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Abstract 
 
 

 Climactic variations and cultural eutrophication alter aquatic ecosystems by promoting 

harmful algal blooms (HABs) that destabilize aquatic food webs and degrade the quality and 

safety of aquacultured fish, recreational waterbodies, and drinking water sources. The goal of my 

dissertation work was to gain a holistic understanding of these complex events by studying 

HABs at multiple scales. At the food web level, many aquatic organisms will have to cope with 

toxic cyanobacteria and thermal stress. I tested the potential energetic trade-offs associated with 

local adaptations to toxic cyanobacteria in the keystone zooplankton grazer, Daphnia pulicaria, 

under multiple stressor conditions. Results from this lab study suggest local adaptations to toxic 

cyanobacteria and elevated temperatures are synergistic, leading to higher survivorship during 

summer HAB events. At the aquaculture production level, I tested whether unoccupied aerial 

systems (i.e., drones) were a viable tool for monitoring the abundance of potentially toxic 

cyanobacteria in small eutrophic systems. Four sensors were used to monitor 54 eutrophic ponds 

that varied in size and trophic state. Results indicate that while drones are well-equipped for 

estimating total phytoplankton abundance, commercial sensors are not equipped to reliably 

monitor cyanobacteria abundance. At the state level, a comprehensive two-year sampling of all 

drinking water utilities in Alabama was used to determine the prevalence of cyanobacteria, 

cyanotoxins, and off-flavor compounds in the state’s surface drinking water sources. Raw water 

samples show that drinking water sources were high in nutrients (i.e., nitrogen and phosphorus), 

but deficient. In cyanobacteria, cyanotoxins, and off-flavor compounds. These results suggest 

that cultural eutrophication does not necessarily lead to HABs, and therefore monitoring 

phytoplankton abundance is a better indicator of the trophic state of these systems than nutrients. 

Finally, to understand algal bloom intensification trends at the national level, a 30 year survey of 
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650 lakes located across 11 freshwater ecoregions was completed to determine if spatial patterns 

were associated with algal bloom intensification. Results indicate that 65% of lakes are not 

significantly increasing or decreasing in algal bloom intensity and algal bloom trends were 

closely related to eutrophication. These findings suggest researchers may be overestimating the 

widespread intensification of algal blooms.   
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Chapter 1 

Local adaptation mediates direct and indirect effects of multiple stressors on consumer fitness 

Abstract  

Anthropogenic impacts are expected to increase the co-occurrence of stressors that can 

fundamentally alter ecosystem structure and function. To cope with stress, many organisms 

locally adapt, but how such adaptations affect the ability of an organism to manage co-occurring 

stressors is not well understood. In aquatic ecosystems, elevated temperatures and harmful algal 

blooms are common co-stressors. To better understand the role and potential trade-offs of local 

adaptations for mitigating the effects of stressors, Daphnia pulicaria genotypes that varied in 

their ability to consume toxic cyanobacteria prey (i.e., three tolerant and three sensitive) were 

exposed to five diets that included combinations of toxic cyanobacteria, Microcystis aeruginosa, 

and green algae, Ankistrodesmus falcatus, under two temperatures (20°C vs. 28°C). A path 

analysis was conducted to understand how local adaptations affect energy allocation to 

intermediate life history traits (i.e., somatic growth, fecundity, survival) that maximize Daphnia 

fitness (i.e., population growth rate). Results from the 10-day study show that tolerant Daphnia 

genotypes had higher fitness than sensitive genotypes regardless of diet or temperature treatment, 

suggesting toxic cyanobacteria tolerance did not cause a decrease in fitness in the absence of 

cyanobacteria or under elevated temperatures. Results from the path analysis demonstrated that 

toxic cyanobacteria had a stronger effect on life history traits than temperature and that 

population growth rate was mainly constrained by reduced fecundity. These findings suggest that 

local adaptations to toxic cyanobacteria and elevated temperatures are synergistic, leading to 

higher survivorship of cyanobacteria-tolerant genotypes during summer cyanobacterial bloom 

events.  
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Introduction 

The ability of a population to manage stressors dictates its fitness, ultimately shaping 

population dynamics, community structure, and ecosystem function. The mechanisms through 

which adaptive traits improve fitness are complex given that the value of adaptive traits may 

vary based on the magnitude and duration of exposure as well as the presence of additional 

stressors that often lead to unpredictable responses. Anthropogenic activities have been shown to 

increase the severity, frequency, and co-occurrence of stressors.  Therefore untangling the 

interactive effects of multiple stressors and the strategies employed by organisms to tolerate 

them is critical for increasing our basic understanding of ecological interactions as well as 

managing ecosystems (Nõges et al. 2016). 

Aquatic ecosystems are particularly sensitive to anthropogenic stressors (Dudgeon et al. 

2007), such as temperature increases, agricultural fertilizer run-off, and water flow disruptions, 

that affect the life history patterns and distribution of aquatic organisms by changing the physical 

(i.e., thermal stratification) and chemical (i.e., nutrient cycling) conditions of aquatic ecosystems 

(Hering et al. 2015). These changes are known to alter food web dynamics by expanding the 

thermal range and promoting the growth of undesirable or detrimental taxa (e.g., toxic or 

invasive species, Strayer 2010). In lentic systems, these anthropogenic impacts often disrupt 

freshwater aquatic food webs by promoting cyanobacteria that thrive in eutrophic systems with 

elevated surface water temperatures, enabling them to outcompete phytoplankton with lower 

temperature optima for growth, such as chlorophytes and diatoms (Jöhnk et al. 2008; Dupuis and 

Hann 2009). Cyanobacterial dominance can disrupt the trophic transfer of energy through 

aquatic food webs, as cyanobacteria lack essential polyunsaturated fatty acids necessary for 

zooplankton grazer growth (Müller-Navarra et al. 2000). Furthermore, many cyanobacteria 
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species mechanically inhibit grazing by aggregating into colonies or by producing toxic 

secondary metabolites that may weaken or kill grazers as well as other phytoplankton (Lampert 

1987; Wilson et al. 2006). The large-bodied cladoceran genus, Daphnia, is a dominant grazer of 

phytoplankton as well as an important prey for planktivorous fishes in lakes (Dodson and 

Hanazato 1995; Ebert 2005). As climate change increases global surface water temperatures, 

Daphnia will have to cope with thermal stress and cyanobacterial blooms more frequently and 

for longer periods (Griffith and Gobler 2020).  

Ectothermic aquatic organisms, such as Daphnia, are particularly sensitive to 

environmental changes. For example, as temperatures rise, metabolic rate increases resulting in 

accelerated maturation, somatic growth, population growth, and higher energy demands (Orcutt 

and Porter 1984; Lampert and Trubetskova 1996; Hietala et al. 1997; Paul et al. 2004; Masclaux 

et al. 2009). Elevated temperatures can have a detrimental effect on Daphnia exposed to sterol-

deficient cyanobacteria, such as Microcystis, with sterol demands positively correlated with 

temperature (Sperfeld and Wacker 2009; Przytulska et al. 2015). The common freshwater 

cyanobacterium, Microcystis, can outcompete nutritious algal species and kill some grazers by 

producing toxic secondary metabolites (i.e., microcystin), mechanically inhibiting grazing by 

aggregating into colonies or producing large filaments, and depriving grazers of unsaturated fatty 

acids necessary for growth (Dupuis and Hann 2009). The effect of temperature on Daphnia 

sensitivity to toxic cyanobacteria appears to be dependent on the intensity and duration of 

thermal stress, Daphnia species and local adaptations, and cyanobacterial species, abundance and 

toxicity (Chislock et al. 2013; Hochmuth and Schamphelaere 2014). For example, Hietala et al. 

(1997) showed that Daphnia pulex fed the nutritious green algae, Scenedesmus obtusiusculus, 

had a higher rate of instantaneous increase (r) when cultured at 24°C than 19°C. Yet, when fed 



14 
 

toxic Microcystis aeruginosa, the same Daphnia had lower r when cultured at 24°C than 19°C. 

Clearly, there are important interactions between temperature and food quality that influence 

zooplankton-phytoplankton interactions.  

However, studies have found the effect of temperature on Daphnia life history patterns 

varies depending on the cyanobacteria in the diet. Claska and Gilbert (1998) showed that higher 

temperature treatments (12°, 14°, 19° and 25°C) reduced the population growth rate, 

survivorship and fecundity of Daphnia pulex when fed two toxic cyanobacterial species, 

Anabaena flos-aquae and A. affinis. This idea was expanded by Hochmuth and Schamphelaere 

(2014) who tested the effect of temperature (15°, 19°, 23°C) on the reproduction of Daphnia 

magna when fed 6 cyanobacterial species. The authors found that higher culture temperatures 

further reduced the reproduction of Daphnia fed Anabaena and Oscillatoria, but decreased the 

harmful effects on reproduction of Daphnia fed Microcystis, Nodularia, and Aphanizomenon. 

Another study focused on Daphnia magna fed high vs. low quality food at different temperatures 

(12°, 15°, 20°, 25°C) and showed that the negative effect of food quality on somatic growth and 

reproduction decreased at higher temperatures (Masclaux et al. 2009).  

Few studies have explored how combined temperature and cyanobacterial stressors affect 

multiple genotypes of the same Daphnia species. Hietala et al. (1997) found intraspecific 

variations in the effect of stressors on life-history traits but did not consider the role of 

adaptations due to previous exposure to cyanobacteria. Recent research has shown that some 

Daphnia clones from eutrophic systems with frequent cyanobacterial blooms can locally adapt to 

toxic cyanobacteria (i.e., cyanobacteria-tolerant genotypes) and ultimately control toxic 

cyanobacteria (Hairston et al. 1999; Sarnelle and Wilson 2005; Chislock et al. 2013, 2019b). In 

contrast, Daphnia clones from oligotrophic systems with limited prior exposure to cyanobacteria 
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(i.e., cyanobacteria-sensitive genotypes) cannot control cyanobacteria in situ (Chislock et al. 

2013). In this study, we asked whether cyanobacterial tolerance in Daphnia comes at a cost 

through higher sensitivity to thermal stress or relatively slower population growth when 

cyanobacteria are rare (Chislock et al. 2013).   

Daphnia adaptations to tolerate toxic cyanobacteria can have significant effects on 

ecosystem-evolutionary dynamics (Chislock et al. 2013, 2019a), yet the mechanisms driving 

these patterns are not well understood. Moreover, it is unclear how temperature stress will affect 

the ability of Daphnia to tolerate cyanobacteria. In this study, we explore how contrasting 

temperatures (20°C and 28°C) affect the fitness of cyanobacteria-sensitive and -tolerant Daphnia 

pulicaria genotypes directly through thermal stress as well as indirectly by promoting 

cyanobacterial dominance. Cyanobacteria-tolerant Daphnia genotypes are expected to optimize 

life history traits, such as survival, fecundity, and somatic growth, to maximize fitness differently 

than cyanobacteria-sensitive Daphnia genotypes when fed diets containing greater 

concentrations of cyanobacteria. To test these hypotheses, empirically generated data were used 

to create a path diagram to track the mechanisms by which temperature and cyanobacteria 

affected life history traits (i.e., survivorship, fecundity, and somatic growth) and, ultimately, 

fitness (i.e., population growth) of cyanobacteria-sensitive and -tolerant Daphnia pulicaria 

genotypes.  

 

Materials and methods 

Daphnia pulicaria genotypes were collected as diapausing (ephippial) eggs from the 

surface sediment of six small glacial lakes in southern Michigan and hatched via light-induced 

hatching in 2017 (Weider et al., 1997). Three of the lakes are oligotrophic with low 
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cyanobacterial abundance, while the additional three lakes are eutrophic and are known to 

experience cyanobacterial blooms (Table A1; Sarnelle and Wilson 2005). Parthenogenetic lines 

were maintained for each Daphnia genotype at room temperature conditions (~24°C) in filtered 

and autoclaved lake water and fed Ankistrodesmus falcatus ad libitum for at least 30 generations 

to minimize maternal effects. Juvenile survivorship assays were then conducted to confirm the 

sensitivity of each genotype to toxic cyanobacteria, as described by Sarnelle and Wilson (2005) 

(Table A1).  

Daphnia culture medium was prepared by filtering water from an oligotrophic lake (Lake 

Martin, Alabama) through a 1.2 µm glass microfiber filter followed by a 0.45 µm cellulose 

nitrate membrane filter and then sterilized in an autoclave. The nutritious chlorophyte, 

Ankistrodesmus falcatus (unicellular, mean cell dimensions 2.5 µm x 45 µm), and toxic 

cyanobacterium, Microcystis aeruginosa (UTEX 2667, uni- or bicellular, mean cell diameter 4 

µm), were maintained in a nutrient-rich medium (modified BG-11, Vanderploeg et al., 2001) as 

semi-continuous cultures at 25°C with a 8 hr light : 16 hr dark conditions in an incubator. 

Microcystin content of the diets containing Microcystis aeruginosa was determined via enzyme-

linked immunosorbent assay (ELISA, An and Carmichael, 1994) after extraction in 75% 

aqueous, acidified methanol followed by removing the solvent and resuspending the extract in 5 

ml of phosphate buffer (Wilson et al. 2008). 

Prior to the experiment, neonates from each genotype were placed in individual vials 

filled with Daphnia culture medium and fed Ankistrodesmus ad libitum until maturity. Neonates 

(<24 hrs) from mature females were then pooled by genotype and placed in Daphnia culture 

medium without food for 5 hours to purge their guts. To determine Daphnia neonate lengths at 

the beginning of the experiment (Lt0), a random subset from each genotype was placed onto a 
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water droplet on a slide and measured with a compound light microscope. Two neonates from 

each tolerant or sensitive genotype (6 neonates total/jar) were added to 500 ml jars of the 

corresponding diet mixture equivalent to 1 mg carbon per liter (Kilham et al. 1997). Diets were 

prepared by centrifuging cultures of exponentially growing cells, discarding the supernatant, and 

then re-suspending the cells in Daphnia culture medium. Food concentrations were determined 

by counting 10 fields of two replicate 0.18 ml subsamples of each culture using a Palmer-

Maloney chamber. Diet treatments included a 100% Ankistrodesmus (highest quality diet), 75% 

Ankistrodesmus + 25% Microcystis, 50% Ankistrodesmus + 50% Microcystis, and 25% 

Ankistrodesmus + 75% Microcystis (lowest quality diet) treatments.  A starvation treatment of 

only Daphnia culture medium was included to determine if the effect of toxic cyanobacteria was 

greater than the effect of starvation. The jars were then sealed and placed in incubators set to 

either 20°C or 28°C in an 8 hr light: 16 hr dark cycle. Jars were inverted to resuspend algae and 

randomly reorganized daily to minimize variation in light exposure across jars.  

Daphnia survivorship and number of neonates were recorded daily. Daphnia were 

transferred to new jars with fresh diet mixtures every 72 hours for 10 days. After each 72 hr 

span, the number of females carrying eggs and number of eggs per female was determined and 

neonates were counted, measured, and discarded. Three Daphnia from each jar were placed onto 

a water droplet on a slide and measured with a compound light microscope to determine length 

(Ltx). Daphnia length measurements were used to estimate juvenile somatic growth rate (length, 

µm/day) based on the formula: (lnLtx – lnLt0)/time, where Lt0 and Ltx are animal lengths at day 0 

and day x, respectively.  

Daphnia percent survival was calculated using the formula: (At10 / At0)*100, where At0 

and At10 are the number of live Daphnia females at day 0 and day 10, respectively. The time 
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needed to kill 50% of the Daphnia (LT50) under multiple stressor combinations was calculated 

using the open-source ecotox R package based on probit analysis (Hlina 2019). Daphnia 

fecundity was estimated by calculating the total number of neonates produced per female by 

dividing the number of neonates produced in each jar by the number of live females and then 

summing these values for each day across the entire experiment.  

The intrinsic rate of population increase (r) was calculated for each jar using the Euler 

equation: 1 = � e−𝑟𝑟x l(x)m(x)10
𝑥𝑥=0 , where r is the rate of population growth per day, x is the age 

class (day; 0 to 10), l(x) is the probability of surviving to age x, and m(x) is the number of 

neonates produced per Daphnia per jar on day x. For jars with no reproduction, r was determined 

from changes in Daphnia abundance over time based on the formula: r = [ln densityt+1 – ln 

densityt]/ time (Allan 1976; Wilson and Hay 2007). 

