2

PG2)/m̄1

PG1 [V 1
k ]m̄1−1 ×N

[
ν

1(a)
k ; 0, S1

k

]
, a = 1, · · · , m̄1, b = 0

(PD1
PG1)(PD2

PG2)/(m̄1m̄2)

PG1 [V 1
k ]m̄1−1

PG2 [V 2
k ]m̄2−1 ×N

[
νa,bk ; 0, Sk

]
, a = 1, · · · , m̄1, b = 1, · · · , m̄2.

(3.17)

Using state prediction x̂k|k−1 and its covariance Pk|k−1 at time k − 1 (see Eqns. (2.12)

and (2.12), respectively), one computes the partial update x̂k|k and its covariance Pk|k

according to the standard PDAF [21] except that the augmented state is conditioned on

θa,bk with data combination from sensors 1 and 2.

Define the combined mode-conditioned innovations

νk :=
m̄1∑

a=0

m̄2∑

b=0
(a,b)6=(0,0)

βa,bk νa,bk . (3.18)
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Therefore, partial update of the state estimate is given by

x̂a,bk|k := E
{
xk|θa,bk , Zk−1, Y 1

k , Y
2
k

}
= x̂k|k−1 +W a,b

k νa,bk (3.19)

where Kalman gains, W a,b
k , are computed as

W a,b
k =





W 0,0
k = 0, for a = 0, b = 0

W a,0
k = Pk|k−1[H1′

k [S1
k ]−1 0], for a 6= 0, b = 0

W 0,b
k = Pk|k−1[0 H2′

k [S2
k ]−1], for a = 0, b 6= 0

W a,b
k = Pk|k−1H

′
k[Sk]

−1, for a 6= 0, b 6= 0,

(3.20)

and H ′k =
[
H1′
k H2′

k

]
. Despite the fact that here we follow [46] for the association

events (hypotheses) θa,bk to deal with existing uncertain measurements’ origins, there

are “oversights” in [46, Sec. 2.1]. When both sensor measurements are associated with

the target, [46] states (p. 62, 2nd para., [46, Sec. 2.1]) that W [k] = [W1[k] W2[k]]

where W [k] = Kalman filter gain for the “overall” filter and Wi[k] = Kalman filter gain

corresponding to the measurements from sensor i (i = 1, 2). This is NOT true. Since

the two sensors observe the same state, there is “cross-coupling” as described in Eqn.

(3.20).

The mode-conditioned update of the state estimate is

x̂k|k := E
{
xk|Mk, Z

k−1, Y 1
k , Y

2
k

}
=

m̄1∑

a=0

m̄2∑

b=0

βa,bk x̂a,bk|k−1 (3.21)
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and the covariance of x̂k|k is (follow the steps in [12, 22] for the standard PDAF)

Pk|k := Pk|k−1 −
m̄1∑
a=0

m̄2∑
b=0

(a,b) 6=(0,0)

βa,bk W a,b
k Sa,bk W a,b′

k +
m̄1∑
a=0

m̄2∑
b=0

βa,bk W a,b
k νa,bk νa,b

′
k W a,b′

k

−
[
m̄1∑
a=0

m̄2∑
b=0

βa,bk W a,b
k νa,b

] [
m̄1∑
a=0

m̄2∑
b=0

βa,bk W a,b
k νa,b

]′
.

(3.22)

Now we are ready to extend the above simultaneous measurement update technique to

a multiple model scenario.

3.3 Problem Formulation for the Multiple Model System

Assume that the target dynamics can be modeled by one of n hypothesis models.

The model set is denoted asMn := {1, · · · , n} and there are total q sensors from which q,

or fewer (if the probability of target detection is less than one) or more (due to clutter),

measurement vectors are generated at a time. The event that model j is in effect during

the sampling period (tk−1, tk] is denoted by M j
k . For the j-th hypothesized model(mode),

the state dynamics and measurements, respectively, are modeled as

xk = F jk−1xk−1 +Gjk−1v
j
k−1 (3.23)

and

zlk = hl(xk) + wj,lk for l = 1, · · · , q, (3.24)

where xk is the system state at tk and of dimension nx, zlk is the (true) measurement

vector (i.e., due to the target) from sensor l at tk and of dimension nzl, F
j
k−1 and Gjk−1

are the system matrices when model j is in effect over the sampling period (tk−1, tk],

and hl is the nonlinear transformation of xk to zlk (l = 1, · · · , q) for model j. Henceforth,
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time tk will be denoted by k. A first-order linearized version of (3.24) is given by

zlk = Hj,l
k xk + wj,lk for l = 1, · · · , q, (3.25)

whereHj,l
k is the Jacobian matrix of hl evaluated at some value of the estimate of state xk.

The process noise vjk−1 and the measurement noise wj,lk are mutually uncorrelated zero-

mean white Gaussian processes with covariance matrices Qjk−1 and Rj,lk , respectively.

At the initial time t0, the initial conditions for the system state under each model j

are assumed to be Gaussian random variables with the known mean x̄j0 and the known

covariance P j0 . The probability of model j at t0, µj0 = P [M j
0 ], is also assumed to be

known. The switching from model M i
k−1 to model M j

k is governed by a finite-state

stationary Markov chain with known transition probabilities pij = P [M j
k |M i

k−1].

The following notations and definitions are used regarding the measurements at

sensor l. Note that, in general, at any time k, some measurements may be due to clutter

and some due to the target, i.e., there can be more than a single measurement at time

k at sensor l. The measurement set (not yet validated) generated by sensor l at time k

is denoted as

Z lk := {zl(1)
k , z

l(2)
k , · · · , zl(ml)k } (3.26)

where ml is the number of measurements generated by sensor l at time k. Variable

z
l(i)
k (i = 1, · · · ,ml) is the ith measurement within the set. The cumulative set of

measurements (not yet validated) from sensor l up to time k is denoted as Zk(l) :=

{Z l1, Z l2, · · · , Z lk} and the cumulative set of measurements (not yet validated) from all

sensors up to time k is denoted as Zk := {Zk(1), Zk(2), · · · , Zk(q)} where q is the number

of sensors. The validated set of measurements of sensor l at time k will be denoted
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by Y l
k , containing m̄l (≤ ml) measurement vectors. The cumulative set of validated

measurements from sensor l up to time k is denoted as

Y k(l) := {Y l
1 , Y

l
2 , · · · , Y l

k}. (3.27)

The cumulative set of validated measurements from all sensors up to time k is denoted

as

Zk := {Y k(1), Y k(2), · · · , Y k(q)}. (3.28)

Our goal is to find the state estimate

x̂k|k := E{xk|Zk} (3.29)

and the associated error covariance matrix

Pk|k := E{[xk − x̂k|k][xk − x̂k|k]′|Zk} (3.30)

where x′k denotes the transpose of xk.

3.4 IMM/MSPDAF Algorithm for Simultaneous Measurement Update

We now modify the IMMPDA algorithms of [21] and [47] to derive the proposed

IMM/MSPDAF with simultaneous measurement update system. We confine our atten-

tion to the case of 2 sensors; however, the algorithm can be easily adapted to the case of

arbitrary q sensors. We assume that all measurements observed from sensors are synchro-

nized with the same sampling rate (see Fig. 3.1). We will only briefly outline the basic
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Figure 3.1: Target tracking example using synchronized measurements observed from
multiple sensors

steps in ‘one cycle’ (i.e., processing needed to update for a new set of measurements) of

the IMM/MSPDA filter.

Assumed available : Given the state estimate x̂jk−1|k−1 := E{xk−1|M j
k−1, Z

k−1},

the associated covariance P jk−1|k−1, and the conditional mode probability µjk−1 := P [M j
k−1|Zk−1]

at time k − 1 for each mode j ∈Mn.

Step 1. Interaction - mixing of the estimate from previous time (∀j ∈Mn):

predicted mode probability:

µj−k := P [M j
k |Zk−1] =

n∑

i=1

pijµ
i
k−1. (3.31)

mixing probability:

µi|j := P [M i
k−1|M j

k , Z
k−1] = pijµ

i
k−1/µ

j−
k . (3.32)
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mixed estimate:

x̂0j
k−1|k−1 := E{xk−1|M j

k , Z
k−1} =

n∑

i=1

x̂ik−1|k−1µ
i|j . (3.33)

covariance of the mixed estimate:

P 0j
k−1|k−1 := E{[xk−1 − x̂0j

k−1|k−1][xk−1 − x̂0j
k−1|k−1]′|M j

k , Z
k−1} (3.34)

=
n∑

i=1

{P ik−1|k−1 + [x̂ik−1|k−1 − x̂0j
k−1|k−1][x̂ik−1|k−1 − x̂0j

k−1|k−1]′}µi|j .

Step 2. Predicted state and measurements for sensors 1 and 2 (∀j ∈Mn) :

state prediction:

x̂jk|k−1 := E{xk|M j
k , Z

k−1} = F jk−1x̂
0j
k−1|k−1. (3.35)

state prediction error covariance:

P jk|k−1 := E{[xk − x̂jk|k−1][xk − x̂jk|k−1]′|M j
k , Z

k−1}

= F jk−1P
0j
k−1|k−1F

j′
k−1 +Gjk−1Q

j
k−1G

j′
k−1. (3.36)

The mode-conditioned predicted measurement for sensor l is

ẑj,lk := hl(x̂jk|k−1). (3.37)
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Using the linearized version (3.25), the covariance of the mode-conditioned residual

ν
j,l(i)
k := z

l(i)
k − ẑj,lk

is given by (assume q=2, the case of 2 sensors)

Sj,1k := E{νj,1(i)
k ν

j,1(i)′
k |M j

k , Z
k−1} = Hj,1

k P jk|k−1H
j,1′
k +Rj,1k (3.38)

Sj,2k := E{νj,2(i)
k ν

j,2(i)′
k |M j

k , Z
k−1} = Hj,2

k P jk|k−1H
j,2′
k +Rj,2k (3.39)

where Hj,l
k is the first order derivative (Jacobian matrix) of hl(.) evaluated at the state

prediction x̂jk|k−1 (see (3.37)). Note that (3.38) and (3.39) assume that zl(i)k originates

from the target.

As we mentioned earlier, since our approach to the problem deals with the multiple

simultaneous measurements arising from two separate sensors that are tracking a single

target through a common surveillance region, a method for combination of multiple

measurements has to be devised. In order to do this, the combined covariance Sjk of the

mode-conditioned residual obtained from (3.38) and (3.39) also needs to be considered

as follows:

Sjk := E







ν
j,1(i)
k

ν
j,2(i)
k



[
ν
j,1(i)′
k ν

j,1(i)′
k

]
|M j

k , Z
k−1





=



Hj,1
k

Hj,2
k


P

j
k|k−1

[
Hj,1′
k Hj,2′

k

]
+



Rj,1k 0

0 Rj,2k


 . (3.40)
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Step 3. Measurement validation for sensors 1 and 2 (∀j ∈Mn):

Since the measurement validation process was well explained in Sec. 3.2 for non-

maneuvering target tracking scenario, we briefly describe the difference between non-

maneuvering target tracking and maneuvering target tracking in this step. Following

[12, 21], one sets up a validation gate for sensor l centered at the mode-conditioned

predicted measurement, ẑj,lk . Let (|A| = det(A))

ja := arg
{

max
j∈Mn

∣∣∣Sj,lk
∣∣∣
}
. (3.41)

Then measurement zl(i)k (i=1,2,· · ·,ml) is validated if and only if

[zl(i)k − ẑja,lk ]′[Sja,lk ]
−1

[zl(i)k − ẑja,lk ] < γ. (3.42)

The volume of the validation region with the threshold γ is

V l
k := cnzlγ

nzl/2|Sja,lk |
1/2

(3.43)

where nzl is the dimension of the measurement and cnzl is the volume of the unit hyper-

sphere of this dimension (c1=2, c2=π, c3=4π/3, etc.). Choice of γ is discussed in more

detail in [12, Sec. 2.3.2].

Step 4. State estimation with validated measurement from sensors 1 and 2

(∀j ∈Mn) :
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Using the definition of the association events (hypotheses) θa,bk (see Sec. 3.2), define

the mode-conditioned association event probabilities as

βj,a,bk := P [θa,bk |M j
k , Y

1
k , Y

2
k , Z

k−1]. (3.44)

The mode-conditioned innovations νj,a,bk can be defined as

νj,0,0k =




0nz1×1

0nz2×1


 , a = 0, b = 0

νj,0,bk =




0nz1×1

ν
j,2(b)
k


 , a = 0, b = 1, · · · , m̄2

νj,a,0k =



ν
j,1(a)
k

0nz2×1


 , a = 1, · · · , m̄1, b = 0

νj,a,bk =



ν
j,1(a)
k

ν
j,2(b)
k


 , a = 1, · · · , m̄1, b = 1, · · · , m̄2.

(3.45)
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Exploiting the diffuse model for clutter in [12, 21], it turns out that (see Appendix 1

for details)

βj,0,0k = C
(1−PD1

PG1)(1−PD2
PG2)

(V 1
k

)m̄1 (V 2
k

)m̄2
, a = 0, b = 0

βj,0,bk = C
PD2(1−PD1

PG1)N
[
ν
j,2(b)
k ;0,Sj,2k

]

(V 2
k

)m̄2−1m̄2
, a = 0, b = 1, · · · , m̄2

βj,a,0k = C
PD1(1−PD2

PG2)N
[
ν
j,1(a)
k

;0,Sj,1
k

]

(V 1
k

)m̄1−1m̄1
, a = 1, · · · , m̄1, b = 0

βj,a,bk = C
PD1

PD2
N
[
νj,a,b
k

;0,Sj
k

]
m̄1m̄2(V 1

k
)m̄1−1(V 2

k
)m̄2−1 , a = 1, · · · , m̄1, b = 1, · · · , m̄2.

(3.46)

The likelihood function for each mode j is

Λjk := p
(
Y 1
k , Y

2
k |M j

k , Z
k−1

)
=

m̄1∑

a=0

m̄2∑

b=0

p
(
Y 1
k , Y

2
k , θ

a,b
k |M j

k , Z
k−1

)
(3.47)

where using the Bayes’ formula, we obtain

p
(
Y 1
k , Y

2
k , θ

a,b
k |M j

k , Z
k−1

)
= p

(
Y 1
k , Y

2
k |M j

k , θ
a,b
k , Zk−1

)
P [θa,bk ]

=





(1−PD1
PG1)(1−PD2

PG2)
[V 1
k ]m̄1 [V 2

k ]m̄2
, a = 0, b = 0

(1−PD1
PG1)(PD2

PG2)/m̄2

PG2 [V 2
k ]m̄2−1 ×N

[
ν
j,2(b)
k ; 0, Sj,2k

]
, a = 0, b = 1, · · · , m̄2

(PD1
PG1)(1−PD2

PG2)/m̄1

PG1 [V 1
k ]m̄1−1 ×N

[
ν
j,1(a)
k ; 0, Sj,1k

]
, a = 1, · · · , m̄1, b = 0

(PD1
PG1)(PD2

PG2)/(m̄1m̄2)

PG1 [V 1
k ]m̄1−1

PG2 [V 2
k ]m̄2−1 ×N

[
νj,a,bk ; 0, Sjk

]
, a = 1, · · · , m̄1, b = 1, · · · , m̄2.

(3.48)
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Using x̂jk|k−1 (from (3.35)) and its covariance P jk|k−1 (from (3.36)), one computes the

partial update x̂jk|k and its covariance P jk|k according to the standard PDAF [21], except

that the augmented state is conditioned on θa,bk with data combination from sensors 1

and 2.

Define the combined mode-conditioned innovations

νjk :=
m̄1∑

a=0

m̄2∑

b=0
(a,b)6=(0,0)

βj,a,bk νj,a,bk . (3.49)

The partial update of the state estimate is given by

x̂j,a,bk|k := E
{
xk|θa,bk ,M j

k , Z
k−1, Y 1

k , Y
2
k

}
= x̂jk|k−1 +W j,a,b

k νj,a,bk (3.50)

where the mode-conditioned Kalman gains, W j,a,b
k , are computed as

W j,a,b
k =





W j,0,0
k = 0, for a = 0, b = 0

W j,a,0
k = P jk|k−1

[
Hj,1′
k [Sj,1k ]−1 0

]
, for a 6= 0, b = 0

W j,0,b
k = P jk|k−1

[
0 Hj,2′

k [Sj,2k ]−1
]
, for a = 0, b 6= 0

W j,a,b
k = P jk|k−1H

j′
k [Sjk]

−1, for a 6= 0, b 6= 0

(3.51)

and Hj
k

′
=
[
Hj,1′
k Hj,2′

k

]
. Therefore, the mode-conditioned update of the state estimate

is

x̂jk|k := E
{
xk|M j

k , Z
k−1, Y 1

k , Y
2
k

}
=

m̄1∑

a=0

m̄2∑

b=0

βj,a,bk x̂j,a,bk|k−1 (3.52)
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and the covariance of x̂jk|k is

P jk|k := P jk|k−1 −
m̄1∑
a=0

m̄2∑
b=0

(a,b) 6=(0,0)

βj,a,bk W j,a,b
k Sj,a,bk W j,a,b′

k +
m̄1∑
a=0

m̄2∑
b=0

βj,a,bk W j,a,b
k νj,a,bk νj,a,b

′
k W j,a,b′

k

−
[
m̄1∑
a=0

m̄2∑
b=0

βj,a,bk W j,a,b
k νj,a,b

] [
m̄1∑
a=0

m̄2∑
b=0

βj,a,bk W j,a,b
k νj,a,b

]′
.

(3.53)

Step 5. Update of mode probabilities(∀j ∈Mn) :

µjk := P
[
M j
k |Y k

]
=

1
C
µj−k Λjk (3.54)

where C is a normalization constant such that
∑
j
µjk = 1.

Step 6. Combination of the mode-conditioned estimates(∀j ∈Mn) :

The final state estimate update at time k is given by

x̂k|k =
∑

j
x̂jk|kµ

j
k (3.55)

and its covariance is given by

Pk|k =
∑

j

{
P jk|k +

[
x̂jk|k − x̂k|k

] [
x̂jk|k − x̂k|k

]′}
µjk. (3.56)

3.5 Simulation Example

The following example of tracking a highly maneuvering target in clutter is consid-

ered.

The True Trajectory: The target starts at location [21689 10840 40] in Cartesian
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coordinates in meters. The initial velocity (in m/s) is [-8.3 -399.9 0] and the target stays

at constant altitude with a constant speed of 400 m/s. Its trajectory is:

• a straight line with constant velocity between 0 and 20s,

• a coordinated turn (0.15 rad/s) with constant acceleration of 60 m/s2 between 20

and 35s,

• a straight line with constant velocity between 35 and 55s,

• a coordinated turn (0.1 rad/s) with constant acceleration of 40 m/s2 between 55

and 70s,

• a straight line with constant velocity between 70 and 90s.

Fig. 3.2 shows the true trajectory of the target.

The Target Motion Models: The target motion models are patterned after [21]. In

each mode the target dynamics are modelled in Cartesian coordinates as

xk = Fxk−1 +Gvk−1

where the state of the target is position, velocity, acceleration in each of the 3 Cartesian

coordinates (x, y, and z). Thus xk is of dimension 9 (nx=9). Three maneuver models

are considered in the following discussion. The system matrices F , G, are defined as

F =




Fb 0 0

0 Fb 0

0 0 Fb




and G =




Gb 0 0

0 Gb 0

0 0 Gb




.
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• Model 1. Nearly constant velocity model with zero mean perturbation in accel-

eration

F 1
b =




1 T 0

0 1 0

0 0 0




and G1
b =




T 2

2

T

0




,

where T is the sampling period. The standard deviation of the process noise of

M1 is 5m/s2 (as in [21]).

• Model 2. Wiener process acceleration (nearly constant acceleration motion)

F 2
b =




1 T T 2

2

0 1 T

0 0 1




and G2
b =




T 2

2

T

1




The standard deviation of the process noise of M2 is 7.5m/s2 (as in [21]).

• Model 3. Wiener process acceleration (model with large acceleration increments,

for the onset and termination of maneuvers), with F 3
b = F 2

b and G3
b = G2

b . The

standard deviation of the process noise of M3 is 40m/s2 (as in [21]).
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The initial model probabilities are µ1
0 = 0.8, µ2

0 = 0.1 and µ3
0 = 0.1. The mode

switching probability matrix is given by (as in [21])




p11 p12 p13

p21 p22 p23

p31 p32 p33




=




0.8 0.0 0.2

0.0 0.8 0.2

0.3 0.3 0.4




.

The Sensors: Two sensors are used to obtain the measurements:

• Case 1 . Sensor 1 and Sensor 2 are located at [x1, y1, z1]=[-4000 4000 0] m and

[x2, y2, z2]=[5000 0 0] m, respectively, and the central processor is collocated with

sensor 1 platform.

• Case 2 . Sensor 1 and Sensor 2 are collocated at [x1, y1, z1]=[-4000 4000 0] m

together with the central processor.

The measurements from sensor l for model j are zlk = hl(xk) + wj,lk for l = 1 and

2, reflecting range and azimuth angle for sensor 1 (radar) and azimuth and elevation

angles for sensor 2 (infrared). The range, azimuth, and elevation angle transformations,

respectively, are given by

rl = {(x− xl)2 + (y − yl)2 + (z − zl)2}1/2 (3.57)

al = tan−1[(y − yl)/(x− xl)] (3.58)

el = tan−1[(z − zl)/{(x− xl)2 + (y − yl)2}1/2]. (3.59)
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The Jacobian matrices of hl(.) for sensors 1 and 2 are

Hj,1 =




cos (e1) cos (a1) 0 0 cos (e1) sin (a1) 0 0 sin (e1) 0 0

− sin (a1)
r1 cos (e1) 0 0 cos (a1)

r1 cos (e1) 0 0 0 0 0


 ∀j (3.60)

Hj,2 =



− sin (a2)
r2 cos (e2) 0 0 cos (a2)

r2 cos (e2) 0 0 0 0 0

− sin (e2) cos (a2)
r2

0 0 − sin (e2) sin (a2)
r2

0 0 cos (e2)
r2

0 0


 ∀j, (3.61)

respectively. The measurement noise wj,lk for sensor l is assumed to be zero-mean white

Gaussian with known covariances, R1=diag[qr, qa1]=diag[400m2,49 mrad2] with qr and

qa1 denoting the variances for the radar range and azimuth measurement noises, re-

spectively, and R2 = diag[qa2, qe] = diag[4mrad2, 4mrad2] with qa2 and qe denoting the

variances for the infrared sensor azimuth and elevation measurement noises, respectively.

