
Scheduling DAGs For Minimum Finish Time and Power Consumption on

Heterogeneous Processors

Except where reference is made to the work of others, the work described in this thesis
is my own or was done in collaboration with my advisory committee. This thesis does

not include proprietary or classified information.

Kiran Kumar Palli

Certificate of Approval:

Prathima Agrawal, Co-Chair
Professor
Department of Electrical and Computer
Engineering

Sanjeev Baskiyar, Chair
Assistant Professor
Department of Computer Science and
Software Engineering

Levent Yilmaz
Assistant Professor
Department of Computer Science and
Software Engineering

Stephen L. McFarland
Acting Dean, Graduate School



Scheduling DAGs For Minimum Finish Time and Power Consumption on

Heterogeneous Processors

Kiran Kumar Palli

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama
August 8, 2005



Scheduling DAGs For Minimum Finish Time and Power Consumption on

Heterogeneous Processors

Kiran Kumar Palli

Permission is granted to Auburn University to make copies of this thesis at its discretion,
upon the request of individuals or institutions and at their expense. The author reserves
all publication rights.

Signature of Author

Date

Copy sent to:

Name Date

iii



Vita

Kiran Kumar Palli, son of Prakash Palli and Sita Laxmi Palli, was born in Manthani,

a small village in the district of Karimnagar, Andhra Pradesh, India. He graduated

from Gautami Junior college, Hyderabad and then earned his Bachelor of Engineering

in Electronics and Communication Engineering from Osmania University, Hyderabad,

India in 2002.

iv



Thesis Abstract

Scheduling DAGs For Minimum Finish Time and Power Consumption on

Heterogeneous Processors

Kiran Kumar Palli

Master of Science, August 8, 2005
(B.E., Osmania University–Hyderabad,India 2002)

50 Typed Pages

Directed by Sanjeev Baskiyar

In the past years, scheduling has always been a hot research area, and with the ad-

vancement of processor technologies, there has been an increasing focus on the strategies

that allow managing resource allocation in an optimal way. There is a large amount of

increase on battery operated devices, and hence low power design is taking a main role

in manufacturing most of today’s electronics.

In a distributed environment, an application is usually decomposed into several in-

dependent and/or interdependent sets of co-operating tasks and assigned to a set of

available processors for execution. These sets of tasks can be represented by a directed

a-cyclic graph (DAG). The set of processors can be homogenous or heterogeneous. Het-

erogenous processors vary in factors like processor’s speed, available memory, operating

system, power supply, etc. The role of a good scheduling algorithm is to efficiently assign

each task to a processor depending on the resources needed such that the communication

overhead between related tasks is reduced and the precedence relations among tasks are

satisfied. This will minimize the total finish time and total power consumption.

v



The scheduling algorithm developed in this work to minimizes both total execu-

tion time (makespan) and total power consumption of a DAG structured application

on heterogeneous processors. This algorithm combines the techniques of heterogeneous

earliest finish time (HEFT)[1] and voltage scaling[2] to obtain both minimum makespan

and low power consumption. The processors used are considered to be continuously

voltage scalable in range of operation. After the initial scheduling is done using HEFT

for minimum makespan, the processors are voltage scaled down and/or frequency scaled

down, i.e., slowed down, to reduce the power consumption whenever there is an idle time.

This voltage scaling is performed without violating the precedence relationships among

tasks. The simulation results show power saving of 22.5% over simple HEFT and same

makespan as of simple HEFT.

vi



Acknowledgments

I would like to acknowledge the support and guidance from Dr. Sanjeev Baskiyar,

whose suggestions and directions have a major influence on all aspects of this thesis. It

was a great pleasure to undergo this learning experience. I thank Dr. Prathima Agrawal

and Dr. Levent Yilmaz for being on my committee and providing me valuable inputs.

I thank Dr. Fa Foster Dai and Dr. Richard Jaeger who supported me during the first

year of my study at Auburn. I am thankful to all my friends at Auburn for being the

surrogate family during my Masters.

I cannot end without thanking my parents, brother, and sister on whose constant

encouragement and love I have relied throughout my life. And to my loving wife for

always being there but never asking why it was taking so long. To them I dedicate this

thesis.

vii



Style manual or journal used Journal of Approximation Theory (together with the

style known as “aums”). Bibliography follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty.

viii



Table of Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Prior Work on Scheduling for Low Power . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Derivation of formula for power calculation . . . . . . . . . . . . . . . . . 10
2.2 Scheduling of DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Scheduling on heterogeneous processors . . . . . . . . . . . . . . . . . . . 12

3 HEFT 14
3.1 Graph Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 HEFT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Voltage Scaling 16
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Voltage Scaling Design Challenges . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Voltage Scaling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Low Power HEFT Algorithm 21
5.1 Problem Redefined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 LPHEFT for minimum finish time and minimum power consumption . . . 21
5.3 Random DAGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Results and Discussions 27

7 Conclusions and Future Work 35

Bibliography 36

ix



List of Figures

2.1 A Simple Task DAG Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 An Example of Power-Delay Optimization [2] . . . . . . . . . . . . . . . . 19