Statistical differences among treatment effects were analyzed using analysis of variance 

(ANOVA). One-way, two-way, and three-way ANOVAs were calculated to assess the 

importance of interactions of temperature, diet, and Daphnia genotypes. Extra sum of squares F-

tests were calculated to determine whether models that included interactions were a significant 

improvement in fit to the data. Differences among treatments were determined via Tukey's HSD 

post-hoc test. All statistical analyses were performed with the open-source software RStudio 

version 4.0.2 (RStudio Team 2015). A path model was used to determine how sensitive and 

tolerant Daphnia genotypes differed in how they allocated resources across three life history 

traits (i.e., percent survival, fecundity, and somatic growth) to maximize fitness (i.e., population 

growth). The path model includes causal arrows from the two experimental treatments to the 

three life history traits that mediate population growth. The indirect effect of the treatments on 

fitness through each intermediate life history trait was determined by calculating the product of 
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path coefficients from a treatment through an intermediate life history trait to fitness. The total 

effect of each experimental variable was determined by adding the direct and indirect effects of 

the variable on fitness. A structural equation model (SEM) was generated using the sem R 

package (Fox et al. 2017) to test the causal structure of the path model. Diets were ranked for the 

model from most nutritious to least nutritious (100% Ankistrodesmus and 0% Microcystis = 0, 

75% Ankistrodesmus and 25% Microcystis = 25, 50% Ankistrodesmus and 50% Microcystis =50, 

25% Ankistrodesmus and 75% Microcystis = 75).  To evaluate the fit of the data for the models, 

Goodness of Fit Tests were conducted and showed that the models are a good fit to the data 

(sensitive p = 0.27 and tolerant p = 0.44). The two treatments and three intermediate life history 

traits included in the path models explained 91.4% and 93.5% of the observed patterns in 

population growth of sensitive and tolerant Daphnia genotypes, respectively. The AIC of the 

sensitive (41.2) and tolerant (40.6) models were relatively high, but all parameters had to be 

included in the model to understand the effect of all measured parameters on population growth. 

 

Results 

The combined effects of toxic cyanobacteria and elevated temperature on cyanobacteria-

tolerant and cyanobacteria-sensitive Daphnia genotypes were measured as Daphnia survival 

(percent survival and LT50), juvenile somatic growth rate, fecundity (total number of neonates 

produced per Daphnia female), and population growth (intrinsic rate of population increase (r)).  

Both cyanobacteria-sensitive and -tolerant Daphnia had significantly lower (p <0.05) population 

growth when fed diets containing no food (starvation) or ≥50% Microcystis compared to the high 

quality 100% Ankistrodesmus diet at 28°C (Figure 1.1). Sensitive genotypes had significantly 

lower (p <0.05) population growth when starved or fed any diet containing Microcystis relative 
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to 100% Ankistrodesmus at 28°C, which suggests cyanobacteria, even at low concentrations, had 

a detrimental impact on the population growth of sensitive genotypes at elevated temperatures. 

Tolerant Daphnia genotypes had similar growth rates (p >0.05) when exposed to 25% 

Microcystis and 100% Ankistrodesmus diets under both temperature treatments, which suggests 

tolerant genotypes can tolerate low cyanobacterial densities even under elevated temperature 

conditions. Cyanobacteria-sensitive genotypes exhibited significantly higher population growth 

at 28°C than 20°C (p <0.0001) when fed 100% Ankistrodesmus diets. Elevated temperatures also 

accelerated the population growth of tolerant Daphnia genotypes fed 100% Ankistrodesmus and 

25% Microcystis, though these effects were not significant (p >0.05). There was a significant 

interaction between temperature and diet as well as Daphnia genotype and diet, which suggests 

the effect of diet on population growth was dependent on both temperature and Daphnia 

genotype (p ≤0.0003, Table 1.1). 

The effect of temperature on the survival of both genotypes was dependent on diet (Table 

B1). Both genotypes had higher LT50 when fed 100% Ankistrodesmus under elevated 

temperatures (28°C), but LT50 decreased as cyanobacterial density increased (Figure B1). The 

effect of diet on survival was weaker at 20°C, and tolerant genotypes had lower LT50 when fed 

100% Ankistrodesmus than diets containing cyanobacteria or starved diets. There was a 

significant effect of cyanobacteria on survival, and it appears the effect of temperature on 

Daphnia survival is dependent on the presence of cyanobacteria, based on the significant 

interaction between these two variables (p =0.01, Table B1).  

The juvenile somatic growth rate of both sensitive and tolerant genotypes decreased as 

cyanobacterial abundance in diets increased under both temperature conditions (Figure C1). 

Tolerant Daphnia neonates grew significantly faster than sensitive genotypes when fed 25% 
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Microcystis at 28°C (p <0.001). There was a significant interaction between temperature and diet 

as well as Daphnia genotype and diet, which suggests the effect of diet on somatic growth was 

dependent on temperature and local adaptations to cyanobacteria (p ≤0.05, Table C1). There are 

no data for the somatic growth of sensitive Daphnia genotype females fed 50% and 75% 

Microcystis at 28°C because all adult females died prior to day 7.  

Fecundity was the main driver of population growth of both genotypes. Both Daphnia 

genotypes had higher fecundity at 28°C than 20°C when fed 100% Ankistrodesmus and 25% 

Microcystis diets, though these patterns were not statistically significant (p >0.05, Figure D1). 

Neither sensitive nor tolerant Daphnia genotypes reproduced under starvation treatments. 

Tolerant Daphnia genotypes cultured at 20°C were unique in their ability to produce offspring 

when fed high cyanobacteria diets (50-75% Microcystis). Tolerant Daphnia genotypes also 

produced more offspring than sensitive genotypes (p <0.0001) when fed 25% Microcystis diets at 

28°C. There was a significant interaction between temperature and diet as well as Daphnia 

genotype and diet, which suggests that the effect of diet on fecundity was dependent on 

temperature and Daphnia genotype (p ≤0.002, Table D1).  

Local adaptations allow organisms to allocate resources among life history traits to 

maximize fitness. A path diagram was generated to better understand how local adaptations of 

Daphnia pulicaria to toxic cyanobacteria affected their allocation of resources to somatic 

growth, reproduction, and survival to maximize population growth when exposed to various 

temperatures and cyanobacterial diets. The path diagram suggests that a reduction in fecundity 

due to exposure to cyanobacteria was the main determinant of population growth of both 

cyanobacteria-sensitive and -tolerant genotypes (Figure 1.2). Interestingly, temperature had a 

significant effect on the survivorship (0.55, p = 0.003) of cyanobacteria-sensitive Daphnia 



22 
 

genotypes but did not significantly affect the intermediate life history traits of tolerant genotypes 

(Table 1.2). The significant direct effects of temperature (0.19, p = 0.003) on tolerant Daphnia 

population growth suggests these treatments affected population growth through a life history 

trait or behavioral modification not measured in this study. Although cyanobacterial diets 

significantly affected the somatic growth rate of cyanobacteria-sensitive (-0.43, p =0.03) and -

tolerant genotypes (-0.68, p <0.0001), there was no direct effect of somatic growth on the 

population growth rate of either genotype. This suggests that although cyanobacterial diets 

decrease the somatic growth rate of Daphnia, it did not cause a significant decrease in overall 

fitness.  

 

Discussion  

Daphnia pulicaria genotypes collected from eutrophic lakes are known to locally adapt to 

tolerate, and potentially control, toxic cyanobacteria that are common in these systems (Chislock 

et al. 2013, 2019b). Cyanobacteria-tolerant Daphnia genotypes maintained positive population 

growth and fecundity when exposed to low concentrations of toxic cyanobacteria (25% 

Microcystis) under both temperature conditions (20° and 28°C), whereas cyanobacteria-sensitive 

Daphnia genotypes were negatively affected regardless of cyanobacterial concentration in the 

diet (25-75% Microcystis) or temperature treatment. In fact, tolerant genotypes performed as 

well or better than sensitive Daphnia genotypes under the various temperature and diet 

combinations for all life history traits recorded. These results suggest tolerance to cyanobacteria 

did not come at a cost of lower fitness when Daphnia were exposed to elevated temperatures. 

Cyanobacterial blooms are well documented climate change co-stressors, therefore 

cyanobacterial and thermal tolerance are likely coupled due to simultaneous exposure in nature 
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(Griffith and Gobler 2020). However, trade-offs have been recorded by others. For example, 

Schaffner et al. (2019) documented the change in Daphnia mendotae clonal diversity throughout 

a growing season, culminating in a summer cyanobacterial bloom, and found a drastic decrease 

in clonal diversity as cyanobacteria increased in dominance. The authors then isolated 

cyanobacteria-sensitive and -tolerant D. mendotae clones and found tolerant clones had lower 

juvenile growth rate than sensitive clones when fed spring diets (i.e., mixture of diatoms, 

cryptophytes and chlorophytes) when compared to summer diets (i.e., mixture of cyanobacteria 

and chlorophytes), which suggests there was an unidentified cost of cyanobacterial tolerance. 

Although results from the present study suggest that local adaptations to toxic cyanobacteria do 

not lead to a decrease in fitness when exposed to elevated temperatures (i.e., energetic trade-off), 

findings by Schaffner et al. (2019) suggest cyanobacterial tolerance may decrease Daphnia 

fitness when exposed to other environmental parameters not considered in this study.  

Although Daphnia tolerance to toxic cyanobacteria has been well-documented through 

space and time (Hairston et al. 1999; Sarnelle and Wilson 2005), how adaptations allow Daphnia 

to prioritize life history traits to maximize fitness is not well understood. A path analysis was 

generated to quantify how cyanobacteria-sensitive and -tolerant Daphnia genotypes allocate 

finite resources between life history traits to maximize fitness. Path analysis results show toxic 

cyanobacteria had a stronger effect than temperature on the fitness of both Daphnia genotype 

groups, mainly by decreasing fecundity (Table 1.2). Toxic cyanobacterial abundance was also 

the main driver of survivorship, fecundity, and somatic growth of both sensitive and tolerant 

Daphnia, except for survivorship of sensitive Daphnia which was controlled by temperature 

(Figure 1.2). Fecundity was the life history trait most sensitive to exposure to toxic 
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cyanobacteria, likely because the sterol content of cyanobacteria does not meet the high energetic 

demands of reproduction.  

While cyanobacteria had a clear negative impact on Daphnia fitness, the effect of 

temperature was dependent on diet. In fact, elevated temperatures (28°C) either significantly 

increased or had no significant effect on the life history traits, and ultimately fitness, of 

cyanobacteria-sensitive and -tolerant Daphnia fed the nutritious green algae, Ankistrodesmus 

falcatus. Temperature increases the metabolic rate of ectothermic organisms, such as Daphnia, 

which accelerates somatic growth, maturation times and increases fecundity as long as sufficient 

nutritious food is available and temperatures do not exceed the thermal optimum of an organism 

(Orcutt and Porter 1984; Korpelainen 1986; Hietala et al. 1997). However, elevated temperatures 

further decreased the population growth of Daphnia genotypes fed diets that included the sterol-

deficient and toxic cyanobacteria, Microcystis aeruginosa, though these differences were not 

statistically significant (Figure 1.1). Minimal effects of temperature on Daphnia physiology may 

indicate that the 28°C treatment was not sufficient to induce thermal stress. Interactive effects 

between temperature and diet have been recorded in other Daphnia studies (Hietala et al. 1997; 

Hochmuth and Schamphelaere 2014), as well as other ectothermic organisms, such as copepods 

(Malzahn et al. 2016), fish (Vagner et al. 2015), mollusks (Wacker and von Elert 2003) and 

insects (Clissold and Simpson 2015).   

Juvenile somatic growth rate is frequently used as a predictor of population growth (r) of 

Daphnia fed high quality diets (Lampert and Trubetskova 1996). While somatic growth was 

significantly affected by cyanobacteria for both Daphnia genotypes, it did not significantly affect 

population growth rate (Figure 1.2). Somatic growth rate was significantly correlated with the 

fecundity and survival of tolerant genotypes, but not overall fitness. Fecundity is directly 
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correlated to body size of Daphnia (Lampert 1993), which suggests the fecundity of tolerant 

Daphnia was controlled by somatic growth rate. Fecundity and somatic growth were not closely 

related in sensitive genotypes, likely due to low reproduction (Figure D1). The negligible direct 

effect of somatic growth on r suggest somatic growth rate may not be a reliable predictor of 

population growth rate when Daphnia are exposed to multiple stressors, including cyanobacteria 

in their diet. Lampert and Trubetskova (1996) found that juvenile growth rates were a reliable 

index of fitness, as long as Daphnia had sufficient quantities of high-quality food. When 

Daphnia were exposed to temperature stress, or when comparing Daphnia of different strains 

and adaptations, somatic growth was less of a reliable estimate of fitness. 
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Conclusions 

Climate change is expected to negatively affect aquatic environments directly through 

changes in temperature and precipitation patterns, as well as indirectly by promoting the growth 

of sterol-deficient and toxic cyanobacteria (O’Neil et al. 2012). This study shows that under the 

culture conditions tested, Daphnia pulicaria adaptations to toxic cyanobacteria lead to higher 

population growth rate in the presence of toxic cyanobacteria as well as elevated temperatures. 

Future studies should consider climate change stressors across multiple trophic levels by taking 

into account effects on predator feeding rates (Beisner et al. 1996), chemical signaling (Larsson 

and Dodson 1993), and susceptibility to parasites (Manzi et al. 2020). Additionally, exploring 

additional indirect effect of elevated temperature on Daphnia fitness, such as hypolimnetic 

oxygen depletion, as well as additional stressors associated with climate change, such as 

acidification, will be important for understanding the value of adaptive traits.  
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Table 1.1. Analysis of variance results for population growth (r, day-1) over 10 days of 

cyanobacteria-sensitive and cyanobacteria-tolerant Daphnia pulicaria genotypes exposed to two 

temperatures (20°C and 28°C) and five diet treatments (Ankistrodesmus only (0% Microcystis), 

75% Ankistrodesmus and 25% Microcystis (25% Microcystis), 50% Ankistrodesmus and 50% 

Microcystis (50% Microcystis), and 25% Ankistrodesmus and 75% Microcystis (75% 

Microcystis), and a starvation treatment (starved)). Extra sum of squares F-test results determine 

whether two- and three-way ANOVAs are a significant improvement in fit to the data compared 

to one-way ANOVA. df = degrees of freedom; MS= means square error. 

Test  Source df MS F-ratio p-value 
One-way  Temperature 1 0.0014 0.18 0.67 
ANOVA Genotype 1 0.1511 20.36 <0.0001 
 Cyanobacteria 4 0.2081 28.04 <0.0001 
 Error 73 0.0074   
      
Two-way  Temperature 1 0.0014 0.35 0.55 
ANOVA Genotype 1 0.1511 39.31 <0.0001 
 Cyanobacteria 4 0.2081 54.14 <0.0001 
 Temperature x Genotype 1 0.0005 0.13 0.72 
 Temperature x Cyanobacteria 4 0.0502 13.07 <0.0001 
 Cyanobacteria x Genotype 4 0.0236 6.14 0.0003 
 Error 64 0.0038   
  F-Test p-value: <0.0001 
   
Three-way Temperature 1 0.0014 0.36 0.55 
ANOVA Genotype 1 0.1511 40.93 <0.0001 
 Cyanobacteria 4 0.2081 56.37 <0.0001 
 Temperature x Genotype 1 0.0005 0.13 0.72 
 Temperature x Cyanobacteria 4 0.0502 13.61 <0.0001 
 Cyanobacteria x Genotype 4 0.0236 6.39 0.0002 
 Genotype x Temperature x Cyanobacteria 4 0.0061 1.66 0.17 
  Error 60 0.0037   
  F-Test test p-value: 0.17 
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Table 1.2. Effect of temperature and cyanobacterial diets on the population growth (r) of 

cyanobacteria-sensitive and cyanobacteria-dominant Daphnia pulicaria genotypes. Path 

coefficients are listed for the direct effects of each causal variable. Indirect effects are the 

products of the direct effect of the two treatments and the path coefficients for the intermediate 

life history trait variables, including percent survival, fecundity and somatic growth. Total effects 

are the sum of direct and indirect effects.  