The sampling interval was T=1s and it was assumed that the probability of detection

PD=0.997 for both sensors.

The Clutter: For generating false measurements in simulations, the clutter was as-

sumed to be Poisson distributed with expected number of λ1 = 50 × 10−6/m mrad for

sensor 1 and λ2 = 3.5 × 10−4/m2 mrad for sensor 2. These statistics were used for

generating the clutter in all simulations. However, a nonparametric clutter model was

used for implementing all the algorithms for target tracking.

Other Parameters: The gates for setting up the validation regions for both the sensors

were based on the threshold γ=16 corresponding to a gate probability PG=0.9997.
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Simulation Results: Fig. 3.3 shows the RMSE (root mean-square error) in posi-

tion for the proposed IMM/MSPDAF and the standard sequential IMM/MSPDAF [21]

based on 200 Monte Carlo runs. It is seen that the proposed simultaneous measurement

updating can significantly improve the accuracy of track estimation during the periods

following the onset of the target maneuvers. The first maneuver starts at 20 sec and in

Fig. 3.3 one can see a significant improvement from 22 sec through 26 sec. The second

maneuver starts at 55 sec and in Fig. 3.3 one can see a significant improvement from 58

sec through 59 (in (a) or 60 in (b)) sec. That is, simultaneous measurement updating

responds faster to maneuvers. Once the target is “settled” in a particular mode, there

is insignificant differences between the two approaches. It is also seen that tracking

with separated sensors can improve the accuracy of track estimation compared to using

collocated sensors.

To assess the computational requirements of the two approaches, we computed the

CPU time needed to execute 90 time steps in each run (averaged 100 Monte Carlo runs

excluding data/clutter generation) in MATLAB 6.5 on a 2.8 GHz (Mobile) Pentium 4

operating under Windows XP (professional). The standard sequential IMM/MSPDAF

needs 0.4862 secs (for all 90 time steps) compared to 0.5806 secs required by proposed

IMM/MSPDAF. Thus there is, on the average, a 20.3% increase in computational cost.

3.6 Conclusions

We investigated an IMM/MSPDAF algorithm with simultaneous measurement up-

date for tracking a highly maneuvering target in clutter. A past approach [45] us-

ing parallel sensor processing has ignored certain data association probabilities leading
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Figure 3.2: Trajectory of the maneuvering target (read left to right, top to bottom). (a)
Position in xy plane. (b) x and y velocities. (c) x and y accelerations. (d) magnitude of
accelerations
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Figure 3.3: Performance of the simultaneous measurement updating IMM/MSPDAF in
terms of the RMSE (root mean square error) in position (read top to bottom). (a)
proposed IMM/MSPDAF vs standard sequential IMM/MSPDAF [21] with collocated
sensors (Case 2). (b) proposed IMM/MSPDAF vs standard sequential IMM/MSPDAF
[21] with separated sensors (Case 1).
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to an inaccurate implementation. Another existing approach [46] applies only to non-

maneuvering targets. Our proposed approach has extended the multisensor approach of

[46] to maneuvering targets by employing a switching multiple model approach.

The proposed algorithm was illustrated via a simulation example where it outper-

formed a standard IMM/MSPDAF algorithm with sequential updating [21] during the

periods following the onset of the target maneuvers. The simultaneous updating is ex-

pected to be more accurate [12] since it considers all association hypotheses coupled

across multisensor while the sequential updating considers the separate hypothesis for

each sensor. This improvement in accuracy is seen in our simulation example only during

the periods following the onset of the target maneuvers. Once the target is settled in

a particular mode, there is insignificant differences between the two approaches. The

improvement in accuracy comes at the expense of a slight increase (20%) in the compu-

tational cost.
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Chapter 4

Multisensor Tracking of a Maneuvering Target in Clutter with

Asynchronous Measurements using Augmented State IMMPDA Filtering

and Simultaneous Measurement Update

In this chapter, we discuss a suboptimal filtering algorithm for tracking a highly

maneuvering target in a cluttered environment using multiple sensors dealing with pos-

sibly asynchronous (time delayed) measurements. The filtering algorithm is developed

by applying the basic IMM approach, the PDA technique, and asynchronous measure-

ment updating for state-augmented system estimation for the target. A state augmented

approach is developed to estimate the time delay between local and remote sensors. A

multisensor probabilistic data association filter is developed for parallel sensor processing

for target tracking under clutter. The algorithm is illustrated via a highly maneuvering

target tracking simulation example where two sensors, a radar and an infrared sensor,

are used. Compared with an existing IMMPDA filtering algorithm with the assumption

of synchronous (no delay) measurements sensor processing which is presented in Chapter

3, the proposed algorithm achieves considerable improvement (especially in the case of

larger delays) in the accuracy of track estimation.
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4.1 Introduction

We extend our simultaneous measurement update technique presented in Chapter 3

to asynchronous (delayed) measurements problem. In target tracking systems measure-

ments are typically collected in “scans” or “frames” and then transmitted to a process-

ing center [27, 35]. Asynchronous (delayed) measurements arise in a multisensor central

tracking system due to communication network delays, varying preprocessing times at

the sensor platforms and possibly lack of sampling time synchronization among sensor

platforms (see Fig. 4.1).

One of the asynchronous measurement problems is that of out-of-sequence measure-

ments (OOSM) where measurements at various sensors may arrive out-of-sequence (not

in correct time order) at the central processor. OOSM has been considered using IMM

[35, 36, 37]. In this chapter we do not consider OOSM (OOSM scenario is presented in

Chapter 5.) but instead consider “in-sequence” measurements with a fixed-but-unknown

relative time-delay among sensor measurements. Various sensor measurements are as-

sumed to be at the same rate but not necessarily time synchronized. All measurements

over one sampling interval (based on the local clock of the central processor) are collected

at the central processor, attributed to one time instant and processed simultaneously.

We exploit IMM and PDA techniques. It is assumed that a track has been formed

(initiated) and the objective of this work is to investigate fixed-but-unknown relative

time-delay (measurement timing mismatch) arising in a multisensor central tracking

system.

In [26], fixed-lag smoothing techniques have been investigated using IMM algo-

rithm combined with PDA filter in a multiple sensor scenario to propose a combined
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IMM/MSPDAF (interacting multiple model multiple sensor probabilistic data associa-

tion filter). We exploit the basic structure of [21] in combination with a state-augmented

approach to deal with the fixed-but-unknown relative time-delay. In [21] and [45] it is

assumed that the sensors are collocated and (time) synchronized with the sampling rate.

In contrast, the sensor collocation and (time) synchronization are no longer assumed in

this chapter. Also, we use simultaneous measurement updating of the state estimates.

In this chapter, we also extend the multisensor approach of [46] to maneuvering targets

(see Step 4 in Sec.4.4).

This chapter is organized as follows. Sec. 4.2 presents the problem formulation.

Sec. 4.3 describes the state-augmented system approach. Sec. 4.4 describes the proposed

augmented state IMM/MSPDAF (AS-IMM/MSPDAF) algorithm for asynchronous mea-

surements. Simulation results using the proposed algorithm for a realistic problem are

given in Sec. 4.5. Finally, Sec. 4.6 presents a discussion of the results and some conclu-

sions.

4.2 Problem Formulation for Asynchronous measurements

The system dynamics and measurement equation which is synchronized with central

processor are the same as in the problem formulation for the multiple model system in

Chapter 3 (see (3.23)-(3.25)). Hence we do not reiterate them in this chapter. The basic

scenario of multisensor target tracking system dealing with asynchronous measurements

can be seen from Fig. 4.1. Assume that there is a fixed-but-unknown relative time

delay dk between the remote sensor clock and the central processor clock at sample

time tk as shown in Fig. 4.1. This time delay could be due to unsynchronized clocks

at the two locations or due to inherent delay due to congestion, insufficient bandwidth
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Figure 4.1: Target tracking with a fixed-but-unknown relative time delay dk between the
remote sensor clock and the central processor clock at sample time tk

etc. in the communication link between the remote sensor platform and the central

processor. The measurements from sensor l are sent to the central processor where all

measurements collected between local sampling interval (tk−1, tk] are attributed to time

tk. The state dynamics and measurements reported from the remote sensor platform at

time tkdl (henceforth will be denoted by kdl) to the central processor at time tk can be

modeled as (see Sec. 4.5 for some details)

xkdl = F jkdl,k−1xk−1 +Gjkdl,k−1v
j
k−1 (4.1)

and

zlk = hl(xkdl) + wj,lk (4.2)

where tkdl = tk − dkl and dkl is the time difference between the sampling time at the

central processor and the measurement time at the local sensor (assume that 0 ≤ dkl < T ,
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where T is sampling time), xkdl is the system state at tkdl and of dimension nx, F jkdl,k−1

and Gjkdl,k−1 are the system matrices when model j is in effect over the timing interval

(tk−1, tkdl ]. See Sec. 4.5 for a concrete example of these models.

4.3 State-Augmented System

Define the augmented state x̄k from xk as

x̄k =




xk

vjk

xk−1

vjk−1




(4.3)

where x′k denotes the transpose of xk. Assume that there is a fixed-but-unknown delay,

dkl, between the central processor and the remote sensor l platform. Using the above

definitions (4.1, 4.3) and the measurement delay, dkl (see Fig. 4.1), the augmented state

equation may be written more compactly as

x̄k = F̄ jk,k−1x̄k−1 + Ḡjk,k−1v
j
k (4.4)

and

dkl = d(k−1)l + vdlk−1 (4.5)

where vdlk−1 is a small processing noise assumed to be Gaussian noise with zero mean and

(very) small but nonzero variance. Note that the process noise in (4.4) is vjk (not at time

k− 1 but at time k). Above equations (4.4) and (4.5) can also be absorbed into another
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augmented state x̃k as

x̃k =



x̄k

dkl


 = F̃ jk,k−1x̃k−1 + G̃jk,k−1ṽ

j
k, where ṽjk =




vjk

vdlk−1


 (4.6)

and F̃k,k−1 and G̃k,k−1 are defined in Sec. 4.5 (see (4.32)-(4.41)). Using the augmented

state (4.6) the counterparts to ((3.24): measurements reported from local sensor) and

((4.2): measurements reported from remote sensor), respectively, are

zlk = hl(x̃k) + wj,lk = hl([I, 0, 0, 0, 0]x̃k) + wj,lk (4.7)

and

zlk = hl(x̃k) + wj,lk = hl([0, 0, F jkdl,k−1, G
j
kdl,k−1, 0]x̃k) + wj,lk (4.8)

for both measurements from local sensor and from remote sensor, respectively. To keep

the notations and details to a bare minimum, we will consider the case of two sensors

only and furthermore, we will assume that one of the sensors is either collocated with or

is synchronized with the central processor, so that we will drop the subscript l from dkl.

For more than two sensors, we need to augment x̃k with additional dk’s (total q− 1): in

essence, these delays are relative to one of the sensors (reference sensor).

4.4 AS-IMM/MSPDAF Algorithm for Asynchronous Measurements

In this section, we now modify the augmented state IMM/MSPDA (AS-IMM/MSPDA)

algorithms of [47] to apply to the multi-sensor asynchronous measurements system. We

confine our attention to the case of 2 sensors; however, the algorithm can be easily
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adapted to the case of arbitrary q sensors. We will only briefly outline the basic steps

in ‘one cycle’ (i.e., processing needed to update for a new set of measurements) of the

proposed AS-IMM/MSPDA filter.

Assumed available: Given the state estimate ˆ̃x
j
k−1|k−1 := E{x̃k−1|M j

k−1, Z
k−1},

the associated covariance P̃ jk−1|k−1, and the conditional mode probability µjk−1 := P [M j
k−1|Zk−1]

at time k − 1 for each mode j ∈Mn.

Step 1. Interaction – mixing of the estimate from the previous time (∀j ∈

Mn) :

predicted mode probability:

µj−k := P [M j
k |Zk−1] =

∑

i

pijµ
i
k−1 (4.9)

mixing probability:

µi|j := P [M i
k−1|M j

k , Z
k−1] = pijµ

i
k−1/µ

j−
k (4.10)

mixed estimate:

ˆ̃x
0j
k−1|k−1 := E{x̃k−1|M j

k , Z
k−1} =

∑

i

ˆ̃x
i
k−1|k−1µ

i|j (4.11)

covariance of the mixed estimate:

P̃ 0j
k−1|k−1 := E{[x̃k−1 − ˆ̃x

0j
k−1|k−1][x̃k−1 − ˆ̃x

0j
k−1|k−1]′|M j

k , Z
k−1} (4.12)

=
∑

i

{P̃ ik−1|k−1 + [ˆ̃x
i
k−1|k−1 − ˆ̃x

0j
k−1|k−1][ˆ̃x

i
k−1|k−1 − ˆ̃x

0j
k−1|k−1]′}µi|j .
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Step 2. Predicted state and measurements for sensors 1 and 2 (∀j ∈Mn) :

state prediction:

ˆ̃x
j
k|k−1 := E{x̃k|M j

k , Z
k−1} = F̃ jk−1

ˆ̃x
0j
k−1|k−1 (4.13)

state prediction error covariance:

P̃ jk|k−1 := E{[x̃k − ˆ̃x
j
k|k−1][x̃k − ˆ̃x

j
k|k−1]′|M j

k , Z
k−1}

= F̃ jk−1P̃
0j
k−1|k−1F̃

j′
k−1 + G̃jk−1Q

j
k−1G̃

j′
k−1 (4.14)

The mode-conditioned predicted measurement for sensor l is

ẑj,lk := hl(ˆ̃x
j
k|k−1). (4.15)

Using the linearized version (4.15), the covariance of the mode-conditioned residual

ν
j,l(i)
k := z

l(i)
k − ẑj,lk (4.16)

is given by (assume q=2, the case of 2 sensors)

Sj,1k := E{νj,1(i)
k ν

j,1(i)′
k |M j

k , Z
k−1} = H̃j,1

k P̃ jk|k−1H̃
j,1′
k +Rj,1k , (4.17)

Sj,2k := E{νj,2(i)
k ν

j,2(i)′
k |M j

k , Z
k−1} = H̃j,2

k P̃ jk|k−1H̃
j,2′
k +Rj,2k (4.18)
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where H̃j,l
k is the first order derivative (Jacobian matrix) of hl(.) evaluated at the state

prediction ˆ̃x
j
k|k−1 (see (4.15)). Note that (4.17) and (4.18) assume that zl(i)k originates

from the target. The results (4.17) and (4.18) do not depend upon the actual measure-

ments.

As mentioned earlier, since our approach to the problem deals not only with the

asynchronous measurements but also with multiple simultaneous measurements [46, 48]

arising from two separate sensors that are tracking a single target through a common

surveillance region, a method for fusion of multiple measurements has to be devised.

In order to do this, now the combined covariance Sjk of the mode-conditioned residual

obtained from (4.17) and (4.18) also needs to be considered as follows

Sjk :=



H̃j,1
k

H̃j,2
k


 P̃

j
k|k−1

[
H̃j,1′
k H̃j,2′

k

]
+



Rj,1k 0

0 Rj,2k


 . (4.19)

Step 3. Measurement validation and state estimation for sensors 1 and 2

(∀j ∈Mn) :

Since the measurement validation and state estimation process was well explained in

steps 3 and 4 of Sec. 3.4 for a maneuvering target tracking scenario, we briefly describe

the difference between standard simultaneous measurement update and state-augmented

simultaneous measurement update in this step. Let

ja := arg
{

max
j∈Mn

∣∣∣Sj,lk
∣∣∣
}
.
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Then measurement zl(i)k (i=1,2,· · ·,ml) is validated if and only if

[zl(i)k − ẑja,lk ]′[Sja,lk ]
−1

[zl(i)k − ẑja,lk ] < γ (4.20)

where γ is an appropriate threshold. The volume of the validation region with the

threshold γ is

V l
k := cnzlγ

nzl/2|Sja,lk |
1/2
. (4.21)

From among all the raw measurements from sensor l at time k, i.e., Z lk := {zl(1)
k , z

l(2)
k , · · · , zl(ml)k },

define the set of validated measurement for sensor l at time k as

Y l
k := {yl(1)

k , y
l(2)
k , · · · , yl(m̄l)k } (4.22)

where m̄l is total number of validated measurement for sensor l at time k and

y
l(i)
k := z

l(li)
k (4.23)

where 1≤ l1 < l2 < · · · < lm̄l ≤ ml when m̄l 6=0.

We define the association events (hypotheses) θa,bk as in Eqn. (3.46). Therefore,

there are a total of m̄1m̄2+m̄1+m̄2+1 possible association hypotheses, each of which has

an association probability. The mode-conditioned association event probabilities βj,a,bk

can be defined and computed as in Eqns. (3.44)-(3.48).

Using ˆ̃x
j
k|k−1 (from (4.13)) and its covariance P̃ jk|k−1 (from (4.14)), one computes

the partial update ˆ̃x
j
k|k and its covariance P̃ jk|k according to the standard PDAF [21],

except that the augmented state is conditioned on θa,bk with data fusion from sensors 1
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and 2. Therefore, partial update of the state estimate

ˆ̃x
j,a,b
k|k := E

{
x̃k|θa,bk ,M j

k , Z
k−1, Y 1

k , Y
2
k

}
= ˆ̃x

j
k|k−1 +W j,a,b

k νj,a,bk (4.24)

where the combined mode-conditioned innovations νjk and Kalman gains W j,a,b
k , are

computed as (3.49) and (3.51), respectively. Therefore, mode-conditioned update of the

state estimate can be obtained as

ˆ̃x
j
k|k := E

{
x̃k|M j

k , Z
k−1, Y 1

k , Y
2
k

}
=

m̄1∑

i=0

m̄2∑

b=0

βj,a,bk
ˆ̃x
j,a,b
k|k−1 (4.25)

and covariance of ˆ̃x
j
k|k can be obtained as

P̃ jk|k := P̃ jk|k−1 −
m̄1∑
a=0

m̄2∑
b=0

(a,b) 6=(0,0)

βj,a,bk W j,a,b
k Sj,a,bk W j,a,b′

k +
m̄1∑
a=0

m̄2∑
b=0

βj,a,bk W j,a,b
k νj,a,bk νj,a,b

′
k W j,a,b′

k

−
[
m̄1∑
a=0

m̄2∑
b=0

βj,a,bk W j,a,b
k νj,a,b

] [
m̄1∑
a=0

m̄2∑
b=0

βj,a,bk W j,a,b
k νj,a,b

]′
.

(4.26)

Step 4. Update of mode probabilities (∀j ∈Mn) :

µjk := P
[
M j
k |Zk

]
=

1
C
µj−k Λjk (4.27)

where C is a normalization constant such that
∑
j
µjk = 1.

Step 5 Combination of the mode-conditioned estimates (∀j ∈Mn) :

The final augmented state estimate update at time k is given by

ˆ̃xk|k =
∑

j
ˆ̃x
j
k|kµ

j
k (4.28)
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and its covariance is given by

P̃k|k =
∑

j

{
P̃ jk|k +

[
ˆ̃x
j
k|k − ˆ̃xk|k

] [
ˆ̃x
j
k|k − ˆ̃xk|k

]′}
µjk. (4.29)

From the final augmented state (see (4.28)), the state filtered vector x̂k|k and the state

smoothing vector x̂k−1|k can be easily obtained.

4.5 Simulation Example

The following example of tracking a highly maneuvering target in clutter is consid-

ered. The target starts at location [21689 10840 40] in Cartesian coordinates in meters.

The initial velocity (in m/s) is [-8.3 -399.9 0] and the target stays at constant altitude

with a constant speed of 400 m/s. Its trajectory is a straight line with constant velocity

between 0 and 20s, a coordinated turn (0.15 rad/s) with constant acceleration of 60

m/s2 between 20 and 35s, a straight line with constant velocity between 35 and 55s, a

coordinated turn (0.1 rad/s) with constant acceleration of 40 m/s2 between 55 and 70s,

and a straight line with constant velocity between 70 and 90s. The target motion models

are patterned and modified after [21]. In each mode the target dynamics are modeled in

Cartesian coordinates as

x̃k = F̃ jk,k−1x̃k−1 + G̃jk,k−1ṽ
j
k (4.30)

x̃kdl = F̃ jkdl,k−1x̃k−1 + G̃jkdl,k−1ṽ
j
k (4.31)

where the augmented state of the target consists of position, velocity, acceleration, and

the process noise in each of the three Cartesian coordinates (x, y, and z) at tk and tk−1

as well as the delay time dk at tk. Thus both x̃k and x̃kdl are of dimension 25 (nx = 25).
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Three maneuver models are considered in the following discussion. The system matrices

F̃k,k−1, G̃k,k−1, F̃kdl,k−1 and G̃kdl,k−1 are defined as

F̃ jk,k−1 =



F̄ jk,k−1 0

0 I


 , G̃jk,k−1 =



Ḡjk,k−1 0

0 I


 (4.32)

F̃ jkdl,k−1 =



F̄ jkdl,k−1 0

0 I


 , G̃jkdl,k−1 =



Ḡjkdl,k−1 0

0 I


 (4.33)

where

F̄ jk,k−1 =




~F jk,k−1 0

I 0


 , Ḡjk,k−1 =




~Gjk,k−1

0


 (4.34)

F̄ jkdl,k−1 =




~F jkdl,k−1 0

I 0


 , Ḡjkdl,k−1 =




~Gjkdl,k−1

0


 (4.35)

~F jk,k−1 =



F jk,k−1 Gjk,k−1

0 0


 ,

~Gjk,k−1 =




0

I


 (4.36)

~F jkdl,k−1 =



F jkdl,k−1 Gjkdl,k−1

0 0


 ,

~Gjkdl,k−1 =




0

I


 , (4.37)

F jk,k−1 =




F j 0 0

0 F j 0

0 0 F j




, Gjk,k−1 =




Gj 0 0

0 Gj 0

0 0 Gj




, (4.38)
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F jkdl,k−1 =




F jd 0 0

0 F jd 0

0 0 F jd




, Gjkdl,k−1 =




Gjd 0 0

0 Gjd 0

0 0 Gjd




. (4.39)

Model 1. Nearly constant velocity model with zero mean perturbation in acceler-

ation

F 1 =




1 T 0

0 1 0

0 0 0




, G1 =




T 2

2

T

0




, (4.40)

F 1
d =




1 (T − dk) 0

0 1 0

0 0 0




, G1
d =




(T−dk)2

2

(T − dk)

0




, (4.41)

where T is the sampling period. The standard deviation of the process noise of M1 is 5

m/s2 (as in [21]).