5.1 Low Power Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Percentage power reduction w.r.t. CCR . . . . . . . . . . . . . . . . . . . 28

6.2 Percentage power reduction w.r.t. PAF . . . . . . . . . . . . . . . . . . . 30

6.3 Percentage power reduction w.r.t. shape parameter . . . . . . . . . . . . . 32

6.4 Percentage power reduction w.r.t. computation range . . . . . . . . . . . 34

x



List of Tables

6.1 Percentage power reduction w.r.t. CCR . . . . . . . . . . . . . . . . . . . 28

6.2 Percentage power reduction w.r.t. PAF . . . . . . . . . . . . . . . . . . . 30

6.3 Percentage power reduction w.r.t. shape parameter . . . . . . . . . . . . . 32

6.4 Percentage power reduction w.r.t. computation range . . . . . . . . . . . 34

xi



Chapter 1

Introduction

Heterogeneous computing uses a diverse set of resources connected over a high speed

network to support computationally intensive applications. These applications involve

distributed and parallel processing tasks. These tasks often require to be scheduled in an

optimum way so that the computation is done in minimum time, consuming minimum

resources. Task scheduling finds extensive use in ubiquitous computing, which operates

in resource constrained environment.

1.1 Problem Statement

There has been a lot of research in scheduling the tasks either for minimum finish

time or for high parallelism. There are many publications describing static, dynamic or

hybrid scheduling algorithms for these purposes. Tasks are scheduled either on super

computers or on resource constrained processors. Any real-time environment will be

imposed with some constraints like speed, power, memory, etc. Hence it is very important

to address these issues in scheduling tasks. There is little work done which addresses

both makespan and power consumption. Most of the work done to reduce the power

consumption in a distributed system neglects the finish time of such a system. The power

saving is obtained at the cost of longer execution time.

There are many applications which require both minimum finish time and minimum

power consumption. Power consumption is a major issue in many real time distributed

systems such as real time communication in satellites, as most applications running on a

1



power-limited systems inherently impose temporal constraints on finish time. A new area

of interest is multi-hop radio networks used for sensor kind data traffic. New wireless

communication systems are expected to evolve using this system. These networks are

distributed networks operating on power constraints, also called power-aware distributed

systems (PADS).

Hence there is a need for a scheduling algorithm which would effectively reduce the

overall power consumption and yet attain the best possible makespan.

1.2 Prior Work on Scheduling for Low Power

The Classification of Low Power Research as described in [4] is as follows:

• Power Estimation Techniques (Power Model): A literature survey on existing power

estimation methodologies at various levels of abstraction namely, instruction-level,

architectural level and gate-levels, is presented here.

– Instruction-level: Nikolaidis et al.[5] presents a power consumption measure-

ment configuration for embedded processing systems. This work takes an as-

sembly or machine level program as input and gives an estimate of the energy

consumption of the specific program in the specific processing systems. This

provides an accurate estimation of power consumption even in the presence

of instantaneous power supply variations.

– Architecture-level:[6] describes a method for architecture-level estimation of

power consumption. It provides cycle-by-cycle power consumption data of

the architecture on the basis of the instruction/data flow stream. At the

2



architecture level, Landman et al.[7] presented a technique for the characteri-

zation of module library using signal statistics. Landman et al.[8] presented a

methodology for low-power design-space exploration at the architectural level

of abstraction. Black-box power models for the architecture-level components

were generated [9] and used to estimate power while preserving the accuracy

of the gate or circuit level estimation.

– Gate-level Power: [10] provides a method for gate-level measurement of power

consumption. This work compares all the different kinds of power estimation

models and proves that gate-level estimation of power consumption is the

most accurate measurement.

The power estimation techniques at the gate level and lower levels of abstrac-

tion can be broadly classified into

1. Simulation based techniques

2. probabilistic techniques; and

3. statistical techniques

One of the earliest techniques proposed were simulation based techniques

[11], [12] , where the average power is calculated by monitoring both the

supply voltage and current waveforms. These are too slow to handle very

large circuits. Other simulation based techniques [13], [14] assume that the

power supply voltages and ground voltages are constant, estimating only the

supply current waveform.

3



In the probabilistic techniques [15], user supplied input signal probabilities

are propagated into the circuit. To achieve this, special models for the com-

ponents have to be developed and stored in the module library. Various other

probabilistic techniques [16], [17] were proposed but all of these approaches

are applicable only to combinational circuits.

Statistical techniques [18], [19] do not require any specialized models for the

components. The idea is to simulate the circuit with randomly generated

input vectors until power converges to the average power. The convergence is

tested by statistical mean estimation techniques.

• Power Optimization Techniques: Competition is driving the requirement for power

optimization and shorter design cycles. Until now, low power design methodology

has consisted of power estimation, utilizing tools that report power consumption

of a design at various stages of the design cycle. Today’s designs require power

optimization tools that address power consumption early in the design cycle.

– Hardware Optimization

∗ Behavior-level: Transformations, Scheduling, Resource Allocation, etc.

∗ Architecture-level: Low power flip flop, Low power adder, etc.

∗ Circuit-level: Low power circuit, etc.

