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Abstract

This dissertation is devoted to the maximal L1-in-time regularity for a class of linear

parabolic systems with variable coefficients. This theory can be applied to investigate the

global-in-time well-posedness and stability issues for density-dependent viscous fluids, even

if the initial fluctuation of the density is large. The results in Chapter 3 and most of the results

in Chapter 4 have been addressed in the author’s papers [56] and [57], respectively.

The main result in Chapter 3 concerns the maximal L1 regularity and asymptotic behavior

for solutions to the inhomogeneous incompressible Navier-Stokes equations under a scaling-

invariant smallness assumption on the initial velocity. We obtain a new global L1-in-time esti-

mate for the Lipschitz seminorm of the velocity field without any smallness assumption on the

fluctuation of the initial density. In the derivation of this estimate, we study the maximal L1

regularity for a linear Stokes system with variable coefficients. The analysis tools are a use of

the semigroup generated by a generalized Stokes operator to characterize some Besov norms

and a new gradient estimate for a class of second-order elliptic equations of divergence form.

In Chapter 4, we generalize the concrete maximal L1 regularity result obtained in Chapter

3 and establish an abstract one for a class of Cauchy problems associated with composite oper-

ators. Then we apply this abstract theory to study maximal L1 regularity for the Lamé system

with rough variable coefficients. To lower the regularity of the coefficients, we work in the Lp

(in space) framework. For this, we use a classical method to establish Gaussian bounds of the

fundamental matrix of a generalized parabolic Lamé system with only bounded and measur-

able coefficients. As applications, we use a Lagrangian approach to study the global-in-time

well-posedness of systems of compressible flows.
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Chapter 1

Introduction

1.1 Background and motivation

This dissertation is motivated by the study of the global well-posedness of the Cauchy problem

for a class of hyperbolic-parabolic coupled systems modeling the motion of fluids. Probably

the most famous example is the system of Navier-Stokes equations (see [43, 44]). In a fluid

flow, the law of conservation of mass can be formulated mathematically using the continuity

equation, given in differential form as

∂tρ+ div(ρu) = 0, in (0,∞)× Rn,

where ρ is the density (mass per unit volume) and u is the flow velocity field. The law of

conservation applied to momentum gives the momentum equation of the form

ρ(∂tu+ u · ∇u)−Au+∇P = 0, in (0,∞)× Rn, (1.1)

where P is a scalar pressure andA is a dissipative operator. The fluid flow can be either incom-

pressible or compressible. For example, the system modeling the motion of incompressible
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flows of mixing fluids with different densities reads



∂tρ+ u · ∇ρ = 0, in (0,∞)× Rn,

ρ(∂tu+ u · ∇u)−∆u+∇P = 0, in (0,∞)× Rn,

divu = 0, in (0,∞)× Rn,

(ρ, u)|t=0 = (ρ0, u0), on Rn.

(1.2)

In the above system, we assume that the viscosity coefficient of the fluid is a constant normal-

ized as 1. In the compressible case, we will consider two different systems. The first one is a

system of pressureless flows, in which the pressure term in (1.1) is absent:


∂tρ+ div(ρu) = 0, in (0,∞)× Rn,

ρ(∂tu+ u · ∇u)−Au = 0, in (0,∞)× Rn,

(ρ, u)|t=0 = (ρ0, u0), on Rn.

(1.3)

Note that (1.3) withA = ∆ can be viewed as a viscous regularization for the model of inviscid

pressureless gases. The second one is the system of compressible Navier-Stokes equations for

an ideal gas (see Section 4.6).

Throughout this dissertation, the initial density is always assumed to be bounded and

bounded from below, namely,

m ≤ ρ0(x) ≤ 1

m
, a.e. x ∈ Rn (1.4)

for some constant m ∈ (0, 1].

Let us review some known results for the existence and uniqueness of solutions to (1.2).