Model 2. Wiener process acceleration (nearly constant acceleration motion)

F 2 =




1 T T 2

2

0 1 T

0 0 1




, G2 =




T 2

2

T

1




, (4.42)
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F 2
d =




1 (T − dk) (T−dk)2

2

0 1 (T − dk)

0 0 1




, G2
d =




(T−dk)2

2

(T − dk)

1




. (4.43)

The standard deviation of the process noise of M2 is 7.5 m/s2 (as in [21]).

Model 3. Wiener process acceleration (model with large acceleration increments, for the

onset and termination of maneuvers), with F 3 = F 2, G3 = G2, F 3
d = F 2

d and G3
d = G2

d.

The standard deviation of the process noise of M3 is 40 m/s2 (as in [21]).

The initial model probabilities are µ1
0 = 0.8, µ2

0 = 0.1 and µ3
0 = 0.1. The mode

switching probability matrix is given by (as in [21])




p11 p12 p13

p21 p22 p23

p31 p32 p33




=




0.8 0.0 0.2

0.0 0.8 0.2

0.3 0.3 0.4




. (4.44)

The Sensors: Two sensors are used to obtain the measurements. Sensor 1 and Sensor

2 are located at [x1, y1, z1]=[-4000 4000 0] m and [x2, y2, z2]=[5000 0 0] m, respectively,

and the central processor is collocated with sensor 1 platform (we assume that there is

no time delay between sensor 1 and central processor and there is fixed-but-unknown

time delay between sensor 2 and central processor). The measurements from sensor l for

model j are zlk = hl(xk) + wj,lk for l = 1 and 2, reflecting range and azimuth angle for

sensor 1 (radar) and azimuth and elevation angles for sensor 2 (infrared). The range,
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azimuth, and elevation angle transformations, respectively, are given by

rl = {(x− xl)2 + (y − yl)2 + (z − zl)2}1/2 (4.45)

al = tan−1[(y − yl)/(x− xl)] (4.46)

el = tan−1[(z − zl)/{(x− xl)2 + (y − yl)2}1/2]. (4.47)

As we see from (3.23), (3.24), (4.1) and (4.2), the measurements obtained from sensors

1 and 2 can be expressed as

z1
k = h1([I, 0, 0, 0, 0]x̃k) + w1

k (4.48)

z2
k = h2([0, 0, F jkd,k−1, G

j
kd,k−1, 0]x̃k) + w2

k. (4.49)

The Jacobian matrices of h for sensors 1 and 2 are

H̃j,1 =
[
Hj,1 02×13

]
(4.50)

and

H̃j,2 =
[

02×12 Hj,2F jkd,k−1 Hj,2Gjkd,k−1 Hd

]
(4.51)

where

Hj,1 =




cos e1 cos (a1) 0 0 cos (e1) sin (a1) 0 0 sin (e1) 0 0

− sin (a1)
r1 cos (e1) 0 0 cos (a1)

r1 cos (e1) 0 0 0 0 0


 (4.52)
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Hj,2 =



− sin (a2)
r2 cos (e2) 0 0 cos (a2)

r1 cos (e2) 0 0 0 0 0

− sin (e2) cos (a2)
r2

0 0 − sin (e2) sin (a2)
r2

0 0 cos(e2)
r2

0 0


 (4.53)

Hd =




cos (a2)
r2 cos (e2)df̂k|k−1 − sin(a2)

r2 cos (e2)dĝk|k−1

cos (e2)
r2

dĥk|k−1 − sin (e2)
r2

dŝk|k−1


 (4.54)

where

df̂k|k−1 = −[ˆ̃x
(17)
k|k−1 + (T − d̂k)ˆ̃x

(18)
k|k−1 + (T − d̂k)ˆ̃x

(23)
k|k−1] (4.55)

dĝk|k−1 = −[ˆ̃x
(14)
k|k−1 + (T − d̂k)ˆ̃x

(15)
k|k−1 + (T − d̂k)ˆ̃x

(22)
k|k−1] (4.56)

dĥk|k−1 = −[ˆ̃x
(20)
k|k−1 + (T − d̂k)ˆ̃x

(21)
k|k−1 + (T − d̂k)ˆ̃x

(24)
k|k−1] (4.57)

dŝk|k−1 = 2(ĝ2
k|k−1 + f̂2

k|k−1)
−1/2

(ĝk|k−1 + f̂k|k−1)(dĝk|k−1 + df̂k|k−1) (4.58)

f̂k|k−1 = ˆ̃x
(16)
k|k−1 + (T − d̂k)ˆ̃x

(17)
k|k−1 +

(T − d̂k)2

2
ˆ̃x

(18)
k|k−1 +

(T − d̂k)2

2
ˆ̃x

(23)
k|k−1 (4.59)

ĝk|k−1 = ˆ̃x
(13)
k|k−1 + (T − d̂k)ˆ̃x

(14)
k|k−1 +

(T − d̂k)2

2
ˆ̃x

(15)
k|k−1 +

(T − d̂k)2

2
ˆ̃x

(22)
k|k−1. (4.60)

The measurement noise wj,lk for sensor l is assumed to be zero-mean white Gaussian with

known covariances, R1 = diag[qr, qa1] = diag[400 m2,49 mrad2] with qr and qa1 denoting

the variances for the radar range and azimuth measurement noises, respectively, and R2

= diag[qa2, qe] = diag[4 mrad2,4 mrad2] with qa2 and qe denoting the variances for the

infrared sensor azimuth and elevation measurement noises, respectively. The sampling
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interval was T=1s and it was assumed that the probability of detection Pd=1 for both

sensors.

The Clutter: For generating false measurements in simulations, the clutter was assumed

to be Poisson distributed with expected number of λ1 = 13× 10−6/m mrad for sensor

1 and λ2 = 7 × 10−4/mrad2 for sensor 2 [21, case 1]. These statistics were used for

generating the clutter in all simulations. However, a nonparametric clutter model was

used for implementing all the algorithms for target tracking.

Other Parameters: The gates for setting up the validation regions for both the sensors

were based on the threshold γ = 16. With the measurement vector of dimension 2, this

leads to a gate probability PG = 0.997 (see [12, pages 95-96]).

Simulation Results: The results were obtained from 100 Monte Carlo runs. Fig.

4.2 shows the true trajectory of the target. Fig. 4.3 shows the delay estimates (given

unknown but fixed timing mismatch between the two sensors) based on 100 Monte

Carlo runs. Fig. 4.4 shows a comparison between the performances of the filtered

state and the smoothed state (lag = 1) obtained from the state-augmented system (in

position, velocity, and acceleration). It is seen from Fig. 4.4 that the smoothed state

shows better accuracy than the filtered state as well described in [47]. Fig. 4.5 shows a

comparison among the performances of the proposed augmented state IMM/MSPDAF

(AS-IMM/MSPDAF) algorithm dealing with asynchronous measurements with unknown

but fixed dk, with known dk, and the standard IMM/MSPDAF algorithm [38] with the

assumption that dk=0 always applies. Note that we apply “simultaneous measurement

update” technique for all algorithms to get fair performance comparison. Table 4.1

shows the performance comparison between the proposed AS-IMM/MSPDAF algorithm

dealing with asynchronous measurements with unknown but fixed dk and the standard
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Figure 4.2: Trajectory of maneuvering target (read left to right, top to bottom). (a)
Position in xy plane. (b) x and y velocities. (c) x and y accelerations. (d) magnitude of
accelerations

IMM/MSPDAF algorithm with the assumption that dk=0. It is seen from Table 4.1 that

the standard IMM/MSPDAF algorithm [38] suffered from track losses (from 2 to 86 out

of 100 Monte Carlo runs) whereas the proposed AS-IMM/MSPDAF algorithm performed

well in all 100 Monte Carlo runs. It is seen from Fig. 4.5 and Table 4.1 that when the

unknown but fixed timing mismatch dk is more than one fifth of the sampling time, the

performance improvement is significant compared with the standard IMM/MSPDAF

algorithm [38] that ignores the time-delay dk (i.e., assumes it to be zero).
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Figure 4.3: Estimation of delay (given unknown but fixed timing mismatch between two
separated sensors) based on 100 Monte Carlo runs (read left to right, top to bottom).
(a) d = 0. (b) d = 0.1T . (c) d = 0.3T . (d) d = 0.5T . (e) d = 0.7T . (f) d = 0.9T . (T =
sampling rate). Solid: estimated delay d̂; dashed: fixed delay d.
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Figure 4.4: Comparison of filtered and smoothed (lag = 1) estimate for various delay
values (acceleration, velocity, and position RMS errors (3 rows each), read left to right,
top to bottom). (a) d = 0. (b) d = 0.1T . (c) d = 0.3T . (d) d = 0.5T . (e) d = 0.7T . (f)
d = 0.9T. (T = sampling rate). In the figure legends, estimation refers to filtering, and
smoothing is with lag = 1. Solid: filtered estimate; dash-dot: smoothed estimate.
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Figure 4.5: RMSE in position using IMM/MSPDAF for various delay values (read left to
right, top to bottom). (a) d = 0. (b) d = 0.1T . (c) d = 0.3T . (d) d = 0.5T . (e) d = 0.7T .
(f) d = 0.9T . Unless otherwise stated, the results are for filtering. Solid: proposed AS-
IMM/MSPDAF; dotted: proposed AS-IMM/MSPDAF (smoothing); dash-dot: standard
IMM/MSPDAF [38]; dashed: proposed AS-IMM/MSPDAF with the knowledge of dk.
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Unknown but fixed delay, dk 0.0 0.1T 0.3T 0.5T 0.7T 0.9T
proposed AS-IMM/MSPDAF 0 0 0 0 0 0
standard IMM/MSPDAF [38] 0 0 2 4 27 86

Table 4.1: Simulation Results: No. of lost tracks obtained from 100 Monte Carlo runs
for fixed-but-unknown dk

4.6 Conclusions

We investigated an augmented state IMM/MSPDAF algorithm with asynchronous

measurement (there is unknown but fixed timing mismatch between sensor platforms)

for tracking a highly maneuvering target in clutter. Simultaneous measurement update

technique is applied for better data association. The proposed AS-IMM/MSPDAF algo-

rithm was illustrated via a simulation example under various scenarios of known delay,

estimated delay and ignoring delay, for various delay values.

Using the proposed AS-IMM/MSPDAF algorithm, the smoothed estimate x̂k−1|k

can be easily obtained from the augmented state estimate ˆ̃xk|k and the smoothed estimate

always shows better performance (in terms of RMS error) than the filtered estimate

x̂k−1|k−1. The performance comparison between the proposed algorithm dealing with

unknown but fixed dk and the standard IMM/MSPDAF algorithm [38] that ignores dk

shows that while the proposed AS-IMM/MSPDAF algorithm performed well in all 100

Monte Carlo runs, the standard IMM/MSPDAF algorithm [38] suffered from track losses.
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Chapter 5

Multisensor Tracking of a Maneuvering Target in Clutter with

Asynchronous and Possibly Out-of-Sequence Measurements using

Augmented State IMMPDA Filtering and Simultaneous Measurement

Update

In this chapter, a suboptimal filtering algorithm for tracking a highly maneuvering

target in a cluttered environment using multiple sensors dealing with possibly out-of-

sequence measurements (OOSM) and a fixed relative time-delay among sensor platforms

is presented. The filtering algorithm is developed by applying the basic IMM approach,

the PDA technique, and OOSM updating for the target. A state-augmented approach is

developed to improve tracking performance with the possible presence of OOSM. A mul-

tisensor PDA filter is developed for parallel sensor processing for target tracking under

clutter. The algorithm is illustrated via a highly maneuvering target tracking simulation

example where two sensors, a radar and an infrared sensor, are used. Compared with an

existing IMMPDA filtering algorithm with in-sequence only sensor processing, the pro-

posed algorithm achieves considerable improvement in the accuracy of track estimation.

5.1 Introduction

In a multisensor central tracking system measurements are typically collected in

“scans” or “frames” and then transmitted to a processing center [27]. The state equations

are usually defined in continuous time and then discretized because the measurements
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are obtained in discrete time - the sensor provides a “time stamp” with each measure-

ment. In multisensor tracking systems that operate in a centralized manner [12, 44], i.e.,

the processing of the measurements from all sensors is done at a single center, there are

usually different time delays in the arrival of the measurement data from the various sen-

sors to the center. This can be easily seen to lead to situations where measurements from

the same target arrive out of sequence. Such “out-of-sequence” measurement (OOSM)

arrivals can occur even in the absence of scan/fram communication time delays, as dis-

cussed in [12]. In this system the processing of the measurement data from all the

sensors is done at a single center, then there usually different time delays in the arrival

of measurement data from different sensors to the central processor. This can possibly

lead to situations where measurements from the same target arrive not in correct time

order. This out-of-sequence measurements (OOSM) arrivals can occur due to communi-

cation network delays, varying preprocessing times at the sensor platforms and lack of

sampling time synchronization among sensor platforms [35, 36]. The optimal solution

for OOSM has been considered by Bar-Shalom in [35, 36, 37] for single measurement

delay (1-step-lag case) and in [49] for multiple measurement delay (multistep-lag case).

In this chapter we exploit IMM and PDA techniques. It is assumed that a track has

been formed (initiated) and the objective of this work is to track a single maneuvering

target in clutter arising in a multisensor central tracking system.

We exploit the basic structure of [21] in combination with a state-augmented ap-

proach to deal with OOSM. In [21, 45] it is assumed that the sensors are collocated

and (time) synchronized with the sampling rate. In contrast, the sensor collocation and

(time) synchronization are no longer assumed in this chapter. Also, unlike [21, 47, 25]

which have used sequential updating of the state estimates with measurements, we use
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parallel updating of the state estimates with measurements as mentioned in [38]. Ref.

[50] extends the state-augmented approach of [38] to deal with asynchronous measure-

ments for the maneuvering target tracking in clutter, however, it is limited to in-sequence

measurements only. The state-augmented approach for target tracking in clutter with

OOSM has been proposed in [51], however, it is limited to non-maneuvering target only.

The maneuvering target tracking in clutter with OOSM problem using state-augmented

approach combined with IMM and PDA has been proposed in [52]. In this dissertation,

we extend the state-augmented approach of [52] to simultaneous measurement update,

while allowing for lack of timing synchronization.

This chapter is organized as follows. Sec. 5.2 presents the modeling assumption. Sec.

5.3 presents the problem formulation. Sec. 5.4 describes the state-augmented system

approach. Sec. 5.5 describes the proposed IMM/MSPDAF parallel detection fusion

algorithm for OOSM. Simulation results using the proposed algorithm for a realistic

problem are given in Sec. 5.6. Finally, Sec. 5.7 presents a discussion of the results and

some conclusions.

5.2 Modeling Assumptions

In this chapter we consider asynchronous measurements with possibly OOSM. We

extend our AS-IMM/MSPDAF algorithm discussed in Chapter 4 to deal with possi-

bly out-of-sequence measurements (OOSM) in an asynchronous measurements scenario.

Unlike AS-IMM/MSPDAF algorithm discussed in Chapter 4 which deals with fixed-but-

unknown delay, we assume that there is a “fixed-and-known” relative time delay between

the remote sensor clock and the central processor clock in this chapter. Our approach

assumes as the following:
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• Only two sensors were considered - more than two sensors also can be easily im-

plemented by defining additional data association events (hypotheses).

• Various sensor measurements are assumed to be at the same sampling rate but not

necessarily time synchronized.

• Measurement data over one sampling interval (based on the local clock of the

central processor) are collected at the central processor, attributed to one time

instant and processed simultaneously. (Central processor can distinguish OOSM

out of measurement data by checking the “time stamp” of each measurement.)

• A sensor is called a local sensor when its platform is collocated with the central

processor and there is no time delay between local sensor and central processor.

• A sensor is called a remote sensor when its platform is located at a distance from

the central processor and there is possibly a “fixed-and-known” relative time delay

between the remote sensor clock and the central processor clock at sample time

tk. (This time delay could be due to unsynchronized clocks at the two locations or

due to inherent delay due to congestion, insufficient bandwidth, etc., in the com-

munication link between the remote sensor platform and the central processor.).

• The measurement data arriving from remote sensor at any time k has a probability

Pd of being delayed and delay is uniformly distributed with a maximum time delay

less than or equal to T (T = sampling rate).

• Measurements arriving from remote sensor are either in-sequence but delayed or

OOSM.
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• OOSM can occur even in the absence of time-delayed scan/frame communication.

(It includes the possibility that there is no measurement arrival from remote sensor

to central processor.).

• The maximum time delay between the remote sensor clock and the central processor

clock is 1T .

5.3 Problem Formulation

We assume that the target dynamics can be modeled by one of n hypothesized

models. The model set is denoted as Mn := {1, · · · , n} and there are total q sensors.

The event that model j is in effect during the sampling period (tk−1, tk] is denoted by

M j
k .

5.3.1 Target Dynamics

For the jth hypothesized model (mode), the state dynamics are modeled as

xk = F jk,k−1xk−1 +Gjk,k−1v
j
k−1 (5.1)

where xk is the system state at tk and of dimension nx, F jk,k−1 and Gjk,k−1 are the system

matrices when model j is in effect over the sampling period (tk−1, tk]. The process noise

vjk−1 is a zero-mean white Gaussian process with covariance matrix Qjk−1. At the initial

time t0, the initial conditions for the system state of target under model j is assumed

to be Gaussian random variables with the known mean x̄j0 and the known covariance

P j0 . The probability of model j at t0, µj0 = P [M j
0 ], is also assumed to be known. The

switching from model M i
k−1 to model M j

k is governed by a finite-state stationary Markov
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chain with known transition probabilities pij = P [M j
k |M i

k−1]. Henceforth, time tk will

be denoted by k.

5.3.2 Measurements

We consider two sensor target tracking scenario. One of the sensor is the local sensor

(say sensor 1) and the other is the remote sensor (say sensor 2). The measurements

from each sensor are sent to the central processor where all measurements collected

between local sampling interval (tk−1, tk] are attributed to time tk (see Fig. 5.1). The

measurements are modeled as follows.

Measurements for local sensor (sensor 1)

z1
k = h1(xk) + wj,1k (5.2)

where z1
k is the (true) measurement vector (i.e., due to the target) at sensor 1 at tk and

of dimension nz1, h1 is the nonlinear transformation of xk to z1
k for model j. A first-order

linearized version of (5.2) is given by

z1
k = Hj,1

k xk + wj,1k (5.3)

where Hj,1
k is the Jacobian matrix of h1 evaluated at some value of the estimate of state

xk (see Sec. 5.4). The measurement noise wj,1k is a zero-mean white Gaussian process

with covariance matrix Rlk and is mutually uncorrelated with the process noise vjk−1.
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Figure 5.1: Asynchronous measurements: In-sequence but delayed measurements and
out of sequence measurements (OOSM) in multisensor tracking system

Measurements for remote sensor (sensor 2)

We assume that there is a fixed-and-known relative time delay dkl at sample time

tk between the remote sensor clock and the central processor (local sensor) clock at

sample time tk. Noting that the central processor can distinguish between OOSM and

in-sequence-but-delayed measurements, the measurements arriving from remote sensor

must be either in-sequence-but delayed measurements or OOSM. Therefore the measure-

ments reported from the remote sensor platform at time tkdl (henceforth will be denoted

by kdl) to the central processor at time tk can be modeled as (see Fig. 5.1)

z̃2
k = h2(xkdl) + wj,2k (5.4)
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where (as in Sec. 4.2)

xkdl = F jkdl,k−1xk−1 +Gjkdl,k−1v
j
k−1, (5.5)

z̃2
k is the (true) measurement vector (i.e., due to the target) at sensor 2 (see (5.6)), xkdl

is the system state at tkdl and of dimension nx, F jkdl,k−1 and Gjkdl,k−1 are the system

matrices when model j is in effect over the timing interval (tk−1, tkdl ].

To process equation (5.4) for the delayed measurement from the remote sensor at

the central processor, one has to consider all the possible data interpretations Ψ. Define

a related set of mutually exclusive and exhaustive data interpretations Ψ as follows:

• Ψ11: Both in-sequence measurements and OOSM arrive from sensor 2 at the central

processor at time k, and z̃2
k = {z2

k, z
2
k−1},

• Ψ10: Only in-sequence measurement arrives from sensor 2 at the central processor

at time k, and z̃2
k = {z2

k},

• Ψ01: Only OOSM arrives from sensor 2 at the central processor at time k, and

z̃2
k = {z2

k−1},

• Ψ00: No measurement arrives from sensor 2 at the central processor at time k (due

to absence of scan/frame), and z̃2
k = empty

where z2
k is the (true) measurement vector (i.e., due to the target) at sensor 2 at time

kdl, and z2
k−1 is the (true) measurement vector at sensor 2 at time kdl − T . Then (5.4)
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can be rewritten as

z̃2
k =







z2
k

z2
k−1


 , for Ψ11

z2
k, for Ψ10

z2
k−1, for Ψ01

no measurement, for Ψ00.