– Software Optimization

∗ Instruction-level: Low power compiling, Low power instruction schedul-

ing, etc.

∗ System-level: Dynamic power management, Low power memory manage-

ment, etc.

4



There has been a lot of work to minimize the power consumption at all the levels.

This work tries to minimize the power consumption using voltage and frequency scaling.

1.3 Contributions

This scheduling algorithm effectively addresses both the issues of minimizing the

makespan and reducing the power consumption. This algorithm uses the HEFT algo-

rithm as proposed by Topcuoglu et al.[1] without modifying it at all. After the initial

scheduling is done using HEFT for minimum finish time, this algorithm performs voltage

scaling and frequency scaling to reduce the power consumption without decreasing the

finish time obtained by HEFT. Frequency scaling is done whenever there is an idle time

on the processor. Also, care is taken to meet the precedence relationships.

1.4 Organization of the report

The remainder of the thesis is organized as follows. In the next section, we describe

the necessary background information on scheduling and related terminology. Different

types of scheduling and differences between scheduling on homogeneous processors and

heterogeneous processors are also discussed. Prior work on scheduling for minimum

finish time and prior work on low power scheduling algorithms are discussed.

Chapter 3 introduces the concepts of HEFT and discusses its algorithm in detail.

Chapter 4 discusses how voltage scaling can be used to reduce the power consumption

of a processor.

Chapter 5 combines the concept of HEFT and voltage scaling to create a new algorithm

called low power heterogeneous earliest finish time (LPHEFT).

5



Results and graphs are discussed in chapter 6.

Chapter 7 ends the thesis with conclusions and future work.

6



Chapter 2

Background

Definition of a DAG: In a distributed environment, an application can be de-

composed into a set of computational tasks. These tasks may have data dependencies

among them, thereby creating a partial order of precedence in which the tasks may be

executed. DAGs are widely used to represent dependancy graphs in scheduling of both

homogeneous and heterogeneous processors. DAGs are an important class of graphs and

have many applications such as those involving precedence among events.

Basic terminology:

• node: a task or sub-task being executed

• link(edge): represents data dependencies between nodes

• root: a node with no incoming edges

• leaf: a node with no outgoing edges

An example of a task DAG is shown in Figure 2.1.

In this thesis, a DAG is represented by the tuple G=(V,E,P,T,C,W) where V is the

set of v nodes, E is the set of e edges between the nodes, and P is a set of p processors.

E(vi, vj) is an edge between nodes vi and vj . T is the set of costs T (vi, pj), which

represent the computation times of tasks vi on processor pj . C is the set of costs C(vi, vj),

which represent the communication cost associated with the edges E(vi, vj). Since intra-

processor communication is insignificant compared to inter-processor communication,

C(vi, vj) is considered to be zero if vi and vj execute on the same processor. W is the set

7



Figure 2.1: A Simple Task DAG Graph

8



of costs W (vi, vj), which represent the power consumption costs of tasks vi on processor

pj . The length of a path is defined as the sum of node and edge weights in that path.

Node vp is a predecessor of node vi if there is a directed edge originating from vp

and ending at vi. Likewise, node vi is a successor of node vi if there is a directed edge

originating from vi and ending at vi. We can further define pred(vi) as the set of all

predecessors of vi and succ(vi) as the set of all successors of vi. An ancestor of node vi

is any node vp that is contained in pred(vi), or any node va that is also an ancestor of

any node vp contained in pred(vp).

The earliest execution start time of node vi on processor pj is represented as

EST (vi, pj). Likewise the earliest execution finish time of node vi on processor pj is rep-

resented as EFT (vi, pj). EST (vi) and EFT (vi) represent the earliest start time upon

any processor and the earliest finish time upon any processor, respectively. Tavail[vi, pj ]

is defined as the earliest time that processor pj will be available to begin executing task

vi. Hence

EST (vi, pj) = maxTavail[vi, pj ], maxvpεpred(vi)(EFT (vp, pk) + C(vp, vi)) (2.1)

EFT (vi, pj) = T (vi, pj) + EST (vi, pj) (2.2)

The maximum clause finds the latest time that a predecessor’s data will arrive at

pj . The goal of low power HEFT algorithm is to minimize both makespan and total

power consumption (makepower) which are defined as follows:

9



makespan = maxEFT (vi), (2.3)

where vi is the exit node of the graph.

makepower =
∑

W (vi, pj) (2.4)

Schedule length (makespan) is a major metric to measure the performance of a

scheduling algorithm on a graph. Since a large set of graphs is used, it is necessary to

normalize the schedule length to a lower bound called schedule length ratio (SLR). The

SLR of an algorithm on a graph is defined by

SLR =
makespan

ΣniεCPMIN
minpjεQWi,j

(2.5)

The denominator is the summation of the minimum computation costs of tasks on

CPMIN . The SLR of a graph cannot be less than one since the denominator is the lower

bound.

2.1 Derivation of formula for power calculation

The processor clock frequency, f, as explained in [21] can be expressed in terms of

the supply voltage, Vdd , and the threshold voltage, Vt, as follows:

f = k(Vdd − Vt)2/Vdd (2.6)

where k is a constant.