Causal variable Direct 
effect 

Indirect effect 
via survivorship 

Indirect effect 
via fecundity 

Indirect effect via 
somatic growth 

Total 
effect 

Sensitive genotypes     

Temperature 0.12 0.03 0.23 0.01 0.39 
Cyanobacteria 0.02 -0.02 -0.61 -0.01 -0.62 
Survivorship 0.05    0.05 
Fecundity 0.89    0.89 
Somatic Growth 0.02    0.02 
 
Tolerant genotypes 

    

Temperature 0.19 0.11 -0.01 0.01 0.30 
Cyanobacteria 0.09 -0.05 -0.57 -0.10 -0.63 
Survivorship 0.39    0.41 
Fecundity 0.70    0.83 
Somatic Growth 0.14    0.09 

Bolded values: p-value <0.05 
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Figure 1.1. Average population growth rates (r, day-1) of cyanobacteria-sensitive and 

cyanobacteria-tolerant Daphnia pulicaria genotypes cultured over 10 days at (a) 20°C and (b) 

28°C. Diet treatments include Ankistrodesmus only (0% Microcystis), 75% Ankistrodesmus and 

25% Microcystis (25% Microcystis), 50% Ankistrodesmus and 50% Microcystis (50% 

Microcystis), 25% Ankistrodesmus and 75% Microcystis (75% Microcystis), and a starvation 

treatment (starved). Unique letters represent statistically different observations (p <0.05) across 

both genotypes and temperature treatments. Error bars= ± SE. Sample size per treatment = 4. 
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Figure 1.2. Path model of direct and indirect effects of temperature and cyanobacteria on the 

population growth (r) of (a) cyanobacteria-sensitive and (b) cyanobacteria-tolerant Daphnia 

pulicaria genotypes. Solid arrows represent significant paths (p <0.05), and the arrow thickness 

represents effect strength.  Double-sided arrows represent correlations between the three 

intermediate life history traits: survivorship, fecundity, and somatic growth. Looped arrows 

represent the variance terms of each variable.   
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Chapter 2 

Commercially available unoccupied aerial systems for monitoring harmful algal blooms: 

a comparative study 

Abstract 

Reliable remote sensing platforms and methods for monitoring phytoplankton are needed for 

mitigating the detrimental impacts of cyanobacterial harmful algal blooms (CyanoHABs) on small 

inland waterbodies. Commercial unoccupied aerial systems (UAS) present an affordable high-

resolution solution for rapid assessment of cyanobacterial abundance in small (<30 m) aquatic 

systems by recording the reflectance of photosynthetic pigments found in all phytoplankton (i.e., 

chlorophyll-a) and those unique to cyanobacteria (i.e., phycocyanin). This study evaluates the 

performance of four sensors, including visible light spectra (RGB) sensors on the Phantom 4 and 

Phantom 4 Professional platforms, the MAPIR Survey3W modified multispectral (near-infrared, 

green, blue) sensor, and the Parrott Sequoia multispectral (green, red, near-infrared, red-edge) 

sensor for estimating cyanobacterial abundance. Each sensor’s performance was determined by 

comparing 26 vegetation indices to chlorophyll-a and phycocyanin measurements of 54 ponds that 

varied in productivity. Vegetation indices that included the red and near-infrared wavelengths 

generated from Parrot Sequoia aerial images provided the best chlorophyll-a (i.e., NDVI, r2 = 0.78, 

p <0.0001) and phycocyanin (i.e., EVI2, r2 = 0.57, p <0.0001) estimates. The RGB sensors were 

moderately effective for estimating chlorophyll-a, whereas the MAPIR Survey3W generated poor 

estimates of both pigments due to differences in recorded wavelengths.  
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Introduction 

Harmful algal blooms dominated by cyanobacteria (CyanoHABs) threaten freshwater 

ecosystems worldwide (Huisman et al. 2018). Cyanobacteria are photosynthetic prokaryotes able 

to outcompete other phytoplankton species, such as green algae and diatoms, when surface water 

temperatures exceed 25°C and anthropogenic eutrophication increases nutrient availability (i.e., 

nitrogen and phosphorus, Downing et al. 2001; O’Neil et al. 2012). Cyanobacteria impair 

freshwater systems through the production of toxins (i.e., cyanotoxins) linked to illness and fatality 

in livestock, pets, and humans (Merel et al. 2013). Some cyanobacteria can also produce off-flavor 

compounds (i.e., geosmin and 2-methylisoborneol) that impart a musty scent and flavor on 

drinking water and farm-raised fish, leading to significant economic losses to aquaculture and 

drinking water industries (Tucker and Schrader 2020). CyanoHABs are traditionally monitored 

via cell counts or by measuring the concentration of photosynthetic pigments found in all 

phytoplankton (i.e., chlorophyll-a) relative to accessory pigments unique to cyanobacteria (i.e., 

phycocyanin). Reliable tools that can rapidly and accurately quantify the abundance of 

ecologically important phytoplankton (i.e., green algae and diatoms) relative to toxin-producing 

cyanobacteria in drinking water sources, aquaculture farms, and recreational water bodies are 

necessary for implementing monitoring, response, and forecasting tools for mitigating the 

ecologic, economic and health impacts of CyanoHABs. 

Bloom-forming cyanobacterial taxa often accumulate near the surface, forming patchy surface 

scums that can amass downwind or mix throughout the water column due to wind and wave action 

(Walsby et al. 1997). Traditional water sampling is often not sufficient for the quantitative 

monitoring of spatially and temporally heterogeneous CyanoHABs (Kutser 2004). In situ water 

sampling programs typically collect samples from a limited number of fixed locations and depths 
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and rarely consider the effect of wind on the horizontal and vertical distribution of cyanobacteria. 

Moreover, collecting representative surface samples from research vessels can be challenging as 

vessels often disrupt algal assemblages leading to inaccurate estimates (Kutser 2004). The turn-

around time and cost of traditional laboratory methods, such as microscopic cell counts and 

pigment measurement techniques (i.e., fluorescence or high-performance liquid chromatography), 

can also restrict the application of in situ sampling for monitoring and predicting CyanoHABs 

(Merel et al. 2013). Satellite remote sensing platforms can surpass many of these challenges, as 

satellites can regularly monitor large spatial ranges for prolonged periods.  

Satellite data have been useful for recording long-term and seasonal bloom dynamics and 

understanding how external factors, such as surface water temperature, meteorological events, and 

anthropogenic nutrient loading drive CyanoHAB occurrence (Wynne et al. 2010; Shi et al. 2017). 

Several satellites generate reliable data for monitoring the spatial and temporal distribution of algal 

blooms, including satellites from the Landsat series, Moderate Resolution Imaging 

Spectroradiometer (MODIS) Aqua and Terra, MEdium Resolution Imaging Spectrometer 

(MERIS), Sentinel 2-A/B, and Hyperion (Brivio et al. 2001; Kutser 2004; Kutser et al. 2006; 

Yacobi et al. 2011; Shi et al. 2017; Drozd et al. 2020). Yet, low spatial and temporal resolution, 

atmospheric correction challenges, cloud cover, slow image turn-around times, and cost of some 

satellite products can limit the application of satellite remote sensors for monitoring CyanoHABs 

in small inland systems (Lomax et al. 2005). For example, MERIS is a multispectral sensor used 

to detect and measure cyanobacteria when present at high densities (Kutser et al. 2006; Wynne et 

al. 2010). However, the spatial resolution of 300 m and revisit times of two days limit its 

application for smaller waterbodies. The hyperspectral imager in space, Hyperion, collects data 

from 196 spectral bands in the 400-2500 nm region. Although Hyperion data have been useful for 
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monitoring water quality parameters, such as chlorophyll-a and chromophoric dissolved organic 

matter (Brando and Dekker 2003), its 30 m spatial resolution is not sufficient for studying inland 

CyanoHABs, particularly in the presence of patchy surface scum (Kutser 2004). Therefore, 

satellite data are not reliable for monitoring small inland systems (<30 m) such as ponds, lakes, 

and rivers, especially if cyanobacteria are present. 

Unoccupied aerial systems (UASs), remotely-piloted remote sensing platforms (i.e., drones), 

show great potential for bridging the gap between in situ water sampling and satellite remote 

sensing. UASs collect high-resolution aerial data with minimal atmospheric disturbance from 

cloud coverage, allow flexible flight planning with rapid turn-around times, and are available in a 

variety of wavelength combinations (Kislik et al. 2018). Commercially available UAS sensors are 

classified as visible wavelength (RGB), modified or multiband multispectral, thermal, or 

hyperspectral. Multispectral sensors record wavelengths that fall within and outside the visible 

light spectrum (i.e., RGB and near-infrared, respectively) and are classified as multiband or 

modified. Multiband multispectral sensors collect data for 4-6 bands, and each band typically has 

a dedicated sensor. While more expensive, multiband sensors generate high-resolution results, and 

many are designed to measure the photosynthetic activity of terrestrial crops. For example, the 

Parrot Sequoia multiband multispectral sensor records green, red, red-edge, and near-infrared 

bands, which can be used to calculate the Normalized Difference Vegetation Index (NDVI) and is 

marketed for measuring crop health. Sensors that measure the red-edge (735 nm) region of high 

reflectance between the red and near-infrared wavelengths can be as effective at estimating the 

chlorophyll concentration of crops as hyperspectral sensors (Lu et al. 2019). However, the value 

of the red-edge wavelength for monitoring CyanoHABs can be dependent on the trophic status of 

the waterbody (Cillero Castro et al. 2020). Modified multispectral sensors are a low-cost 
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alternative to multiband multispectral sensors. One such example is the MAPIR Survey3W near-

infrared, green, blue (NGB), which is an RGB sensor with a filter that sacrifices the red wavelength 

to record the near-infrared wavelength. Although modified multispectral sensors typically have 

lower resolutions than multiband multispectral sensors, they have been used to estimate 

cyanobacterial buoyant packed cell volume (Van der Merwe and Price 2015). Lastly, many UASs, 

such as the DJI Phantom series, are equipped with an integrated RGB sensor that provides a cost-

effective alternative to multispectral sensors. RGB sensors can detect algal cover and biomass in 

coastal systems (Xu et al. 2018; Cheng et al. 2020), but further research is needed before these 

sensors can reliably estimate cyanobacterial abundance. 

Monitoring CyanoHABs with UAS has been hindered by the lack of standardized methods 

for aerial image collection, validation techniques, and universal algorithms for processing UAS 

data (Kislik et al. 2018). Additionally, there is no consensus on which sensor type or vegetation 

index works best for estimating chlorophyll-a, and few have been used to estimate phycocyanin 

concentration. Chlorophyll-a, present in all phytoplankton, including green algae and 

cyanobacteria, absorbs red and blue wavelengths at approximately 430 and 662 nm, respectively, 

and reflects green and near-infrared wavelengths at approximately 500 and 700-1300 nm, 

respectively (Figure 2.1). Cyanobacterial accessory pigments such as phycocyanin (absorbance at 

620 nm) allow cyanobacteria to absorb light at a broader spectrum and protects them from solar 

radiation (Oliver et al. 2012). The absorbance and reflection characteristics of chlorophyll-a and 

phycocyanin can be magnified by calculating band ratio algorithms (i.e., vegetation indices) that 

emphasize the spectral characteristics of photosynthetic pigments, water, and soil leading to better 

estimates than single band measurements (Xue and Su 2017). The goal of this study is to determine 

whether commercially available UAS sensors are adequate for estimating algal and cyanobacterial 
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abundance in small (<30 m) eutrophic waterbodies. To determine which sensor and vegetation 

index combination is best for monitoring chlorophyll-a and phycocyanin, aerial images collected 

by four sensors that vary in measured wavelengths, bandwidths, resolution, and price were used to 

calculate 26 vegetation indices. The four sensors chosen are commonly used for agricultural 

research and include two visible RGB sensors (DJI Phantom 4 and Phantom 4 Pro), one modified 

multispectral sensor (MAPIR Survey3W), and a multiband multispectral sensor (Parrot Sequoia). 

Vegetation index values were compared to in situ chlorophyll-a and phycocyanin measurements, 

to determine which sensor and vegetation index combination should be considered for monitoring 

CyanoHABs in small aquatic systems. 

 

Materials and methods  

Study area and field survey methods 

Aerial images were collected over several research, aquaculture, and recreational ponds from 

September 2019 to July 2020 (Table 2.1). UAS flights 1, 2 and 3 were collected at a commercial 

aquaculture facility in Alabama, USA (32.396, -87.367; Figure 2.2). Flight 1 surveyed 7 ponds, 

flight 2 surveyed 8 ponds, and flight 3 surveyed 5 ponds. UAS flights 4, 5, 6, and 7 were conducted 

at the E.W. Shell Fisheries Center of Auburn University in Auburn, Alabama, USA (32.662, -

85.496), which is a 1,600-acre research facility equipped with over 300 man-made experimental 

aquaculture ponds ranging in size, depth, and productivity (Figure 2.3). Flight 4 surveyed 5 ponds, 

flight 5 surveyed 16 ponds, flight 6 surveyed 1 pond, and flight 7 surveyed 19 ponds. Research 

and commercial aquaculture ponds frequently experience high cyanobacterial abundance due to 

long residence times and high nutrient inputs in the form of fish feed. Flights 8, 9 and 10 were 

conducted over the man-made aesthetic pond at the Jule Collins Smith Museum of Fine Art at 
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Auburn University (32.588, -85.484), which frequently experiences dense cyanobacterial blooms 

(Figure 2.4).   

Aerial images were collected on clear days when the solar altitude was less than 43˚ to avoid 

sun glint effects (Ortega-Terol et al. 2017). Flights were fully automated based on specified flight 

plans on the free mobile device application Pix4Dcapture (Pix4D SA, Lausanne, Switzerland). 

Details for each flight are found in Table 2.1. Ground control targets were positioned around the 

survey area prior to flights as horizontal ground control points (GCP). Geographic coordinates 

were collected for each GCP target and water sample collection site using a Trimble Geo7x 

Handheld GNSS System (Trimble Inc., California, USA). Geographical point data was then post-

processed with the Global Navigation Satellite System (GNSS) post-processing program Trimble 

GPS Pathfinder Office (Trimble Inc., California, USA) to improve geospatial accuracy during 

aerial image processing.  

UAS description 

Due to the weight of the modified and multiband multispectral sensors, two separate 

UAVs were used (Table 2.2). Flights were conducted immediately one after the other to 

minimize sun angle variation between flights.  

The Survey3W NGB modified 3-band multispectral sensor (MAPIR, Inc., California, USA) 

was mounted on a DJI Phantom 4 quadcopter (SZ DJI Technology Co., Shenzhen, China). The 

Survey3W NGB is a Sony Exmor R IMX117 12MP (Bayer RGB) camera that sacrifices the red 

band to measure the near-infrared wavelength (Figure 2.5). The Survey3W was programmed to 

capture aerial images at a 0.5 second interval at a 90˚ angle and collect both RAW data (GPS 

location, 12bit per channel) and JPEG images (8bit per channel). The Survey3W was equipped 

with a Survey3 Advanced GPS Receiver (20.6 g) that generates a geolocation stamp for each JPEG 
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image captured. The Survey3W was mounted on the Phantom 4 quadcopter using a plastic tilting 

camera mount in a way that did not obstruct the Phantom 4’s RGB camera. Visual light spectrum 

reflectance data were collected with the Phantom 4’s integrated visual spectrum 12.4M RGB 

camera (Figure 2.5). The Phantom 4 was equipped with a GPS/GLONASS integrated system that 

GPS tags the images with latitude, longitude, and altitude information (Table 2.2). 

The Parrot Sequoia 4.0 multiband multispectral sensor was mounted on a DJI Phantom 4 Pro 

quadcopter (SZ DJI Technology Co., Shenzhen, China). The Parrot Sequoia multispectral sensor 

is equipped with green, red, red-edge and near-infrared sensors, an RGB sensor and an integrated 

GPS and light sensor (Figure 2.5). Images were captured at a 1.5 second interval at a 90˚ angle. 

The Parrot Sequoia was mounted on the Phantom 4 Pro using a plastic mount that did not block 

the field of view of the UAV’s integrated RGB camera. Visual light spectrum images were 

collected at a 90˚ angle with the Phantom 4 Pro’s integrated 20M RGB camera, and latitude, 

longitude, and altitude information were collected with the UAV’s GPS/GLONASS (Table 2.2). 

Image processing 

Prior to photogrammetric processing, Survey3W NGB JPEG images were combined with 

GPS-tagged RAW images using the MAPIR Camera Control software to create a TIFF file with 

all metadata included (MAPIR CAMERA 2020). Georeferenced Survey3W NGB images were 

then calibrated based on images of the MAPIR Calibration Target V2 collected immediately before 

UAS flights. 

The Pix4Dmapper software (Pix4D SA, Lausanne, Switzerland) was utilized for 

photogrammetric processing of the images from each sensor. A camera profile had to be added to 

Pix4Dmapper based on manufacturer specifications for the Survey3W NGB sensor. The 

Survey3W NGB, Phantom 4 RGB, and Phantom 4 Pro RGB cameras capture images by scanning 
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the scene rapidly (i.e., rolling shutter), which often causes aerial image distortion or warping. To 

correct for rolling shutter effects, the rolling shutter correction setting was enabled for these 

sensors on the Pix4Dmapper software. The Parrot Sequoia multispectral sensor employs a global 

shutter, which captures the entire frame simultaneously, therefore the rolling shutter correction 

was not necessary. GCP GPS data collected prior to flights were used to georeference images to 

improve spatial accuracy. Reflectance values for the Parrot Sequoia multispectral sensor were 

radiometrically calibrated based on images of the Parrot Sequoia radiometric calibration target 

collected immediately before UAS flights. Point cloud densification, digital surface models 

(DSM), orthomosaics, and reflection map generation for all the sensors were processed on 

Pix4Dmapper and exported to ArcGIS Pro for spectral calculations. GPS data collected at the time 

of water sample collection was used to determine the sampling point on the aerial image (seen as 

black dots on Figures 2.2-2.5), and vegetation index values was collected for that area for 

correlation analysis (see Data analysis section for details). 

Post-processing was successful for most UAS flights, with the exception of flights 2 and 3. 

During these flights, incoming storms generated wind gusts that destabilized the aircraft causing 

it to tilt and shift from the pre-specified flight plan leading to image tie point generation failure in 

some areas and causing gaps in the final orthomosaic (Figure 2.2). 

Vegetation indices 

The 26 vegetation indices (i.e., band ratio algorithms) calculated in this study are specified 

in Table 2.3. Vegetation index calculations were performed on ArcGIS Pro using the Raster 

Calculator Tool.  