(5.6)

5.4 State-Augmented System

Define the augmented state x̃k from xk as

x̃′k = [x′k, v
′
k, x
′
k−1, v

′
k−1, x

′
k−2, v

′
k−2] (5.7)

where x′k denotes the transpose of xk. Assume that there is a fixed-and-known delay,

dkl, between the central processor and the remote sensor l platform. Using the above

definitions and (5.1), the augmented state equation may be written more compactly as

x̃k = F̃ jk,k−1x̃k−1 + G̃jk,k−1v
j
k, (5.8)

x̃kdl = F̃ jkdl,k−1x̃k−1 + G̃jkdl,k−1v
j
kdl

(5.9)

where F̃ jk,k−1, G̃jk,k−1, F̃ jkdl,k−1, and G̃jkdl,k−1 are defined in Sec. 5.6 (see (5.53)-(5.60)).

Note that the process noise in (5.8) is vjk (at time k, not at time k − 1). Using the

augmented state (5.7) the counterparts to (5.2) and (5.4), respectively, are

z1
k = h1(x̃k) + wj,lk = h1([I, 0, 0, 0, 0, 0]x̃k) + wj,lk (5.10)
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and

z̃2
k =







z2
k

z2
k−1


 = h2







0 0 F jdlG
j
dl 0 0

0 0 0 0 F jdlG
j
dl


 x̃k


+



wj,2k

wj,2k−1


 , for Ψ11

z2
k = h2

[
0 0 F jdlG

j
dl 0 0

]
x̃k + wj,2k , for Ψ10

z2
k−1 = h2

[
0 0 0 0 F jdlG

j
dl

]
x̃k + wj,2k−1, for Ψ01

no measurement, for Ψ00.

(5.11)

The following notations and definitions are used regarding the measurements at sensor l.

Note that, in general, at any time some measurements may be due to clutter and some

due to the target, i.e., there can be more than a single measurement at time k at sensor

l (l = 1, 2). The measurement set (not yet validated) generated by sensor l at time k is

denoted as

Z lk := {zl(1)
k , z

l(2)
k , · · · , zl(ml)k } (5.12)

where ml is the number of measurements generated by sensor l at time k. Variable zl(i)k

(i = 1,· · ·,ml) is the ith measurement within this set. The validated set of measurements

of sensor l at time k will be denoted by Y l
k , containing m̄l (≤ ml) measurement vectors.

The cumulative set of validated measurements from sensor l up to time k is denoted as

Y k(l) := {Y l
1 , Y

l
2 , · · · , Y l

k}. (5.13)

The cumulative set of validated measurements from all sensors up to time k is denoted

as

Zk := {Y k(1), Y k(2), · · · , Y k(q)} (5.14)

115



where q is the number of sensors.

Our goal is to find the state estimate

ˆ̃xk|k := E{x̃k|Zk} (5.15)

and the associated error covariance matrix

P̃k|k := E{[x̃k − ˆ̃xk|k][x̃k − ˆ̃xk|k]′|Zk} (5.16)

where x′k denotes the transpose of xk.

5.5 IMM/MSPDAF Algorithm for Asynchronous and Possibly Out-of-Sequence

Measurements

We now modify the IMMPDA algorithms of [47] and [25] to apply to the multi-

sensor asynchronous measurements system. We confine our attention to the case of 2

sensors; however, the algorithm can be adapted to the case of arbitrary q sensors. We

will only briefly outline the basic steps in ‘one cycle’ (i.e., processing needed to update

for a new set of measurements) of the IMM/MSPDA filter.

Assumed available: Given the state estimate ˆ̃x
j
k−1|k−1 := E{x̃k−1|M j

k−1, Z
k−1}, the

associated covariance P̃ jk−1|k−1, and the conditional mode probability µjk−1 := P [M j
k−1|Zk−1]

at time k − 1 for each mode j ∈Mn.

Step 1. Interaction – mixing of the estimate from the previous time (∀j ∈

Mn) :
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predicted mode probability:

µj−k := P [M j
k |Zk−1] =

∑

i

pijµ
i
k−1. (5.17)

mixing probability:

µi|j := P [M i
k−1|M j

k , Z
k−1] = pijµ

i
k−1/µ

j−
k . (5.18)

mixed estimate:

ˆ̃x
0j
k−1|k−1 := E{x̃k−1|M j

k , Z
k−1} =

∑

i

ˆ̃x
i
k−1|k−1µ

i|j . (5.19)

covariance of the mixed estimate:

P̃ 0j
k−1|k−1 := E

{
[x̃k−1 − ˆ̃x

0j
k−1|k−1][x̃k−1 − ˆ̃x

0j
k−1|k−1]′|M j

k , Z
k−1

}
(5.20)

=
∑

i

{
P̃ ik−1|k−1 + [ˆ̃x

i
k−1|k−1 − ˆ̃x

0j
k−1|k−1][ˆ̃x

i
k−1|k−1 − ˆ̃x

0j
k−1|k−1]′

}
µi|j .

Step 2. Predicted state and measurements for sensors 1 and 2 (∀j ∈Mn) :

state prediction:

ˆ̃x
j
k|k−1 := E{x̃k|M j

k , Z
k−1} = F̃ jk−1

ˆ̃x
0j
k−1|k−1. (5.21)

state prediction error covariance:

P̃ jk|k−1 := E{[x̃k − ˆ̃x
j
k|k−1][x̃k − ˆ̃x

j
k|k−1]′|M j

k , Z
k−1}
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= F̃ jk−1P̃
0j
k−1|k−1F̃

j′
k−1 + G̃jk−1Q

j
k−1G̃

j′
k−1. (5.22)

The mode-conditioned predicted measurements for sensors 1 and 2 are

ẑj,1k := h1(ˆ̃x
j
k|k−1), (5.23)

ˆ̃z
j,2
k := h2

(
ˆ̃x
j
k|k−1

)
=







ẑj,2k|k−1

ẑj,2k−1|k−1


 for Ψ11

ẑj,2k|k−1 for Ψ10

ẑj,2k−1|k−1 for Ψ01

no measurement for Ψ00.

(5.24)

Using the linearized version (5.3) and (5.4), the covariance of the mode-conditioned

residual

ν
j,1(i)
k := z

1(i)
k − ẑj,1k (5.25)

ν
j,2(i,r)
k := z

2(i,r)
k − ˆ̃z

j,2
k =







z

2(i)
k − ẑj,2k|k−1

z
2(r)
k−1 − ẑj,2k−1|k−1


 for Ψ11

z
2(i)
k − ẑj,2k|k−1, for Ψ10

z
2(r)
k−1 − ẑj,2k−1|k−1, for Ψ01

0, for Ψ00

(5.26)

are given by

Sj,1k := E{νj,1(i)
k ν

j,1(i)′
k |M j

k , Z
k−1} = H̃j,1

k P̃ jk|k−1H̃
j,1′
k +Rj,1k (5.27)
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Sj,2k :=







H̃j,2
k

H̃j,2
k−1


 P̃

j
k|k−1

[
H̃j,2′
k H̃j,2′

k−1

]
+



Rj,2k 0

0 Rj,2k−1


 , for Ψ11

H̃j,2
k P̃ jk|k−1H̃

j,2′
k +Rj,2k , for Ψ10

H̃j,2
k−1P̃

j
k|k−1H̃

j,2′
k−1 +Rj,2k−1, for Ψ01

(5.28)

where H̃j,l
k (H̃j,l

k−1) is the first order derivative (Jacobian matrix) of hl(.) evaluated at the

state prediction ˆ̃x
j
k|k−1 (ˆ̃x

j
k−1|k−1). Note that (5.27) and (5.28) assume that z1(i)

k , z2(i)
k ,

and z
2(r)
k−1 originate from the target. The results (5.27) and (5.28) do not depend upon

the actual measurements.

As mentioned earlier, since our approach to the problem deals with the OOSM as

well as multiple simultaneous measurements [46, 48] arising from two separate sensors

that are tracking a single target through a common surveillance region, a method for

fusion of multiple measurements has to be devised. In order to do this, now the combined

covariance of the mode-conditioned residual obtained from (5.27) and (5.28) also needs

to be considered as follows

Sjk := E








ν
j,1(i)
k

ν
j,2(i,r)
k



[
ν
j,1(i)′
k ν

j,2(i,r)′
k

]
|M j

k , Z
k−1





(5.29)
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=








H̃j,1
k

H̃j,2
k

H̃j,2
k−1




P̃ jk|k−1

[
H̃j,1′
k H̃j,2′

k H̃j,2′
k−1

]
+




Rj,1k 0 0

0 Rj,2k 0

0 0 Rj,2k−1




, for Ψ11



H̃j,1
k

H̃j,2
k


 P̃

j
k|k−1

[
H̃j,1′
k H̃j,2′

k

]
+



Rj,1k 0

0 Rj,2k


 , for Ψ10



H̃j,1
k

H̃j,2
k−1


 P̃

j
k|k−1

[
H̃j,1′
k H̃j,2′

k−1

]
+



Rj,1k 0

0 Rj,2k−1


 , for Ψ01

H̃j,1
k P̃ jk|k−1H̃

j,1′
k +Rj,1k , for Ψ00.

(5.30)

Step 3. Measurement validation for sensors 1 and 2 (∀j ∈Mn) :

There is uncertainty regarding the measurements’ origins. Therefore, we perform

validation for each target separately. One sets up a validation gate for sensor l centered

at the mode-conditioned predicted measurement, ẑj,lk . Let (|A| = det(A))

ja := arg
{

max
j∈Mn

∣∣∣Sj,lk
∣∣∣
}

and j̄a := arg
{

max
j∈Mn

∣∣∣Sj,2k−1

∣∣∣
}
. (5.31)

Then measurement zl(i)k (z2(r)
k−1) is validated if and only if

[zl(i)k − ẑja,lk ]′[Sja,lk ]
−1

[zl(i)k − ẑja,lk ] < γ

(
[zl(i)k − ẑj̄a,2k−1]′[S j̄a,2k−1]

−1
[zl(i)k − ẑj̄a,2k−1] < γ

)
(5.32)
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where γ is an appropriate threshold. The volume of the validation region with the

threshold γ is [12, Sec. 2.3.2]

V l
k := cnzlγ

nzl/2
∣∣∣Sja,lk

∣∣∣
1/2

(
V 2
k−1 := cnz2γ

nz2/2
∣∣∣S j̄a,2k−1

∣∣∣
1/2
)
. (5.33)

After performing the validation for each target separately, we deal with all the validated

data for measurement fusion.

Step 4. State estimation with validated measurement from sensors 1 and 2

(∀j ∈Mn) :

From among all the raw measurements from sensor l at time k, i.e., Z lk := {zl(1)
k , z

l(2)
k , · · · , zl(ml)k },

define the set of validated measurements for sensor l at time k as

Y l
k := {yl(1)

k , y
l(2)
k , · · · , yl(m̄l)k } (5.34)

where m̄l is total number of validated measurements for sensor l at time k and

y
l(i)
k := z

l(li)
k (5.35)

where 1≤ l1 < l2 < · · · < lm̄l ≤ ml when m̄l 6=0. From among all OOSM from sensor 2

measured at time k− 1, i.e., Z2
k−1 := {z2(1)

k−1, z
2(2)
k−1, · · · , z

2(mo2)
k−1 }, define the set of validated

measurements for sensor 2 at time k − 1 as

Y 2
k−1 := {y2(1)

k−1, y
2(2)
k−1, · · · , y

2(m̄o2)
k−1 } (5.36)
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where m̄o
2 is total number of validated measurements for sensor 2 at time k − 1. Hence

any single measurement arriving at the central processor can be categorized into one of

Y 1
k , Y 2

k or Y 2
k−1. Define the association events (hypotheses) θa,b,ck for all measurement

data arriving at the central processor at time k as follows

• θ0,0,0
k : none of the measurements in Y 1

k , Y 2
k or Y 2

k−1 is target originated, a = b =

c = 0,

• θa,0,0k : only y1(a)
k in Y 1

k is a target measurement, all other measurements in Y 1
k , Y 2

k

or Y 2
k−1 are clutter, a = 1, · · · , m̄1, b = c = 0,

• θ0,b,0
k : only y2(b)

k in Y 2
k is a target measurement, all other measurements in Y 1

k , Y 2
k

or Y 2
k−1 are clutter, a = c = 0, b = 1, · · · , m̄2,

• θa,b,0k : y1(a)
k and y2(b)

k in Y 1
k and Y 2

k , respectively, are target measurements, all other

measurements in Y 1
k , Y 2

k or Y 2
k−1 are clutter, a = 1, · · · , m̄1, b = 1, · · · , m̄2, c=0,

• θ0,0,c
k : only y

2(c)
k−1 in Y 2

k−1 is a target measurement, all other measurements in Y 1
k ,

Y 2
k or Y 2

k−1 are clutter, a = b = 0, c = 1, · · · , m̄o
2,

• θa,0,ck : y1(a)
k and y

2(c)
k−1 in Y 1

k and Y 2
k−1, respectively, are target measurements, all

other measurements in Y 1
k , Y 2

k or Y 2
k−1 are clutter, a = 1, · · · , m̄1, b=0, c =

1, · · · , m̄o
2,

• θ0,b,c
k : y

2(b)
k and y

2(c)
k−1 in Y 2

k and Y 2
k−1, respectively, are target measurements, all

other measurements in Y 1
k , Y 2

k or Y 2
k−1 are clutter, a = 0, b = 1, · · · , m̄2 , c =

1, · · · , m̄o
2,
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• θa,b,ck : y
1(a)
k , y2(b)

k and y
2(c)
k−1 in Y 1

k , Y 2
k and Y 2

k−1, respectively, are target mea-

surements, all other measurements in Y 1
k , Y 2

k or Y 2
k−1 are clutter, a = 1, · · · , m̄1,

b = 1, · · · , m̄2, c = 1, · · · , m̄o
2.

Therefore, there are a total of m̄1m̄2m̄
o
2+m̄1m̄2+m̄2m̄

o
2+m̄1m̄

o
2+m̄1+m̄2+m̄o

2+1 possible

association hypotheses, each of which has an association probability. Define the mode-

conditioned association event probabilities as

βj,a,b,ck := P{θa,b,ck |M j
k , Y

1
k , Y

2
k , Y

2
k−1, Z

k−1}. (5.37)

Exploiting the diffuse model for clutter in [12, 21], it turns out that

βj,0,0,0k = C
(1−PD1

PG1)(1−PD2
PG2)2

(V 1
k

)m̄1 (V 2
k

)m̄2 (V 2
k−1

)
m̄o

2
, a = b = c = 0

βj,a,0,0k = C
PD1(1−PD2

PG2)2N
[
ν
j,1(a)
k

;0,Sj,1
k

]

(V 1
k

)m̄1−1m̄1
, a = 1, · · · , m̄1, b = c = 0

βj,0,b,0k = C
PD2(1−PD1

PG1)(1−PD2
PG2)N

[
ν
j,2(b)
k

;0,Sj,2
k

]

(V 2
k

)m̄2−1m̄2
, a = 0, b = 1, · · · , m̄2, c = 0

βj,a,b,0k = C
PD1

PD2(1−PD2
PG2)N

[
ν̃
j(a,b,0)
k

;0,Sj
k

]

(V 1
k

)m̄1−1(V 2
k

)m̄2−1m̄1m̄2
, a = 1, · · · , m̄1, b = 1, · · · , m̄2, c = 0

βj,0,0,ck = C
(1−PD1

PG1)(1−PD2
PG2)PD2

N
[
ν
j,2(c)
k−1

;0,Sj,2
k−1

]

(V 2
k−1

)
m̄o

2
−1
m̄o2

, a = b = 0, c = 1, · · · , m̄o
2

βj,a,0,ck = C
PD1

PD2(1−PD2
PG2)N

[
ν̃
j(a,0,c)
k

;0,S̃j,a,c
k

]

(V 1
k

)m̄1−1(V 2
k−1

)
m̄o

2
−1
m̄1

, a = 1, · · · , m̄1, b = 0, c = 1, · · · , m̄o
2

βj,0,b,ck = C
P 2
D2

(1−PD1
PG1)N

[
ν̃
j(0,b,c)
k

;0,S̃j,b,c
k

]

(V 2
k

)m̄2−1(V 2
k−1

)
m̄o

2
−1
m̄2m̄o2

, a = 0, b = 1, · · · , m̄2, c = 1, · · · , m̄o
2

βj,a,b,ck = C
PD1

P 2
D2
N
[
ν̃
j(a,b,c)
k

;0,S̃j,a,b,c
k

]

(V 1
k

)m̄1−1(V 2
k

)m̄2−1(V 2
k−1

)
m̄o

2
−1
m̄1m̄2m̄o2

, a = 1, · · · , m̄1, b = 1, · · · , m̄2, c = 1, · · · , m̄o
2

(5.38)
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where PD1 and PD2 are the detection probabilities that the sensors 1 and 2 detect the

target, respectively, PG1 and PG2 are probabilities the target is in the validation region

observed from sensors 1 and 2, respectively, C is a normalization constant such that

∑m̄1
a=0

∑m̄2
b=0

∑m̄1
2

c=0 β
j,a,b,c
k = 1 ∀j. The mode-conditioned combined innovations ν̃jk can be

defined as

ν̃
j(a,b,0)
k =



ν
j,1(a)
k

ν
j,2(b)
k


 , ν̃

j(a,0,c)
k =



ν
j,1(a)
k

ν
j,2(c)
k−1


 , ν̃

j(0,b,c)
k =



ν
j,2(b)
k

ν
j,2(c)
k−1


 ,

ν̃
j(a,b,c)
k =




ν
j,1(a)
k

ν
j,2(b)
k

ν
j,2(c)
k−1



.

(5.39)

The likelihood function for each mode j is

Λjk := p
[
Y 1
k , Y

2
k , Y

2
k−1|M j

k , Z
k−1

]

=
m̄1∑

a=0

m̄2∑

b=0

m̄1
2∑

c=0

p
[
Y 1
k , Y

2
k , Y

2
k−1, θ

a,b,c
k |M j

k , Z
k−1

]
(5.40)

where

p
[
Y 1
k , Y

2
k , Y

2
k−1, θ

a,b,c
k |M j

k , Z
k−1

]
= p

[
Y 1
k , Y

2
k , Y

2
k−1|M j

k , θ
a,b,c
k , Zk−1

]
P [θa,b,ck ] (5.41)
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(1−PD1
PG1)(1−PD2

PG2)2

(V 1
k

)m̄1 (V 2
k

)m̄2 (V 2
k−1

)
m̄o

2
, a = b = c = 0

PD1(1−PD2
PG2)2N

[
ν
j,1(a)
k

;0,Sj,1
k

]

(V 1
k

)m̄1−1m̄1
, a = 1, · · · , m̄1, b = c = 0

PD2(1−PD1
PG1)(1−PD2

PG2)N
[
ν
j,2(b)
k

;0,Sj,2
k

]

(V 2
k )m̄2−1m̄2

, a = 0, b = 1, · · · , m̄2, c = 0

N
[
ν
j(a,b,0)
k

;0,Sj,a,b
k

]
PD1

PD2(1−PD2
PG2)

m̄1m̄2(V 1
k

)m̄1−1(V 2
k

)m̄2−1 , a = 1, · · · , m̄1, b = 1, · · · , m̄2, c = 0

(1−PD1
PG1)(1−PD2

PG2)PD2
N
[
ν
j,2(c)
k−1 ;0,Sj,2k−1

]

(V 2
k−1

)
m̄o

2
−1
m̄o2

, a = b = 0, c = 1, · · · , m̄o
2

PD1
PD2(1−PD2

PG2)N
[
ν̃
j(a,0,c)
k

;0,S̃j,a,c
k

]

(V 1
k

)m̄1−1(V 2
k−1

)
m̄o

2
−1
m̄1

, a = 1, · · · , m̄1, b = 0, c = 1, · · · , m̄o
2

P 2
D2

(1−PD1
PG1)N

[
ν̃
j(0,b,c)
k

;0,S̃j,b,c
k

]

(V 2
k

)m̄2−1(V 2
k−1

)
m̄o

2
−1
m̄2m̄o2

, a = 0, b = 1, · · · , m̄2, c = 1, · · · , m̄o
2

PD1
P 2
D2
N
[
ν̃
j(a,b,c)
k

;0,S̃j,a,b,c
k

]

(V 1
k

)m̄1−1(V 2
k

)m̄2−1(V 2
k−1

)
m̄o

2
−1
m̄1m̄2m̄o2

, a = 1, · · · , m̄1, b = 1, · · · , m̄2, c = 1, · · · , m̄o
2

(5.42)

Using ˆ̃x
j
k|k−1 (from (5.21)) and its covariance P̃ jk|k−1 (from (5.22)), one computes the

partial update ˆ̃x
j
k|k and its covariance P̃ jk|k according to the standard PDAF [21], except

that the augmented state is conditioned on θa,b,ck with data fusion from sensors 1 and 2.

