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Abstract 

 One popular means of aerial localization and navigation in GPS-denied environments is 

visual terrain relative navigation.  Terrain relative navigation involves performing image 

registration with sensed aerial camera imagery and georeferenced satellite maps to produce the 

geographic translation and rotation of the camera.  One popular terrain relative navigation 

technique depends on matching feature descriptors.  These features, however, are intolerant to 

major changes in perspective, light, vegetation, season, and other scene changes and produce 

excessive amounts of false matches.  Alternatively, image correlation can be used for registering 

a sensed image to a reference image but is extremely intolerant to perspective differences for 6 

degree of freedom camera systems. 

This research explores the use of a combination of corner detection and normalized cross 

correlation for aerial vehicles at different altitudes.  New methods for using dynamic search 

windows within reference satellite imagery are explored to constrain the pose estimation and 

increase image matching accuracy.  The algorithm is tested with both simulated aerial imagery and 

experimentally sensed imagery captured with rigid mounted cameras on unmanned aerial vehicles 

and high altitude balloons.  It is evaluated on its successful match rate and pose estimation error 

compared to GPS.   It has approximately 75% successful match rate in simulation and 20% 

successful match rate in experimental datasets.  The filtered pose estimate error is decreased in 

simulation in effectively over 95% of the frames and 20% in the experimental cases.  Integration 

of this algorithm with other navigational sensors and algorithms would provide improvements to 

the overall navigation solution. 
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Chapter 1:  Introduction 

Global navigation is a problem humanity has studied for millennia with its origins in 

astronomy for naval navigation.  Today, global navigation is primarily reliant on the Global 

Navigation Satellite System (GNSS).  One part of GNSS is the Global Positioning System (GPS). 

GPS is increasingly known to be susceptible to jamming, spoofing, and other forms of disruption.  

As more satellite constellations are being launched by various companies and nations, it is essential 

that alternative forms of navigation be developed for redundancy and strategic advantage for 

defense purposes.  In addition, as humans are planning to return to the moon and set foot on Mars 

in the coming future, alternative forms of navigation are essential where navigational satellite 

constellations do not yet exist.  One form of GPS-denied navigation is visual navigation.  There 

are two main types of aerial visual navigation: relative and global.  Relative visual navigation such 

as visual odometry and optical flow compare successive frames to provide an estimated location 

based on previous movements.  These methods are susceptible to drifting, whereas global visual 

navigation uses maps and other data sources to match the current sensed scene to a geo-referenced 

source.  This produces an absolute position fix that does not drift over time.  This method is often 

called geo-registration or terrain relative navigation (TRN).  

1.1. Problem Definition 

Terrain relative navigation is easiest in areas rich with distinct features and for aerial 

platforms with a stabilized camera.  For many applications, these luxuries are not available.  Lower 

altitude imagery has less distinct landmarks and is more susceptible to seasonal changes causing 

large position errors over certain areas.  Higher altitude imagery is further from the terrain 

reference potentially causing more pose uncertainty.  By using camera gimbals, the imagery is 



   

 

2 

considered stabilized and can be pointed orthogonal to the ground.  TRN for this type of application 

is a 3 Degree of Freedom (3DOF) problem.  Aerial systems such as missiles, planetary landers, 

parachute-payloads, and high altitude balloons can be restricted from using gimbals to maintain 

the camera orthogonal to the ground due to weight, size, cost, or form factor requirements.  When 

cameras are non-orthogonal to the ground, the imagery appears warped compared to the satellite 

maps.  TRN for these applications is a 6DOF problem requiring more complex analysis to 

accommodate the additional uncertainty.   

There are two different scopes for terrain relative navigation: coarse tracking and fine 

tracking.  This research focuses on the latter.  A coarse tracking system is used when the pose is 

only known to be within a given region that could be kilometers wide.  Most coarse tracking 

systems assume a 3DOF system to narrow the results.  A fine tracking system takes an input of a 

coarse pose and an estimated error to produce a pose estimation within a few meters in translation 

and orientation in a few degrees of truth. 

1.2. Related Work 

Aerial terrain relative navigation is a well-studied research area in the recent two decades 

with the improvements in computer vision algorithms, cameras, and processing hardware. NASA, 

for the landing of the Spirit and Opportunity Mars rovers, used a combination of corner detection 

and cross-correlation to identify features on the Martian surface [1] for navigation in 2004.  More 

details on algorithms related to NASA’s approach is described in Section 2.2.3. Another notable 

application of terrain relative navigation algorithms was demonstrated on an unmanned aerial 

vehicle (UAV) in 2008 by Conte and Douherty using edge detection coupled with visual odometry 

[2].  In 2015, researchers in China used the histogram of oriented gradients of the sensed and 

reference images along with a particle filter to match the images [3].  In 2016, Venable from the 
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US Air Force Institute of Technology used feature descriptors to compare the sensed imagery from 

fixed-wing UAVs to reference map features stored in a database. 

When humans look at aerial images the first things recognized are features like roads, 

buildings, water, and vegetation.  It could be useful to train an algorithm to recognize these features 

to aid in image matching with deep learning and neural networks. In 2010, a university in Sweden 

produced results of training a neural network to semantically segment the aerial images into “super 

pixels” that can be matched via a class histogram [4] instead of using feature based detectors. In 

2018, Nile University produced some results by using a deep convolutional neural network based 

framework that classifies and matches buildings for urban geo-localization [5].  While this method 

works well in urban environments, rural areas where few buildings are present this would be 

insufficient. In 2019, a university in Brazil compared a method using a convolutional neural 

network and a multilayer perceptron neural network for edge matching as opposed to using feature-

based detectors [6].  While much recent research is in the deep learning approaches to this problem, 

deep learning is not applicable to all applications due to restrictions in computation hardware and 

limited training datasets. 

1.3. Contributions 

The focus of the research presented is the development of terrain relative navigation using 

visual imagery at a variety of altitudes by using a rigidly-mounted downward facing camera in 

simulation and various aerial platforms with a translational accuracy that is similar in magnitude 

to modern GPS systems.  To that end, the following contributions are made: 

• Global positioning algorithms are developed to match sensed imagery to a georeferenced 

satellite image map using a combination of corner detection and cross-correlation based on 

prior art. 
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• A novel method of dynamic window sizing for cross-correlation is derived to allow the 

estimated error range of the window to be specified in world coordinates. 

• A low-overhead method of simulating camera imagery to test vision-based navigation is 

implemented to verify the performance and accuracy of the navigational algorithms. 

1.4. Thesis Outline 

Chapter 2 is a discussion of the necessary background in the development of image matching 

algorithms.  Chapter 3 reviews some of the basics of geographic systems and navigational sensors.  

Chapter 4 defines the simulation and localization algorithms used.  Chapter 5 provides an overview 

of how the experimental data is collected with a UAV and high altitude balloons. Chapter 6 

presents the performance of the algorithms on the simulated data and Chapter 7 presents the 

performance on the experimental data.  Finally, Chapter 8 provides conclusions from the work 

presented here and provides direction for future work in aerial terrain relative navigation.  

Additional information on how the high altitude balloon payloads are constructed, tested, and their 

performance is documented in Appendix A and Appendix B. 
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Chapter 2:  Image Matching with Computer Vision 

Map-matching with images involves comparing a “sensed” image from a camera mounted 

to an aircraft compared with a known “reference” image from a satellite or another aircraft.  This 

chapter discusses the basics of image processing and matching to compare two images. 

2.1. Multiple View Geometry and Image Processing 

As humans, we have two eyes that can convert electromagnetic waves in the visible spectrum 

into useful information.  This information is based on the light emission and reflection of objects 

in a set field of view.  The brain can interpret this information to understand color, size, distance, 

orientation, and type of object.  A camera serves a similar function to human eyes and is precisely 

designed to capture light information in a specific way depending on application.  To use camera 

information for navigational purposes, algorithms are designed around the physics of how cameras 

capture information.  

2.1.1. Pin-hole camera model and image representation 

Light always travels in a straight line until it hits a new material and refracts, reflects, or is 

absorbed.  An ideal pin-hole camera is a device where the aperture that lets light pass through is 

infinitesimally small.  The light then is projected onto a flat plane, film, or sensor.  When observing 

the projection, the image is upside down to preserve the straight line of travel of light as shown in 

Figure 2.1.  The quantity f represents the focal length, the distance between the imaging plane and 

the aperture.  The larger the focal length, the larger the projection size.  In modern cameras, the 

focal length is typically measured in millimeters (mm). 
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Figure 2.1: A diagram of the pin-hole camera model where an object is projected through a small 

aperture and thin lens to a flat plane. 

Typically, an aperture has a circular hole for light to travel through.  This means the image 

projected if unobstructed would be circular.  Conventionally images are square or rectangular 

because image sensors are square or rectangular.  Therefore, an image projection size is based on 

its focal length and image sensor size.  This property is referred to as field of view (FOV).  An 

image sensor is responsible for converting the analog intensities into discrete blocks of values that 

can be interpreted by a computer or saved onto a digital storage medium for later use.  Each of the 

blocks is called a pixel and has intensity data encoded in one or more color channels as a numerical 

value scaled relative to a maximum value, usually a power of two.  For example, an 8-bit high-

definition (HD) grayscale image can be represented as a 1080 × 1920 matrix where each pixel 

has a value from 0 to 2! = 255.  The coordinate system convention of an image is defined in  

Figure 2.2 where an image has M rows and N columns of pixels. 
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Figure 2.2: A diagram of a typical image sensor.  The quantities w and h represent the width and 

height of the sensor in mm.  The axis M	and N represent the rows and columns of pixels. 

2.1.2. Lenses and focal length 

The pin-hole model is a great for understanding camera geometry and basic physics of light, 

however it has limitations especially with respect to zooming.  A lens refracts light from an object 

in a scene to the image sensor as depicted in Figure 2.3.  D" is the distance between the camera 

lens and the scene.  D# is the distance between the lens center and the image sensor.  The focal 

length, f, is distance between the lens and the focal point.  By changing the lens shape or using a 

combination of lenses, the focal length can be adjusted to provide a different zoom level.  This 

also changes the value of the angular field of view (AFOV), θ. 

 
Figure 2.3: Diagram of light travelling from the scene to a projection on image sensor through a 

lens.   

Given a set focal length and sensor size, the AFOV can be determined.  For an image to be 

in focus, f = D#.  Using trigonometry, the following relationship can be described. 
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	 tan(θ) = $! #⁄
&
	 (2.1)	

Solving for θ 

	 θ = tan'" :$! #⁄
&
;	 (2.2)	

Therefore, the horizontal field of view and vertical field of view are the following, where w# and 

h#	are the sensor size in mm. 

	 HFOV(°) = tan'" :(! #⁄
&
;	 (2.3)	

	 VFOV(°) = tan'" :$! #⁄
&
;	 (2.4)	

2.1.3. Camera Intrinsic and Extrinsic Parameters 

To simplify camera calculations, individual parameters can be arranged into matrices.  There 

are two distinct categories of parameter: intrinsic and extrinsic.  Intrinsic parameters are based on 

the internal properties of the camera.  Extrinsic parameters are based on the overall position and 

orientation of the camera.  The following is the camera intrinsic matrix. 

	 K = C
f) s c)
0 f* c*
0 0 1

F	 (2.5)	

The focal length can be split into the components by dividing by the pixel size in mm like f) =

f p)⁄  and f* = f p*⁄ .  The parameters c) and c* represent the offset of the optical center from the 

center of the image.  The skew, s, is non-zero if the image is not perfectly rectangular or square.   