10



From the above equation, we can derive Vdd as a function of f, F(f),

Vdd = F (f) = (Vt +
f

2k
) +

√
(Vt +

f

2k
)2 − (Vt)2 (2.7)

The processor power, p, can be expressed in terms of the frequency, f, switched

capacitance, N and the supply voltage, Vdd, as:

p =
1
2
fN(Vdd)2 =

1
2
fNF (f)2 (2.8)

Given the no. of clock cycles, ηi, for executing task i, its energy consumption, Ei,

under supply voltage Vi and clock frequency, fi, is given by

Ei = (
ηi

fi
) ∗ p(fi) (2.9)

2.2 Scheduling of DAGs

A lot of work has been done in scheduling of DAG based applications to minimize

finish time. But it is a well known fact that scheduling of DAGs is NP-complete. In

other words, for a given arbitrary task, it is unlikely that a polynomial time algorithm

exists for an optimal schedule [13]. Scheduling can be preemptive or non-preemptive. In

this work we deal with non-preemptive scheduling.

The task scheduling algorithms for a distributed system can be classified broadly

into two categories viz., (1) Static scheduling and (2) Dynamic scheduling In static

scheduling, the allocation of tasks to processors is decided in advance and the allocation

is done only when all resources are available. The logical allocation of jobs takes place

at compile-time and it does not have any runtime overhead.

11



• Advantages: Simple, low run-time overhead

• Disadvantages: Low resources utilization, lack of adaptation to changing situa-

tions

On the other hand, in dynamic scheduling, the allocation of jobs to the processors is

done as soon as the resources are available and is decided in advance. Therefore, logical

allocation of jobs is done at run-time. But it suffers from the drawback of runtime

overhead as the allocation chosen may not be the best.

• Advantages: Optimal schedules in terms of CPU utilization

• Disadvantages: High run-time cost, no assurance of schedulability.

There are some hybrid scheduling algorithms which integrate both static and dy-

namic scheduling heuristics.

2.3 Scheduling on heterogeneous processors

In a real-time distributed environment, the availability of computing resources varies

a lot which results in both temporal as well as spatial heterogenity. Heuristic-based

and guided-random-search based algorithms are two principal approaches of scheduling

DAGs. Heuristic algorithms are again classified as list scheduling, cluster scheduling

and task duplication based scheduling. Guided random search based algorithms can be

classified as Genetic Algorithms, Simulated Annealing and Local Search Technique. List

scheduling heuristic tries to minimize a predefined cost function by first making a list of

all tasks based on their priorities and then selecting the appropriate processor based on

the heuristic. List scheduling algorithms are more practical and give a better finish time

12



than others. Examples of list scheduling are HEFT [1], Heterogeneous N-predecessor

Decisive Path (HNPD)[3], Modified Critical Path (MCP) [18], Dynamic Critical Path

[19], Dynamic Level Scheduling[20] and Mapping Heuristic [21]. Among the algorithms

to schedule DAGs onto heterogeneous processors, HNPD, HEFT and STDS are shown

to be the best.

Task duplication can minimize interprocessor communication and hence results in

shorter finish times. HNPD[3] is shown to give better makespan than HEFT. It combines

the techniques of HEFT and Scalable Task Duplication Scheduling (STDS)[28]. HNPD

uses task duplication to minimize finish time, however this approach increases power

consumption. We therefore chose to perform voltage scaling on HEFT.

13



Chapter 3

HEFT

HEFT is an insertion-based algorithm, i.e it tries to schedule a task between two

already scheduled tasks. This chapter first introduces the graph attributes used for

setting the task priorities. Then it discusses the HEFT algorithm.

3.1 Graph Attributes

Tasks are ordered with respect to their upward and downward ranking. The upward

rank of a task ni is recursively defined as follows.

ranku(ni) = Wi + maxnjεsucc(ni)(Ci,j + ranku(nj)) (3.1)

where succ(ni) is the set of immediate successors of task ni, Ci,j is the average

communication cost of edge(i,j) over all processor pairs, and Wi is the average the set of

computation cost of task ni. Since the rank is computed recursively by traversing the

graph upward, starting from the exit task, it is called upward rank. For the exit task

nexit, the upward rank value is equal to

ranku(nexit) = Wexit (3.2)

Basically, ranku(ni) is the length of the critical path from task ni to the exit task,

including the communication cost of task ni. Similarly, the downward rank of a task ni

is recursively defined by

14



rankd(ni) = maxnjεpred(ni)rankd(nj) + wj + C(j, i) (3.3)

where pred(ni) is the set of immediate predecessors of task ni. The downward ranks

are computed recursively by traversing the task graph downward starting from the entry

task of the graph. Basically, rankd(ni) is the longest distance from the task to task ni,

excluding the computation cost of the task itself.