Define the combined mode-conditioned innovations

νjk =
m̄1∑

a=0

m̄2∑

b=0

m̄1
2∑

c=0

βj,a,b,ck νj,a,b,ck . (5.43)

Therefore, partial update of the state estimate

ˆ̃x
j,a,b,c
k|k := E

{
xk|θa,b,ck ,M j

k , Z
k−1, Y 1

k , Y
2
k , Y

2
k−1

}
= ˆ̃x

j
k|k−1 +W j,a,b,c

k νj,a,b,ck (5.44)
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where Kalman gains, W j,a,b,c
k , are computed as





W j,0,0,0
k = 0, for a = b = c = 0

W j,a,0,0
k = P̃ jk|k−1

[
H̃j,1′
k [Sj,1k ]−1 0 0

]
, for a 6= 0, b = c = 0

W j,0,b,0
k = P̃ jk|k−1

[
0 H̃j,2′

k [Sj,2k ]−1 0
]
, for a = 0, b 6= 0, c = 0

W j,a,b,0
k = P̃ jk|k−1

[
[H̃j,1′

k H̃j,2′
k ][Sjk]

−1 0
]
, for a 6= 0, b 6= 0, c = 0

W j,0,0,c
k = P̃ jk|k−1

[
0 0 H̃j,2′

k−1[Sj,2k−1]−1
]
, for a = b = 0, c 6= 0

W j,a,0,c
k = P̃ jk|k−1

[
H̃j,1′
k [Sj,1k ]−1 0 H̃j,2′

k−1[Sj,2k−1]−1
]
, for a 6= 0, b = 0, c 6= 0

W j,0,b,c
k = P̃ jk|k−1

[
0 [H̃j,2′

k H̃j,2′
k−1][Sj,2k ]−1

]
, for a = 0, b 6= 0, c 6= 0

W j,a,b,c
k = P̃ jk|k−1

[
[H̃j,1′

k H̃j,2′
k H̃j,2′

k−1][Sjk]
−1
]
, for a 6= 0, b 6= 0, c 6= 0.

(5.45)

Therefore, mode-conditioned update of the state estimate

ˆ̃x
j
k|k := E

{
xk|M j

k , Z
k−1, Y 1

k , Y
2
k , Y

2
k−1

}
=

m̄1∑

a=0

m̄2∑

b=0

m̄1
2∑

c=0

βj,a,b,ck
ˆ̃x
j,a,b,c
k|k−1 (5.46)

and covariance of ˆ̃x
j
k|k

P̃ jk|k = P̃ jk|k−1 −
m̄1∑
a=0

m̄2∑
b=0

m̄o2∑
c=0

(a,b,c)6=(0,0,0)

βj,a,b,ck W j,a,b,c
k Sj,a,b,ck W j,a,b,c′

k

+
m̄1∑
a=0

m̄2∑
b=0

m̄1
2∑

c=0
βj,a,b,ck W j,a,b,c

k νj,a,b,ck νj,a,b,c
′

k W j,a,b,c′
k

−
[
m̄1∑
a=0

m̄2∑
b=0

m̄1
2∑

c=0
βj,a,b,ck W j,a,b,c

k νj,a,b,c
] [

m̄1∑
a=0

m̄2∑
b=0

m̄1
2∑

c=0
βj,a,b,ck W j,a,b,c

k νj,a,b,c
]′
.

(5.47)
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Step 5. Update of mode probabilities (∀j ∈Mn) :

µjk := P
[
M j
k |Zk

]
=

1
C
µj−k Λjk (5.48)

where C is a normalization constant such that
∑
j
µjk = 1.

Step 6. Combination of the mode-conditioned estimates (∀j ∈Mn) :

The final augmented state estimate update at time k is given by

ˆ̃xk|k =
∑

j
ˆ̃x
j
k|kµ

j
k (5.49)

and its covariance is given by

P̃k|k =
∑

j

{
P̃ jk|k +

[
ˆ̃x
j
k|k − ˆ̃xk|k

] [
ˆ̃x
j
k|k − ˆ̃xk|k

]′}
µjk. (5.50)

From the final augmented state (see (5.49)), the state filtered vector x̂k|k and the state

smoothing vector x̂k−1|k can be easily obtained.

5.6 Simulation Example

The following example of tracking a highly maneuvering target in clutter is consid-

ered. The target starts at location [21689 10840 40] in Cartesian coordinates in meters.

The initial velocity (in m/s) is [-8.3 -399.9 0] and the target stays at constant altitude

with a constant speed of 400 m/s. Its trajectory is a straight line with constant velocity

between 0 and 20s, a coordinated turn (0.15 rad/s) with constant acceleration of 60

m/s2 between 20 and 35s, a straight line with constant velocity between 35 and 55s, a
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coordinated turn (0.1 rad/s) with constant acceleration of 40 m/s2 between 55 and 70s,

and a straight line with constant velocity between 70 and 90s. The target motion models

are patterned and modified after [21]. In each mode the target dynamics are modeled in

Cartesian coordinates as

x̃k = F̃ jk,k−1x̃k−1 + G̃jk,k−1v
j
k, (5.51)

x̃kdl = F̃ jkdl,k−1x̃k−1 + G̃jkdl,k−1v
j
kdl

(5.52)

where the augmented state of the target consists of position, velocity, acceleration, and

the process noise in each of the three Cartesian coordinates (x, y, and z) at tk, tk−1 and

tk−2. Thus both x̃k and x̃kdl are of dimension 36 (nx = 36). Three maneuver models

are considered in the following discussion. From (5.8) and (5.9), F̃ jk,k−1, G̃jk,k−1, F̃ jkdl,k−1

and G̃jkdl,k−1 are defined as

F̃ jk,k−1 =




F jk,k−1 Gjk,k−1 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0




, G̃jk,k−1 =




0

I

0

0

0

0




(5.53)
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F̃ jkdl,k−1 =




F jkdl,k−1 Gjkdl,k−1 0 0 0 0

0 0 0 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0




, G̃jkdl,k−1 =




0

I

0

0

0

0




(5.54)

where the system matrices Fk,k−1, Gk,k−1, Fkdl,k−1 and Gkdl,k−1 are defined as

F jk,k−1 =




F j 0 0

0 F j 0

0 0 F j




, Gjk,k−1 =




Gj 0 0

0 Gj 0

0 0 Gj




, (5.55)

F jkdl,k−1 =




F jd 0 0

0 F jd 0

0 0 F jd




, Gjkdl,k−1 =




Gjd 0 0

0 Gjd 0

0 0 Gjd




. (5.56)

Model 1. Nearly constant velocity model with zero mean perturbation in acceleration

F 1 =




1 T 0

0 1 0

0 0 0




, G1 =




T 2

2

T

0




, (5.57)
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F 1
d =




1 (T − dkl) 0

0 1 0

0 0 0




, G1
d =




(T−dkl)2

2

(T − dkl)

0




, (5.58)

where T is the sampling period. The standard deviation of the process noise of M1 is 5

m/s2 (as in [21]).

Model 2. Wiener process acceleration (nearly constant acceleration motion)

F 2 =




1 T T 2

2

0 1 T

0 0 1




, G2 =




T 2

2

T

1




, (5.59)

F 2
d =




1 (T − dkl) (T−dkl)2

2

0 1 (T − dkl)

0 0 1




, G2
d =




(T−dkl)2

2

(T − dkl)

1




. (5.60)

The standard deviation of the process noise of M2 is 7.5 m/s2 (as in [21]).

Model 3. Wiener process acceleration (model with large acceleration increments, for the

onset and termination of maneuvers), with F 3 = F 2, G3 = G2, F 3
d = F 2

d and G3
d = G2

d.

The standard deviation of the process noise of M3 is 40 m/s2 (as in [21]).
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The initial model probabilities are µ1
0 = 0.8, µ2

0 = 0.1 and µ3
0 = 0.1. The mode

switching probability matrix is given by (as in [21])




p11 p12 p13

p21 p22 p23

p31 p32 p33




=




0.8 0.0 0.2

0.0 0.8 0.2

0.3 0.3 0.4




. (5.61)

The Sensors: Two sensors are used to obtain the measurements. Sensor 1 and Sensor

2 are located at [x1, y1, z1]=[-4000 4000 0] m and [x2, y2, z2]=[5000 0 0] m, respectively,

and the central processor is collocated with sensor 1 platform (we assume that there is no

time delay between sensor 1 and central processor and, on the other hand, there is fixed-

and-known time delay between sensor 2 and central processor). The measurements from

sensor l for model j are zlk = hl(xk) +wj,lk for l = 1 and 2, reflecting range and azimuth

angle for sensor 1 (infrared) and azimuth and elevation angles for sensor 2 (radar) . The

range, azimuth, and elevation angle transformations, respectively, are given by

rl = [(x− xl)2 + (y − yl)2 + (z − zl)2]
1/2

(5.62)

al = tan−1[(y − yl)/(x− xl)] (5.63)

el = tan−1
{

(z − zl)/[(x− xl)2 + (y − yl)2]
1/2
}
. (5.64)

The measurements obtained from sensors 1 and 2 can be expressed as we see from (5.1),

(5.2), (5.4) and (5.11). The measurement noise wj,lk for sensor l is assumed to be zero-

mean white Gaussian with known covariances, R1 = diag[qa1, qe] = diag[4mrad2, 4mrad2]
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with qa1 and qe denoting the variances for the infrared sensor azimuth and elevation mea-

surement noises, and R2 = diag[qr, qa2] = diag[400m2, 49mrad2] with qr and qa2 denoting

the variances for the radar range and azimuth measurement noises, respectively. The

sampling interval was T=1s and it was assumed that the probability of detection PD=1

for both sensors. The time difference between the sampling time at the central processor

(local sensor) and the measurement time at the remote sensor dkl is fixed-and-known to

be 0.5T . The data at any time k has a probability Pd = 0.4 (Pd = 0.25 also applied for

comparison) of being delayed where the delay is uniformly distributed with a maximum

time delay less than or equal to T where T is sampling rate.

The Clutter: For generating false measurements in simulations, the clutter was as-

sumed to be Poisson distributed with expected number of λ1 = 2 × 10−4/ mrad2 for

sensor 1 (infrared) and λ2 = 20× 10−6/m-mrad for sensor 2 (radar) [21, case 1]. These

statistics were used for generating the clutter in all simulations. However, a nonpara-

metric clutter model was used for implementing all the algorithms for target tracking.

Other Parameters: The gates for setting up the validation regions for both the sensors

were based on the threshold γ=16. With the measurement vector of dimension 2, this

leads to a gate probability PG=0.9997 (see [12, pages 95-96]).

Simulation Results: The results were obtained from 100 Monte Carlo runs. Fig. 5.2

shows the true trajectory of the target. Fig. 5.3 (a) and (b) show RMS error comparison

in position among proposed AS-IMM/MSPDAF algorithm dealing with OOSM, standard

AS-IMM/MSPDAF algorithm [50] with OOSM discarding, and AS-IMM/MSPDAF al-

gorithm applied to the hypothetical case of Pd = 0. The first maneuver starts at 20 sec

and in Fig. 5.3 (b) one can see a significant improvement from 25 sec through 36 sec. The
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Figure 5.2: Trajectory of maneuvering target (read left to right, top to bottom). (a)
Position in xy plane. (b) x and y velocities. (c) x and y accelerations. (d) magnitude of
accelerations.

second maneuver starts at 55 sec and in Fig. 5.3 (b) one can see a significant improve-

ment from 60 sec through 68 sec. That is, the proposed AS-IMM/MSPDAF algorithm

responds faster to maneuvers. Once the target is “settled” in a particular mode, there is

insignificant differences between the two approaches. It is seen from Fig. 5.3 (a) and (b)

that the higher delay probability Pd, the more significant performance improvement can

be obtained compared with the standard AS-IMM/MSPDAF algorithm [50] that ignores

and discards possibly existing OOSM.
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Figure 5.3: AS-IMM/MSPDA comparison (RMSE in position, read top to bottom) for
various probabilities of delayed measurement, Pd = 0.25 and 0.4: (a) Pd=0.25. (b)
Pd=0.4. Solid: proposed AS-IMM/MSPDAF algorithm dealing with OOSM; dashed:
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algorithm applied to the hypothetical case of Pd = 0.
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5.7 Conclusions

We investigated an augmented state IMM/MSPDAF algorithm with asynchronous

measurement (there is fixed-and-known timing mismatch between sensor platforms with

possible OOSM) for tracking a highly maneuvering target in clutter. Simultaneous mea-

surement update technique is applied for better data association and is expected to be

more accurate [12] since it considers all association hypotheses coupled across multisen-

sor while in the sequential updating considers the separate hypothesis for each sensor.

Our proposed approach has extended the multisensor approach of Chapter 4 (or see [50])

to OOSM by employing additional data association. The proposed algorithm was illus-

trated via a simulation example where it outperformed a standard AS-IMM/MSPDAF

algorithm with OOSM discarding [50] especially during the periods following the onset

of the target maneuvers. This improvement in accuracy is seen in our simulation ex-

ample only during the periods following the onset of the target maneuvers. Once the

target is settled in a particular mode, there is insignificant differences between the two

approaches. As one can easily notice, the higher delay probability Pd (with more OOSM

appearances), the more significant performance improvement can be obtained compared

with the standard AS-IMM/MSPDAF algorithm [50] that ignores and discards possibly

existing OOSM.
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Chapter 6

Tracking of Multiple Maneuvering Targets in Clutter with Possibly

Merged Measurements using IMM and JPDAM Coupled Filtering

In this chapter, we present a suboptimal filtering algorithm for tracking multiple

highly maneuvering targets in a cluttered environment using multiple sensors. We con-

centrate on two targets which temporarily move in close formation, giving rise to a single

detection due to the resolution limitations of the sensor. The filtering algorithm is de-

veloped by applying the basic IMM approach and the joint probabilistic data association

with merged measurements (JPDAM) technique and coupled target state estimation to

a Markovian switching system. The algorithm is illustrated via a simulation example in-

volving tracking of two highly maneuvering, at times closely spaced, targets with possibly

unresolved measurements. Compared with an existing IMM/JPDA filtering algorithm

developed without allowing for merged measurements, the proposed algorithm achieves

significant improvement in the accuracy of track estimation during target merging period.

6.1 Introduction

In this chapter, we consider the problem of tracking multiple maneuvering targets

which temporarily operate in close formation in clutter. This class of problem has re-

ceived considerable attention in the literature [5, 12, 21, 22, 44, 45]. The switching

multiple model approach has been found to be quite effective in modeling highly ma-

neuvering targets [12, 14, 21, 29, 30, 33, 45]. In this approach various “modes” of target

motion are represented by distinct kinematic models, and in a Bayesian framework, the
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target maneuvers are modeled by switching among these models controlled by a Markov

chain. In the presence of clutter, the measurements at the sensors may not all have

originated from the target-of-interest. In this case one has to solve the problem of data

association. An effective approach in a Bayesian framework is that of probabilistic data

association (PDA) [12, 22, 33] for a single target in clutter and that of joint probabilistic

data association (JPDA) [10, 12, 22, 27, 33] for multiple targets in clutter.

Typically it is assumed that the number of targets is known and for each target, a

tracks have been formed (initiated), so that the objective is that of track maintenance.

In [21] such a problem has been considered using multiple sensors, PDA, and switching

multiple models. The optimal solution (in the minimum mean-square error sense) to

target state estimation given sensor measurements and absence of clutter, requires expo-

nentially increasing (with time) computational complexity; therefore, one has to resort

to suboptimal approximations. For the switching multiple model approach, the interact-

ing multiple model (IMM) algorithm of [30] has been found to offer a good compromise

between the computational and storage requirements and estimation accuracy [29]. In

the presence of clutter, one has to account for measurements of uncertain origin (target

or clutter?). Here too, in a Bayesian framework, one has to resort to approximations

to reduce the computational complexity, resulting in the PDA filter [5, 12, 21, 22, 45].

In [21] the IMM algorithm has been combined with a PDA filter in a multiple sensor

scenario to propose a combined IMM/MSPDAF (interacting multiple model/ multisen-

sor probabilistic data association filter) algorithm. In [10, 22] multiple targets in clutter

(but without using switching multiple models) have been considered using JPDA filter

which, unlike the PDA filter, accounts for the interference from other targets. Various
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versions of IMM/JPDA (interacting multiple model/ joint probabilistic data associa-

tion) filters for multiple target tracking using switching multiple models may be found

in [12, 23, 24, 25, 26]. While [24, 26] present uncoupled filters (i.e., assume that dif-

ferent target states are mutually independent conditioned on the past measurements),

[12, 23, 25] present coupled filters (i.e., assume that there exists “share” measurements,

yielding cross-covariances which reflect the correlation between the targets’ state esti-

mation errors). [23] presents an “exact” JPDA coupled filter for non-switching models

using the framework of a linear descriptor system. For switching models, [24] presents

IMM/JPDA uncoupled filter approximations. In [25], an IMM/JPDA coupled filter-

ing algorithm has been presented where a simulation example resulted in fewer target

swapping compared with uncoupled IMM/JPDA.

When two targets are “closely” spaced, they may give rise to a single detection due

to the resolution limitations of the sensor. For instance, in radar ranging, returns from

multiple targets could fall in the same range cell, resulting in one unresolved detection

only [11, 28]. Standard tracking algorithms that ignore such a phenomenon can lead

to poor performance in multiple target tracking [11, 28]. Despite its importance, prior

work on tracking with unresolved measurements in general and modeling of resolution

capability of a sensor in particular, is sparse. Prior work includes [11] and [28] and

references therein. In [11] the resolution phenomena related to tracking have been treated

on the basis of a grid of resolution cells “frozen” ([28]) in space. In [28] the resolution

capability of a sensor is described in terms of a conditional probability of the event

that two targets are unresolved, conditioned on the relative distance between the two

targets in terms of the measured variables (range, azimuth, etc.). A simple Gaussian

shape is assumed which captures the sensor behavior in a mathematically trackable way.
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While [11] considers JPDA for data association, [28] exploits multiple hypothesis tracking

(MHT). Under the Bayesian framework, there are two basic methods of measurement-

to-track association in multiple target environments [12]: JPDA and multiple hypothesis

tracking (MHT). The MHT filter associates feasible measurements to track and form

multiple hypotheses for track extension. It is measurement-oriented approach whereas

JPDA is a target-oriented approach. Moreover, MHT is a multiscan approach utilizing

several scans of measurements to make data association decisions. MHT makes hard

decisions where highly improbable hypotheses are pruned to reduce the computational

burden. The JPDA filter is a single scan approach which does not make hard decisions;

rather it updates a track with a weighed sum of the measurements which could have

(reasonably) originated from the target in track.

In this chapter we propose to use sensor resolution modeling of [28] in conjunction

with JPDA coupled filtering and interacting multiple model (IMM) approach (see e.g.

[25] for tracking with resolved measurements). As noted in [27], IMMPDA filter is in

general superior to IMM/MHT filter when the associated computational cost and per-

formance are considered. Therefore, our emphasis will be on IMM/JPDA techniques.

Neither [11] nor [28] consider multiple switching kinematic models for maneuvering tar-

gets; rather they are limited to single (nonswitching) kinematic models per target to

achieve much enhanced performance.

This chapter is organized as follows. The problem formulation is presented in Sec.

6.2. The modeling scheme for the merged measurements is focused in Sec. 6.3. Sec.

6.4 describes the proposed IMM/JPDAM algorithm with coupled filtering. Simulation

results using the proposed algorithm for a realistic problem are given in Sec. 6.5. Finally,

Sec. 6.6 presents a discussion of the results and some conclusions.
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6.2 Problem Formulation

Assume that there are a total of two targets with the target set denoted as T2.

Assume that the target dynamics can be modeled by one of n hypothesized models.

The model set is denoted as Mn := {1, · · · , n} and there are total q sensors from which

q× 2, or less (if probability of target detection is less than one) or more (due to clutter),

measurement vectors are generated at a time. For target r (r ∈ T2), the event that model

j is in effect during the sampling period (tk−1, tk] will be denoted by M j
k(r). Although

two targets share a common model set, they may be in a different motion status from

time to time.

6.2.1 Target Dynamics

For the j-th hypothesized model (mode), the state dynamics of target r (r ∈ T2),

are modeled as

xk(r) = F jk−1(r)xk−1(r) +Gjk−1(r)vjk−1(r) (6.1)

where xk(r) is the system state of target r at tk and of dimension nx (assuming all targets

share a common state space), F jk−1(r) and Gjk−1(r) are the system matrices when model

j is in effect over the sampling period (tk−1, tk] for target r. The process noise vjk−1(r) is

a zero-mean white Gaussian process with covariance matrix Qjk−1 (same for all targets).

At the initial time t0, the initial conditions for the system state of target r under each

model j are assumed to be Gaussian random variables with the known mean x̄j0(r) and

the known covariance P j0 (r). The probability of model j at t0, µj0(r) = P [M j
0 (r)], is also

assumed to be known. The switching from model M i
k−1(r) to model M j

k(r) is governed
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by a finite-state stationary Markov chain (same for all targets) with known transition

probabilities pij = P [M j
k(r)|M i

k−1(r)]. Henceforth, time tk will be denoted by k.

In coupled state estimation the states of two targets are estimated jointly [12]. To

this end define the “global coupled” state

xk := col{xk(1), xk(2)} (6.2)

and the corresponding matrices/vectors J := col{j1, j2} where jr ∈ Mn is model j for

target r,

F Jk := block− diag{F j1k (1), F j2k (2)} (6.3)

GJk := block− diag{Gj1k (1), Gj2k (2)} (6.4)

vJk := col{vj1k (1), vj2k (2)}. (6.5)

Then we have the state equation for two targets as

xk = F Jk−1xk−1 +GJk−1v
J
k−1 (6.6)

where

E{vJk vJk
′} = QJk := block− diag{Qj1k , Qj2k }. (6.7)

Define the global mode

MJ
k := {M j1

k (1),M j2
k (2)}. (6.8)
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The two targets are assumed to evolve independently of each other. Therefore, the

transition probability for the global modes are given by

pIJ := P [M j1
k (1),M j2

k (2)|M i1
k−1(1),M i2

k−1(2)] =
2∏

r=1

pirjr . (6.9)

Similarly we have

µJ0 := P [M j1
0 (1),M j2

0 (2)] =
2∏

r=1

µjr0 (r). (6.10)

6.2.2 Measurements

For the j-th hypothesized model (mode), measurements of target r (r ∈ T2), are

modeled, when resolved, as

zlk(r) = hl(xk(r)) + wj,lk (r) for l = 1, · · · , q (6.11)

where zlk(r) is the (true) measurement vector (i.e., due to target r) from sensor l at tk and

of dimension nzl, and hl is the nonlinear transformation of xk(r) to zlk(r) (l = 1, · · · , q).

