
Leveraging Automation in Data Enhancement and Quality Control Protocols
for Post-Windstorm Reconnaissance Data

by

Hadiah Rawajfih

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 1, 2021

Keywords: reconnaissance, automation, machine learning

Copyright 2021 by Hadiah Rawajfih

Approved by

Dr. David Roueche, Chair, Assistant Professor of Civil and Environmental Engineering
Dr. Justin D. Marshall, Associate Professor of Civil and Environmental Engineering
Dr. Jeffrey LaMondia, Associate Professor of Civil and Environmental Engineering

Abstract

Extreme windstorms cause loss of life, major financial losses, and disrupt community

well-being. Post-windstorm field reconnaissance is one of the traditional methods used to

collect data about these natural hazards. The analysis of this data helps us better under-

stand these disasters and improve the performance of buildings and other infrastructure

during such extreme events. The raw data collected from reconnaissance missions is often

fragmented and nonuniform, which necessitates formalizing data enhancement and qual-

ity control protocols that increase the completeness and accuracy of these datasets. This

thesis presents data enhancement and quality control protocols for ensuring that the build-

ing performance datasets are accurate, complete, and standardized, making them suitable

for analysis and further use by the natural hazards engineering community. However, this

data enhancement and quality control process can take months to complete, delaying data

analysis. This thesis also demonstrates a preliminary framework for automating key com-

ponents of the data enhancement and quality control process to reduce the time required.

The automation framework uses modern technologies that include web scraping and the use

of established machine learning models from past works to classify damage based on im-

agery. The results of comparing the human approach for the data enhancement and quality

control process to the automation framework shows promise in incorporating automation in

post-windstorm field reconnaissance. While the accuracy of the framework is not as high

as the human approach, continuous improvements can be made to the individual compo-

nents of the framework to increase the accuracy. Ultimately, this approach aims to ensure

high quality, standardized post-windstorm reconnaissance datasets can be generated and

published rapidly after extreme windstorms and used to strengthen the resilience of at-risk

communities.

ii

Table of Contents

Abstract . ii

List of Figures . vi

List of Tables . ix

1 Introduction . 1

1.1 Objectives . 3

1.2 Thesis Outline . 4

2 Literature Review . 5

2.1 Overview of Post-windstorm Reconnaissance Developments 5

2.1.1 The Importance of Post-windstorm Reconnaissance Data 5

2.1.2 Organizational Contributors to the Collection of Post-windstorm Re-

connaissance Data . 7

2.1.3 Natural Hazards Research Community Efforts 9

2.2 Post-windstorm Reconnaissance in Digital Format 13

2.3 NSF Structural Extreme Event Reconnaissance (StEER) 14

2.4 Automating Damage Detection and Classification Using Machine Learning . 16

2.4.1 Notable Work on Automating Damage detection 17

2.4.2 Machine Learning and Deep Learning Technologies in Damage Classi-

fication . 17

2.4.3 Automating the Detection of Building Attributes 18

2.5 This Thesis . 19

2.6 Chapter Summary . 20

3 Data Enhancement and Quality Control Protocol 21

3.1 Framework for Data Enhancement and Quality Control 22

iii

3.2 Pre-processing Tasks and Considerations . 23

3.3 Main Processing Tasks and Considerations 25

3.3.1 Extension of DE/QC to Virtual Assessments 29

3.3.2 StEER Windstorm Building Assessment Survey Instrument 30

3.3.3 Supplemental Data Sources . 34

3.3.4 Logistics of the DE/QC Process . 38

3.4 Post Processing Tasks and Considerations 43

3.4.1 Accuracy . 44

3.4.2 Currentness and Completeness . 47

3.4.3 Consistency . 48

3.5 Data Librarians . 48

3.6 Case Study . 50

3.7 StEER Data Archive . 55

3.8 Chapter Summary . 57

4 Automation Framework . 59

4.1 Framework . 59

4.2 Automation Techniques and Tools . 62

4.2.1 Web scraping Process . 62

4.2.2 BRAILS Overview and Incorporation in the Automation Framework . 63

4.2.3 Data Enhancement Using SURF . 65

4.2.4 NOAA Aerial Imagery in the Automation Framework 66

4.3 Classifying Roof Damage Using Machine Learning Algorithms 67

4.3.1 Exploring Different Algorithms and Approaches 72

4.3.2 Stochastic Gradient Descent (SGD) Classifier 73

4.3.3 Support Vector Machines (SVC) Classifier 77

4.3.4 Multi-layer Perceptron (MLP) Classifier 80

4.3.5 Testing Tarped versus Untarped Roofs 82

iv

4.3.6 Final Model Selection . 83

4.4 Framework Performance Evaluation and Comparison to Human Collected Data 84

4.4.1 Web Scraping Vs. BRAILS AI Approach Vs. StEER Collected Data 85

4.4.2 Comparing SURF Enhanced Web Scraping Results with StEER’s Data 92

4.4.3 Comparing Damage Predictions to StEER’s Data 92

4.5 Future Work and Improvement . 97

4.6 Chapter Summary . 99

5 Summary and Conclusion . 100

Appendices . 120

A StEER Buildings - Windstorm Application Fields 121

B Automation Framework Code . 145

v

List of Figures

1.1 Hurricane and tornado tracks that occurred between 2017-2020 2

2.1 CONVERGE’s multidisciplinary networks . 9

3.1 Distribution of StEER’s records per windstorm that was survyed by FAST . . . 22

3.2 Flowchart of the framework for data enhancement and quality control 23

3.3 Location validation for Hurricane Michael Dataset 24

3.4 Table view in StEER’s archive windstorm Fulcrum application 31

3.5 Nashville Tornado (2020) example record in Fulcrum 32

3.6 StEER’s Wind Damage Rating criteria which can be found in the DE/QC handbook 33

3.7 Comparison between NOAA aerial imagery and D2D assessment for the same

structure. 36

3.8 Point Clouds captured by the FAST in field reconnaissance 37

3.9 Pictometry imagery of a coastal residential structure impacted by Hurricane

Michael in 2018 . 37

3.10 Data sources available for a record from the Nashville Tornado (2020) 39

3.11 The Fulcrum platform landing page . 40

3.12 The Fulcrum mobile application interface . 41

vi

3.13 Map view in StEER’s archive windstorm Fulcrum application 42

3.14 Map and table view in StEER’s archive windstorm Fulcrum application 43

3.15 Example of Slack workspace communications 51

3.16 Example one of how to anchor the different sides of the structure based on details

around the structure . 53

3.17 Example two of how to anchor the different sides of the structure based on details

around the structure . 53

3.18 Benefit of using street-level panoramic imagery in addition to D2D photographs 54

3.19 StEER’s data distribution into QC codes . 57

4.1 Automation framework flowchart . 60

4.2 scikit-learn library flowchart that gives guidance on how to choose the appropriate

machine learning algorithm . 70

4.3 Confusion matrix for SGDClassifier results . 76

4.4 Confusion matrix for SVC results . 80

4.5 Confusion matrix for MLPClassifier results . 84

4.6 Confusion matrix showing the performance of BRAILS occupancy classifier rela-

tive to StEER’s data . 88

4.7 Examples of structures that have complex roofs based on StEER’s DE/QC hand-

book guidelines . 89

4.8 Two images of the same structure to compare results from web scraping, BRAILS,

and StEER’s data . 91

vii

4.9 Two images of the same structure to compare results from web scraping, BRAILS,

and StEER’s data . 91

4.10 Pie chart that shows the difference between the true value and predicted value

for the images classified using NOAA aerial imagery with zoom level 20 95

4.11 Roofs that were classified as undamaged but based on StEER’s data are labeled

as minor damage . 95

4.12 Roofs that were classified as minor but based on StEER’s data are labeled as un-

damaged. These images show how easy it is to misclassify minor and undamaged

roofs using aerial imagery only. 96

4.13 An example of a misclassified image. a) NOAA aerial imagery of the structure ,

b) An image of the same structure captured by the FAST 96

4.14 Pie chart that shows the difference between the true value and predicted value

for the images classified using NOAA aerial imagery with zoom level 18 97

viii

List of Tables

3.1 The major data classes in StEER’s datasets. 22

3.2 Examples of data found in county records before cleanup process 26

3.3 Data extracted from county data after cleanup 26

3.4 StEER’s QC codes, which are used to track the data enhancement and quality
control progress . 28

3.5 Main data types available to use in data enhancement along with their sources. 35

3.6 Examples of fields that are multifiltered during quality control 46

3.7 A list of all windstorm events that StEER responded to as well as the type of
response provided . 55

4.1 Roof damage status criteria used in training the machine learning algorithms . . 69

4.2 The parameters tested for the SGDClassifier . 75

4.3 The best score parameters for the SGDClassifier 76

4.4 The parameters tested for the SVC using GridSearchCV 79

4.5 The best score parameters for the SVC . 79

4.6 The parameters tested for the MLPClassifier using GridSearchCV 81

4.7 The best score parameters for the MLP . 81

4.8 Summary of the performance of the tested models to classify damage into five
roof damage classes. 84

4.9 Error percentages of StEER’s datasets used to evaluate automation framework . 85

4.10 The number of results found per attribute using web scraping 86

4.11 Comparison between human approach from StEER, web scraping, and BRAILS 89

ix

4.12 StEER’s Occupancy field options and their equivalent BRAILS classes for the
purpose of comparison. 90

4.13 A comparison of web scraping results after enhancement with SURF with StEER’s
data . 93

A.1 StEER Buildings - Windstorm Application Fields 121

x

Chapter 1

Introduction

Between the years 1900 and 2017, 197 hurricanes impacted the continental United States

causing an estimated US $2 trillion in normalized (2018) damage, amounting to nearly US$17

billion annually (Weinkle et al., 2018). In 2020 alone, 22 weather and climate disasters oc-

curred, costing the US $95 billion (Adam, 2020). The 2020 hurricane season was the most

active on record, both in terms of storms and landfalls, with 30 named storms and 12 landfalls

in the continental US according to the National Oceanic and Atmospheric Administration

(NOAA, 2020). The hurricane impacts in 2020 were coupled with several destructive tor-

nadoes, including two tornadoes that struck Tennessee in March 2020, killing 25 persons.

The frequency of extreme windstorm hazards along with the devastation they incur un-

derscores the critical need for improved resiliency of at-risk communities exposed to these

hazards. The impacts also highlight the need for the natural hazards engineering community

to better understand these hazards and more effectively transfer that knowledge to at-risk

communities to improve their resilience. Figure 1.1 shows a plot of windstorm tracks that

occurred between 2017 and 2020 along with the Saffir-Simpson category (Taylor et al., 2010)

associated with each hurricane and the Enhanced Fujita (EF) rating (Marshall et al., 2004)

for each tornado, illustrating the frequency and spatial distribution of these windstorms in

the southeast particularly.

The frequency and devastating impacts of extreme windstorms make it imperative that

the natural hazards research community learns from these events, and uses that knowledge to

reduce future impacts. One of the primary means of learning from windstorm disasters has

traditionally been through post-windstorm field reconnaissance missions. Post-windstorm

reconnaissance refers to investigative trips taken to areas affected by windstorms to assess

1

Figure 1.1: A plot of hurricane and tornado tracks that occurred between 2017-2020. The
figure shows the category of each hurricane as well as the EF rating of each tornado. The
hurricane track data was obtained from the National Hurricane Center GIS Best Track
Archive. The tornado track data was sourced from the Storm Prediction Center SVRGIS
webpage.

the performance of the built and natural environment. Such missions are typically conducted

by engineers, scientists, and others in the natural hazards engineering community to collect

perishable data. This data is perishable because it quickly gets altered from its original state

due to clean up, repairs, and environmental elements. When conducting building damage

assessments, in particular, investigative teams select areas of interest within the affected

regions before the trip, and choose samples of structures affected within each of the selected

areas. Collected data may include photographs, videos, notes, and measurements, which

are subsequently used by the research community for further analyses. These analyses help

identify the shortcomings in the design of buildings and the performance of construction

methods and materials, generating knowledge that can be utilized to update building codes.

2

Previously, in post-disaster reconnaissance, there was often a trade-off between breadth

and depth of the assessments, as the collected data would either represent a high quantity of

assessments at superficial depth (e.g., broad canvassing using aerial imagery to assign overall

damage ratings), or a small quantity of more detailed assessments (e.g., detailed building

performance assessments on individual building basis). More recently, the incorporation of

modern technologies has expanded the efficiency of the assessments, allowing for the collec-

tion of more detailed assessments over a larger number of structures. However, the limited

time in the field available to collect the data often results in raw datasets that are fragmented

and nonuniform, necessitating further postprocessing to enhance it. Postprocessing includes

filling in the gaps and performing quality control. Thus, protocols to enhance the raw data

and increase its accuracy are essential for accurate analysis.

However, postprocessing of reconnaissance data can take several months, due to the time

required to organize the raw data files, identify and integrate supplemental data sources,

manually review data and findings, etc. One way to increase efficiency is to automate as

much of the postprocessing as possible, leveraging modern technologies such as machine

learning and automation scripts. To develop and have confidence in such methods however,

it is imperative to have high quality, labeled datasets to validate the automated methods

against, and to have well-defined standards for the reconnaissance datasets that ensure the

final, post-processed datasets meet the needs of the natural hazards research community for

reuse and anlaysis.

1.1 Objectives

The objectives of this thesis are to (1) present data enhancement and quality control

protocol for producing robust, standardized post-windstorm building performance datasets

that promote widespread reuse; and (2) demonstrate a preliminary framework for automating

portions of the data enhancement and quality control process using machine learning, web

scraping, and other big data techniques.

3

1.2 Thesis Outline

Chapter 2 is a literature review that follows the theme of the thesis objectives, firstly ex-

ploring past works related to post-windstorm reconnaissance and secondly summarizing past

work related specifically to post-disaster damage detection using machine learning. Chapter

3 presents a data enhancement and quality control protocol for post-windstorm building

performance datasets. Chapter 4 focuses on the components that go into the preliminary

automation framework and discusses preliminary comparisons of the automated techniques

against human-collected data. Finally, Chapter 5 presents a summary and conclusion of the

work in this thesis.

4

Chapter 2

Literature Review

2.1 Overview of Post-windstorm Reconnaissance Developments

2.1.1 The Importance of Post-windstorm Reconnaissance Data

Natural hazards, such as windstorms and earthquakes, leave a tremendous amount of

data in their wake. This includes event related metadata such as wind speeds and directions,

windstorm path, etc., as well as data related to the impacts of the event to the built and

natural environment. Such data is highly valuable but usually available for only a short

period of time due to rescue operations, repair, and cleanup efforts. Therefore, timely re-

connaissance missions soon after an event can save the data produced by the event for later

processing. The analysis of reconnaissance data can then help us better understand the

behavioral patterns and various impacts of natural hazards, which leads to new discoveries,

building new data-driven models, as well as testing and verifying existing models (Wart-

man et al., 2020). However, the value of post-disaster reconnaissance extends beyond the

documentation and understanding of natural hazards. Analyses performed on post-disaster

damage assessments, which are an example of reconnaissance data, help enhance our under-

standing of the performance of the built environment under these extreme events, leading to

the better understanding of structural shortcomings, assisting in developing better solutions

to design more resilient structures, and aiding in finding mitigation measures.

In the United States, some of the earliest documented field reconnaissance missions were

performed by Lawson (1908) and Baier (1897). Lawson (1908) collected data to document

the 1906 M7.9 San Francisco earthquake and Reid (1910) developed the landmark theory of

elastic rebound based on observations from field reconnaissance. Additionally, Baier (1897)

5

studied the impacts of the St. Louis Tornado that occurred in 1896 and was able to determine

the pressures acting on buildings based on the wind speeds the buildings were subjected

to. More recently, reconnaissance data of the built environment, including overall damage

evaluations and component-level damage assessments, have been used to inform and validate

damage prediction models for hurricanes at the regional-scale (Pinelli et al., 2004; Vickery

et al., 2006), tornadoes at event scale (Jain et al., 2020), and at individual building scale (Li

and Ellingwood, 2006). Building performance assessments collected in reconnaissance are

also used in training and benchmarking automated techniques for damage recognition and

classification (Pinelli et al., 2004; Sirmacek and Unsalan, 2009; Radhika et al., 2015; Thomas

et al., 2014; Kashani et al., 2015).

Furthermore, reconnaissance data is essential in identifying critical weaknesses in build-

ing construction resilience. Kareem (1985) assessed the structural performance of buildings in

Hurricane Alicia in 1983 and found that the poor performance of structures was primarily due

to the deficiencies in hurricane-resistant construction in the impacted areas. Additionally,

Keith and Rose (1994) investigated the performance of residential and low-rise commercial

structures that were impacted by Hurricane Andrew in 1992. Moreover, van de Lindt et al.

(2007) focused on surveying wood-frame structures and evaluating their performance in Hur-

ricane Katrina which occurred in 2005. Based on observations from this survey, the authors

were able to make recommendations for better construction and detailing for wood-frame

structures. The authors also made recommendations to achieve better connections in wood

systems. Many other examples can be found in Wartman et al. (2020) that emphasize the

critical role field reconnaissance data plays in advancing hazards engineering and ultimately,

community resilience.

6

2.1.2 Organizational Contributors to the Collection of Post-windstorm Recon-

naissance Data

Today, various organizations contribute to the collection of post-windstorm reconnais-

sance data, including academic organizations, state and federal organizations, non-government

organizations, and more. A major contributor in the US has been the Federal Emergency

Management Agency (FEMA), which contributes to post-disaster reconnaissance data collec-

tion through the Mitigation Assessment Team Program (MAT). FEMA has been deploying

MAT for over 30 years with a primary focus on evaluating the performance of buildings and

infrastructure impacted by natural hazards. It also publishes recommendations for improving

the performance of structures after assessing the damage from windstorm events as well as

code improvement recommendations shown in (FEMA, 2014, 2018, 2019, 2020a). In addition

to the reports and recovery advisories, FEMA also provides a variety of public information

and data related to natural hazard events which can be found on the OpenFEMA repository,

including disaster declaration summaries, datasets consisting of Community Emergency Re-

sponse Teams and their information, flood financial impacts datasets, among other datasets

(FEMA, 2020b).

The National Institute of Standards and Technology (NIST) also frequently contributes

to post-windstorm reconnaissance data through the Disaster and Failure Studies program. It

deploys teams to conduct building damage assessments due to natural hazards, assesses the

performance of emergency communication systems present, and evaluates shelter and safe

areas (Riley, 2002; Kuligowski et al., 2014; Main et al., 2021). Additionally, the program

provides in-depth reports focusing on critical facilities such as Kuligowski et al. (2013), as

well as case study reports such as Gross et al. (2010). NIST also outlined procedures to

identify vulnerabilities of existing structures to seismic and windstorm hazards (Lew et al.,

2002).

The National Science Foundation has recently made significant investments related to

the collection and reuse of reconnaissance data, primarily through the Natural Hazards

7

Engineering Infrastructure (NHERI) program, which is a national organization that provides

the natural hazards research community with infrastructure, education, and the necessary

tools to help with natural hazards research operations (Blain et al., 2020). Within the broad

umbrella of NHERI are experimental research facilities for wind, earthquakes, and tsunami

hazards (Blain et al., 2020), a dedicated Natural Hazards Reconnaissance Facility (also

known as the RAPID facility) that supplies hardware, software, and expertise to support

reconnaissance missions, and the DesignSafe Cyberinfrastructure, which serves as a long-

term data repository and analysis facility and includes dedicated tools and infrastructure to

support reconnaissance missions (Rathje et al., 2020).

Another contributor is NHERI’s CONVERGE network, which is supported by NSF.

CONVERGE encompasses several Extreme Events Reconnaissance and Research (EER)

networks, which are also supported by NSF. Peek et al. (2020) outline the disciplines that

these networks focus on, which include: geotechnical engineering, social sciences, structural

engineering, nearshore systems, operations and systems engineering, sustainable material

management, and interdisciplinary science and engineering. Figure 2.1, which is taken from

(Peek et al., 2020), shows the EER networks that CONVERGE established up to this date.

The Structural Extreme Events Reconnaissance Network (StEER) is a network of structural

and other hazards engineering experts with the objective of capturing perishable data that

will advance our understanding of structural performance and the role of structural engineer-

ing within community resilience. StEER is funded by NSF with a mandate to develop and

maintain the infrastructure and training necessary to support rapid reconnaissance missions

that collect high-quality data suitable for reuse by the broader natural hazards engineering

community. It participates in field reconnaissance for various natural hazards including hur-

ricanes, tornadoes, earthquakes, and tsunamis. The datasets resulting from these missions

can be found on DesignSafe-CI. StEER responds to events using both virtual, on-site, and

hybrid workflows. StEER also publishes event briefings and detailed reports in the form

of Preliminary Virtual Reconnaissance Reports (PVRR) and Early Access Reconnaissance

8

Reports (EARR). These reports include analysis and observations from virtual and field as-

sessments taking into account local building codes and construction practices of the affected

areas, as well as recommended improvements for future events. An in-depth explanation of

StEER’s operations and workflow can be found in (Kijewski-Correa et al., 2021).

Figure 2.1: CONVERGE’s multidisciplinary networks, taken from Peek et al. (2020).

2.1.3 Natural Hazards Research Community Efforts

The interest in collecting and analyzing reconnaissance data is not limited to an or-

ganizational level. Throughout the years, the academic community has also studied the

impacts of hazards through reconnaissance. The United States, in particular, has been hit

with many major windstorms where many valuable lessons were learned from collected and

processed reconnaissance data.Additionally, these efforts allowed for educated changes to

building codes, as can be seen in Gurley and Masters (2011). The following is a discussion

9

on some of the major windstorms that hit the United States and the efforts made to study

them.

One the most catastrophic hurricanes that made landfall in the U.S was Hurricane

Andrew in 1992. Keith and Rose (1994) investigated the performance of residential buildings

in south Florida after Hurricane Andrew. The authors collected detailed damage observations

of low-rise residential and commercial buildings of multiple types of construction including

wood, steel, masonry, and concrete. From these observations it was concluded that the major

cause of the poor performance of the investigated buildings was largely attributed to bad

construction practices, especially in connections and detailing. Wakimoto and Black (1994)

documented the destruction that occurred due to Hurricane Andrew, primarily represented

by a detailed damage map.

In 2005, Hurricane Katrina was another devastating hurricane that caused widespread

damage, in particular to the city of New Orleans and its surrounding areas. van de Lindt

et al. (2007) explored the performance of wood-frame structures in Hurricane Katrina. The

authors thoroughly examined 27 case studies and made subsequent recommendations for

better construction practices including more resilient timber design. In addition, Pistrika

and Jonkman (2010) investigated the relationship of economic damage that occurred to

residential buildings in Hurricane Katrina and flood characteristics. Furthermore, Ghosh

et al. (2021) employed remote sensing technologies for damage assessments of Hurricane

Katrina. Notably, Friedland (2009) introduced a wind and flood damage scale by using

datasets describing the structural impacts of Hurricane Katrina and Hurricane Ike (2008).

Hurricane Sandy was yet another destructive hurricane that hit the United States as

well as seven other countries in 2012. Many efforts were made to study the damage after this

devastating hurricane such as Xian et al. (2015), in which the authors surveyed 380 structures

in New Jersey after the hurricane, and worked on developing a quantitative analysis of the

damage caused by hurricane surge using estimated damage percentages for each side of the

building as well as non-structural component-level damage ratios. Hatzikyriakou and Lin

10

(2018) explored the impacts of storm flooding after Hurricane Sandy using aerial imagery

to classify damage into five damage states that were then used in vulnerability analysis.

Additionally, Tomiczek et al. (2017) developed a classification methodology for hurricane

damage using Hurricane Sandy structural damage impacts on the coast of New Jersey.

Hurricane Harvey made landfall on Texas and Louisiana in 2017. Aghababaei et al.

(2018) studied the structural damage that affected the city of Port Aransas, Texas, due

to Hurricane Harvey. The authors showed the value of integrating both rapid, large-scale

post-disaster damage assessments and detailed forensic evaluations of the damage. Morever,

Roueche et al. (2018) evaluated the performance of residential buildings affected by Hurricane

Harvey. The authors also developed empirical fragility functions for single-family residential

structures impacted by this hurricane.

In 2018, Hurricane Michael was another disastrous hurricane that made landfall in

Florida. At the time, it was considered the fourth most powerful hurricane to strike the

United States (Kijewski-Correa et al., 2018). Zhai and Peng (2020) used deep learning

methods coupled with Google Street View to automate the process of damage assessments

on Hurricane Michael. Kennedy et al. (2020) investigated the hazards that threatened the

area as well as the the damage that occurred in Mexico Beach, Florida due to Hurricane

Michael.

Amini and Memari (2020) provided a detailed literature review on the performance of

coastal residential buildings under hurricane conditions. The authors explored the efforts of

the natural hazards research community to mitigate the effects of natural hazards and the

efforts made to understand these hazards better. Some notable works include White and

of Chicago (1945), Pinelli et al. (2004), Taggart and van de Lindt (2009) Hamid et al. (2010),

Park et al. (2017), and Masoomi et al. (2018).

In addition to hurricanes, major tornadoes hit mainland United States on a regular ba-

sis and are studied by the natural hazards engineering community. A few illustrative efforts

are summarized here. Minor et al. (1977) developed fundamentals that show how buildings

11

interact with tornadoes in relation to wind speed and atmospheric pressure. Fujita (1993)

studied the damage due to the Plainfield Tornado that occurred in 1990 and impacted Plain-

field, Illinois. The authors presented photographs of the impacts of the storms and mapping

of the storm damage. In 1999, a tornado outbreak struck Oklahoma and Marshall (2002)

surveyed the performance of structures in the impacted area and presented a methodology

to conduct tornado damage assessments. The Super Tuesday tornadoes that occurred in

2008, were deadly tornadoes that impacted the Southern United States. McMillan et al.

(2008) deployed field surveys to document the damage from this tornado outbreak. Prevatt

et al. (2012c) discussed observations made on the 2011 tornado outbreaks and the dam-

age they caused. Prevatt et al. (2012a) studied the mechanisms of structural failure due

to the Joplin, Missouri Tornado which occurred in 2011. Moreover, Prevatt et al. (2012b)

performed damage surveys due to the 2011 Tuscaloosa, Alabama, and Joplin, Missouri tor-

nadoes. Ramseyer et al. (2016) studied structural damages after the 2013 Moore, Oklahoma

Tornado and proposed twelve code modifications to construct structural systems that can

withstand an EF2 rating tornado. Roueche et al. (2017) created fragility functions that

combined damage assessments of residential structures and a tornado wind field model that

was conditioned on tree-fall. Strader et al. (2021) examined the Beauregard-Smith Station,

Alabama, tornado and explained how Southeast US tornadoes typically unfold. Henderson

et al. (2021) detailed damage observations from the tornadoes that struck Nashville, Ten-

nessee in 2020. The authors also provided recommendations to improve the strength and

performance of residential structures.

It can be seen from the discussion above that similar data types are typically collected

in different post-windstorm reconnaissance missions. However, the scope, data collection

methodologies,data formats, and presentation can all vary greatly from one reconnaissance

mission to another, highlighting the need for a streamlined data enhancement and quality

control protocol to standardize post-windstorm building performance datasets, which is one

of the contributions of this work.

12

2.2 Post-windstorm Reconnaissance in Digital Format

The transition to an online or digital form for surveying damaged structures and col-

lecting post-windstorm reconnaissance data considerably sped up the process and enabled

the collection of a larger amount of data. An example of this is the Visualizing Impacts of

Earthquakes With Satellites (VIEWS) system, which is a reconnaissance system that was de-

veloped by ImageCat. Inc in collaboration with the Multidisciplinary Center for Earthquake

Engineering Research (MCEER) (Adams et al., 2005). This system uses satellite imagery of

the affected areas pre- and post-disaster to assist the reconnaissance team in targeting areas

for surveying based on the damage they sustained. It also contains a real-time GPS feed

that helps in that process. Furthermore, it allows the surveyors to enter comments on any

observed damage while in the field. During the field reconnaissance, geotagged photographs

and videos are collected and later reviewed and analyzed. The VIEWS system has been used

to survey damage due to the Super Tuesday tornado outbreak in 2008.

Moreover, Prevatt et al. (2012b) utilized a digital database of geotagged photographs

and GIS damage maps when surveying damage due to tornadoes that impacted Tuscaloosa,

Alabama and Joplin, Missouri. The authors made the datasets available to the research

community on online interactive web portals.

CyberEye, developed by Kijewski-Correa et al. (2014), is yet another example of the

post-windstorm data collection transitioning into a more digital format. It is an open-source

collaborative virtual environment that combines post-disaster reconnaissance data collection

with risk assessment that is used in emergency response planning. This system has a modular

format that enables users to customize their dashboard to their preference. This platform

was designed to approach post-windstorm reconnaissance from a more collaborative point of

view to enhance the efforts of the members within the post-windstorm research community.

The Fulcrum platform (Spatial Networks, 2021) utilized by StEER and the RApp which

is provided by NHERI RAPID facility (Berman et al., 2020) are examples of of data collection

platforms that allow the construction of collaborative geodatabases in real-time. They both

13

offer a mobile application that can be used on a personal device such as a phone or tablet,

to which customized survey instruments can be deployed. Geotagged photographs, videos,

and audio recordings can be embedded within each record and associated with the data

collected via the survey instrument. Multiple users are able to simultaneously collect data

and push the data in real-time (if data connectivity allows) to a web-platform for review and

coordination. The collected data can further be reviewed and edited after field deployment

has concluded. A built-in map is also available and shows the locations of the structures that

were automatically geotagged during field reconnaissance. The Fulcrum application has an

additional feature that shows the sustained damage intensity of the records on the available

map. This is a great tool to visualize which areas sustained more damage than others in

a particular event, which enables the user to further investigate these points. Additionally,

the RApp contains user manuals for the equipment that the RAPID facility provides to the

natural hazards community for use in their field reconnaissance missions.

2.3 NSF Structural Extreme Event Reconnaissance (StEER)

StEER’s datasets will be utilized throughout this thesis and to provide context for this

data, a better understanding of StEER’s organization and workflows is necessary. As intro-

duced in Section 2.1.2, StEER is a collaborative network that consists of multidisciplinary

engineers and other hazard research experts. StEER’s primary goal is to collaboratively col-

lect perishable postdisaster data that allows the natural hazards engineering community to

study the performance of the built environment and analyze it in order to design structures

and environments that are more resilient to natural hazards. This goal is achieved through

coordinating the responses to these events with the participating members to ensure an effi-

cient and prompt response. StEER’s members participate in assessments using two methods,

Field Assessment Structural Teams (FASTs) who collect perishable data using traditional

field reconnaissance, and Virtual Assessment Structural Teams (VASTs) who collect data

virtually from relevant sources and analyze it along with any field observations obtained

14

from FASTs. The raw data collected by FASTs is then processed by Data Librarians. Data

Librarians are StEER members with less expertise, typically consisting of undergraduate

and graduate students, that perform data enhancement and quality control.