Water sample collection and analysis 
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Water samples were collected using a rigid tube sampler. Integrated sample collection depth 

was based on transparency measured as Secchi depth (cm) using a Secchi disk. Multiple water 

samples were collected and processed from several areas within larger ponds to account for spatial 

heterogeneity due to wind and aquaculture aerators pushing buoyant cyanobacteria to a localized 

section of the pond. Physical water parameters, such as temperature, conductivity and pH, were 

recorded using a handheld YSI ProDSS handheld multiparameter water quality meter (Xylem Inc., 

Ohio, USA). A known volume of well-mixed samples was filtered through Pall A/E filters and 

stored frozen in the dark for later algal pigment extraction. Chlorophyll-a samples were measured 

to estimate algal abundance using a Turner Designs Trilogy fluorometer with non-acidification 

chlorophyll module after a 24 hour extraction in 90% aqueous ethanol in the dark at 4˚C (Sartory 

and Grobbelaar 1984). Phycocyanin concentrations were measured to estimate cyanobacterial 

abundance using a Turner Designs Trilogy fluorometer with an orange module after grinding, 

extracting each filter in a 50 mM phosphate buffer in darkness for 4 hours, centrifuging, and 

filtering (<0.2 µm) each sample (Kasinak et al. 2015).  

Data analysis 

Chlorophyll-a and phycocyanin data were log-transformed prior to statistical analysis to 

normalize the data. Pearson correlations where then calculated between the two pigments 

(chlorophyll-a and phycocyanin) and the vegetation index values generated from each sensor using 

the stats package in the open source statistical software RStudio (RStudio Inc., MA, USA). 

 

Results and Discussion 

UASs provide a low-cost, high spatial and temporal resolution alternative for monitoring 

CyanoHABs in waterbodies too small to monitor via satellite remote sensing (<30 m). The ability 
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of four sensors that vary in measured wavelengths, resolution, and price for estimating 

phytoplankton abundance was determined by calculating 26 vegetation indices and comparing 

them to in situ chlorophyll-a and phycocyanin concentrations. The four sensors varied greatly in 

their ability to estimate algal and cyanobacterial abundance.  

Seventy water samples were collected from 54 ponds that varied widely in their appearance, 

with some clear ponds and others containing suspended sediments, suspended algae, and thick 

cyanobacterial scum. The inclusion of clear and high sediment ponds was essential to ensure the 

sensors and vegetation indices were effective in a variety of systems, not just productive ponds. 

All ponds had sediment substrates with limited benthic macrophyte cover, therefore noise caused 

by macrophyte chlorophyll-a was not considered in this study. Primary productivity varied among 

the ponds sampled. Chlorophyll-a concentrations ranged from 3 to 3,090 µg/L (average 293.49 

µg/L) and phycocyanin concentrations ranged from 0 to 17,210 µg/L (average 943.5 µg/L). High 

chlorophyll-a and phycocyanin concentrations are common in eutrophic and hypereutrophic 

systems, and some samples included a thick Microcystis sp. scum that was very dense, resulting 

in the extremely high pigment concentrations measured. Large ponds, such as the aesthetic pond 

sampled in flights 8-10 (Figure 2.4), that contained surface scum were sampled from areas with 

and without scum to account for spatial variation within the pond. Samples from the same pond 

were treated individually, therefore each sample represented a unique vegetation index value 

within the dataset. Water samples were collected based on water transparency (measured as Secchi 

depth) to ensure the chlorophyll-a and phycocyanin samples represented the water column layer 

visible from aerial images.  

The four sensors and vegetation indices varied greatly in their ability to estimate chlorophyll-

a and phycocyanin concentrations (Tables 2.4 and 2.5). RGB sensors on commercial UASs 
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provide a cost-effective tool for monitoring photosynthetic activity. Despite differences in 

resolution, the 12.4 M Phantom 4 and 20 M Phantom 4 Pro RGB sensors generated similar 

vegetation index values for both chlorophyll-a and phycocyanin. Of the 12 vegetation indices 

calculated from the two RGB sensors, the Color Index of Vegetation Extraction (CIVE) generated 

the best estimates of chlorophyll-a concentration for the aerial images collected from the Phantom 

4 (r2 = 0.30, p <0.0001) and Phantom 4 Pro (r2 = 0.34, p <0.0001; Table 2.4). CIVE was originally 

developed to differentiate between vegetation and soil to estimate crop growth without the need to 

measure near-infrared wavelengths (Kataoka et al. 2003), and it is not typically included in UAS 

aquatic ecosystem monitoring studies. Both RGB sensors were more sensitive to chlorophyll-a 

than phycocyanin. The Green–Red Ratio Index (GRRI) and Visible Atmospherically Resistant 

Index (VARIgreen) vegetation indices were the best predictors of phycocyanin concentration 

(Table 2.5), though these correlations may be an artifact of chlorophyll-a content within 

cyanobacterial cells, as GRRI was also closely related to chlorophyll-a. Several studies have 

utilized RGB UAS sensors for mapping coastal floating green tides (Xu et al. 2017), attached green 

algae (Xu et al. 2018), benthic cyanobacterial mats (Bollard-Breen et al. 2015), and nuisance 

filamentous green algae (Flynn and Chapra 2014). For example, Xu et al. (2018) calculated the 

Normalized Green-Blue Difference Index (NGBDI), Normalized Green-Red Difference Index 

(NGRDI), Visible Band Difference Vegetation Index (VDVI), and Excess Green Index (EXG) 

indices from RGB UAS imagery to identify green algae growing on rafts, and found that NGRDI 

generated the most accurate results. These findings are consistent with our results, as of the four 

vegetation indices tested by Xu et al. (2018), NGRDI was closely related to both chlorophyll-a 

and phycocyanin. RGB UASs are primarily used for qualitative rather than quantitative assessment 

of CyanoHABs, but the low-cost and ease of use of RGB sensors warrants further research.  



43 
 

Vegetation index values generated from the modified multispectral MAPIR Survey3W NGB 

sensor indicate that it is not reliable for quantifying cyanobacterial abundance in the eutrophic 

aquatic systems monitored in this study. Of the five vegetation indices calculated, the Enhanced 

Normalized Difference Vegetation Index (ENDVI) was the best predictor of both chlorophyll-a (r2 

= 0.03, p = 0.14; Table 2.4) and phycocyanin (r2 = 0.15, p = 0.002; Table 2.5). ENDVI was 

designed to inflate the chlorophyll-a reflection values by combining reflectance from near-infrared 

and green wavelengths (MaxMax 2015). Blue Normalized Vegetation Index (BNDVI) values 

generated from modified multispectral NGB sensors have been used for monitoring cyanobacterial 

buoyant packed cell volume (Van der Merwe and Price 2015). BNDVI was not significantly 

correlated with chlorophyll-a or phycocyanin in our study, potentially due to the high 

cyanobacterial densities in our systems, as BNDVI can become saturated and less reliable as 

buoyant packed cell volume increases. 

Aerial images collected with the Parrot Sequoia multiband multispectral sensor generated the 

best estimates of chlorophyll-a and phycocyanin of the four sensors. Of the 15 vegetation indices 

calculated from multiband multispectral aerial images, Difference Vegetation Index (DVI), 2-

Band Enhanced Vegetation Index (EVI2), Normalized Difference Vegetation Index (NDVI), and 

Normalized Difference Vegetation Structure Index (NDVSI) were highly correlated to 

chlorophyll-a concentration (Table 2.4). NDVI was originally developed for monitoring terrestrial 

vegetation using satellite remote sensors (Rouse et al. 1974). While satellite NDVI values are often 

distorted by atmospheric disturbances and cloud cover, UAS images are collected at a lower 

altitude which decreases atmospheric effects (Choo et al. 2018). Currently, NDVI is one of the 

most measured vegetation indices for precision agriculture, and it provided the best estimate of 

chlorophyll-a (r2 =0.78, p <0.0001) of all the sensor and vegetation index combinations in this 
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study. Multiband multispectral aerial images also generated the best estimates of cyanobacterial 

abundance, with the Green Chlorophyll Index (CiGreen), Green Normalized Difference 

Vegetation Index (GNDVI), and NDVSI vegetation indices generating the best phycocyanin 

estimates of all four sensors and vegetation index combinations (Table 2.5). The red-edge 

wavelength is included in many multispectral sensors because it significantly improves crop health 

estimates (Lu et al. 2019). However, of the 15 vegetation indices generated from the multiband 

multispectral sensor, vegetation indices that included the red-edge wavelength, such as the 

Normalized Difference Red-Edge Index (NDRE) and Modified Simple Ratio Red-Edge (MSRre), 

generated the least reliable estimates of chlorophyll-a and phycocyanin. 

Many multiband multispectral sensors are specifically designed to record peak reflectance and 

absorbance characteristics of terrestrial chlorophyll-a. Vegetation indices that included the red and 

near-infrared wavelengths provided the best chlorophyll-a and phycocyanin estimates, as near-

infrared wavelengths are reflected at a higher degree than green wavelengths.  Studies that utilized 

UASs and satellites for monitoring water quality in reservoirs also found that vegetation indices 

that include the red and near-infrared wavelengths, such as the Ratio Vegetation Index (RVI) and 

NDVI, performed the best for estimating chlorophyll-a (Beck et al. 2016; Cillero Castro et al. 

2020). However, measuring the near-infrared wavelength did not necessarily generate more 

reliable results, as seen with the modified multispectral Survey3W NGB sensor. The Cigreen and 

GNDVI vegetation indices were both calculated from modified and multiband multispectral sensor 

aerial images, yet they vary greatly in their relationship to both chlorophyll-a and phycocyanin 

(Tables 2.4 and 2.5). Differences between the sensors could be attributed to the differences in 

wavelengths and bandwidths, as well as resolution (Figure 2.5 and Table 2.2). The Survey3W 

NGB records near-infrared data at the 850 nm range at a bandwidth of 30 nm, whereas the Parrot 
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Sequoia records near-infrared at the 790 nm range at a bandwidth of 40 nm (Figure 2.1). A study 

conducted by Lu, He and Dao (2019) compared the ability of wavelengths recorded by three-band 

modified multispectral, multiband multispectral, and hyperspectral sensors for estimating 

terrestrial crop cover and found wavelengths recorded by modified multispectral sensors generate 

low accuracy imagery that should be restricted to mapping rather than quantification (Lu et al. 

2019). Such discrepancies were not found between vegetation index values generated from the two 

RGB sensors and the multiband multispectral sensors (i.e., GRRI, NGRDI, and RGRI; Tables 2.4 

and 2.5). This suggests that the improved resolution of the multispectral sensor was not as 

important as the addition of the near-infrared band for estimating photosynthetic pigments.  

Many of the vegetation indices designed for estimating algal abundance from satellite remote 

sensors, including the Floating Algae Index (FAI) generated from MODIS wavelengths (Hu 2009) 

and the Cyanobacterial Index (CI) generated from MERIS wavelengths (Wynne et al. 2010), 

require sensors that measure wavelengths most commercial drones are not equipped to record. 

Some vegetation indices such as KIVU, generated from Landsat 5 images, utilize visible 

wavelength data for determining chlorophyll-a in inland aquatic ecosystems (Brivio et al. 2001). 

However, KIVU was a poor measure of chlorophyll-a in our highly productive ponds (Table 2.4), 

likely because KIVU was generated from systems with relatively low chlorophyll-a concentrations 

(Brivio et al. 2001). There are currently no commercially available UAS sensors designed 

specifically for aquatic ecosystem monitoring, as most sensors and vegetation indices are designed 

for detecting terrestrial vegetation. The sensors included in this study were more sensitive to 

chlorophyll-a concentrations than phycocyanin, likely because phycocyanin absorbs light at 620 

nm which is not measured by most commercially available sensors. Results from this study suggest 

multiband multispectral sensors can be utilized for estimating algal and cyanobacterial abundance, 
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but further research should be conducted to determine whether these tools can reliably differentiate 

between chlorophyll-a and phycocyanin. Although remote sensing imagery cannot estimate 

cyanotoxins (i.e., microcystin and cylindrospermopsin) or off-flavor compounds (i.e., geosmin and 

MIB), photosynthetic pigment estimates based on UAS images could be instrumental for early 

detection and management of CyanoHABs.   
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Conclusions 

Traditional water sampling techniques provide a snapshot of cyanobacterial abundance, 

ecosystem conditions, and the presence of cyanotoxins but do not illustrate how the system 

changes spatially or temporally. Algorithms created for satellite remote sensing data are capable 

of monitoring cyanobacterial abundance in large water bodies, but the spatial resolution is not fine 

enough for measuring smaller systems (Kutser 2004). UASs are a cost-effective, rapid, and 

customizable tool for predicting and monitoring cyanobacterial abundance at smaller scales (<30 

m). This study compared the performance of four UAS sensors that vary in recorded wavelengths, 

resolution, and price for estimating phytoplankton (measured as chlorophyll-a) and cyanobacterial 

(measured as phycocyanin) abundance in small eutrophic systems. Twenty-six vegetation indices 

were calculated based on the recorded wavelengths of each sensor, to determine the best band ratio 

algorithm for estimating cyanobacterial pigments. Results from this study show that RGB and 

multiband multispectral sensors are viable tools for estimating chlorophyll-a content in small 

eutrophic aquatic systems, with the multiband multispectral sensor generating the best estimates 

of both pigments. The RGB and multiband multispectral sensors were less sensitive to 

phycocyanin concentrations, likely due to the unique spectral absorbance of phycocyanin at 620 

nm which is not commonly monitored by commercial sensors. The 3-band modified multispectral 

sensor was not effective for monitoring either photosynthetic pigment, regardless of calculated 

vegetation index. Future research should be conducted to determine whether vegetation index 

estimates are equally robust in other small waterbodies such as rivers, streams, and lakes.   
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Table 2.1. Unoccupied aerial system (UAS) flight details for this study. GSD – ground sampling distance, Lat – latitude, Long – 

longitude. 

Flight 
ID Figure Date Location Lat Long 

Flight 
Altitude (m) 

GSD 
(cm/px) 

Image % 
Overlap 

Flight 
Dimensions (m) 

Water 
Samples 

1 2.2a 11/20/19 Aquaculture 
Facility 32.390 -87.349 75 3.28 75 485 x 469 10 

2 2.2b 04/14/20 Aquaculture 
Facility 32.413 -87.375 75 2.05 75 924 x 942 8 

3 2.2c 04/14/20 Aquaculture 
Facility 32.396 -87.367 75 3.28 75 358 x 816 6 

4 2.3a 09/03/19 Research 
Facility 32.662 -85.496 50 1.36 80 161 x 305 5 

5 2.3b 02/21/20 Research 
Facility 32.662 -85.496 50 2.23 75 114 x 196 16 

6 2.3d 06/18/20 Research 
Facility 32.654 -85.488 30 1.31 75 63 x 102 1 

7 2.3c 07/17/20 Research 
Facility 32.662 -85.496 50 2.19 75 166 x 297 19 

8 2.4a 03/18/20 Aesthetic 
Pond 32.588 -85.484 50 2.19 75 147 x 195 2 

9 2.4b 05/31/20 Aesthetic 
Pond 32.588 -85.484 50 2.19 75 147 x 195 1 

10 2.4c 07/10/20 Aesthetic 
Pond 32.588 -85.484 75 2.19 75 147 x 195 2 
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Table 2.2. Description of the two unoccupied aerial systems (UAS) utilized in this study. Each 

UAS was made up of the unoccupied aerial vehicle (UAV), its integrated visible wavelength 

red, green, blue (RGB) camera, and onboard multispectral sensors. 

 Modified Multispectral UAS Multiband Multispectral UAS 
UAV Model DJI Phantom 4 DJI Phantom 4 Pro 
Type Quadcopter Quadcopter 
Vertical Position Accuracy ±0.5 m ±0.5 m 
Horizontal Position Accuracy ±1.5 m ±1.5 m 
Max Flight Time ~28 minutes ~30 minutes 
Max Speed 20 m/S 45 m/S 
Estimated Payload Capacity ~462 g ~462 g 
Diagonal Length 350 mm 350 mm 
Weight With Batteries 1380 g 1388 g 
Retail Value $1,500 $1,500 
   
RGB Camera  DJI Phantom 4 RGB DJI Phantom 4 Pro RGB 
FOV 94° 20 Mm 84° 8.8 Mm/24 Mm 
Image Size 4000 x 3000 5472 x 3648 
Spatial Resolution 3.4 cm/pixel 80 m altitude 2.6 cm/pixel 80 m altitude 
Effective Pixels 12.4 M 20 M 
Focal Length 20 mm 24 mm 
   
Onboard Sensor  MAPIR Survey3W Parrot Sequoia 
HFOV 87° 19 mm 62° mm 
Image Size 4032 x 3024 4608 x 3456 
Spatial Resolution 5.519 cm/pixel 120 m altitude 11 cm/pixel 120 m altitude 
Focal Length 3.37 mm 3.98 mm 
Lens Type Non-Fish Eye Non-Fish Eye 
Weight 75.4 g 90 g 
Dimensions 41 x 59 x 25 mm 75 x 59 x 3 mm 
Retail Value $400 $3,500 
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Table 2.3. Vegetation indices calculated from DJI Phantom 4 and Phantom 4 Pro RGB sensors (RGB), MAPIR Survey3W NGB 

modified multispectral sensor (NGB), and Parrot Sequoia multiband multispectral (Multispec) imagery. B – Blue; G – Green; NIR 

– Near-infrared; R – Red; RE – Red-edge. 