The measurement noise wj,lk (r) is a zero-mean white Gaussian process with covariance

matrix Rlk (same for all targets) and is mutually uncorrelated with the process noise

vjk−1(r). Similarly define the global measurement vector at sensor l as

zlk := col{zlk(1), zlk(2)} (6.12)

and related vectors

hl(xk) = col{hl(xk(1)), hl(xk(2))}, (6.13)
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wJ,lk := col{wj1,lk (1), wj2,lk (2)} (6.14)

where

E{wJ,lk wJ,lk
′} = Rlk := block− diag{Rlk, Rlk}. (6.15)

Then the measurement equation for two targets at sensor l (assuming no clutter and

perfect detections) is given by

zlk = hl(xk) + wJ,lk for l = 1, · · · , q. (6.16)

Regarding the measurements at sensor l, we follow the notations and definitions used in

[26]. Note that, in general, at any time k, some measurements may be due to clutter

and some due to the target(s). The measurement set (not yet validated) generated by

sensor l at time k is denoted as Z lk := {zl(1)
k , z

l(2)
k , · · · , zl(ml)k } where ml is the number of

measurements generated by sensor l at time k. Variable zl(i)k (i = 1, · · · ,ml) is the ith

measurement within the set. The validated set of measurements of sensor l at time k

will be denoted by Y l
k := {yl(1)

k , y
l(2)
k , · · · , yl(m̄l)k } where m̄l is total number of validated

measurement for sensor l at time k. And yl(i)k := z
l(li)
k where 1 ≤ l1 < l2 < · · · < lm̄l ≤ ml

when m̄l 6=0. The cumulative set of validated measurements from sensor l up to time k

is denoted as Y k(l) := {Y l
1 , Y

l
2 , · · · , Y l

k}. The cumulative set of validated measurements

from all sensors up to time k is denoted as Zk := {Y k(1), Y k(2), · · · , Y k(q)} where q is the

number of sensors.

Assuming that there are possibly unresolved measurements from two targets (i.e.,

measurement association with two targets simultaneously), any measurement therefore

is either associated with a target, two targets, or caused by clutter. Our goal is to find
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the state estimate

x̂k|k := E{xk|Zk} (6.17)

and the associated error covariance matrix

Pk|k := E{[xk − x̂k|k][xk − x̂k|k]′|Zk} (6.18)

where x′k denotes the transpose of xk. Included in the above formulation is state estimates

of individual targets.

6.3 Modeling for the Merged Measurements

6.3.1 Modeling Assumptions

In an earlier work Trunk [55, 56] assumed that the (one-dimensional) location of an

unresolved detection has a pdf (probability density function) given by the convolution of

a) a uniform density between the predicted target positions, and b) the Gaussian density

of the measurement error. Later Chang and Bar-Shalom [11] presented an unresolved

measurement modeling approach based on the following assumptions: c) merging of two

measurements occurs if the noisy measurements (rather than the predicted measurement)

fall in the same resolution cell, d) the elements of each (multidimensional) measurement

are uncorrelated, and e) the relative strengths of the signal should be taken into ac-

count (the merged measurement will be closer to the stronger signal). In [28] Koch and

Keuk assumed that, in case of a resolution conflict, f) the detection probabilities for

resolved targets PD and the detection probabilities for unresolved targets P aD may be
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different and g) the detection process and the production of measurements are statis-

tically independent. Based upon earlier research the present approach assumes as the

following:

• Only two targets were considered - more than two targets also can be easily im-

plemented by defining additional association events (hypotheses).

• The merged measurements arise when two targets are so close that the noisy mea-

surements (rather than the predicted measurement) fall in the same resolution cell

due to a lack of resolution of each sensors.

• The relative strengths βk (see (6.20)) of the signal is a small measurement noise

assumed to be Gaussian with 0.5 mean and (very) small variance (0 < βk < 1),

however, for our simulation example, we set βk=0.5 for all k.

• False detections (clutter) not related to the targets are equally distributed in the

validation region and their number is assumed to be Poisson distributed.

• The detection probabilities for resolved targets PD and unresolved targets P aD are

the same.

6.3.2 Measurement Model

Due to a lack of resolution at the sensor a detection may correspond to both targets.

Let slk(r) denote the signal power from target r at sensor l at time k. For unresolved

targets at time k, the measurement equation for two targets at sensor l (assuming no

clutter and perfect detections with merged measurements of targets r1 and r2, (r1, r2 ∈
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T2)), are modeled as (we follow [11])

zl,ak = βkz
l
k(1) + (1− βk)zlk(2)

= hl,a(xk) + wl,ak for l = 1, · · · , q (6.19)

where

βk =
slk(1)

slk(1) + slk(2)
, 0 < βk < 1, (6.20)

hl,a(xk) = βkh
l(xk(1)) + (1− βk)hl(xk(2)), (6.21)

wl,ak = βkw
l
k(1) + (1− βk)wlk(2), (6.22)

E{wl,ak wl,ak
′} = Rl,ak . (6.23)

Define the measurement distance between two targets

zl,dk = zlk(1)− zlk(2)

= hl,d(xk) + wl,dk for l = 1, · · · , q (6.24)

where

hl,d(xk) = hl(xk(1))− hl(xk(2)), (6.25)

wl,dk = wlk(1)− wlk(2), (6.26)

E{wl,dk wl,dk
′} = Rl,dk . (6.27)
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Note that the corresponding error covariance Rl,dk in (6.27) does not depend on the time

k or mode J but depend only on the sensor resolution. Henceforth, the error covariance

Rl,dk will be denoted by Rl,d.

6.3.3 Sensor Resolution Model

Let A denote the event that both targets are unresolved. For sensor l, a related

conditional probability of unresolved targets P l,ak can be introduced as (we follow [28])

P l,ak := P (A|xk) = exp
{
−1

2

[
hl(xk(1))− hl(xk(2))

]T
Rl,d

−1
[
hl(xk(1))− hl(xk(2))

]}

=
∣∣∣2πRl,d

∣∣∣
1/2N

(
0;hl,d(xk), Rl,d

)
. (6.28)

The positive definite nzl×nzl matrix Rl,d is determined by corresponding sensor resolu-

tion (measurement accuracy). Using the Gaussian-like structure of P l,ak , the mathematics

involved can be simplified [28]. In the simulation examples presented later, we illustrate

our model by a 2-D radar measuring range and azimuth as well as an infrared measuring

azimuth and elevation angle. In this case, the range resolution is essentially determined

by the length of the emitted pulse, the angular resolution is limited by the beam width.

Following [28] we assume that the different measurement resolutions are independent of

each other so that Rl,d is diagonal.

As an example, in 2-D radar case, following [28] we assume that the different mea-

surement resolution is statistically independent from each other. The conditional proba-

bility of merged measurement detected from unresolved target P l,ak will depend on their

relative measurement distance zl,dk but the exact (ideal) analytical description will be

very difficult. However, the above algorithm intuitively captures the underlying reality
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as follows: P l,ak will be one as zl,dk → 0 and will remain large for small zl,dk ’s. On the

other hand, for large zl,dk ’s, P l,ak will be zero and the transient region will be narrow.

Hence P l,ak can be modeled as a Gaussian-like function of zl,dk introducing a width to

approximately describe the resolution capability of the sensor. According to the above

discussion we assume [28]

P l,ak = P (A|zl1,dk , zl2,dk ) = exp


−1

2





(
zl1,dk

αl1

)2

+

(
zl2,dk

αl2

)2





 (6.29)

where zli,dk := z
l(i)
k (1)−zl(i)k (2) (i=1,2) is the distance between possibly unresolved targets

in terms of i-th measurement vector (such as range or azimuth in 2-D radar) and αli

(not function of time k) is the corresponding resolution of sensor l. Eqn. (6.29) reflects

the fact that the resolution capability of a sensor does not only depend upon the sensor

features but also on the signal processing applied and the random target fluctuations

[28].

6.4 IMM/JPDAM Coupled Filtering Algorithm

We now modify the IMM/JPDA coupled filtering algorithm of [25] to apply to the

coupled system (6.1)-(6.10); it will be called IMM/JPDAMCF (CF stands for coupled

filter). The approach of [25], in turn, is based on the approaches of [12], [21], and [26].

We confine our attention to the case of 2 sensors. As the IMM/JPDACF algorithm is

well-explained in [25] and [12, Sec. 6.2], and, for the possibly unresolved measurements,

the JPDAM algorithm is well-explained in [12, Sec. 6.4], the MHT algorithm is well-

explained in [28], we will only briefly outline the basic steps in ‘one cycle’ (i.e., processing

needed to update for a new set of measurements) of the IMM/JPDAM coupled filter.
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Assumed available: Given the state estimate x̂Jk−1|k−1 := E{xk−1|MJ
k−1, Z

k−1}, the as-

sociated covariance P Jk−1|k−1, and the conditional mode probability µJk−1 := P [MJ
k−1|Zk−1]

at time k − 1 for each mode J ∈ M̄n :=Mn ×Mn.

Step 1. Interaction - mixing of the estimate from the previous time (∀J ∈

M̄n):

predicted mode probability:

µJ−k := P [MJ
k |Zk−1] =

∑

I

pIJµ
I
k−1. (6.30)

mixing probability:

µI|J := P [M I
k−1|MJ

k , Z
k−1] = pIJµ

I
k−1/µ

J−
k . (6.31)

mixed estimate:

x̂0J
k−1|k−1 := E

{
xk−1|MJ

k , Z
k−1

}
=
∑

I

x̂Ik−1|k−1µ
I|J . (6.32)

covariance of the mixed estimate:

P 0J
k−1|k−1 := E

{
[xk−1 − x̂0J

k−1|k−1][xk−1 − x̂0J
k−1|k−1]′|MJ

k , Z
k−1

}
(6.33)

=
∑

I

{
P Ik−1|k−1 + [x̂Ik−1|k−1 − x̂0J

k−1|k−1][x̂Ik−1|k−1 − x̂0J
k−1|k−1]′

}
µI|J .

Step 2. Predicted state and measurements for sensor 1 (∀J ∈ M̄n):
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state prediction:

x̂Jk|k−1 := E
{
xk|MJ

k , Z
k−1

}
:= F Jk−1x̂

0J
k−1|k−1. (6.34)

state prediction error covariance:

P Jk|k−1 := E
{

[xk − x̂Jk|k−1][xk − x̂Jk|k−1]′|MJ
k , Z

k−1
}

= F Jk−1P
0J
k−1|k−1F

J ′
k−1 +GJk−1Q

J
k−1G

J ′
k−1. (6.35)

For two resolved targets: Using (6.11) and (6.34), the global mode-conditioned pre-

dicted measurement for sensor 1 is

ẑJ,1k := h1(x̂Jk|k−1). (6.36)

Using the linearized (6.16), the covariance of the mode-conditioned residual

ν
J,1(I)
k := z

1(I)
k − ẑJ,1k , where z

1(I)
k := col{z1(i1)

k , z
1(i2)
k } (6.37)

is given by

SJ,1k := E
{
ν
J,1(I)
k ν

J,1(I)′
k |MJ

k , Z
k−1

}
= HJ,1

k P Jk|k−1H
J,1′
k +R1

k (6.38)

Sj1,1k := E
{
ν
j1,1(I)
k ν

j1,1(I)′
k |MJ

k , Z
k−1

}
= Hj1,1

k P Jk|k−1H
j1,1′
k +R1

k (6.39)

Sj2,1k := E
{
ν
j2,1(I)
k ν

j2,1(I)′
k |MJ

k , Z
k−1

}
= Hj2,1

k P Jk|k−1H
j2,1′
k +R1

k. (6.40)
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HJ,1
k := block− diag{Hj1,1

k ,Hj2,1
k } is the first order derivative (Jacobian matrix) of h1(.)

evaluated at the state prediction x̂Jk|k−1.

For unresolved targets: Using (6.19),(6.24), and (6.34), the global mode-conditioned

predicted measurement for sensor 1 is

ẑJ,1,ak := h1,a(x̂Jk|k−1). (6.41)

Introduce a pseudo-measurement (as in [28])

ẑJ,1,dk := h1,d(x̂Jk|k−1). (6.42)

Using the linearization around x̂Jk|k−1, the covariance of the mode-conditioned residual

(ẑJ,1,dk set to zero [28])

νJ,1,ak :=



z1,a
k

0


−



ẑJ,1,ak

ẑJ,1,dk


 (6.43)

is given by

SJ,1,ak := E
{
νJ,1,ak νJ,1,a

′
k |MJ

k , Z
k−1

}

=



HJ,1,a
k

HJ,1,d
k


P Jk|k−1

[
HJ,1,a′
k HJ,1,d′

k

]
+



R1,a
k 0

0 R1,d


 (6.44)

where HJ,1,a
k = [βkHj1,1 (1−βk)Hj2,1] and HJ,1,d

k = [Hj1,1
k −Hj2,1

k ]. In (6.43) the mea-

surement residual νJ,1,ak is the formulation of both, the mean position and the distance of

the targets. Therefore, an assumed resolution conflict results in a fictitious measurement
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of z1,d
k with value 0 and error covariance R1,d [28].

Step 3. Measurement validation for sensor 1 (∀J ∈ M̄n):

There is uncertainty regarding the measurements’ origins. Therefore, first perform

measurement validation for each target r (r ∈ T2) separately. For target r, the validation

region is taken to be the same for all models, i.e., as the largest of them.

For two resolved targets: Let Sjr,1k (r) denote the nz1×nz1 submatrix of SJ,1k including

the rows and columns of the letter numbered as (r−1)nz1 +m,m = 1, 2. That is, Sjr,1k (r)

based on the information relevant to target r only. Let ẑjr,1k (r) denote the nz1 × 1

subcolumn of ẑJ,1k including the rows of the letter numbered as (r− 1)nz1 +m,m = 1, 2.

That is, ẑjr,1k (r) is the mode-conditioned predicted measurement of target r for sensor 1.

Let (|A| = det(A))

j̄r := arg
{

max
jr∈Mn

∣∣∣Sjr,1k (r)
∣∣∣
}
. (6.45)

Then measurement z1(i)
k (i=1,2,· · ·,ml) is validated if and only if

[z1(i)
k − ẑj̄r,1k (r)]′[S j̄r,1k (r)]

−1
[z1(i)
k − ẑj̄r,1k (r)] < γ (6.46)

where γ is an appropriate threshold. The volume of the validation region with the

threshold γ is [12, Sec. 2.3.2]

V 1
k (r) := cnz1γ

nz1/2|S j̄r,1k (r)|1/2. (6.47)

After performing the validation for each target separately, the volume of validation region

for the whole target set is approximated by V 1
k =

∑2
r=1 V

1
k (r).

For unresolved targets: For unresolved targets at time k, SJ,1,ak is a nz1 × nz1 matrix
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and is based on the information relevant to the merged targets. Let ẑJ,1,ak denote the

nz1 × 1 column matrix. That is, ẑJ,1,ak is the mode-conditioned predicted measurement

of the merged targets for sensor 1. Let

J̄a := arg
{

max
j∈Mn

∣∣∣SJ,1,ak

∣∣∣
}
. (6.48)

Then measurement for unresolved targets z1(i)
k (i=1,2,· · ·,ml) is validated if and only if

[z1(i)
k − ẑJ̄a,1,ak ]′[SJ̄a,1,ak ]

−1
[z1(i)
k − ẑJ̄a,1,ak ] < γ (6.49)

where γ is an appropriate threshold. The volume of the validation region with the

threshold γ is

V 1
k (a) := cnz1γ

nz1/2|SJ̄a,1,ak |1/2. (6.50)

After performing the validation for each target separately, the volume of validation region

for the whole target set is V 1
k = V 1

k (a).

Step 4. State estimation with validated measurement from sensor 1 (∀J ∈

M̄n):

From among all the raw measurements from sensor 1 at time k, i.e.,

Z1
k := {z1(1)

k , z
1(2)
k , · · · , z1(m1)

k }, (6.51)

define the set of validated measurement for sensor l at time k as

Y 1
k := {y1(1)

k , y
1(2)
k , · · · , y1(m̄1)

k } (6.52)
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where m̄1 is total number of validated measurement for sensor 1 at time k. And

y
1(i)
k := z

1(li)
k (6.53)

where 1 ≤ l1 < l2 < · · · < lm̄l ≤ m1 when m̄1 6=0. We now consider joint probabilistic

data association across targets with possibly unresolved measurements following [12],[25].

A marginal association event θir is said to be effective at time k when the validated

measurement y1(i)
k is associated with (i.e., originated from) target r (r = 0, 1, 2 where

r = 0 means that the measurement is caused by clutter). Assuming that two targets

can be possibly unresolved and detected as a single target, a joint association event

Θ is effective when a set of marginal events {θir} holds true simultaneously. That is,

Θ =
⋂m̄1
i=1 θiri where ri is the index of the target to which measurement y1(i)

k is associated

in the event under consideration. Define the validation matrix (as in [12])

Ω = [ωir] i = 1, · · · , m̄1, for r = 0, 1, 2 (6.54)

where ωir = 1 if the measurement i lies in the validation gate of target r, else it is zero.

A joint association event Θ is represented by the event matrix

Ω̂(Θ) = [ω̂ir(Θ)] i = 1, · · · , m̄1, for r = 0, 1, 2 (6.55)

where ω̂ir(Θ) = 1 if θir ⊂ Θ, and ω̂ir(Θ) = 0 otherwise. A feasible association event is

one (Σ2
r=0ω̂ir(Θ) = 1) when a measurement originated from only one source (i.e., from

a target or clutter) or two (Σ2
r=0ω̂ir(Θ) = 2) when a measurement originated from two

sources (i.e., from two targets). The detection indicator where at most one measurement
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can be originated from a target

δr(Θ) = Σm̄1
i=1ω̂ir(Θ) ≤ 1 for r = 1, 2. (6.56)

The feasible association joint events Θ are mutually exclusive and exhaustive.

Following the definitions in [12], define the binary measurement association indicator

τi(Θ) = Σ2
r=1ω̂ir(Θ) ≤ 2 for i = 1, · · · , m̄1 (6.57)

to indicate whether the validated measurement y1(i)
k is associated with target(s) in event

Θ. Further, the number of false (unassociated) measurements in event Θ is

φ(Θ) = Σm̄1
i=1[1−min(1, τi(Θ))]. (6.58)

A resolution indicator, ρ(Θ), is defined to be one when τi(Θ) ≤ 1 and zero otherwise.

We will limit our discussion to nonparametric JPDA [12].

The likelihood function for the global mode J can be evaluated as

ΛJ,1k := p
(
Y 1
k |MJ

k , Z
k−1

)
=
∑

Θ

p
(
Y 1
k |Θ,MJ

k , Z
k−1

)
P [Θ|MJ

k , Z
k−1] (6.59)

where the conditioning on m̄1 is implicit in the event Θ. The second term (apriori

joint association probabilities) in the last line of (6.59), when targets are merged, can be

evaluated as [28]

P [Θ|MJ
k , Z

k−1] =
∫
P [Θ|xk,MJ

k , Z
k−1]p(xk|MJ

k , Z
k−1)dxk
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=
∫
D(Θ)P [A|xk]p(xk|MJ

k , Z
k−1)dxk (6.60)

= D(Θ)
∫
P [A|xk]N

(
xk; x̂Jk|k−1, P

J
k|k−1

)
dxk

where

D(Θ) =
φ(Θ)!ε
m̄1!

2∏

r=1

(PD)δr(Θ)(1− PD)1−δr(Θ), (6.61)

PD is the detection probability at sensor 1 (assumed to be the same for all targets) and

ε > 0 is a “diffuse” prior (for nonparametric modeling of clutter) whose exact value is

irrelevant. Define

P J,1,ak =
∫
P (A|xk)N

(
xk; x̂Jk|k−1, P

J
k|k−1

)
dxk (6.62)

=
∣∣∣2πR1,d

∣∣∣
1/2N


0;

[
Hj1,1
k −Hj2,1

k

]
x̂Jk|k−1,

[
Hj1,1
k −Hj2,1

k

]
P J,1k|k−1




Hj1,1′
k

−Hj2,1′
k


+R1,d


 .

The last line of (6.62) can be obtained by substituting (6.34) into the first line of (6.62).

For details, see [28] and Appendix B. Then we have

P [Θ|MJ
k , Z

k−1] =





D(Θ)(1− P J,1,ak ) for resolved target(s)

D(Θ)P J,1,ak for merged targets.

(6.63)

Unlike [26], we do not assume that the states of the targets (including the modes)

conditioned on the past observations are mutually independent. Then we have

p
(
Y 1
k |Θ,MJ

k , Z
k−1

)
= V

−φ(Θ)
1 p

(
Ỹ 1
k (Θ)|MJ

k , Z
k−1

)
(6.64)
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where Ỹ 1
k (Θ) ⊂ Y 1

k is a subset of the validated measurements Y 1
k , consisting of the mea-

surements associated with the targets as specified by Θ. The number of measurements

in Ỹ 1
k (Θ) is equal m̄1 − φ(Θ) where φ(Θ) is the number of false alarms.

Define a m̄1× [m̄1−φ(Θ)] matrix Ω̂(Θ) as a submatrix of Ω̂(Θ) obtained by deleting

the first column and all null columns of Ω̂(Θ). Then for a given Θ, we have a measurement

vector Ỹ 1
k (Θ) of dimension (Σm̄1

i=1min[1, τi(Θ)])nz1 given by

Ỹ 1
k (Θ) = (Inz1 ⊗ Ω̂′(Θ))col{y1(i)

k , i = 1, 2, · · · , m̄1} (6.65)

where we stack up all target-associate validated measurements in Θ in ascending order of

targets, In is the n×n identity matrix, and the symbol ⊗ denotes the Kronecker product.

Define a [(m̄1 − φ(Θ))zz1] × [2nx] matrix HJ,1
k (Θ) as a submatrix of HJ,1

k obtained by

deleting all i-th block rows of HJ,1
k for which δi(Θ) = 0. That is, we have modified HJ,1

k

to keep only the block elements associated with target-associated measurements in Θ.