Extrinsic parameters have two components, a rotation R and a translation t in world 

coordinates.  Intuitively, rotation is understood as Euler angles yaw (ψ), pitch (θ), and roll (ϕ) in 

degrees or radians.  These three values do not fully describe orientation unless a rotation sequence 

is specified.  A 3D rotation matrix is a 3 × 3 matrix that fully describes an orientation as shown in 

the following equations. 
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	 R = C
r"" r"# r"+
r#" r## r#+
r+" r+# r++

F	 (2.6)	

	 = C
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

F C
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ
F C
1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

F	 (2.7)	

Translation units are dependent on the application and could be in relative coordinates like 

East and North or they could be in absolute coordinates like latitude and longitude.  Translation is 

typically represented in a Cartesian 3D coordinate system.  More information on translational 

coordinate systems is presented in Section 3.1.  A translation vector for a cartesian coordinate 

system is represented as the following. 

	 t = Q
x
y
z
U	 (2.8)	

2.1.4. Lens Distortion 

Lenses are designed in a variety of shapes and sizes that can produce different distortion 

effects onto images.  In addition, the manufacturing process can introduce small defects that can 

cause non-uniform distortion.  To determine an accurate image projection, the image must be 

calibrated to the selected lens.  This process is important especially for comparing images from 

different cameras and viewpoints.  There are a variety of methods for lens calibration, but the most 

common method is to use a set of images of a checkerboard at different angles.  There are 

algorithms available that can scan the checkerboard images for the points where the squares 

intersect.  These points are compared to an ideal checkerboard.  The discrepancies between points 

are used to select coefficients in a mathematical model of the lens. 

There are two main types of distortion: radial and tangential.  Radial distortion is due to the 

shape of the lens(es).  There are two types of radial distortion: pincushion and barrel.  Pincushion 
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shrinks the center of the image whereas barrel expands the center of the image.  The diagrams in 

Figure 2.4 shows the effects of radial distortion on a checkerboard. 

        
Figure 2.4: (Left) A standard checkerboard grid. (Center) A checkerboard with radial pincushion 

distortion as vertical lines bow outward like the edges of a striped throw pillow. (Right) A 
checkerboard with radial barrel distortion as vertical lines bow inward on the edges like the 

seams of a wooden barrel. 

A tutorial by MathWorks® [7] includes a description of the method used in the Camera 

Calibration Toolbox for MATLAB® [8].  The Python and C++ library, OpenCV, uses a similar 

process [9].  Given the x and y locations of points in an undistorted and distorted image and r =

Vx# + y#, the following equations can be solved for the radial distortion coefficients k", k#, and 

k+.  These coefficients are stored for later use with the same equations to de-warp any image. 

	 x,-./01/2, = x(1 + k"r# + k#r3 + k+r4)	 (2.9)	

	 y,-./01/2, = y(1 + k"r# + k#r3 + k+r4)	 (2.10)	

Tangential distortion is due to a slight misalignment between the lens and the image sensor 

where they are not parallel.  Figure 2.5 shows an exaggerated comparison of this misalignment.  

The tangential distortion is calculated with the same process as radial distortion to find the 

coefficients p" and p#. 

	 x,-./01/2, = x + [2p"xy + p#(r# + 2x#)	 (2.11)	

	 y,-./01/2, = y + [p"(r# + 2y#) + 2p#xy]	 (2.12)	
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Figure 2.5: (Left) the lens and sensor are perfectly aligned, (Right) the lens is dramatically 

misaligned from the sensor. 

The process for calibrating a camera involves taking ten to twenty pictures of a printed 

checkerboard taped to a planar surface.  The Camera Calibration Toolbox for MATLAB® imports 

these images and a measurement of a single square width in mm.  It then identifies the points on 

the checkerboard and finds a least square fit of an ideal checkerboard using the equations above 

for all the images simultaneously.  Figure 2.6 shows a visualization of this process.   

     
Figure 2.6: Images annotated with the Camera Calibration Toolbox for MATLAB®.  The origin 
of each checkerboard is a yellow circle labeled with (0,0).  The respective axes are labeled.  Each 

checkerboard point detected is labeled with a green circle. 
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2.1.5. Histogram Equalization 

An image processing technique to help in the comparison of two images from different 

cameras with very different lighting is histogram equalization.  In the case of 8-bit digital grayscale 

images, there is a set number of pixels each with an intensity integer value 0 to 255.  A histogram 

can be formed where the x-axis is intensity from 0 to 255 and the y-axis is the number of pixels 

for each corresponding intensity value in the image as depicted in the top row of Figure 2.7.   

Therefore, brighter images would have more pixels in the right-hand section of the histogram and 

darker images would have more pixels in the left-hand section of the histogram.   

Histogram equalization is the process that adjusts the intensity of the pixels to spread out the 

histogram curve.  This dramatically improves the contrast of an image without requiring specific 

tuning parameters.  Let ℎ(𝑥5) be the number of pixels with intensity 𝑥5.  Therefore, the accumulated 

histogram should be equal to the total number of pixels or the product of the number of rows M 

and the number of columns N. 

	 ∑ ℎ(𝑥5) = 𝑀𝑁#66
578 	 (2.13)	

The following relationship should be met for a given intensity value of k for an equalized 

histogram. 

	 ∑ ℎ̀(𝑥5)9
578 = :;(9=")

#66
		 (2.14)	

By defining j as the intensity value in the original histogram, the transformation between the 

original and equalized histogram is as follows. 

	 𝑘 = 𝑟𝑜𝑢𝑛𝑑 :#66
:;

∑ ℎ(𝑥5)
?
578 − 1;		 (2.15)	

This provides the mapping between the intensity j to the intensity k. 
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As an example, an image from Google Satellite maps is processed with histogram 

equalization in Figure 2.7.  In the histograms the large peak at intensity 100 is widened where the 

distinct intensity values are separated by small gaps.  In the imagery, this shows a high amount of 

added contrast.  While the resulting image does not look as good for human viewing, the details 

are much more distinct. 

 
Figure 2.7: (Top row) Original reference image from Google Satellite maps and the 

corresponding histogram.  (Bottom row) Histogram equalized reference image and the 
corresponding histogram 

Performing histogram equalization on a sensed image from a UAV produces a similar result 

in Figure 2.8.  The peak at intensity level 150 is spread out.  There are now pixels occupying the 

entire range from 0 to 255 but with some small gaps.  The spike at 255 is unaffected by the process.  

Comparing the imagery between the equalized sensed image and the equalized reference image 
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with a visual inspection demonstrates how histogram equalization helps make the images look 

more similar. 

 
Figure 2.8: (Top row) Original sensed image from Google Satellite maps and its corresponding 
histogram.  (Bottom row) Histogram equalized sensed image and its corresponding histogram 

2.2. Image Registration 

Image registration is the process of corresponding the coordinate system of one image into 

another.  This could be a smaller image within a larger image or two images of similar size.  There 

are a few different methods of image registration such as corner detection, template matching, and 

feature detection. 

2.2.1. Correlation Template Matching 

A way of comparing images is through correlation.  Correlation is based on the 2D 

convolution of a template image T(x, y) with a larger window image W(x, y).  2D convolution 
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slides the template image throughout the window image and sums the element-based product of 

the two images for each position of the template. 

	 R(x, y) = T(x, y) ∗ W(x, y) = ∑ (T(x@, y@)W(x + x@, y + y@)))"*" 	 (2.16)	

The normalized cross-correlation can be found by dividing the convolution result by the square 

root of the squared convolution. 

	 R(x, y) =
∑ (BC)",*"EFC)=)",*=*"E)#"$"

G∑ B()",*")!#"$" ∑ F()=)",*=*")!#"$"
	 (2.17)	

The best correlation occurs at max(R(x, y)).  This is depicted in Figure 2.9 where the bottom 

left of the correlation result shows a vibrant white dot.  The coordinates of this pixel represent the 

translation between the template image and the window.  The normalized cross-correlation 

performs well in some situations but is not tolerant to the 6DOF case where the template and 

window images are not orthogonal or where the images are rotated.  Any rotational difference 

between two image prevents the corresponding pixels aligning in a cross-correlation across the 

entire image.  For this reason, cross-correlation alone is not useful for this application without 

additional steps to accommodate a variety of orientations. 
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Figure 2.9: Template matching with Google satellite imagery: (Top-left) Template (Top-right) 

Window (Bottom-left) Correlation result (Bottom-right) Location of template based on 
correlation result in window. 

2.2.2. Feature Matching and Pose Estimation 

Instead of correlating each pixel of an image, individual points of interest of the image can 

be extracted, matched, and filtered to produce a more robust pose estimate result. 

2.2.2.1. Corner Detection 

Some of the first feature detectors in computer vision were edge and corner detection.  

Corners are easy to identify due to the distinct changes in image intensity.  One of the earliest and 

most prominent corner detectors was proposed by Chris Harris and Mike Stephens in 1988 now 

known as the Harris corner [10].  It characterizes the intensity displacement of adjacent pixels to 

a given pixel based on the equation below where w is a rectangular or Gaussian window of the 

image I. 

	 E(x, y) = ∑ w(u, v)[I(x + u, y + v) − I(u, v)]#H,I 	 (2.18)	
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With the Taylor expansion, this equation can be approximated as the following where I) and I* are 

the partial derivatives of the image in the respective directions. 

	 E(x, y) ≈ [x y]M q
x
yr	 (2.19)	

	 M = ∑ w(x, y) s
I)I) I)I*
I)I* I*I*

t),* 	 (2.20)	

To classify which regions are corners, an equation to score the result is formulated. 

	 R = det(M) − kwtrace(M)x#	 (2.21)	

When R is large, it indicates a corner.  When R is less than zero, the region is an edge.  When 

R is a small number, the selected region is flat.  The threshold of R can help tune how many corners 

are detected.   

In 1994, Jianbo Shi and Carlo Tomasi proposed a modification to the Harris corner algorithm 

to form the Shi Tomasi corners [11]. Their main modification was redefining the method to find 

R.  By taking the eigenvalues of M, the Harris corner R can be represented as the following. 

	 R = λ"λ# − k(λ" + λ#)	 (2.22)	

Shi and Tomasi instead defined R as a minimum of the two eigenvalues of M to improve the 

performance of corner detection. 

	 R = min	(λ", λ#)	 (2.23)	

Figure 2.10 shows an example of both corner detection algorithms in action.  There are some 

obvious corners that are detected, but many that did not pass through the threshold.  One of the 

disadvantages of corner detection is that it only uses a single strength factor.  A single metric does 

not allow for accurate matches between two related points in multiple distinct images.  Multiple 

metrics are needed to have acceptable matching. 



   

 

18 

    
Figure 2.10: Corner detection on Google satellite imagery over Auburn University (Left) Harris 

corners (Right) Shi Tomasi corners 

2.2.2.2. SIFT 

Feature detectors can detect many features in each image assuming it is sufficiently detailed.  

The challenge is detecting a decent number of accurate matches.  The simplest matching algorithm 

is the brute-force matcher.  It selects a feature in one image and finds a distance metric to every 

feature in the second image.  This distance metric varies for each type of feature detector but is 

more closely related to the strength and orientation of the feature rather than the pixel distance in 

the overlapped images.  The result with the nearest neighbor is the selected match.  Figure 2.11 

shows an example of matched SIFT features where a small section of the image is cropped and 

rotated.  The detected features are represented with red dots and the matches are represented as 

yellow lines.  From a visual inspection many of the matches are correct, but there are two outliers 

that match the clipped image to areas way outside of the corresponding area. 
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Figure 2.11: SIFT matches of cropped and rotated Google satellite imagery. 

2.2.2.3. Match Filtering and Pose Estimation 

When performing feature matching between real images and satellite images, there are a 

variety of concerns to take into consideration.  Figure 2.12 highlights these differences due to 

changes in time, perspective, and environment.  While human eyes are very capable of 

understanding these images were captured over the same area, training computer algorithms to 

perform this same comparison takes some refinement.  Using SIFT with the full Google satellite 

reference image and a UAV sensed image produces the image matches in Figure 2.13, but a visual 

inspection identifies numerous false matches. 