3.2 HEFT Algorithm

The HEFT algorithm can be divided into two phases, the task prioritizing phase

and processor selection phase. In the task prioritizing phase, the priority of each task

is set to its upward rank. Next, the task list is sorted in decreasing order of upward

rank. HEFT algorithm has an insertion based policy in which it tries to insert a task in

the earliest idle time-slot between two already scheduled tasks on a processor. The idle

time-slot should be large enough to accommodate the task to be inserted. Also, insertion

of the task should not violate any precedence relationships. The HEFT algorithm has

an O(exq) time complexity for e edges and q processors. For a dense graph when the

number of edges is proportional to O(v2) (v is the number of tasks), the time complexity

is on the order of O(v2xp).

15



Chapter 4

Voltage Scaling

Power consumption is the limiting factor for the functionality of devices operating

on batteries with rapidly increasing computing and communication costs. Hence it is

very important to utilize the energy resources as efficiently as possible.

4.1 Definition

Voltage scaling is a technique in which the core power supply voltage of a system is

varied depending on the processing load, to decrease the total power consumption. But

reducing the power supply voltage also reduces the speed of execution. In some instances

it is observed that with the reduction in supply voltage from 5.0V to 3.3V, there is about

56% reduction in power consumption[26].

4.2 Voltage Scaling Design Challenges

The embedded system or the circuit board should have an operating system that

has a power management section and a hardware which scales the frequency and voltage

dynamically. The operating system commands the voltage and frequency scaling circuit

to change the operating frequency and processor core voltage depending on the processing

load. The voltage scaling circuit controls the core power supply voltage. The power

supply usually requires milliseconds to switch from one voltage to another. This delay

between the logic control signal and the actual voltage change is called voltage scaling

latency. CMOS devices typically require higher voltage to operate at higher frequencies.

16



Stable operation is not guaranteed during power supply voltage transition. Frequency

scaling circuitry should stop the clock during this voltage transition. In order to maintain

the timing integrity of a synchronous system, there should be no runt clock cycles. A

runt clock cycle is a clock cycle which ends before its expected clock period. For example,

when a clock speed is switched from 300MHz to 33MHz, it should do so only after the

current 300MHz cycle. It may be necessary to implement an additional handshaking

mechanism between the processor and the frequency scaling circuitry.

4.3 Voltage Scaling Algorithm

Consider the example in Figure. 4.1 (a) and (b), where to perform task T6 we need

to first perform task T2 and T3. Assume T3 takes 20 seconds to complete, while T2

takes only 15 seconds on their respective processors. So, the processor executing task

T2 has an idle time of 5 seconds which means it can operate at a lower speed, i.e., at

a low supply voltage. Suppose, that T4 takes 15 seconds or less to complete. Now, the

processor executing task T4 has some idle time and hence can operate at low power.

Next, tasks T2 and T4 can be merged into a group so that they both can be dynamically

voltage scaled at the same time as shown in Figure 4.1 (c). Such merging decreases

the number of times one must dynamically switch the voltage. Again T2 and T4 can be

merged if they don’t have an off chip data transfer. Thus given a voltage scaled schedule,

tasks are merged wherever possible and then merged tasks which can operate at lower

frequencies are determined.

Consider Figure 4.2 which graphs energy consumption against execution time at

different power supply voltages and clock frequencies. This clearly shows the advantage

of voltage and frequency scaling. When a task is executed at 5V power supply and

17



Figure 4.1: Voltage Scaling

18



Figure 4.2: An Example of Power-Delay Optimization [2]

19



50MHz frequency, it consumes 40J of energy. But if the power supply in the last quarter

of the execution time is scaled down to 2.5V and frequency to 25MHz, it meets the

deadline and consumes only 32.5J of energy. If the power supply is scaled down 4V

and frequency to 40MHz from the start, it still meets the deadline requirements and

consumes only 25J of energy.

20



Chapter 5

Low Power HEFT Algorithm

5.1 Problem Redefined

There are many time critical applications which operate on low power and require

parallel processing of their tasks such as wireless embedded sensor networks, real time

communication in satellites and other image processing applications. There has been

little work done which addresses both low power design and minimum finish time.

5.2 LPHEFT for minimum finish time and minimum power consumption

This algorithm, which is a low power version of HEFT, gives us the same makespan

and yet consumes considerably less power than the HEFT algorithm. In this algorithm,

the processor is voltage scaled during idle time. Idle time is obtained when one processor

is waiting to execute a task which is dependant on another task being executed by some

other processor. The idle time is eliminated by decreasing the processor’s speed thereby

increasing the time taken for the processor to execute the previous task. Care has been

taken that all precedence relationships are satisfied.

21



The Algorithm

1 Set the computation costs of tasks and communication costs of

edges with mean values. Also set the power consumption of tasks

for each processor.

2 Calculate the ranku for all tasks by traversing graph upward start-

ing from the exit task.

3 Sort the tasks in a scheduling list by non-increasing order of ranku

values.