Vegetation Index Formula Sensor Citation 
2-Band Enhanced Vegetation Index (EVI2) 2.5((NIR – R)/(NIR + 2.4*R +1)) Multispec (Jiang et al. 2007) 
Blue Normalized Vegetation Index (BNDVI) (NIR-B)/(NIR+B) NGB (Van der Merwe and Price 2015) 
Color Index of Vegetation Extraction (CIVE) 0.441*R-0.881*G+0.385*B+18.787 RGB (Kataoka et al. 2003) 
Difference Vegetation Index (DVI) NIR-R Multispec (Tucker 1979) 
Enhanced Normalized Difference Vegetation Index (ENDVI) ((NIR+G)-(2*B))/((NIR+G)+(2*B)) NGB (MaxMax 2015) 
Excess Green Index (EXG) 2*G-R-B RGB (Xu et al. 2018) 
Excess Green Minus Excess Red (ExGR) ExG−1.4R−G RGB (Camargo Neto 2004) 
Green Chlorophyll Index (CiGreen) (NIR/G)-1 Multispec & NGB (Gitelson et al. 2003) 
Green Normalized Difference Vegetation Index (GNDVI) (NIR-G)/(NIR+G) Multispec & NGB (Gitelson and Merzlyak 1998) 
Green–Red Ratio Index (GRRI)  G/R Multispec & RGB (Tucker 1979) 
KIVU (B-R)/G RGB (Brivio et al. 2001) 
Modified Simple Ratio Red-Edge (MSRre) (NIR/RE-1)/ √ (NIR/RE+1) Multispec (Cao et al. 2013) 
Modified Single Ratio (MSR) (NIR/R)-1/(√NIR/R)+1 Multispec (Chen 1996) 
Normalized Difference Red-Edge Index (NDRE) NIR−RE/NIR+RE Multispec (Barnes et al. 2000) 
Normalized Difference Vegetation Index (NDVI) (NIR-R)/(NIR+R) Multispec (Rouse et al. 1974) 
Normalized Difference Vegetation Structure Index (NDVSI) (NIR - (R+G) 0.5)/(NIR + (R+G) 0.5) Multispec (Yang et al. 2008) 
Normalized Green-Blue Difference Index (NGBDI) G-B/G+B NGB & RGB (Xu et al. 2017) 
Normalized Green-Red Difference Index (NGRDI) (G-R)/(G+R) Multispec & RGB (Xu et al. 2017) 
Ratio Normalized Difference Vegetation Index (RNDVI) ((NIR-R)/(NIR+R)* NIR)R Multispec (Peng Gong et al. 2003) 
Ratio Vegetation Index (RVI or SR) NIR/R Multispec (Cillero Castro et al. 2020) 
Red Green Blue Vegetation Index (RGBVI) G2−R×B/G2+R×B RGB (Bendig et al. 2015) 
Red-Edge Chlorophyll Index (CiRedEdge) (NIR/RE)-1 Multispec (Gitelson et al. 2003) 
Red-Green Ratio Index (RGRI) R/G Multispec & RGB (Gamon and Surfus 1999) 
Visible Atmospherically Resistant Index (VARIgreen) (G-R)/(G+R-B) RGB (Gitelson et al. 2002) 
Visible Band Difference VI (VDVI) (2*G-R-B)/(2*G+R+B) RGB (Xu et al. 2018) 
Vegetativen (VEG) G/(Ra*B(1 − a)) a = 0.667 RGB (Hague et al. 2006) 
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Table 2.4. Pearson’s correlations between log-transformed chlorophyll-a concentrations 

(µg/L) of 70 water samples and vegetation index values derived from UAS images captured 

with a DJI Phantom 4 integrated RGB camera, DJI Phantom 4 Pro integrated RGB camera, a 

MAPIR Surve3 NGB sensor, and a Parrot Sequoia multispectral sensor. Values are only 

shown for vegetation indices that could be calculated by that particular sensor.  

 Phantom 4 RGB Phantom 4 Pro RGB Survey3 NGB Sequoia Multispectral 
 r2 p-value r2 p-value r2 p-value r2 p-value 

BNDVI     0.01 0.40   
CiGreen     0.03 0.18 0.63 <0.0001 
CIRedEdge       0.02 0.27 
CIVE 0.30 <0.0001 0.34 <0.0001     
DVI       0.73 <0.0001 
ENDVI     0.03 0.14   
EVI2       0.76 <0.0001 
EXG 0.28 <0.0001 0.32 <0.0001     
ExGR 0.11 0.006 0.06 0.05     
GNDVI - - - - 0.01 0.54 0.66 <0.0001 
GRRI 0.29 <0.0001 0.27 <0.0001   0.30 <0.0001 
KIVU 0.01 0.39 0.07 0.03     
MSR       0.71 <0.0001 
MSRre       0.02 0.27 
NDRE       0.02 0.28 
NDVI       0.78 <0.0001 
NDVSI       0.75 <0.0001 
NGBDI 0.04 0.08 0.03 0.19 0.00 0.80   
NGRDI 0.29 <0.0001 0.26 <0.0001   0.29 <0.0001 
RGBVI 0.13 0.003 0.20 <0.0001     
RGRI 0.28 <0.0001 0.25 <0.0001   0.27 <0.0001 
RNDVI       0.43 <0.0001 
RVI       0.58 <0.0001 
VARIgreen 0.30 <0.0001 0.25 <0.0001     
VDVI 0.25 <0.0001 0.23 <0.0001     
VEG 0.02 0.28 0.11 0.01     
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Table 2.5. Pearson’s correlations between log-transformed phycocyanin concentrations 

(µg/L) of 70 water samples and vegetation index values derived from UAS images captured 

with a DJI Phantom 4 integrated RGB camera, DJI Phantom 4 Pro integrated RGB camera, a 

MAPIR Surve3 NGB sensor, and a Parrot Sequoia multispectral sensor. Values are only 

shown for vegetation indices that could be calculated by that particular sensor.  

 Phantom 4 RGB Phantom 4 Pro RGB Survey3 NGB Parrot Multispectral 
 r2 p-value r2 p-value r2 p-value r2 p-value 

BNDVI     0.02 0.31   
CiGreen     0.01 0.57 0.55 <0.0001 
CIRedEdge       0.07 0.05 
CIVE 0.07 0.03 0.08 0.02     
DVI       0.44 <0.0001 
ENDVI     0.15 0.002   
EVI2       0.51 <0.0001 
EXG 0.06 0.04 0.08 0.02     
ExGR 0.05 0.06 0.04 0.13     
GNDVI     0.00 0.84 0.57 <0.0001 
GRRI 0.19 <0.0001 0.14 0.002   0.08 0.03 
KIVU 0.03 0.14 0.08 0.02     
MSR       0.50 <0.0001 
MSRre       0.07 0.05 
NDRE       0.07 0.05 
NDVI       0.51 <0.0001 
NDVSI       0.57 <0.0001 
NGBDI 0.00 0.89 0.00 0.91 0.04 0.12   
NGRDI 0.16 0.001 0.13 0.003   0.08 0.04 
RGBVI 0.02 0.32 0.05 0.07     
RGRI 0.14 0.002 0.12 0.004   0.07 0.04 
RNDVI       0.39 0.01 
RVI       0.43 <0.0001 
VARIgreen 0.17 0.001 0.14 0.002     
VDVI 0.06 0.05 0.06 0.04     
VEG 0.01 0.33 0.05 0.06     
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Figure 2.1. Spectral absorbance of chlorophyll-a, the photosynthetic pigment found in all 

phytoplankton (a). High chlorophyll-a concentrations cause waterbodies to appear green (b), due 

to high concentrations of phytoplankton including green algae, diatoms, and cyanobacteria (c). In 

contrast, the cyanobacterial accessory pigment phycocyanin has a spectral absorbance at 620nm 

(d). Elevated phycocyanin values are indicative of high cyanobacterial abundance, commonly 

associated with thick surface scums (e), as the release of cyanotoxins by cyanobacterial genera, 

such as Microcystis aeruginosa (f). 
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Figure 2.2. Orthomosaics generated from aerial images collected with the integrated RGB 

sensor of a Phantom 4 Pro at a commercial aquaculture facility in Alabama, USA. 10 water 

samples were collected to validate aerial data collected on 11/20/2019, which surveyed 7 

ponds (Flight 1, panel a). 8 water samples were collected to validate aerial data collected on 

04/14/20, which surveyed 8 ponds (Flight 2, panel b). 6 water samples were collected to 

validate aerial data collected on 04/14/20, which surveyed 5 ponds (Flight 3, panel c). Water 

sample collection locations are shown as black dots.  
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Figure 2.3. Orthomosaics generated from aerial images collected with the integrated RGB sensor 

of a Phantom 4 Pro at research ponds at Auburn University’s E.W. Shell Fisheries Center. Water 

sample collection locations are shown as black dots. 5 water samples were collected to validate 

aerial data collected on 09/03/2019, which surveyed 5 ponds (Flight 4, panel a). 16 water samples 

were collected to validate aerial data collected on 02/21/2020, which surveyed 16 ponds (Flight 5, 

panel b). 19 water samples were collected to validate aerial data collected on 02/21/2020, which 

surveyed 19 ponds (Flight 7, panel c). 1 water sample was collected to validate aerial data collected 

on 06/18/2020, which surveyed 1 pond (Flight 6, panel d). 
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Figure 2.4. Orthomosaics generated from aerial images collected with the integrated RGB sensor 

of a Phantom 4 Pro at Auburn University’s Jule Collins Smith Museum of Fine Art’s pond. 

Water sample collection locations are shown as black dots. 2 water sample was collected to 

validate aerial data collected on 06/18/2020, which surveyed 1 pond (Flight 8, panel a). 1 water 

sample was collected to validate aerial data collected on 05/31/2020, which surveyed 1 pond 

(Flight 9, panel b). 2 water sample was collected to validate aerial data collected on 07/10/2020, 

which surveyed 1 pond (Flight 10, panel c). 

  



57 
 

 

Figure 2.5. Central wavelength (nm) for the DJI Phantom 4 and Phantom 4 Pro integrated 

red, green, blue cameras (RGB), MAPIR Survey3W near-infrared, green, blue (NGB) 

modified 3-band multispectral sensors, and Parrot Sequoia multiband multispectral 

sensors utilized in this study, overlaid over the spectral absorbance of pigments found in 

all phytoplankton (i.e., chlorophyll-a; dashed green line) and unique to cyanobacteria 

(i.e., phycocyanin; solid orange line). 
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Chapter 3 

Carlson’s trophic state index is a poor predictor of cyanobacterial dominance 

in drinking water reservoirs 

 Abstract  

A twenty-month survey of 71 surface drinking water utilities across 44 waterbodies was 

conducted to determine whether the commonly used Carlson’s trophic state index (TSI) is a 

reliable indicator of the threat harmful algal blooms pose to drinking water sources. Raw water 

quality results showed that cyanobacteria, cyanotoxins (i.e., microcystin), and taste and odor 

(T&O) compounds (i.e., MIB and geosmin) were generally low in the utilities sampled.  TSI 

values based on chlorophyll concentrations (TSI Chl-a) were closely related to phytoplankton, 

cyanotoxin, and T&O abundance and indicated most drinking water sources were mesotrophic or 

eutrophic. However, TSI values based on total phosphorus (TSI TP) indicated the drinking water 

sources were eutrophic or hypereutrophic. These results suggest TSI Chl-a is a better predictor of 

cyanobacteria and their compounds than TSI TP. Phytoplankton abundance decreased with 

depth, therefore managers should consider switching to deeper intakes when TSI Chl-a values 

increase to reduce removal costs.   
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Introduction 

Determining the trophic state of aquatic ecosystems is useful for properly managing 

surface drinking water sources, as it quantifies the biological response of a system to increased 

nutrient availability. Water quality indices, such as Carlson’s Trophic State Index (TSI), are 

commonly used for determining the trophic state of aquatic ecosystems, and can be used to 

estimate the abundance or potential abundance of phytoplankton, including potentially toxic 

cyanobacteria, which are becoming an increasing risk to drinking water surface utilities 

worldwide. The occurrence of cyanobacterial blooms is increasing worldwide as a result of 

elevated surface water temperatures and increased nutrient inputs from agricultural, industrial, 

and urban sources (Heisler et al. 2008; O’Neil et al. 2012; Glibert 2020). Several bloom-forming 

cyanobacteria produce toxic secondary metabolites (i.e., cyanotoxins), such as the hepatotoxins 

microcystin and cylindrospermopsin, that are linked to adverse health effects, such as upset 

stomach, diarrhea, vomiting, and liver and kidney damage in humans, livestock and domestic 

animals (Elleman et al. 1978; DeVries et al. 1993; Briand et al. 2003). To manage the potential 

health risks of cyanotoxin exposure, the United States Environmental Protection Agency (U.S. 

EPA) created a 10-Day Drinking Water Health Advisory for cyanotoxins encouraging some 

surface drinking water utilities to issue health advisories for children pre-school age and younger 

(i.e., <6 years old) when microcystin and cylindrospermopsin concentrations exceed 0.3 µg/L 

and 0.7 µg/L, respectively (USEPA 2015). Whereas, the 10-Day Drinking Water Health 

Advisory for school-age children and adults are 1.6 µg/L for microcystin and 3 µg/L for 

cylindrospermopsin. Yet, there are no federal standards for monitoring, response, and 

management of cyanotoxins that enter surface drinking water utilities, although such standards 

have been created in some states (Yeager and Carpenter 2019). A 2019 national survey found 
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that monitoring and management practices vary widely across states and that these approaches 

are more rigorous in states that record frequent harmful algal bloom (HAB) issues, such as Ohio 

(Yeager and Carpenter 2019). 

 Cyanobacteria further impair drinking water sources through the production of taste and 

odor compounds, such as geosmin and 2-methylisoborneol (MIB, Dunlap et al. 2015; Dietrich 

and Burlingame 2015; Olsen et al. 2016). Geosmin and MIB are volatile terpenes that give water 

a musty or muddy scent and flavor that can be detected by consumers at concentrations as low as 

10 and 30 ng/L, respectively (Izaguirre et al. 1982). Detection at such low concentrations causes 

consumer complaints, as many gauge the quality and safety of their drinking water on aesthetic 

criteria (McGuire 1995). However, geosmin and MIB have no known health effects at 

environmentally relevant concentrations (Burgos et al. 2014). Therefore, there are no regulatory 

guidelines for managing geosmin and MIB in recreational waters or drinking water sources 

(Watson et al. 2016). Rather, drinking water utilities manage taste and odor compounds at their 

own discretion to meet customer demands and instill confidence in finished raw water quality.  

Cyanobacteria, cyanotoxins, and taste and odor compound abundance can vary greatly 

seasonally and across years (Stumpf et al. 2012). For example, cyanotoxins and taste and odor 

compounds tend to increase during the warmer summer months when elevated temperatures and 

prolonged solar radiation stimulate cyanobacterial growth (Jöhnk et al. 2008; Watson et al. 

2008). Trophic state can also play a major role, as nitrogen and phosphorus inputs facilitate 

cyanobacterial growth, with trophic state considered one of the main predictors of cyanobacterial 

and taste and odor compound abundance (Downing et al. 2001). However, the presence of 

cyanobacteria is not always indicative of elevated cyanotoxin and taste and odor compounds 
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levels, as not all cyanobacterial species are able to synthesize cyanotoxins or taste and odor 

compounds (Watson et al., 2008). 

Conventional drinking water treatment methods remove cyanobacterial cells and low 

levels of cyanotoxins and taste and odor compounds from raw water (He et al. 2016). However, 

elevated and persistent levels of cyanotoxins and taste and odor compounds in source water can 

impose serious logistic and economic challenges to drinking water treatment (Khiari and Watson 

2007; Dunlap et al. 2015). A survey of 800 surface drinking water utilities across the United 

States and Canada found that 4.5% of their annual budget was spent on taste and odor compound 

removal and management, on average (Khiari and Watson 2007). Therefore, monitoring and 

preventing HABs at the reservoir level is imperative as it determines the effectiveness and cost 

of water treatment and, ultimately, the final quality and safety of drinking water. Despite the 

potential health and economic impact of HABs, there are limited data on the presence of 

cyanotoxins in raw and finished drinking water, as cyanotoxins only recently became classified 

for health advisories and there are no official national monitoring programs for these compounds 

in the United States.  