 
Figure 2.12: Difference between Google satellite imagery (left) and UAV imagery (right).  (1) 
Shadows moving due to change in time and season. (2) Perspective changes due to different 

altitudes of camera.  (3) Environmental changes such as moving or absent vehicles. 
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Figure 2.13: Example of feature matching with real imagery 

2.2.2.4. Random Sample Consensus (RANSAC) 

Feature matching often produces numerous bad matches.  Typically matches should follow 

a uniform geometric pattern.  If the images are simply translated from one another, all the matches 

should be parallel.  If the images are rotated, the matches should form a radial pattern.  A 

mathematical model can best fit these matches to remove outliers.  One common algorithm to form 

this optimization is called Random Sample Consensus (RANSAC) [12].  It accomplishes the best 

fit by starting with a randomly selected subset of the data.  It then fits the best model to that subset.  

It repeats this process for a set number of trials.  The trial with the highest number of inliers is 

selected as the best fit.  The plots in Figure 2.14 show an example of this process on scatter plot 

of points where RANSAC can produce a line that better fits the trend of data than least squares.  

RANSAC is typically paired with a method of pose estimation. 

Matched points @t0
Matched points @t1
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Figure 2.14: A comparison of using the least squares method to fit a line to a set of noisy data 

versus using the RANSAC method.  It also can select inliers indicated in orange and reject 
outliers indicated in blue. 

2.2.2.5. Projective Transformation and Homography 

Once feature matches are determined and filtered, additional processing is needed to extract 

the camera pose between the two images.  The problem is related to image registration where there 

exists a mathematical model to transform one image to match another geometrically.  An affine 

transformation, represented by a 3 × 3 matrix with the last row identical to the last row of an 

identity matrix, is capable of translating, reflecting, scaling, rotating, and shearing an image for a 

total of six degrees of freedom.  A projective transform is similar to an affine transformation but 

uses all nine values of the transformation matrix for a total of eight degrees of freedom.  This 

matrix is referred to as a homography matrix.  The following equation and Figure 2.15 represent 

this transformation with (x, y) as image 1’s pixel coordinates and (x@, y@) as the new coordinates 

of the transformed pixel. 

	 C
x′
y′
1
F = C

h"" h"# h"+
h#" h## h#+
h+" h+# h++

F Q
x
y
1
U = H Q

x
y
1
U	 (2.24)	
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Figure 2.15: Projective transformation of reference and aerial sensed image of planar surface 

described by a rotation matrix R and translation matrix t. 

The homography matrix is determined using the following equation. 

	 𝐻"# = 𝑅"# +
J%!K&

L
	 (2.25)	

The rotation matrix from image 1 to 2 is represented as 𝑅"#.  The tranlation vector is 𝑡"#.  The normal 

vector is labelled as n.  The normal distance, or the distance of the camera to the ground, is d.  This 

equation allows the homography matrix to be determined for any extrinsic parameters of the 

camera when it is pointed towards the ground. 

2.2.2.6. Perspective-n-Point (PnP) 

One of the limits of homography, is the assumption the world is a planar surface.  While this 

works for some applications, the terrain in the real world is not planar even in relatively flat 

regions.  Perspective-n-Point (PnP) estimates an object’s pose from a 3D-2D point correspondence 

using world coordinates.  A minimum of three points are required to produce a closed solution.  

This configuration is called P3P.  The following equations from [12] define the relationship 

between the world points and the image points as depicted in Figure 2.16. 

	 (RMN)# = a# + b# − 2ab[cos(θMN)]		 (2.26)	

	 (RMO)# = a# + c# − 2ac[cos(θMO)]		 (2.27)	
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	 (RNO)# = b# + c# − 2bc[cos(θNO)]		 (2.28)	

 
Figure 2.16: Diagram depicting geometry of P3P algorithm. 

PNP can be described by a mathematical model similar to the projective transformation with 

accommodation for world units.  

	 C
x-PQ
y-PQ
1
F = K[I+×+ 0+×"] s

R t+×"
0"×+ 1 t �

X(01S,
Y(01S,
Z(01S,
1

�	 (2.29)	

In practice, P3P alone is not reliable for aerial map-matching because it is rare to have a 

perfect set of matches.  Instead RANSAC paired with PnP produces many solutions for the pose, 

selecting the best feature matches as inliers.  The authors of the RANSAC algorithm proposed 

aerial cartography with RANSAC PnP [12].  Each solution is checked by reprojecting the image 

points into the world frame as visualized in Figure 2.17.   The reprojection error is the distance in 

pixels between the reprojected point and the world point.  The RANSAC PnP algorithm attempts 

to minimize this reprojection error over numerous iterations to determine the best fit rotation and 

translation matrix.  The variant of PnP used in this thesis is based on the improvements made in 

[13] by Terzakis and Lourakis in 2020 that efficiently improves the chance PnP will find a global 

minimum. 
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Figure 2.17: Reprojected sensed image points on Google satellite imagery reference map.  The 

corresponding matches are indicated by yellow lines. 

2.2.3. Corner Selected Windows with Normalized Cross-Correlation Matching 

One method to improve the successful match rate between two images is by using a search 

window-based fine-tracking method.  The method assumes a coarse pose estimate with some 

uncertainty is known from either a previously determined state or a coarse search method.  The 

Vision-Aided Inertial Navigation (VISINAV) [14] system proposed by Mourikis et al. is based on 

the Mars Exploration Rover (MER) Descent Image Motion Estimation System (DIMES) [1] used 

for the descent stage of the Spirit and Opportunity rovers built by NASA’s Jet Propulsion 

Laboratory (JPL).  The “marked landmark” algorithm described performs a fine adjustment of the 

projection of a sensed image on a satellite reference image and digital elevation map (DEM) to 

determine the latitude, longitude, and altitude of marked landmarks.  The following steps will 

outline the implementation of Algorithm 2 specified in [14] on a UAV imagery case. 

Step 1: Select multiple templates in descent image 

This step is performed using the Shi Tomasi corner detection algorithm to identify corners 

in the sensed image.  Additional image processing was done to narrow down the corners such as, 

dilating and eroding corners.  It then sorts by corner strength and removes close duplicates.  Only 
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the top 30 corners are considered as shown in Figure 2.18.  One of the corners, highlighted in red, 

is studied for this example due to its distinct visual representation in both the sensed and reference 

image. 

   
Figure 2.18: (Left) Corners detected in simulated sensed image from Google satellite maps with 

Shi Tomasi corner detection.  Selected point for analysis is indicated by a red dot.  (Right) 
Corner in a zoomed-in view of sensed image 

Step 2: Compute homography that rectifies descent image to map using lander position and 

attitude estimation. 

For this example, the homography correlation between the sensed and reference image were 

determined with manual point correspondence.  In a full navigational system, this homography is 

determined with the coarse pose from another computer vision algorithm or with sensor fusion 

using the equations in Section 2.2.2.5.  Figure 2.19 shows this correspondence between the sensed 

and reference image.  Usually, the images would show signs of pixel shifting as the coarse pose is 

not guaranteed to be the same as truth. 
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Figure 2.19: (Lighter foreground) Google satellite maps simulated sensed image overlapped with 

(Darker background) Bing aerial maps reference image with homography 

Step 3: Warp each template using homography 

A template is a cropped section of the sensed image with a height and width as a tunable 

number of pixels around each corner.  The template is warped based on the coarse homography 

matrix as shown in Figure 2.20.  This warped template is later used in a correlation search in a 

window.  Because the match for the corner should be close to the reprojection of the corner, only 

the surrounding area should be searched.  The homography matrix is used to reproject an expanded 

version of the template outline onto the reference image.  A window is defined by a given area 

around the reprojected corner is demonstrated in Figure 2.21.  The window size is also set to a 

constant parameter as a number of pixels in width and height.  See Section 2.2.4 for a method to 

dynamically set the window size. 
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Figure 2.20: (Left) Selected corner template from sensed image.  (Right) Warped template to 

reference frame with homography 

 
Figure 2.21: Window around selected corner 

Step 4: Spatially correlate each warped template with map. 

The warped template is matched with respect to the window in the reference image using 

the normalized cross-correlation algorithm described in Section 2.2.1.  This returns a matrix 

slightly smaller than the reference image representing the correlation in the frequency domain.  

The correlation result is displayed in Figure 2.22.  Even though the window has some repeated 

features, the template matching does a good job of finding a peak value. 
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Figure 2.22: Correlation of template in search window.  Higher intensities in yellow represent a 
stronger correlation and lower intensities in blue represent a weaker correlation.  The two peaks 

are indicated with arrows. 

Step 5: Mark match as valid if correlation peak passes checks on height, width, and ratio to 

second-highest peak 

According to [14] the following expression should be used to fit a biquadratic surface to the 

peak correlation 3x3 neighborhood: 

	 au# + bv# + cuv + du + ev + f	 (2.30)	

The next step is to determine whether the match is valid.  This is done with a few different tests.  

The simplest, is determining whether the first highest correlation match max height is above a 

threshold.  This removes any low correlation results.  The next test is to determine whether the 

peak width exceeds a threshold. This helps remove matches with a low frequency correlation in a 

certain direction such as along an edge where the match would be unreliable.  Another test finds 

the ratio between the highest correlation peak to the second highest peak to help remove matches 

with repetitive terrain elements.  A subpixel correction is used to improve the match accuracy and 

removes any matches that have a correction greater than 1.5 pixels determined with the following 

two equations based on the bicubic surface expression. 

 uT =
'#N,=O2
3MN'O!

 (2.31) 



   

 

29 

 vT =
'#M2=O,
3MN'O!

 (2.32) 

Step 6: If match is valid, generate ML. 

For each valid match, the feature is stored into a database with the corresponding latitude, 

longitude, and elevation.  Figure 2.23 shows the result of the selected corner reprojected on the 

reference image.  The identified match is close to where the corner was in the sensed image.  Figure 

2.24 displays the template matches for all 30 corners demonstrating all good matches.   

 
Figure 2.23: Projection of selected corner on the reference image and its template match. 

 
Figure 2.24: Projection of all valid corners and matches on reference image. 

The window is represented with a dashed box and colored as green if the match is good and red 

if it is bad.  A match is good if the template match (cyan box) is within a set number of pixels of 

the truth template (magenta box).  The reprojected template (yellow box) represents where the 
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coarse pose indicates the match should occur.  If the coarse pose and the truth pose are the same, 

then the reprojected and truth template boxes should exactly overlap. 

2.2.4. Dynamic Window Matching 

With the corner normalized cross-correlation algorithm, there are cases where the truth 

template match is outside of the search window and it is impossible for the algorithm to find the 

correct match.  These cases typically occur where there is a significant pose estimate error in 

rotation (a few degrees) and with matches near the edges of the sensed image.  Figure 2.25 

demonstrates an example of this issue. 

 
Figure 2.25: Matches with a sensed Google Satellite to reference Google Satellite image with 
rotation error of 3 degrees in pitch, roll, and yaw.  Matches where truth template is outside of 

window are indicated with orange arrows. 

In addition, the larger the window size, the more processing time that is required to find a 

match and the lower the match rate.  A simple test shown in Figure 2.26, demonstrates this process 

on the normalized cross-correlation described in Section 2.2.1.  A template from Google Satellite 

maps with a size of 100 × 100 pixels was matched in a window from Bing Aerial maps of 

increasingly larger width and heights.  A 10% salt and pepper noise filter was added to the template 

image to increase the probability of a bad match simulating the difference in imagery from two 
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cameras.  The match error remains zero until the window size reaches the critical threshold at 2500 

pixel width, where the correlation algorithm is unable to find the correct match.  The processing 

time increases at approximately 𝑂(𝑁#) showing that even small changes in window size can cause 

large increases in processing time. 

 
Figure 2.26: (Top-row) Template with added noise and its corresponding match in a window 

with a size of 200 pixels.  (Bottom-row) Match error and processing time with normalized cross-
correlation as a function of window size. 

The requirements of a successful match rate and low processing time indicate the need for 

dynamic window sizing.  A simple solution to implement dynamic window sizing is to “nudge” 

the coarse pose template to each extreme in the modelled error.  This is done in a brute force 

method by generating homography matrices representing the extremes in translation and rotation.  