StEER vigilantly monitors natural hazard events that are expected to occur. In the

process of monitoring these events, the community of researchers and academic members

of StEER communicate and exchange information about the expected event. A decision

making process is executed to decide if an event warrants a response from StEER based

on different factors. These factors include the expected severity and impact of the event as

well as the lessons that could be learned from it. If the event is deemed significant, StEER

coordinators begin planning for deployment of FASTs.

StEER deploys FASTs to perform Door-to-Door (D2D) building performance assess-

ments, which can be performed either on-site or virtually using remote imaging sources.

D2D assessments are conducted using multiple strategies and one of them is the Hazard

Gradient Survey strategy used by StEER, which aligns with the scientific damage assess-

ment methodologies outlined by Crandell and Kochkin (2005). In the Hazard Gradient

Survey strategy, clusters of structures that lie across the hazard gradient are predefined.

Then, the FAST surveys the structures in regular intervals to ensure that the final build-

ing performance dataset is not biased towards damaged structures and is a representative

sample.

During their deployments, FASTs utilize numerous advanced tools to collect data.

FASTs capture photographs that are automatically geotagged and uploaded directly into

the Fulcrum application. Aerial imagery can also be collected by deploying Unmanned

Aerial Systems (UAS). Moreover, street-level panoramic imagery is collected, processed, and

uploaded into public mapping platforms such as Google Maps or Mapillary. Finally, point

clouds may be collected using an imaging laser scanner for target areas of interest.

The major components of D2D assessments, which are performed by FASTs, consist of:

metadata of the assessment (location, time/day, event, name of investigator, etc.), media

15

(photographs and audio), basic attributes (number of stories, year built, roof shape, etc.),

structural attributes (structural system, roof system, foundation type, etc.), and damage

assessments which consist of component level damage ratios, as well as an overall damage

rating. During D2D assessments, due to time constraints and to collect data for as many

structures as possible, FASTs typically only collect metadata, media, and a collection of

specialized data related to load paths or data that needs special FAST forensic expertise.

Because of this, the raw data collected by FASTs is usually non-uniform and in need of

clean-up and standardization. Thus, after FASTs wrap up their D2D assessments, the

resultant datasets need postprocessing to fill the gaps, which include basic and structural

attributes, as well as clean-up to standardize the datasets in preparation for publishing. Here,

again the need for a data enhancement and quality control protocol is highlighted. Such a

protocol would describe and organize how FAST collected data can be used to develop high

quality streamlined post-windstorm building performance datasets. This work details the

development and execution of a data enhancement and quality control protocol which will

be discussed in more details in Chapter 3.

2.4 Automating Damage Detection and Classification Using Machine Learning

During the process of developing post-windstorm building performance datasets, the

damage caused by a windstorm to the buildings in the dataset must be analyzed. This is

a time consuming process where the various data sources discussed previously are used to

gain a comprehensive understanding of the overall damage that impacted the structure that

is then summarized and added to the dataset. With the emergence of promising modern

technologies such as machine learning, research efforts focused on exploiting such technologies

for the purposes of automating the damage detection and classification steps. Such efforts

will be the focus of this section.

16

2.4.1 Notable Work on Automating Damage detection

Thomas (2012) explained how some of the previous work done on the topic of dam-

age detection is pixel-based and how before and after disaster images are analyzed. For

example, Adams et al. (2004) used change detection techniques including edge detection

and texture analysis of pre- and post- earthquake imagery. Similarly, Lakshminarasimhan

(2004) used change detection to determine the extent of damage to various segments from

labeled pre-disaster images. The damage detection performed on these segments was found

by implementing grey-level intensity as well as edge detection and the connectivity of pixels.

Additionally, Sirmacek and Unsalan (2009) discussed automated damage detection using

extracted shadow segments. Kakooei and Baleghi (2017) proposed a framework combining

damage detection of oblique and aerial imagery.

2.4.2 Machine Learning and Deep Learning Technologies in Damage Classifica-

tion

Machine learning and deep learning technologies have been a topic of interest in the

natural hazards research community recently. This interest is motivated by the huge poten-

tial such technologies offer, for example, to build and train models that can rapidly classify

structures into predefined damage categories with high accuracy. Thomas et al. (2014) used

supervised classification by implementing the random forest algorithm on post-hurricane

high-resolution aerial imagery to predict missing roof shingles, collapsed roofs, and any cavi-

ties that occurred due to structural roof damage. Li et al. (2018b) built a framework that uti-

lizes unsupervised learning with convolutional autoencoders to classify post-hurricane aerial

imagery, followed by a process to refine the classification using convolutional neural networks

(CNN). Vetrivel et al. (2016) used a visual-bag-of-words model combined with the use of su-

pervised learning algorithms to classify image patches from post-disaster oblique imagery

into two categories, damaged and undamaged. Bialas et al. (2016) made a comparison of

object-based classification and pixel based machine learning algorithms on post-earthquake

17

high resolution aerial imagery. The authors found that object-based methods give better

results than pixel-based methods of classification. Nia and Mori (2017) used three neural

networks, where a regressor was employed to summarize the features that were extracted

using the three neural networks, to finally give a damage assessment. Yeum et al. (2018)

explored the use of CNNs to predict collapse and spalling in structures subjected to post-

disaster damage. Zhai and Peng (2020) demonstrated the use of Google Street View imagery

to classify post-disaster damage using deep learning algorithms while comparing the perfor-

mance of Google Street View imagery to remote sensing aerial imagery. The authors found

that Street View imagery performed better particularly when the damage observed was mi-

nor, while aerial imagery was more accurate when the damage was severe. Radhika et al.

(2015) explored the use of an artificial neural network combined with the use of support vec-

tor machines algorithm, after the buildings were detected using wavelets pattern recognition,

to detect roof damage.

2.4.3 Automating the Detection of Building Attributes

Post-windstorm reconnaissance datasets are enhanced by the addition of building at-

tributes that describe the structures that were surveyed, such as number of stories, roof slope,

roof shape, presence and location of fenestration and fenestration protection. This additional

data can be particularly helpful in analyzing the effects of extreme wind events within the

context of attributes that influence or are correlated with structural performance(Egnew

et al., 2018; Crawford et al., 2020; Fronstin et al., 1994; Silva et al., 2008). These analyses

include developing fragility functions which can be seen in Massarra et al. (2020), damage

models shown in Pinelli et al. (2004), and developing damage assessment methodologies as

shown in Friedland (2009).

Efforts to automate acquiring this data using artificial intelligence and deep learning

approaches have been made. An example of this is Building Recognition using AI at Large-

Scale (BRAILS) (Wang et al., 2021; Yu et al., 2019b), which is a framework that implements

18

the use of deep learning to develop a building inventory database by extracting building

attributes from satellite and street view imagery. The framework is broken into four steps,

first, a region of interest is selected and basic building attributes would need to be collected

from tax websites such as addresses, number of stories and the exterior siding of a structure.

Next, the addresses are used to find the coordinates using Google’s application programming

interface (API). In the next step, the coordinates are used to collect satellite and street view

images that are associated with each of the addresses provided. After that, a CNN is utilized

to predict building features including roof shape, occupancy type, decade of construction,

and predicting if the structure is soft story. Finally, the building inventory database is

enhanced using Spacial Uncertainty Research Framework (SURF), that was developed by

Wang (2019), and is a package built in the Python programming language that performs

spatial uncertainty analysis and employs the use of machine learning to predict missing

attributes.

Kang et al. (2018) worked on identifying individual building attributes from street view

or satellite imagery utilizing CNNs to classify building occupancy type using street view and

satellite imagery. Moreover, Li et al. (2018a) employed the use of CNNs for feature extraction

combined with support vector regression to estimate the year of construction for buildings

from street view imagery. Furthermore, Kong and Fan (2020) performed facade parsing

using Mapillary imagery, where a pipeline of CNNs was utilized to classify the segments of

facades of buildings. The majority of these applications lack the needed accuracy to viably

replace human-based approaches but have the potential through future improvements.

2.5 This Thesis

As can be seen from the literature review in this chapter, significant advancements in the

field of post-windstorm reconnaissance have been made, ranging from using different types of

image capturing techniques to record and collect post-windstorm data, to the exploration of

modern computer technologies to detect roof damages. However, many challenges still need

19

to be addresses and there is ample space for further improvements. The following details the

contributions of this work:

• Development of a post-windstorm data enhancement and quality control protocol that

details how the raw data collected from post-windstorm reconnaissance missions can

be transformed into streamlined high-quality building performance datasets that can

be reused in various analyses.

• Development of a training regimen to prepare engineering students to perform the data

enhancement and quality control process according to the developed protocol.

• Development of an automation framework that utilizes various modern technologies,

such as web scraping and machine learning, to automate various parts of the data

enhancement and quality control process.

2.6 Chapter Summary

This chapter walks through the developments of post-windstorm reconnaissance through-

out the years, highlighting significant contributions to the collection of this data and show-

casing the importance of, and key findings from, analyzing such data. The developments

discussed range from the use of traditional data collection techniques, to the utilization of

advanced modern technologies such as machine learning. The efforts covered in this chap-

ter include both organizational as well as academic contributions, with a focus on StEER’s

efforts as the work covered in this thesis incorporates their datasets. This literature review

highlights the need for developing a protocol to enhance building performance datasets col-

lected in reconnaissance that can be reused in various analyses, which can ultimately lead

to increasing structural resiliency. This chapter provides context for the following chapters

where the development of a data enhancement and quality control protocol is discussed, and

modern tools to automate parts of the data enhancement and quality control process are

explored.

20

Chapter 3

Data Enhancement and Quality Control Protocol

As introduced in Section 2.3, one of the primary products StEER produces following

wind events is a building performance dataset that documents the performance of multiple

buildings affected by the hazard. These datasets ideally contain the damage experienced

by a building, along with the key contextual information that would help explain why a

given building performed as it did, in addition to the metadata of the investigation itself.

This information is primarily packaged within a standardized survey instrument that, for

building assessments following windstorms, contains over 100 individual fields. Table 3.1

provides a summary of major classes of information that are present. The entire list of

fields is available in Appendix.A and is described in more detail in Kijewski-Correa et al.

(2021). Only a fraction of these fields, deemed field-critical or required in the StEER FAST

handbooks and in the StEER Building – US (Windstorm) Fulcrum app, are typically filled

out on-site by the FAST. Most of the fields must be added post-mortem and even those fields

that were entered on-site, must be checked for accuracy and validity before final publication.

This work develops a protocol to enhance the raw data and prepare it for final publication

through a Data Enhancement and Quality Control (DE/QC) process, which will be the

primary focus of this chapter.

Figure 3.1 illustrates the scale of these efforts. Since 2018, StEER FAST/VAST have

combined to generate 5492 records of building performance in twelve different windstorm

events. Each of these records must undergo the DE/QC process described in the following

sections before the data is published to the DesignSafe-CI.

21

Table 3.1: The major data classes in StEER’s datasets.

Major Data Class Description

Metadata Information such as location, project name, data/time,etc
Basic Information Information such as name of investigator, Assessment type, etc
Media Attachments Photographs and audio
Overall Damage Assessments Wind damage rating, surge damage rating, etc
Building Attributes Descriptive building attributes such as number of stories, year-built, etc
Structural Attributes Structural components of the building such as building type
Wind-Induced Damage Levels Component-level damage ratios due to wind impacts
Surge-Induced Damage Levels Damage to components impacted by storm surge
Quality Control Tracking Quality control codes that indicated the stage the record is at

Figure 3.1: Distribution of StEER’s records per windstorm that was survyed by FAST.

3.1 Framework for Data Enhancement and Quality Control

Figure 3.2 summarizes the framework that was developed in this work for StEER’s

data enhancement and quality control. The data enhancement process begins after the

FAST collects an initial dataset in field reconnaissance that consists of geotagged records

containing mostly metadata, photographs, audio (when available), and notes in text format.

Before data enhancement begins, pre-processing of the raw records is performed to ensure

that the remaining steps in the process go smoothly. Next, the data enhancement process is

22

performed, and is followed by quality control. Finally, the data is published to DesignSafe-

CI. The following sections will cover the StEER Windstorm Building Assessment Survey

Instrument and discuss in detail each component of the built DEQC framework.

Figure 3.2: Flowchart of the framework for data enhancement and quality control.

3.2 Pre-processing Tasks and Considerations

Before the main data enhancement process can begin, the location of the surveyed

structures must be validated, and corrected if needed, using a geographic information system

(GIS) software for a manual approach, or using an automated script, for a less labor-intensive

approach. If GIS software is used and building footprints are available from county tax

records, the process is performed by simply employing a point in polygon query. However,

if there are no building footprints available, a manual visual check can be performed using

a base layer, such as OpenStreetMap, and a layer containing pins of the surveyed structures

represented by points. Validation is then performed by manually checking that every point

is over the correct building. An example of this can be seen in Fig3.3 where 3.3a and

3.3c represent the locations before location validation, where the pins are overlaid on an

OpenStreetMap basemap, and on NOAA aerial imagery, respectively. 3.3b and 3.3d show

the same records in 3.3a and 3.3c after the location validation process. The benefit of using

23

more than one base map can be seen here as well, where the OpenStreetMap basemap

provides building footprints for some buildings, while the NOAA aerial imagery shows the

damaged buildings for perspective.

Figure 3.3: Location validation for Hurricane Michael Dataset. a and c represent the loca-
tions of the records obtained from field reconnaissance before correction overlaid on Open-
StreetMap basemap and NOAA aerial imagery respectively. b and d represent the locations
of the records after placing them over the correct buildings overlaid over OpenStreetMap
basemap and NOAA aerial imagery respectively.

The easier approach is to use building footprints from county tax records, or from

open sources such as AI-generated footprints available from Microsoft (Microsoft, 2018),

along with a script that employs a point in polygon function to flag records that do not fall

24

within their respective footprint polygon. Only the outliers resulting from this process would

then need to be manually corrected, which significantly reduces the manual effort needed

compared with the other approaches. Searching for duplicates is another pre-processing step

that is usually performed jointly with the location validation process. Sometimes multiple

records of the same assessment will get created during field reconnaissance. It is important

to consolidate the information in these records into one record. Additionally, the addresses

can be verified from public county appraisals or by employing a script that uses Google API

to find the addresses from the coordinates obtained from the field.

3.3 Main Processing Tasks and Considerations

This section will focus on the data enhancement process that the Data Librarians per-

form and will follow the order of the major data classes that are present in StEER Building -

US(windstorm) application. The media attachments which consist of photographs and audio

recordings captured by the FAST are examined carefully.

The next step is to define the building attributes associated with the record. These

can be extracted from the media attachments, pre- and post-event street view panoramic

imagery, point clouds (if available), and Pictometry imagery (if available).

Additionally, to reduce the number of manual tasks that must be performed for each

record, where available, public county appraisals in GIS format are used to extract the basic

attributes of the structures. The county appraisals are generally reliable as they are official

records. However, the data still is subjected to validation through visual inspection and

other data sources as well. Before using the county data, the location validation process

must be performed to ensure the successful merging of the county data with the dataset

that has been built up until now. Merging the data is conducted using a spatial join on GIS

software, which is a process that joins attributes from one layer to another based on spatial

relationships. At this point in the process, the result is a dataset of location-validated records

with photos of the sampled structures from D2D assessments along with any information

25

collected and entered by the field investigators, and the basic attributes of the structures

that were obtained from the pubic county records.

Although the county data is reliable, care must be taken when using the data due to

the heavy use of abbreviations and the inconsistency of the abbreviations across different

counties. If it is not clear what an abbreviation is referring to, the data associated with

that abbreviation is not used. This is done through a cleanup process where the unclear

abbreviations are discarded while the clear ones are mapped to the corresponding available

options used by StEER in their online form. After the cleanup process is conducted, the

data is ready to be imported back to the Fulcrum platform. Table 3.2 shows an example

of data extracted from county records before cleanup, where both blanks and abbreviations

are present. Table 3.3 shows how the data would be cleaned up for use in StEER’s dataset.

Here, values such as ”FRAME” and ”TYPICAL” are discarded because either their meaning

is ambiguous or unknown, or, as in the case of ”FRAME”, it refers to a different component

of the structure.

Table 3.2: Examples of data found in county records before cleanup process

Structure Exterior Foundation Stories Year Built

SINGLE FAMILY FRAME FULL BSMT 1.5 STORY 1900
DUPLEX BRICK SLAB 1 STORY 1985

- BRICK TYPICAL COM 1 STY 1935

Table 3.3: Data extracted from county data after cleanup

Occupancy Wall
Cladding

Foundation
Type

Number of
Stories

Year Built

Residential, Single
Family

- Unreinforced
masonry
stem wall

1.5 1900

Residential,
Multi-Family

Homes

Brick Slab-on-grade 1 1985

- Brick - 1 1935

26

Next, the structural attributes are defined. These attributes are extracted similarly to

the building attributes. Some of these attributes rely on information provided by the FASTs

through voice recordings or text notes entered into Fulcrum. For undamaged structures, the

structural attributes are often unknown. Some information can be inferred from similar,

nearby structures if more detailed assessments were performed there, or damage uncovered

the structural system. But often individual connection types are not discernible at the

DE/QC stage if they were not defined by the FAST in the field.

Finally, component-level damage ratios are estimated using post-event imagery. Street-

level panoramic imagery is particularly helpful for these assessments because they provide

imagery to sides of the structure that might not have been visible in D2D assessments. Roof

damage ratios, which include roof cover damage, roof substrate damage, and roof structure

damage can be estimated using a combination of aerial imagery, street-level panoramic im-

agery, and D2D assessments. Each of these sources provides a different viewpoint that can

be used to get a more accurate assessment overall. After all component-level damage ratios

are completed, the overall damage ratings can be determined based on the ratios that were

entered.

To track the progress of the data enhancement and quality process discussed in this

section, a QC code is assigned to each record. Table 3.4 shows the criteria for assigning

QC codes to records, based on StEER’s DE/QC handbook. QC code 1 indicates that the

record contains a verified address and location. Once the record contains an overall damage

rating and basic building attributes such as year-built and occupancy, the record is marked

as QC code 2. QC code 3 is reserved for records that contain damage assessments where all

component level damage ratios are filled in with as much accuracy as possible. Next, QC code

4 consists of records that contain data in field-priority fields such as connections and roof

sheathing type. The data in these fields are more difficult to extract from images and need an

individual with more expertise on the topic to fill them in. Records that nominally reached

a given stage but because of missing data or other circumstances have higher uncertainty

27

Table 3.4: StEER’s QC codes, which are used to track the data enhancement and quality
control progress. Data Librarians will enter these codes based on the criteria shown in the

table.

Code Meaning

1 Location and address have been verified. The record location is positioned
directly over the building that is the focus of the investigation.

1e The location and address have not been verified due to an error or uncertainty.
The exact location or address of the building is not able to be confirmed. If a

record is at 1e, it may not be possible or worthwhile to advance into additional
stages.

2 Stage 1 has been completed, and the minimum information for a completed
assessment has been verified or added. For example, the correct building type is

assigned, overall damage ratings are confirmed to be in agreement with the
standard quantitative guidelines, and basic building attributes such as year

built are present.
2e Stage 1 has been completed but there is insufficient information to meet the

minimum data standards for a complete assessment, or there is considerable
uncertainty in assignment of one or more critical fields. If a record is at 2e, it

may not be possible or worthwhile to advance into additional stages.
3 Stage 2 and below has been completed. The majority of Stage 3 fields as

identified in Table 2 have been completed and validated with reasonable
confidence in accuracy and precision.

3e Stage 2 and below has been completed, and some Stage 3 fields have been
completed, but lack of data (e.g., only 2 sides of the structure are visible)

prevents the assessment from being completed without undue uncertainty. It
could be helpful to consider the tornado/hurricane path and the wind direction
to determine if the lack of visibility of all sides is preventing adequate damage

assessment.
4 Stage 3 and below has been completed, and more detailed forensic fields such as

roof-to-wall connection type and foundation anchorage type have been added
and verified. Most fields are filled in for the record with reasonable levels of

confidence. Most records will not get to Stage 4. Records that do get to Stage 4
may be good candidates for detailed case studies.

5 Final QC validation has been completed with automated and manual checks.
The record is ready to be published in DesignSafe.

5e Final QC validation has been completed but errors have been identified that
need to be corrected manually. Once the errors are resolved, the code should be

changed to “5”.

than usual, are tagged with an additional ”e” after the QC code (1e,2e,3e,etc.). This flags

these records so that they could be refined or removed before performing analyses if needed.

28

3.3.1 Extension of DE/QC to Virtual Assessments

Many aspects of the DE/QC process outlined above could also be applied as fully virtual

assessments, wherein no or very few on-site assessments are performed, and information for

the records are sourced almost entirely from remote imagery. This extension of the DE/QC

process became critically important in 2020, with the onset of the COVID-19 pandemic.

The pandemic limited the scope and methods available to field reconnaissance teams during

the most active year of land-falling hurricanes in recorded history, necessitating alternative

approaches to still learn from the disasters and generate building performance datasets. A

hybrid approach was developed in which FAST prioritize remote imagery capture technolo-

gies (UAV, street-level panoramas) in tandem with a few detailed forensic evaluations in

select clusters to characterize the structural load path. Blank records are then created in

Fulcrum in clusters of similar structures across the hazard gradient where at least street-level

panoramas were captured, but ideally where some UAV flights and forensic assessments were

also conducted, VAST and Data Librarians then nominally follow the DE/QC process, using

information from the few detailed forensic studies to inform defining aspects of the structural

load path that would not be visible in the remote imagery.

This approach was first piloted with Hurricane Laura (2020) as described in Roueche

et al. (2021). Following landfall, a semi-virtual damage survey was performed by StEER using

the Rapid Survey strategy to assess the damage due to Hurricane Laura which occurred in

2020. The virtual assessment was supplemented with street-level panoramic imagery taken

by a small FAST that was able to capture it, UAS imagery also captured by the FAST,

and aerial imagery publicly available by NOAA. The key to the success of this semi-virtual

approach was the essential information provided by the FAST to the Data Librarians about

connection and construction details. The FAST was able to collect information about a

representative number of structures that were present in each cluster, which enabled the Data

Librarians to make some assumptions about similar data points such as structures consisting

of similar construction, year of construction, occupancy, etc. The data enhancement process

29

for this dataset included a damage survey aspect as well. As with the Hazard Gradient

Survey strategy followed by StEER in a more traditional form of field reconnaissance, this

Rapid Survey strategy followed a similar procedure for sampling the structures in each

cluster. A large amount of street-level panoramic imagery was collected from a wide range

of areas affected by Hurricane Laura. Clusters were chosen from the areas covered by street-

level panoramic imagery and to get a representative sample that can be used for statistical

analyses later on, every other and in some cases, every third structure was selected from

the cluster to create a representative unbiased sample. Screen captures from the street-

level panoramic imagery were taken from all of the visible sides of each surveyed structure,

similarly to the procedure that is used when D2D assessments are feasible. After that, the

usual procedure for data enhancement was followed. This new strategy that was developed

due to challenges present from the global pandemic, enabled surveying the damage due to

the windstorm and collecting data related to the damage while maintaining the safety of all

individuals involved in the process.

Employing this new strategy showed how the data enhancement and quality control pro-

cesses can easily be transitioned to a fully virtual assessment when needed. When this fully

virtual assessment is supplemented with a few detailed on-site assessments to characterize

major clusters, it shows even more potential.

3.3.2 StEER Windstorm Building Assessment Survey Instrument

The StEER online damage assessment forms are currently hosted on the Fulcrum plat-

form (Spatial Networks, 2021). The damage assessments made by StEER are organized by

natural hazard into individual applications. There are three StEER windstorm applications:

an application focused on building assessments, another dedicated to nonbuilding structures,

and a third dedicated to capturing hazard intensity observations. The focus in this thesis

will be on the StEER Building - US(windstrom) application. Part of the contributions of

30

this thesis include updating and modifying this application to increase efficiency and intro-

duce new features, such as adding direct links to Google maps and other types of available

imagery.

When one of StEER’s applications is accessed, the user will see a collection of all avail-

able records. Each record is identified by an automatically generated unique string, called

the Record ID. By default, all the records appear in the application in a table format shown

in Figure 3.4.

Figure 3.4: Inside look at StEER’s archive windstorm application showing the table view in
Fulcrum.

Each record in the windstorm StEER applications consists of multiple main sections.

This includes sections for: overall damage assessments due to the hazards present, (wind,

tree fall, surge, etc.), in the event of interest, building attributes, structural attributes, and

sections dedicated to damage assessments. These sections will be discussed in more detail

below. Additionally, an example of an open record is shown in Fig 3.5.

There is a map available at the top of each open record, which displays the location

of the record and provides options to tailor the base maps to one’s liking, and includes a

31

Figure 3.5: An example of a record from the Nashville Tornado that occurred in 2020. The
map shows the location of the surveyed structure and below are some of the fields present
in this record.

zooming functionality that enables the user to control what is visible within the frame of the

map. The map, as well as the available options, are shown in Figure 3.5. Below the map is

a section dedicated to metadata, which consists of data related to the creation and updating

of the record. Next is a section containing basic information about the assessment, such as

the name of the investigator that performed the assessment and the assessment type.

The next section in each record is the media attachments which contains any pho-

tographs, either taken in person when field reconnaissance is possible, or screenshots taken

from satellite or street-level panoramic imagery. Additionally, audio recordings that were

captured by the FAST are in this section as well. The following section is overall damage

assessments which consists of a list of hazards that were present, including wind damage

rating, surge damage rating, rain ingress damage rating, and an EF damage indicator and

degree of damage reserved for tornadoes Marshall et al. (2004). The wind damage rating,

32

shown in Figure3.6, is a quantitative measure of the damage that occurred due to the wind

and is based on the rating that was constructed by Vickery et al. (2006). The surge damage

rating is a quantitative measure of the damage that occurred due to storm surge, and the

surge damage rating developed by Friedland (2009) is used as the criteria for this damage

rating.

Figure 3.6: StEER’s Wind Damage Rating criteria which can be found in the DE/QC
handbook.

A building attributes section is next, which consists of identifying features about the

building, including the address of the structure, year-built, occupancy, etc. The occupancy

33

field is based on the occupancy definitions in the 2015 International Building Code (IBC)

with some modifications to suit the nature of the collected data.

Next is the structural attributes section, which focuses on structural features of the

structure. An example of fields in this section is building type, which refers to the structural

classification that the structure falls under. The building type field follows the classifications

outlined in FEMA (2000). Furthermore, this section consists of multiple field-priority fields

that are more suited for the FAST to fill in that define specific connections within the

structural load path.

Next are two damage assessment sections. The first damage assessment section focuses

on component-level damage ratios induced by wind, while the second damage assessment

section focuses on surge damage details. These sections are of particular importance because

they allow the use of a damage rating with different quantitative criteria than the overall

damage ratings used by StEER.

StEER used ATC (2005a,b); Friedland (2009); Woolpert (2006), and FEMA MAT stan-

dard operating procedures (FEMA, 2008) as building blocks to develop the fields of the

windstorm applications.

The geotagged records in these applications are the main workspace that the Data Li-

brarians work on, where they enter the data they collect and make their damage assessments

of the structures. Several data sources are available for the Data Librarians to work with

during the data enhancement process. These data sources will be discussed in the following

section.

3.3.3 Supplemental Data Sources

Depending on what strategy was implemented by the FAST in the field reconnaissance,

and what other organizations responded to the event, a variety of data may be available to

the Data Librarians to analyze and extract key information from. Many of these data sources

are intentionally overlapping, allowing the Data Librarians to have greater confidence that

34

the data being extracted is conclusive and accurate. Data sources can be broadly classified

into the categories shown in Table3.5.

Table 3.5: Main data types available to use in data enhancement along with their sources.

Main Data Types Source

Public county appraisals County GIS platforms, realtor websites
Pre-event street level panoramas Google Maps
Post-event street level panoramas Captured by FAST and uploaded to Mapillary or Google Maps
Pre-event aerial imagery Google satellite imagery, Pictometry
Post-event aerial imagery NOAA aerial imagery, Pictometry
FAST data in Fulcrum FAST D2D assessments
FAST point clouds FAST deployments

Public county appraisals are used to extract the address, exterior material of the building

or roof, the material the structural system is made of, and the foundation type. If the files

were not obtained from the county in shapefile format, the data is extracted manually from

tax county websites. Also, realty websites such as Zillow are used similarly and comparable

data can be extracted from them as well.

If street-level panoramic imagery was collected in field reconnaissance, it serves as a

great resource for the data enhancement process. The ability to ”drive” by each structure

back and forth and check every visible angle is very helpful. If photographs of the structure

contained in the door-to-door investigations were not sufficient to make an assessment, or not

all sides of the structure were photographed, street-level panoramic imagery could fill in the

gaps. The majority of the street-level panoramic imagery used in this study were captured

at a resolution of 11000x5500 pixels, which provided sufficient resolution for zooming in on

details of the structure.

Publicly available post-disaster satellite imagery collected by other teams, such as

NOAA aerial imagery, is very helpful in the data enhancement process. Imagery such as

this gives a viewpoint that might be absent from other available resources particularly for

the roofs of the structures that might not be visible in ground-level imagery sources. Figure

3.7 shows an example of this, where if the assessment relied only on the D2D photograph

35

in Figure 3.7a the assessment would be inaccurate if the roof was assessed as undamaged.

Figure 3.7b shows the roof of the same structure in NOAA aerial imagery, and it can be seen

that the roof sustained damage as indicated by the blue tarp covering part of it, as tarps are

typically used when damage is present. NOAA aerial imagery is taken within few days of

the event and depicts the impacts before repair and cleanup processes start. This provides

a more accurate assessment of the damage to the roof and an overall more accurate damage

assessment of the whole structure.

Figure 3.7: An example of a structure impacted by Nashville Tornadoes 2020 where the roof
is not visible from the D2D photograph but is visible in the NOAA aerial imagery. a) A
structure in a photograph from StEER D2D assessments where the roof is not visible. b)
The roof of the same structure in NOAA aerial imagery where it can be seen that the roof
is damaged.