Global weak solutions with finite energy were first obtained by Kazhikhov [40] under the as-

sumption that the initial density ρ0 has a positive infimum. Several improvements can be found

in [29, 43, 53]. The main estimate for weak solutions is the energy inequality

‖√ρu(t)‖2
L2 + 2

ˆ t

0

‖∇u(τ)‖2
L2dτ ≤ ‖

√
ρ0u0‖2

L2 .
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This estimate is far from enough to prove the uniqueness of weak solutions in 3-D. Ladyzhen-

skaya and Solonnikov [41] initiated the studies for unique solvability of (1.2) in a bounded

domain with homogeneous Dirichlet boundary condition for u. In the last two decades, a

large amount of work was devoted to the well-posedness of (1.2) under minimum regularity

assumptions on the data. Firstly, Danchin [16] constructed a unique strong solution to (1.2)

in the critical space (L∞(R3) ∩ Ḃ3/2
2,∞(R3)) × Ḃ1/2

2,1 (R3) in the case when the initial density is

close to a constant. Later, many authors tried to improve Danchin’s result to allow different

Lebesgue indices of the critical spaces, or to remove the smallness assumption on the initial

density (see [1–4, 12, 20, 58]). Secondly, it is interesting to lower the regularity of the density

to allow discontinuity. A well-posedness result with only bounded density would demonstrate

that the motion of a mixture of two incompressible fluids with different densities can be mod-

eled by (1.2). One can see [13, 21, 37, 48] for the work towards this direction. Now one might

ask whether a small initial velocity in some critical space and a discontinuous bounded initial

density can generate a unique global-in-time solution to (1.2). To our knowledge, this question

is not settled. Nevertheless, in his recent paper [59], Zhang established a global existence result

in which ρ0 merely satisfies (1.4) and ‖u0‖Ḃ1/2
2,1

is small, yet the uniqueness is not known unless

the initial velocity is more regular. Finally, we remark that our results will be based on the

assumption (1.4). In case one is interested in the case when vacuum state is allowed, we refer

to a recent paper [23] and the references therein.

The system of the form (1.3) has been studied by several authors. When n = 1 and

A = ∆, Boudin [10] proved the existence of a global smooth solution to (1.3). Perepelitsa

[50] considered (1.3) as a simplified model of compressible isentropic Navier-Stokes equations

and he proved the global existence of a small energy weak solution with the density being a

nonnegative bounded function throughout the half-space R3
+. Recently, Danchin et al. [24]

formally derived the system (1.3), withA being the Laplacian or the Lamé operator, as a model

of some collective behavior phenomena. They also proved the existence and uniqueness of a

global solution with the initial density being only bounded and close to a constant in L∞-norm.

In this dissertation, we are particularly interested in solving (1.2) and (1.3) using the La-

grangian method (see [17,20]). The advantage is that one can convert the hyperbolic-parabolic
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coupled system into a parabolic system. Then the uniqueness and stability issues can be tackled

in a relatively easy way compared to solving the system in Eulerian coordinates. In fact, one

can prove the existence of solutions to the Lagrangian formulation by applying the contraction

mapping theorem based on the maximal L1-in-time regularity for the linear system.

In this framework, the heart of the matter is to get the estimate

ˆ ∞
0

‖∇u(t)‖∞ dt� 1 (1.5)

under a critical smallness condition on the initial velocity u0, because this would imply the

existence of a global-in-time coordinate transformation. Such an estimate is true if the initial

density is close enough to a constant (see [19, 20]). To our knowledge, if the fluctuation of

the density is not small, there is not much evidence in the literature that supports the valid-

ity of (1.5). For example, for (1.2) with n = 3, it was proved in [13, 48] that the quantity
´ T

0
‖∇u(t)‖∞ dt has a polynomial growth in time provided that the initial velocity u0 belongs

to some Sobolev space Hs(R3) with s > 1
2
, and that u0 satisfies a scaling-invariant smallness

condition. However, such growth could possibly be removed from the point of view of equiv-

alent characterizations of norms. To see this, we suppose that u is the solution to the classical

heat equation ∂tu−∆u = 0 with initial value u0. Then the estimate (1.5) dictates the smallest

norm to be used to measure the smallness of the initial data because of the equivalence of norms

ˆ ∞
0

‖∇u(t)‖∞ dt ' ‖u0‖Ḃ−1
∞,1
.