Three scalar values are used to set the dynamic window size for translation, altitude, and Euler 

rotation errors respectively: 𝑡UVVWV , 𝑧UVVWV ,	and 𝑟UVVWV.  These values are set as tunable parameters.  
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In this thesis, the values are set as constant for each run.  They could be modelled off of the known 

error ranges of sensor such as an IMU or a coarse pose algorithm.  Alternatively, the parameters 

could be adjusted in real time with the covariance values from a Kalman Filter.  The values from 

the following matrices are used independently in the homography to extrinsic equation. 

	 t"# =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑡UVVWV 0 0
0 𝑡UVVWV 0

𝑡UVVWV 𝑡UVVWV 0
−𝑡UVVWV 0 0
0 −𝑡UVVWV 0

−𝑡UVVWV −𝑡UVVWV 0
0 0 𝑧UVVWV
0 0 −𝑧UVVWV⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 (2.33)		

	 r"# =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑟UVVWV 0 0
0 𝑟UVVWV 0
0 0 𝑟UVVWV

𝑟UVVWV 𝑟UVVWV 𝑟UVVWV
−𝑟UVVWV 0 0
0 −𝑟UVVWV 0
0 0 −𝑟UVVWV

−𝑟UVVWV −𝑟UVVWV −𝑟UVVWV⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

	 (2.34)	

Each row of the matrix 𝑟"# is converted from Euler angles to a rotation matrix 𝑅"# for the 

calculation of homography.  The homography calculation uses equations described in Section 

2.2.2.5.  The result from these calculations is a collection of points clustered around the course 

pose template.  A simple rectangular box is drawn around the points with some margin signifying 

the cropped window used in the correlation step as shown in the depiction in Figure 2.27. 
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Figure 2.27: Dynamic window size concept.  Course pose is represented in dark yellow with R0 

and T0.  The window is sized to fit all of the reprojected points. 

The effect on window matching in an image with significant rotation error is shown in Figure 

2.28.  The red dots are the nudged homography templates.  None of the truth templates appear 

outside of the selected window. 

 
Figure 2.28: Google sensed to Google reference image with 3 degrees error in pitch, roll, and 

yaw with dynamic window sizing implemented. 
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2.3. Conclusion 

This concludes the discussion on image processing and computer vision techniques as a 

foundation of terrain relative navigation.  The basic foundational algorithms like correlation, 

corner detection, and feature matching are useful for comparing two images.  A more advanced 

algorithm combining corner detection and correlation was outlined with the addition of dynamic 

window sizing that makes it a more useful for integration with other navigation algorithms. 
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Chapter 3:  Geographic State Estimation 

In order to use information from imagery to find the camera pose, it must be related to world 

coordinate systems and fused with data from other sensors. 

3.1. Geographic Information System (GIS) 

An important aspect of map-matching is defining a frame of reference for the map.  A map 

must be geo-referenced where given a specific pixel, the latitude, longitude, and elevation can be 

determined.  Due to working with 2D images and maps in a 3D world, it is important to establish 

geographic conventions. 

3.1.1. Geographic Systems 

Any location in the world can be described by a latitude (𝜙) and longitude (𝜆).  Latitude and 

longitude are expressed in degrees with higher precision values represented as a decimal degree or 

in minutes (‘) and seconds (“).  Decimal degrees are simpler to work with computationally and 

will be the convention for this thesis.  Latitude is referenced as the angle between the selected 

point and the equator with values ranging from -90° to 90°.  Longitude is referenced as the angle 

between the selected point and the Prime Meridian through the Royal Observatory in Greenwich 

London, UK with values range from -180° to 180°.  The geographic datum, World Geodetic 

System of 1984 (WGS 84), approximates the Earth as an ellipsoid where the center of mass is 

defined including the oceans and atmosphere [15].  The Department of Defense (DoD) GPS 

satellites use this datum.  WGS 84 is also known as the EPSG:4326 projection.  A geodetic system 

differs from a geocentric system.  The distinctive element is the latitude of a geodetic system is 

not referenced at the center of the ellipsoid except at the equator and the poles.  Figure 3.1 shows 

an example of where the line from point P to the normal line does not intersect the center in a 

Geodetic coordinate system. 
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Figure 3.1: An ellipsoid approximation of the shape of the Earth with three-dimensional 

Cartesian coordinate system. 

The Earth is not a perfect ellipsoid.  The WGS 84 standard defines a geoid based on a 

gravitational model for the local Mean Sea Level (MSL) [15].  Figure 3.2 demonstrates an example 

of the difference between the ellipsoid, geoid, and topography.  The distance between the ellipsoid 

and the geoid (geoid undulation) is labeled.  The difference between the geoid and the topography 

(orthometric height) is labeled ℎ.  The geodetic height (𝐻) represents the distance between the 

topography and ellipsoid.  The following equation describes this relationship. 

	 ℎ = 𝐻 + 𝑁	 (3.1)	

 
Figure 3.2: Diagram comparing the relationship between a WGS-84 ellipsoid, geoid, and 

topological elevation. 
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3.1.2. Local Coordinate Frames 

Latitude and longitude resemble spherical coordinates.  The issue with elliptical coordinates 

is the distance of one degree latitude lines changes based on the location.  One degree of longitude 

around the equator is a much longer distance than one degree of longitude near the north pole.  

Because of this, it is not easy to have an intuitive understanding of distances in geodetic 

coordinates.  Cartesian coordinates, normally expressed in meters, provide an easier reference 

frame for relative distances.  There are two commonly used Cartesian local coordinate frames: 

East, North Up (ENU) and North, East, Down (NED).  ENU is practical for defining coordinates 

on map planes in reference to the ground.  NED is useful for defining relative distances to aircraft 

or other vehicles.  These coordinate systems assume the world is flat because an infinitesimally 

small area of an ellipsoid is approximately flat. 

A straightforward way to convert between geodetic coordinates and local coordinates is to 

approximate the Earth as a sphere and use the Haversine formula.  This formula allows for the 

computation of distance across any two points on a sphere.  It is more accurate for shorter distances 

across the Earth rather than longer distances due to the spherical assumption.  The haversine is 

defined as the following. 

	 ℎ𝑎𝑣(𝐴) = sin# :X
#
; = "'O0.	 Z

#
	 (3.2)	

By defining point 1 as (𝜆", 𝜙"), point 2 as (𝜆#, 𝜙#), and the radius of earth as 𝑟 = 6,378𝑘𝑚, 

the distance in kilometers is found with the following equation:   

 
d = 2r sin'" ��hav �

ϕ# − ϕ"
2 � + cos(ϕ") cos(ϕ#) hav �

λ# − λ"
2 �	�	 (3.3)	

 



   

 

38 

3.1.3. Satellite and Ortho-Imagery 

To find the pose of a camera, it must be compared to georeferenced imagery referenced to 

absolute world coordinates.  Ortho-imagery is a dataset of georeferenced images that is processed 

to be planar and orthogonal to the ground captured by either an aircraft or satellite.  The files are 

typically stored in the geotiff (.tif) or JPEG 2000 (.jp2) filetypes.  These filetypes support 

georeferencing metadata such as projection type and map extent.  Libraries like GDAL can 

interpret this data and can extrapolate the coordinates for any given pixel.  Software programs like 

QGIS and ArcGIS can easily view, crop, merge, and reproject these files.  Each source of imagery 

has a different resolution.  If using lower altitude sensed imagery, a higher resolution reference 

map is required.  Frequently updated imagery like the European Space Agency’s (ESA) Sentinel 

2 satellite imagery has a resolution of about thirty meters per pixel. Less frequently updated 

imagery like United States Geological Survey ortho-imagery has a resolution of about half a meter 

per pixel.  Table 3.1 and Figure 3.3 compares Sentinel 2, USGS HR ortho-imagery, and Google 

Maps imagery.   The ESA and USGS data are available from USGS’s Earth Explorer web service: 

https://earthexplorer.usgs.gov/.  The Google and Bing map imagery is available through the 

program QGIS as XYZ Tiles. 

Table 3.1: Common ortho-imagery sources 

Organization and Name Spatial 
Resolution (pixel/m) 

File Type EPSG 
Projection 

ESA Sentinel 2 ~ 30  .jp2 32616 
USGS HR ortho-imagery ~ 0.5 .tif 26916 
Google Static Maps via QGIS < 0.5 .tif 3857 
Bing Aerial Maps via QGIS < 0.5 .tif 3857 
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Figure 3.3: (Left) ESA Sentinel 2 satellite imagery, (Middle) USGS high resolution ortho-

imagery, (Right) Google Static Map API satellite imagery. 

3.1.4. Digital Elevation Maps (DEM) 

Ortho-imagery provides the terrain imagery of an area but includes no information about the 

elevation.  A digital elevation map (DEM) is a georeferenced image where each pixel represents 

the elevation of the corresponding location.  DEMs are captured from satellites or aircraft using 

RADAR or LIDAR.  One widely used DEM is the Shuttle Radar Topography Mission (SRTM) 

that was captured with radar on the Endeavour space shuttle in 2000.  The spatial resolution of a 

DEM is typically measured in arc-seconds.  For instance, the SRTM is rated as one arc-second in 

the US, approximately thirty meters/pixel around the equator.  One latitude or longitude degree is 

composed of sixty arcminutes.  Each arcminute is composed of sixty arc-seconds.  Most globally 

available DEMs are satellite based due to the impracticality of capturing global aircraft LIDAR 

data.  Figure 3.4 shows a DEM map and a 3D colorized depiction of it.  3D visualization services 

like Google Earth use DEMs with an ortho-image texture to produce a realistic aerial view of the 

world. 
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Table 3.2: Common elevation map comparison 

Organization and Name Horizontal Datum Spatial Resolution 
(arc-second) 

File Type 

USGS Shuttle Radar 
Topography Mission [16] 

WGS 84 1 (US) 
3 (Globally) 

.tif 

USGS 3DEP NAD 83 
 

1/3 .tif 

JAXA Advanced Land 
Observation Satellite 

WGS 84 1 .tif 

 

    
Figure 3.4: Digital elevation map of north-east Alabama from USGS's 3DEP dataset.  (Left) Raw 

2D image where lighter values indicate higher elevation.  (Right) 3D view of elevation map. 

3.2. Sensors 

For GPS denied applications, additional sensors are helpful in constraining the localization 

problem.  For instance, a barometer is used to estimate altitude and an IMU is used to estimate 

orientation. 

3.2.1. Barometer 

A passive way to estimate altitude is using a barometer to measure air pressure.  This method 

is widely used in aviation.  Air pressure changes due to several factors like altitude, temperature, 

and weather conditions.  The fluctuation of weather conditions can be accounted for by 

determining the pressure at mean sea level (MSL) at the time data is collected.  This can be 
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calculated by using a GPS altitude measurement at the start of a data run along with temperature 

and pressure.  The formula below represents the height above MSL based on the temperature at 

MSL (𝑇[), the temperature lapse rate (𝐿[), the universal gas constant (𝑅), gravitational acceleration 

(𝑔8), and the molar mass of Earth’s air (𝑀) for altitudes less than 11km [17]. 

	 ℎ = \'
]'
∙ Q: ^

^'
;
'
(∙*'
+,∙- − 1U	 (3.4)	

For finding the temperature and pressure at MSL with the temperature and pressure at a 

known height, the following equations can be used. 

	 𝑇[ = 𝑇 − 𝐿[	 ∙ ℎ	 (3.5)	

	 𝑃[ =
^

_"=
*'
&'
`a
.+,∙-
(∙*'

	 (3.6)	

For measurements in the stratosphere, a different equation should be used where ℎ[, 𝑇[, and 𝑃[ 

are relative to the bottom of the stratosphere. 

	 ℎ = ℎ[ +
b∙\'∙Sde

/
/'
f

'g,∙:
	 (3.7)	

To demonstrate this process, a low altitude UAV test was conducted with a barometric 

altimeter and a GPS.  See Section 5.1 for more information on how the UAV data is collected.  