Point clouds collected using UAS provide a similar viewpoint to satellite imagery but

with an added advantage of the ability to rotate the viewpoint and view the structures from

multiple sides, and the ability to measure 3D properties using the point clouds. They are

also not limited to the orthogonal imagery view, oblique views of the structures are available

as well through point clouds. Examples of this imagery can be seen in Figure 3.8, where

Figure 3.8a shows imagery of structures impacted by Hurricane Laura in 2020, and Figure

3.8b shows imagery of structures impacted by Hurricane Michael in 2018.

Another source of data is imagery from Pictometry (EagleView Technologies, 2021)

when available. Pictometry provides aerial imagery which includes side views of the struc-

tures from multiple directions as well as orthogonal imagery of the roofs. Imagery before

36

Figure 3.8: Point Clouds captured by the FAST in field reconnaissance. a)Hurricane Laura
in (2020) imagery, b) Hurricane Michael in (2018).

the windstorm is available sometimes as well, which helps identify some of the building at-

tributes such as roof slope or roof cover type, this is helpful when the damage does not allow

these attributes to be identified. An example of Pictometry imagery of a coastal residential

structure that was damaged by Hurricane Michael in 2018 can be seen in Figure 3.9. Figure

3.9a represents the front and left sides of the structure and Figure 3.9b represents the top

and left sides of the structure.

Figure 3.9: Pictometry imagery of a coastal residential structure impacted by Hurricane
Michael in 2018. a) Front and right sides of the structure, b) top and left sides of the
structure.

37

The final data source is the data collected in the door-to-door assessments, which is

one of the main sources of data for the Data Librarians. This data includes photographs

taken on-site, audio recordings by the FAST members during field reconnaissance, and notes

on specific field observations such as load path observations or connections and details that

require more expertise which the FAST would be more knowledgeable about. Figure 3.10

represents an example of data sources that were available for Data Librarians for a record

from the Nashville Tornado dataset that occurred in 2020. For this particular record, street-

level panoramic imagery was available, NOAA aerial imagery, realty website information,

and the photographs and audio captured by the FAST on Fulcrum.

After the data enhancement process is performed on the dataset, a quality control

process is performed to detect errors and increase the accuracy of the data.

3.3.4 Logistics of the DE/QC Process

In order to perform the DE/QC process for a set of records, two main components are

needed: First, a platform that enables the storing, editing, and manipulation of the data to

be processed, and second, trained persons that can use the platform and are familiar with

the DE/QC process. For the DE/QC framework discussed here, the primary platform of

choice is the Fulcrum platform, and the trained persons are the Data Librarians, which are

discussed in Section 3.5.

As discussed in Section 3.3.2, the StEER online damage assessment forms are currently

hosted on the Fulcrum platform. Fulcrum’s landing page can be seen in Figure3.11, which

shows StEER’s windstorm applications.

When FAST members are in the field, they use the StEER Building - US(windstorm)

application on the mobile version of the Fulcrum platform, an example of which can be

seen in Figure3.12, to create individual records for each of the surveyed points of interest

during their deployment. They can capture images swiftly on the go in the application.

These images are automatically geotagged and uploaded into the Fulcrum platform, where

38

Figure 3.10: An example of a record from the Nashville Tornado that occurred in 2020. The
map shows the location of the surveyed structure along with all the data sources available for
this record which include photographs and voice recordings captured by the FAST, street-
level panoramic imagery uploaded to Google Maps, NOAA aerial imagery, and realty website
information which was provided by realtor.com for this record.

they are viewed by the Data Librarians later on during the data enhancement process. FAST

members are also able to record any specific details relating to load paths, or key information

that is not discernible from the captured images, as a voice recording or as a text entry.

Fulcrum’s table format shown in Figure 3.4 provides a convenient interface for filtering

the data for specific characteristics that are of interest, for example, a specific natural haz-

ard event or a specific type of structure or damage rating. This particular feature in the

application is especially useful for quality control purposes. Other modes to view the data

are available, such as map view, which is shown in Figure 3.13. This view mode allows for

39

Figure 3.11: The Fulcrum platform landing page. This figure shows StEER’s windstorm
applications which consist of StEER Building-US(windstorm), StEER Non-Building (Wind-
storm), and StEER Building-US (Windstorm). Also Visible is StEER’s training app used
by the Data Librarians as well as the archive windstorm application.

viewing all records as points on the map. The points are color-coded based on the damage

status of the record, and this view is similar to GIS software view. While this mode does not

allow viewing all fields of the records as with the table format and does not allow the use of

the filtering option, it gives a visual representation of the areas most damaged by the event

and can bring attention to structures that had unique behavior. Such structures could serve

as interesting case studies that can undergo further analysis. The third mode of viewing the

data is a combination between the table mode and the map mode, shown in Figure 3.14,

which combines the benefits of both options: it allows the use of the filtering feature while

also displaying the points on the map.

Most edits are made directly within the Fulcrum web platform during the DE/QC

process. The platform keeps track of every edit through version control, which includes

when changes were made and who the changes were made by. The platform also logs editing

time. In addition to the edits to individual records, edits can be made in bulk by importing

40

Figure 3.12: The Fulcrum mobile application interface. The figure on the left shows the
table view of the application and the figure on the right shows the map view with the
records surveyed by the FAST.

properly formatted CSV or shapefiles, allowing bulk changes to be made outside of Fulcrum

(e.g., via GIS software) and then synced to Fulcrum to update many records at one time.

Based on the DE/QC completed for the nearly 3,000 records that have been processed

to Stage 2 or higher, the average time required to perform the DE/QC process for a record

is 18 minutes. This work then for these 3,000 records represents an additional 900 hours

beyond the field time required to collect the data.

While performing the data enhancement process, methods for improving the efficiency

were explored. One method tested was to utilize more of an ”assembly-line” approach,

where individual Data Librarians were responsible for a single task at a time, some of which

could be performed outside of Fulcrum. For example, defining roof damage was trialed as

a bulk task to be completed in GIS software, and then exporting results to the required

format for uploading the changes into Fulcrum. To use this approach, the reconnaissance

dataset was downloaded from Fulcrum in a GeoJSON format and imported into the QGIS

41

Figure 3.13: Map view in StEER’s archive application showing the records as points on the
map. The colors represent the different damage states of the surveyed structures.

software. NOAA aerial imagery was accessed as a WMTS services and the assessment

locations were overlaid on the imagery. A graduate student that is experienced with the

data enhancement process was timed using the regular process that was described above

and again using this new method for the Nashville tornado dataset. The roof structure

damage, roof sheathing damage, and roof cover damage were the only fields tested because

that is the data that can be extracted from the NOAA aerial imagery. The duration to the

finish the damage assessments using this proposed method was approximately 50% less than

the regular methodology. However, when the remaining steps of data enhancement were

continued, it became necessary to reevaluate the roof damage assessments using the FAST

ground-based photos or other sources to improve the accuracy of the GIS-based method. The

error rates in the damage defined using aerial imagery only, though never precisely quantified,

were high to the extent that roof damages had to be manually rechecked anyway using the

FAST photos or street-level panoramas, which reduced the efficiency of this approach. Errors

42

Figure 3.14: Map and table combination view in StEER’s archive windstorm application.
This view allows the use of the filtering options in the table view while maintaining the map
view at the top.

would include roof sheathing or roof cover damage not being visible in the NOAA imagery

due to shadows or poor image resolution, when it was clearly visible in the high-resolution

ground-based photos. While there may be other methods to improve the overall workflow,

those performing the DE/QC process have all opted to utilize the record-by-record approach,

working within the Fulcrum web platform, for most steps of the DE/QC process.

3.4 Post Processing Tasks and Considerations

The quality control process outlined in the framework targets the three distinct areas of

data quality defined by Fox et al. (1994), which explained that data quality relates to three

areas: the quality of the model that supports the data, the quality of the data values, and

the quality of the representation of the data. The quality of the model that supports the

data is tackled through revising the StEER’s DE/QC handbook used by the Data Librarians

and clarifying unclear language or methods for extracting data based on feedback from the

43

Data Librarians. StEER’s applications on the Fulcrum platform are also judiciously refined

as needed by revising the options available for each field based on the needs encountered

in the data enhancement process. The quality of the data values is addressed through

the data quality dimensions defined by Fox et al. (1994), which are comprised of accuracy,

currentness, completeness, and consistency. Finally, the quality of the representation of the

data is addressed by developing clear guidelines in the handbook for each data entry in

the datasets. The data also goes through rigorous quality control checks that include spot

checks throughout the data enhancement process to make sure that the Data Librarians are

consistent and to avoid duplicated errors. Other quality control checks that address the

quality of data representation include automated checks that focus on the formatting of the

data to ensure consistency.

The main portion of the quality control process in this framework, falls within the quality

of the data values. The quality of data values is addressed by the data quality dimensions

(accuracy, currentness, completeness, and consistency).

3.4.1 Accuracy

To ensure a high level of accuracy, reliable data sources are used in data enhancement,

which were discussed in detail in Section 3.3.3. Furthermore, the open-line communication

with experienced supervisors in meetings or the Slack workspace provides a chance to correct

common mistakes and avoid them in future assessments, which increases overall accuracy.

Additionally, Data Librarians are asked to explain their methodology in data enhancement,

their approach in damage assessments, and any assumptions that they made during the

process.

Detailed quality control checks, which consist of manual and automated checks, play a

key role in increasing the accuracy aspect of the quality of data. Manual checks are conducted

on the Fulcrum platform in the designated application. The filter feature in Fulcrum is used

heavily. First, each field in the dataset is checked for unreasonable or blank entries. This is

44

done by using the ”Select Specific Values” Feature which shows a list of all the values entered

into that field. Once an unreasonable entry is detected, the data is filtered to show those

entries, so they can be manually checked. After the fields are checked for both unreasonable

entries as well as blank entries, a process of multi filtering starts. Multi filtering refers to

searching for fields that could be correlated with one another, which are then filtered and

cross-checked. An example of this would be the First Floor Elevation field and the Understory

(%of Building Footprint) field. Only an elevated structure would have an understory, so due

to this, the Understory (%of Building Footprint) would be filtered for any value that is not

blank and the First Floor Elevation field would be checked. If any record contained a blank

entry in that field, it would require manual checking and reassessment of the First Floor

Elevation. In a similar process, the opposite should be checked as well, any record with an

entry in the First Floor Elevation field should have a value entered in the Understory (%of

Building Footprint) field even if that value is zero. This method requires thinking of each

of the fields and what other possible fields could be correlated with them. Table 3.6 shows

examples of multi filtering checks performed in this framework and fields that are correlated

with one another as well as a brief description as to why they are filtered together.

Moreover, any observations or intel from the FAST are used in further quality checks.

For example, if a cluster was noticed to mostly have laminated asphalt roof shingles by the

FAST during field reconnaissance, any value that differs from that is checked and the roof

cover assessed once more. Another example would be if the FAST did not see any major

damage on-site in a specific cluster, any records in that cluster that are marked as destroyed

or severe in the damage status field would be checked as well. After this step is done, a list

of tasks for the Data Librarians is formulated and any errors that were found are corrected

and any blank entries are checked and if the data is available are filled in then the fields are

checked again in the same way to make sure that no records were missed during the process.

Furthermore, a randomized validation is performed to evaluate the state of the data. A

script written in Python selects a random sample between 7% -15% of the dataset for further

45

Table 3.6: Examples of fields that are multifiltered during quality control.

Correlated
Field 1

Correlated
Field 2

Description

Damage State Overall Damage
Ratings

The Damage State field
represents the maximum of
the three overall damage

ratings.
EF Scale DI Occupancy DI in the EF Scale is based

on the type of occupancy.
Understory
(%Building
Footprint)

First Floor
Elevation

Only an elevated structure
would have an understory

Occupancy Number of
Stories

A Single Family home
would typically have 1-3

stories.
Foundation

Type
First Floor
Elevation

Elevated structures
typically have piers for

foundation.
Fenestration
Protection

Damaged
Windows(%)

If all windows were covered
by protection, damage
would not be visible.

Sectional
/Rollup

/Garage Door
Present?

Sectional
/Rollup

/Garage Door
Failure

If the structure does not
have a garage door, the

field indicating garage door
failure should be blank.

46

quality control. The sample is equally divided by the number of Data Librarians and each

of the Data Librarians will get a set of random records. When writing the automated script,

it was taken into consideration that the main Data Librarian that worked on most of the

data enhancement for the record does not receive that record in their set of random records

and that is done to try to find any inconsistencies in assumptions or misunderstandings in

any of the methods used in data enhancement that were not caught by this point. Each

Data Librarian will reevaluate each of the records checking for any errors in the entries while

taking note of the field with the error in an Excel Spreadsheet. Once the random sample is

reevaluated, another Python script calculates the error percent for the entire random sample

as well as the error percent for each of the fields in the data. This provides a quantitative

measure of the accuracy of the dataset, and informs whether it needs further quality control

and what specific fields are the weak points in the data. Any fields that have a significant

error percent (generally 5% or higher) are flagged for re-evaluation. Once the weak areas of

the data are addressed, a new random sample is generated and once it is reassessed by the

Data Librarians, the updated error percents are calculated. When the error percents reach

an acceptable limit (<5% is the target value), the final error rates calculated are reported

in the data report associated with the publication of the dataset on DesignSafe-CI.

3.4.2 Currentness and Completeness

The currentness aspect of data quality is addressed by taking into consideration the

time that the data was captured by the data source. This is an important point to consider

in post-windstorm reconnaissance because rescue, cleanup, and repairs will alter the state

of the structure and will cause errors in damage assessments particularly. To avoid these

types of errors, noting the date of the landfall of the windstorm and relating that time to

the time data sources captured their data help in making sure the data collected reflects the

post-windstorm state of the structure, and in prioritizing data sources for certain fields.

47

Completeness of the data can be measured by the percentage of filled fields in the data

as well as referring back to the QC codes.

3.4.3 Consistency

The consistency aspect of the quality of data is assessed by consistently treating unique

cases and uncertainties in a similar manner each time. This is achieved by having clear

guidelines in the DE/QC handbook, the guidance in training sessions, as well as the open

communications with supervisors. Another aspect of consistency is that data needs to meet

known guidelines. An example of this is checking the Wind Damage Rating field, which is

assigned using component-level damage ratios. For this reason, the component-level damage

ratios should be consistent with the assigned wind damage rating. To do this, a MATLAB

script is used to find a calculated Wind Damage Rating value using the entered component

level damage ratios and compares the result with the value that was entered by the Data

Librarians in the Wind Damage Rating field. Once the records with inconsistencies are

identified, they are checked again manually and corrected as needed.

3.5 Data Librarians

The data enhancement process requires a detail-oriented approach, and it helps to have

a background in construction or structural engineering to understand the terms being used,

which makes engineering students an ideal choice for the role of Data Librarians. The

use of students has the added benefit of exposing them to the real-world performance of

structures, and training them further in the identification and assessment of common building

systems. Thus, civil engineering students that are interested in the field of natural hazards

engineering and the impacts of dynamic loads on structures were recruited, hired, and trained

to perform the data enhancement process. A training regimen was developed that included

a detailed handbook (Roueche, 2019), pre-recorded webinars, creation of a diverse set of

training records (the same incomplete assessments that could be processed multiple times

48

by different students), dedicated workspace in Slack, and regular meetings for review and

coordination.

Training Data Librarians starts by introducing the student candidates to the data en-

hancement and quality control handbook that serves as a comprehensive guide for the pro-

cess. After the students are familiarized with the process through the handbook, a carefully

selected set of training records is used to test their new knowledge. This provides a hands-

on experience that is identical to the process performed on real records, thus allowing the

candidates to quickly get familiar with the Fulcrum platform and the various data types

that are used in the process, as well as identifying any areas of uncertainty. Over time,

the use of the same training records by multiple trainees will also allow for statistics to be

quantified on the most frequent mistakes. The candidates are given time to perform the

data enhancement on the training records following the handbook. After this, they have

an opportunity to get any questions answered in an online group training workshop. Based

on the evaluation of accuracy of their assessments of the training records, the candidates

either move on to the next step in the process as Data Librarians if they performed well, or

will be retrained and have a chance to ask more questions if there were too many mistakes

in their completion of the training records. After they perform adequately on the training

records (an exact criteria for pass/fail has not yet been defined), the next step is to give the

new Data Librarians small tasks in real datasets (e.g., verifying addresses, finding year built,

classifying roof shape) and closely monitor their performance, providing them with feedback

and answering any questions they may have. Once the Data Librarians gain confidence in

the process and their performance is consistently satisfactory, they will start working more

freely on the data enhancement process with periodic spot checks from a trained supervisor

(an experienced graduate student or faculty member) that are familiar with the process.

For continuous learning and improvement, a Slack workspace channel (provided through

the NHERI DesignSafe-CI), is used to provide a dedicated space for the the Data Librarians

to ask questions, discuss uncertainties or difficult records, and share progress. An example

49

of this is shown in Figure 3.15. Other experienced Data Librarians or individuals that are

supervising the process can share their findings and any tips or helpful resources. Weekly

meetings are also held with the Data Librarians to further clarify any uncertainties as well

as plan for future tasks to ensure continuous progress. The ease of communication using

the Slack workspace and the weekly meetings together allow for a continuous feedback loop

where areas of the process that need further clarification or require more examples are

identified and used to update the data enhancement and quality control handbook. This

provides consistency in the assumptions used in the assessments and sheds light on parts of

the process that have more inherent uncertainty.

3.6 Case Study

The DE/QC process is an iterative detailed process as can be seen from the discussion

in the previous sections. To better understand the level of detail required, a case study

showcasing the steps performed each time in the process along with real-life examples from

StEER’s datasets will be discussed in this section.

The data enhancement process starts from the windstorm applications on Fulcrum that

house all points of interest surveyed by the FAST. The Data Librarian will select a record

that has not yet been processed to start working on, based on priorities assigned by the

supervisor. The DE/QC handbook is referred to for guidance on how to collect the necessary

data for each of the fields during this process. Each record pertaining to a certain assessment

stores all the standardized data collected from the different data sources during the data

enhancement process. The first step is to make sure that the location and address of the

records are correct. That is done using the coordinates that are available through the

automatic geotagging feature in Fulcrum when a record is created. Using the photos of the

structure, the coordinates, and supplemental data sources such as Google Maps or county

GIS platforms/data, the location and address for the structure is confirmed.

50

Figure 3.15: Example of Slack workspace communications.

The Data Librarians will refer to county tax websites and realty websites to extract

building attributes which include year built, number of stories, roof cover material, and wall

siding of the structure. The occupancy type of the structure can be extracted from these

websites as well. While attributes like number of stories and cladding materials are often

visible in the available imagery being reviewed, these websites along with imagery on Google

51

Street View of the structure pre-windstorm event are helpful to collect building inventory in-

formation on buildings that were completely destroyed and have no post-windstorm evidence

left to analyze.

Next, the photos taken by the FAST are examined carefully and analyzed to extract

the information that is needed to populate the remaining fields in the record. It is often

necessary to anchor what side of the structure the Data Librarian is looking at in each photo

by looking at the surroundings of the structure, for example, by looking at the location of a

pool as in Figure 3.16 or a unique feature of the structure as shown in Figure 3.17. Figure

3.16a shows that a pool is present in the back left side of the structure which could act as an

anchor to that side. When looking at Figure 3.16b, the pool indicates that the sides visible

are the back and left sides of the structure due to the location of the pool in this photograph.

Fig3.17a shows that this structure has an outdoor staircase located on the right side of the

building. When looking at Figure 3.17b, it can be seen that a portion of the staircase is

visible where the red arrow is pointing, and that leads to the conclusion that the sides visible

in this photograph are the right and back sides of the structure due to the location of the

staircase. From these two examples, it can be seen that anchoring the sides in this method

will help in visualizing the different sides of the structure with respect to one another and

leads to a more accurate damage assessment. The audio recordings are then listened to and

the information in them is transcribed and entered into the designated fields.

Street-level panoramic imagery is also examined to get a better perspective of the struc-

ture and check any sides that were not visible in the photos taken by the FAST. Street-level

panoramic imagery helps orient the different sides of the structure with respect to one an-

other and gives a different angle from which the structure can be seen. An example of this

is shown in Figure 3.18a, which is an image taken in D2D and the roof is not visible, but

the street-level panoramic imagery shown in Figure3.18b is taken at a higher elevation due

to the location of the road where the vehicle that the equipment is mounted on is driving,

which gives a better view of the roof. During this process, the Data Librarians also rely

52

Figure 3.16: An example of how to anchor the different sides of the structure based on
details around the structure. a) shows a pool at the back left side of a structure impacted
by Hurricane Michael (2018). b) shows a second image of the structure. The location of
the pool relative to the structure indicates that this is the back of the structure. The arrow
points to the pool.

Figure 3.17: Another example on anchoring the sides of the structure based on details in
structure or the surroundings. a) the left side of the structure, which was impacted by
Hurricane Michael (2018), has an outdoor staircase which is indicated by the red square. b)
a small part of the staircase can be seen where the red arrow is pointing. This indicates that
this is of the back of the structure.

on essential observations and notes made by the FAST on details that need more expertise,

such as connection types and information about load paths, to fill in the more detailed fields

such as wall anchorage type and roof-to-to-wall attachment fields.

53

Figure 3.18: Two images of a structure impacted by the Nashville Tornado in 2020 that show
the benefit of using street-level panoramic imagery in addition to D2D photographs. a) A
photograph taken in D2D assessments where it can be seen that the roof is not visible in
this photograph. b) A screenshot of the street-level panoramic imagery uploaded to Google
Maps of the same structure which was captured by the FAST and it shows that the roof is
more visible in this image.

At this point, an idea of the extent of the damage to the roof is formed, but to confirm

it, orthogonal or aerial imagery is used. Satellite imagery such as NOAA aerials, point

clouds if they were collected, or Pictometry imagery if available, are used. This different

angle provides a more accurate damage assessment. It is worth noting that access to more

than one data source is also very helpful for damage assessments, because there might be

an obstruction like clouds present in NOAA aerial imagery that limit or block the visibility

of roofs. Some areas could also be out of the range covered by NOAA’s aerial imagery or

Pictometry imagery. Additionally, if the roof is damaged, this type of imagery can help

identifying the roof system used in the structure. Point clouds and Pictometry imagery can

be used to get better precision in fields that require measurements such as roof slope, first-

floor elevation, and overhang length. If this imagery is not available, the Data Librarians will

rely on using elements of the structure with common or standard dimensions such as standard

door height in the US or the dimensions of wood planks used in timber construction. The

data sources that consist of oblique imagery are also used to view the sides of the structure

that were either not clear in the images taken by the FAST or to view the sides of the

54

structure that were not captured in photos due to accessibility. When each component

of the structure is assessed and assigned an estimated damage ratio, an overall damage

assessment is specified.

3.7 StEER Data Archive

Since StEER’s formation in 2018, it has responded to 12 windstorms. A list of these

events can be seen in Table 3.7, where the event name, year it occurred, as well as the type

of response StEER provided are shown. For more major events that resulted in widespread

damage, such as Hurricane Michael, FASTs were deployed and field assessments were per-

formed. Other storms that had less impact such as Hurricane Zeta and Hurricane Eta,

StEER’s response was limited to an event briefing, which focused on major lessons learned

for policy and practice.

Table 3.7: A list of windstorm events that StEER responded to since its formation in 2018
as well as the type of response that StEER provided for each of the events. ∗P-VAT refers
to Preliminary Virtual Assessment Report.

Event Name Reponse from StEER

Hurricane Florence (2018) FAST and EARR

Hurricane Michael (2018) FAST,P-VAT∗, EARR,

Dataset

19 January 2019 Tornadoes

in the Southeastern US

FAST and EARR

3 March 2019 Tornadoes in

Southeastern US

FAST and EARR

14 March and 25 April,

2019 Cyclones Idai and

Kenneth in Mozambique

Event Briefing

55

22 May 2019 Jefferson City,

MO Tornado

EARR

28 May 2019 Linwood, KS

EF4 Tornado

EARR, Dataset

Hurricane Barry (2019) Event Briefing

Hurricane Dorian (2019) PVRR, EARR, and FAST

Typhoon Hagibis (2019) Event Briefing

10.20.2019 Dallas, TX EF3

Tornado

Event Briefing, FAST

3 March 2020 Nashville

Tornadoes

FAST, VAST, PVRR, and

EARR

Hurricane Laura (2020) PVRR-EARR, FAST

Hurricane Sally (2020) Event Briefing and FAST

Hurricane Delta (2020 Event Briefing

Hurricane Zeta (2020) Event Briefing

Hurricane Eta (2020) Event Briefing

2020 Midwest Derecho FAST

2021 Fultondale, AL

Torndado

FAST

Up to this date, StEER has collected 5492 records in total that span over 11 windstorms.

Figure 3.1 shows the distribution of records per event by the coded QC stage. These records

are in different progress stages due to the time and effort it takes to process the data and

perform data enhancement and quality control. Based on the QC codes detailed in Section

3.6, Figure 3.19 shows the different stages the 5492 records are at and the percentage of

records at each stage. Nearly 35% of the records are still in QC Stage 0 or 1, indicating

minimal processing has been completed. This highlights the need for increased efficiency in

56

the data enhancement and quality control process so that datasets can be completed and

published sooner. A step in that direction is developing the automation framework discussed

in Chapter 4.

Figure 3.19: StEER’s data distribution into QC codes. QC codes that refer to records that
might have more uncertainty than other records, which are denoted with the letter ”e”, are
grouped into their equivalent number QC code in this plot. for example, 2e was included in
2.

3.8 Chapter Summary

This chapter discussed the development of a protocol for post-windstorm data enhance-

ment and quality control. It covers the types of data collected by the FAST and highlights the

inconsistencies and gaps in such data. The various steps of the DE/QC process developed to

address these shortcomings are described in detail. The chapter covers the three main steps

of the developed DE/QC process which consist of pre-processing, main processing, and post-

processing of the FAST collected data. The discussion of pre-processing details locations

57

validation, duplicate removal, and address verification. The main processing discussion cov-

ers extracting building and structural attributes as well as performing damage assessments.

Finally, the post-processing discussion focuses on data quality dimensions which consist of

accuracy, currentness, completeness, and consistency.

This chapter also details the role of Data Librarians and the development of a training

regimen that prepares them to perform the developed DE/QC process. Finally, a case

study that walks through DE/QC and provides real-life examples is given. The developed

DE/QC process aims at producing high-quality datasets, but the process can take months

to complete. Thus, it is worthwhile to explore ways to automate parts of the process, which

will be the focus of the next chapter.

58

Chapter 4

Automation Framework

As shown in Chapter 3, the data enhancement process described in Section 3.3 is the

most time-consuming step of creating post-windstorm reconnaissance datasets. Thus, ef-

forts to make this process more efficient can benefit researchers and ultimately society by

making the datasets available for analysis sooner. One way to speed up the process is by

automating certain aspects of data enhancement that do not rely on engineering assessments

and knowledge. To aid in accelerating key processes in post-windstorm reconnaissance data

enhancement, a preliminary framework that automates various aspects of the data enhance-

ment process was developed for this thesis using Python, building on existing open-sourced

components that have been developed by the NHERI SimCenter.

4.1 Framework

Figure 4.1 shows a flowchart of the framework process workflow that was designed for

this work. The framework was developed to demonstrate how various technologies such as

web scraping and machine learning can be utilized for automation. The framework is split

into dedicated modules that can be implemented as a whole, or separate modules can be

integrated into the manual workflow to speed it up. It can also be used as a first-run that is

then enhanced through manual and automated quality control checks. As an example, the

framework includes a reverse geocoding module that can be used to obtain addresses for a

set of provided coordinates, which is otherwise a time-consuming process if done manually.

The addresses could still be validated later using other methods such as a spatial join with

county tax data. Other modules take advantage of web scraping, along with using BRAILS

and SURF, to fill in various building attributes such as year built, number of stories, roof

59

Figure 4.1: Automation framework flowchart.

type, and many more. To ensure a higher level of accuracy, the Data Librarians can then use

other sources including imagery collected by the FAST for verification and quality control of

the framework results. A damage classification module that uses machine learning to predict

roof damage is also included and can classify the roof damage for individual buildings into

one of five classes: undamaged, minor, moderate, severe, or destroyed.

To start the framework, the user needs to provide a Comma Separated Values (CSV)

file representing a list of buildings of interest as an input. The user has two input options:

a list of coordinates, or a list of addresses. A list of coordinates would be the input option

60

of choice if field reconnaissance was performed, as the surveyors obtain precise coordinates

of the structures of interest from the field. The list of coordinates input option could also

be used if virtual reconnaissance was performed, where points of interest are selected using

GIS software and satellite imagery of the impacted area. Conversely, a list of addresses of

interest can also be used as input instead. If coordinates are provided, a reverse geocoding

module utilizes Google’s Application Programming Interface (API) to obtain the addresses

associated with the input coordinates. Next, the addresses that were obtained through the

reverse geocoding module, or given as input, are passed to the web scraping module. The

Web scraping module is used to find building attributes corresponding to the structures

located at the addresses of interest, such as year built, number of stories, occupancy type,

roof type, and foundation type. After that, an image downloading module again utilizes

Google’s API to download Google Street View and Google satellite imagery for each address

using the provided coordinates. If addresses were provided as input instead of coordinates,

this module also uses Google’s API and geocoding to get the coordinates for each of the

addresses. The downloaded images are then passed to the BRAILS module, which uses

pretrained BRAILS machine learning models to predict building attributes of the structures

of interest, including roof type, number of stories, and year built. The building attributes

found from the BRAILS module are used to validate the results from the web scraping

module, as well as fill in any attributes where the web scraping module did not yield any

results. To further enhance the data, a module that incorporates SURF is implemented to fill

in the gaps present in the collected data after both the web scraping and BRAILS modules

are used, based on spatial relationships. Next, another image downloading module is used to

download NOAA post-windstorm aerial imagery of the individual roofs of structures using

the provided or geocoded coordinates. These images are then passed to a roof damage

prediction module that incorporates a machine learning model, trained on NOAA aerial

imagery specifically for this framework, to classify the impacted roofs into the five damage

categories listed above. Finally, all the data produced by each module, which consists of

61

addresses, coordinates, building attributes, and roof damage classifications, are consolidated

into a single CSV file.