The above equivalent characterization is classical and can be proved, for example, by applying

[9, Lemma 2.4] and Lemma 2.13. In general, the space Ḃ−1
∞,1(Rn) is too rough in order for the

nonlinear system (1.2) (or (1.3)) to be well-posed in it. Then we have to replace it with smaller

spaces Ḃn/p−1
p,1 (Rn), 1 ≤ p <∞, so that there is still hope for (1.5) to be true.

It is worth noting that the scaling invariance of (1.2) and (1.3) also suggests the use of the

Ḃ
n/p−1
p,1 -norms for the velocity. Let us take (1.2) for example. For any λ > 0, it is easy to see
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that (1.2) is invariant under the scaling

(ρ, u, P )(t, x) (ρλ, uλ, Pλ)(t, x) := (ρ, λu, λ2P )(λ2t, λx).

So the smallness condition on u0 makes sense if it is measured by a norm which is invariant un-

der the scaling u0(·)  λu0(λ·). And we do have ‖λu0(λ·)‖
Ḃ
n/p−1
p,1

' ‖u0‖Ḃn/p−1
p,1

. Nowadays,

the spaces Ḃn/q
q,1 (Rn)× Ḃn/p−1

p,1 (Rn) are called critical spaces for (1.2).

Without going into details, we are led to consider the linearized system of the Lagrangian

formulation of (1.2) (or, (1.3)) that reads

ρ(x)∂tu−Au = f. (1.6)

Note that the coefficient ρ is now a time-independent function. In the incompressible case,

the operator A in (3.7) is the so-called Stokes operator (see Chapter 3). But A is just what

it used to be in the compressible case. Now the main task of this dissertation is to derive the

estimate (1.5) for solutions u to (1.6) without requiring the fluctuation of the coefficient ρ(x)

to be small. To achieve this, we shall study the maximal L1-in-time regularity for solutions to

(1.6) in homogeneous type spaces.

In Chapter 2, we recall some necessary preliminaries. We deal with the incompressible

system (1.2) in Chapter 3 and compressible pressureless system (1.3) in Chapter 4. Shortly

after we completed the first draft of this dissertation, we realized that our method could also

be applied to the global well-posedness of the heat-conductive compressible Navier-Stokes

equations. We hence include Section 4.6.

1.2 Notations

Throughout this dissertation, the letter C denotes a harmless positive constant that may change

from line to line, but whose meaning is clear from the context. The notation a . b means

a ≤ Cb for some C, and a ' b means a . b and b . a. For two quantities a, b, we denote

by a ∨ b the bigger quantity and by a ∧ b the smaller one. For p ∈ [1,∞], the conjugate index
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p′ is determined by 1
p

+ 1
p′

= 1. We denote by ‖ · ‖p the Lebesgue Lp-norm. For a matrix

A, Aᵀ denotes its transpose. For a vector field v = v(x), ∇v denotes the matrix (∂xivj) and

Dv = (∇v)ᵀ.

Let (X, ‖·‖) be a Banach space. L (X) denotes the space of all continuous linear operators

on X and ‖ · ‖L (X) denotes the operator norm. For q ∈ [1,∞], we may write ‖ · ‖Lqt (X) for the

norm of the space Lq((0, t);X), and ‖·‖Lq(X) for the norm of Lq(R+;X), where R+ = (0,∞).

We denote operators on Banach spaces by “mathcal” letters (e.g.,A, B, S, etc.). For an operator

A, D(A) and R(A) denote the domain and range of A, respectively.

6



Chapter 2

Preliminaries

2.1 Semigroups and abstract Cauchy problem

Let (X, ‖ · ‖) be a real Banach space. We adopt the concept that a C0 semigroup {T (t)}t≥0 on

X is called a bounded C0 semigroup if ‖T (t)‖L(X) ≤ C <∞ for all t ≥ 0, while it is called a

contraction semigroup if C = 1.