The original calculated altitude with a standard pressure at MSL was about 50m offset from the 

GPS as shown in Figure 3.5.  By using the process listed above, the calibrated altimeter altitude 

much more closely resembles the GPS truth and remains less than a 10m offset during most of the 

flight but starts to drift over time. 
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Figure 3.5 Low altitude UAV test of altitude uncalibrated and calibrated calculations compared 

to GPS truth.  Calibration occurred just before takeoff. 

For high altitude balloons where the altimeter is in the stratosphere, the alternate equation 

should be used.  The results in Figure 3.6 show the calibration reduces the error when GPS is 

present.  The overall error is higher than the UAV test because of the longer flight duration and 

distance.  This drifting in error can be reduced by using the last known GPS altitude instead of the 

initial value.  A few meters of inaccuracy should be acceptable for a coarse pose for a low altitude 

UAV under 100m but more than 10m would corrupt the state estimate.  Likewise for a high altitude 

balloon at a few thousand meters of altitude, an error of up to 100m should be acceptable, but 

significantly more error than that could cause state estimate inaccuracies. 
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Figure 3.6: High altitude balloon test of altitude uncalibrated and calibrated calculations 

compared to GPS truth.  Calibration occurred just before launch. 

3.2.2. Inertial Measurement Unit (IMU) and Magnetometer 

An inertial measurement unit (IMU) usually consists of a gyroscope and accelerometer.  

Many IMU boards also contain a magnetometer and temperature sensor.  Except for the 

temperature sensor, each sensor measures in three axes.  A gyroscope typically measures angular 

rotation rate in radians/s.  An accelerometer measures linear acceleration in m/s.  A magnetometer 

measures the magnetic field in teslas.  By using the data from these three sensors, the orientation 

of the platform can be determined.  For instance, on Earth the acceleration due to gravity is 

9.8𝑚/𝑠#.  Due to a constant downward acceleration, the accelerometer shows this acceleration 

vector distributed across its three axes corresponding to the direction of down.  This helps 

determine the pitch and roll of a vehicle or object.  Another characteristic of Earth useful for 

determining orientation is magnetic north.  Like the accelerometer, the magnetometer represents 
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the direction of the magnetic north across its three axes.  This helps determine the yaw of a vehicle 

or object. 

3.3. Conclusion 

To conclude, this chapter discusses various ways of representing geographic coordinates and 

using georeferenced maps.  It also describes two different sensors that could easily be integrated 

with vision-based algorithms for determining the absolute world location and orientation.  
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Chapter 4:  Terrain Simulation and Navigation Algorithm Formulation 

With the basics of image processing and geographic coordinate systems discussed in the 

previous two chapters, these techniques can be combined to simulate imagery and form a terrain 

relative navigation algorithm. 

4.1. Simulating Aerial Imagery 

As an initial test of the map matching algorithms, an image simulator can be used.  

Modelling the extrinsic and intrinsic parameters of a camera with known truth poses provides a 

robust test of the algorithms eliminating the variables of sensor errors.  A simulator also allows 

the use of multiple sets of imagery.  This can highlight the difference between how the algorithm 

works on comparing images from the same source versus comparing imagery from different 

sources.  Several low-cost 3D visualization programs were tested with satellite imagery and 

digital elevation maps.  However, the performance cost of these programs is high due to the 

overhead of the unneeded features of these software systems.  This problem assumes the terrain 

is relatively flat and does not need elevation of every pixel to be different.  Also, no additional 

3D objects need to be placed into the scene, simplifying the simulation technique needed. 

Instead, the simulation strategy for this thesis uses a ray tracing technique based on [18] and 

[19].  Given the extrinsic and intrinsic parameters of the camera, it projects a ray to the world 

coordinate system as shown in Figure 4.1.  
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Figure 4.1: Depiction of coordinate systems of the camera with relation to the world. 

 This ray projection is accomplished through a series of coordinate transformations defined 

in Table 4.1.  The first step is to transform the world coordinate frame to the camera frame.  This 

is split into two steps to allow for the camera placed on a location or orientation that is not the 

center of gravity of the vehicle.  The displacement of the vehicle in vehicle coordinates is simply 

the negative of the displacement of world coordinates in NED coordinates.  The rotation is defined 

as the identity matrix for simplicity but could be reconfigured as needed. 

	 𝑑hi = �
−𝑦hi
−𝑥hi
−𝑧hi

 	 (4.1)	

	 𝑅hi = 𝐼+	 (4.2)	

	 𝑇hi = s 𝑅h
i 𝑑hi

0"×+ 1 t	 (4.3)	

The orientation of the camera is defined in the vehicle to camera transformation.  Additional 

transformations could be used if the camera is mounted on a gimbal. 

	 𝑡ij = 0+×"	 (4.4)	
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	 𝑅ij = 𝑅k(𝜃)𝑅l(𝜙)𝑅m(𝜓)	 (4.5)	

	 𝑇hi = s 𝑅i
j 𝑡ij

0"×+ 1 t	 (4.6)	

Table 4.1: Coordinate frame notation 

Transformation Description 
𝑻𝒘𝒗  World Frame to Vehicle Frame 
𝑻𝒗𝒄  Vehicle Frame to Camera Frame 

𝑷𝒔𝒆𝒏𝒔𝒆 Points of Object or Terrain in Sensed Image Frame 
𝑷𝒘
𝒑  Projected of Object or Terrain in Projected Image Frame 

𝑷𝒘
𝒐𝒃𝒋 Points of Object or Terrain in World Frame 

 

 
Figure 4.2: A side view of the perspective camera model 

To produce a full image, these transformations should occur on each pixel in the sensed 

image to the world frame as depicted in Figure 4.2.  A mesh grid of pixel locations is represented 

as 𝑃xUKxU in a 4 × 𝑁 matrix where N is the total amount of pixels in the sensed image, the first 

column is the x pixels, the second column is the y pixels, and the last two columns are filled with 

ones.  The camera matrix K can be reformatted into a 4 × 4 matrix C. 
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	 𝐶 = �

0 𝑓k 𝑐k 0
𝑓l 0 𝑐l 0
0 0 1 0
0 0 0 1

�	 (4.7)	

The projected coordinates of the pixels is 

	 𝑃h
y = (𝐶	𝑇hi	𝑇ij)'"𝑃xUKxU 	 (4.8)	

The image depth 𝜆 is defined as the following where 𝑧yi is the z coordinate of 𝑃h
y. 

	 𝜆 = © m01

m01'm0
2©	 (4.9)	

Now the projected pixels in the world frame (NED) can be determined assuming the terrain plane 

is flat. 

	 𝑞]k = 𝜆𝑃h
y
k	 (4.10)	

	 𝑞]l = 𝜆𝑃h
y
l	 (4.11)	

	 𝑞]m = 𝜆	 (4.12)	

	 𝑃h
W[? = (𝐶	𝑇hi	𝑇ij)'"𝑞]	 (4.13)	

Once in the world frame in NED coordinates, they are converted into geodetic.  Through 

interpolation, the geodetic coordinates are converted to pixel coordinates in the map resulting in 

𝑃W[?
VUz.  Each pixel in 𝑃xUKxU is assigned the intensity in the corresponding pixel in 𝑃W[?

VUz.  This process 

is vectorized for computational efficiency and summarized in Figure 4.3. 

 
Figure 4.3: Transformation to pixel coordinates from world coordinates. 

As a sanity check to verify the simulator is producing the correct image, Figure 4.4 shows 

the comparison between a real image and a simulated image.  The homography between the sensed 
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image and reference map is found with the same process used for the simulator.  Instead of passing 

through all pixel locations, only the reference map pixels locations of the four corners of the sensed 

image are calculated.  With the correspondence of four locations in the sensed and reference image, 

the homography matrix is calculated with the process outlined in Section 2.2.2.5.  A visual 

inspection is performed to verify the homography and simulator produce the correct 

correspondence as shown in Figure 4.5. 

   
Figure 4.4: (Left) Simulated image with Google reference imagery (Right) Aerial image captured 

from High Altitude Balloon 

 
Figure 4.5: Correspondence between simulated sensed image and reference map with 

homography.  Lighter shaded section is sensed image and darker shaded background is reference 
map. 
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4.2. Terrain Relative Navigation (TRN) Approach 

The general algorithm to find the pose from image correspondence is listed below: 

1. Receive an input of a coarse pose from a prior state, coarse search algorithm, or a testing 

dataset. 

2. Detect Shi Tomasi corners in the sensed image and rank them by strength.  Pick the N 

strongest corners that are outside of a set pixel distance from other selected corners. 

3. For each corner, construct a square template around the corner. 

4. Transform the template into the reference image frame using the coarse pose estimate. 

5. Generate a dynamically sized window in the reference image centered on the transformed 

corner. 

6. Sweep the template over the search window and correlate the template to each section of 

the search window using normalized cross-correlation. 

7. Check the quality of the correlation using several criteria to determine if each match is 

valid or invalid. 

8. Perform RANSAC with homography to eliminate outlier matches. 

9. Use the georeferenced position of each matched point on the reference image along with 

the corner location in the sensed image to compute the pose of the camera with PnP. 

4.3. Software Architecture and Design 

A full software package is developed in Python to test these algorithms outlined in Figure 

4.6.  It can either use a simulated trajectory and simulate imagery using Google or Bing satellite 

imagery or import data from a Robot Operating System (ROS) “bag” file.  This is compiled with 

one of the “dataset_generator” modules to save the preprocessed data to file.  Optionally for the 

ROS bag files, a “point_picker” script and “pose_adjuster” script are used to determine the truth 
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pose for frames where reliable GPS and IMU data is not present.  The “point_picker” allows the 

user to manually pick the point correspondence in the sensed and reference image and the 

“pose_adjuster” uses PnP to determine the truth pose.  The “map_matcher” module communicates 

with various submodules to perform the TRN algorithm outlined in the previous section.  The 

resulting analysis is plotted using Matplotlib and saved to csv files.  Majority of the image 

processing is performed with OpenCV.  Numpy is used to process the matrix calculations.  Various 

configurations are stored in Python configuration classes and YAML files. 

 
Figure 4.6: Full software architecture where the green blocks are Python scripts the user runs.  

The yellow blocks are modules inherited by the main scripts.  The blue blocks are data files and 
the purple blocks are configuration files. 

4.4. Conclusion 

In conclusion, this chapter details the use of a 6DOF aerial imagery simulator and the overall 

terrain relative navigation algorithm architecture tested in this thesis. 
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Chapter 5:  Data Acquisition and Evaluation 

In order to analyze the performance of the terrain relative navigation algorithm on real world 

data, Unmanned Aerial Vehicles and High Altitude Balloons were used.  This chapter outlines 

the basics of the aerial platforms chosen and some data evaluation metrics to analyze the data. 

5.1. Unmanned Aerial Vehicles 

Unmanned Aerial Vehicles (UAVs) or Unmanned Aerial Systems (UASs) describes a wide 

variety of remote controlled or autonomous aircraft.  They are used for a variety of purposes like 

surveying, data collection, or short-range lightweight cargo transportation.  Many are highly 

dependent upon GPS systems for navigation.  Using a vision-based navigation system is a way to 

offer redundancy in situations where GPS signals are denied.  UAVs can be found in many 

different forms.  The two most common categories are fixed wing and rotary wing.  Fixed wing 

UAVs fly like traditional airplanes and are typically outfitted with a single propeller or jet engine.  

Rotary wing UAVs are classified by the number of vertical rotors.  The most common are 1, 4, 6, 

and 8.   

   
Figure 5.1: (Left) Tarot octocopter outfitted with data collection system.  (Right) Example image 

captured by down-look camera. 

UAVs also come in a variety of sizes, but civilian UAVs are limited to 55lbs according to 

the Federal Aviation Administration (FAA) [20].  Another notable FAA regulation for civilian 
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UAVs pertains the maximum flight altitude of 400ft above ground level without a waiver.  The 

larger DoD fixed-wing UAVs can reach a wider variety of altitudes upwards of 30,000 to 50,000ft 

depending on the capabilities of the UAV.  For the purposes of this thesis, all UAV data is captured 

by an octocopter (Figure 5.1) limited to the altitude of 400ft.  The data collection system is the 

same as used in the high altitude balloon discussed in more detail in the next section.  SN01 refers 

to the first high altitude balloon electronics system and SN02 refers to the second high altitude 

balloon electronics system.  See Table 5.1 and Table 5.2 for specifications of these two systems. 