The desired output from the framework is a dataset that could be ingested into the

standardized post-windstorm reconnaissance datasets generated by StEER. For this reason,

an input option for coordinates collected in the field was added. While the coordinates are

used in SURF, BRAILS classifiers, and for capturing images from NOAA aerial imagery, the

addresses are still needed for web scraping building attributes. The coordinates that are ei-

ther collected in field reconnaissance or selected in StEER’s Rapid Survey response strategy

are provided as inputs for the reverse geocoding module to get the addresses associated with

the coordinates. The reverse geocoding module uses custom code to extract the addresses

present in the GeoJSON files retrieved from the Google API. The extracted addresses are

then reformatted to follow the StEER data format: Address sub thoroughfare (street num-

ber), Address thoroughfare (street name), Address locality (city), Address sub admin area

(county), Address admin area (state), Address postal code, and Address country.

4.2 Automation Techniques and Tools

The explored technologies in the framework include web scraping as well as existing

open-source Python packages including BRAILS and SURF, which will be discussed in detail.

Additionally, multiple machine learning models are explored to find the best performing

model to classify roof damage into five categories.

4.2.1 Web scraping Process

Web scraping is the process of collecting data from websites, parsing it, and outputting

the data into an easy-to-use format such as a spreadsheet. This process can be automated

using published tools such as the Selenium Python package (selenium, 2018), which is an

open-source automation tool that uses a web browser to access websites, capture their data,

and process it. A Python module was written that uses Selenium to search for and extract

62

desired data using a Google Chrome WebDriver. The WebDriver is a tool that opens a Google

Chrome window and allows Selenium to control it. The data is extracted by performing a

Google search on each of the addresses provided by the user or obtained from coordinates

through reverse geocoding. Depending on the attribute to be web scraped, a search term is

automatically added to each address. Selenium is programmed to save the resulting Google

search snippets, which are then parsed, and the attributes of interest are saved. In its

current version, the web scraping module can support the following attributes: year built

of the structure, number of stories, foundation type, occupancy type, and roof shape. The

web scraping module is customizable, allowing the user to call the function for the desired

attributes of interest only, instead of the entire list of attributes.

4.2.2 BRAILS Overview and Incorporation in the Automation Framework

BRAILS (Yu et al., 2019a) was introduced in Section 2.4.3 but will be described in

more detail related to its integration into the automation framework. BRAILS is an open-

source tool, developed by NHERI-SimCenter, that employs the use of machine learning and

deep learning to create a building inventory on a regional scale by extracting the informa-

tion from Google Street View and Google satellite imagery. BRAILS includes pretrained

machine learning classification models, known as classifiers, that predict various building at-

tributes. BRAILS also includes tools that can collect building inventory data for a specified

region of interest and obtain all the addresses and coordinates for the buildings in that spec-

ified region. Because the framework developed for this thesis is focused on post-windstorm

reconnaissance data and its enhancement, only specific coordinates and addresses of a repre-

sentative sample from the impacted area are of interest. Therefore, BRAILS is incorporated

into this framework to predict building attributes for these points of interest only, instead

of entire regions.

As of the date of writing this thesis, BRAILS consists of six unique classifiers for identi-

fying building attributes. A roof shape classifier, which classifies the roof into three distinct

63

classes: hip, gable, and flat. An occupancy classifier, which classifies the occupancy type into

single-family and multi-family. A soft-story classifier, which identifies if the structure is soft-

story. A year-built classifier, which classifies the year built into one of six different decades.

A raised foundation classifier which identifies if the structure is elevated or not. And number

of floors detector which predicts the number of stories the structure consists of. BRAILS

also provides a general image classifier that enables the user to train the classifier on their

own user-provided images. BRAILS classifiers use a CNN model, which falls under super-

vised learning, to predict building attributes. When BRAILS trained their classifiers, they

used building attributes extracted from OpenStreetMap as labels for the training datasets.

The images that are used for training and predicting are captured from Google Street View

imagery and Google satellite imagery using the coordinates obtained from a geocoding step

which is part of BRAILS’ framework. Once the coordinates are obtained, Google’s API is

used to download the images.

The automation framework was inspired by BRAILS and parts of BRAILS’ source code

were adapted and incorporated into the automation framework. The parts of the automation

framework that used adapted source code from BRAILS are indicated in the flowchart in

Figure 4.1 and are marked with a blue circle.

The next step in the automation process is validating the coordinates using building

footprints. This is an optional step that was also adapted from the BRAILS source code.

If the user has building footprints of the area that contains the coordinates, it can be used

to ensure that the coordinates of each building are within a building footprint. This helps

ensure the images that are download from Google Street View imagery or Google satellite

imagery or NOAA aerial imagery are accurate and represent the structures of interest. This

step flags the coordinates that do not fall within a building footprint for further manual

investigation. BRAILS suggests using Microsoft’s AI-generated building footprints which

consist of separate files for each state in the United States. The framework provides an

64

option to use one of these files or similar files as well. As mentioned previously, this validation

process is optional and can be skipped by the user.

After the coordinates are validated, adapted source code from BRAILS is used in a

module that downloads individual Google Maps and Google Street View images of each

structure using Google’s API. Once the images are collected, they are passed to another

module that uses BRAILS classifiers to predict building attributes. At this point of the

automation framework, the dataset consists of coordinates, addresses, building attributes

obtained from web scraping that include: year built, number of stories, foundation type,

occupancy type, and roof shape, as well as building attributes predicted from BRAILS

classifiers which include: roof shape, occupancy, year built, raised foundation, and number

of floors. The overlapping building attributes from web scraping and BRAILS are both saved

in the final output file for comparison.

4.2.3 Data Enhancement Using SURF

The next step in the framework is to use the coordinates that were either provided as

inputs by the user or obtained using the geocoding step, in a data enhancement module

that uses SURF. SURF is another open-source tool developed by NHERI-SimCenter (Wang

et al., 2021) that uses spatial uncertainty analysis on the data provided, in which the SURF

model is first trained on a set of geocoded data labelled with a certain attribute of interest,

where the SURF machine learning model learns the spacial patterns in the provided dataset.

Then, with a user-selected number of nearest neighbors, the model can be used to predict

that same attribute the model was trained on for geocoded points that are unlabeled. For

a certain training data point, SURF requires the coordinates of that point and one label.

The label has to be a number. Thus, if the user needs to use SURF to predict text labels

for example, they would need to code them into numbers first. An example on how SURF

can be used is with the web scraped number of stories. A SURF model can be trained on

the data that was found, so for each record, the coordinates and the web scraped number

65

of stories label are given as inputs to train the SURF model. Then, the coordinates for the

records that web scraping failed to find a number of stories for are used with the trained

SURF model to predict their number of stories. It is important to point out that for SURF

to work, the training data must include at least two different labels, otherwise there would

not be any spatial patterns to learn.

Hence, the inclusion of the SURF module into the framework adds another layer of

robustness to the attributes collected and maximizes the number of attributes that the

framework can provide.

4.2.4 NOAA Aerial Imagery in the Automation Framework

Sections 4.2.2 and 4.2.1 introduced methods for automating the identification and clas-

sification of building attributes. For damage detection and classification, post-storm imagery

is needed. NOAA’s Remote Sensing Division collects NOAA aerial imagery and typically

makes it publicly available a few days after a windstorm event. The imagery is described

to have a ground sample distance that ranges from 15 cm to 50 cm per pixel depending

on the event. NOAA aerial imagery was chosen for roof damage state detection because of

the availability of the imagery, the wide-area covered by this imagery, as well as the num-

ber of storms captured by the team. However, in contrast to the process of downloading

Google Maps and Google Street View imagery which is done through exploiting the Goggle

API, no API exists for NOAA. Therefore, a different approach was needed to automate the

NOAA imagery capturing process. For this, the Selenium python package was used again

in a module that incorporates the provided coordinated into NOAA URL links. The URL

links containing the coordinates are then used with Selenium and the Chrome webdriver

to open a Chrome window that displays the NOAA imagery of the structure matching the

coordinates. The module then saves a snapshot of the browser window. Due to this, the

browser appears in the captured images and sometimes parts of roofs of neighboring struc-

tures appear as well. For this reason, code was added to the module to crop images after

66

they are captured, leaving only the roof of the structure of interest visible, and discarding

the browser window and other unwanted artifacts. The uncropped screenshots are deleted

automatically after they are cropped for convenience and to reduce confusion when the user

looks at the framework outputs.

4.3 Classifying Roof Damage Using Machine Learning Algorithms

As discussed in Section 2.4.2, damage detection and classification using machine learning

has been demonstrated by researchers in the community. The developments in this field

constitute major strides towards a future where post-disaster reconnaissance can be converted

to a fully automated process. This framework demonstrates small steps in that direction by

combining several modern techniques to achieve a form of automation.

Alzubi et al. (2018) outlined six components that training a machine learning model is

composed of. These components are data collection and preparation, feature selection, algo-

rithm selection, model and parameters selection, training, and performance evaluation. For

the framework, data collection is achieved by automatically collecting images of individual

roofs from NOAA aerial imagery which was discussed in Section 4.2.4. Additionally, the

coordinates to obtain images of the individual roofs were taken from StEER’s database of

post-windstorm data. Using points of interest from StEER’s data enabled the use of StEER’s

damage assessment as labels.

A big focus in StEER’s datasets and post-windstorm reconnaissance data, in general,

is damage assessments, which are conveyed in StEER’s data by component level damage

ratios as well as a damage rating to quantify the overall damage condition. For this reason,

a damage assessment aspect is needed in the automation framework. While roofs do not

reflect the damage state of a structure precisely, they can give a general idea of the damage

state of the structure. The automation framework uses NOAA aerial imagery to predict

the damage states of individual roofs. Damage state criteria were adapted from the one

used for the Wind Damage Rating field used by StEER, which can be found in StEER’s

67

VAST Handbook: DE/QC - US Windstorms and is shown in Figure 3.6 for convenience.

The criteria used for the roof damage states are the criteria in Figure3.6 which relate to roof

damage and include roof component damage ratios and are summarized in Table 4.1.

The roof damage state is intended to reflect the level of damage the roof sustained

without taking into consideration that damage to other components of the structure may be

present. Based on the guidelines for the Wind Damage Rating in StEER’s VAST Handbook:

DE/QC - US Windstorms, a structure could be assessed as minor damage if the wall cladding

consisted of a damage ratio larger than 0% and less or equal to 15% and no roof damage

was present. A structure like that would appear as an undamaged roof in aerial imagery

but would be assessed in StEER’s datasets as minor damage state. To avoid issues of this

nature, records from StEER’s database on Fulcrum were used, and the Wind Damage Ratings

for the records were taken as labels for the training dataset. For each roof damage state

considered, a group of records was selected and the coordinates, addresses, and Wind Damage

Ratings for the selected records were taken. In this process, the Fulcrum records were filtered

based on Wind Damage Rating and then NOAA aerial imagery of the individual roofs was

automatically captured using the corresponding module in the automation framework. The

images were then manually inspected to make sure that each roof in the training dataset

sustained damage that aligns with the roof damage state criteria.

Another machine learning component is feature selection. Feature selection refers to

selecting features in the data that enable increasing the efficiency of the machine learning

model. Feature selection was left for the model to learn during the training in the current

version of the framework. In the future, feature selection methods such as annotating the

roof or the damage the roof sustained could be used to advance this framework further.

The model and parameters selection component was addressed by identifying the type

of problem at hand. First, a flowchart in the documentation of the Python machine learning

library scikit-learn, developed by Pedregosa et al. (2011), shown in Figure 4.2, was used as

a rough guide to identify what type of machine learning algorithm is the most appropriate

68

for the task at hand. Following the arrows in the chart, the available data is more than fifty

samples, the end goal is to predict a category (roof damage state), and the data at hand

is labeled, from that, we conclude that this is a classification problem. Once the type of

problem at hand is identified and knowing that classification is a form of supervised learning,

our machine learning problem is defined as a supervised learning classification problem.

Table 4.1: Roof damage status criteria used in training the machine learning algorithms.
These criteria are taken from Figure 3.6

Damage
State

Roof Cover
Damage

(%)

Roof
Substrate
Damage

(%)

Roof
Structure
Damage

(%)

No
damage

(0)

0% 0% 0%

Minor
damage

(1)

>0% and
≤ 15%

0% 0%

Moderate
damage

(2)

>15% and
≤ 50%

1-3 panels 0%

Severe
damage

(3)

>50% >3 and
≤ 25%

≤ 15%

Destroyed
damage

(4)

>50% >25% >15%

Saravanan and Sujatha (2018) explained that supervised machine learning algorithms

use labeled data as examples to find an inferred function that can map new data to predefined

labels. The data is divided into training data and testing data. The algorithm will make

comparisons between the predictions it made and the correct labels when the model is being

trained. Then the trained model uses what it learned from the training data on the testing

data for evaluation of the performance of the model. Each classifier has defined hyper-

parameters that can be tuned to optimize the performance of the model. scikit-learn is

one of the most popular python machine learning libraries. It provides a wide collection of

69

machine learning models to choose from. It also has tools that help with the process of tuning

the hyper-parameters of each model, such as GridSearchCV and RandomizedSearchCV, both

of which require the user to provide a list of hyper-parameter values and these tools will find

the optimal combination of the provided parameters. The specific algorithms that were

selected and tested are discussed in Section 4.3.1.

Figure 4.2: Flowchart taken from scikit-learn library documentation that gives guidance on
how to choose the appropriate machine algorithm. It also explains in easy terms how to
identify what type of machine learning problem is at hand

For training, two training datasets were created due to changes in NOAA aerial imagery

resolution for one of the events used. When the automation framework was in the process of

being developed, NOAA aerial imagery of the Nashville Tornado and Hurricane Laura was

selected to be used to create a training dataset. The imagery for both events was available in

zoom level 20, which is described to have a ground sample distance of approximately 15 cm

per pixel. The training dataset images were collected when the available zoom level was still

20. Since then, the zoom level for Nashville Tornado imagery has decreased to zoom level

18 which is described to have a ground sample distance of approximately 50 cm per pixel.

Due to the decrease in zoom level and to be able to run the framework on points that exist

70

in StEER’s data for comparison, an additional training dataset was created to train a new

model for this zoom level. When the zoom level changed for NOAA aerial imagery from zoom

level 20 to zoom level 18, the automatically collected images no longer represented individual

roofs and instead, the images contained roofs of multiple structures. This caused the model

that was trained on the images from zoom level 20 to perform poorly. The imagery that is

at zoom level 18 needed to be cropped to a much smaller size that could capture individual

roofs separately. The new size of the images after cropping is square images of size 50 by

50 pixels. The size of the images in the training dataset needs to be constant because each

image is preprocessed by converting the image to an array of floating-point values of red,

green, and blue, so the size of the array depends on the number of pixels that the image

consists of. Thus, if the number of pixels in an image changes, a new model needs to be

trained.

Thomas et al. (2014) and Yeum Chul et al. (2019) noted that when a training dataset

is not equally distributed across the different classes, the trained model can predict with

bias for the majority class. For this reason, the training datasets were selected with equal

number of images per roof damage state (class). For NOAA, aerial imagery of zoom level 20,

the training dataset consisted of 300 images with 60 labeled images per each of the five roof

damage states. For NOAA aerial imagery of zoom level 18, the training dataset consisted of

285 images with 57 labeled images per each of the five roof damage states.

The performance evaluation component was tackled by testing the trained model using

20% of the training datasets described. The performance of the trained model was deter-

mined by using the F1 score with 5 fold cross validation, which is described as the weighted

average of precision and recall. The confusion matrices were plotted for each of the models

for evaluation as well. Performance evaluation will be covered in more details in the following

sections.

71

4.3.1 Exploring Different Algorithms and Approaches

The previous section demonstrates how roof damage state classification is a supervised

learning classification problem. With the machine learning problem clearly identified, the

next step is to choose an appropriate model to be trained. Many machine learning libraries

provide a diverse set of models that are easy to train and optimize for a specific task. The

previously discussed scikit-learn Python library was chosen for this framework due to its

powerful, streamlined, diverse, and easy-to-use set of models. Specifically, three scikit-learn

models were tested to perform roof damage state classification. The three models, also known

as classifiers, are Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), and

Multi-layer Perceptron (MLP). Each of these models was trained on the two previously men-

tioned datasets from NOAA aerial imagery with different resolutions, and their performance

was evaluated using accuracy and the F1 score. F1 score refers to the weighted average of

the precision and recall and can be computed using the following equation:

F1 =
2× precision× recall

precision + recall

Recall and precision are calculated using the equations below, where TP refers to true

positive, FN refers to false negative, and FP refers to false positive:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

According to the documentation, the closer the F1 score is to one, the better the performance

of the trained model. Additonally, accuracy is a measure of the percentage of predictions

that exactly match the provided labels. Similarly to the F1 score, the closer the accuracy

value is to one the more satisfactory the performance of the trained model is. Additionally,

confusion matrices were constructed to visualize the performance of each trained model. A

72

confusion matrix compares the predicted values to the true values and shows the correct as

well as the wrong predictions for each class.

Below is a detailed discussion of each of the three models, including a brief description

of the models, how they were implemented, and their performance evaluation.

4.3.2 Stochastic Gradient Descent (SGD) Classifier

i. Overview and Method

The first classifier that was tested was the scikit-learn SGDClassifier. As per the docu-

mentation of this classifier (scikit learn, 2020b), SGD is used for supervised learning classifi-

cation and uses stochastic gradient descent learning on a regularized linear model. Stochastic

gradient descent refers to an algorithm that iteratively fits the training data until a chosen

loss function is minimized. At each iteration, the fitting error for a random data point is

calculated using the selected loss function. The gradient of the loss function is then taken

with respect to the fitting parameters (intercept and slope) at that point, and, along with

a specific step size for a selected learning rate (e.g. step size = fitted parameter × learning

rate), updated fitting parameters are calculated. The process is repeated to travel down the

slope of the loss function until the loss function is minimized or the user-specified maximum

number of iterations is reached. The process is called stochastic because it does not compute

the gradient using all data points, instead, it uses a random data point at each iteration,

which significantly reduces the processing time needed. Some of the major hyperparameters

that influence this classifier are the learning rate of the function, which controls the step size

taken in each iteration, the selected loss function, and the maximum number of iterations.

This classifier allows the use of several loss functions and penalties. Regularized refers to the

penalties that are imposed on the loss function as a result of overfitting the data. As with

the majority of supervised classifiers, two arrays are required to train an SGD classifier. One

array for the training samples and another array for the labels associated with the training

samples. For multi-class classification, which is the case for roof damage state classification,

73

the classifier uses a one-versus-all strategy. For each unique class, a binary classifier learns

to differentiate between that class and all remaining classes using a decision boundary. The

results are then combined into one final model that is used to predict a new set of data.

ii. Roof Damage Classification Using SGD Classifier

For roof damage state classification, the inputs are two arrays, an array X, consisting of

all images, where each image is converted to an array of floating-point values that represent

the red, green, and blue percentages of each pixel in the image, and an array y, which consists

of the roof damage state classification labels associated with each image. The SGDClassifier

is sensitive to feature scaling, so the X array is rescaled using the standard scaler function

from scikit-learn to avoid poor training results. The standard scaler standardizes each input

so that the mean is equal to zero and the variance is equal to one. Next, the training dataset

(The X and y arrays) is split into two portions where 80% of the dataset is used for training

(Xtrain and ytrain), and 20% is used for testing (Xtest and ytest). This can be performed by

using yet another useful scikit-learn tool: the train test split function. Other than splitting

the dataset in two, the train test split function also has options to shuffle the data in each

dataset, as well as to stratify the split datasets. Both shuffle and stratify options were

enabled when SGDClassifier was used, as it requires the data to be shuffled beforehand.

Stratification is generally good practice when performing train-test splits as it ensures that

both the training and testing datasets are not biased towards a specific class.

The next step is to train the SGDClassifier on the training dataset, where the model

tries to fit the Xtrain data according to the ytrain labels, under the constraints of the hyperpa-

rameters discussed above. To find the optimal hyperparameters for the best SGDClassifier

fit of the data, GridSearchCV was employed. GridSearchCV is a tool that takes a set of

different hyperparameter values as input and finds the optimal combination out of these

parameters that gives the best score according to a certain evaluation criterion, such as

accuracy or F1 score, through an iterative process that tests every possible combination of

74

Table 4.2: This table lists the parameters that were selected for testing the SGDClassifier

Parameter penalty alpha loss

Values elasticnet 0.0001 log
l2 0.0003 squared hinge
l1 0.0005 squared loss

0.001 huber
0.005
0.01

the given paramters to find the ideal combination. The CV in GridSearchCV stands for

cross-validation, which refers to the process of splitting the dataset into several different

training and testing datasets, and training the model several times, once for each training

dataset split, then validating the results using the test dataset split. This cross-validation

process ensures that the combination of parameters GridSearchCV chooses is likely to per-

form the best out of any other combination when used against new and unseen data, instead

of only working situationally for a specific dataset. To find the optimal hyperparameters for

the SGDClassifier, a GridSearchCV function for the penalty, alpha, and loss hyperparam-

eters were used. The F1 and accuracy criteria were selected, and a 5 fold cross-validation

was chosen. The resultant optimal combination of parameters was then retrieved using the

best estimator and best score GridSearchCV methods. The hyperparameters and their

values used in GridSearchCV are shown in Table 4.2.

iii. SGD Classifier Best Fit Parameters and Performance Evaluation

The optimal parameters that produced the best F1 score and accuracy, which were found

using GridSearchCV, are shown in Table 4.3, and the confusion matrix of the SGDClassifier

test results can be seen in Figure 4.3, where the x-axis represents the predicted label and the

y-axis represents the true label. The confusion matrix is a measure to visually evaluate the

performance of a trained model. An ideal model with 100% accuracy produces a confusion

matrix that has all its values on the diagonal, which represents a perfect match between

the predicted and true labels. The farther away from the diagonal values are, the worse the

75

Table 4.3: The best score parameters for SGDClassifier that resulted from using
GridSearchCV

Parameter penalty alpha loss

Values elasticnet 0.0005 squared hinge

performance is. It can be seen here that, even with the best hyperparamters GridSearchCV

could find, many predictions were not only wrong but missed the correct label by several

levels. An example is how the model predicted 6 of the test undamaged dataset images

as severely damaged (3). Furthermore, it also predicted 1 destroyed image as completely

undamaged.

The best 5 fold cross-validation F1 score was 0.39 and the best accuracy achieved was

0.35. Due to the unsatisfactory SGDClassifier F1 score and accuracy results, other models

were tested and explored.

Figure 4.3: The confusion matrix for the best score parameters found from GridSearchCV
using the parameters shown in Table 4.2. The labels shown in this figure refer to the
following: 0 refers to undamaged, 1 refers to minor, 2 refers to moderate, 3 refers to severe,
and 4 refers to destroyed

76

4.3.3 Support Vector Machines (SVC) Classifier

i. Overview and Method

The next classifier tested was the scikit-learn Support Vector Machines (SVM) classifier,

also referred to as SVC. Based on the documentation of this classifier (scikit learn, 2020c),

SVC is used for supervised learning classification. This classifier finds hyper-planes that

separate the data into classes by transforming the data in high or infinite dimensions. The

hyper-planes separate the data better when the distance, referred to as functional margin,

to the nearest training data points is maximized. As the function margin increases, the

generalization error of the classifier decreases. A penalty is imposed, using a hyperparameter

called C, when a data point is classified incorrectly or if it falls within the functional margins.

To find an optimal fit for the data, a balance between the functional margin and the C

hyperparameter must be found, this allows the data points to be classified correctly but

allows for some misclassification which ensures the data is not overfitted. For multi-class

classification, SVC uses the one-versus-one strategy. To do this, the number of classifiers

used is computed using the following equation:

number of classifiers = number classes× (number classes− 1)

2

Each of these classifiers trains on data from two classes, hence the name one-versus-

one. The name support vector refers to the data points that fall on the edge or within

the functional margins, those points are called support vectors. Support vector machines in

scikit-learn allows the use of several kernels. Kernels are tools that process the data in higher

dimensions to find a hyper-plane that can separate the data into different classes. Kernels are

user-specified when using SVC. For roof damage state classification, the Polynomial (poly)

and the Radial Basis Function (RBF) kernels were tested. The basic idea of the poly kernel

is that it transforms the data into higher dimensions using a user-specified hyperparameter

called degree, which refers to the degree of the polynomial used to transform the data.

77

Transforming the data in this way allows a support vector classifier that separates the data

to be found. The major hyperparameters that influence the performance of SVC when

the poly kernel is selected are the degree, which refers to the degree of the polynomial,

the coef0 hyperparameter, which refers to the coefficient of the selected polynomial, and the

gamma hyperparameter, which controls the influence of each training data point. As gamma

increases, the data points need to be closer for their classification to be affected. For the

RBF kernel, it finds the hyper-plane that separates the data in infinite dimensions. This

kernel could be described to behave similar to a weighted nearest neighbor model, which

means that observations that are closer to a predicted observation have more influence on

the classification than observations that are further. The RBF kernel has a hyperparameter

gamma similar to the poly kernel, where it controls the influence of the distance observations

have from each other on the classification of new observations. Additionally, SVC using either

of these mentioned kernels are influenced by the C hyperparameter.

ii. Roof Damage Classification Using SVC Classifier

To classify roof damage state using SVC, the same image processing steps described in

the SGDClassifier section were used. Just as with SGDClassifier, the SVC inputs were two

arrays, one array, X, consisting of all images in the training dataset in the form of floating-

point arrays, and a second array, y, consisting of the labels associated with the images. Array

X was standardized using the scikit-learn StandardScaler function here as well, which is

recommended in the documentation of the SVC classifier. Next, the train test split function

was used to split the data into 80% and 20% training and testing dataset, respectively. The

shuffle and stratify options were again enabled. Next, to find the best hyperparameters for

SVC, GridSearchCV was used here as well. The parameters that were tested are shown in

Table 4.4.

78

Table 4.4: The best score parameters for SVC that resulted from using GridSearchCV.

Parameter kernel C gamma degree

Values poly 0.1 auto 2
rbf 1 scale 3

10 5
1000 10

Table 4.5: The best score parameters for SVC that resulted from using GridSearchCV

Parameter kernel C gamma

Values rbf 10 scale

iii. SVC Classifier Best Fit Parameters and Performance Evaluation

The best score parameters resulting from GridSearchCV can be seen in Table 4.5. The

best F1 score using 5 fold cross-validation was 0.54 and the best accuracy achieved was 0.55.

The confusion matrix was plotted for the test dataset results and can be seen in Figure 4.4.

From these performance evaluation measures, it can be seen that the SVC trained model

performed much better than the SGD trained model. From the confusion matrix in Figure

4.4, it is observed that some predictions were not optimal. In particular, the trained SVC

model tends to overestimate the predicted damage. This can be seen, for example, in the

6 roofs predicted to have severe roof damage state but the true label is undamaged roof

damage state. These records make up 10% of the test data which is significant considering

the difference between the true label and the predicted label is 3.

Overall, while an F1 score of 0.54 and accuracy of 0.55 for the trained SVC model are

much greater than the SGDClassifier F1 score of 0.39 and accuracy of 0.35, these results still

leave a large room for improvement. For this reason, one last classifier was tested to find

better performance.

79

Figure 4.4: The confusion matrix for the best score parameters found from GridSearchCV
using the parameters shown in Table 4.4. The labels shown in this figure refer to the
following: 0 refers to undamaged, 1 refers to minor, 2 refers to moderate, 3 refers to severe,
and 4 refers to destroyed

4.3.4 Multi-layer Perceptron (MLP) Classifier

i. Overview and Method

After the SGDClassifier and the SVC models were tested and evaluated, the next and

last model tested and evaluated was the scikit-learn Multi-layer Perceptron (MLP) MLP-

Classifier. From the documentation of the classifier scikit learn (2020a), it is yet another

supervised learning algorithm that is used for classification problems. The algorithm for this

classifier can learn a nonlinear function approximator known as an activation function. Addi-

tionally, between the input and output layers, nonlinear layers are present, which are referred

to as hidden layers. The input layer is comprised of several neurons, which pass the inputs

through the activation function and sum the weights of the inputs to get a neuron output. It

is called multi-layer perceptron because neurons are also referred to as perceptrons. For this

classifier, there needs to be at least three layers, an input layer, an output layer, and at least

80

Table 4.6: The parameters tested for the MLPClassifier using GridSearchCV.

Parameter activation hidden layer sizes solver learning rate

Values relu (100,) adam constant
tanh (50,100,) sgd adaptive

logistic (50,75,100,) lbfgs invscaling
identity

Table 4.7: The best score parameters for MLP that resulted from using GridSearchCV

Parameter activation hidden layer size solver learning rate

Values logistic (100,) adam invscaling

one hidden layer. Hidden layers are mathematical functions that pass the weighted linear

summation of the inputs into nonlinear functions that transform the data.. These layers are

referred to as hidden because they are not visible to the system inputs and outputs. MLP

uses backpropagation to train the classifier on the training data. Backpropagation refers to

an algorithm that uses the gradient of a loss function taking into consideration the weight of

each input and output data point. MLPClassifier has a regularization hyperparameter simi-

lar to the other models that were tested, this parameter helps avoid overfitting the training

data. It also has many hyperparameters that help optimize the performance of the model.

ii. Roof Damage Classification Using MLP Classifier

The process of implementing the MLPClassifier is similar to the previous two classifiers,

where the classifier requires two arrays, an array X of images converted into floating-point

values, and a second array y, that consists of the labels associated with the images in array

X. Array X is scaled using the StandardScaler function, which is due to the MLPClassifier

being sensitive to feature scaling similar to the SGDClassifier. The training dataset was split

here as well into 80% training and 20% testing datasets. Next, GridSearchCV was used to

find the optimal training parameters. The parameters that were tested can be seen in Table

4.6.

81

iii. MLP Classifier Best Fit Parameters and Performance Evaluation

The best F1 score and accuracy parameters, which were found using GridSearchCV,

can be seen in Table 4.7. The best 5 fold cross-validation F1 score being 0.49, slightly lower

than the SVC score and the best accuracy was 0.47. Figure 4.5 shows the confusing matrix

resulting from testing the MLPClassifier on the test dataset. Interestingly, while the trained

SVC model tended to overestimate the damages, the trained MLPClassifier seems to slightly

underestimate them in cases where the predictions were wrong. This is highlighted, for

example, by the 7 images with a true label of severe, that were classified as undamaged by

the MLP classifier.

One additional area to potentially enhance the performance was by first training a model

to separate tarped roofs from untarped ones and see if this could then enhance the overall

performance. This will be discussed next.