4 while there are unscheduled tasks in the list

5 Select the first task ni, from the list for scheduling

6 for each processor Pj in the processor-set (PjεQ)

7 compute EFT(ni, Pj) value using the insertion based

scheduling policy

8 Assign task ni to the processor Pj that minimizes EFT

of task ni

End for

End while

9 For all k, m, i, j

do

10 if(EFT (nk, Pi) + C(Pi, Pj)) > EFT (nm, Pj)

EFT (nm, Pj) = EFT (nk, Pj) + C(Pi, Pj)

Continued on next page

22



Table 5.1 – continued from previous page

11 While (nkisparentofanodewhichisachildofnm)

END For

12 Calculate the total power consumption which is the sum of power

consumption of all tasks using the formula p = fNV 2dd
2 = fNF (f)2

2

where Vdd = F (f) = (Vt + f
2k ) +

√
((Vt + f

2k )− V 2
t )

Figure 5.1: Low Power Algorithm

By using the First algorithm, if(EFT (N1, P1) + C(P1, P2)) > EFT (N2, P2) we

would increase EFT(N2,P2) because P2 has to however wait for N1 to execute N4.

If searched for idle time on P2, then we would find some time ifEFT (N2, P2) <

EST (N4, P2)

23



This is in fact the same as looking for any available idle time on all the processors.

This leads to our alternate algorithm which is more effective.

Alternate Algorithm

1 Set the computation costs of tasks and communication costs of

edges with mean values. Also set the power consumption of tasks

for each processor.

2 Calculate the ranku for all tasks by traversing graph upward,

starting from the exit task.

3 Sort the tasks in a scheduling list by non-increasing order of ranku

values.

4 while there are unscheduled tasks in the list

do

5 Select the first task ni, from the list for scheduling

6 for each processor Pj in the processor-set (PjεQ)

7 compute EFT (ni, Pj) value using the insertion based

scheduling policy

8 Assign task ni to the processor Pj that minimizes EFT

of task ni

End for

End while

9 For all k, m, j

Continued on next page

24



Table 5.2 – continued from previous page

do

10 if((EFT (nk, Pj) < EST (nm, Pj)))

EFT (nk, Pj) = EST (nm, Pj)

11 While(nk is a node which is scheduled immediately before nm

on Pj)

END For.

12 Calculate the total power consumption which is the sum of power

consumption of all tasks using the formula p = fNV 2dd
2 = fNF (f)2

2

where Vdd = F (f) = (Vt + f
2k ) +

√
((Vt + f

2k )− V 2
t )

5.3 Random DAGs

Random weighted directed-acyclic-graphs are generated each time computing the

results. It requires the following input parameters.

• Number of nodes in the graph (ν),

• Shape parameter of the graph (α),

• Mean out degree of a node, (out− degree)

• Communication to computation ratio, (CCR)

• Computation range (β),

25



In each experiment, these values are varied over a set of values given below.

SET(ν) = 10, 20, 40, 60, 80

SET(α) = 0.5, 1.0, 2.0

SET(out− degree) = 1, 2, 3, 4, 5

SET(CCR) = 0.1, 0.5, 1.0, 5.0, 10.0

SET(β) = 0.1, 0.25, 0.5, 0.75, 1.0

These combinations give 2,250 different DAG types. Assigning a number of input

parameters and selecting each input parameter from a set of values will generate diverse

DAGs with wide variety of characteristics.

26



Chapter 6

Results and Discussions

The performance of the algorithm was compared with respect to various graph

characteristics. Figure. 6.1 gives the net percentage reduction in power consumption

with respect to varying CCR. The percentage of power reduction is increasing as CCR

is increasing. This is because, as CCR increases, the communication cost of tasks in-

creases and thus more tasks are scheduled on same processor rather than choosing a new

processor. This increases idle time between tasks among processors and thus more power

reduction.

27



0.1 0.5 1  5  10 
0

5

10

15

20

25

30

35

40

45

50

CCR

P
er

ce
nt

ag
e 

P
ow

er
 R

ed
uc

tio
n

Figure 6.1: Percentage power reduction w.r.t. CCR

CCR Power Consumption
Without Voltage Scaling With Voltage Scaling

0.1 2882 2737
0.5 3722 3386
1 2940 2533
5 4091 2591
10 4788 2476

Table 6.1: Percentage power reduction w.r.t. CCR

28



Figure. 6.2 graph shows the variation of percentage reduction in power consumption

with respect to processor availability factor (PAF). As the number of processors increase,

initially there is an increase in power reduction. Afterwards, there is not much difference

in power reduction as not all processors are efficiently utilized. In the case of PAF=1,

each processor is assigned only one task. All processors are assumed to be in sleep mode

before starting their execution and after finishing their execution. Hence there is not a

lot of difference in power reduction as PAF increases after certain point. If low power

algorithm alone assumes sleep mode, a much higher power reduction can be reported.

29



0.1 0.25 0.5 0.75 1   
17

18

19

20

21

22

23

24

25

Processor Availability Factor

P
er

ce
nt

ag
e 

P
ow

er
 R

ed
uc

tio
n

Figure 6.2: Percentage power reduction w.r.t. PAF

PAF Power Consumption
Without Voltage Scaling With Voltage Scaling

0.1 3186 2408
0.25 3445 2411
0.5 3766 2734
0.75 3892 2998
1 4133 3171

Table 6.2: Percentage power reduction w.r.t. PAF

30



Figure. 6.3 shows the graph of varying percentage of power reduction with respect

to shape parameter. If SP < 1, it means a longer graph with less parallelism and if

SP > 1 it means a short graph with high parallelism. For graphs with small parallelism,

tasks are more dependent and processors have to wait more, thus more power reduction

is possible using voltage scaling.