Table 5.1: SN01 Collection System Specs 

Characteristic Value  Characteristic Value 
Processor Raspberry Pi 4B 2GB 

(ARM Cortex-A72) 
 Camera Sensor OV5647 

IMU 1 BNO055  Lens Focal Length 4mm 
IMU 2 ICM20948  Image Resolution 2592 x 1944 
GPS MT3339  Sensor Area  3673.6µm x 2738.4µm 
Barometer MPL3115A2  Shutter Type Rolling 

 

Table 5.2: SN02 Collection System Specs 

Characteristic Value  Characteristic Value 
Processor Raspberry Pi 4B 4GB 

(ARM Cortex-A72) 
 Camera Sensor OV5647 

IMU 1 BNO080  Lens Focal Length 4mm 
IMU 2 ICM20948  Image Resolution 2592 x 1944 
GPS uBLOX MAX-M8Q-10  Sensor Area  3673.6µm x 2738.4µm 
Barometer 
(External) 

MPL3115A2  Shutter Type Rolling 

Barometer 
(Internal) 

LPS22HB    

 

5.2. High Altitude Balloons 

While UAVs are limited to 400ft according to the FAA, uncontrolled high altitude balloons 

(HABs) can be operated at unlimited altitudes.  By constructing a lightweight payload box and 
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filling a specialized latex helium balloon, altitudes of 70,000 – 110,000ft are achievable before the 

balloon bursts due to low air pressure.  The payload then travels by parachute back down to the 

surface allowing the data to be recovered.  This presents the opportunity to collect aerial imagery 

and navigational data at a wide variety of altitudes.  Figure 5.2 shows the payload suspended from 

the balloon.  See Appendix A and Appendix B for more detailed information on the payload design 

and flight characteristics. 

  
Figure 5.2: (Left) High altitude balloon data collection system (Right) Example image captured 

by down-look camera during parachute descent over Macon, GA. 

5.3. Data Evaluation Metrics 

The results from testing on simulated and collected datasets is evaluated in two main ways: 

matching accuracy and estimation error.  Ultimately low matching accuracy can contribute to high 

estimation error.  For this thesis, a good match is defined as one that is within 100 pixels of the 

true match in the reference image frame.  A valid match satisfies the conditions stated in Section 

2.2.3, Step 5.  Invalid matches are rejected from being used in the PnP estimation calculations.  

Therefore, in an ideal case, all valid matches are good, and all invalid matches are bad.  To produce 

the best pose estimate, the matching algorithm should be tuned to maximize good, valid matches 

and minimize good, invalid matches.  Conversely, bad valid matches should be minimized, and 

bad, invalid matches should be maximized as needed.  To quantify this, a match score is proposed 
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by weighing all of these scenarios.  Let 𝑃gi represent the percentage of good and valid matches 

and 𝑃[5 represent the percentage of bad and invalid matches.  The match score is defined as Q 

where 100 is a perfect score. 

	 𝑄 = 100𝑃gi + 25𝑃[5 − 25𝑃g5 − 100𝑃[i	 (5.1)	

The desired output of a localization algorithm is the pose estimate.  PnP is used to determine 

the translation vector and rotation matrix between the sensed image and the reference map using 

the point correspondence determined with the image matching algorithm.  The estimation error is 

defined as the difference in the fine estimated pose and the truth pose.  The truth pose is determined 

in simulation, with a point matching GUI (Figure 5.3), or with GPS and IMU data. 

 
Figure 5.3: Point matching GUI for determining translation and rotation of imagery to map. 

5.4. Conclusion 

This chapter presented how the data is collected an evaluated.  A UAV is used to collect data at 

lower altitudes, whereas, a HAB is used to collect data at higher altitudes.  The aerial imagery 

and estimated coarse pose are used as inputs to the terrain relative navigation algorithm and 

evaluated on its successful match rate and its ability to estimate the true pose. 
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Chapter 6:  Simulated Results and Analysis 

This chapter presents the results from running the terrain relative navigation algorithm on 

simulated imagery. 

6.1. Simulated Test #1: Google Sensed to Google Reference Map for Orthogonal Case 

This simulation represents the control case.  The simulated images are down sampled from 

Google Satellite Maps and are compared to a Google reference map.  See Table 6.1 for the 

information regarding the setup of this test.  The coarse pose error is zero mean Gaussian with a 

standard deviation of 50m in x and y, 25m in z, and 3˚ in pitch, roll, and yaw.  This is modelled 

after the uncertainty in the z axis being lower than the x and y with the use of a barometric altimeter.  

A constant velocity model is used to move the camera in a downward movement from 5000m to 

1000m AGL for 100 frames.  Figure 6.1 and Figure 6.2 depict the difference between the truth and 

coarse pose estimate. 

Table 6.1: Parameters for Simulated Test #1 

Parameter Value 
Sensed Imagery Source Google Satellite Maps 
Reference Map Imagery Source Google Satellite Maps 
Elevation Map Source USGS 3DEP 
Location Auburn, AL 
Simulated Coarse Error 𝝈 (ENU) (50m,50m,25m) 
Simulated Coarse Error 𝝈 (Pitch, Roll, Yaw) (0˚, 0˚, 0˚) 
Translation and Altitude Error Range 
(ENU) 

(100m,100m,75m) 

Attitude Error Range (Pitch, Roll, Yaw) (0˚, 0˚, 0˚) 
Number of Corners Selected 100 
Template Size (Pixels) 200 
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Figure 6.1: Path of camera on Bing reference map. 

 
Figure 6.2: ENU translation plot of truth and coarse pose estimates for simulated dataset. 

For this dataset, almost all of the matches are considered good and valid as expected since 

the imagery source is the same (Figure 6.3).  Even with some coarse pose error, the algorithm is 

very successful in finding good matches.  The match score is perfect for most of the frames (Figure 

6.4).  The estimated pose from PnP, therefore, is within the error ranges for the entire dataset 

(Figure 6.5). 
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Figure 6.3: Stacked plot of matched category distribution for each frame.  A good match is one 

that is within 50 pixels of the truth.  A match is valid if its correlation passes the height and 
width criteria.  In this dataset all the matches are good and invalid except for one near frame 95. 

 
Figure 6.4:  Match score as defined in Section 5.3.  In this simulation all frames have a perfect 

score except for one. 
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Figure 6.5: Raw fine estimation error in translation and altitude.  The dashed lines represent the 

error range the algorithm was using to set the dynamic windows. 

6.2. Simulated Test #2: Google Sensed to Bing Reference Map for Orthogonal Case 

This simulation tests the robustness of the algorithm against imagery from another source.  

The same parameters are used to generate a path from the previous simulation.  The simulated 

images are down sampled from Google Satellite Maps and are compared to a Bing reference map.  

See Table 6.2 for the information regarding the setup of this test. 

Table 6.2: Parameters for Simulated Test #2 

Parameter Value 
Sensed Imagery Source Google Satellite Maps 
Reference Map Imagery Source Bing Aerial Maps 
Elevation Map Source USGS 3DEP 
Location Auburn, AL 
Simulated Coarse Error 𝝈 (ENU) (50m,50m,25m) 
Simulated Coarse Error 𝝈 (Pitch, Roll, Yaw) (0˚, 0˚, 0˚) 
Translation and Altitude Error Range 
(ENU) 

(100m,100m,75m) 

Attitude Error Range (Pitch, Roll, Yaw) (0˚, 0˚, 0˚) 
Number of Corners Selected 100 
Template Size (Pixels) 200 
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For this test, the matching performance is slightly degraded as shown in Figure 6.6 and 

Figure 6.7.  There are some false positives where matches are marked valid even though they are 

bad, especially as the camera decreases in altitude.  This increase in bad matches might be due to 

the difference in imagery where new building construction in the area has degraded the 

performance.  There is also some false negatives where matches are marked invalid even though 

the matches are good.  Overall, the match score decreases as altitude decreases.  The pose estimates 

are slightly worse but of a similar magnitude to the control case. 

 
Figure 6.6: Stacked plot of matched category distribution for each frame.  A good match is one 

that is within 50 pixels of the truth.  A match is valid if its correlation passes the height and 
width criteria.  In this dataset all the matches are good and invalid except for one near frame 95. 
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Figure 6.7:  Match score as defined in Section 5.3. 

 
Figure 6.8: Filtered fine estimation error in translation and altitude.  The dashed lines represent 

the error range the algorithm was using to set the dynamic windows. 

6.3. Simulated Test #3: Google Sensed to Bing Reference Map for Non-Orthogonal Case 

This simulation tests the robustness of the algorithm against imagery from another source 

when the coarse pose is non-orthogonal to the reference map.  See the parameters used in Table 

6.3.  The translation path is the same as the previous two tests except the coarse orientation is 

different than truth as shown in Figure 6.9. 
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Table 6.3: Parameters for Simulated Test #3 

Parameter Value 
Sensed Imagery Source Google Satellite Maps 
Reference Map Imagery Source Bing Aerial Maps 
Elevation Map Source USGS 3DEP 
Location Auburn, AL 
Simulated Coarse Error 𝝈 (ENU) (50m,50m,25m) 
Simulated Coarse Error 𝝈 (Pitch, Roll, Yaw) (3˚, 3˚, 3˚) 
Translation and Altitude Error Range 
(ENU) 

(100m,100m,75m) 

Attitude Error Range (Pitch, Roll, Yaw) (5˚, 5˚, 5˚) 
Number of Corners Selected 100 
Template Size (Pixels) 200 

 

 
Figure 6.9: Orientation of camera for truth and coarse pose 

The matching performance is shown in Figure 6.10 and Figure 6.11.  In many frames, it finds 

many good matches, but outliers exist where the algorithm is unable to find good matches.  This 

is likely due to the larger rotation differences for those frames. 
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Figure 6.10: Stacked plot of matched category distribution for each frame.  A good match is one 

that is within 50 pixels of the truth.  A match is valid if its correlation passes the height and 
width criteria. 

 
Figure 6.11: Match score as defined in Section 5.3. 

RANSAC is used to eliminate many of the bad matches but fails in three of the frames as 

demonstrated in Figure 6.12.  In many frames, the PnP is able to estimate the pose within the 

translation and altitude error ranges (Figure 6.13).  High pose estimate errors exist in certain 

frames, but these are due to the low number of good matches and corresponds to the frames which 
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pass through bad valid RANSAC inliers.  By comparing the estimated pose to 3𝜎 of the coarse 

pose range, these pose estimate outliers are eliminated (Figure 6.14).  The resulting fine pose 

estimates narrow the coarse estimate closer to truth fairly consistently in this simulated case.  As 

the camera approaches the ground in the later frames, the error in all three axes stays below 25m. 

 
Figure 6.12:  Bar graph of number of bad valid RANSAC inlier matches for each frame passed 

through to the PnP estimation algorithm 

 
Figure 6.13: Raw fine estimation error in translation and altitude.  The dashed lines represent the 

error range the algorithm was using to set the dynamic windows. 
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Figure 6.14: Pose estimates within 3𝜎 of coarse error range. 

6.4. Conclusion 

Overall, the algorithm performed very well on the simulated imagery.  In the control case, the 

match rate approximated 100%.  In the other simulation cases, the match rate is very strong.  

With the highly successful match rate, the pose estimates errors were very low.  The slight errors 

are most likely due to slight pixels shifts caused by sampling differences and ability of PnP to fit 

the best pose for a given set of matches. 
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Chapter 7:  Experimental Results and Analysis 

This chapter presents the results from running the terrain relative navigation algorithm on 

experimentally collected imagery. 