4.3.5 Testing Tarped versus Untarped Roofs

Tarps are typically applied to damaged roofs after a windstorm event to protect the

home from precipitation and other environmental elements. NOAA aerial imagery is typically

captured a few days after the event. Due to this, some homes would have undergone repairs

by then, and some roofs will be covered or partially covered by tarps. By examining the

available data, it was noticed that the majority of the roofs in the training dataset with

severe roof damage state are covered completely by tarps. When looking at the confusion

matrices in Figure 4.3 and Figure 4.4, it can be seen that both trained models perform badly

for the severe label. Both models misclassify other classes as severe as well as predicting

other classes for that label. Due to this, one idea to try to solve this issue was to test if using

binary classification to separate the roofs that are tarped from the roofs that are untarped

and then training separate models for tarped and untraped roofs, would perform better and

increase classification accuracy. The success of this idea depends completely on the ability

to train a model that could reliably distinguish between tarped and untraped roofs with

82

exceptional accuracy since otherwise, misclassifications in this step would only add to the

overall error and ultimately produce poorer performance scores. The highest precision score

that was obtained from classifying tarped and untarped roofs was 82%, which shows there

is potential to train a new model on tarped vs untarped roofs, but more research would be

needed to associate tarp coverage with damage extent, which is beyond the scope of this

study.

4.3.6 Final Model Selection

Based on the results obtained from testing the three different classifiers combined with

using GridSearchCV to find the best combination of the selected parameters, the SVM

classifier SVC, with a 5 fold cross-validation score of 0.54 and accuaracy of 0.55, was selected

to use in the automation framework. A summary of the performance of all three tested

models along with their accuracy and F1 score results can be seen if Table 4.8.

For the lower resolution NOAA imagery with a zoom level of 18, the same three classifiers

were tested and GridSearchCV was used for this training dataset as well. The same steps

were taken with the only difference being the number of images in the dataset and the

number of pixels per image, which will change the size of each image array as well as the X

array that consists of all images. The size of each image in the full resolution datasets was

200 × 200 pixels, while the size of each image in the lower resolution dataset was 50 × 50

pixels. The classifier that performed the best on this dataset is the MLPClassifier with the

best 5 fold cross-validation F1 score being 0.31 and an accuracy of 0.30. The significantly

worse performance (F1 percentage decrease of 42.6%) is attributed to the loss of essential

details when smaller images are used. While these values are not satisfactory, due to time

constraints, this trained model was still used for comparison with StEER’s datasets for the

Hurricane Michael (2018) dataset and the Nashville Tornadoes dataset, wherein both cases

the resolution of NOAA aerial imagery was reduced to zoom level 18.

83

Figure 4.5: The confusion matrix for the best score parameters found from GridSearchCV
using the parameters shown in Table 4.7. The labels shown in this figure refer to the
following: 0 refers to undamaged, 1 refers to minor, 2 refers to moderate, 3 refers to severe,
and 4 refers to destroyed

Table 4.8: Summary of the performance of the tested models to classify damage into five
roof damage classes.

Model SVC SGD MLP MLP (Zoom 18)

Accuracy 0.55 0.35 0.47 0.30
F1 Score 0.54 0.39 0.49 0.31

4.4 Framework Performance Evaluation and Comparison to Human Collected

Data

To evaluate the performance of the automation framework, the framework was tested

using 1562 records in total from StEER’s database. These records were taken from the

following StEER datasets: 344 records from Hurricane Michael (2018) dataset, 792 records

from the Nashville tornadoes dataset, and 426 records from Hurricane Laura (2020) dataset.

The records were selected by filtering the data in Fulcrum using the criteria in Table 4.1 to

find data that comply with these criteria. The data was also filtered to only include records

84

that had occupancy, number of stories, year built, roof type, and foundation type fields filled

in, to ensure that the data resulting from the automation framework would be comparable.

The comparisons are made relative to StEER’s data. However, it is important to note

that StEER’s data, although expected to be highly reliable, cannot be taken as absolutely

accurate. Table 4.9 shows the error percentages for each of the StEER datasets. These

error percentages were calculated using a random sample of the dataset and reassessing the

records to find the errors as described in Section 3.4. The addresses from this combined

dataset were given as input for the automation framework. The following sections discuss

the results of running the framework and the comparisons between the results and StEER’s

datasets.

Table 4.9: Error percentages of StEER’s datasets used to evaluate the automation
framework.

Dataset Hurricane
Michael
(2018)

Nashville
Tornadoes

Hurricane
Laura (2020)

Error (%) 1.60% 2.01% 1.22%

4.4.1 Web Scraping Vs. BRAILS AI Approach Vs. StEER Collected Data

The automation framework begins by taking the addresses from the combined StEER

records dataset as inputs. Following the flowchart in Figure 4.1, the addresses are used in

the web scraping process to find building attributes that consist of occupancy type, number

of stories, year built, roof shape, and foundation type. Next, the coordinates are found using

geocoding via Google API and are used to download Google satellite images as well as Google

Street View images for each of the coordinates. These images are classified by BRAILS

classifiers. The images that were downloaded in this step were manually inspected and the

results were ignored for BRAILS roof type classifier if the downloaded satellite imagery did

not show the roof clearly. The same was done for Street View imagery, where the results

of BRAILS’ Occupancy classifier, Year Built classifier, and Number of Floors Detector were

85

ignored for any Street View imagery that was not clearly showing the structure, e.g., a tree

was blocking the structure completely, or there was no imagery available.

Table 4.10 shows the number of results found per attribute as well as the percentage

of the found data relative to the total number of records analyzed. From Table 4.10, it

can be seen that some attributes are easier to find than others. For example, Occupancy

and year built were among the highest successfully found attributes. This could be due

to such data being readily available on realty websites, combined with the method used

for web scraping. If other less-used search terms were used for the specific attributes, the

results would have been different. On the other hand, roof shape and foundation type were

particularly difficult to find and only a small percentage of the records had results for these

attributes. This data is rarely listed on realty websites and could be found more commonly

in county property tax websites which do not typically show up on the first page of Google

results when searching for an address. If these websites were known and the data was not

available in shapefile format from the county itself, the county websites could be used in web

scraping instead of, or in addition to, Google search results. From the results summarized

in Table 4.10, it can be seen that the web scraping approach used in the framework shows

moderate success, especially when web scraping for readily available attributes, but leaves

room for improvements, where more sophisticated web scraping code can be implemented to

improve the accuracy for harder to find attributes.

Table 4.10: The number of results found per attribute using web scraping.

Attribute Occupancy Number of
Stories

Year
Built

Roof
Shape

Foundation
Type

Number
Found

1456
(93%)

809 (52%) 1469
(94%)

231(15%) 133 (8%)

Next, the performance of all three methods in finding the building attributes is evalu-

ated. The three methods are the human approach, represented by StEER’s data after the

DE/QC process was completed, the web scraping method, and the AI approach represented

86

by BRAILS’ classifiers results. For web scraping, the percentage relative to StEER’s data

represents the number of results that were found matching the entries in StEER’s data.

For BRAILS, the percentages relative to StEER’s data represent the number of results that

match the entries in StEER’s data relative to the total number of records that consisted of

reasonably clear images for the classifiers to predict from. To be able to conduct a fair com-

parison between the classes obtained from BRAILS classifiers and StEER’s data, different

labels for each field in the StEER dataset can be attributed to a single BRAILS prediction,

as summarized in Table 4.12. It is important to note that these simplifications, while neces-

sary for this comparison, represent a loss of granularity that may be useful for certain data

reuse applications, and thus the simplifications are not ideal. An example of this would be

the occupancy of the structure, where if there were only three options in the occupancy field:

single-family residence, multi-family residence, and commercial or business, a manufactured

home would likely fall into the single-family residence category. Manufactured homes are

more structurally vulnerable than permanent single-family residence as noted by Strader

et al. (2021), and this loss of valuable information would weaken analysis on data that does

not include it.

Table 4.11 summarizes the percentage of attributes found by web scraping and through

BRAILS that matched the attributes listed in the StEER dataset of the same records. The

table highlights the strengths and weaknesses of each approach. For the occupancy at-

tributes, web scraping excels with an accuracy percentage of 88.0%, while BRAILS performs

poorly with a low accuracy percentage of 13.1%. For a better comparison, a confusion ma-

trix showing the performance of BRAILS occupancy classifier relative to StEER’s data can

be seen in Figure 4.6, where SF refers to Single-Family, MF refers to Multi-Family, and B

refers to Business/commercial. Furthermore, BRAILS results that were associated with a

prediction probability of zero were removed when this confusion matrix was plotted. From

this plot it can be seen that the majority of StEER’s data that was tested was single-family,

87

where 64.8% were classified as business by BRIALS, 22% were classified as multi-family, and

12.9% as single-family.

Figure 4.6: Confusion matrix showing the performance of BRAILS occupancy classifier rel-
ative to StEER’s data. SF refers to Single-Family, MF refers to Multi-Family, and B refers
to Business/commercial.

The number of stories is another attribute that web scraping performed well in, with an

accuracy percentage of 71.9%. BRAILS however has a slight edge here, with an even higher

accuracy percentage of 73.6%. It is worth mentioning that for data that is primarily focused

on residential structures, number of stories would typically range from 1-3, which would limit

the number of results that can be found. For this reason, the comparative percentages are

relatively high as there are fewer wrong answers to choose from. The year built attribute

proves to be a challenge for both approaches, web scraping managed to reach a moderate

accuracy percentage of 55.4%, while BRAILS accuracy percentage was 23.4%. Web scraping

performed the worst for the roof shape attributes, where its accuracy percentage was only

22.1%. BRAILS on the other hand performed significantly better with a moderate accuracy

percentage of 48.4%. Moreover, the roof shape field in StEER’s data consists of many

88

different options which can be seen in Table 4.12. Complex roof shapes, shown in Figure

4.7, are defined in StEER’s DE/QC handbook as roofs that consist of multiple roof shapes

and typically have more than 10 ridgelines. When comparing BRAILS predictions relative

to StEER’s data, the complex roofs in StEERs data were predicted as 78.9% hip roofs, 14%

gable roofs, and 7.1% flat roofs. Additionally, BRAILS predictions for records in StEER’s

data that had a gable roof were found to be 57.3% gable, 23.9% hip, and 18.8% flat. When

checking BRAILS predictions for StEER’s records that had a hip roof, they were found to

be 100% flat. For entries in StEER’s data of flat/hip combo option, the results were 14.2 %

gable, 67.4% hip, and 18.4% flat.

Table 4.11: Comparison between human approach from StEER, web scraping, and
BRAILS. The percentages are relative to StEER’s data.

Method Attribute
Occupancy Number of

Stories
Year
Built

Roof
Shape

Web Scraping 88.0% 71.9% 55.4% 22.1%
BRAILS’
Classifiers

13.1% 73.6% 23.4% 48.4%

Figure 4.7: Examples of structures that have complex roofs based on StEER’s DE/QC
handbook guidelines.

For visual comparison, an example of the obtained results from web scraping, BRAILS,

and StEER’s data where the results did not match can be seen in Figure 4.8, where Figure

4.8a represents the image automatically captured from Google Street View and then classified

89

Table 4.12: StEER’s Occupancy field options and their equivalent BRAILS classes for the
purpose of comparison.

Occupancy

StEER BRAILS
Equiva-

lent

StEER BRAILS
Equiva-

lent

StEER BRAILS
Equivalent

Single Family Single
Family

Apartment Multi
Family

Assisted
Living
Center

Commercial

Manufactured
Home

Multi
Family

Business

Detached
Garage

Educational

Shed Factory and
Industrial

Government
Hospital

Office
Professional
Recreational

Center
Religious

School
Warehouse

using BRAILS classifiers, Figure 4.8b represents an image of the same structure captured by

the FAST during Hurricane Michael deployment. Web scraping could not yield any results

for the number of stories of this single-family residence using the address, BRAILS classified

this home as a 3 story residence using the Number of Stories Detector. On the other hand,

StEER’s data listed this record as a two-story single-family home.

A second example can be seen in Figure 4.9, where Figure 4.9a represents the Google

satellite imagery automatically downloaded and classified by BRAILS classifiers and Figure

4.9b represents an image of the same structure captured by the FAST during the Nashville

Tornadoes deployment. For this record, web scraping found that the roof shape for this

address is hip. On the other hand, BRAILS classified this roof shape as gable, which matches

the entry in StEER’s data.

90

Figure 4.8: Two images of the same structure to compare results from web scraping, BRAILS,
and StEER’s data. a) An image downloaded automatically from Google Street View and
used by BRAILS classifiers. b) An image of the same structure that was captured by the
FAST deployed for Hurricane Michael.

Figure 4.9: Two images of the same structure to compare results from web scraping, BRAILS,
and StEER’s data. a) An image downloaded automatically from Google satellite imagery
and classified by BRAILS classifiers. b) An image of the same structure that was captured
by the FAST deployed for Nashville Tornadoes.

It is important to note in these comparisons that the BRAILS framework was developed

for regional-scale hazard analysis as noted in (Wang et al., 2021) and is still under devel-

opment and continuous improvements. The use of BRAILS classifiers in this work could be

different than what it was intended for which could affect the results.

91

4.4.2 Comparing SURF Enhanced Web Scraping Results with StEER’s Data

As shown in Table 4.10, web scraping was not able to find all attributes for each of the

addresses. For such cases, the gaps were filled using SURF, which learns the spatial patterns

in the provided dataset and assigns attributes to the missing points based on those patterns.

SURF trains a model based on input coordinates of the dataset and the labels associated

with them, it then predicts an attribute for a given set of coordinates with unknown labels.

SURF only accepts labels in numerical format, so the attribute values found from web

scraping were temporarily converted to numbers to be used in SURF, then converted back

to their original values once SURF filled the gaps. Table 4.13 shows the web scraping results

before and after enhancing them with SURF relative to StEER’s data. For the web scraped

data before SURF enhancements, the percentages were calculated relative to the number of

results that were found by web scraping. After the data was enhanced by SURF, all the

gaps were filled in, so the number the correct results were divided by is larger than it was

before. The SURF accuracies shown in Table 4.13 are all very close to the accuracy before

the SURF enhancement, with a small overall decrease that does not exceed 3%. This shows

that SURF is capable of filling gaps within a dataset no matter how large they are, while

maintaining a very close overall accuracy that matches that of the original data supplied to

the SURF model. Here, the web scraped foundation types were all the same value and thus

SURF could not be used on them.

A final note on SURF utilization is that the data enhanced by SURF needed post-

processing to remove some unreasonable values, such as the year built larger than 2021. For

future incorporation of this open-source tool, some restraints should be applied to it to yield

more accurate results.

4.4.3 Comparing Damage Predictions to StEER’s Data

As mentioned in Section 4.3.1, two final models were trained to classify roof damage

state into five classes. One model was trained on the NOAA aerial imagery with zoom

92

Table 4.13: A comparison of web scraping results after enhancement with SURF with
StEER’s data.

Attribute Occupancy Number of
Stories

Year
Built

Roof
Shape

Before
SURF (%)

88.0% 71.9% 55.4% 22.1%

After SURF
(%)

87.3% 70.8% 52.4% 19.0%

level 20, and a second was trained on the NOAA aerial imagery with zoom level 18. The

first model was used to predict the roof damage state of the records from Hurricane Laura

(2020) dataset, while the second model was used to predict the roof damage state of the

records from Hurricane Michael (2018) and Nashville Tornadoes datasets. Individual roof

images were downloaded from NOAA aerial imagery for each of the wind events mentioned.

Similar to the process of manual inspection of the downloaded images that were used for

BRAILS classifiers, any image that was out of NOAA aerial coverage or if the imagery was

not reasonably clear, the results were ignored and not included in the final analysis and

comparison. 380 images were classified using the first model after manual inspection and

1063 were classified using the second trained model also after manual inspection. To be able

to compare the results of the classification with StEER’s data, each of StEER’s records was

assigned a roof damage state based on the criteria in Table 4.1. This was easily done because

StEER uses component level damage ratios, which allows for straightforward implementation

of any damage rating that is desired based on the component damage ratios. For each of the

trained models, the predicted roof damage classification was compared to the roof damage

classification assigned to StEER’s records based on their component level damage ratios.

The first model correctly classified 197 images, which amounts to an accuracy of 51.8% and

is comparable to the 5 fold cross-validated accuracy of the trained model (0.55). The second

model correctly classified 326 images, which amounts to 30.6%. This is also comparable to

the 5 fold cross-validated accuracy of the trained model (0.30).

93

Another measure of the performance of the trained model is the difference between the

true label and the predicted label, which was found using the numerical values of each of

the roof damage states, where undamaged is 0, minor is 1, moderate is 2, severe is 3, and

destroyed is 4. Figure 4.10 represents a pie chart for the values of the difference between

true label and predicted label, where for example, if the roof damage state was found to

be undamaged (0) in StEER’s data but the trained model predicted it as minor damage

(1), the difference would be -1. The percentages present in the figure refer to the number

of records that had a specific category of difference relative to all the records that were

classified. From Figure 4.10, the majority of the misclassified images from the Hurricane

Laura (2020) dataset consisted of a difference of 1 or -1. When inspecting the collected

images that had a difference of 1 or -1, it can be seen that even for a human, it is difficult

to see the damage in NOAA aerial imagery when the damage is minor. On the other hand,

when inspecting the images of the same structure using the data sources available to StEER’s

Data Librarians, the damage can be easily detected. Figure 4.11 shows examples of images

that were classified as undamaged roof damage state but their true label was minor damage.

Figure 4.12 shows images of roofs that were classified as minor roof damage state but the

true label was undamaged. Both figures show how difficult it can be to identify minor

roof damage state from aerial imagery. Overall, the trained model performed very close to

expectations based on the F1 score and accuracy that were found during the testing and

training process. Additionally, if levels of error that are only one roof damage state above

or below the ground truth label were allowed, the accuracy for this trained model would

increase to 0.89.

Both F1 macro score and F1 micro scores were calculated manually for further evalua-

tion. The F1 micro score is an overall F1 score and does not take into consideration label

imbalance. On the other hand, the F1 macro score calculates the F1 score for each of the

labels and calculates the mean of all the F1 scores found. The F1 micro score was found to

be 0.52, which is similar to the F1 score found from 5 fold cross-validation during training

94

the model (0.54). The F1 macro score was found to be 0.25 and it can be seen that it is

significantly less than the micro score. The reason for the lower macro score is due to the

inability of the model to predict two roof damage states(severe and moderate). As can be

seen evaluating the trained model in various ways is helpful in identifying weaknesses.

Figure 4.10: Pie chart that shows the difference between the true value and predicted value
for the images classified using NOAA aerial imagery with zoom level 20 from Hurricane
Laura (2020).

Figure 4.11: Roofs that were classified as undamaged but based on StEER’s data are labeled
as minor damage. These images show how easy it is to misclassify minor and undamaged
roofs using aerial imagery only.

The results of the second model are represented in a similar way to the results of the

first model, where the difference between the true label and the predicted label is illustrated

in Figure 4.14. This pie chart shows the poor performance of this trained model. This

95

Figure 4.12: Roofs that were classified as minor but based on StEER’s data are labeled as
undamaged. These images show how easy it is to misclassify minor and undamaged roofs
using aerial imagery only.

Figure 4.13: An example of a misclassified image. a) NOAA aerial imagery of the structure,
which was predicted to be undamaged, b) An image of the same structure captured by the
FAST, which was labeled as minor damage, where the red circle indicates the minor damage
to the roof.

performance was expected based on the F1 score and the accuracy that were found when

it was trained and tested. From Figure 4.14, the overall trend of the predictions is over

predicting damage regardless of the class, as observed when comparing the percentages for

all the negative values with the positive values in the figure, which indicates that the true

label was less damaged than the predicted label. Both macro and micro F1 scores were

found manually for this model as well. The micro F1 score was found to be 0.31, which is

comparable to the 5 fold cross-validated F1 score in training. The macro F1 score was found

to be 0.21, where the model was unable to predict any moderate roof damage state, which

reduced the macro score. Another evaluation metric would be to allow levels of error that

96

are only one roof damage state above or below the ground truth label. If that level of error

is allowed, the accuracy would increase to 0.51.

Figure 4.14: Pie chart that shows the difference between the true value and predicted value
for the images classified using NOAA aerial imagery with zoom level 18 from Hurricane
Michael (2018) and Nashville Tornadoes (2020).

4.5 Future Work and Improvement

After looking at the results of running the framework on 1562 records and comparing

the results with StEER’s data, areas that could use future improvement can be identified.

While the web scraping results were acceptable for extracting occupancy and number of

stories, this method was less reliable for extracting the remaining attributes. Other sources

such as Zillow’s Assessors and Real Estate Database (ZTRAX), which is a reliable source to

scrape building attributes, could be used instead of using a Google search.

The accuracy in roof damage state classification could be improved in the future by

acquiring more data as well as having a better source for the images that are automatically

captured. StEER collects imagery using UAS which are processed into orthomosaics and

can then be uploaded to public repositories such as the OpenAerialMap platform. Such

97

aerial imagery could be used to automatically extract the images of individual roofs at

higher resolutions in clusters where UAS was deployed. Additionally, the framework collects

images pre-event as well as images post-event, which could be used to take a change detec-

tion approach instead of the supervised learning approach demonstrated here. Post-event

street-level panoramic imagery could be automatically captured from street-level panoramic

imagery collected by StEER’s FAST and the pre-event imagery is already available in the

current version of the framework. Moreover, an additional step could be added to eliminate

manual checks for images captured from areas that did not have imagery coverage, which can

be achieved either by using an additional machine learning step or checking the coordinates

in an automated approach that does not involve machine learning. Adding this step would

make the process more automated and efficient.

Implementing machine learning to classify roof damage status is just an example of

how machine learning could be utilized in this preliminary framework. In future work,

a supervised regression model could be trained to predict component level damage ratios

to better match the direct component-level damage quantification preferred by StEER. To

implement that, annotations for individual roofs and the damage they sustained might be

required as well as using higher resolution images. Machine learning could also be used to

detect other fields used in StEER’s datasets, for example, to detect the presence of garage

doors from the street-level panoramic imagery collected by StEER and uploaded to Mapillary.

A script to automatically collect images of all visible sides using the parameters present in

the links of the imagery in Mapillary could be added and a model that predicts binary

classification can be trained on these images. Other attributes could be analyzed using

these same images such as first-floor elevation, which could be done by training a supervised

regression model. Additionally, the presence of fenestration protection could be predicted

using street-level panoramic imagery by training a supervised binary classification model.

Moreover, the foundation type field could be predicted using a supervised classification model

trained on street-level panoramic from StEER or other sources.

98

The framework presented in this thesis, and the various modules incorporated within it,

demonstrate how such technologies as web scraping and machine learning could automate

parts of the data enhancement and quality control process. It provides a foundation that

could be built upon in the future. The modular nature of the framework eases the process

of updating various aspects of the module as well as adding additional functionality to it.

4.6 Chapter Summary

This chapter details the process of developing a preliminary framework that explores

the incorporation of several modern technologies including web scraping and various types

of machine learning. The framework takes a list of addresses or coordinates, then uses

Web scraping to populate a building inventory dataset. Next, the two NHERI-SimCenter-

developed python machine learning packages, BRAILS and SURF, were used to predict

building attributes and fill in the gaps of the dataset generated by the framework. Finally,

a scikit-learn SVC model trained to classify roof damage into five different damage states is

used. The framework automatically downloads different types of imagery that are used in

the various machine learning tasks, including Google Maps Satellite imagery, Google Street

View imagery, as well as NOAA aerial imagery.

The chapter gives a background and discussion on each of the automation techniques

and tools explored for the development of the framework. It also details the process of

testing different scikit-learn machine learning models, including the SGD, SVC, and MLP

classifiers, for roof damage classification. Finally, performance evaluation of the framework

using 1562 records is detailed and discussed.

The topics covered and results discussed in the chapter highlight both the advantages

and potential as well as the challenges and limitations that come with the utilization of such

modern technologies in automating various parts the DE/QC process.

99

Chapter 5

Summary and Conclusion

This thesis introduces post-windstorm reconnaissance, highlighting its importance, de-

scribing its various processes, and introducing major contributors to it such as StEER.

It was demonstrated that building performance datasets that result from post-windstorm

field reconnaissance typically require extensive postprocessing to fill in the missing data and

standardize existing data fields, and quality control to increase the accuracy of the data,

to make them suitable for long-term reuse and knowledge discovery. The first contribution

of this thesis describes a data enhancement and quality control process for post-windstorm

reconnaissance data that, if applied consistently, will increase the quality and accuracy of

building performance datasets over multiple events. StEER has adopted the DE/QC process

described herein for windstorms, and is working to adapt the process to other hazard types.

The DE/QC process is extensive and can take several months to complete. Thus, efforts to

speed it up can be extremely valuable. The second contribution of this thesis is the introduc-

tion of a preliminary workflow that was built in Python to automate various components of

the DE/QC process using modern technologies such as web scraping and machine learning.

The outcomes of this study are as follows:

• The data collected in post-windstorm reconnaissance is typically non-uniform, contain-

ing errors, gaps, and inconsistencies that if used in its raw state, would inhibit analysis

and knowledge discovery. Thus, DE/QC protocols are essential.

• A formal DE/QC process was introduced and used on raw data from several recent

windstorms. When this process was followed, high-quality, standardized, and accurate

datasets were produced and published on DesignSafe-CI. This includes datasets for

100

Hurricane Michael with an error percentage of 1.60%, the Nashville Tornadoes with an

error percentage of 2.01%, and Hurricane Laura with an error percentage of 1.22%.

• A framework for training undergraduate students on the DE/QC process was devel-

oped. Several students were successfully trained as Data Librarians who worked on

the aforementioned windstorms.

• A preliminary framework was developed to demonstrate how various aspects of the

DE/QC process can be automated using web scraping and machine learning. The

framework was tested on 1562 addresses from StEER’s windstorm database and its

performance on these records was evaluated. The framework was specifically used to

(1) populate building attributes using web scraping and the two deep learning packages

BRAILS and SURF, and (2) classify the roof damage state for each address.

• After testing the automation framework and comparing its results relative to the

records in the StEER database, it was found that web scraping achieved the following

accuracies: 88.0% for occupancy, 71.9% for number of stories, 55.4% for year built, and

22.1% for roof shape. BRAILS classifiers achieved the following accuracies: 13.1% for

occupancy, 73.6% for number of stories, 23.4% for year built, and 48.4% for the roof

shape. SURF was shown to enhance a dataset by filling in the gaps while maintaining

a close accuracy to that of the original data fed to the SURF model for enhancement.

• The effects of aerial imagery resolution in automated recognition and classification of

roof damage was quantified. The SVC model that was trained to predict the roof

damage state for the higher-resolution images had an accuracy of 0.52, while the MLP

model trained on the lower-resolution images had a significantly lower accuracy of 0.31.

This was attributed to the loss of important features as the image quality was reduced.

The final qualities of the building performance datasets highlight the importance of

developing and implementing a comprehensive DE/QC process. The manually processed

101

datasets provide robust, high-quality, benchmarks for validating machine-augmented ap-

proaches, and ultimately provide datasets that are ideally suited for extracting knowledge

that will advance hazards engineering and strengthen the resilience of at-risk communities.

The results from the preliminary automation framework demonstrate the viability of ex-

ploring modern technologies to speed up the DE/QC process, and show promise that with

further improvements to the web scraping and machine learning algorithms, such techniques

could augment the human approach. However, the common methods employed in this thesis

showed mixed results in terms of being able to match the accuracy of carefully human-labeled

approaches.

102

Bibliography

Smith B. Adam. U.S. Billion-dollar Weather and Climate Disasters, 1980 - present (NCEI

Accession 0209268), 2020. URL https://doi.org/10.25921/stkw-7w73.

Beverley J Adams, Charles K Huyck, Babak Mansouri, Ronald T Eguchi, and Masanobu

Shinozuka. Application of high-resolution optical satellite imagery for post-earthquake

damage assessment: The 2003 boumerdes (algeria) and bam (iran) earthquakes. Research

Progress and Accomplishments 2003-2004, Buffalo: MCEER, 2004.

Beverley J. Adams, Babak Mansouri, and Charles K. Huyck. Streamlining post-earthquake

data collection and damage assessment for the 2003 bam, iran, earthquake using views™

(visualizing impacts of earthquakes with satellites). Earthquake Spectra, 21(1 suppl):213–

218, 2005. doi: 10.1193/1.2098588. URL https://doi.org/10.1193/1.2098588.

Mohammad Aghababaei, Maria Koliou, and Stephanie G. Paal. Performance assessment

of building infrastructure impacted by the 2017 hurricane harvey in the port aransas

region. Journal of Performance of Constructed Facilities, 32(5):04018069, 2018. doi:

10.1061/(ASCE)CF.1943-5509.0001215. URL https://ascelibrary.org/doi/abs/10.

1061/%28ASCE%29CF.1943-5509.0001215.

Jafar Alzubi, Anand Nayyar, and Akshi Kumar. Machine learning from theory to algorithms:

An overview. Journal of Physics: Conference Series, 1142:012012, nov 2018. doi: 10.

1088/1742-6596/1142/1/012012. URL https://doi.org/10.1088/1742-6596/1142/1/

012012.

103

Mehrshad Amini and Ali M. Memari. Review of literature on performance of coastal

residential buildings under hurricane conditions and lessons learned. Journal of Per-

formance of Constructed Facilities, 34(6):04020102, 2020. doi: 10.1061/(ASCE)CF.

1943-5509.0001509. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CF.

1943-5509.0001509.

ATC. Detailed evaluation safety assessment form, 2005a.

ATC. Rapid evaluation safety assessment form, 2005b.

Julius Baier. Wind pressure in the st. louis tornado, with special reference to the necessity of

wind bracing for high buildings. Transactions of the American Society of Civil Engineers,

37(1):221–289, 1897. doi: 10.1061/TACEAT.0001268. URL https://ascelibrary.org/

doi/abs/10.1061/TACEAT.0001268.

Jeffrey W. Berman, Joseph Wartman, Michael Olsen, Jennifer L. Irish, Scott B. Miles, Troy

Tanner, Kurtis Gurley, Laura Lowes, Ann Bostrom, Jacob Dafni, Michael Grilliot, Andrew

Lyda, and Jaqueline Peltier. Natural hazards reconnaissance with the nheri rapid facility.

Frontiers in Built Environment, 6:185, 2020. ISSN 2297-3362. doi: 10.3389/fbuil.2020.

573067. URL https://www.frontiersin.org/article/10.3389/fbuil.2020.573067.

James Bialas, Thomas Oommen, Umaa Rebbapragada, and Eugene Levin. Object-based

classification of earthquake damage from high-resolution optical imagery using machine

learning. Journal of Applied Remote Sensing, 10(3):1 – 16, 2016. doi: 10.1117/1.JRS.10.