To further simplify the equation for Ỹ 1
k (Θ), one has to consider all the possible joint

association events Θ. Define a related set of mutually exclusive and exhaustive data

interpretations Ψ as follows (here we follow [28])

• Ψ11: Both targets were resolved and detected (φ(Θ) = m̄1 − 2),

• Ψ10: Both targets were resolved and only target 1 was detected (φ(Θ) = m̄1 −

1, δ1(Θ) = 1, δ2(Θ) = 0),

• Ψ01: Both targets were resolved and only target 2 was detected (φ(Θ) = m̄1 −

1, δ1(Θ) = 0, δ2(Θ) = 1),

157



• Ψ1: Both targets were detected but merged as a single measurement (φ(Θ) =

m̄1 − 1, δ1(Θ) = 1, δ2(Θ) = 1),

• Ψ0: No target was detected (φ(Θ) = m̄1).

It then follows that the linearized measurement equation for Ỹ 1
k (Θ) is given by

Ỹ 1
k (Θ) =





HJ,1
k (Θ)xk + wJ,1k , for Θ ∈ Ψ11

Hj1,1
k (Θ)xk + wj1,1k (1), for Θ ∈ Ψ10

Hj2,1
k (Θ)xk + wj2,1k (2), for Θ ∈ Ψ01



HJ,1,a
k (Θ)

HJ,1,d
k (Θ)


xk +



wJ,1,ak

wJ,1,dk


 , for Θ ∈ Ψ1.

(6.66)

Conditioned on the joint association event Θ and mode J , the “coupled” innovation

is given by

νJ,1k (Θ) =





Ỹ 1
k (Θ)− ẑJ,1k (Θ), for Θ ∈ Ψ11

Ỹ 1
k (Θ)− ẑj1,1k (Θ), for Θ ∈ Ψ10

Ỹ 1
k (Θ)− ẑj2,1k (Θ), for Θ ∈ Ψ01

Ỹ 1
k (Θ)−



ẑJ,1,ak (Θ)

ẑJ,1,dk (Θ)


 , for Θ ∈ Ψ1,

0, for Θ ∈ Ψ0

(6.67)

where ẑJ,1k (Θ) (ẑJ,1,ak (Θ), ẑJ,1,dk (Θ)) are subvector(s) of ẑJ,1k (ẑJ,1,ak , ẑJ,1,dk ) obtained by

deleting all i-th block rows (nz1 × 1) of ẑJ,1k (ẑJ,1,ak , ẑJ,1,dk ) for which δi(Θ) = 0. The

covariance of mode-conditioned residual conditioned on the joint association event Θ is
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given by

SJ,1k (Θ) = HJ,1
k (Θ)P Jk|k−1H

J,1
k

′
(Θ) +RJ,1k , for Θ ∈ Ψ11

Sj1,1k (Θ) = Hj1,1
k (Θ)P j1k|k−1(1)Hj1,1

k

′
(Θ) +Rj1,1k , for Θ ∈ Ψ10

Sj2,1k (Θ) = Hj2,1
k (Θ)P j2k|k−1(2)Hj2,1

k

′
(Θ) +Rj2,1k , for Θ ∈ Ψ01

SJ,1,ak (Θ) =



HJ,1,a
k (Θ)

HJ,1,d
k (Θ)


P Jk|k−1

[
HJ,1,a′
k (Θ) HJ,1,d′

k (Θ)
]

+



RJ,1,ak 0

0 R1,d


 , for Θ ∈ Ψ1,

(6.68)

where P j1k|k−1(1) and P j2k|k−1(2) are diagonal submatrices of P Jk|k−1.

There are a total of (m̄1 + 1) × (m̄1 + 1) possible association hypotheses, each of

which has an association probability. Then we have

p
(
Y 1
k |Θ,MJ

k , Z
k−1

)





V 2−m̄1
1 p(Ỹ 1

k (Θ)|MJ
k , Z

k−1), for Θ ∈ Ψ11

V 1−m̄1
1 p(Ỹ 1

k (Θ)|MJ
k , Z

k−1), for Θ ∈ Ψ10

V 1−m̄1
1 p(Ỹ 1

k (Θ)|MJ
k , Z

k−1), for Θ ∈ Ψ01

V 1−m̄1
1 p(Ỹ 1

k (Θ)|MJ
k , Z

k−1), for Θ ∈ Ψ1

V −m̄1
1 , for Θ ∈ Ψ0

(6.69)
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where the conditional pdf (probability density function) of the validated measurements

Ỹ 1
k (Θ) given their origins (specified by Θ) and the global mode J , is given by

p
(
Ỹ 1
k (Θ)|MJ

k , Z
k−1

)
=





N
(
Ỹ 1
k (Θ); ẑJ,1k (Θ), SJ,1k (Θ)

)
, for Θ ∈ Ψ11

N
(
Ỹ 1
k (Θ); ẑj1,1k (Θ), Sj1,1k (Θ)

)
, for Θ ∈ Ψ10

N
(
Ỹ 1
k (Θ); ẑj2,1k (Θ), Sj2,1k (Θ)

)
, for Θ ∈ Ψ01

N


Ỹ 1

k (Θ);



ẑJ,1,ak (Θ)

ẑJ,1,dk (Θ)


 , S

J,1,a
k (Θ)


 , for Θ ∈ Ψ1

(6.70)

The probability of the joint association event Θ given that global mode J is effective

from time k-1 through k is

βJ,1k (Θ) := P [Θ|MJ
k , Z

k−1, Y 1
k ]

=
1
c
p(Y 1

k |Θ,MJ
k , Z

k−1)P [Θ|MJ
k , Z

k−1] (6.71)

where the first term can be calculated from (6.64)-(6.68), the second term from (6.61)-

(6.63), and c is a normalization constant such that

ΣΘP [Θ|MJ
k , Z

k−1, Y 1
k ] = 1. (6.72)

Using x̂Jk|k−1 (from 6.34) and its covariance P Jk|k−1 (from 6.35), one computes the partial

update x̂Jk|k and its covariance P Jk|k following the standard PDAF [12], except that the

global state is conditioned on Θ, not the marginal events θir; details follow.
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Kalman gain:

W J,1
k (Θ) =





P Jk|k−1H
J,1
k (Θ)′

[
SJ,1k (Θ)

]−1
, for Θ ∈ Ψ11

P j1k|k−1H
j1,1
k (Θ)′

[
Sj1,1k (Θ)

]−1
, for Θ ∈ Ψ10

P j2k|k−1H
j2,1
k (Θ)′

[
Sj2,1k (Θ)

]−1
, for Θ ∈ Ψ01

P Jk|k−1



HJ,1,a
k (Θ)

HJ,1,d
k (Θ)




′
[
SJ,1,ak (Θ)

]−1
, for Θ ∈ Ψ1

(6.73)

Partial update of the state estimate:

x̂J,1k|k(Θ) := E
{
xk|Θ,MJ

k , Z
k−1, Y 1

k

}

=





x̂Jk|k−1 +W J,1
k (Θ)νJ,1k (Θ), for Θ ∈ Ψ11

x̂Jk|k−1 +



W J,1
k (Θ)νJ,1k (Θ)

0nx×1


 , for Θ ∈ Ψ10

x̂Jk|k−1 +




0nx×1

W J,1
k (Θ)νJ,1k (Θ)


 , for Θ ∈ Ψ01

x̂Jk|k−1 +W J,1
k (Θ)νJ,1k (Θ), for Θ ∈ Ψ1

x̂Jk|k−1, for Θ ∈ Ψ0.

(6.74)

Mode-conditioned update of the state estimate:

x̂J,1k|k := E
{
xk|MJ

k , Z
k−1, Y 1

k

}
=
∑

Θ

βJ,1k (Θ)x̂J,1k|k(Θ) (6.75)
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Covariance of x̂J,1k|k(Θ):

P J,1k|k (Θ) =





P Jk|k−1 −W J,1
k (Θ)SJ,1k (Θ)W J,1

k (Θ)′, for Θ ∈ Ψ11

P Jk|k−1 −



W J,1
k (Θ)Sj1,1k (Θ)W J,1

k (Θ)′ 0nx×nx

0nx×nx 0nx×nx


 , for Θ ∈ Ψ10

P Jk|k−1 −




0nx×nx 0nx×nx

0nx×nx W J,1
k (Θ)Sj2,1k (Θ)W J,1

k (Θ)′


 , for Θ ∈ Ψ01

P Jk|k−1 −W J,1
k (Θ)SJ,1,ak (Θ)W J,1

k (Θ)′, for Θ ∈ Ψ1

P Jk|k−1, for Θ ∈ Ψ0.

(6.76)

Covariance of x̂Jk|k: P
J,1
k|k := E

{
(xk − x̂J,1k|k)(xk − x̂J,1k|k)′|Y 1

k , Z
k−1,MJ

k

}

= P Jk|k−1 −
∑

Θ∈Ψ10

βJ,1k (Θ)W J1
k (Θ)SJ1,1

k (Θ)W J1
k (Θ)′ − ∑

Θ∈Ψ01

βJ,1k (Θ)W J2
k (Θ)SJ2,1

k (Θ)W J2
k (Θ)′

− ∑
Θ∈Ψ11,Ψ1

βJ,1k (Θ)W J,1
k (Θ)SJ,1k (Θ)W J,1

k (Θ)′ +
∑

Θ∈Ψ11,Ψ1

βJ,1k (Θ)W J,1
k (Θ)νJ,1k (Θ)νJ,1k (Θ)′W J,1

k (Θ)′

+
∑

Θ∈Ψ10

βJ,1k (Θ)W J1
k (Θ)νJ1,1

k (Θ)νJ1,1
k (Θ)′W J1

k (Θ)′

+
∑

Θ∈Ψ01

βJ,1k (Θ)W J2
k (Θ)νJ2,1

k (Θ)νJ2,1
k (Θ)′W J2

k (Θ)′

−
[
∑

Θ∈Ψ10

βJ,1k (Θ)W J1
k (Θ)νJ1,1

k (Θ)′
] [

∑
Θ∈Ψ10

βJ,1k (Θ)W J1
k (Θ)νJ1,1

k (Θ)′
]′

−
[
∑

Θ∈Ψ01

βJ,1k (Θ)W J2
k (Θ)νJ2,1

k (Θ)′
] [

∑
Θ∈Ψ01

βJ,1k (Θ)W J2
k (Θ)νJ2,1

k (Θ)′
]′

−
[

∑
Θ∈Ψ11,Ψ1

βJ,1k (Θ)W J,1
k (Θ)νJ,1k (Θ)′

] [
∑

Θ∈Ψ11,Ψ1

βJ,1k (Θ)W J,1
k (Θ)νJ,1k (Θ)′

]′

(6.77)
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where

W J1
k (Θ) =



W J,1
k (Θ) 0nx×nzl

0nx×nzl 0nx×nzl


 , W J2

k (Θ) =




0nx×nzl 0nx×nzl

0nx×nzl W
J,1
k (Θ)


 ,

SJ1
k (Θ) =



Sj1k (Θ) 0nzl×nzl

0nzl×nzl 0nzl×nzl


 , SJ2

k (Θ) =




0nzl×nzl 0nzl×nzl

0nzl×nzlS
j2,1
k (Θ)


 ,

νJ1
k (Θ) =



νJ,1k (Θ)

0nzl×1


 , νJ2

k (Θ) =




0nzl×1

νJ,1k (Θ)


 .

(6.78)

Eqn. (6.77) follows in a manner similar to eqn. (3.4.2-10) in [12]. For details, see [12].

Step 5. The mode-conditioned predicted measurements for sensor 2 (∀J ∈

M̄n):

For two resolved targets: The “predicted” measurement for sensor 2 is given by

ẑJ,2k := h2(x̂J,1k|k). (6.79)

The covariance of the global mode-conditioned residual νJ,2(I)
k := z

2(I)
k − ẑJ,2k , where

z
2(I)
k := col{z2(i1)

k , z
2(i2)
k }, is given by

SJ,2k := E{νJ,2(I)
k ν

J,2(I)′
k |MJ

k , Z
k−1, Y 1

k } := HJ,2
k P J,1k|kH

J,2′
k +R2

k. (6.80)

where HJ,2
k := block− diag{Hj1,2

k , Hj2,2
k } is the first order derivative (Jacobian matrix)

of h2(.) evaluated at the state prediction x̂J,1k|k.
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For unresolved targets: The “predicted” measurement for sensor 2 is given by

ẑJ,2,ak := h2,a(x̂J,1k|k). (6.81)

Define

ẑJ,2,dk := h2,d(x̂J,1k|k). (6.82)

Using the linearized (6.19) and (6.24), the covariance of the mode-conditioned residual

νJ,2,ak :=



zJ,2,ak

0


−



ẑJ,2,ak

ẑJ,2,dk


 (6.83)

is given by

SJ,2,ak := E
{
νJ,2,ak νJ,2,a

′
k |MJ

k , Z
k−1, Y 1

k

}

=



HJ,2,a
k

HJ,2,d
k


P

J,1
k|k

[
HJ,2,a′
k HJ,2,d′

k

]
+



R2,a
k 0

0 R2,d


 (6.84)

where HJ,2,a
k = [βkHj1,2 (1 − βk)Hj2,2] (HJ,2,d

k = [Hj1,2 − Hj2,2]) is the first order

derivative (Jacobian matrix) of h2,a(.) (h2,d(.)) evaluated at the state prediction x̂J,1k|k.

Step 6. Measurement validation measurements for sensor 2 (∀J ∈ M̄n):

This is similar to Step 3 where we replace SJ,1k with SJ,2k , z1(i)
k with z

2(i)
k , m1 with

m2, V 1
k (r) with V 2

k (r), and V 1
k with V 2

k . Details are similar to that in Step 3, hence

omitted.

Step 7. Update with validated measurements for sensor 2 (∀J ∈ M̄n):
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This is similar to Step 4. Using the validated measurements obtained from Step 6

and starting from x̂J,1k|k and P J,1k|k , one computes the final updates x̂Jk|k and P Jk|k, and the

likelihood

ΛJ,2k := p
[
Y 2
k , |MJ

k , Z
k−1, Y 1

k

]

=
∑

Θ

p
[
Y 2
k |Θ,MJ

k , Z
k−1, Y 1

k

]
P{Θ|MJ

k , Z
k−1, Y 1

k }. (6.85)

Details are similar to that in Step 4, hence omitted.

Step 8. Update of mode probabilities (∀j ∈Mn, ∀r ∈ T2):

µJk := P [MJ
k |Zk] =

1
c
µJ−k ΛJ,1k ΛJ,2k (6.86)

where c is a normalization constant such that ΣJµ
J
k = 1. For individual targets we have

µj1k (1) := P [M j1
k (1)|Zk] =

n∑

j2=1

µj1,j2k , µj2k (2) =
n∑

j1=1

µj1,j2k (6.87)

with J = (j1, j2) in (6.86).

Step 9. Combination of the mode-conditioned estimates (∀r ∈ T2):

The final global state estimate update at time k is given by

x̂k|k =
∑

J
x̂Jk|kµ

J
k (6.88)

and its covariance is given by

Pk|k =
∑

J

{
P Jk|k +

[
x̂Jk|k − x̂k|k

] [
x̂Jk|k − x̂k|k

]′}
µJk . (6.89)
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The state estimate x̂k|k(r) for target r is the nx-subvector of x̂k|k consisting of elements

(r − 1)nx +m, m = 1, 2.

Remark 1. In the above algorithm we used sequential updating of the state es-

timates with measurements (one sensor at a time - see Steps 4 and 7) as in [21] and

[26]. This approach is suboptimal but leads to computational savings as one does not

have to simultaneously associate measurements across sensors (as in [46], [48], [53]).

In Step 4 we are interested in E{xk|MJ
k , Z

k−1
k , Y 1

k } which is decomposed as in (6.79)

conditioned on Θ’s; Measurements Y 2
k are not considered in this step. If one were to

seek E{xk|MJ
k , Z

k−1
k , Y 1

k , Y
2
k }, then we would have to follow the approach of [46]-[53] by

picking all possible association events across sensors also.

Remark 2. Compared to the uncoupled filtering of [26] where the equations are

formulated conditioned on marginal association events θir, here we have conditioning on

joint association events Θ for couples filtering. Eqn. (6.70) does not decompose into the

product of marginal probabilities as in [26].

Remark 3. Partition the set of all Θs into disjoint sets Θ̄is such that

Θ̄i := {Θ|δr(Θ) = δr(Θ̃) ∀r, Θ̃ ∈ Θ̄i} where i = 1, 2, · · · ,K. For instance, for N=2,

we have K=5 with Θ̄1=all Θs in which there are two validated measurements associ-

ated with two targets, Θ̄2=all Θs in which one validated measurements associated with

target 1 and none with target 2, Θ̄3=all Θs in which one validated measurements associ-

ated with target 2 and none with target 1, Θ̄4=all Θs in which one validated unresolved

measurement associated with two targets, Θ̄5=all Θs in which none of the validated mea-

surements are associated with any target. It is then easily seen that W J,1
k (Θ), HJ,1

k (Θ),

SJ,1k (Θ) and βJ,1k (Θ) in Step 4, all are invariant for Θ ∈ Θ̄i. This fact can be used to

simplify computations in (6.77). Similar comments apply to Step 7.
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Remark 4. If one substitutes (6.65) into (6.66), then one obtains a linear descriptor

system type of equation such as (12) in [23]. Therefore, the standard state-space system

framework used in this dissertation and the linear descriptor system framework used in

[23] are equivalent (except that [23] uses non-switching models whereas we use Markovian

switching models).

6.5 Simulation Example

The following example of tracking two highly maneuvering targets in clutter is pat-

terned after [25].

The True Trajectory : We consider the same scenario as that in [25] except for a lin-

ear shift in the x and y-directions in the trajectory of target 1 to achieve merged target

with a long-term duration. Target 1 starts at location [21689+dx 10840+dy 40] with

dx=-3040m and dy=5500m in Cartesian coordinates in meters. The initial velocity (in

m/s) is [-8.3 -399.9 0] and the target stays at constant altitude with a constant speed of

400 m/s. Its trajectory is:

• a straight line with constant velocity between 0 and 27s,

• a coordinated turn (0.15 rad/s) with constant acceleration of 60 m/s2 between 27

and 42s,

• a straight line with constant velocity between 42 and 47s,

• a coordinated turn (0.1 rad/s) with constant acceleration of 40 m/s2 between 47

and 65s,

• a straight line with constant velocity between 65 and 87s.
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Target 2 starts at location [30000 -3040 40] in Cartesian coordinates in meters. The

initial velocity (in m/s) is [-382 157 0] and the target stays at constant altitude with a

constant speed of 413 m/s. Its trajectory is:

• a straight line with constant velocity between 0 and 44s,

• a coordinated turn (0.075 rad/s) with constant acceleration of 30 m/s2 between 44

and 59s,

• a straight line with constant velocity between 59 and 87s.

The Target Motion Models: These are exactly as in [25]. In each mode the target

dynamics are modelled in Cartesian coordinates as xk(r) = F (r)xk−1(r) + G(r)vk−1(r)

where the state of the target is position, velocity, and acceleration in each of the 3

Cartesian coordinates (x, y, and z). Model 1 for Nearly constant velocity model with

zero mean perturbation in acceleration; Model 2 for Wiener process acceleration (nearly

constant acceleration motion); Model 3 for Wiener process acceleration (model with large

acceleration increments, for the onset and termination of maneuvers). The details re-

garding these models have been described in previous chapters and identical. The initial

model probabilities for two targets are identical: µ1
0 = 0.8, µ2

0 = 0.1 and µ3
0 = 0.1. The

mode switching probability matrix for two targets is also identical and is as in previous

chapters.

The Sensors: Two sensors (we assume collocation, and time synchronization of obser-

vations, etc.) are used to obtain the measurements. The measurements from sensor l for

model j are zlk = hl(xk) + wlk, l = 1, 2, reflecting range and azimuth angle for sensor 1

(radar) and azimuth and elevation angles for sensor 2 (infrared). The range, azimuth, and

elevation angle transformations would be given by r = (x2 + y2 + z2)1/2, a = tan−1[y/x],
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e = tan−1[z/(x2 + y2)1/2], respectively. The measurement noise wlk for sensor l is as-

sumed to be zero-mean white Gaussian with known covariances R1 = diag[qr, qa1] =

diag[400m2, 49mrad2] with qr and qa1 denoting the variances for the radar range and az-

imuth measurement noises, respectively, and R2 = diag[qa2, qe] = diag[4mrad2, 4mrad2]

with qa2 and qe denoting the variances for the infrared sensor azimuth and elevation

measurement noises, respectively. Resolutions of both sensors are selected after from

[28] (twice of the standard deviations for the corresponding sensor measurement noise):

a range resolution of sensor 1 αR = 2×√qr = 40m, a angular resolution of sensor 1 αφ1 =

2×√qa1 = 14× 10−3rad, a angular resolution of sensor 2 αφ2 = 2×√qa2 = 4× 10−3rad

and a elevation angle resolution of sensor 2 αθ = 2 × √qe = 4 × 10−3rad. The noise

for merged measurements wJ,l,ak for sensor l is assumed to be the same with resolved

measurement noise wlk for sensor l. The measurement distance noise wl,dk for sensor l is

assumed to be zero-mean white Gaussian with known covariances R1,d = diag[αR, αφ1 ],

and R2,d = diag[αφ2 , αθ]. To generate the true target trajectories, following (6.28),

given the measurements of the two targets at a given sensor, the targets are unresolved

with the conditional probability P l,ak (6.29) and they are merged into one by the linear

combination model (6.19) with the signal strength ratio βk = 0.5 for all time k. (The

tracking algorithm does not have this knowledge of how P l,ak is used to generate data.)

Both sensors are assumed to be located at the coordinate system origin. The sampling

interval was T=1s and it was assumed that the probability of detection PD=0.997 for

both sensors.