This study aims to determine the value of Carlson’s Trophic State Index (TSI) for 

characterizing the prevalence of phytoplankton including cyanobacteria, cyanotoxins, and taste 

and odor compounds in all surface drinking water sources in the state of Alabama. Located in the 

southeastern United States, Alabama’s elevated summer temperatures and high nutrient inputs 

from agricultural runoff could potentially promote high cyanobacterial abundance. To 

characterize the trophic state of Alabama reservoirs, the Alabama Department of Environmental 

Management (ADEM) calculated the average TSI (Carlson, 1977) based on growing season (i.e., 

summer) chlorophyll-a concentrations for 41 reservoirs from 1997 to 2007, and found that 58% 
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of such reservoirs were eutrophic, with higher chlorophyll-a values observed throughout the 

warmer summer months (Alabama Department of Environmental Management 2018). While 

elevated nutrient availability signifies an increased threat of HABs, there are limited data of the 

prevalence of HABs and the presence of cyanotoxins and taste and odor compounds in Alabama 

(Graham et al. 2017). To assess the threat of cyanotoxins and taste and odor compounds to 

drinking water across space and time, raw water samples were collected from the intake of every 

surface drinking water utility in Alabama to determine the presence of cyanobacterial toxins (i.e., 

microcystin, cylindrospermopsin, and saxitoxin), phytoplankton and cyanobacterial abundances, 

taste and odor compounds, and nutrients during the summers of 2017 and 2018. Moreover, the 

goal of this study was to generate monitoring and management criteria at the reservoir and 

processing plant level to support state-wide water resource management.  

 

Materials and methods  

Study site and sampling  

Raw water samples were collected from the intakes of 71 surface drinking water utilities 

throughout the state of Alabama, USA, from April 2017 through November 2018 (Figure 3.1). 

One utility is located in Tennessee but was included in the study because it provides drinking 

water to Alabama residents located close to the border of the two states. Six utilities provided 

samples from two different water intake points, and one provided samples from four locations 

for a total of 83 raw water intakes. All participating utilities were asked to provide raw water 

samples during July of 2017 and 2018, and several utilities voluntarily provided additional 

samples throughout the year resulting in a total of 367 samples.  
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Drinking water utility managers were provided sampling kits that included standard 

operating procedures and all the necessary sampling equipment. Managers were instructed to 

allow raw intake water to run for at least 20 minutes before filling the provided acid-washed 

plastic bottles with the specified sample volume. Managers were also asked to provide intake 

depth (meters) relative to current surface level for every sample submitted for analysis. The 

managers did not specify whether the system was experiencing a visible algal bloom. Raw water 

samples were then placed in coolers with ice and shipped overnight to be immediately processed 

in the laboratory at Auburn University, Auburn, AL.   

Sample preparation and analysis 

Chlorophyll-a, phycocyanin, microcystin, saxitoxin, and cylindrospermopsin samples 

were prepared by filtering a known volume of well-mixed raw water through Pall A/E filters and 

stored frozen in the dark until analysis. Phytoplankton abundance was estimated using 

chlorophyll-a concentrations (μg/L) that were determined via fluorometric analysis (Turner 

Designs Trilogy fluorometer, non-acidification chlorophyll module) after extraction from filters 

with 90% aqueous ethanol in the dark at 4°C (Sartory and Grobbelaar 1984). Cyanobacterial 

abundance was estimated using phycocyanin filters that were ground and extracted in a 50mM 

phosphate buffer in the dark for four hours, centrifuged, and filtered through a <0.2 µm filter 

prior to fluorometric analysis (Turner Designs Trilogy fluorometer, orange module) to determine 

phycocyanin concentrations (μg/L, Sarada et al. 1999; Kasinak et al. 2015). Microcystin, 

saxitoxin, and cylindrospermopsin concentrations (μg/L) were determined via enzyme-linked 

immunosorbent assay (ELISA) after extraction from filters with acidified 75% aqueous methanol 

(An and Carmichael 1994). Toxin extracts were redissolved in 5 ml of phosphate buffer prior to 

ELISA.  
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Total nitrogen (TN) and total phosphorus (TP) raw water samples were stored frozen 

until analysis. Nutrient concentrations were determined via spectrophotometry using ultraviolet 

(total nitrogen; μg/L) or colorimetric (total phosphorus; μg/L) standard methods (Gross and 

Boyd 1998). Raw, whole-water samples were stored in glass vials sealed with parafilm at 4°C 

and analyzed within 7 days of collection for MIB and geosmin concentrations (ng/L) using solid-

phase microextraction combined with gas chromatography/mass spectrometry (SPME GC/MS, 

Zimmerman et al. 2002). 

Trophic status was determined using Carlson’s trophic state index (TSI) calculations 

based on total phosphorus and chlorophyll-a concentrations as follows:  

TSI (TP) = 14.42 x ln(TP) + 4.15       (1) 

TSI (Chl-a) = 9.81 x ln(CHL) + 30.6      (2) 

where TP = total phosphorus concentration (μg/L) and CHL = chlorophyll-a pigment 

concentration (μg/L). TSI values less than 30 typically indicate oligotrophic conditions, 50-70 

typically indicate eutrophic conditions, and over 70 indicates a hypereutrophic lake or reservoir 

(Carlson 1977). Mean TSI for each reservoir was calculated by averaging the July 2017 and 2018 

TSI values of each intake.  

Statistical analysis 

Trophic state index values were determined by averaging the July 2017 and 2018 samples 

as this was the only month in which every utility provided raw water samples. Pearson 

correlation coefficients were used to determine the relationship between chlorophyll-a, 

phycocyanin, microcystin, MIB, geosmin, TN, TP, TN:TP (by weight), and depth throughout the 

entire study period. Saxitoxin and cylindrospermopsin concentrations were low or undetectable 

through the study period and were therefore not included in statistical analyses. Differences in 
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measured pigments, cyanotoxins, and taste and odor compounds between the warmer summer 

months (July through October) and the rest of the sampling season were determined through 

analysis of variance (ANOVA). The stats package for the statistical software R Studio version 

4.0.2 (RStudio Team 2015) was used for all statistical analyses. 

 

Results 

The temporal dynamics of chlorophyll-a, phycocyanin, microcystin, and taste and odor 

compound concentrations throughout the study are summarized in Table 3.1 and Figure 3.2. In 

general, phycocyanin, cyanotoxins, and taste and odor compounds remained low throughout the 

study despite a large range in reservoir nutrient concentrations. Chlorophyll-a and phycocyanin 

concentrations ranged from 0.03 to 66.05 μg/L (average 6.68 μg/L) and 0 to 26.51 μg/L (average 

1.43 μg/L), respectively, throughout the entire study period (Table 3.1 and Figure 3.2). 

Chlorophyll-a concentrations were significantly lower through the warmer summer months 

(July-October) than the rest of the year (p =0.03), with chlorophyll-a averaging 5.87 μg/L (±0.83 

95% C.I.) during the summer and 7.79 μg/L (±1.74 95% C.I.) the rest of the year (Table 3.2). 

Phycocyanin was higher during the summer, with phycocyanin concentrations averaging 1.60 

μg/L (± 0.37 95% C.I) in the summer and 1.21 μg/L (± 0.46 95% C.I) the rest of the year, though 

this trend was not statistically significant (p =0.18). There was a significant relationship between 

the presence of the two pigments (r2 =0.12, p <0.0001), with a 0.11 μg/L (± 0.03 95% C.I.) 

increase in phycocyanin for every 1 unit increase in chlorophyll-a (μg/L; Table 3.3).  

Cyanotoxin concentrations were generally low throughout the study. Saxitoxin 

concentrations were below the 0.00067 limit of detection (LOD) for our assay throughout the 

study period, and cylindrospermopsin ranged from undetectable (below LOD of 0.0017 μg/L) to 
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0.0031 μg/L, suggesting these cyanotoxins were either low or not present in our samples. 

Microcystin concentrations ranged from undetectable (below LOD of 0.005 μg/L) to 0.21 μg/L 

(average 0.01 μg/L), and were generally higher during the warmer summer months, though the 

highest recorded concentration occurred in April 2017 at one site (Table 3.1, Figure 3.2). There 

was no significant relationship between microcystin and chlorophyll-a (r2 <0.01, p =0.21) or 

phycocyanin (r2 <0.01, p =0.78, Table 3.3). 

MIB and geosmin concentrations ranged from the limit of detection (1 ng/L) to 115.91 

ng/L (average 2.81 ng/L) and 21.11 ng/L (average 0.97 ng/L), respectively, throughout the 

sampling period (Table 3.1 and Figure 3.2). There was a significant correlation between the two 

taste and odor compounds (r2 =0.25, p <0.0001), with a 2.25 ng/L (± 0.42 95% C.I.) increase in 

MIB for each one unit increase in geosmin (ng/L, Table 3.3). MIB and geosmin concentrations 

were 3.64 ng/L (± 2.16 95% C.I.) and 0.55 ng/L (± 0.48 95% C.I.) higher from July to October 

than the rest of the year, respectively (p ≤0.02, Table 3.2). There was a significant positive 

relationship between MIB and chlorophyll-a (r2 =0.01, p =0.03) and phycocyanin (r2 =0.02, p 

=0.01), as well as geosmin and chlorophyll-a (r2 =0.03, p <0.0005, Table 3.3). Geosmin and 

phycocyanin were not significantly correlated.  

TN, TP, and TN:TP (by weight) ranged from 12.00 to 1,697.92 μg/L (average 463.84 

μg/L), 9.24 to 212.1 μg/L (average 66.04 μg/L), and 0.1 to 44.14 (average 9.19), respectively, 

throughout the sampling period (Table 3.1, Figure 3.2). Chlorophyll-a, phycocyanin, and 

microcystin had a non-linear relationship with nutrients and TN:TP ratios. However, 

chlorophyll-a concentrations were 1.83 μg/L (±1.63 95% C.I.) higher when TN:TP ratios were 

under 10 (p =0.03, Table 3.2). There was also a trend of higher phycocyanin and MIB when 
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TN:TP was less than 10, although these trends were not statistically significant (Figure 3.3,  

Table 3.3).  

The Carlson trophic state index (TSI) TP values ranged from 36.22 to 81.40 (average 

62.06), while TSI Chl-a ranged from 0 to 71.71 (average 42.64) throughout the study period 

(Table 3.1). Interestingly, the average summer (July 2017 and 2018) TSI TP and TSI Chl-a 

values differed greatly, with TS TP values 19.26 (± 95% C.I. 17.8 – 20.82) higher than TSI-Chl-

a, on average (p <0.0001). Based on summer TP data, 80% and 16% of our samples originated 

from a eutrophic or hypereutrophic source, respectively, while chlorophyll-a derived TSI values 

classified 31% as eutrophic and none as hypereutrophic (Figure 3.4). TSI Chl-a values were 

significantly correlated (p <0.03) with chlorophyll-a, phycocyanin, microcystin, MIB, and 

geosmin (Table 3.3). However, these relationships were not observed when compared to TSI TP. 

Chlorophyll-a was the only parameter closely related to TSI TP, with a 0.23 (±0.11 95% C.I.) 

unit increase in chlorophyll-a for every unit increase in TSI TP (r2 =0.04, p <0.0001).  

Surface drinking water intake depths ranged from surface intakes to 25.91 meters, with 

an average sampling depth of 4.81 meters (Table 3.1). Nineteen samples were collected from 

surface intakes (i.e., 0 meters). As depth increased, the abundance of phycocyanin, microcystin, 

and geosmin decreased, although these relationships were not statistically significant (Figure 

3.5). However, chlorophyll-a and MIB concentrations were significantly higher in samples 

collected from intakes shallower than 5 meters (p <0.04, Table 3.2). 

 

Discussion 

Bloom-forming cyanobacteria thrive under elevated surface water temperatures, 

increased nitrogen and/or phosphorus availability, reduced nitrogen to phosphorus ratios 
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(TN:TP), and poor mixing conditions (Smith 1983; Downing et al. 2001; Paerl and Huisman 

2008). While the surface drinking water sources sampled in this study had relatively high 

nutrients and summer surface water temperature conditions, cyanobacterial abundance was 

generally low and cyanotoxins remained below health advisory thresholds determined by the 

U.S. EPA (Figure 3.1, USEPA 2015).  

Harmful algal blooms dominated by cyanobacteria are common during the warmer 

summer months when elevated temperatures and prolonged solar radiation facilitate their growth 

(Jöhnk et al. 2008). These trends were observed throughout the twenty-month sampling period 

with higher phycocyanin concentrations from July to October than the rest of the year (Table 

3.2). Interestingly, chlorophyll-a concentrations were significantly higher from November to 

June. Due to the temporal and spatial variability of cyanobacterial abundance and cyanotoxin 

production, it is possible that the annual sampling of the utilities was not sufficient to capture the 

episodic trends of cyanobacterial growth in our systems.  

Cyanotoxins were typically present at low to undetectable levels throughout the twenty-

month study. Microcystin did not exceed the U.S. EPA drinking water health advisory of 0.3 

μg/L for children under six years old (USEPA 2015) over the duration of this project with the 

highest observed concentration being 0.21 μg/L (Table 3.1). Microcystin was poorly correlated 

with algal abundance throughout the study period (Table 3.3), likely because not all 

cyanobacterial species have the ability to produce toxins, and the triggers for cyanotoxin 

synthesis, storage, and release vary by cyanobacterial species and even strain, leading to poor 

spatial and temporal relationships between cyanobacteria and their metabolites (Smith 1983; 

Downing et al. 2001; Watson et al. 2008). While some cyanobacteria can produce both 

cyanotoxins and taste and odor compounds, there was also no clear relationship between 
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microcystin and taste and odor compound abundance in our study (Table 3.3). There are 

conflicting data on the co-occurrence of phytoplankton, cyanotoxins, and taste and odor 

compounds, but poor relationships between the three parameters are not uncommon (Watson et 

al. 2008; Graham et al. 2017). 

MIB and geosmin production by cyanobacteria are the main biological sources of taste 

and odor compounds in surface drinking water sources, particularly during elevated temperature 

and nutrient conditions (Jüttner and Watson 2007; Watson et al. 2008). MIB and geosmin were 

both significantly higher during the warmer summer months, which has been observed in 

previous field studies (Table 3.2, Sugiura et al., 1998; Westerhoff et al., 2005). Only 2% of the 

samples exceeded the human detection threshold concentration for MIB (30 ng/L), all of which 

occurred between July and September. MIB was closely related to chlorophyll-a and 

phycocyanin concentrations, which suggests cyanobacteria were the main producers of MIB in 

our systems (Table 3.3). Only 1% of the samples exceeded the human detection threshold 

concentration for geosmin (10 ng/L), all of which occurred between June and July. Geosmin 

concentrations were not significantly correlated to phycocyanin concentrations, which suggests 

the presence of benthic geosmin producer, such as benthic cyanobacteria or actinobacteria, in the 

studied systems (Izaguirre et al. 1982). Benthic MIB and geosmin producers may contribute to 

taste and odor compounds in the water column, although their contribution to drinking water 

sources is not as well studied as pelagic cyanobacterial species and this topic requires further 

study (Cai et al. 2017). There was a significant relationship between MIB and geosmin, though 

they did not occur exclusively in tandem. These results are surprising as taste and odor problems 

are common in the state of Alabama. A survey of rural Alabama drinking water consumers found 

20% of consumers experience aesthetic issues (Wedgworth et al. 2014). The findings from our 
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study suggest that aesthetic issues reported by rural Alabama drinking water consumers are not 

related to cyanobacterial off-flavors.  

Carlson’s trophic state index (TSI) values based on whether average summer TSI 

calculations varied greatly were based on total phosphorus (TSI TP) or chlorophyll-a (TSI Chl-a) 

concentrations. TSI TP values suggest most of the samples were collected from either eutrophic 

(80%) or hypereutrophic (16%) systems. TSI Chl-a values reflect conditions common of more 

mesotrophic (53%) or eutrophic (31%) systems (Figure 3.4). The discrepancy between the two 

calculated TSI values suggests that our systems are nutrient-rich, but there is another factor 

suppressing cyanobacterial growth. Typically, this difference is observed in systems that have 

high turbidity which reduces light availability for phytoplankton (Carlson 1991). However, these 

patterns could also be related to summer stratification, in which surface water is warmer and high 

phytoplankton abundance reduces nutrient concentrations and deeper water is cooler, with low 

productivity due to low light availability and therefore have higher nutrient concentrations. In 

our study, chlorophyll-a and MIB were significantly higher in shallow (<5 m) intakes (Table 

3.2). Chlorophyll-a, phycocyanin, microcystin, MIB, and geosmin were all significantly 

correlated to TSI Chl-a values (Table 3.3). The same relationship was not observed for TSI TP 

values, therefore TSI Chl-a was a better predictor of cyanobacteria and their metabolites in the 

drinking water sources monitored in this study than TSI TP. This is consistent with past studies 

that have shown that TSI Chl-a values are the best predictors of MIB and geosmin outbreaks in 

lentic systems (Downing et al. 2001).  

There was a general trend in our systems of higher phytoplankton and cyanobacterial 

secondary metabolite abundance when TN:TP ratios (by weight) were below 10. In general, 

there is a tendency for cyanobacteria to dominate lentic systems when the TN:TP ratios are 
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below 30 (Smith 1983). Observational studies have found that MIB, geosmin, and microcystin 

concentrations were highest when TN:TP values were low (Smith et al. 2002; Harris et al. 2016; 

Perkins et al. 2019). Currently, the state of Alabama has not implemented state criteria for 

nitrogen and phosphorus concentrations in drinking water sources, though there are several lake-

specific chlorophyll-a criteria implemented throughout the state (Alabama Department of 

Environmental Management 2017).  