Definition 2.1. {T (t)}t≥0 is called a bounded analytic semigroup on X if it is a bounded C0

semigroup with generator A such that T (t)x ∈ D(A) for all x ∈ X and t > 0, and

sup
t>0
‖tAT (t)x‖ ≤ C‖x‖, ∀x ∈ X. (2.1)

Remark 2.2. In applications, one only needs to show (2.1) for x belonging to a dense subspace

of X since A is closed.

Remark 2.3. In fact, (2.1) is also a real characterization of complex analyticity, see, for exam-

ple, [32, Theorem 4.6], or [6, Theorem 3.7.19].

Let (H, 〈·, ·〉) be a real Hilbert space. A linear operator A : D(A) ⊂ H → H is called

dissipative on H if

〈Ax, x〉 ≤ 0, ∀x ∈ D(A).

We have the following well-known result:
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Theorem 2.4. LetA be a self-adjoint operator on H . ThenA generates an analytic semigroup

of contraction {etA}t≥0 if and only if A is dissipative. Moreover, etA is self-adjoint on H for

every t ≥ 0.

For the complex version of Theorem 2.4, we refer to [6, Example 3.7.5] and [6, Corol-

lary 3.3.9].

In applications, we will first apply Theorem 2.4 to construct a semigroup on L2, and then

extrapolate it to some other function spaces. However, it is usually not easy to identify the

generator of the new semigroup. In this situation, we wish to identify the generator restricted

on a dense subspace of its domain. Recall that a subspace Y of the domain D(A) of a linear

operator A : D(A) ⊂ X → X is called a core for A if Y is dense in D(A) for the graph norm

‖x‖D(A) := ‖x‖ + ‖Ax‖. In other words, Y is a core for A if and only if A is the closure

of A|Y . The next result gives a useful sufficient condition for a subspace to be a core for the

generator.

Lemma 2.5 (see [32, p. 53]). Let A be the infinitesimal generator of a C0 semigroup T (t) on

X . If Y ⊂ D(A) is a dense subspace of X and invariant under T (t) (i.e., T (t)Y ⊂ Y ), then

Y is a core for A.

Next, we recall shortly how to use semigroups to solve abstract Cauchy problems. Suppose

that A is the infinitesimal generator of a C0 semigroup etA on a Banach space (X, ‖ · ‖). We

are concerned with the well-posedness of the inhomogeneous abstract Cauchy problem


u′(t)−Au(t) = f(t), 0 < t ≤ T,

u(0) = x.

(2.2)

We assume that x ∈ X and the inhomogeneous term f only belongs to L1((0, T );X). Then

(2.2) always has a unique mild solution u ∈ C([0, T ];X) given by the formula

u(t) = etAx+

ˆ t

0

e(t−τ)Af(τ) dτ.

8



A continuous function u is called a strong solution if u ∈ W 1,1((0, T );X) ∩ L1((0, T );D(A))

satisfies (2.2) for a.e. t ∈ (0, T ). A strong solution is also a mild solution. Conversely, a mild

solution with suitable regularity becomes a strong one.

Lemma 2.6 (see [49, Theorem 2.9]). Let u ∈ C([0, T ];X) be a mild solution to (2.2). If

u ∈ W 1,1((0, T ), X), or u ∈ L1((0, T ), D(A)), then u is a strong solution.

2.2 Elliptic operators of divergence form

In this section, we recall some known results concerning elliptic equations of divergence form,

heat kernels and Riesz transforms. Let E be the second order elliptic operator of divergence

form formally defined by

E = − div(A∇), (2.3)

where A = A(x) is a real symmetric n× n matrix satisfying

mIn ≤ A(x) ≤ 1

m
In, a.e. x ∈ Rn

for some constant m ∈ (0, 1].