The Clutter : For generating false measurements in simulations, the clutter was as-

sumed to be Poisson distributed with expected number of λ1 = 20 × 10−6/m-mrad for

sensor 1 and λ2 = 2×10−4/mrad2 for sensor 2. These statistics were used for generating
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Figure 6.1: The true trajectories of the maneuvering targets (read left to right, top to
bottom): (a) Position in xy plane, (b) x and y velocities, (c) x and y accelerations, (d)
distance between the targets.

the clutter in all simulations. However, a nonparametric clutter model was used for

implementing all the algorithms for target tracking.

Other Parameters: The gates for setting up the validation regions for both the sensors

were based on the threshold γ=16 corresponding to a gate probability PG=0.9997.

Simulation Results: The results were obtained from 1000 Monte Carlo runs. Fig.

6.1(a)-(d) shows the true trajectory of the two targets and the distance between the two
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Figure 6.2: Performance (RMSE in position) of the proposed IMM/JPDAMCF and
the IMM/JPDACF of [25] based on successful runs (read left to right): (a) proposed
IMM/JPDAMCF, (b) standard IMM/JPDACF [25].
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index proposed IMM/JPDAMCF standard IMM/JPDACF [25]
No. of lost tracks 44/1000 94/1000

No. of swapped tracks 3/1000 4/1000
No. of successful tracks 953/1000 902/1000

Table 6.1: Simulation results summery based on 1000 runs

targets as a function of time. The two targets start out far apart, move close to each

other from 38 to 42 seconds, and then move apart again. Fig. 6.2(a) shows the results

of the proposed IMM/JPDAMCF based on 953 successful runs (target swap occurred

in 3 runs with 44 track failures). Fig. 6.2(b) shows the standard IMM/JPDACF [25]

(the merged target case was not considered) based on 902 successful runs (target swap

occurred in 4 runs with 94 track failures) in terms of the RMSE in position. Table 1

shows the number of successful runs (excluding target swapping) for the two approaches

IMM/JPDAMCF and IMM/JPDACF. It is seen from Table 1 and Figs. 6.1 and 6.2

that the proposed IMM/JPDAMCF is better than the standard IMM/JPDACF [25] in

performance especially in terms of the track estimation accuracy and the loss of tracks.

To assess the computational requirements of the two approaches, we computed the

CPU time needed to execute 87 time steps in each run (averaged 100 Monte Carlo runs ex-

cluding data/clutter generation) in MATLAB 6.5 on a 2.8 GHz (Mobile) Pentium 4 oper-

ating under Windows XP (professional). The standard IMM/JPDACF needs 7.6178 secs

(for all 87 time steps) compared to 14.3848 secs required by proposed IMM/JPDAMCF.

Thus with a 88.8% increase in computational cost, it is seen that the proposed algorithm

can significantly improve the accuracy of track estimation during the periods when tar-

gets are temporarily move in close formation.
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6.6 Conclusions

We investigated on two targets which temporarily move in close formation, giving

rise to a single detection due to the resolution limitations of the sensor. We proposed

a noble IMM/JPDAMCF algorithm for state estimation for two highly maneuvering

targets in clutter. While a past IMM/JPDACF approach [25] applies only to resolved

measurements, our proposed approach has extended the multisensor approach of [25]

to deal with possibly existing merged measurements arrived from sensors to the central

processor.

The proposed algorithm was illustrated via a simulation example and it outper-

formed a standard IMM/JPDACF algorithm [25] which does not consider the possibility

of the data association to the merged measurements, in terms of RMS position error, the

number of track losses, and target swappings. The proposed IMM/JPDAMCF resulted

in a 25% fewer target swappings and a 54% track losses compared with the standard

MM/JPDACF [25]. The improvement in accuracy and track loss comes at the expense

of an increase (88.8%) in the computational cost. This improvement in accuracy is seen

in our simulation example only during the periods when targets are temporarily move

in close formation and gives rise to a single detection due to the resolution limitations

of the sensor.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, we developed several noble algorithms for maneuvering tar-

get tracking in the presence of clutter using multiple sensors. Our main concern was

to investigate solutions to the target tracking problems which require the simultaneous

completion of two tasks: estimation and data association. There are many different

approaches to both estimation and data association and these are generally the distin-

guishing features that give rise to different tracking algorithms.

In Chapter 3, a suboptimal filtering algorithm for tracking a highly maneuvering

target in a cluttered environment using multiple sensors was proposed. We developed

a noble algorithm “simultaneous measurement update using IMMPDA filtering”. The

existing IMM filtering algorithm and PDA technique were combined with simultane-

ous measurement update algorithm in our proposed algorithm. This algorithm provides

significant improvement over an existing IMMPDA filtering algorithm with sequential

sensor processing, because it considers all association hypotheses coupled across multi-

sensor while in the sequential updating considers the separate hypothesis for each sensor.

This improvement in accuracy was remarkable especially during the periods following

the onset of the target maneuvers. The improvement in accuracy comes at the expense

of a slight increase in the computational cost.
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In a multisensor central tracking system, asynchronous (delayed) measurements arise

due to communication network delays, varying preprocessing times at the sensor plat-

forms and possibly lack of sampling time synchronization among sensor platforms. A

state augmented approach was combined with simultaneous measurement update tech-

nique to deal with asynchronous (delayed) measurements problem in Chapter 4. In

this chapter, we investigated “fixed-but-unknown” delay between sensor network and

developed a noble algorithm “simultaneous measurement update using AS-IMMPDA

filtering”. Compared with an existing IMMPDA filtering algorithm with the assump-

tion of synchronous (no delay) measurements sensor processing, the proposed algorithm

achieves considerable improvement (especially in the case of larger delays) in the accu-

racy of track estimation. Using the proposed AS-IMMPDA algorithm, the smoothed

estimate (lag = 1) can be easily obtained from the augmented state estimate and it

shows better performance (in terms of RMS error) than the filtered estimate.

In practice, in a multisensor central target tracking system, one can possibly have

situations where measurements from the same target do not arrive in correct time order.

This OOSM can occur due to communication network delays, varying preprocessing

times at the sensor platforms, and lack of sampling time synchronization among sensor

platforms. In Chapter 5, the AS-IMMPDA algorithm proposed in Chapter 4 is then

extended to deal with “fixed-and-known” delay and possible OOSM between sensor

network. Compared with an existing IMMPDA filtering algorithm without dealing with

possibly existing OOSM (which assumes only “fixed-and-known” delay), the proposed

algorithm achieves considerable improvement in the accuracy of track estimation as the

probability of OOSM arrival increases.

175



In Chapter 6, we considered the problem of tracking multiple maneuvering targets

which temporarily operate in close formation in clutter. When multiple targets are

close, there might be a single detection originating from more than one target, yielding

unresolved (merged) measurements due to a sensor’s inherent resolution limitation. The

existing IMM/JPDA can not handle data association on the merged measurements.

Combining the existing IMM algorithm with JPDAM technique, we presented a noble

IMM/JPDAM algorithm for multisensor tracking of multiple maneuvering targets in

clutter with possibly merged measurements. The algorithm is illustrated via a simulation

example compared with an existing IMM/JPDA filtering algorithm which does not deal

with the merged measurements data association hypotheses. The proposed algorithm

achieved significant improvement in the accuracy of track estimation especially during

target merging period, and caused fewer track losses.

7.2 Suggested Future Work

7.2.1 Unresolved Measurements with Simultaneous Measurement Update

In Chapters 3, it has been shown that the IMMPDA filtering algorithm with simul-

taneous measurement update achieves significant improvement in the accuracy of track

estimation compared with an existing IMMPDA filtering algorithm with sequential sen-

sor processing. As we have presented proposed IMM/JPDAMCF algorithm to deal with

unresolved measurements by sequential updating approach in Chapter 5, we can ap-

ply the extension of our IMM/JPDAMCF algorithm by combining with simultaneous

measurement update algorithm. This integration of existing IMM/JPDAM algorithms
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and simultaneous measurement update algorithms will lead to better performance than

earlier algorithms designed for tracking multiple maneuvering targets.

7.2.2 Track Initialization

Until now we have limited our investigation to track maintenance in this disserta-

tion (i.e., the initial state of each target is assumed to have been already obtained). In

practice, the track formation needs to be done before all the algorithms in this disserta-

tion can be applied. Measurement-to-measurement association is the core requirement

for track formation in the presence of measurement uncertainty. Some existing target

track formation approaches can be found in [12, 33]. MHT has been recognized as the

theoretically best approach to the multitarget tracking problem, yet it requires a con-

siderable amount of computation and memory. Therefore, in the past it was considered

unaffordable because of the high computational requirements. Now interest is renewed

because of the continuous advances in computer technology and algorithm design. Since

MHT approach, unlike IMM/JPDA, is a measurement-oriented approach and considers

the track initialization as well, integration of existing track formation algorithms and

our track maintenance algorithms is a good challenge for future research topics.
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Appendix A

Derivation of the mode-conditioned association event probability Eqn.

(3.46)

To evaluate the mode-conditioned association event probabilities, the conditioning is

broken down into the past data Zk−1 as well as the latest data Y 1
k and Y 2

k . A probabilistic

interference can be made on both the number of measurements in the validation region

(from the clutter density, if known) and on their location. This can be written out as
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where c is a normalization constant such that
∑m1
a=0

∑m2
b=0 β

j,a,b
k = 1. The first term of

the right side of (A.1) is [12, 21]
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, a = 0, b = 1, · · · , m̄2

P−1
G1

[
V 1
k

]−m̄1+1 ×N
[
ν
j,1(a)
k ; 0, Sj,1k

]
, a = 1, · · · , m̄1, b = 0

P−1
G1

[
V 1
k

]−m̄1+1
P−1
G2

[
V 2
k

]−m̄2+1 ×N
[
νj,a,bk ; 0, Sjk

]
, a = 1, · · · , m̄1, b = 1, · · · , m̄2.

(A.2)

As in [12, 21], we have

P [θa,b|M j
k , Z

k−1] = P [θa,b|m̄1 = m̄1, m̄2 = m̄2] (A.3)

where we have conditioning on the total number of validated measurements obtained from

sensor l, m̄l = m̄l; in this notation m̄l is the random variable and m̄l is its realization.

Denoting by φl the number of false measurements, one has

P [θa,b|m̄1 = m̄1, m̄2 = m̄2] = P [θa,b|φ1 = m̄1, φ2 = m̄2]P [φ1 = m̄1, φ2 = m̄2]

+ P [θa,b|φ1 = m̄1, φ2 = m̄2 − 1]P [φ1 = m̄1, φ2 = m̄2 − 1]

+ P [θa,b|φ1 = m̄1 − 1, φ2 = m̄2]P [φ1 = m̄1 − 1, φ2 = m̄2]

+ P [θa,b|φ1 = m̄1 − 1, φ2 = m̄2 − 1]P [φ1 = m̄1 − 1, φ2 = m̄2 − 1]

=





1× P [φ1 = m̄1, φ2 = m̄2] a = 0, b = 0

1
m̄2
× P [φ1 = m̄1, φ2 = m̄2 − 1] a = 0, b = 1, · · · , m̄2

1
m̄1
× P [φ1 = m̄1 − 1, φ2 = m̄2] a = 1, · · · , m̄1, b = 0

1
m̄1m̄2

× P [φ1 = m̄1 − 1, φ2 = m̄2 − 1] a = 1, · · · , m̄1, b = 1, · · · , m̄2

(A.4)
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since φl must be either m̄l − 1 (if the target has been detected from sensor l and its

measurement fell in the validation gate) or m̄l. Using Bayes’ formula one has

P [φ1 = m̄1, φ2 = m̄2|m1 = m̄1,m2 = m̄2] = (1−PD1
PG1)(1−PD1

PG1)µF (m̄1)µF (m̄2)

P{m1=m̄1,m2=m̄2}

P [φ1 = m̄1, φ2 = m̄2 − 1|m1 = m̄1,m2 = m̄2] = (1−PD1
PG1)(PD2

PG2)µF (m̄1)µF (m̄2−1)

P{m1=m̄1,m2=m̄2}

P [φ1 = m̄1 − 1, φ2 = m̄2|m1 = m̄1,m2 = m̄2] = (PD1
PG1)(1−PD2

PG2)µF (m̄1−1)µF (m̄2)

P{m1=m̄1,m2=m̄2}

P [φ1 = m̄1 − 1, φ2 = m̄2 − 1|m1 = m̄1,m2 = m̄2] = (PD1
PG1)(PD2

PG2)µF (m̄1−1)µF (m̄2−1)

P{m1=m̄1,m2=m̄2}

.

(A.5)

where µF (ml) is the probability mass function (pmf) of the number of false measurements

and PDlPGl is the probability that the target has been detected and its measurements

fell in the gate for sensor l. The common denominator in (A.5) is

P [m1 = m̄1,m2 = m̄2] = (1− PD1PG1) (1− PD1PG1)µF (m̄1)µF (m̄2)

+ (1− PD1PG1) (PD2PG2)µF (m̄1)µF (m̄2 − 1)

+ (PD1PG1) (1− PD2PG2)µF (m̄1 − 1)µF (m̄2)

+ (PD1PG1) (PD2PG2)µF (m̄1 − 1)µF (m̄2 − 1). (A.6)

From (A.5) and (A.6) we have

P [θa,b|M j
k , Z

k−1] = P [θa,b|m̄1, m̄2]
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=





(1− PD1PG1) µF (m̄1)
µF (m̄1−1)

[
PD1PG1 + (1− PD1PG1) µF (m̄1)

µF (m̄1−1)

]−1

× (1− PD2PG2) µF (m̄2)
µF (m̄2−1)

[
PD2PG2 + (1− PD2PG2) µF (m̄2)

µF (m̄2−1)

]−1
, a = 0, b = 0

(1− PD1PG1) µF (m̄1)
µF (m̄1−1)

[
PD1PG1 + (1− PD1PG1) µF (m̄1)

µF (m̄1−1)

]−1

× 1
m̄2
PD2PG2

[
PD2PG2 + (1− PD2PG2) µF (m̄2)

µF (m̄2−1)

]−1
, a = 0, b = 1, · · · , m̄2

1
m̄1
PD1PG1

[
PD1PG1 + (1− PD1PG1) µF (m̄1)

µF (m̄1−1)

]−1

× (1− PD2PG2) µF (m̄2)
µF (m̄2−1)

[
PD2PG2 + (1− PD2PG2) µF (m̄2)

µF (m̄2−1)

]−1
, a = 1, · · · , m̄1, b = 0

1
m̄1
PD1PG1

[
PD1PG1 + (1− PD1PG1) µF (m̄1)

µF (m̄1−1)

]−1

× 1
m̄2
PD2PG2

[
PD2PG2 + (1− PD2PG2) µF (m̄2)

µF (m̄2−1)

]−1
, a = 1, · · · , m̄1, b = 1, · · · , m̄2.

(A.7)

Using the (nonparametric) diffuse prior model [12]

µF (m̄l) = µF (m̄l − 1) = δ (A.8)

where δ is irrelevant since it cancels out. Exploiting the diffuse model for clutter, we

obtain Eqn. (3.46).
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Appendix B

Derivation of Eqn. (6.62)

For the coupled state vector xk of a group of two targets defined in (6.2), the

conditional probability of unresolved targets given xk is defined as (6.28)

P (A|xk) = exp
{
−1

2

[
hl(xk(1))− hl(xk(2))

]T
Rl,d

−1
[
hl(xk(1))− hl(xk(2))

]}

=
∣∣∣2πRl,d

∣∣∣
1/2N

(
0;hl,d(xk), Rl,d

)
. (B.1)

From the definition of Eqns. (6.62) and (6.28), P J,1,ak can be expressed as

P J,1,ak =
∫
P (A|xk)N (xk; x̂Jk|k−1, P

J
k|k−1)dxk

=
∫ ∣∣∣2πRl,d

∣∣∣
1/2N

(
0;hl,d(xk), Rl,d

)
N
(
xk; x̂Jk|k−1, P

J
k|k−1

)
dxk. (B.2)

=
1

|2πP k|1/2
∫

exp
{
−1

2

[
(Πxk)

T A−1Πxk + (xk − x̂k)T P−1
k (xk − x̂k)

]}
dxk

where we redefine

x̂k := x̂Jk|k−1, Pk := P Jk|k−1, Π := HJ,1,d
k , A := R1,d. (B.3)

Let

Υ =
[
(Πxk)

T A−1Πxk + (xk − x̂k)T P−1
k (xk − x̂k)

]
. (B.4)

Recall that the trace of an n × n matrix is the sum of its diagonal elements, and, from

the elementary properties of trace (‘tr’ stands for ‘trace’):

1. tr(A) :=
∑n
i=1 aii = tr(A′) where aii is the elements of A
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2. tr(AB) = tr(BA) where A is m× n and B is n×m

3. tr(ABC) = tr(BCA)= tr(CAB) where A, B, and C are n× n

4. xTAx = tr(xTAx) = tr(xTAx), where x is a n× 1 column vector and A is n× n

matrix,

it is clear that Υ is equal to tr(Υ). Thus we can manipulate (B.4) as follows;

Υ = tr
[
(Πxk)

T A−1Πxk + (xk − x̂k)T P−1
k (xk − x̂k)

]
1×1

= tr
[(

ΠTA−1Π + P−1
k

)
xkx

T
k − P−1

k x̂kx
T
k − x̂Tk P−1

k xk + x̂Tk P
−1
k x̂k

]

= tr
[
R−1xkx

T
k −QxTk −QTxk + x̂Tk P

−1
k x̂k

]

= tr
[
xTkR

−1xk −R−1RQxTk − xkQTRR−1 + x̂Tk P
−1
k x̂k

]

= tr
[
xTkR

−1xk −R−1UxTk − xkUTR−1 + UTR−1U − UTR−1U + x̂Tk P
−1
k x̂k

]

=
[
xTkR

−1xk −R−1UxTk − xkUTR−1 + UTR−1U − UTR−1U + x̂Tk P
−1
k x̂k

]

= (xk − U)T R−1 (xk − U) + x̂Tk P
−1
k x̂k − UTR−1U (B.5)

where, for simplicity,

Q := P−1
k x̂k, R :=

(
ΠTA−1Π + P−1

k

)−1
,

U := RQ =
(
ΠTA−1Π + P−1

k

)−1
P−1
k x̂k. (B.6)

Next from (B.3) and (B.5), Eqn. (6.62) can be rewritten as

P J,1,ak =
|2πR|1/2
|2πPk|1/2

exp
{
−1

2

[
x̂Tk P

−1
k x̂k − UTR−1U

]}
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×
∫ 1

|2πR|1/2
exp

{
−1

2
(xk − U)T R−1 (xk − U)

}
dxk. (B.7)

From the second term (integration part) in (B.7), since xk is a Gaussian random vector

with parameters U and R, the integration part of (B.7) turns out to be

∫ 1

|2πR|1/2
exp

{
−1

2
(xk − U)T R−1 (xk − U)

}
dxk = 1. (B.8)

Therefore, now we get

P J,1,ak =
|2πR|1/2
|2πPk|1/2

exp
{
−1

2

[
x̂Tk P

−1
k x̂k − UTR−1U

]}
. (B.9)

Then from (B.6), the exponential part of (B.9) can be obtained as

x̂Tk P
−1
k x̂k − UTR−1U

= x̂Tk P
−1
k x̂k −QTRQ

= x̂Tk P
−1
k x̂k − x̂Tk P−1

k RP−1
k x̂k

= x̂Tk

[
P−1
k − P−1

k

[
ΠTA−1Π + P−1

k

]−1
P−1
k

]
x̂k

= x̂Tk

[
P−1
k − P−1

k

[
Pk − PkΠT

[
ΠPkΠT +A

]−1
ΠPk

]
P−1
k

]
x̂k

= x̂Tk

[
ΠT

[
ΠPkΠT +A

]−1
Π
]
x̂k

= (Πx̂k)
T
[
ΠPkΠT +A

]−1
Πx̂k.

(B.10)

Substituting (Πx̂k)
T
[
ΠPkΠT +A

]−1
Πx̂k for x̂Tk P

−1
k x̂k − UTR−1U (B.10) thus yields
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P J,1,ak =
|R|1/2
|Pk|1/2

exp
{
−1

2
(Πx̂k)

T
[
ΠPkΠT +A

]−1
Πx̂k

}

=
|R|1/2 (2π)nz/2

∣∣∣ΠPkΠT +A
∣∣∣
1/2

|Pk|1/2
N
(
0;Πx̂k,ΠPkΠT +A

)
. (B.11)

Recall the elementary identities of determinants (‘det’ stands for ‘determinant’):

1. det(AB) = det(A)det(B) = det(BA) where A and B are square matrices

2. det(In −AB) = det(Im −BA) where A is n×m and B is m× n.

The determinant operation part of (B.11) can by simplified as (|A| = det(A))

|R|1/2|ΠPkΠT+A|1/2
|Pk|1/2

=
(
det

[(
ΠPkΠT +A

)
RP−1

k

])1/2
. (B.12)

Then we also rewrite (B.12) as

det
[(

ΠPkΠT +A
)
RP−1

k

]

= det
[(

ΠPkΠT +A
)(

Pk − PkΠT
[
ΠPkΠT +A

]−1
ΠP

)
P−1
k

]

= det
[(

ΠPkΠT +A
)(

I − PkΠT
[
ΠPkΠT +A

]−1
Π
)]

= det
(
ΠPkΠT +A

)
det

(
I − PkΠT

[
ΠPkΠT +A

]−1
Π
)

= det
(
ΠPkΠT +A

)
det

(
I −

[
ΠPkΠT +A

]−1
ΠPkΠT

)

= det
(
ΠPkΠT +A−ΠPkΠT

)
= det (A) = |A| .

(B.13)
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From (B.3), (B.11), (B.12), and (B.13), it turns out that

P J,1,ak := (2π)nz/2 |A|1/2N
(
0;Πx̂k,ΠPkΠT +A

)

=
∣∣∣2πR1,d

∣∣∣
1/2N


0;

[
Hj1,1
k −Hj2,1

k

]
xJk|k−1,

[
Hj1,1
k −Hj2,1

k

]
P J,1k|k−1



Hj1,1′
k

Hj2,1′
k


+R1,d


 .

(B.14)
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