Due to the low abundance of cyanobacteria and cyanotoxins in our systems it is difficult 

to propose predictive models, but differences in vertical distribution presents an interesting 

management strategy for drinking water utilities. Cyanobacteria thrive and produce a higher 

concentration of cyanotoxins, MIB, and geosmin under elevated light conditions (Saadoun et al. 

2001; Wang and Li 2015). Westerhoff et al. (2005) found that the highest concentrations of MIB 

occurred in the upper 10 m of the water column. In this study, chlorophyll-a and MIB were more 

abundant in shallow intakes (<5 m; Table 3.2). These findings present a low-cost preventative 

solution for reducing the cost of removing cyanobacteria and their secondary metabolites from 

drinking water. Switching to a deeper intake, when available, could reduce the abundance of 

phytoplankton entering water treatment plants at the intake level, thereby reducing the economic 

and logistic complications associated with removing these compounds from drinking water.  
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Conclusions 

Harmful algal blooms threaten drinking water sources through the production of 

cyanotoxins and taste and odor compounds. The results of this twenty-month state-wide survey 

suggest that cyanobacteria, cyanotoxins, and taste and odor compounds were scarce in surface 

drinking water sources. TSI values based on chlorophyll-a concentrations suggest the majority of 

the drinking water sources were mesotrophic or eutrophic and correlated well with 

phytoplankton, cyanotoxin, and taste and odor compound abundance. Yet, TSI values based on 

total phosphorus suggest the systems were eutrophic or hypereutrophic and did not correlate well 

with cyanotoxins and taste and odor compounds. The discrepancy between the two TSI values 

suggests there may be an additional factor, such as stratification, suppressing cyanobacterial 

growth. When monitoring surface water sources, managers should prioritize chlorophyll-a over 

nutrient measurements, as TSI Chl-a values were closely related to cyanotoxins and taste and 

odor compounds. Moreover, calculating the TSI chl-a from several intakes, when available, can 

be useful for determining which intake has the lowest chance of containing cyanotoxin and taste 

and odor compounds without the need to directly measure these parameters. For this study, 

deeper intakes tended to have lower phytoplankton and taste and odor compound abundance. 

Although not tested in this study, directly measuring Sechhi depth can also be a reliable and low 

cost indicator of trophic state that could be used as an early warning sign to initiate more 

rigorous sampling.  
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Table 3.1. Photosynthetic pigment (chlorophyll-a and phycocyanin), cyanotoxin (microcystin), 

taste and odor compound (MIB and geosmin), total nitrogen (TN), total phosphorus (TP) and 

nitrogen to phosphorus ratio (TN:TP; by weight), trophic status index based on total phosphorus 

(TSI TP) and chlorophyll-a concentrations (TSI Chl-a), and raw water intake depth data for the 

71 surface drinking water utilities sampled from April 2017 to November 2018 sampled for this 

study.  

  

  Minimum Maximum Mean SD n 
Chlorophyll-a (μg/L) 0.03 66.05 6.68 8.55 367 
Phycocyanin (μg/L) 0.00 26.51 1.43 2.76 358 
Microcystin (μg/L) 0.00 0.21 0.01 0.02 367 
MIB (ng/L) 0.00 115.91 2.81 10.17 358 
Geosmin (ng/L) 0.00 21.11 0.97 2.23 357 
TN (μg/L) 12.00 1697.92 463.84 244.00 348 
TP (μg/L) 9.24 212.10 66.04 244.16 366 
TN:TP (by weight) 0.10 44.14 9.19 7.04 363 
TSI TP 36.22 81.40 62.06 8.06 365 
TSI Chl-a 0.00 71.71 42.64 12.12 367 
Raw water intake depth (meters) 0.00 25.91 4.81 4.91 355 
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Table 3.2. Mean (± 95% C.I.) values for chlorophyll-a, phycocyanin, microcystin, MIB, and 

geosmin between the warmer summer months (July through October) and the rest of the year 

(November through June), above and below the apparent productivity cutoff for depth (5 m), and 

above and below the apparent 10 nitrogen to phosphorus ratio (TN:TP; by weight) cutoff.  

 Chlorophyll 
(μg/L) 

Phycocyanin 
(μg/L) 

Microcystin 
(μg/L) 

MIB 
(ng/L) 

Geosmin 
(ng/L) n 

July to October 5.87 (0.83) 1.60 (0.37) 0.005 
(0.003) 4.29 (1.72) 1.19 

(0.34) 212 

November to 
June 7.79 (1.74) 1.21 (0.46) 0.006 

(0.002) 0.65 (0.55) 0.64 
(0.28) 155 

p-value 0.03 0.18 0.45 <0.01 0.02  
       
Below 10 
TN:TP 7.26 (1.16) 1.44 (0.36) 0.004 

(0.002) 2.87 (1.19) 0.90 
(0.30) 252 

Above 10 
TN:TP 5.42 (0.93) 1.41 (0.47) 0.009 

(0.005) 2.45 (2.18) 0.95 
(0.30) 111 

p-value 0.03 0.12 0.04 0.15 0.87  
       

Depth <5 m 7.58 (1.16) 1.50 (0.35) 0.005 
(0.002) 3.42 (1.48) 1.03 

(0.30) 258 

Depth >5 m 4.64 (1.05) 1.24 (0.52) 0.004 
(0.002) 0.83 (0.34) 0.71 

(0.39) 97 

p-value 0.004 0.45 0.55 0.04 0.23  
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Table 3.3. Pearson correlation coefficients between chlorophyll-a, phycocyanin, microcystin, 

MIB, geosmin, trophic state index values based on chlorophyll-a (TSI Chl-a) and total 

phosphorus (TSI TP) collected from the raw water intakes of 71 surface drinking water utilities 

from April 2017 through November 2018.  

 
Variable 1 Variable 2 Effect Estimate ± 95% C.I. p-value r2 
Chlorophyll-a Phycocyanin 0.11 0.03 <0.0001 0.12 
Microcystin Chlorophyll-a 0.00 0.00 0.21 <0.01 
Microcystin Phycocyanin 0.00 0.00 0.78 <0.01 
MIB Chlorophyll-a 0.14 0.13 0.03 0.01 
MIB Phycocyanin 0.47 0.38 0.01 0.02 
Geosmin Chlorophyll-a 0.05 0.03 <0.0005 0.03 
Geosmin Phycocyanin 0.07 0.08 0.08 0.01 
      
Geosmin MIB 2.25 0.42 <0.0001 0.25 
Microcystin MIB 0.00 0.00 0.69 <0.01 
Microcystin Geosmin 0.00 0.00 0.31 <0.01 
                  
Chlorophyll-a TSI Chl-a 0.56 0.05 <0.0001 0.63 
Phycocyanin TSI Chl-a 0.05 0.02 <0.0001 0.05 
Microcystin TSI Chl-a 0.00 0.00 0.03 0.01 
MIB TSI Chl-a 0.11 0.09 0.01 0.02 
Geosmin TSI Chl-a 0.04 0.02 <0.0001 0.04 
      
Chlorophyll-a TSI TP 0.23 0.11 <0.0001 0.04 
Phycocyanin TSI TP 0.02 0.04 0.32 0.00 
Microcystin TSI TP 0.00 0.00 0.69 0.00 
MIB TSI TP 0.06 0.13 0.39 0.00 
Geosmin TSI TP -0.01 0.03 0.57 0.00 
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Figure 3.1. Map of the 83 raw water intake locations from the 71 surface drinking water utilities 

sampled in this study.   
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Figure 3.2. Chlorophyll-a (a), phycocyanin (b), microcystin (c), MIB (d), and geosmin (e) 

concentrations in raw water collected from the intakes of 71 surface drinking water utilities from 

April 2017 through November 2018. Dashed lines represent the human odor concentration 

threshold of MIB (30 ng/L) and geosmin (10 ng/L).  
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Figure 3.3. Relationship between chlorophyll-a, phycocyanin, microcystin, geosmin and MIB, 

and total phosphorus (TP; a-e), total nitrogen (TN; f-j), and total nitrogen to phosphorus ratio by 

weight (TN:TP; k-o). Black horizontal dashed lines represent the human odor concentration 

threshold of MIB (30 ng/L) and geosmin (10 ng/L). Vertical dashed lines represent the apparent 

TN:TP threshold for pigment and secondary metabolite abundance.    
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Figure 3.4. Trophic index status (TSI) estimates based on average total phosphorus 

concentrations (TSI TP) compared to chlorophyll-a concentrations (TSI Chl-a) collected from 83 

raw surface water intakes from 71 drinking water utilities in July 2017 and 2018.  
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Figure 3.5. Chlorophyll-a (a), phycocyanin (b), microcystin (c), MIB (d), and geosmin (e) 

concentrations by intake depth (m) of raw water collected from 71 drinking water utilities from 

April 2017 through November 2018.  

 

 

  



81 
 

Chapter 4 

Algal blooms in limbo: No sign of degradation or improvement over the past 30 years 

Abstract 

Algal blooms threaten aquatic ecosystems and local economies worldwide and are believed to be 

unanimously intensifying due to eutrophication and climate change. Here, we analyze 30 years 

(1990-2020) of algal bloom, eutrophication, and climate data for 650 lakes located across 11 

freshwater ecoregions. Surprisingly, we found 67% of lakes were in a state of equilibrium and 

lakes that were significantly improving were doing so at a higher magnitude than lakes that were 

significantly decreasing in water quality. Algal bloom trends were positively correlated to 

eutrophication, and suggest nutrient management could be preventing further water quality 

degradation. Results indicate that algal bloom intensification may not be as pervasive as 

previously believed. 
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Main text  

There is widespread scientific consensus that algal blooms are increasing in intensity and 

geographic distribution, attributed primarily to climate change and cultural eutrophication (Paerl 

and Huisman 2008; O’Neil et al. 2012; Taranu et al. 2015; Glibert 2020). Due to the extensive 

and potentially severe ecologic, economic and public health impacts related to algal blooms, 

legislations have been enacted in several countries to improve research, monitoring, and 

management of blooms and their triggers (Hudnell 2010; Zhou et al. 2017). In the United States, 

whether efforts to reduce nutrient transport have hindered the growing trend in algal blooms is 

unclear (Dove and Chapra 2015; United States Code 2018; Mahdiyan et al. 2021). We asked 

how recent algal bloom intensification trends vary spatially, and whether these trends are linked 

to changes in nutrient abundance, summertime temperature, and precipitation.  

To explore algal bloom trends across a wide geographic region, 30-year time series 

(1990-2020) were generated from the annual median summertime chlorophyll concentrations 

(µg/L) of 650 lakes throughout 11 freshwater ecoregions (Figure 4.1). Mann-Kendall (M-K) 

trend statistics were calculated to determine algal bloom trend direction (M-K S), significance 

(M-K z, p <0.05), and magnitude (Sen’s Slope β), as this non-parametric test is robust despite 

high interannual variability of summertime chlorophyll concentrations (Gilbert 1987). M-K S 

statistics were also generated from total nitrogen (TN, µg/L), total phosphorus (TP, µg/L), 

Secchi depth (m, transparency measurement), and climate (i.e., temperature, precipitation, 

drought) data to determine whether environmental drivers explain algal bloom trends.  

Results show that 438 of the 650 study lakes (67%) did not exhibit statistically significant 

increasing or decreasing trends in summertime algal bloom intensity (Figure 4.2). Lakes 

exhibiting significant increases in algal bloom intensity (n=103) were comparable in number and 
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spatial distribution to lakes with significant decreases in algal bloom intensity (n=109), 

indicating there is no clear spatial pattern of degradation or improvement among the study lakes 

(Figure 4.1). Moreover, lakes that are significantly improving are doing so at a significantly 

higher rate than those significantly decreasing in water quality, based on Sen’s slope estimates (p 

= 0.001, Figure 4.2). Weak evidence of extensive algal bloom intensification was surprising, as 

decreasing trends in summertime algal blooms are rarely reported (Taranu et al. 2015; Ho et al. 

2019), but see Oliver et al. 2017; Pi et al. 2021; Wilkinson et al. Accepted.  

Lakes showing increasing and decreasing algal bloom trends were uniformly distributed 

across and within 10 of the 11 freshwater ecoregions (Figure 4.3). A notable exception are lakes 

located within the Central Prairie ecoregion, which show a significant increasing trend in algal 

bloom intensity (p <0.0001). There was no significant relationship between algal bloom trends 

and lake surface area (km2) or surrounding population density (individuals/mile2, p >0.05, Table 

4.2).  

Increasing global temperatures and erratic precipitation patterns are known to promote 

the growth and geographic expansion of bloom-forming and potentially toxic cyanobacteria in 

freshwater ecosystems (Paerl and Huisman 2008; O’Neil et al. 2012). Summertime air 

temperature increased across the 43 climate divisions included in the study, with a mean annual 

increase of 0.033°C. The effect of temperature trends on algal blooms was statistically 

significant but poorly correlated (p = 0.0007, r2 =0.02) due to modest differences in temperature 

increases between the division (Table 4.2, Figure 4.4D). Moreover, elevated temperatures are 

more closely linked to cyanobacterial dominance and cyanotoxin production than overall 

phytoplankton abundance (Jöhnk et al. 2008; Kosten et al. 2012; Hayes et al. 2020). 

Phytoplankton community composition and cyanotoxin prevalence trends are beyond the scope 
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of this study as most lakes did not report cyanobacterial pigment concentrations (i.e., 

phycocyanin), phytoplankton counts, or cyanotoxin concentration data. Precipitation and drought 

trends were not significantly correlated to algal bloom trends (p >0.05, Table 4.2). High nutrient 

inputs due to intense rainfall events followed by prolonged droughts that increase water column 

stability and residence times can promote algal blooms in inland systems (Paerl and Huisman 

2008; O’Neil et al. 2012). However, whether gradual increases in drought and precipitation 

affect algal bloom trends is not as well understood and could explain the poor relationship 

between these parameters and algal bloom trends in our study. 

Eutrophication is a leading cause of waterbody impairment in the United States, with 

40% and 35% of lakes showing excessive levels of phosphorus and nitrogen, respectively 

(USEPA 2016). Changes in nitrogen and phosphorus trends for the study lakes were generally 

statistically insignificant, although 28% of lakes show significant phosphorus reduction (Table 

4.1). Nutrient and algal bloom intensification trends were significantly correlated in the study 

lakes, with a 0.67 (±0.07 95% C.I.) and 0.54 (±0.07 95% C.I.) increase in algal bloom M-K S for 

every unit increase in TN and TP M-K S, respectively (p <0.0001, Table 4.2, Figure 4.4). Algal 

bloom trends were also closely associated with Secchi depth trends, with a 0.82 (±0.07 95% C.I.) 

decrease in algal bloom M-K S for every one unit increase in Secchi depth M-K S (p <0.0001, r2 

= 0.59).  

Results from this study contradict the tenet that algal blooms are unanimously 

intensifying. Most lakes did not show significant algal bloom trends, and there was no clear 

spatial pattern for the 212 lakes that were experiencing significant changes in algal bloom 

intensity (Figure 4.1). The paradox between our findings and those of others could be due to 

study lake physical characteristics (i.e., surface area, distribution), sampling frequency and 
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length, number of study lakes, or disproportionate research attention being focused on impaired 

systems. Eutrophication was a stronger predictor of algal bloom intensification than climate 

variations in our systems, but understanding the interaction between these two drivers will be 

important for informing resource management as temperatures continue to increase (Taranu et al. 

2015; Chapra et al. 2017). Admittedly, while 30-year time series demonstrate recent trends in 

chlorophyll concentrations, they provide limited information of the pre-industrial prevalence of 

algal blooms in these lakes (Taranu et al. 2015; Waters 2016). However, this study focuses on 

whether algal blooms are continuing to intensify despite increases in research, monitoring, and 

management initiatives. Based on the close relationship between nutrients and algal bloom 

trends, it appears that legislation and research associated with managing nutrients (United States 

Code 2018) may be preventing further degradation of aquatic ecosystems.   
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Methods 

Lake data for this study were collected from the Florida Water Atlas, Iowa Department of 

Natural Resources (DNR), Missouri DNR, US Long-Term Ecological Research Network - 

Madison Lake Area, Vanni 2019, and Wilkinson et al. (USEPA 2009, 2016; Vanni et al. 2019; 

Jones et al. 2020; Iowa DNR 2021; Wilkinson et al. Accepted). Lakes were included in the study 

if the lake was sampled (1) for at least 10 years (Kendall, 1975), (2) with less than a three-year 

gap between samples for the first 10 years of sampling, and (3) the most recent sample was 

collected on or after 2016. Lake data were restricted to 1990-2020 samples, as sampling was 

increasingly inconsistent and sporadic before 1990. Additionally, chlorophyll data had to be 

collected via alcohol or acetone extraction followed by fluorometric analysis of in situ samples, 

rather than raw fluorescence units or remote sensing chlorophyll estimates. A total of 650 lakes 

met such criteria, with an average of 22 sample years. For each lake, summertime (July-

September) chlorophyll (µg/L), total nitrogen (TN, µg/L), total phosphorus (TP, µg/L), and 

Secchi depth (m) values, as well as lake physical characteristics were recorded. 