Let Ḣ1(Rn) be the space of all distributions u such that ∇u ∈ L2(Rn), equipped with

the inner product
´
∇u · ∇v dx. We adopt the convention that two functions in Ḣ1(Rn) are

identical if their difference is a constant. For any f ∈ L2(Rn;Rn), as a consequence of the

Lax-Milgram theorem, the elliptic equation

EP = − div f (2.4)

has a unique weak solution P ∈ Ḣ1(Rn) satisfying ‖∇P‖2 ≤ 1
m
‖f‖2.

Let D(E) = {u ∈ H1(Rn)|Eu ∈ L2(Rn)}. Then −E : D(E) ⊂ L2 → L2 is a dissipa-

tive self-adjoint operator that generates an analytic semigroup of contraction {e−tE}t≥0. The

9



maximal accretive square root of E is given by the formula

E1/2u =
2√
π

ˆ ∞
0

e−t
2EEu dt, u ∈ D(E).

The above integral converges normally in L2 since ‖e−t2EEu‖2 ≤ ‖Eu‖2 ∧ t−2‖u‖2. The

domain D(E1/2) of E1/2 coincides with H1(Rn) and it holds that

m1/2‖∇u‖2 ≤ ‖E1/2u‖2 ≤ m−1/2‖∇u‖2, ∀u ∈ H1(Rn).

Indeed, E1/2 extends to a continuous operator from Ḣ1(Rn) to L2(Rn) with a continuous in-

verse, denoted by E−1/2 for notational simplicity. Let R = ∇E−1/2 be the Riesz transform

associated with E . Then R is bounded from L2(Rn) to L2(Rn;Rn). Denote by R∗ the adjoint

of R. Now for any f ∈ L2(Rn;Rn), one can write the gradient of the solution to (3.19) as

∇P = RR∗f . We refer the reader to the monograph [8] for more details in this paragraph1.

The Lp theory of the square root problem for E is based on the famous Aronson-Nash

estimates for the kernel of e−tE .

Lemma 2.7 (see, e.g., [7]). The semigroup e−tE acting on L2 has a kernel Kt(x, y) satisfying

the Gaussian property. Precisely, there exist constants µ ∈ (0, 1] and C > 0 depending only

on m and n such that for all t > 0 and x, y ∈ Rn,

|Kt(x, y)| ≤ Ct−n/2 exp

{
−|x− y|

2

Ct

}
,

and if in addition 2|h| ≤
√
t+ |x− y|,

|Kt(x+ h, y)−Kt(x, y)|+ |Kt(x, y + h)−Kt(x, y)|

≤ Ct−n/2
(

|h|√
t+ |x− y|

)µ
exp

{
−|x− y|

2

Ct

}
.

1The results stated here are much less general than those in [8], where the authors dealt with complex elliptic
operators.
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Thanks to this property, e−tE extrapolates to a bounded analytic semigroup on Lp(Rn) for

every p ∈ (1,∞) (see [47] and the references therein). We denote this semigroup by e−tEp and

its generator by −Ep. Then the square root E1/2
p of Ep on Lp(Rn) is also well-defined. The

following result can be found in [8, pp. 131-132].

Lemma 2.8. E1/2 extends to a continuous operator from Ẇ 1,p(Rn) to Lp(Rn), 1 < p < ∞,

which has a continuous inverse for 1 < p < 2 + ε for some ε > 0. Moreover, the extension of

E1/2 on W 1,p(Rn) coincides with E1/2
p for 1 < p < 2 + ε.

From now on, we do not distinguish between an operator and its continuous extension,

and drop the p’s for all operators associated with Ep. The above lemma implies that the Riesz

transform R is bounded from Lp(Rn) to Lp(Rn;Rn) for 1 < p < 2 + ε, and its adjoint R∗

is bounded from Lp
′
(Rn;Rn) to Lp′(Rn). Moreover, all the bounds (i.e., operator norms) only

depend on m,n and p.

2.3 Homogeneous Besov spaces

We collect some homogeneous Besov spaces relevant preliminaries. While there is a vast

amount of literature on this topic, we will mainly refer to the book [9] because it focuses

on applications of Fourier analysis to PDEs.