7.1. Experimental Test #1: UAV sensed imagery to Bing Reference Map over NCAT 

Test Track near Opelika, AL 

This dataset tests the robustness of the algorithm at low altitudes.  See Table 7.1 for the 

information regarding the setup of this test.  The images were captured by the SN02 payload 

mounted on the bottom of the UAV described in Section 5.1.  It was flown at Auburn University’s 

National Center of Asphalt Technology (NCAT) test track.  The coarse pose is determined with 

the position of the GPS and the orientation of the IMU for simplicity.  Figure 7.1, Figure 7.2, and 

Figure 7.3 show the path the UAV took and the orientation of the camera during the flight.  The 

pitch and roll remain relatively stable during the course of the flight and the yaw shows some 

distinct turns. 

Table 7.1: Parameters for Experimental Test #1 

Parameter Value 
Sensed Imagery Source UAV SN02 
Reference Map Imagery Source Bing Satellite 
Elevation Map Source USGS 3DEP 
Location Auburn, AL 
Simulated Coarse Error 𝝈 (ENU) (0m,0m,0m) 
Simulated Coarse Error 𝝈 (Pitch, Roll, Yaw) (0˚, 0˚, 0˚) 
Translation and Altitude Error Range 
(ENU) 

(100m,100m,75m) 

Attitude Error Range (Pitch, Roll, Yaw) (5˚, 5˚, 5˚) 
Number of Corners Selected 100 
Template Size (Pixels) 200 
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Figure 7.1: Path of camera on Google reference map. 

 
Figure 7.2: ENU translation plot of truth and coarse pose estimates for experimentally collected 

dataset. 

 
Figure 7.3: Orientation of camera for truth pose 

Figure 7.4 shows the matching results and Figure 7.5 shows the match score for a snippet 

of the flight from frame number 400 to 500.  This snippet is chosen due to the most consistent 
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and distinct features between the sensed and reference imagery.   The successful match rate is 

about 15% and the match score is negative due to the high amount of bad and valid matches.  

The reasons for this low performance are due to the differences between the sensed imagery and 

reference map due to environmental, illumination, human caused, and perspective changes. 

 
Figure 7.4: Stacked plot of matched category distribution for each frame.  A good match is one 

that is within 50 pixels of the truth.  A match is valid if its correlation passes the height and 
width criteria.  In this dataset all the matches are good and invalid except for one near frame 95. 

 

 
Figure 7.5: Match score as defined in Section 5.3. 
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Figure 7.6 shows the bad valid RANSAC inliers.  Some frames have a high number of bad 

valid inliers but others show zero.   This indicates that RANSAC is sometimes able to filter out 

most of the bad and valid matches when there is a sufficiently high number of good and valid 

matches.  According to the pose estimate plots in Figure 7.7 and Figure 7.8, there is a sequence of 

good estimates between frame 410 and 450.  In these frames, the translational error is within 10m 

and the altitude error is within 20m.  This low error is in a similar magnitude to the 2.5m error of 

standard GPS systems.  

 
Figure 7.6: Bar graph of number of bad valid RANSAC inlier matches for each frame passed 

through to the PnP estimation algorithm 
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Figure 7.7: Raw fine estimation error in translation and altitude.  The dashed lines represent the 

error range the algorithm was using to set the dynamic windows. 

 

 
Figure 7.8: Pose estimates within 3𝜎 of coarse error range. 

7.2. Experimental Test #2: HAB sensed imagery to Bing Reference Map over Auburn, 

AL with SN01 

This dataset tests the robustness of the algorithm at higher altitudes.  See Table 7.2 for the 

information regarding the setup of this test. 
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Table 7.2: Parameters for Experimental Test #2 

Parameter Value 
Sensed Imagery Source HAB SN01 
Reference Map Imagery Source Bing Satellite 
Elevation Map Source USGS 3DEP 
Simulated Coarse Error 𝝈 (ENU) (0m,0m,0m) 
Simulated Coarse Error 𝝈 (Pitch, Roll, Yaw) (0˚, 0˚, 0˚) 
Translation and Altitude Error Range (ENU) (100m,100m,75m) 
Attitude Error Range (Pitch, Roll, Yaw) (5˚, 5˚, 5˚) 
Simulated Coarse Error 𝝈 (ENU) (50m,50m,25m) 
Number of Corners Selected 100 
Template Size (Pixels) 200 

 

To collect experimental imagery, a high altitude balloon (HAB) was launched from just west 

of Auburn, AL and flown up to about 24km (80,000ft).  The truth is determined by manually 

picking point correspondences and using the PnP algorithm to determine the pose.  Because the 

truth pose is not orthogonal to the ground, the coarse pose is identical to the truth for simplicity in 

testing.  Like the simulated case, the dynamic windows are based on a translation error range of 

100m, an altitude error range of 75m, and a rotational error range of 5°.  This dataset uses 10 

images during ascent from 3270m (10,728ft) to 4181m (13717ft) above MSL where the elevation 

of the terrain is approximately 200m. 

Analyzing the results of processing this dataset with the algorithm, Figure 7.9 and Figure 

7.10 demonstrate how in the real imagery case, the number of good matches drops significantly 

compared to simulation.  The number of bad valid RANSAC inliers (Figure 7.11) is nonzero on 

most of the frames.  One particularly high amount of bad valid RANSAC inliers occurs on Frame 

4 which is an example where half of the sensed image is outside of the reference map showing a 

decrease in good matches. 
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Figure 7.9: Stacked plot of matched category distribution for each frame.  A good match is one 

that is within 50 pixels of the truth.  A match is valid if its correlation passes the height and 
width criteria. 

 
Figure 7.10: Match score as defined in Section 5.3. 
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Figure 7.11: Bar graph of number of bad valid RANSAC inlier matches for each frame passed 

through to the PnP estimation algorithm 

Figure 7.12 and Figure 7.13 plot the raw and filtered estimate errors.  There are numerous 

frames with high levels of pose estimate errors.  Filtering the errors outside of 3𝜎 of the respective 

error range shows three frames with reasonable pose estimates: 2, 6, and 8.  Figure 7.11 indicates 

these three frames have no bad valid RANSAC inliers.  As expected, if a set of good matches are 

produced, the pose can be estimated more accurately. 

 
Figure 7.12: Raw fine estimation error in translation and altitude.  The dashed lines represent the 

error range the algorithm was using to set the dynamic windows. 
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Figure 7.13: Pose estimates within 3σ of coarse error range. 

Frame 6 shows the best pose estimate and contains a high number of good matches.  Figure 

7.14 displays the visualization of some of the correlation matches where the darker background is 

the reference map and the lighter foreground is the sensed image reprojected in the reference frame.  

All 100 of the correlation matches are not plotted to reduce clutter.  On the right, the valid 

RANSAC inlier matches from the 100 corner case are reprojected into the sensed frame.  This 

demonstrates the low reprojection error in cases where there is sufficiently high number of 

matches. 

   
Figure 7.14: (Left) A few correlation matches between HAB sensed and Bing Aerial maps 

reference.  (Right) Reprojected valid RANSAC inlier matches on sensed image. 
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7.3. Experimental Test #3: HAB sensed imagery to Google Reference Map over 

Uniontown, AL with SN02 

This dataset tests the robustness of the algorithm with a high altitude balloon over a more 

rural area.  See Table 7.3 for the information regarding the setup of this test.  Due to the lack of 

consistent IMU orientation data like the previous experiment, the coarse and truth pose is manually 

determined with the point picker GUI and PnP described in Section 5.3. 

Table 7.3: Parameters for Experimental Test #3 

Parameter Value 
Sensed Imagery Source HAB SN02 
Reference Map Imagery Source Google Satellite 
Elevation Map Source USGS 3DEP 
Simulated Coarse Error 𝝈 (ENU) (0m,0m,0m) 
Simulated Coarse Error 𝝈 (Pitch, Roll, Yaw) (0˚, 0˚, 0˚) 
Translation and Altitude Error Range (ENU) (100m,100m,75m) 
Attitude Error Range (Pitch, Roll, Yaw) (5˚, 5˚, 5˚) 
Simulated Coarse Error 𝝈 (ENU) (50m,50m,25m) 
Number of Corners Selected 100 
Template Size (Pixels) 125 

 

The matching results in Figure 7.15 and Figure 7.16 are similar in performance to the 

previous experiment.  The number of bad and valid RANSAC inliers and the pose estimate plots 

also show similar results to the previous experiment.  This test demonstrates that the algorithm 

works similarly in rural environments at high altitudes as urban environments in the previous 

experiment. 
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Figure 7.15: Stacked plot of matched category distribution for each frame.  A good match is one 

that is within 50 pixels of the truth.  A match is valid if its correlation passes the height and 
width criteria.  In this dataset all the matches are good and invalid except for one near frame 95. 

 

 
Figure 7.16: Match score as defined in Section 5.3. 
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Figure 7.17: Bar graph of number of bad valid RANSAC inlier matches for each frame passed 

through to the PnP estimation algorithm 

 
Figure 7.18: Raw fine estimation error in translation and altitude.  The dashed lines represent the 

error range the algorithm was using to set the dynamic windows. 
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Figure 7.19: Pose estimates within 3𝜎 of coarse error range. 

7.4. Conclusion 

As expected, the experimental results show degraded performance compared to the 

simulator.  This is due to the higher uncertainty in truth pose and the drastic difference between 

simulated and experimental imagery.  It is also possible the rolling shutter effect of the camera 

could cause imperceptible pixel shifting in sections of the image due to camera movement.  

These pixel shifts could increase the number of bad matches.  Despite the lower pose estimate 

accuracy, these experiments demonstrate the algorithm is successful in certain cases where the 

terrain has distinct, consistent features between the sensed and reference images. 
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Chapter 8:  Conclusion 

8.1. Summary and Conclusion 

The dynamic window template matching algorithm is demonstrated to estimate the pose 

within the error range on both simulated and experimental datasets.  It performs well in simulation 

both in terms of matching and pose estimation.  In the real imagery case, it struggles to find 

sufficiently high enough number of good matches in most of the frames, but it does succeed in 

some frames producing pose estimates within the error range.  

8.2. Future Work 

Further optimization and additional features are needed before this method is ready for real-

time application.  There are several avenues of continuing the research presented.  These options 

are detailed in the following subsections. 

8.2.1. Dynamic object removal 

One of the major downfalls of image matching between satellite and sensed imagery is 

interference from new objects.  Dynamic objects like vehicles in lower altitude imagery and clouds 

in higher altitude imagery can cause false matches as these objects are not present in the same 

location in the satellite maps.  Deep learning and computer vision techniques could be used to 

classify aerial imagery and remove these objects by setting the pixel values to zero or fill in the 

gaps with predicted pixels.  The matching algorithms ignore these zero pixels or would simply 

match the predicted pixels to the satellite maps.  If the object removal algorithms performed well, 

the successful match rate would likely increase.  Ammour et al. in [21] demonstrated an approach 

to detect cars in UAV imagery using a deep convolutional neural network.  Chen et. al. in [22] 

successfully integrated a convolutional neural network to remove thick clouds. 
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8.2.2. Use Feature Matching within windows 

The dynamic window template matching works well when the coarse pose is relatively close 

to the truth pose, but this is not true in all cases.  Instead of using template matching, features 

within the template and within the windows could be matched to create sub-matches.  RANSAC 

would eliminate the outlier sub-matches.  Then the strongest sub-match would be selected as a 

match.  This process can be performed on all window and template pairs to create a robust set of 

matches.  A feature matching method would allow the use of storing all the reference features in a 

database like in [23] which is more space and computationally efficient than storing full image 

maps. 

8.2.3. Performance enhancements and real-time hardware implementation 

For this research, all of the navigation algorithms are run after the data is collected.  This is 

not due to the setup of the algorithms, but the specific implementation.  Further optimization of 

the performance is needed before they can run on real-time hardware.  A robust and highly 

computationally efficient solution is to convert portions of the algorithms to an FPGA coprocessor 

or to use GPU resources.  Additionally, the creation of a map server could be used to optimize the 

size of the reference map used for analysis.  This is a major source of the computation cost for the 

algorithms discussed.  The capability of using a reference map for any location within a larger 

region of maps saved onto a hard drive would help make it possible to use the algorithms on an 

aerial system in real time. 