Climate division scale annual summertime air temperature (°C), precipitation (mm), and 

drought (Palmer Z Index) data were accessed through the Climate at a Glance National Oceanic 

and Atmospheric Administration (NOAA) application (NOAA 2021). Mean summer air 

temperature values were used to estimate lake surface temperatures, as summer air temperatures 

are a significant predictor of surface water temperatures (O’Reilly et al. 2015).  

Spatial distribution of the lakes was based on freshwater ecoregions, which largely 

correspond to major watersheds and are designed to spatially divide areas based on freshwater 

biodiversity (Abell et al. 2008). To simplify statistical analysis, the three study lakes located 

within the Laurentian Great Lakes freshwater ecoregion were reclassified to the nearest 
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freshwater ecoregion, as they were less than 3 km from the next neighboring ecoregion. Such 

lakes were: DeRuyter Reservoir (0.58 km from Chesapeake Bay), Lake Como (2.71 km from 

Chesapeake Bay), and Millsite Lake (0.6 km from St. Lawrence). 57% of the lakes included in 

this study were located in the Florida Peninsula freshwater ecoregion. To verify that observations 

from the Florida Peninsula were not disproportionately driving study trends, the dataset was split 

between the Florida Peninsula lakes (n=373) and those located within the remaining 10 

freshwater ecoregions (n=277). Split datasets did not differ significantly in algal bloom trend 

significance or magnitude (ANOVA, p >0.05).  

 The Mann-Kendall trend test (M-K) was utilized to test for the presence of monotonic 

time trends, as this non-parametric test does not require data to be normally distributed and has 

low sensitivity to missing values (Mann 1945; Kendall 1975; Gilbert 1987). When lakes had 

multiple observations per year, annual medians were calculated and used as the representative 

annual value to reduce the effects of autocorrelation and conform to the required single 

observation per time period for the M-K test (Gilbert 1987).  

The M-K test statistics, S, was calculated by determining the difference between later 

measured values (yj) and earlier measured values (yi) as: 

𝑆𝑆 = � � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑗𝑗=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 (𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖) =  �
1       𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖) > 0
0       𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖) = 0
−1    𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖) < 0

 

Where S >1 values indicate that later observations tend to be higher than earlier observations, 

and the opposite is true when S <-1. The variance of S, var(S), was then calculated as: 
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𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆) =  
1

18
 �𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5) −  �𝑡𝑡𝑝𝑝 �𝑡𝑡𝑝𝑝 − 1�(2𝑡𝑡𝑝𝑝 + 5)

𝑔𝑔

𝑝𝑝=1

� 

Where g is the number of tied groups and 𝑡𝑡𝑝𝑝 is the number of data in the pth group. The M-K z 

statistic was calculated to determine trend significance as follows: 

𝑧𝑧 = �
(𝑆𝑆 − 1)/√𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)     𝑖𝑖𝑖𝑖 𝑆𝑆 > 1
0                                   𝑖𝑖𝑖𝑖 𝑆𝑆 = 0
(𝑆𝑆 + 1)/√𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆)     𝑖𝑖𝑖𝑖 𝑆𝑆 < 0

 

Where a positive or negative z ≥1.96 indicates a significant increasing or decreasing trend, 

respectively, at a significance level of 0.05 (Gilbert 1987). Sen’s slope was calculated to 

determine trend magnitude, as this method is not greatly affected by missing data or outliers (Sen 

1968; Gilbert 1987). Sen’s slope (𝛽𝛽) is calculated by determining the slope of all pairs of data 

used to compute S, and then calculating the median of those slopes as: 

β =  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
�𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖�
�𝑥𝑥𝑗𝑗 −  𝑥𝑥𝑖𝑖�

   (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) 

Where yj and yi are the time series data at time xj and xi, respectively.  

Pearson correlation coefficients were calculated to determine the relationship between 

algal bloom and environmental trends. Algal bloom trends differences amongst freshwater 

ecoregions were determined through analysis of variance (ANOVA). All statistical analyses were 

executed utilizing the trend and Kendall packages of R version 4.0.3 (McLeod 2011; Pohlert 

2020).   
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Table 4.1. Number of lakes showing decreasing, increasing or no change in median summertime 

chlorophyll (µg/L), Secchi depth (m), total nitrogen (µg/L), total phosphorus (µg/L) trends from 

1990-2020 (M-Z z, significance level of p <0.05).   

  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  Significant 
decrease Decrease No change Increase 

Significant 
increase Total 

Chlorophyll   103  214  20  204  109  650  
Secchi depth  68  126  4  129  68  395  
Total nitrogen  93  109  4  104  86  396  
Total phosphorus  110  123  2  92  69  396  
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Table 4.2. Relationship between long-term algal bloom trends (chlorophyll, µg/L) 

and Secchi depth (m) trends, total nitrogen (TN, µg/L) trends, total phosphorus (TN, µg/L) 

trends, temperature (°C) trends, precipitation (mm) trends, drought (Palmer Z Index) trends, 

population density (individuals/ mile2), and lake surface area (km2). Trends were measured as M-

K S.  

  
  

Effect Estimate 
(± 95% C.I.)  p-value  r2  n  

M-K S Chlorophyll  M-K S Secchi  -0.82 (0.07)  <0.0001  0.59  395  
  M-K S TN  0.67 (0.07)  <0.0001  0.51  396  
  M-K S TP  0.54 (0.07)  <0.0001  0.34  396  
  M-K S Temperature  -0.34 (0.20)  0.0007  0.02  650  
  M-K S Precipitation  0.11 (0.18)  0.22  0.00  650  
  M-K S Drought  0.05 (0.19)  0.61  0.00  650  
  Population density  0.00 (0.00)  0.17  0.00  650  
  Lake surface area  0.26 (0.34)  0.12  0.00  650  
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Figure 4.1. Geographic distribution of the 650 study lakes. Fill colors indicate the direction and 

significance (M-K z, significance level 0.05) of algal bloom trends from 1990 to 2020. 

Freshwater ecoregions are identified by numbers: Upper Mississippi (1), Middle Missouri (2), 

Central Prairie (3), Ozark Highlands (4), Teays (5), Apalachicola (6), West Florida Gulf (7), 

Florida Peninsula (8), Chesapeake Bay (9), Atlantic Drainages (10), and St. Lawrence (11).  
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Figure 4.2. Algal bloom intensity trend direction (A, M-K S) and magnitude (B, Sen’s Slope β) 

from 1990 to 2020 for 650 lakes. Trend statistic S < -1 and S >1 indicate a decrease or increase in 

algal bloom intensity, respectively. The 650 lakes are arranged in order of increasing trend 

significance (M-Z z), based on a significance level of p <0.05.    

 

  

A 

B 
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Figure 4.3. Algal bloom intensity trend magnitude (Sen’s Slope β) from 1990 to 2020 for 650 

lakes, grouped by freshwater ecoregion. The lakes are arranged in order of increasing trend 

significance (M-Z z), based on a significance level of p <0.05.    
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Figure 4.4. Relationship between algal bloom intensity and total nitrogen (A), total phosphorus 

(B), Secchi depth (C), and summertime temperature (D) trend direction (M-K S) from 1990 to 

2020 for 650 lakes. Trend statistic S < -1 and S >1 indicate a decrease or increase 

in parameter values, respectively. Gray shading represents 95% confidence intervals.  

  

A 

C 

B 
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Appendix A. Juvenile percent survival of the six Daphnia pulicaria genotypes used in this study 

 

Table A1. Juvenile percent survival of six Daphnia pulicaria genotypes fed a diet of 100% 

Ankistrodesmus falcatus or 100% microcystin-producing Microcystis aeruginosa for 9 days. The 

six genotypes were isolated in 2017 from the surface sediment of six small glacial lakes in 

southern Michigan. Three of the lakes are oligotrophic and three lakes are moderately to highly 

eutrophic, based on total phosphorus concentrations (µg/L). Average total phosphorus 

concentrations are based on data reported by Chislock et al. (2019). SE = standard error.   

  

Source Lake Average 
TPspring (µg/L) 

Isolate 
ID 

Survival on 100% 
Ankistrodesmus diet 

(SE) 

Survival on 100% 
Microcystis diet (SE) 

Sensitive genotypes     
Sherman  8 Sherman-7 83 (17) 50 (17) 
Bassett  10 Bassett-411 83 (17) 0 (0) 
Lawrence 13 Lawrence-401 83 (17) 17 (17) 
Tolerant genotypes     
Duncan 62 Duncan-1 100 (0) 100 (0) 
Baseline 36 Base-4 83 (17) 50 (50) 
Kent  25 Kent-1 100 (0) 67 (33) 
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Appendix B. Daphnia pulicaria survivorship results 

 

Table B1. ANOVA results of survival (measured as LT50) over 10 days by cyanobacteria-tolerant 

and cyanobacteria-sensitive Daphnia pulicaria genotypes exposed to two temperatures (20°C 

and 28°C) and five diet treatments (Ankistrodesmus only (0% Microcystis), 75% Ankistrodesmus 

and 25% Microcystis (25% Microcystis), 50% Ankistrodesmus and 50% Microcystis (50% 

Microcystis), and 25% Ankistrodesmus and 75% Microcystis (75% Microcystis), and a starvation 

treatment (starved)). Extra sum of squares F-test results determine whether two- and three-way 

ANOVAs are a significant improvement in fit to the data compared to one-way ANOVA. df = 

degrees of freedom; MS= means square error.  

Test  Source df MS F-ratio p-value 
One-way Temperature 1 31.65 0.89 0.36 
ANOVA Genotype 1 4.88 0.14 0.72 
 Cyanobacteria 1 157.73 4.43 0.05 
 Error 16 35.63   
      
Two-way Temperature 1 31.65 1.36 0.26 
ANOVA Genotype 1 4.88 0.21 0.65 
 Cyanobacteria 1 157.73 6.79 0.02 
 Temperature x Genotype 1 3.60 0.16 0.70 
 Temperature x Cyanobacteria 1 219.45 9.44 0.01 
 Cyanobacteria x Genotype 1 44.88 1.93 0.19 
 Error 13 23.24   
  F-drop test p-value: 0.04  
   
Three-way Temperature 1 32.65 1.30 0.28 
ANOVA Genotype 1 4.88 0.20 0.66 
 Cyanobacteria 1 157.73 6.49 0.03 
 Temperature x Genotype 1 3.60 0.15 0.71 
 Temperature x Cyanobacteria 1 219.45 9.03 0.01 
 Cyanobacteria x Genotype 1 44.88 1.85 0.19 
 Genotype x Temperature x Cyanobacteria 1 10.43 0.43 0.52 
  Error 12 24.31   
  F-drop test p-value: 0.52 



118 
 

 
Figure B1. Time needed to kill 50% (i.e., LT50) of cyanobacteria-tolerant and cyanobacteria-

sensitive Daphnia pulicaria genotype females cultured at (a) 20°C or (b) 28°C. Diet treatments 

included Ankistrodesmus only (0% Microcystis), 75% Ankistrodesmus and 25% Microcystis 

(25% Microcystis), 50% Ankistrodesmus and 50% Microcystis (50% Microcystis), and 25% 

Ankistrodesmus and 75% Microcystis (75% Microcystis), and a starvation treatment (starved). 

Error bars = ± 1 SE. Sample size per treatment = 4.   
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Appendix C. Daphnia pulicaria juvenile somatic growth rate results 

 

Table C1. ANOVA results for juvenile somatic growth rate (length, micrometers per day) over 7 

days by cyanobacteria-tolerant and cyanobacteria-sensitive Daphnia pulicaria genotypes 

exposed to two temperatures (20°C and 28°C) and five diet treatments (Ankistrodesmus only (0% 

Microcystis), 75% Ankistrodesmus and 25% Microcystis (25% Microcystis), 50% 

Ankistrodesmus and 50% Microcystis (50% Microcystis), and 25% Ankistrodesmus and 75% 

Microcystis (75% Microcystis), and a starvation treatment (starved)). Extra sum of squares F-test 

results determine whether two- and three-way ANOVAs are a significant improvement in fit to 

the data, compared to one-way ANOVA. df = degrees of freedom; MS= means square error.   

Test  Source df MS F-ratio p-value 
One-way Temperature 1 0.0002 0.75 0.39 
ANOVA Genotype 1 0.0065 31.74 <0.0001 
 Cyanobacteria 4 0.0068 33.44 <0.0001 
 Error 60 0.0002   
      
Two-way Temperature 1 0.0013 8.16 0.01 
ANOVA Genotype 1 0.0059 37.41 <0.0001 
 Cyanobacteria 4 0.0066 41.42 <0.0001 
 Temperature x Genotype 1 0.0000 0.21 0.65 
 Temperature x Cyanobacteria 4 0.0004 2.47 0.05 
 Cyanobacteria x Genotype 4 0.0006 3.78 0.01 
 Error 51 0.0002   
  F-drop test p-value: 0.01 
   
Three-way Temperature 1 0.0013 8.33 0.01 
ANOVA Genotype 1 0.0060 38.20 <0.0001 
 Cyanobacteria 4 0.0066 42.30 <0.0001 
 Temperature x Genotype 1 0.0001 0.63 0.43 
 Temperature x Cyanobacteria 4 0.0004 2.45 0.05 
 Cyanobacteria x Genotype 4 0.0006 3.84 0.01 
 Genotype x Temperature x Cyanobacteria 2 0.0002 1.54 0.22 
  Error 49 0.0002   
  F-drop test p-value: 0.22 
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Figure C1. Average juvenile somatic growth rates (length, micrometers per day) of 

cyanobacteria-tolerant and cyanobacteria-sensitive Daphnia pulicaria genotype females cultured 

at (a) 20°C or (b) 28°C over 7 days. Diet treatments included Ankistrodesmus only (0% 

Microcystis), 75% Ankistrodesmus and 25% Microcystis (25% Microcystis), 50% 

Ankistrodesmus and 50% Microcystis (50% Microcystis), and 25% Ankistrodesmus and 75% 

Microcystis (75% Microcystis), and a starvation treatment (starved). Unique letters represent 

statistically different observations (p <0.05) across genotypes and temperature treatments. Error 

bars = ± 1 SE. Sample size per treatment = 4.   
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Appendix D. Number of neonates produced per female Daphnia pulicaria  

 

 Table D1. ANOVA results for number of neonates produced per female over 10 days by 

cyanobacteria-tolerant and cyanobacteria-sensitive Daphnia pulicaria genotype females exposed 

to two temperatures (20°C and 28°C) and five diet treatments (Ankistrodesmus only (0% 

Microcystis), 75% Ankistrodesmus and 25% Microcystis (25% Microcystis), 50% 

Ankistrodesmus and 50% Microcystis (50% Microcystis), and 25% Ankistrodesmus and 75% 

Microcystis (75% Microcystis), and a starvation treatment (starved)). Extra sum of squares F-test 

results determine whether two- and three-way ANOVAs are a significant improvement in fit to 

the data, compared to one-way ANOVA. df = degrees of freedom; MS= means square error.   

 
 
 
 
 
 

Test  Source df MS F-ratio p-value 
One-way  Temperature 1 28.03 3.828 0.05 
ANOVA Genotype 1 77.2 10.55 0.0017 
 Cyanobacteria 4 255.77 34.94 <0.0001 
 Error 73 7.32   
      
Two-way  Temperature 1 28.03 5.88 0.01 
ANOVA Genotype 1 77.24 16.23 0.0002 
 Cyanobacteria 4 255.77 53.74 <0.0001 
 Temperature x Genotype 1 0.04 0.01 0.93 
 Temperature x Cyanobacteria 4 23.05 4.84 0.002 
 Cyanobacteria x Genotype 4 34.40 7.23 <0.0001 
 Error 64 4.76   
  F-drop test p-value: <0.0001 
   
Three-way  Temperature 1 28.03 5.963 0.01 
ANOVA Genotype 1 77.24 16.44 0.0001 
 Cyanobacteria 4 255.77 54.42 <0.0001 
 Genotype x Temperature 1 0.04 0.01 0.93   
 Temperature x Cyanobacteria 4 23.05 4.90 0.001 
 Cyanobacteria x Genotype 4 34.40 7.32 <0.0001 
 Genotype x Temperature x Cyanobacteria 4 5.65 1.20 0.32   
  Error 60 4.70   
  F-drop test p-value: 0.32 
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Figure D1. Average fecundity of cyanobacteria-tolerant and cyanobacteria-sensitive Daphnia 

pulicaria genotype females cultured at (a) 20°C or (b) 28°C, measured as total number of 

neonates produced per female over 10 days. Diet treatments included Ankistrodesmus only (0% 

Microcystis), 75% Ankistrodesmus and 25% Microcystis (25% Microcystis), 50% 

Ankistrodesmus and 50% Microcystis (50% Microcystis), and 25% Ankistrodesmus and 75% 

Microcystis (75% Microcystis), and a starvation treatment (starved).  Unique letters represent 

statistically different observations (p <0.05) across genotypes and temperature treatments. Error 

bars = ± 1 SE. Sample size per treatment = 4. 

 