036025. URL https://doi.org/10.1117/1.JRS.10.036025.

Cheryl Ann Blain, Antonio Bobet, JoAnn Browning, Billy L. Edge, William Holmes,

David R. Johnson, Marti LaChance, Julio Ramirez, Ian Robertson, Tom Smith, Chris

Thompson, Karina Vielma, Dan Zehner, and Delong Zuo. The network coordina-

tion office of nheri (natural hazards engineering research infrastructure). Frontiers in

104

Built Environment, 6:108, 2020. ISSN 2297-3362. doi: 10.3389/fbuil.2020.00108. URL

https://www.frontiersin.org/article/10.3389/fbuil.2020.00108.

Jay H. Crandell and Vladimir Kochkin. Scientific damage assessment methodology and prac-

tical applications. In Structures Congress 2005, pages 1–12, 2005. doi: 10.1061/40753(171)

248. URL https://ascelibrary.org/doi/abs/10.1061/40753%28171%29248.

P. Shane Crawford, Alexander M. Hainen, Andrew J. Graettinger, John W. van de Lindt,

and Lawrence Powell. Discrete-outcome analysis of tornado damage following the 2011

tuscaloosa, alabama, tornado. Natural Hazards Review, 21(4):04020040, 2020. doi:

10.1061/(ASCE)NH.1527-6996.0000396. URL https://ascelibrary.org/doi/abs/10.

1061/%28ASCE%29NH.1527-6996.0000396.

Alyssa C. Egnew, David B. Roueche, and David O. Prevatt. Linking building attributes

and tornado vulnerability using a logistic regression model. Natural Hazards Review,

19(4):04018017, 2018. doi: 10.1061/(ASCE)NH.1527-6996.0000305. URL https://

ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000305.

FEMA. Fema 356 prestandard and commentary for the seismic rehabilitation of building.

Rehabilitation, 221, 2000.

FEMA. Standard operating procedures for mitigation assessment team process, 2008.

FEMA. Building Science Support and Code Changes Aiding Sandy Recovery, 2014.

FEMA. Hurricane Irma in Florida, 2018.

FEMA. Hurricane Harvey in Texas, 2019.

FEMA. Hurricane Michael in Florida, 2020a.

FEMA. Openfema, 2020b. URL https://www.fema.gov/about/reports-and-data/

openfema.

105

Christopher Fox, Anany Levitin, and Thomas Redman. The notion of data and its quality

dimensions. Information Processing & Management, 30(1):9 – 19, 1994. ISSN 0306-4573.

doi: https://doi.org/10.1016/0306-4573(94)90020-5. URL http://www.sciencedirect.

com/science/article/pii/0306457394900205.

J. Carol Friedland. Residential building damage from hurricane storm surge: proposed

methodologies to describe, assess and model building damage. Dissertation, Louisiana

State University, 2009.

P. Fronstin, A. Holtmann, and Coral Gables. The determinants of residential property

damage caused by hurricane andrew. Southern Economic Journal, 61:387, 1994.

T. Theodore Fujita. Plainfield Tornado of August 28, 1990, pages 1–17. American Geophysi-

cal Union (AGU), 1993. ISBN 9781118664148. doi: https://doi.org/10.1029/GM079p0001.

URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GM079p0001.

Shubharoop Ghosh, Beverley Adams, J. Womble, Carol Friedland, and Ronald Eguchi. De-

ployment of remote sensing technology for multi-hazard post-katrina damage assessment.

In Fourth International Workshop on Remote Sensing for Post Disaster Response Cam-

bridge, UK, 01 2021.

John Gross, Joseph Main, Long Phan, Fahim Sadek, Stephen Cauffman, and David Jor-

gensen. Final report on the collapse of the dallas cowboys indoor practice facility, may

2, 2009 (nist ir 7661), 2010-01-26 2010. URL https://tsapps.nist.gov/publication/

get_pdf.cfm?pub_id=904696.

K. R. Gurley and F. J. Masters. Post-2004 hurricane field survey of residential building

performance. Natural Hazards Review, 12(4):177–183, 2011. doi: 10.1061/(ASCE)NH.

1527-6996.0000044. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.

1527-6996.0000044.

106

Shahid Hamid, B.M. Golam Kibria, Sneh Gulati, Mark Powell, Bachir Annane, Steve Cocke,

Jean-Paul Pinelli, Kurt Gurley, and Shu-Ching Chen. Predicting losses of residential

structures in the state of florida by the public hurricane loss evaluation model. Sta-

tistical Methodology, 7(5):552 – 573, 2010. ISSN 1572-3127. doi: https://doi.org/10.

1016/j.stamet.2010.02.004. URL http://www.sciencedirect.com/science/article/

pii/S1572312710000195.

Adam Hatzikyriakou and Ning Lin. Assessing the vulnerability of structures and residential

communities to storm surge: An analysis of flood impact during hurricane sandy. Frontiers

in Built Environment, 4:4, 2018. ISSN 2297-3362. doi: 10.3389/fbuil.2018.00004. URL

https://www.frontiersin.org/article/10.3389/fbuil.2018.00004.

Craig Henderson, Tim Huff, and Gary Bouton. Structural observations and tornado

damage mitigation concepts: March 2020 tennessee tornadoes. Practice Periodical on

Structural Design and Construction, 26(2):05021001, 2021. doi: 10.1061/(ASCE)SC.

1943-5576.0000571. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29SC.

1943-5576.0000571.

Anant Jain, Arpit A Bhusar, David B Roueche, and David O Prevatt. Engineering-based tor-

nado damage assessment: Numerical tool for assessing tornado vulnerability of residential

structures. Frontiers in Built Environment, 6:89, 2020.

Mohammad Kakooei and Yasser Baleghi. Fusion of satellite, aircraft, and uav data for

automatic disaster damage assessment. International Journal of Remote Sensing, 38(8-

10):2511–2534, 2017. doi: 10.1080/01431161.2017.1294780. URL https://doi.org/10.

1080/01431161.2017.1294780.

Jian Kang, Marco Körner, Yuanyuan Wang, Hannes Taubenböck, and Xiao Xiang Zhu.

Building instance classification using street view images. ISPRS Journal of Photogramme-

try and Remote Sensing, 145:44–59, 2018. ISSN 0924-2716. doi: https://doi.org/10.1016/

107

j.isprsjprs.2018.02.006. URL https://www.sciencedirect.com/science/article/pii/

S0924271618300352. Deep Learning RS Data.

Ahsan Kareem. Structural performance and wind speed‐damage correlation in

hurricane alicia. Journal of Structural Engineering, 111(12):2596–2610, 1985. doi: 10.

1061/(ASCE)0733-9445(1985)111:12(2596). URL https://ascelibrary.org/doi/abs/

10.1061/%28ASCE%290733-9445%281985%29111%3A12%282596%29.

Alireza G. Kashani, Patrick S. Crawford, Sufal K. Biswas, Andrew J. Graettinger, and

David Grau. Automated tornado damage assessment and wind speed estimation based

on terrestrial laser scanning. Journal of Computing in Civil Engineering, 29(3):04014051,

2015. doi: 10.1061/(ASCE)CP.1943-5487.0000389. URL https://ascelibrary.org/

doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000389.

Edward L. Keith and John D. Rose. Hurricane andrew—structural performance of

buildings in south florida. Journal of Performance of Constructed Facilities, 8(3):178–191,

1994. doi: 10.1061/(ASCE)0887-3828(1994)8:3(178). URL https://ascelibrary.org/

doi/abs/10.1061/%28ASCE%290887-3828%281994%298%3A3%28178%29.

Andrew Kennedy, Andrew Copp, Matthew Florence, Anderson Gradel, Kurtis Gurley,

Matt Janssen, James Kaihatu, Douglas Krafft, Patrick Lynett, Margaret Owensby, Jean-

Paul Pinelli, David O. Prevatt, Spencer Rogers, David Roueche, and Zachariah Silver.

Hurricane michael in the area of mexico beach, florida. Journal of Waterway, Port,

Coastal, and Ocean Engineering, 146(5):05020004, 2020. doi: 10.1061/(ASCE)WW.

1943-5460.0000590. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WW.

1943-5460.0000590.

Tracy Kijewski-Correa, Nathan Smith, Alexandros Taflanidis, Andrew Kennedy, Cheng Liu,

Markus Krusche, and Charles Vardeman. Cybereye: Development of integrated cyber-

infrastructure to support rapid hurricane risk assessment. Journal of Wind Engineering

108

and Industrial Aerodynamics, 133:211 – 224, 2014. ISSN 0167-6105. doi: https://doi.org/

10.1016/j.jweia.2014.06.003. URL http://www.sciencedirect.com/science/article/

pii/S016761051400110X.

Tracy Kijewski-Correa, David Prevatt, Ian Robertson, Daniel Smith, Khalid Mosalam, David

Roueche, Benjamin Lichty, Mariantonieta Gutierrez Soto, Aly Mousaad Aly, Ali Lenjani,

et al. Steer-hurricane michael: Preliminary virtual assessment team (p-vat) report, 2018.

Tracy Kijewski-Correa, David Roueche, Khalid M. Mosalam, David O. Prevatt, and Ian

Robertson. Steer: A community-centered approach to assessing the performance of the

built environment after natural hazard events.manuscript submitted for publication.).

Frontiers in Built Environment, 2021.

G. Kong and H. Fan. Enhanced facade parsing for street-level images using convolutional

neural networks. IEEE Transactions on Geoscience and Remote Sensing, pages 1–13,

2020. doi: 10.1109/TGRS.2020.3035878.

Erica Kuligowski, Long Phan, Marc Levitan, and David Jorgensen. Preliminary reconnais-

sance of the may 20, 2013, newcastle-moore tornado in oklahoma, 2013-12-03 2013.

Erica Kuligowski, Franklin Lombardo, Long Phan, Marc Levitan, and David Jorgensen.

Final report, national institute of standards and technology (nist) technical investigation

of the may 22, 2011, tornado in joplin, missouri, 2014-03-26 2014.

VS Lakshminarasimhan. Image based assessment of windstorm damage. PhD thesis, Thesis,

Texas Tech University, Texas, 2004.

Andrew Cowper Lawson. The California earthquake of April 18, 1906: Report of the state

earthquake investigation commission. Carnegie institution of Washington, 1908.

109

Hai Lew, Emil Simiu, and John Gross. Manual for seismic and windstorm evaluation of

existing concrete buildings for dominican republic (nist ir 6867), 2002-04-01 2002. URL

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860413.

Yan Li, Yiqun Chen, Abbas Rajabifard, and Kourosh Khoshelham. Estimating building age

from google street view images using deep learning, 09 2018a.

Yue Li and Bruce R. Ellingwood. Hurricane damage to residential construction in the us:

Importance of uncertainty modeling in risk assessment. Engineering Structures, 28(7):

1009 – 1018, 2006. ISSN 0141-0296. doi: https://doi.org/10.1016/j.engstruct.2005.11.005.

URL http://www.sciencedirect.com/science/article/pii/S0141029605004335.

Yundong Li, Shi Ye, and Ivan Bartoli. Semisupervised classification of hurricane damage

from postevent aerial imagery using deep learning. Journal of Applied Remote Sensing,

12(4):1 – 13, 2018b. doi: 10.1117/1.JRS.12.045008. URL https://doi.org/10.1117/1.

JRS.12.045008.

Joseph Main, Maria Dillard, Erica Kuligowski, Benjamin Davis, Jazalyn Dukes, Kenneth

Harrison, Jennifer Helgeson, Katherine Johnson, Marc Levitan, Judith Mitrani-Reiser,

Scott Weaver, DongHun Yeo, Luis, Joel Cline, and Thomas Kirsch. Learning from hurri-

cane maria’s impacts on puerto rico: A progress report, 2021-01-19 2021.

Timothy P. Marshall. Tornado damage survey at moore, oklahoma. Weather and Fore-

casting, 17(3):582 – 598, 2002. doi: 10.1175/1520-0434(2002)017〈0582:TDSAMO〉2.0.

CO;2. URL https://journals.ametsoc.org/view/journals/wefo/17/3/1520-0434_

2002_017_0582_tdsamo_2_0_co_2.xml.

Timothy P Marshall, JR McDonald, and GS Forbes. The enhanced fujita (ef) scale. In

Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc. B,

volume 3, 2004.

110

Hassan Masoomi, Mohammad R. Ameri, and John W. van de Lindt. Wind perfor-

mance enhancement strategies for residential wood-frame buildings. Journal of Per-

formance of Constructed Facilities, 32(3):04018024, 2018. doi: 10.1061/(ASCE)CF.

1943-5509.0001172. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CF.

1943-5509.0001172.

Carol C. Massarra, Friedland Carol J., Marx Brian D., and Dietrich J. Casey. Multihazard

hurricane fragility model for wood structure homes considering hazard parameters and

building attributes interaction. Frontiers in Built Environment, 6:147, 2020. ISSN 2297-

3362. doi: 10.3389/fbuil.2020.00147.

A McMillan, BJ Adams, A Reynolds, T Brown, D Liang, and A Womble. Mceer response:

Advanced technology for rapid tornado damage assessment following the ‘super tues-

day’tornado outbreak of february 2008. Technical report, MCEER-08-SP01, MCEER,

University at Buffalo. Available online at: http . . . , 2008.

Microsoft. Computer generated building footprints for the united states, 2018. URL https:

//github.com/microsoft/USBuildingFootprints.

J. E. Minor, J. R. McDonald, and K. C. Mehta. The tornado: An engineering-oriented

perspective. NASA STI/Recon Technical Report N, December 1977.

Spatial Networks. Fulcrum App for Android and IOS (Release Version 2.41)., 2021.

K. R. Nia and G. Mori. Building damage assessment using deep learning and ground-level

image data. In 2017 14th Conference on Computer and Robot Vision (CRV), pages 95–102,

2017. doi: 10.1109/CRV.2017.54.

NOAA. Record-breaking atlantic hurricane season draws to

an end, 2020. URL https://www.noaa.gov/media-release/

record-breaking-atlantic-hurricane-season-draws-to-end.

111

Hyoungsu Park, Tori Tomiczek, Daniel T. Cox, John W. van de Lindt, and Pedro Lomonaco.

Experimental modeling of horizontal and vertical wave forces on an elevated coastal

structure. Coastal Engineering, 128:58 – 74, 2017. ISSN 0378-3839. doi: https://doi.

org/10.1016/j.coastaleng.2017.08.001. URL http://www.sciencedirect.com/science/

article/pii/S0378383917300650.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

Lori Peek, Jennifer Tobin, Rachel M. Adams, Haorui Wu, and Mason Clay Mathews. A

framework for convergence research in the hazards and disaster field: The natural hazards

engineering research infrastructure converge facility. Frontiers in Built Environment, 6:110,

2020. ISSN 2297-3362. doi: 10.3389/fbuil.2020.00110. URL https://www.frontiersin.

org/article/10.3389/fbuil.2020.00110.

Jean-Paul Pinelli, E. Simiu, Kurtis Gurley, Chelakara Subramanian, Liang Zhang, Anne

Cope, James Filliben, and Shahid Hamid. Hurricane damage prediction model for resi-

dential structures. Journal of Structural Engineering-asce - J STRUCT ENG-ASCE, 130,

11 2004. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1685).

Aimilia K Pistrika and Sebastiaan N Jonkman. Damage to residential buildings due to

flooding of new orleans after hurricane katrina. Natural Hazards, 54(2):413–434, 2010.

David O. Prevatt, William Coulbourne, Andrew J. Graettinger, Shiling Pei, Rakesh Gupta,

and David Grau. Joplin, Missouri, Tornado of may 22, 2011: Structural damage survey

and case for tornado-resilient building codes. American Society of Civil Engineers (ASCE),

January 2012a. ISBN 9780784412503. doi: 10.1061/9780784412503.

112

David O. Prevatt, William Coulbourne, Andrew J. Graettinger, Shiling Pei, Rakesh Gupta,

and David Grau. Joplin, Missouri, Tornado of May 22, 2011. American Society of Civil

Engineers, 2012b. doi: 10.1061/9780784412503. URL https://ascelibrary.org/doi/

abs/10.1061/9780784412503.

David O. Prevatt, John W. van de Lindt, Edward W. Back, Andrew J. Graettinger,

Shiling Pei, William Coulbourne, Rakesh Gupta, Darryl James, and Duzgun Agdas.

Making the case for improved structural design: Tornado outbreaks of 2011. Leader-

ship and Management in Engineering, 12(4):254–270, 2012c. doi: 10.1061/(ASCE)LM.

1943-5630.0000192. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29LM.

1943-5630.0000192.

Sudha Radhika, Yukio Tamura, and Masahiro Matsui. Cyclone damage detection on

building structures from pre- and post-satellite images using wavelet based pattern

recognition. Journal of Wind Engineering and Industrial Aerodynamics, 136:23 – 33,

2015. ISSN 0167-6105. doi: https://doi.org/10.1016/j.jweia.2014.10.018. URL http:

//www.sciencedirect.com/science/article/pii/S0167610514002207.

Chris Ramseyer, Lisa Holliday, and Royce Floyd. Enhanced residential building code for

tornado safety. Journal of Performance of Constructed Facilities, 30(4):04015084, 2016.

doi: 10.1061/(ASCE)CF.1943-5509.0000832. URL https://ascelibrary.org/doi/abs/

10.1061/%28ASCE%29CF.1943-5509.0000832.

Ellen M. Rathje, Clint Dawson, Jamie E. Padgett, Jean-Paul Pinelli, Dan Stanzione,

Pedro Arduino, Scott J. Brandenberg, Tim Cockerill, Maria Esteva, Fred L. Haan,

Ahsan Kareem, Laura Lowes, and Gilberto Mosqueda. Enhancing research in natu-

ral hazards engineering through the designsafe cyberinfrastructure. Frontiers in Built

Environment, 6:213, 2020. ISSN 2297-3362. doi: 10.3389/fbuil.2020.547706. URL

https://www.frontiersin.org/article/10.3389/fbuil.2020.547706.

113

Harry Fielding Reid. The mechanics of the earthquake, the california earthquake of april 18,

1906; report of the state investigation commission, 1910.

Michael Riley. Reconnaissance report on damage to engineered structures during the may

1999 oklahoma city tornado, 2002-08-01 2002.

D. Roueche, S. Kameshwar, J. Marshall, N. Mashrur, T. Kijewski-Correa, K. Gurley,

I. Afanasyeva, G. Brasic, J. Cleary, D. Golovichev, O. Lafontaine, F. Lombardo, L. Micheli,

B. Phillips, D. Prevatt, I. Robertson, J. Schroeder, D. Smith, S. Strader, M. Wilson,

K. Ambrose, H. Rawajfih, and L Rodriguez. Hybrid preliminary virtual reconnaissance

report-early access reconnaissance report (pvrr-earr), 2021.

David Roueche. Virtual assessment structural team (vast) handbook: Data enrichment and

quality control (de/qc) for us windstorms, 2019. URL https://drive.google.com/file/

d/1-ZS7oJbfHooj9mOOcz-ewbqjDCfeUxDL/view.

David B. Roueche, Franklin T. Lombardo, and David O. Prevatt. Empirical approach

to evaluating the tornado fragility of residential structures. Journal of Structural En-

gineering, 143(9):04017123, 2017. doi: 10.1061/(ASCE)ST.1943-541X.0001854. URL

https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ST.1943-541X.0001854.

David B. Roueche, Franklin T. Lombardo, Daniel J. Smith, and Richard J. Krupar. Fragility

assessment of wind-induced residential building damage caused by hurricane harvey, 2017.

Forensic Engineering 2018, pages 1039–1048, 2018. doi: 10.1061/9780784482018.100. URL

https://ascelibrary.org/doi/abs/10.1061/9780784482018.100.

R. Saravanan and P. Sujatha. A state of art techniques on machine learning algorithms:

A perspective of supervised learning approaches in data classification. In 2018 Second

International Conference on Intelligent Computing and Control Systems (ICICCS), pages

945–949, 2018. doi: 10.1109/ICCONS.2018.8663155.

114

scikit learn. sklearn.neural network.mlpclassifier, 2020a. URL https://scikit-learn.org/

stable/modules/generated/sklearn.neural_network.MLPClassifier.html.

scikit learn. sklearn.linear model.sgdclassifier, 2020b. URL https://scikit-learn.org/

stable/modules/generated/sklearn.linear_model.SGDClassifier.html.

scikit learn. sklearn.svm.svc, 2020c. URL https://scikit-learn.org/stable/modules/

generated/sklearn.svm.SVC.html.

selenium, 2018.

Dakshina Silva, Jamie Kruse, and Yongsheng Wang. Spatial dependencies in wind-related

housing damage. Natural Hazards: Journal of the International Society for the Prevention

and Mitigation of Natural Hazards, 47(3):317–330, December 2008. URL https://ideas.

repec.org/a/spr/nathaz/v47y2008i3p317-330.html.

B. Sirmacek and C. Unsalan. Damaged building detection in aerial images using shadow

information. In 2009 4th International Conference on Recent Advances in Space Tech-

nologies, pages 249–252, 2009. doi: 10.1109/RAST.2009.5158206.

Stephen M. Strader, David B. Roueche, and Brett M. Davis. Unpacking tornado disas-

ters: Illustrating southeastern us tornado mobile and manufactured housing problem

using march 3, 2019 beauregard-smith station, alabama, tornado event. Natural Haz-

ards Review, 22(1):04020060, 2021. doi: 10.1061/(ASCE)NH.1527-6996.0000436. URL

https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000436.

Mason Taggart and John W. van de Lindt. Performance-based design of residential

wood-frame buildings for flood based on manageable loss. Journal of Performance

of Constructed Facilities, 23(2):56–64, 2009. doi: 10.1061/(ASCE)0887-3828(2009)

23:2(56). URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290887-3828%

282009%2923%3A2%2856%29.

115

Harvey Thurm Taylor, Bill Ward, Mark Willis, and Walt Zaleski. The saffir-simpson hurri-

cane wind scale. Atmospheric Administration: Washington, DC, USA, 2010.

EagleView Technologies. Pictometry aerial imagery , 2021.

J. Thomas, A. Kareem, and K. W. Bowyer. Automated poststorm damage classification of

low-rise building roofing systems using high-resolution aerial imagery. IEEE Transactions

on Geoscience and Remote Sensing, 52(7):3851–3861, 2014. ISSN 1558-0644. doi: 10.

1109/TGRS.2013.2277092.

Jim O Thomas. Computer Vision Techniques for Damage Assessment from High Resolution

Remote Sensing Imagery. PhD thesis, University of Notre Dame, Dec 2012. URL https:

//curate.nd.edu/show/rj430289f89.

Tori Tomiczek, Andrew Kennedy, Yao Zhang, Margaret Owensby, Mark E. Hope, Ning Lin,

and Abigail Flory. Hurricane damage classification methodology and fragility functions

derived from hurricane sandy’s effects in coastal new jersey. Journal of Waterway,

Port, Coastal, and Ocean Engineering, 143(5):04017027, 2017. doi: 10.1061/(ASCE)WW.

1943-5460.0000409. URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29WW.

1943-5460.0000409.

W. van de Lindt, Andrew Graettinger, Rakesh Gupta, Thomas Skaggs, Steven Pryor, and

J. Fridley Kenneth. Performance of wood-frame structures during hurricane katrina. Jour-

nal of Performance of Constructed Facilities, 21(2):108–116, 2007. doi: 10.1061/(ASCE)

0887-3828(2007)21:2(108). URL https://doi.org/10.1061/(ASCE)0887-3828(2007)

21:2(108).

Anand Vetrivel, Markus Gerke, Norman Kerle, and George Vosselman. Identification of

structurally damaged areas in airborne oblique images using a visual-bag-of-words ap-

proach. Remote Sensing, 8(3), 2016. ISSN 2072-4292. doi: 10.3390/rs8030231. URL

https://www.mdpi.com/2072-4292/8/3/231.

116

Peter J. Vickery, Peter F. Skerlj, Jason Lin, Lawrence A. Twisdale, Michael A. Young,

and Francis M. Lavelle. Hazus-mh hurricane model methodology. ii: Damage and

loss estimation. Natural Hazards Review, 7(2):94–103, 2006. doi: 10.1061/(ASCE)

1527-6988(2006)7:2(94). URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%

291527-6988%282006%297%3A2%2894%29.

Roger M. Wakimoto and Peter G. Black. Damage survey of hurricane andrew

and its relationship to the eyewall. Bulletin of the American Meteorological So-

ciety, 75(2):189 – 202, 1994. doi: 10.1175/1520-0477(1994)075〈0189:DSOHAA〉2.0.

CO;2. URL https://journals.ametsoc.org/view/journals/bams/75/2/1520-0477_

1994_075_0189_dsohaa_2_0_co_2.xml.

Chaofeng Wang, Qian Yu, Kincho H Law, Frank McKenna, X Yu Stella, Ertugrul Taciroglu,

Adam Zsarnóczay, Wael Elhaddad, and Barbaros Cetiner. Machine learning-based regional

scale intelligent modeling of building information for natural hazard risk management.

Automation in Construction, 122:103474, 2021. doi: https://doi.org/10.1016/j.autcon.

2020.103474.

Charles Wang. Nheri-simcenter/surf: v0.2.0, September 2019. URL https://doi.org/10.

5281/zenodo.3463676.

Joseph Wartman, Jeffrey W. Berman, Ann Bostrom, Scott Miles, Michael Olsen, Kurtis

Gurley, Jennifer Irish, Laura Lowes, Troy Tanner, Jake Dafni, Michael Grilliot, Andrew

Lyda, and Jaqueline Peltier. Research needs, challenges, and strategic approaches for

natural hazards and disaster reconnaissance. Frontiers in Built Environment, 6:182, 2020.

ISSN 2297-3362. doi: 10.3389/fbuil.2020.573068. URL https://www.frontiersin.org/

article/10.3389/fbuil.2020.573068.

Jessica Weinkle, Chris Landsea, Douglas Collins, Rade Musulin, Ryan P. Crompton, Philip J.

Klotzbach, and Roger Pielke. Normalized hurricane damage in the continental united

117

states 1900–2017. Nature Sustainability, 1(12):808–813, Dec 2018. ISSN 2398-9629. doi:

10.1038/s41893-018-0165-2. URL https://doi.org/10.1038/s41893-018-0165-2.

G.F. White and University of Chicago. Human Adjustment to Floods: A Geographical Ap-

proach to the Flood Problem in the United States. Research paper. University of Chicago,

1945. URL https://books.google.com/books?id=cb8iAAAAMAAJ.

Woolpert. Post event damage survey data requirements whitepaper, 2006.

Siyuan Xian, Ning Lin, and Adam Hatzikyriakou. Storm surge damage to residential areas:

a quantitative analysis for hurricane sandy in comparison with fema flood map. Natural

Hazards, 79(3):1867–1888, 2015.

Chul Min Yeum, Shirley J. Dyke, and Julio Ramirez. Visual data classification in post-event

building reconnaissance. Engineering Structures, 155:16 – 24, 2018. ISSN 0141-0296. doi:

https://doi.org/10.1016/j.engstruct.2017.10.057. URL http://www.sciencedirect.com/

science/article/pii/S0141029616306848.

Min Yeum Chul, J. Dyke Shirley, Bedrich Benes, Thomas Hacker, Julio Ramirez, Alana

Lund, and Santiago Pujol. Postevent reconnaissance image documentation using auto-

mated classification. Journal of Performance of Constructed Facilities, 33(1):04018103,

2019. doi: 10.1061/(ASCE)CF.1943-5509.0001253. URL https://doi.org/10.1061/

(ASCE)CF.1943-5509.0001253.

Qian Yu, C. Wang, B. Cetiner, S. Yu, F. McKenna, E. Taciroğlu, and K. Law. Build-

ing information modeling and classification by visual learning at a city scale. ArXiv,

abs/1910.06391, 2019a. doi: 10.5281/zenodo.3996808.

Qian Yu, Chaofeng Wang, Barbaros Cetiner, Stella X Yu, Frank Mckenna, Ertugrul

Taciroglu, and Kincho H Law. Building information modeling and classification by vi-

sual learning at a city scale. arXiv preprint arXiv:1910.06391, 2019b.

118

Wei Zhai and Zhong-Ren Peng. Damage assessment using google street view: Evidence

from hurricane michael in mexico beach, florida. Applied Geography, 123:102252, 2020.

ISSN 0143-6228. doi: https://doi.org/10.1016/j.apgeog.2020.102252. URL http://www.

sciencedirect.com/science/article/pii/S0143622819303479.