8.2.4. Simulator Improvements 

The simulator currently generates images assuming the Earth is flat.  The ray projection 

technique is capable of accommodating terrains with a large variance in elevation but would need 

further derivation.  PnP does consider the elevation difference of each of the points it selects.  
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Improving the simulator would allow testing and optimization in mountainous terrains.  

Additionally, the simulator is the most computationally expensive part of the solution proposed in 

this research thus performance enhancements could increase the ease of use. 

8.2.5. Kalman filter or other estimation techniques 

On the sensor fusion and filtering aspect of the problem, implementing a Kalman filter or 

particle filter could improve the pose estimates and matching.  In [24] and [25] respectively, the 

Kalman filter and particle filter are implemented in the image matching process.  These methods 

could provide some improvements over RANSAC by fitting a dynamic model to the matching 

instead of minimizing reprojection error with brute force.  Using sensors like an IMU and 

barometric altimeter could help constrain the pose and form a closed-loop solution.  Additionally, 

terrain relative navigation can be coupled with algorithms like visual inertial odometry or optical 

flow to fill in the gaps between pose estimates.  Solutions from other types of non-visual imaging 

sensors like multi-channel LIDAR and RADAR systems could be fused with visual imagery using 

algorithms like the Kalman Filter. 
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Appendix A: Details of High-Altitude Balloon SN01 Design, Launch, and Recovery 

A.1. Electrical System 

The payload system (Figure A.1) uses a Raspberry Pi 4B to record the data to a microSD 

card.  One of the IMUs and the barometer use I2C to communicate with the Pi.  The other IMU 

and the GPS module communicate with the Pi via UART.  The downward facing camera uses the 

Pi’s CSI cable.  A Pi zero is operated as a separate system to capture data from the side facing 

camera to remove some of the load off of the main processor.   

 
Figure A.1: System Diagram for SN01 

The primary tracking system uses an Arduino Nano connected to a 144.39MHz transmitter 

and a secondary GPS module as shown in the schematic in Figure A.2.  It transmits automatic 

packet reporting system (APRS) messages containing GPS coordinate information to a network of 

Digipeaters and iGates.  A Digipeater is a HAM radio operated radio system the repeats APRS 

packets.  An iGate is a HAM radio operated system that receives APRS packets and uploads them 

to the internet.  This system requires the use of a Federal Communications Commission (FCC) 

Amateur Technician class license.  The antenna used is a 2m quarter wave monopole antenna with 
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the radiating element pointed upward and the four radials pointed downward.  This allows for an 

omnidirectional radiation pattern without obstructing the camera imagery.  The secondary tracker 

is a Spot3 satellite GPS messaging service device that does not require an FCC license but a 

monthly subscription fee.  It communicates with the Globalstar satellite network to relay the data 

back to the user. 

 
Figure A.2: Transmitter board schematic 

A.2. Mechanical System 

The payload is constructed with home insulation polystyrene foam glued together and 

covered with reflective and packing tape for increased visibility and to withstand moisture upon 

landing (Figure A.3).  Insulation foam was chosen due to its low weight and temperature insulating 

properties to allow the payload electronics to withstand large temperature variations.  The 

electronics were mounted with 3D printed parts printed with eSun PLA Pro filament.  The Spot 

GPS tracking system is mounted on a custom designed passive gyro to ensure its antenna will point 

towards the sky upon landing. 
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Figure A.3: (Left) Exterior of polystyrene payload container with quarter wave monopole 

antenna.  (Right) Interior of payload box showing electronics. 

A.3. Software System 

The payload runs on Ubuntu Mate 20.04LTS with ROS Noetic. ROS is a framework that 

helps with the interface of numerous sensors.  It can record time synced data in a file called a ROS 

bag.  The data from the bag file is capable of being extracted iteratively or in real time after the 

flight.  The APRS tracking system is based on SparkFun’s Trackuino library.  It transmits an APRS 

packet once a minute when the GPS module has a satellite fix.  The software is publicly available 

at: https://github.com/GAVLab/ros-hab-dcs. 

A.4. Balloon System 

A 600g latex weather balloon is inflated with industrial grade helium of 99.996% purity.  

The required amount of helium is based on the payload weight and desired positive lift as 

determined using this calculator: http://tools.highaltitudescience.com/  As the balloon is inflated, 

the positive lift is measured with a pull scale as shown in Figure A.4. 
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Figure A.4: (Left) Helium inflation process of balloon with pull scale.  (Right) Fully inflated 

balloon 

A.5. Telemetry and Tracking 

High altitude balloon flights can be predicted up to 5 days in advance by using online tools 

like: https://predict.habhub.org/.  In the first flight, the payload travelled from the west side of 

Auburn to just east of Macon, GA as shown in the prediction in Figure A.5.  The payload landed 

just under 20 mi to the east of the predicted landing site.  The predicted highest altitude was 

90,000ft but the highest measured altitude according to the barometer was approximately 80,000ft.  

This difference is due to inaccuracies in the filling process. 
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Figure A.5: Predicted flight path from east of Auburn, AL to west of Macon, GA 

Many of the APRS packets were received by the vehicle mounted antenna connected to a 

Windows laptop running the APRS decoding software, Direwolf.  No GPS packets were received 

above 12km or 40,000ft due to the maximum height software limit of the chosen GPS.  In addition, 

no GPS packets were received below 3000ft due to the lack of nearby Digipeaters and iGates.  The 

precise landing location was determined with the Spot3 tracker.  It provided updates periodically 

during the three weeks after it landed. 

A.6. Recovery 

Recovery of this payload was the most difficult aspect of the project.  The landing location 

was approximately three miles away from the nearest public road.  The terrain was low-lying 

forested swamp land (Figure A.6).  Hiking out to it was exceedingly difficult due to the thick 

vegetation and water.  After contacting the property owner, the payload was recovered when the 

water from recent rains subsided.   
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Figure A.6: (Left) Payload landing site with string and parachute suspended in tree (Right) 

Recovered payload 

The payload condition was better than expected as all sensors were intact, and the box only 

suffered minor damage.  The interior of the box was coated with moisture, but no significant 

amount of water remained in the box.  The exterior showed signs of water seeping between the 

packing tape.  The antennas were bent due to impact and the recovery process.  The parachute, 

radar reflector, and the shards of the balloon were unable to be recovered. 

A.7. Collected Data 

Despite the interior moisture, both microSD cards were still recoverable.  The main Pi filled 

up all 128GB of SD storage preventing future boots.  By using a Linux VM, the ROS bag files 

were extracted.  From analysis of the data, the SD card filled up three-quarters through the flight.  

Figure A.7 shows the resulting altitude of the payload from the GPS and barometer.  This GPS 

module also cut out but at the slightly higher altitude of 16,743.60m or 54,933.07ft.  Using the 

process described in Section 3.2.1, the highest barometric altitude record is 24,508.61m or 

80,408.83ft.  This is below the estimated altitude, but high enough to collect interesting data.  The 

GPS module also reported the velocity of the payload.  The maximum speed recorded is 65.38m/s 
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or 146.25mph.  The map in Figure A.8 shows a similar path to the predicted path excluding the 

missing last quarter of the flight. 

 
Figure A.7: Comparison of barometric altitude and GPS altitude.  GPS cuts out during higher 

altitude portion of flight. 

 
Figure A.8: Map of path of payload 
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Another interesting aspect of the flight are the extreme temperatures experienced.  Figure 

A.9 plots the internal, external, and main CPU temperature during the flight.  The external 

temperature dropped down to -42.75˚C or -44.95˚F, but the internal temperature only dropped to -

12.00˚C or 10.40˚F.  This is due to the chemical handwarmer placed in the box, the heat produced 

from the Pi, and the insulation foam used for the sides of the box. 

 
Figure A.9: Temperature of the payload during flight 

The orientation is filtered and plotted in Figure A.10.  For most of the flight, the pitch and 

roll remain fairly close to zero with some minor fluctuations due to swinging.  The yaw tends to 

vary widely as reflected in the imagery where the payload spins from until tension builds in the 

string and starts spinning the other way.  The balloon pops at about 5000 seconds showing a 

significantly higher amount of fluctuation in pitch and roll during descent.  
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Figure A.10: Euler angle orientation captured by BNO055 IMU. 

A.8. Imagery 

The payload collected data from two cameras: a side-mounted and a downward-facing 

camera.  The side-mounted camera collected data for the sole purpose of understanding the context 

of where the balloon is with respect to the surface.  For some of the higher altitude photos, the 

“blackness” of space is visible.  It also provided insight to the motion of the payload during ascent 

and descent as the camera pans, tilts, and rolls.  Some of the best photos are shown in Figure A.11. 
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Figure A.11: Highlights from the side-mounted camera: (Top-left and Top-right) High altitude 
views (Bottom-left) Aerial view of Auburn GAVLAB and NCAT test track and surrounding 

areas.  (Bottom-right) Auburn, AL 

 The downward-facing camera is used for the localization algorithms.  During the entire 

flight, it very rarely captured the horizon.  Capturing color imagery demonstrates how the terrain 

has a bluer hue at higher altitudes due to light diffracting in the atmosphere.  The effect on 

monochrome imagery is small but could contribute to some loss in clarity.  Figure A.12 highlights 

some of the best examples from the downward-facing camera. 
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Figure A.12: Highlights from the downward-facing camera: (Top-left). Macon, GA (Top-right) 

Lake Harding on AL-GA state line.  (Bottom-left) Rural land west of Auburn, AL. (Bottom-
right) Auburn University main campus 
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Appendix B: Details of High-Altitude Balloon SN02 Design, Launch, and Recovery 

B.1. Improvements to Design 

From the lessons learned from the first balloon flight, various improvements were made.  

A self-contained APRS radio tracking system called Stratotrack replaced the quarter wave 

monopole antenna system on SN01.  It used a dipole antenna soldered to a small circuit board 

that is attached to the main parachute.  This helped reduce the box size dramatically.  Another 

major improvement is the use of a 256GB SD card, doubling the size of the too small 128GB SD 

card of the first flight.  This helped ensure data could be collected during the entire flight. 

 A different set of sensors were used for the second payload as depicted in Figure B.1.  

The GPS module selected for this flight, u-blox MAX-M8Q, is rated for 50,000m or 164041ft 

which exceeds the target balloon altitude.  The selected IMU module, BNO080, is an improved 

version of the BNO055 IMU from the previous flight.  An Arduino Nano 33 BLE Sense is added 

that contains several additional sensors like temperature (HTS221), humidity (HTS221), and 

pressure (LPS22HB).  A battery monitor, INA219, records the voltage and current of the battery. 

 

Figure B.1: System Diagram for SN02 



   

 

98 

    

Figure B.2: (Left) Exterior of payload shortly before flight.  (Right) Interior of payload. 

B.2. Flight and Collected Data 

The payload was launched in a small town just west of Selma, AL, called Uniontown, 

AL.  It flew south-east for 2 hours until it landed between Montgomery, AL and Troy, AL as 

shown in Figure B.2.  It reached a height of 21,286m or 69,836ft according to the GPS module in 

Figure B.3.  The barometric altitude diverged from GPS by about 1000m in the stratosphere once 

calibrated but maintained fairly close during the lower altitude portions of the flight.  Figure B.4 

shows the pressure changes.  The internal and external pressure of the payload box were 

recorded to see if any effect of sensor placement could be observed. The pressure difference is 

noticeable but negligible in terms of estimating altitude.  Figure B.5 shows the orientation Euler 

angles and Figure B.6 shows the recorded temperature during the flight.  Both of these plots 

show similar results from the first flight. 
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Figure B.2: Map of path of payload 

 
Figure B.3: Comparison of barometric altitude and GPS altitude. 



   

 

100 

 
Figure B.4: (Top) Pressure of interior and exterior of payload compared to sea level.  (Bottom) 

Difference in pressure between internal and external barometer. 

 
Figure B.5: Euler angle orientation captured by BNO080 IMU. 
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Figure B.6: Temperature of the payload during flight 

 