31



0.5 1.0 2.0
18.5

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

Shape Parameter

P
er

ce
nt

ag
e 

P
ow

er
 R

ed
uc

tio
n

Figure 6.3: Percentage power reduction w.r.t. shape parameter

Shape Power Consumption
Parameter Without Voltage Scaling With Voltage Scaling

0.5 3311 2257
1 3895 2887
2 3848 3090

Table 6.3: Percentage power reduction w.r.t. shape parameter

32



Figure. 6.4 shows the graph of percentage power reduction with respect to compu-

tation range. As computation range increases, heterogeneity among processors increases.

Hence different processors execute similar tasks at different speeds. Hence we can find

more idle time between tasks. Hence we see a slight increase in power reduction as

computation range increases.

33



0.1 0.25 0.5 0.75 1   
20

20.5

21

21.5

22

22.5

23

23.5

24

Computation Range

P
er

ce
nt

ag
e 

P
ow

er
 R

ed
uc

tio
n

Figure 6.4: Percentage power reduction w.r.t. computation range

Computation Power Consumption
Range Without Voltage Scaling With Voltage Scaling

0.1 4364 3291
0.25 4146 3122
0.5 3780 2845
0.75 3292 2400
1 2840 2066

Table 6.4: Percentage power reduction w.r.t. computation range

Thus we observe a considerable power reduction when compared to the base algo-

rithm HEFT. An average of 22.5% reduction in power consumption is observed.

34



Chapter 7

Conclusions and Future Work

This work reports a new scheduling algorithm which tries to minimize both makespan

and power consumption. The LPHEFT algorithm has been shown to obtain the least

finish time with an average power reduction of about 22.5% when compared to the base

algorithm HEFT. The results are based on a experimental study using a large set of

randomly generated graphs with various characteristics.

This work can be improved to obtain more reduction in power consumption by slow-

ing down all the tasks which do not interfere the critical path. Also, power consumption

should be calculated by slowing down all the tasks which comes at the expense of slightly

higher finish time. This study can be used to find the optimum frequency of operation

for the best possible minimum finish time and minimum power consumption.

35



Bibliography

[1] H. Topcuoglu, S. Hariri and Min-You-wu, “Peformance-effective and low-complexity
task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and
Distributed Systems, Vol 13, Issue 3, pp. 260-274, March 2002.

[2] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable
voltage processors,” Proceedings of 1998 International Symposium on Low Power
Electronics and Design, pp. 197-202, August 1998.

[3] S. Baskiyar and C. Dickinson, “Scheduling directed a-cyclic task graphs on a
bounded set of heterogeneous processors, using task duplication,” Elsevier (to ap-
pear).

[4] H. Edwin and M. Sha, “Tutorial Scheduling for DSP and Embedded Systems with
minimum code-size and low-power,” Department of Computer Science, University
of Texas at Dallas.

[5] S. Nikolaidis and Th. Laopoulos, “Instruction-level power consumption estimation of
embedded processors for low-power applications,” Journal of Computing Standards
and Interfaces, Vol. 24, Issue 2, pp. 133-137, June 2002.

[6] Rita Yu Chen, M. J. Irwin and R. S. Bajwa, “Architecture-level power estimation
and design experiments,” ACM Transactions on Design Automation of Electronic
Systems, Vol. 6, Issue 1, pp. 50-66, January 2001.

[7] P. Landman and J. Rabaey, “Power estimation for higher level synthesis,” Proceed-
ings of EDAC-EUROASIC, pp. 361-366, February 1993.

[8] P. Landman, “Low power architectural design methodologies,” Ph. d Thesis, Mem-
orandum no. UCB/ERL M94/62, August 1994.

[9] P. Landman and J. Rabaey, “Black-box capacitance models for architectural power
analysis,” Proceedings of 1994 International Workshop on Low Power Design, pp.
165-170, April 1994.

[10] T. Ishihara and H. Yasuura, “Basic experimentation on accuracy of power estimation
for CMOS VLSI circuits,” Proceedings of the 1996 International Symposium on Low
Power Electronics and Design, pp. 117-120, 1996.

[11] S. M. Kang, “Accurate simulation of power dissipation in VLSI circuits,” IEEE
Journal of Solid-State Circuits, Vol. 21, Issue no. 5, pp. 889-891, october 1986.

36



[12] G. Y. Yocoub and W. H. Ku, “An accurate simulation technique for short-circuit
power dissipation based on current component isolation,” IEEE International Sym-
posium on Circuits and Systems, pp. 1157-1161, 1989.

[13] A. C. Deng, Y-C. Shiau and K-H. Loh, “Time domain current waveform simulation
of CMOS circuits,” IEEE International Conference on Computer-Aided Design, pp.
208-211, Nov 1988.

[14] R. Tjarnstrom, “Power dissipation estimate by switch level simulation,” IEEE In-
ternational Symposium on Circuits and Systems, pp. 881-884, May 1989.