2.3.1 Definition and basic properties

Let χ, ϕ be two smooth radial functions valued in the interval [0,1], the support of χ be the

closed ball B4/3, and the support of ϕ be the washer B8/3 \B3/4. Moreover,
∑

j∈Z ϕ(2−jξ) = 1

for ξ ∈ Rn\{0}, and χ(ξ)+
∑

j≥0 ϕ(2−jξ) = 1 for ξ ∈ Rn. Denote h = F−1ϕ and h̃ = F−1χ,

where F−1 is the inverse of the Fourier transform F . Then we define the homogeneous dyadic

blocks ∆̇j and the low-frequency cutoff operators Ṡj , respectively, by

∆̇ju = 23j

ˆ
Rn
h(2jy)u(x− y)dy, and Ṡju = 23j

ˆ
Rn
h̃(2jy)u(x− y)dy.

The frequency localization of the blocks ∆̇j and Ṡj leads to some fine properties. First,

one has orthogonality due to the interaction of frequencies supported in disjoint regions. More

11



precisely, for two tempered distributions u, v ∈ S
′
(Rn), we have

∆̇k∆̇ju =0 if |k − j| ≥ 2,

∆̇j(Ṡk−1u∆̇kv) =0 if |k − j| ≥ 5,

∆̇j(∆̇ku
˜̇∆kv) =0 if k ≤ j − 4, with ˜̇∆kv :=

∑
|k′−k|≤1

∆̇k′v.

Second, we have the Poincare type inequalities (also called Bernstein’s inequalities):

Lemma 2.9 (see [9, Lemmas 2.1-2.2]). Let r and R be two constants satisfying 0 < r < R <

∞. There exists a positive constant C = C(r, R) such that for any k ∈ N, any λ > 0, any

smooth homogeneous function σ of degree d ∈ N, any 1 ≤ p ≤ q ≤ ∞, and any function

u ∈ Lp(Rn),

supp û ⊂ λBR =⇒‖Dku‖q :=
∑
|α|=k

‖∂αu‖q ≤ Ck+1λk+n( 1
p
− 1
q

)‖u‖p,

supp û ⊂ λ(BR \Br) =⇒C−k−1λk‖u‖p ≤ ‖Dku‖p ≤ Ck+1λk‖u‖p,

supp û ⊂ λ(BR \Br) =⇒‖σ(D)u‖q ≤ Cσ,dλ
m+n( 1

p
− 1
q

)‖u‖p,

where û = Fu and σ(D)u is defined as F−1(σû).

In most literature on the theory of function spaces, the homogeneous Besov spaces are

defined in the ambient space of tempered distributions modulo polynomials (see, e.g., [55]).

However, we wish to avoid this type of spaces when solving nonlinear PDEs. In this disserta-

tion, we adopt the definitions of homogeneous spaces in [9, Section 2.3]. Let S
′

h(Rn) denote

the space of all tempered distributions u ∈ S
′
(Rn) that satisfy

u =
∑
j∈Z

∆̇ju in S
′
.

Note that S
′

h is a large enough proper subspace of S
′ . For example, if b ∈ Lp with p ∈ [1,∞),

then b ∈ S
′

h; and if b ∈ L∞, then∇b ∈ S
′

h.

Let us now recall the definition of homogeneous Besov spaces.

12



Definition 2.10. Let s ∈ R and 1 ≤ p, r ≤ ∞. The homogeneous Besov space Ḃs
p,r(Rn)

consists of all the distributions u in S
′

h(Rn) such that

‖u‖Ḃsp,r :=
∥∥∥(2js‖∆̇ju‖p

)
j∈Z

∥∥∥
lr
<∞.

Remark 2.11. As an immediate consequence of the definition, we have that u ∈ Ḃs
p,r(Rn) if

and only if there exists a nonnegative sequence {cj,r}j∈Z such that ‖cj,r‖lr . 1 and ‖∆̇ju‖p .

cj,r2
−js‖u‖Ḃsp,r for every j ∈ Z.