119

Appendices

120

Appendix A

StEER Buildings - Windstorm Application Fields

Table A.1: StEER Buildings - Windstorm Application Fields

Column Column

Header

Field Format Response Choices/

Description

A 1 fulcrum id Record ID Text Auto-populated

B 2 status Damage

State

Single

Choice

0=No Damage

1=Minor

2=Moderate

3=Severe

4=Destroyed

C 3 project Project Text Windstorm Name

D 4 latitude Latitude Decimal Auto-populated

E 5 longitude Longitude Decimal Auto-populated

F 6 name of

investiga-

tor

Name of

Investiga-

tor

Text

G 7 date Date MM/DD/

YYYY

Auto-populated

H 8 general

notes

General

Notes

Text Investigator/

Librarian general

notes

121

I 9 assessment

type

Assessment

Type

Single

Choice

Aerial

Drive-by

On-site

Remote

General Area

Other

J 10 all photos All Photos Comma

separated

values

Photos associated

with record

K 11 all photos

captions

All Photos

Captions

Comma

separated

text

All photo captions

supplied by

surveyor (if any

L 12 all photos

urls

Direct

Path to

Photo

Hosted on

Fulcrum

URL Auto-populated

M 13 audio Audio Comma

separated

values

Surveyor-supplied

audio

N 14 audio url Direct

Path to

Fulcrum

Entry

URL Auto-populated

122

O 15 overall

dam-

age notes

Overall

Damage

Notes

Text Overall damage

notes supplied by

surveyor/Librarian

P 16 hazards

present

Hazards

Present

Multiple

Choice

(Comma

separated

text)

Flood

Rain

Surge

Tree-fall

Wind

Wind-borne debris

Unknown

Other

Q 17 wind

damage

rating

Wind

Damage

Rating

Single

Choice

-1=Not Applicable

0=No Damage

1=Minor

2=Moderate

3=Severe

4=Destroyed

R 18 surge

damage

rating

Surge

Damage

Rating

Single

Choice

0=No Damage

1=Minor

2=Moderate

3=Severe

4=Very Severe

5=Partial Collapse

6=Collapse

123

S 19 rainwater

ingress

damage

rating

Rainwater

Ingress

Damage

Rating

Single

Choice

-1=Unknown

0=None Visible

1=Minor Ingress

2=Moderate

3=Severe

4=Destroyed

T 20 attribute

notes

Attribute

Notes

Text Attribute notes

supplied by

surveyor/Librarian

U 21 address

sub thor-

oughfare

House

Number

Text Auto-populated

V 22 address

thorough-

fare

Street

Name

Text Auto-populated

W 23 address

suite

Suite

Number

Text Auto-populated

X 24 address

locality

City/Town Text Auto-populated

Y 25 address

sub

admin

area

County Text Auto-populated

Z 26 address

admin

area

State Text Auto-populated

124

AA 27 address

postal

code

Zip Code Text Auto-populated

AB 28 address

country

Country Text Auto-populated

AC 29 address

full

Full

Address

Text Address supplied

by

surveyor/Librarian

125

AD 30 building

type

Building

Type

Single

Choice

Single Family,

Multi-Family,

Apartment,

Assisted Living

Center ,

Condominium,

Detached Garage,

Government,

Hotel/Motel,

Manufactured

Home,

Manufacturing

Plant, Marina,

Office, Park

Shelter,

Professional,

Religious,

Restaurant, Retail,

RV, Service

Station, Shed,

Supermarket,

Warehouse,

Unknown, Other

AE 31 number

of stories

Number of

Stories

Integer 1-25

126

AF 32 understory

pct of

building

footprint

Understory

Area(% of

Building

Footprint)

Single

Choice

0% - 100%

AG 33 first floor

elevation

feet

First Floor

Elevation

in Feet

Decimal 0-13

AH 34 year built Year Built Integer Surveyor-supplied

year built

AI 35 roof shape Roof

Shape

Multiple

Choice

(Comma

separated

text)

Complex, Flat,

Gable, Gable/Hip

Combo, Gambrel,

Hip, Mansard,

Monoslope,

Unknown, Other

AJ 36 roof slope Roof Slope Integer Surveyor-supplied

roof slope

AK 37 front

elevation

orientation

Front

Elevation

Orienta-

tion

Integer Surveyor-supplied

front elevation

orientation

AL 38 structural

notes

Structural

Notes

Text Structural notes

from surveyor

127

AM 39 mwfrs Main

Wind

Force

Resisting

System

Multiple

Choice

(Comma

separated

text)

Roof Diaphragm,

wood, Roof

Diaphragm, steel,

Roof Diaphragm,

concrete, Roof

Diaphragm,

composite, Wall

Diaphragm, wood,

Wall Diaphragm,

steel, Wall

Diaphragm,

concrete, Wall

Diaphragm,

masonry, Wall,

X-bracing,

Moment Frame,

Unknown, Other

128

AN 40 foundation

type

Foundation

Type

Multiple

Choice

(Comma

separated

text)

Slab-on-grade,

Cast-in-place

concrete piers,

Ground anchors

and strapping,

Crawlspace,

Reinforced

masonry piers,

Reinforced

masonry stem wall,

Unreinforced

masonry piers,

Unreinforced

masonry stem wall,

Wood Piers <= 8

ft, Wood Piers >8

ft, Unknown ,

Other

AO 41 wall

anchorage

type

Wall

Anchorage

Type

Multiple

Choice

(Comma

separated

text)

Anchor bolts with

nuts and washers,

Anchor bolts with

missing nuts and

washers, Metal

straps, Concrete

nails, Unknown,

Other

129

AP 42 wall

structure

Wall

Structure

Multiple

Choice

(Comma

separated

text)

Wood frame,

Masonry

(reinforced),

Masonry

(unreinforced),

Masonry

(unknown),

Concrete, tilt-up,

Concrete, moment

resisting frame,

Steel, moment

resisting frame,

Steel, braced

frame, Steel, cold

form, Insulated

concrete form

(ICF) walls, Solid

Brick Wythe ,

Unknown, Other

130

AQ 43 wall

substrate

Wall

Substrate

Multiple

Choice

(Comma

separated

text)

Wood, sheathing

(continuous),

Wood, sheathing

(corners only),

Wood,dimensional

planks, Insulated

sheathing,

Insulated foam

board,

Non-engineered

wood panel, Metal

panels, Not

Applicable,

Unknown, Other

131

AR 44 wall c

ladding

Wall

Cladding

Multiple

Choice

(Comma

separated

text)

Aluminum siding,

Brick, Curtain

wall, EIFS,

FiberCement

Board, Corrugated

steel panels,

Plywood Siding,

Stucco, Vinyl

Siding (standard),

Vinyl Siding (high

wind rated), Vinyl

Siding (unknown),

Wood Boards,

Wood

Shake/Shingle,

Unknown, Other

AS 45 soffit type Soffit Type Multiple

Choice

(Comma

separated

text)

None, Vinyl,

Metal, Wood,

Unknown, Other

AT 46 front

wall fen-

estration

ratio

Front Wall

Fenestra-

tion

Ratio

Single

Choice

0%-100%

132

AU 47 front

wall fen-

estration

protection

Front Wall

Fenestra-

tion

Protection

Multiple

Choice

(Comma

separated

text)

None, Unknown,

Impact Resistant,

Plywood/OSB

Panel, Hurricane

Shutter, Other

AV 48 left wall

fenestra-

tion

ratio

Left Wall

Fenestra-

tion

Ratio

Single

Choice

0%-100%

AW 49 left wall f

enestra-

tion

protection

Left Wall

Fenestra-

tion

Protection

Multiple

Choice

(Comma

separated

text)

None, Unknown,

Impact Resistant,

Plywood/OSB

Panel, Hurricane

Shutter, Other

AX 50 back wall

fenestra-

tion

ratio

Back Wall

Fenestra-

tion

Ratio

Single

Choice

0%-100%

AY 51 back wall

fenestra-

tion

protection

Back Wall

Fenestra-

tion

Protection

Multiple

Choice

(Comma

separated

text)

None, Unknown,

Impact Resistant,

Plywood/OSB

Panel, Hurricane

Shutter, Other

133

AZ 52 right

wall fen-

estration

ratio

Right Wall

Fenestra-

tion

Ratio

Single

Choice

0%-100%

BA 53 right

wall fen-

estration

protection

Right Wall

Fenestra-

tion

Protection

Multiple

Choice

(Comma

separated

text)

None, Unknown,

Impact Resistant,

Plywood/OSB

Panel, Hurricane

Shutter, Other

BB 54 large

door

present

Large

Door

Present

Multiple

Choice

(Comma

separated

text)

Yes, No, N/A

134

BC 55 large

door

opening

type front

Large

Door

Opening

Type

Front

Multiple

Choice

(Comma

separated

text)

None, Single

garage door

(standard), Double

garage door

(standard), Single

garage door

(wind-rated),

Double garage

door (wind-rated),

Single garage door

(unknown), Double

garage door

(unknown),

Sectional door,

Roll-up door,

Other

135

BD 56 large

door

opening

type left

Large

Door

Opening

Type Left

Multiple

Choice

(Comma

separated

text)

None, Single

garage door

(standard), Double

garage door

(standard), Single

garage door

(wind-rated),

Double garage

door (wind-rated),

Single garage door

(unknown), Double

garage door

(unknown),

Sectional door,

Roll-up door,

Other

136

BE 57 large

door

opening

type back

Large

Door

Opening

Type Back

Multiple

Choice

(Comma

separated

text)

None, Single

garage door

(standard), Double

garage door

(standard), Single

garage door

(wind-rated),

Double garage

door (wind-rated),

Single garage door

(unknown), Double

garage door

(unknown),

Sectional door,

Roll-up door,

Other

137

BF 58 large

door

opening

type right

Large

Door

Opening

Type

Right

Multiple

Choice

(Comma

separated

text)

None, Single

garage door

(standard), Double

garage door

(standard), Single

garage door

(wind-rated),

Double garage

door (wind-rated),

Single garage door

(unknown), Double

garage door

(unknown),

Sectional door,

Roll-up door,

Other

BG 59 roof system Roof

System

Multiple

Choice

(Comma

separated

text)

Steel, cold formed,

Steel, hot rolled,

Steel, joists,

Concrete slab,

Wood, rafter,

Wood, trusses,

Wood, unknown,

Unknown, Other

138

BH 60 r2wall at-

tachment

Roof to

Wall At-

tachment

Multiple

Choice

(Comma

separated

text)

Toe-nails, Metal

ties, Metal straps,

Bolted connection,

Welded connection,

Unknown, Other

BI 61 r2w at-

tachment

type

Roof to

Wall At-

tachment

Type

Text Surveyor-supplied

roof to wall

attachment type

BJ 62 roof

substrate

type

Roof

Substrate

Type

Multiple

Choice

(Comma

separated

text)

Plywood/OSB,

Dimensional

lumber, Metal

deck, Concrete,

None, Unknown,

Other

139

BK 63 roof cover Roof

Cover

Multiple

Choice

(Comma

separated

text)

Asphalt shingles

(laminated),

Built-up with

Gravel, Built-up

without Gravel,

Clay tiles,

Concrete tiles,

Metal shingles,

Metal, corrugated,

Metal, standing

seam, Roll roofing,

Single ply, Wood

shake, Wood

shingle, Unknown,

Other

BL 64 secondary

water

barrier

Secondary

Water

Barrier

Multiple

Choice

(Comma

separated

text)

None, Closed-cell

urethane foam

adhesive, Fully

adhered

membrane, High

performance

underlayment,

Self-adhering

membrane over

joints, Unknown,

Other

140

BM 65 overhang

length

Overhang

Length

Integer Surveyor-supplied

overhang length

BN 66 parapet

height

inches

Parapet

Height in

inches

Integer Surveyor-supplied

parapet height

BO 67 wind

damage

details

Wind

Damage

Details

Text Wind damage

notes from

surveyor

BP 68 roof

structure

damage

Roof

Structure

Damage

Single

Choice

0%-100%

BQ 69 roof

substrate

damage

Roof

Substrate

Damage

Single

Choice

0%-100%

BR 70 roof

cover

damage

Roof

Cover

Damage

Single

Choice

0%-100%

BS 71 wall

structure

damage

Wall

Structure

Damage

Single

Choice

0%-100%

BT 72 wall s

ubstrate

damage

Wall

Substrate

Damage

Single

Choice

0%-100%

BU 73 building

envelope

damage

Building

Envelope

Damage

Single

Choice

0%-100%

141

BV 74 front

wall fen-

estration

damage

Front Wall

Fenestra-

tion

Damage

Single

Choice

0%-100%

BW 75 left wall

fenestra-

tion

damage

Left Wall

Fenestra-

tion

Damage

Single

Choice

0%-100%

BX 76 back wall

fenestra-

tion

damage

Back Wall

Fenestra-

tion

Damage

Single

Choice

0%-100%

BY 77 right

wall fen-

estration

damage

Right Wall

Fenestra-

tion

Damage

Single

Choice

0%-100%

BZ 78 large

door

failure

Large

Door

Failure

Multiple

Choice

(Comma

separated

text)

None, Front, Left,

Back, Right, All,

other

CA 79 soffit damage Soffit

Damage

Single

Choice

0%-100%

CB 80 fascia damage Fascia

Damage

Single

Choice

0%-100%

142

CC 81 stories

with

damage

Stories

with

Damage

Integer Surveyor-supplied

stories with

damage

CD 82 water

induced

damage

notes

Water

Induced

Damage

Notes

Text Water induced

damage notes from

surveyor

CE 83 percent

of

building

footprint

eroded

Percent of

Building

Footprint

Eroded

Single

Choice

0%-100%

CF 84 damage

to

understory

Damage to

Under-

story

Single

Choice

0%-100%

CG 85 maximum

scour

depth

inches

Maximum

Scour

Depth in

inches

Integer Surveyor-supplied

maximum scour

depth

CH 86 piles

missing

or

collapsed

Piles

Missing or

Collapsed

Single

Choice

0%-100%

CI 87 piles

leaning

or broken

Piles

Leaning or

Broken

Single

Choice

0%-100%

143

CJ 88 cause of

founda-

tion

damage

Cause of

Founda-

tion

Damage

Multiple

Choice

(Comma

separated

text)

Erosion, Wave,

Flood, Floating

Debris, Velocity

Scour, None,

Unknown, Other

CK 89 reroof year Reroof

Year

Integer Surveyor-supplied

reroof year

CL 90 retrofit

type 1

Retrofit

Type 1

Text Surveyor-supplied

retrofit description

CM 91 retrofit 1

year

Retrofit 1

Year

Integer Surveyor-supplied

retrofit year

CN 92 retrofit

type 2

Retrofit

Type 2

Text Surveyor-supplied

retrofit description

CO 93 retrofit 2

year

Retrofit 2

year

Integer Surveyor-supplied

retrofit year

CP 94 data

librarians

Data

Librarian

Text Data Librarian

Name

CQ 95 qc

progress

code

QC

Progress

Code

Single

Choice

1, 1, 2, 2e, 3, 3e

CR 96 qc notes QC Notes Text Notes from Data

Librarians

regarding the

DE/QC process

144

Appendix B

Automation Framework Code

Listing B.1: Libraries used

#Import ing a l l necessary l i b r a r i e s

%matp lo t l i b i n l i n e

import u r l l i b

import r eque s t s

from bs4 import Beaut i fu lSoup

import re

import time

import pandas as pd

from se lenium import webdriver

from se lenium . webdriver . support . u i import WebDriverWait as wait

from c on f i gu r e import ∗

from skimage import i o

from PIL import Image

import os

import glob

import numpy as np

import matp lo t l i b . pyplot as p l t

import ppr int

pp = ppr int . Pre t tyPr in t e r (indent=4)

from skimage import co lo r , img a s f l o a t

from s k l e a rn . svm import SVC

from s k l e a rn . mode l s e l e c t i on import GridSearchCV

from s k l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

from s k l e a rn . met r i c s import p l o t c on fu s i on mat r i x

from skimage . f e a tu r e import hog

145

from s k l e a rn . base import BaseEstimator , TransformerMixin

from s k l e a rn . l i n ea r mode l import SGDClass i f i e r

from s k l e a rn . mode l s e l e c t i on import c r o s s v a l p r e d i c t

from s k l e a rn . p r ep ro c e s s i ng import StandardSca ler

from s k l e a rn . p i p e l i n e import Pipe l i n e

import skimage

from skimage . i o import imread

from j o b l i b import dump, load

import j s on

from shape ly . geometry import shape , Point

import random

import geopandas as gpd

from mul t i p ro c e s s i ng .dummy import Pool as ThreadPool

from b r a i l s . modules import Roo fC l a s s i f i e r

from b r a i l s . modules import OccupancyClas s i f i e r

from b r a i l s . modules import S o f t s t o r yC l a s s i f i e r

from b r a i l s . modules import Yea rBu i l tC l a s s i f i e r

from b r a i l s . modules import NFloorDetector

from s u r f .NN import Spat ia lNeura lNet

Listing B.2: Source code from BRAILS to download images from Google API

THIS CODE IS COPIED FROM BRAILS FILES (downloadRoofImages . py)

These f unc t i on s are c a l l e d l a t e r on in the

notebook to download the roo f images

and S t r e e t View images us ing Google API

def download (u r l s) :

i = −1

for l s in u r l s :

i +=1

urlTop = l s [0]

u r l S t r e e t = l s [1]

lon = l s [2]

146

l a t = l s [3]

t h i s F i l eD i r = roofDownloadDir

i f not os . path . e x i s t s (t h i s F i l eD i r) :

os . makedirs (t h i s F i l eD i r)

numo f f i l e s = len (os . l i s t d i r (t h i s F i l eD i r))

i f numo f f i l e s < maxNumofRoofImgs :

picname = th i sF i l eD i r + ’ /{} . png ’ . format (i)

i f not os . path . e x i s t s (picname) :

r = r eque s t s . get (urlTop)

f = open(picname , ’wb ’)

f . wr i t e (r . content)

f . c l o s e ()

else :

break

t h i s F i l eD i r = streetDownloadDir

i f not os . path . e x i s t s (t h i s F i l eD i r) :

os . makedirs (t h i s F i l eD i r)

numo f f i l e s = len (os . l i s t d i r (t h i s F i l eD i r))

i f numo f f i l e s < maxNumofRoofImgs :

picname = th i sF i l eD i r + ’ /{} . png ’ . format (i)

i f not os . path . e x i s t s (picname) :

r = r eque s t s . get (u r l S t r e e t)

f = open(picname , ’wb ’)

f . wr i t e (r . content)

f . c l o s e ()

else :

break

This func t i on v e r i f i e s t h a t the

coord ina t e s ob ta ined from Google f a l l w i th in the

bu i l d i n g f o o t p r i n t s

def getBIMIndex (pts) :

147

poly = Polygon (pts)

o = pts [0]

d i s tance , index = kdTree . query (o , 1 0) # neares t 10 po in t s

t rueIndex = []

[t rueIndex . append (i) for i in index i f Point (coordsAl l [i]) . with in (poly)]

i f t rueIndex :

theInd = trueIndex [0]

else :# no po in t i n s i d e po lygon

theInd = index [0]

return theInd

Listing B.3: Input processing module

Import ing the prov ided addres se s or coord ina t e s

Input 1 i f input i s l i s t o f addres se s

Input 2 i f input i s l i s t o f coord ina t e s

cho i c e = input (’ ’ ’ Are you prov id ing a l i s t o f addres se s (en ter : 1)

or coord ina t e s (en ter : 2)? ’ ’ ’)

i f int (cho i c e) == 1 :

f i l ename = input (’ ’ ’ Enter csv f i l e name with addres se s . Do not inc l ude the .

csv ex t ens i on in the name you enter . ’ ’ ’)

addre s s e s = pd . r ead c sv

(’ inputs /{} . csv ’ . format (f i l ename))

addre s s e s = addre s s e s [’ address ’] . va lue s

e l i f int (cho i c e) ==2:

148

f i l ename = input (’ ’ ’ Enter csv f i l e name with coord ina t e s .

Do not in c l ude the . csv ex t ens i on in the name you enter . ’ ’ ’)

df = pd . r ead c sv (’ inputs /{} . csv ’ . format (f i l ename))

l a t s = df [’ l a t ’] . va lue s

l on s = df [’ long ’] . va lue s

addre s s e s = []

df [’ geocode data ’] = ’ ’

Reverse geocoding to f i nd addres se s from coord ina t e s

Used in web scrap ing

def reverseGeocode (l a t l n g) :

r e s u l t = {}

apikey = ’ AIzaSyBohpHY6irneiV00vnEF1o1yI8luejbdlI ’

u r l = f ’ ’ ’ h t t p s ://maps . g oo g l e ap i s . com/

maps/ api / geocode/ j son ? l a t l n g={ l a t l n g }&key={ap ikey } ’ ’ ’

r = r eque s t s . get (u r l)

r . r a i s e f o r s t a t u s ()

data = r . j son ()

i f data [’ r e s u l t s ’] :

r e s u l t = data [’ r e s u l t s ’] [0]

return r e s u l t

for i , row in df . i t e r r ows () :

df [’ geocode data ’] [i] = reverseGeocode

(df [’ l a t ’] [i] . astype (str) +

’ , ’ + df [’ long ’] [i] . astype (str))

for i , row in df . i t e r r ows () :

address = row [’ geocode data ’] [’ f o rmatted addre s s ’]

address = address . r ep l a c e (’ , ’ , ’ ’)

addre s s e s . append (address)

149

else :

print (’ P lease ente r 1 f o r addre s s e s or 2 f o r coo rd ina t e s ’)

Listing B.4: Web scraping module

Web scrap ing f o r ba s i c b u i l d i n g a t t r i b u t e s i n c l u d i n g :

year b u i l t , number o f s t o r i e s ,

foundat ion type , and occupancy

def web scraping (addresses , a t t r) :

d r i v e r = webdriver . Chrome(’ chromedriver ’)

found = 0

#f ind i n g year b u i l t

i f a t t r == ’ y e a r bu i l t ’ :

years = []

for i in range (len (addre s s e s)) :

time . s l e e p (2)

print (’ ’ ’Web scrap ing year b u i l t

in format ion f o r address : { }/ { } . . . ’ ’ ’ . format

(i +1, len (addre s s e s)) , end=’ \ r ’)

i f i % 50 == 0 :

d r i v e r . c l o s e ()

d r i v e r = webdriver . Chrome(’ chromedriver ’)

query = addre s s e s [i] + ’ b u i l t in ’

query = query . r ep l a c e (’ ’ , ’+ ’)

URL = f ” https : // goog l e . com/ search ?q={query}”

d r i v e r . get (URL)

div . IsZvec was ob ta ined from us ing i n s p e c t

element f e a t u r e in Google Chrome

sn ippe t s = wait (dr ive r , 6 0) . u n t i l

(lambda d r i v e r : d r i v e r . f i n d e l em en t s b y c s s s e l e c t o r (” div . I sZvec ”))

for j in range (len (sn ippe t s)) :

Lower case to make search ing f o r term ea s i e r

150

sn ippet = sn ippe t s [j] . t ex t . lower ()

y e a r bu i l t = ’NA’

i f ’ b u i l t ’ in sn ippet :

index = sn ippet . f i nd (” bu i l t ”)

Obtaining the number w i th in

the s t r i n g t ha t we are i n t e r e s t e d in

#and making sure i t i s a year b u i l t >1000

s t r i n g = sn ippet [index+4: index+15]

t e s t = ’ ’ . j o i n (f i l t e r (lambda s : s . i s d i g i t () , s t r i n g))

i f t e s t > ’ 1000 ’ :

y e a r bu i l t = t e s t

found = found+1

break

years . append (y e a r bu i l t)

d r i v e r . c l o s e ()

print (’ ’ ’ F in ished proce s s ing {} addres se s .

Number o f found year b u i l t data : {} ’ ’ ’

. format (len (addre s s e s) , found))

return years

#f ind i n g number o f s t o r i e s

e l i f a t t r == ’ n o s t o r i e s ’ :

s t o r i e s = []

for i in range (len (addre s s e s)) :

time . s l e e p (2)

print (’ ’ ’Web scrap ing number o f

s t o r i e s in format ion f o r address : { }/ { } . . . ’ ’ ’

. format (i +1, len (addre s s e s)) , end=’ \ r ’)

i f i % 50 == 0 :

d r i v e r . c l o s e ()

d r i v e r = webdriver . Chrome(’ chromedriver ’)

query = addre s s e s [i] + ’ s t o r i e s ’

query = query . r ep l a c e (’ ’ , ’+ ’)

URL = f ” https : // goog l e . com/ search ?q={query}”

151

d r i v e r . get (URL)

sn ippe t s = wait (dr ive r , 6 0) . u n t i l

(lambda d r i v e r : d r i v e r . f i n d e l em en t s b y c s s s e l e c t o r (” div . I sZvec ”))

for j in range (len (sn ippe t s)) :

sn ippet = sn ippe t s [j] . t ex t . lower ()

n o s t o r i e s = ’NA’

i f ’ s t o r i e s ’ in sn ippet :

index = sn ippet . f i nd (” s t o r i e s ”)

s t r i n g = sn ippet [index+6: index+10]

t e s t = ’ ’ . j o i n (f i l t e r (lambda s : s . i s d i g i t () , s t r i n g))

i f t e s t > ’ 0 ’ :

n o s t o r i e s = t e s t

found = found+1

break

s t o r i e s . append (n o s t o r i e s)

d r i v e r . c l o s e ()

print (’ ’ ’ F in ished proce s s ing {} addres se s .

Number o f s t o r i e s data found : {} ’ ’ ’

. format (len (addre s s e s) , found))

return s t o r i e s

#f ind i n g foundat ion type

e l i f a t t r == ’ foundat ion type ’ :

f oundat ions = []

Used the most common foundat ion type s found from our data

f t ype s = [’ s l ab ’ , ’ c onc r e t e p i e r s ’ , ’wood p i e r s ’ , ’ stem wal l ’]

for i in range (len (addre s s e s)) :

time . s l e e p (2)

print (’ ’ ’Web scrap ing foundat ion

type f o r address : { }/ { } . . . ’ ’ ’

. format (i +1, len (addre s s e s)) , end=’ \ r ’)

i f i % 50 == 0 :

d r i v e r . c l o s e ()

d r i v e r = webdriver . Chrome(’ chromedriver ’)

152

query = addre s s e s [i] + ’ foundat ion type ’

query = query . r ep l a c e (’ ’ , ’+ ’)

URL = f ” https : // goog l e . com/ search ?q={query}”

d r i v e r . get (URL)

sn ippe t s = wait (dr ive r , 6 0) . u n t i l

(lambda d r i v e r : d r i v e r . f i n d e l em en t s b y c s s s e l e c t o r (” div . I sZvec ”))

for j in range (len (sn ippe t s)) :

sn ippet = sn ippe t s [j] . t ex t . lower ()

foundat ion type = ’NA’

for f type in f t ype s :

i f f type in sn ippet :

f oundat ion type = f type

found = found+1

break

i f f oundat ion type != ’NA’ :

break

f oundat ions . append (foundat ion type)

d r i v e r . c l o s e ()

print (’ ’ ’ F in ished proce s s ing {} addres se s .

Number o f foundat ion type data found : {} ’ ’ ’

. format (len (addre s s e s) , found))

return f oundat ions

#occupancy type

e l i f a t t r == ’ occupancy type ’ :

occupancy = []

Using the most common occupancy type s to search f o r

occTypes =

[’ s i n g l e fami ly ’ , ’ mult i f ami ly ’ , ’ bu s in e s s ’ , ’ p r o f e s s i o n a l ’ , ’ apartment ’]

for i in range (len (addre s s e s)) :

time . s l e e p (2)

print (’Web sc rap ing occupancy type f o r address : { } / { } . . . ’

. format (i +1, len (addre s s e s)) , end=’ \ r ’)

i f i % 50 == 0 :

153

d r i v e r . c l o s e ()

d r i v e r = webdriver . Chrome(’ chromedriver ’)

query = addre s s e s [i] + ’ type ’

query = query . r ep l a c e (’ ’ , ’+ ’)

URL = f ” https : // goog l e . com/ search ?q={query}”

d r i v e r . get (URL)

sn ippe t s = wait (dr ive r , 6 0) . u n t i l

(lambda d r i v e r : d r i v e r . f i n d e l em en t s b y c s s s e l e c t o r (” div . I sZvec ”))

for j in range (len (sn ippe t s)) :

sn ippet = sn ippe t s [j] . t ex t . lower ()

occupancy type = ’NA’

for occType in occTypes :

i f occType in sn ippet :

occupancy type = occType

found = found+1

break

i f occupancy type != ’NA’ :

break

occupancy . append (occupancy type)

d r i v e r . c l o s e ()

print (’ ’ ’ F in ished proce s s ing {}

addres se s . Number o f occupancy type data found : {} ’ ’ ’

. format (len (addre s s e s) , found))

return occupancy

e l i f a t t r == ’ roo f shape ’ :

r shapes = []

Used the most common roo f t ype s found from our data

r types = [’ gab le ’ , ’ hip ’ , ’ f l a t ’]

for i in range (len (addre s s e s)) :

time . s l e e p (2)

print (’ ’ ’Web scrap ing roo f shape f o r address : { }/ { } . . . ’ ’ ’

. format (i +1, len (addre s s e s)) , end=’ \ r ’)

154

i f i % 50 == 0 :

d r i v e r . c l o s e ()

d r i v e r = webdriver . Chrome(’ chromedriver ’)

query = addre s s e s [i] + ’ r oo f shape ’

query = query . r ep l a c e (’ ’ , ’+ ’)

URL = f ” https : // goog l e . com/ search ?q={query}”

d r i v e r . get (URL)

sn ippe t s = wait (dr ive r , 6 0) . u n t i l

(lambda d r i v e r : d r i v e r . f i n d e l em en t s b y c s s s e l e c t o r (” div . I sZvec ”))

for j in range (len (sn ippe t s)) :

sn ippet = sn ippe t s [j] . t ex t . lower ()

rshape = ’NA’

for rtype in r types :

i f rtype in sn ippet :

rshape = rtype

found = found+1

break

i f rshape != ’NA’ :

break

r shapes . append (rshape)

d r i v e r . c l o s e ()

print (’ ’ ’ F in ished proce s s ing {} addres se s .