[15] M. A. Cirit, “Estimating dynamic power consumption of CMOS circuits,” Proceed-
ings of International Conference on Computer-Aided Design, pp. 534-537, November
1987.

[16] F. N. Najm, “Transition Density: A new measure of activity in digital circuits,”
IEEE Transactions on Computer-Aided Design, Vol. 12, Issue no. 2, pp. 310-323,
February 1993.

[17] A. Ghosh, S. Devdas, K. Keutzer and J. White, “Estimation of average switch-
ing activity in combinational and sequential circuits,” Proceedings of 29th Design
Automation Conference, pp. 253-259, 1992.

[18] C. M. Huizer, “Power dissipation analysis of CMOS VLSI circuits by means of
switch level simulation,” IEEE European Solid State Circuits Conference, Grenoble,
France, pp. 61-64, 1990.

[19] M. Xakellis and F. Najm, “Statistical estimation of the switching activity in digital
circuits,” 31st ACM/IEEE Design Automation Conference, pp. 728-733, 1994.

[20] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, R. W. Brodersen, “Opti-
mizing power using transformations,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, Vol. 14, Issue 1, pp. 12-31, January 1995.

[21] Jiong Luo and N. Jha, “Static and dynamic Variable voltage scheduling algorithms
for real-time heterogeneous distributed embedded systems,” Proceedings of the 15th
International Conference on VLSI Design, pp. 719-726, January 2002.

[22] Dongkun Shin and Jihong Kim, “Power-aware scheduling of conditional task graphs
in real-time multiprocessor systems,” Proceedings of the 2003 IEEE International
Symposium on Low Power Electronics and Design, pp. 408-413, August 2003.

[23] Jiong Luo and N. Jha, “Power-profile driven variable voltage scaling for heteroge-
neous distributed real-time embedded systems,” Proceedings of the 16th Interna-
tional conference on VLSI Design, pp. 369-375, January 2003.

37



[24] C. H. Gebotys and R. J. Gebotys, “Power minimization in heterogeneous process-
ing,” Proceedings of the 29th Annual Hawaii International Conference on System
Sciences,Vol. 1, pp. 330-337, January 1996.

[25] Yang yu and V. K. Prasanna, “Power-aware resource allocation for independent
tasks in heterogeneous real-time systems,” Proceedings of the 9th International Con-
ference on Parallel and Distributed Systems, pp.341-348, December 2002.

[26] J. Pouwelse, K. Langandoen and H. Sips, “Dynamic voltage scaling on a lowpower
microprocessor,”

[27] Shyam Chandra, “Reducing dynamic power consumption through voltage and fre-
quency scaling,” March 31st, 2005.

[28] S. Ranaweera, D. P. Agrawal, “A task duplication based scheduling algorithm for
heterogeneous systems,” Proceedings of 14th International Symposium on Parallel
and Distributed Processing, pp. 445-450, May 2000.

[29] C. D. Polychronopoulos, “On program restructuring scheduling and communica-
tion for parallel processing systems,” CSRD-595, University of Illinois at Urbana
Champaign, August 1986.

[30] S. Uppaluri, B. Izadi, D. Radhakrishnan, “Low-power dynamic scheduling in het-
erogeneous systems,” Proceedings of the International Conference on Embedded Sys-
tems and Applications, pp. 261-273, June 2003.

[31] Wen-Tsong Shine, and C. Chakrabarti, “Low-power scheduling with resources oper-
ating at multiple voltages,” IEEE Transactions on Circuits and Systems II:Analog
and Digital Signal Processing, Vol. 47, Issue 6, pp. 536-543, June 2000.

[32] A. Manzak, C. Chakrabarti, “Variable voltage task scheduling algorithms for mini-
mizing energy/power,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Vol. 11, Issue 2, pp. 270-276, April 2003.

[33] D. Zhu, R. Melhem, and B. R. Childers, “Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multiprocessor real-time systems,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 14, Issue 7, pp. 686-700,
July 2003.

[34] I. Ahmad, M. K. Dhodhi, R. Ul-Mustafa, “DPS: dynamic priority scheduling heuris-
tic for heterogeneous computing systems,” IEEE Proceedings on Computers and
Digital Techniques, Vol. 145, Issue 6, pp. 411-418, November 1998.

[35] M. Wu and D. Gajski, “Hypertool: A programming aid for message passing sys-
tems,” IEEE Transactions on Parallel and Distributed Systems, Vol. 1, pp. 330-343,
July 1990.

38



[36] Y. Kwok and I. Ahmad, “Dynamic Critical-Path Scheduling: An effective technique
for allocating task graphs to multiprocessors,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 7, Issue 5, pp. 506-521, May 1996.

[37] G. C. Sih, and E. A. Lee, “A compile-time scheduling heuristic for interconnection-
constrained heterogenous processing architectures,” IEEE Transactions on Parallel
and Distributed, Vol. 4, Issue 2, pp. 175-187, February 1993.

[38] H. El-Rewini and T.G. Lewis, “Scheduling parallel program tasks onto arbitrary
target machines,” Journal of Parallel and Distributed Computing, Vol. 9, pp. 138-
153, 1990.

39