Let us collect some useful properties and inequalities for homogeneous Besov spaces.

Lemma 2.12 (see [9, Chapter 2]). (i) For 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ r1 ≤ r2 ≤ ∞ and

s ∈ R, Ḃs
p1,r1

(Rn) is continuously embedded in Ḃs−n(1/p1−1/p2)
p2,r2 (Rn). Ḃ0

∞,1(Rn) is continuously

embedded in C0(Rn), the space of continuous functions that tend to zero at infinity.

(ii) Suppose that (s1, s2, p, p1, p2, r) ∈ R2 × [1,∞]4, θ ∈ (0, 1) and 1
p

= θ
p1

+ 1−θ
p2

. Then

for any u ∈ S
′

h(Rn), we have

‖u‖
Ḃ
θs1+(1−θ)s2
p,r

≤ ‖u‖θ
Ḃ
s1
p1,r
‖u‖1−θ

Ḃ
s2
p2,r
.

(iii) If (p, r) ∈ [1,∞)2, then the space S0(Rn) of functions in S (Rn) whose Fourier

transforms are supported away from 0 is dense in Ḃs
p,r(Rn).

(iv) Ḃs
p,r(Rn) is a Banach space if (s, p, r) satisfies

s <
n

p
, or s =

n

p
and r = 1. (2.5)

(v) Suppose that (s, p, r) ∈ (0,∞) × [1,∞]2 satisfies (2.5). Assume that f is a smooth

function on R which vanishes at 0. For any real-valued function u ∈ L∞(Rn) ∩ Ḃs
p,r(Rn), the

composite function f ◦ u belongs to the same space, and there exists a constant C depending

on f ′ and ‖u‖∞ such that

‖f ◦ u‖Ḃsp,r ≤ C‖u‖Ḃsp,r .
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Next, we recall Bony’s paraproduct decomposition which can be used to define a product

of two Besov functions. For two Besov functions u and v, we can formally write

uv = Ṫuv + Ṫvu+ Ṙ(u, v),

where

Ṫuv :=
∑
j∈Z

Ṡj−1u∆̇jv and Ṙ(u, v) :=
∑
j∈Z

∆̇ju
˜̇∆jv.

Sometimes it is sufficient to just estimate Ṫ ′vu := Ṫvu+ Ṙ(u, v). We refer the reader to [9, sec-

tion 2.6] for the convergence of the above series and the continuity of the paraproduct operators

on homogeneous Besov spaces. In this dissertation, we will frequently use the following prod-

uct laws:

‖uv‖
Ḃ
n/p
p,1
. ‖u‖

Ḃ
n/p
p,1
‖v‖

Ḃ
n/p
p,1
, if 1 ≤ p <∞,

‖uv‖
Ḃ
n/p−1
p,1

. ‖u‖
Ḃ
n/q
q,1
‖v‖

Ḃ
n/p−1
p,1

, if
1

p
− 1

q
≤ 1

n
<

1

p
+

1

q
,

and

‖uv‖
Ḃ
n/p−2
p,1

. ‖u‖
Ḃ
n/p
p,1
‖v‖

Ḃ
n/p−2
p,1

, if 1 ≤ p < n and n ≥ 3.

2.3.2 Characterizations of homogeneous Besov norms

Now we recall several equivalent characterizations of homogeneous Besov norms. The next

lemma is well-known and can be implied by [9, Theorem 2.34].

Lemma 2.13. Suppose that s ∈ R and (p, q) ∈ [1,∞]2. If k > s/2 and k ≥ 0, we have

‖f‖Ḃs,∆p,q :=
∥∥t−s/2‖(t∆)ket∆f‖p

∥∥
Lq(R+; dt

t
)
' ‖f‖Ḃsp,q , ∀f ∈ S

′

h.
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A similar result holds if we replace ∆ by the Lamé operator. Here the Lamé operator L is

defined by

L := µ∆ + (λ+ µ)∇ div (2.6)

with

µ > 0, and ν := λ+ 2µ > 0. (2.7)