Number o f roo f shapes found : {} ’ ’ ’

. format (len (addre s s e s) , found))

return r shapes

else :

print (’ P lease prov ide va l i d input ’)

Listing B.5: Calling the web scraping module and saving results

Ca l l i n g the f unc t i on s above to perform web scrap ing

years = web scraping (addresses , ’ y e a r bu i l t ’)

155

s t o r i e s = web scraping (addresses , ’ n o s t o r i e s ’)

f oundat ions = web scraping (addresses , ’ f oundat ion type ’)

occupancy = web scraping (addresses , ’ occupancy type ’)

r o o f s = web scraping (addresses , ’ r oo f shape ’)

Saving web scrap ing r e s u l t s to be used in the next s t e p s

df = l i s t (zip (addresses , s t o r i e s , years , occupancy , foundat ions , r o o f s))

Frame=pd . DataFrame (df , columns =

[” address ” , ” s t o r i e s ” , ” years ” , ”occupancy” , ” foundat ions ” , ” r o o f s ”])

Frame . t o c sv (”Outputs\Datase t Resu l t s \web s c r app ing r e su l t s . csv ”

, index=False , encoding=’ utf−8−s i g ’)

Listing B.6: Obtaining and saving coordinates from addresses module

Saving Google maps GeoJSON f i l e

to ge t the coord ina t e s f o r each

address from i t / t h i s uses Google API key

geocode dec = ’ no ’

i f int (cho i c e) == 2 :

while True :

geocode dec = input (’ ’ ’You have a l r eady prov ided coord inates ,

would you l i k e to use Google API to download geoJSON f i l e s

to e x t r a c t coord ina t e s from them? Answer ” yes or ”no ” . ’ ’ ’)

i f geocode dec == ’ yes ’ or geocode dec == ’no ’ :

break

else :

print (’ ’ ’ P lease en ter e i t h e r ” yes ”

or ”no” wi thout quo ta t i on marks . ’ ’ ’)

i f int (cho i c e) == 1 or gecode dec == ’ yes ’ :

b a s eu r l add r goog l e= ’ ’ ’ h t t p s ://maps . g oo g l e a p i s

156

. com/maps/ api / geocode/ j son ? address={}&key= ’ ’ ’

+GoogleMapAPIKey

baseur l addr = ba s eu r l add r goog l e

for addr in addre s s e s :

u r l = baseur l addr . format (addr)

u r l . r ep l a c e (’ ’ , ’+ ’)

r = r eque s t s . get (u r l)

f = open(’ Outputs/Geocoding/ geocode {} . g eo j son ’ .

format (addr) , ’wb ’)

f . wr i t e (r . content)

f . c l o s e ()

Saving the coord ina t e s f o r each address from the

geoj son f i l e s we go t from Google maps in the prev ious s t ep

i f int (cho i c e) == 1 or gecode dec == ’ yes ’ :

l a t s = []

l on s = []

addrs = []

for addr in addre s s e s :

with open(’ Outputs/Geocoding/ geocode {} . g eo j son ’

. format (addr)) as f :

j s = j son . load (f)

i f j s [’ s t a tu s ’]== ’OK’ :

d = j s [’ r e s u l t s ’] [0]

coord = d [’ geometry ’] [’ l o c a t i o n ’]

l a t = coord [’ l a t ’]

lon = coord [’ lng ’]

l a t s . append (l a t)

l on s . append (lon)

addrs . append (addr)

157

Saving the coord ina t e s in a csv f i l e

df = l i s t (zip (addresses , l a t s , l on s))

Frame = pd . DataFrame (df , columns = [” address ” , ” l a t ” , ” lon ”])

Frame . t o c sv (”Outputs/Datase t Resu l t s /Addrs Coords . csv ” , index=False ,

encoding=’ utf−8−s i g ’)

df = pd . r ead c sv (’ inputs /Framework Test Data . csv ’ . format (f i l ename))

l a t s = df [’ l a t ’] . va lue s

l on s = df [’ lon ’] . va lue s

addrs = df [’ address ’] . va lue s

df = l i s t (zip (addresses , l a t s , l on s))

Frame = pd . DataFrame (df , columns = [” address ” , ” l a t ” , ” lon ”])

Frame . t o c sv (”Outputs/Datase t Resu l t s /Addrs Coords . csv ” ,

index=False , encoding=’ utf−8−s i g ’)

Listing B.7: Validating coordinates using building footprints module

Depending on whether you have b u i l d i n g f o o t p r i n t s f i l e

#or you want to use b u i l d i n g f o o t p r i n t s from Microso f t AI genera ted

#or you don ’ t want to use any

at a l l the code w i l l g i v e the same r e s u l t

The b u i l d i n g f o o t p r i n t s are used to check

i f the coord ina t e s f a l l w i th in the b u i l d i n g f o o t p r i n t s

f p c h o i c e = input (’ ’ ’ P lease en ter your f o o t p r i n t s

cho ice as f o l l o w s : ”myBuildingFPs” or ” s t a t e ” or ”noFPs” ’ ’ ’)

This runs i f you have

a bu i l d i n g f o o t p r i n t s f i l e f o r your coord ina t e s

#The myBuildingFPs opt ion uses source code from BRAILS

i f f p c h o i c e == ’myBuildingFPs ’ :

with open(cleanedBIMFile w coord Name , ’ r ’) as add r f i l e ,

open(resultBIMFileName , ’w+’ , newl ine=’ ’) as resultBIMFi le ,

158

open(Bui ld ingFootPrintsFi leName) as Bu i ld ingFootPr in t sF i l e :

addrcsv = l i s t (csv . r eader (a d d r f i l e))

colNames = addrcsv [0] [0 :]

addrcsv = addrcsv [1 :]

coo rdsAl l = []

[coo rdsAl l . append ([row [2] , row [1]]) for row in addrcsv]

coo rdsAl l = np . array (coordsAl l , dtype=np . f l o a t 3 2)

kdTree = s p a t i a l . KDTree(coordsAl l)

f p s = []

b ldgFootPr ints = j son . load (Bu i ld ingFootPr in t sF i l e)

b ldgFootPr intsFeatures = bldgFootPr ints [” f e a t u r e s ”]

b ldgFootPr intsFeatures = bldgFootPr intsFeatures [0 :]

f e a t u r e s = []

for b fp f in bldgFootPr intsFeatures :

pts = b fp f [’ geometry ’] [’ c oo rd ina t e s ’] [0]

bimIndex = getBIMIndex (pts)

i n f o = addrcsv [bimIndex]

for i in range (len (colNames)) :

vName = colNames [i]

i f i n f o [i] == ’None ’ or i n f o [i] == ’ ’ :

b fp f [’ p r op e r t i e s ’] [colNames [i]] = None

continue

e l i f vName in i n tVa r i ab l e s :

vValue = int (f loat (i n f o [i]))

e l i f vName in f l o a tVa r i a b l e s :

vValue = f loat (i n f o [i])

else :

vValue = i n f o [i]

b fp f [’ p r op e r t i e s ’] [colNames [i]] = vValue

f e a t u r e s . append (b fp f)

159

bldgFootPr ints [’ f e a t u r e s ’] = f e a t u r e s

j son .dump(bldgFootPrints , r e su l tBIMFi le)

print (”bim has been added to {}” . format (resultBIMFileName))

outputDir = roofDownloadDir

b a s e u r l s t r e e t v i ew = ’ ’ ’ h t t p s ://maps . g oo g l e a p i s .

com/maps/ api / s t r e e t v i ew ?

s i z e =200x200&l o c a t i o n={ l a t } ,{ l on}&fov=80&p i t c h=0&key= ’ ’ ’

+GoogleMapAPIKey

b a s e u r l s a t e l l i t e= ’ ’ ’ h t t p s ://maps . g oo g l e a p i s . com/maps

/ api / s ta t icmap ? cen ter={ l a t } ,

{ l on}&zoom=20&s ca l e=1&s i z e =256x256&

maptype=s a t e l l i t e&key= ’ ’ ’+

GoogleMapAPIKey+ ’ ’ ’&format=png&v i s u a l r e f r e s h=true ’ ’ ’

c i t y F i l e = gpd . r e a d f i l e (resultBIMFileName) . t o j s on ()

f o o t j s o n s = j son . l oads (c i t y F i l e) [’ f e a t u r e s ’]

u r l s = []

for j in f o o t j s o n s :

address = j [’ p r op e r t i e s ’] [’ address ’]

l a t = j [’ p r op e r t i e s ’] [’ l a t ’]

lon = j [’ p r op e r t i e s ’] [’ lon ’]

urlTop = b a s e u r l s a t e l l i t e . format (l a t=lat , lon=lon)

u r l S t r e e t = ba s e u r l s t r e e t v i ew . format (l a t=lat , lon=lon)

u r l s . append ([urlTop , u r l S t r e e t , lon , l a t])

print (’ s h u f f l i n g . . . ’)

random . s h u f f l e (u r l s)

print (’ s h u f f l e d . . . ’)

ncpu = 1

step = int (len (u r l s)/ ncpu)+1

chunks = [u r l s [x : x+step] for x in range (0 , len (u r l s) , s t ep)]

160

print (’ Downloading s a t e l l i t e images o f r o o f s from Google API . . . ’)

ge t some workers

pool = ThreadPool (ncpu)

send job to workers

r e s u l t s = pool .map(download , chunks)

job s are done , c l ean the s i t e

pool . c l o s e ()

pool . j o i n ()

print (’ S a t e l l i t e images o f r o o f s downloaded . . . ’)

#==

This runs i f you want to use the Microso f t

bu i l d i n g f o o t p r i n t s genera ted by AI

#I t uses the f i l e f o r the en t i r e s t a t e

e l i f f p c h o i c e == ’ s t a t e ’ :

load GeoJSON f i l e con ta in ing s e c t o r s

with open(’ Inputs / Footpr int s . geo j son ’) as f :

j s = j son . load (f)

cons t ruc t po in t based on lon / l a t re turned by geocoder

addr coords = pd . r ead c sv

(’ Outputs/Datase t Resu l t s /Addrs Coords . csv ’)

l a t s = addr coords [’ l a t ’] . va lue s

l on s = addr coords [’ lon ’] . va lue s

k = 0

po in t s = []

c o r r e c t p o i n t s =[]

bad po ints = []

for x in range (len (addr coords)) :

po int = Point (l on s [k] , l a t s [k])

po in t s . append (po int)

161

k = k+1

check each polygon to see i f i t con ta ins the po in t

i=0

j= len (j s [’ f e a t u r e s ’])

for f e a t u r e in j s [’ f e a t u r e s ’] :

print (’ check ing {}/{} ’ . format (i , j) , end=’ \ r ’)

i = i+1

polygon = shape (f e a t u r e [’ geometry ’])

for po int in po in t s :

i f polygon . conta in s (po int) :

c o r r e c t p o i n t s . append (po int)

break

for po int in po in t s :

i f po int not in c o r r e c t p o i n t s :

bad po ints . append (po int)

c o r r e c t l o n s = []

c o r r e c t l a t s = []

bad lons = []

bad l a t s = []

for po int in c o r r e c t p o i n t s :

c o r r e c t l o n s . append (po int . x)

c o r r e c t l a t s . append (po int . y)

for po int in bad po ints :

bad lons . append (po int . x)

bad l a t s . append (po int . y)

df = l i s t (zip (bad la t s , bad lons))

Frame = pd . DataFrame (df , columns =

[”bad l a t ” , ”bad lon ”])

Frame . t o c sv

(”Outputs/Datase t Resu l t s /Bad Coords . csv ” ,

162

index=False , encoding=’ utf−8−s i g ’)

#copied from noFPs below fo r now :

outputDir = roofDownloadDir

b a s e u r l s t r e e t v i ew = ’ ’ ’ h t t p s ://maps . g oo g l e a p i s .

com/maps/ api / s t r e e t v i ew ?

s i z e =200x200&l o c a t i o n={ l a t } ,{ l on}&fov=80&p i t c h=0&key= ’ ’ ’

+GoogleMapAPIKey

b a s e u r l s a t e l l i t e= ’ ’ ’ h t t p s ://maps . g oo g l e a p i s .

com/maps/ api / s ta t icmap ? cen ter=

{ l a t } ,{ l on}&zoom=20&s ca l e=1&s i z e =256x256

&maptype=s a t e l l i t e&key= ’ ’ ’

+GoogleMapAPIKey+ ’ ’ ’&format=png&v i s u a l r e f r e s h=true ’ ’ ’

i=0

u r l s = []

for l a t in l a t s :

urlTop = b a s e u r l s a t e l l i t e . format (l a t=lat , lon=lons [i])

u r l S t r e e t = ba s e u r l s t r e e t v i ew . format (l a t=lat , lon=lons [i])

u r l s . append ([urlTop , u r l S t r e e t , l on s [i] , l a t])

i += 1

ncpu = 1

step = int (len (u r l s)/ ncpu)+1

chunks = [u r l s [x : x+step] for x in range (0 , len (u r l s) , s t ep)]

print (’ Downloading s a t e l l i t e images o f r o o f s from Google API . . . ’)

ge t some workers

pool = ThreadPool (ncpu)

send job to workers

r e s u l t s = pool .map(download , chunks)

job s are done , c l ean the s i t e

pool . c l o s e ()

pool . j o i n ()

print (’ S a t e l l i t e images o f r o o f s downloaded . . . ’)

163

#===

This runs i f you don ’ t have

bu i l d i n g f o o t p r i n t s and do not want to prov ide any

e l i f f p c h o i c e == ’noFPs ’ :

THIS CODE IS COPIED/ADAPTED FROM

BRAILS FILES (downloadRoofImages . py)

outputDir = roofDownloadDir

b a s e u r l s t r e e t v i ew = ’ ’ ’ h t t p s ://maps . g oo g l e a p i s .

com/maps

/ api / s t r e e t v i ew ?

s i z e =200x200&l o c a t i o n={ l a t } ,{ l on}&fov

=80&p i t c h=0&key= ’ ’ ’+GoogleMapAPIKey

b a s e u r l s a t e l l i t e= ’ ’ ’ h t t p s ://maps . g oo g l e a p i s . com/maps

/ api / s ta t icmap ? cen ter=

{ l a t } ,{ l on}&zoom=20&s ca l e=1&s i z e =256x256&maptype=

s a t e l l i t e&key= ’ ’ ’+

GoogleMapAPIKey+”&format=png&v i s u a l r e f r e s h=true ”

u r l s = []

for l a t in l a t s :

while i < len (addre s s e s) :

urlTop = b a s e u r l s a t e l l i t e . format (l a t=l a t s [i] , lon=lons [i])

u r l S t r e e t = ba s e u r l s t r e e t v i ew . format (l a t=l a t s [i] , lon=lons [i])

u r l s . append ([urlTop , u r l S t r e e t , l on s [i] , l a t s [i]])

i += 1

ncpu = 1

step = int (len (u r l s)/ ncpu)+1

chunks = [u r l s [x : x+step] for x in range (0 , len (u r l s) , s t ep)]

print (’ Downloading s a t e l l i t e images o f r o o f s from Google API . . . ’)

ge t some workers

pool = ThreadPool (ncpu)

send job to workers

164

r e s u l t s = pool .map(download , chunks)

job s are done , c l ean the s i t e

pool . c l o s e ()

pool . j o i n ()

print (’ S a t e l l i t e images o f r o o f s downloaded . . . ’)

else :

print (’ P lease prov ide your f o o t p r i n t s cho i c e ’)

Listing B.8: Downloading, cropping, and saving NOAA aerial imagery

Downloadimg NOAA images

coord = pd . r ead c sv (’ ’ ’ Outputs /Da ta s e t Resu l t s /

Addrs Coords . csv ’ ’ ’)

l a t i t u d e s = coord [’ l a t ’] . va lue s

l ong i tude s = coord [’ lon ’] . va lue s

d r i v e r = webdriver . Chrome(’ chromedriver ’)

d r i v e r . s e t w indow s i z e (500 ,500)

for i in range (len (l a t i t u d e s)) :

d r i v e r . get (’ ’ ’ h t t p s :// storms . ngs . noaa . gov/ storms /{}/

index . html#20/{}/{} ’ ’ ’

. format (storm , l a t i t u d e s [i] , l ong i tude s [i]))

i f i < 3 :

zoom = dr i v e r . f i nd e l ement by xpath

(’ ’ ’ //∗ [@id=”map”]/ d i v [2] / d i v [1] / d i v [1] / a [1] ’ ’ ’)

zoom . c l i c k ()

zoom . c l i c k ()

zoom . c l i c k ()

d r i v e r . get (’ ’ ’ h t t p s :// storms . ngs . noaa . gov/ storms /{}

/ index . html#20/{}/{} ’ ’ ’

. format (storm , l a t i t u d e s [i] , l ong i tude s [i]))

time . s l e e p (2)

s c r e en sho t = dr i v e r . s av e s c r e en sho t (’ ’ ’ Outputs /Co l l e c t ed Images

165

/Post Windstorm Roofs /temp /{} . png ’ ’ ’ . format (i))

d r i v e r . c l o s e ()

Cropping NOAA Images

Se t t i n g the po in t s f o r cropped image from top l e f t corner

t op l e f t X = 150

top l e f t Y = 83

bottomright X = 350

bottomright Y = 283

Opening and cropping the images to 200 x200 image s i z e

for i in range (len (l a t i t u d e s)) :

im = Image .open(’ ’ ’ Outputs /Co l l e c t ed Images /

Post Windstorm Roofs /temp /{} . png ’ ’ ’ . format (i))

cropped = im . crop

((top l e f t X , top l e f t Y , bottomright X , bottomright Y))

cropped . save (’ ’ ’ Outputs /Co l l e c t ed Images /

Post Windstorm Roofs /{} . png ’ ’ ’ . format (i))

De le t ing uncropped images

f i l e s = glob . g lob

(’ Outputs/Co l l e c ted Images /Post Windstorm Roofs /temp/∗ ’)

for f in f i l e s :

os . remove (f)

Listing B.9: Calling BRAILS classifiers

Ca l l i n g BRAILS c l a s s i f i e r s

i n i t i a l i z e roo f c l a s s i f i e r

roofModel = Roo fC l a s s i f i e r ()

i n i t i a l i z e occupancy c l a s s i f i e r

occupancyModel = OccupancyClas s i f i e r ()

166

i n i t i a l i z e year b u i l d c a l s s i f i e r

yearModel = Yea rBu i l tC l a s s i f i e r ()

i n i t i a l i z e no . o f s t o r i e s c l a s s i f i e r

n f l o o rDe t e c t o r = NFloorDetector ()

roo f imgs =[]

s t r ee tView imgs = []

for i in range (len (addre s s e s)) :

r oo f imgs . append

(’ Outputs/Co l l e c ted Images /BRAILS Roofs /{} . png ’ . format (i))

s t ree tView imgs . append

(’ Outputs/Co l l e c ted Images /BRAILS StreetView /{} . png ’ . format (i))

p r e d i c t i o n s = roofModel . p r ed i c t (roo f imgs)

use the occupancy c l a s s i f i e r

p r ed i c t i o n s = occupancyModel . p r ed i c t (s t ree tView imgs)

use the year b u i l t c l a s s i f i e r

p r ed i c t i o n s = yearModel . p r ed i c t (s t ree tView imgs)

use no . o f s t o r i e s c l a s s i f i e r

p r ed i c t i o n s = n f l o o rDe t e c t o r . p r ed i c t (s t ree tView imgs)

occ pred = pd . r ead c sv (’ tmp/ occupancy preds . csv ’)

occ pred = occ pred [’ p r ed i c t i on ’] . va lue s

r oo f p r ed = pd . r ead c sv (’ tmp/ roofType preds . csv ’)

r oo f p r ed = roo f p r ed [’ p r ed i c t i on ’] . va lue s

167

yb pred = pd . r ead c sv (’ tmp/YearBui l t . csv ’)

yb pred = yb pred [’ p r ed i c t i on ’] . va lue s

n o f l o o r s p r e d = pd . r ead c sv (’ nFloorPred ic t . csv ’)

n o f l o o r s p r e d = no f l o o r s p r e d [’ nFloors ’] . va lue s

f i l e s = glob . g lob (’ ∗ . csv ’)

for f in f i l e s :

os . remove (f)

f i l e s = glob . g lob (’ debug . l og ’)

for f in f i l e s :

os . remove (f)

Listing B.10: Using SURF on web scraped results

Here SURF i s t ra ined on the web scraped data :

year s data = []

s t o r i e s d a t a = []

f oundat ions data = []

occupancy data = []

r o o f s d a t a = []

y ea r s m i s s i ng = []

s t o r i e s m i s s i n g = []

f oundat i on s mi s s i ng = []

occupancy miss ing = []

r o o f s m i s s i n g = []

for i in range (len (addre s s e s)) :

i f years [i] != ’NA’ :

yea r s data . append ([l on s [i] , l a t s [i] , int (years [i])])

e l i f years [i] == ’NA’ :

y ea r s m i s s i ng . append ([l on s [i] , l a t s [i]])

168

i f s t o r i e s [i] != ’NA’ :

s t o r i e s d a t a . append ([l on s [i] , l a t s [i] , int (s t o r i e s [i])])

e l i f s t o r i e s [i] == ’NA’ :

s t o r i e s m i s s i n g . append ([l on s [i] , l a t s [i]])

i f f oundat ions [i] != ’NA’ :

f oundat ions data . append ([l on s [i] , l a t s [i] , f oundat ions [i]])

e l i f f oundat ions [i] == ’NA’ :

f oundat i on s mi s s i ng . append ([l on s [i] , l a t s [i]])

i f occupancy [i] != ’NA’ :

occupancy data . append ([l on s [i] , l a t s [i] , occupancy [i]])

e l i f occupancy [i] == ’NA’ :

occupancy miss ing . append ([l on s [i] , l a t s [i]])

i f r o o f s [i] != ’NA’ :

r o o f s da t a . append ([l on s [i] , l a t s [i] , r o o f s [i]])

e l i f r o o f s [i] == ’NA’ :

r o o f s m i s s i n g . append ([l on s [i] , l a t s [i]])

f oundat i on data r ep = []

for data in f oundat i ons data :

i f data [2] == ’ s l ab ’ :

f oundat i on data r ep . append ([data [0] , data [1] , 0])

e l i f data [2] == ’ conc re t e p i e r s ’ :

f oundat i on data r ep . append ([data [0] , data [1] , 1])

e l i f data [2] == ’wood p i e r s ’ :

f oundat i on data r ep . append ([data [0] , data [1] , 2])

e l i f data [2] == ’ stem wal l ’ :

f oundat i on data r ep . append ([data [0] , data [1] , 3])

occupancy data rep = []

169

for data in occupancy data :

i f data [2] == ’ s i n g l e fami ly ’ :

occupancy data rep . append ([data [0] , data [1] , 0])

e l i f data [2] == ’ mult i f ami ly ’ :

occupancy data rep . append ([data [0] , data [1] , 1])

e l i f data [2] == ’ bus ine s s ’ :

occupancy data rep . append ([data [0] , data [1] , 2])

e l i f data [2] == ’ p r o f e s s i o n a l ’ :

occupancy data rep . append ([data [0] , data [1] , 3])

e l i f data [2] == ’ apartment ’ :

occupancy data rep . append ([data [0] , data [1] , 4])

r o o f s d a t a r e p = []

for data in r o o f s da t a :

i f data [2] == ’ gable ’ :

r o o f s d a t a r e p . append ([data [0] , data [1] , 0])

e l i f data [2] == ’ hip ’ :

r o o f s d a t a r e p . append ([data [0] , data [1] , 1])

e l i f data [2] == ’ f l a t ’ :

r o o f s d a t a r e p . append ([data [0] , data [1] , 2])

yea r s data = np . array (year s data)

s t o r i e s d a t a = np . array (s t o r i e s d a t a)

f oundat i on data r ep = np . array (f oundat i on data r ep)

occupancy data rep = np . array (occupancy data rep)

r o o f s d a t a r e p = np . array (r o o f s d a t a r e p)

yea r s m i s s i ng = np . array (yea r s m i s s i ng)

s t o r i e s m i s s i n g = np . array (s t o r i e s m i s s i n g)

f oundat i on s mi s s i ng = np . array (f oundat i on s mi s s i ng)

occupancy miss ing = np . array (occupancy miss ing)

r o o f s m i s s i n g = np . array (r o o f s m i s s i n g)

170

nn years = Spat ia lNeura lNet (rawData = years data , numNei = 5)

nn s t o r i e s = Spat ia lNeura lNet (rawData = s t o r i e s d a t a , numNei = 5)

nn foundat ions = Spat ia lNeura lNet (rawData = foundat ion data rep , numNei = 5)

nn occupancy = Spat ia lNeura lNet (rawData = occupancy data rep , numNei = 5)

nn roo f s = Spat ia lNeura lNet (rawData = roo f s da t a r ep , numNei = 5)

nn years . bu i ld model ()

n n s t o r i e s . bu i ld model ()

nn foundat ions . bui ld model ()

nn occupancy . bui ld model ()

nn roo f s . bu i ld model ()

nn years . t r a i n ()

n n s t o r i e s . t r a i n ()

nn foundat ions . t r a i n ()

nn occupancy . t r a i n ()

nn roo f s . t r a i n ()

Surf p r e d i c t i n g and sav ing the f i l e s

y e a r s s u r f = []

s t o r i e s s u r f = []

f o unda t i on s s u r f = []

occupancy sur f = []

r o o f s s u r f = []

for year in yea r s m i s s i ng :

y e a r s s u r f . append ([year [0] , year [1] ,

round(nn years . p r ed i c t (year))])

for s to ry in s t o r i e s m i s s i n g :

s t o r i e s s u r f . append ([s t o ry [0] , s t o ry [1] ,

round(n n s t o r i e s . p r ed i c t (s to ry))])

171

for foundat ion in f oundat i on s mi s s i ng :

f o unda t i on s s u r f . append ([foundat ion [0] ,

foundat ion [1] ,

nn foundat ions . p r ed i c t (foundat ion)])

for occupancy in occupancy miss ing :

occupancy sur f . append

([occupancy [0] , occupancy [1] ,

round(nn occupancy . p r ed i c t (occupancy))])

for r oo f in r o o f s m i s s i n g :

r o o f s s u r f . append ([r oo f [0] , r o o f [1] ,

round(nn roo f s . p r ed i c t (r oo f))])

#sav ing su r f r e s u l t s

y e a r l a t = []

y ea r l on = []

year pred = []

s t o r i e s l a t = []

s t o r i e s l o n = []

s t o r i e s p r e d = []

f ound l a t = []

found lon = []

found pred = []

o c c l a t = []

o c c l on = []

occ pred = []

r o o f l a t = []

172

r o o f l o n = []

r oo f p r ed = []

for year in y e a r s s u r f :

y e a r l a t . append (year [1])

y ea r l on . append (year [0])

year pred . append (year [2])

for s to ry in s t o r i e s s u r f :

s t o r i e s l a t . append (s to ry [1])

s t o r i e s l o n . append (s to ry [0])

s t o r i e s p r e d . append (s to ry [2])

for found in f o unda t i on s s u r f :

f ound l a t . append (found [1])

found lon . append (found [0])

found pred . append (found [2])

for occ in occupancy sur f :

o c c l a t . append (occ [1])

o c c l on . append (occ [0])

occ pred . append (occ [2])

for r oo f in r o o f s s u r f :

r o o f l a t . append (r oo f [1])

r o o f l o n . append (r oo f [0])

r oo f p r ed . append (r oo f [2])

df = l i s t (zip (y ea r l a t , year lon , year pred))

Frame=pd . DataFrame (df , columns = [’ l a t ’ , ’ lon ’ , ’ s u r f year bu i l t ’])

Frame . t o c sv (”Outputs\Datase t Resu l t s \ s u r f y e a r b u i l t . csv ” ,

index=False , encoding=’ utf−8−s i g ’)

173

df = l i s t (zip (s t o r i e s l a t , s t o r i e s l o n , s t o r i e s p r e d))

Frame=pd . DataFrame (df , columns = [’ l a t ’ , ’ lon ’ , ’ s u r f num of s t o r i e s ’])

Frame . t o c sv (”Outputs\Datase t Resu l t s \ s u r f s t o r i e s . csv ” ,

index=False , encoding=’ utf−8−s i g ’)

df = l i s t (zip (found la t , found lon , found pred))

Frame=pd . DataFrame (df , columns = [’ l a t ’ , ’ lon ’ , ’ s u r f foundat ion ’])

Frame . t o c sv (”Outputs\Datase t Resu l t s \ s u r f f ounda t i on . csv ” ,

index=False , encoding=’ utf−8−s i g ’)

df = l i s t (zip (o c c l a t , occ lon , occ pred))

Frame=pd . DataFrame (df , columns = [’ l a t ’ , ’ lon ’ , ’ s u r f occupancy ’])

Frame . t o c sv (”Outputs\Datase t Resu l t s \ sur f occupancy . csv ” ,

index=False , encoding=’ utf−8−s i g ’)

df = l i s t (zip (r o o f l a t , r o o f l on , r oo f p r ed))

Frame=pd . DataFrame (df , columns = [’ l a t ’ , ’ lon ’ , ’ s u r f r oo f type ’])

Frame . t o c sv (”Outputs\Datase t Resu l t s \ s u r f r o o f . csv ” ,

index=False , encoding=’ utf−8−s i g ’)

Listing B.11: Classifying roof damage state using trained models module

NOAA ae r i a l imagery t ha t was downloaded are

c l a s s i f i e d in t o f i v e roo f damage s t a t e s here

#This code was modi f ied

to run f o r both t ra ined models

#This i s f o r zoom 18 model

X = []

i=0

while i <=1136:

img = imread (’ ’ ’ Outputs /Co l l e c t ed Images

174

/Post Windstorm Roofs /{} . png ’ ’ ’ . format (i))

img = img a s f l o a t (img)

X. append (img)

i+=1

X = np . array (X)

XS = X. reshape (len (addre s s e s) ,160000)

X = []

#This i s f o r zoom 20 model

while i <=1562:

img = imread (’ ’ ’ Outputs /Co l l e c t ed Images

/Post Windstorm Roofs /{} . png ’ ’ ’ . format (i))

img = img a s f l o a t (img)

X. append (img)

i+=1

X = np . array (X)

XB = X. reshape (426 ,160000)

#load ing the t h r ee

#t ra ined models per zoom l e v e l

MLPB = load (’Models/ Fina l /MLP 200 by 200 47 . 2 7 . j o b l i b ’)

SGDB = load (’Models/ Fina l /SGD 200 by 200 40 . 6 . j o b l i b ’)

SVCB = load (’Models/ Fina l /SVC 200 by 200 53 . 7 2 . j o b l i b ’)

SVCS = load (’Models/ Fina l /SVC 50 by 50 32 . 9 4 . j o b l i b ’)

#pr e d i c t i n g us ing a l l models

MLPB pred = MLPB. p r ed i c t (XB)

SGDB pred = SGDB. p r ed i c t (XB)

SVCB pred = SVCB. p r ed i c t (XB)

SVCS pred = SVCS. p r ed i c t (XS)

#Saving the r e s u l t s

df = l i s t (zip (MLPB pred , SGDB pred , SVCB pred))

175

Frame=pd . DataFrame (df , columns = [’mlpb ’ , ’ sgdb ’ , ’ svcb ’])

Frame . t o c sv (”Outputs\Datase t Resu l t s \BIG PRED RES . csv ” ,

index=False , encoding=’ utf−8−s i g ’)

df = l i s t (zip (SVCS pred))

Frame=pd . DataFrame (df , columns = [’ svcS ’])

Frame . t o c sv (”Outputs\Datase t Resu l t s \SMALL PRED RES. csv ” ,

index=False , encoding=’ utf−8−s i g ’)

Listing B.12: Saving final dataset results module

The f i n a l r e s u l t i s the csv f i l e t h a t

conta ins the web scrap ing r e s u l t s

#along wi th the BRAILS pr ed i c t e d f e a t u r e s

and f i n a l l y the roo f damage p r e d i c t i on

Al l are saved

df = l i s t (zip (addresses , l a t s , lons , s t o r i e s ,

years , foundat ions , occupancy ,

roo f s , occ pred , roo f pred , yb pred ,

n o f l o o r s p r e d))

Frame=pd . DataFrame (df , columns = [”Address ” , ” Lat i tude ” ,

”Longitude ” ,

” S t o r i e s ” , ”Years” ,

”Foundations ” ,

”Occupancy” ,

”Roof type ” ,

”BRAILS Pred ic ted Occupancy” ,

”BRAILS Pred ic ted Roof Type” ,

”BRAILS pred i c t ed year bu i l t ” ,

”BRAILS pred i c t ed s t o r i e s ”])

Frame . t o c sv

(”Outputs\Datase t Resu l t s \Results NO ROOF DAMAGE PRED. csv ” ,

index=False , encoding=’ utf−8−s i g ’)

176