Let us introduce the Hodge operator Q = −∇(−∆)−1 div and let P = I − Q. The Lamé

operator and the Laplacian can be expressed by each other, namely,

L = (µP + νQ)∆ = ∆(µP + νQ) (2.8)

and

∆ =

(
1

µ
P +

1

ν
Q
)
L = L

(
1

µ
P +

1

ν
Q
)
. (2.9)

So, for every p ∈ (1,∞) and k ∈ N, we have

‖Lku‖p ' ‖∆ku‖p, u ∈ W 2k,p(Rn;Rn). (2.10)

Lemma 2.14. Suppose that s ∈ R, p ∈ (1,∞) and q ∈ [1,∞]. If k > s/2 and k ≥ 0, we have

‖u‖Ḃs,Lp,q :=
∥∥t−s/2‖(tL)ketLu‖p

∥∥
Lq(R+; dt

t
)
' ‖u‖Ḃsp,q , ∀u ∈ L

p(Rn;Rn).

Proof. The lemma is a consequence of Lemma 2.13 along with the identities

etL = eµt∆P + eνt∆Q

15



and

et∆ = Peµ−1tL +Qeν−1tL.

Next, we give two more equivalent characterizations of homogeneous Besov norms, one

via the semigroup generated by the elliptic operator E defined by (2.3), the other via ball means

of differences. Let us define

‖f‖Ḃs,−Ep,q
:=
∥∥t−s/2‖(tE)ke−tEf‖p

∥∥
Lq(R+; dt

t )

with k > s
2
, and

‖f‖Λ̇sp,q
:=

∥∥∥∥∥
(ˆ

Rn

 
B(x,r)

|f(x)− f(y)|p

rsp
dy dx

) 1
p

∥∥∥∥∥
Lq(R+; dr

r
)

,

where
ffl
B(x,r)

denotes the integral mean over the ball B(x, r) centered at x with radius r.

Lemma 2.15 (see [11, 36]). Let µ be the Hölder index in Lemma 2.7. Suppose that s ∈ (0, µ),

p ∈ [1,∞) and q ∈ [1,∞]. If k > s/2, we have

‖f‖Ḃs,−Ep,q
' ‖f‖Λ̇sp,q

, ∀f ∈ Lp(Rn).

Proof. In [36], only the characterization of inhomogeneous norms was given. But the proof

there can be easily adjusted to give the equivalence between homogeneous norms.

Lemma 2.16. Suppose that s ∈ (0, 1), p ∈ [1,∞) and q ∈ [1,∞]. It holds that

‖f‖Λ̇sp,q
' ‖f‖Ḃsp,q , ∀f ∈ L

p(Rn).

Proof. Note that the Hölder index in Lemma 2.7 becomes µ = 1 if E is replaced by −∆. By

Lemma 2.15, we have ‖f‖Λ̇sp,q
' ‖f‖Ḃs,∆p,q for any s ∈ (0, 1). This together with Lemma 2.13

implies Lemma 2.16.
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2.4 Coordinate transformations

2.4.1 From Eulerian to Lagrangian coordinates

We start with the well-posedness issues of the ODE


d

dt
X(t, y) = u(t,X(t, y)), t > 0

X(0, y) = y

(2.11)

and the conservative continuity equation


∂tρ+ div(ρu) = 0, in (0,∞)× Rn,

ρ|t=0 = ρ0, on Rn

(2.12)

within the Cauchy-Lipschitz framework. Let us temporarily assume that u is C1 vector field,

namely,

u ∈ L1([0, T ];C1
b (Rn;Rn)).

The following result is well-known.

Theorem 2.17. For any y ∈ Rn, (2.11) has a unique solutionX(·, y) = Xu(·, y) ∈ W 1,1([0, T ]).

For any t ∈ [0, T ], X(t, ·) is a C1 diffeomorphism over Rn satisfying

‖∇X(t)‖∞ ∨ ‖∇X−1(t)‖∞ ≤ exp
(
‖∇u‖L1

t (L
∞)

)
,

whereX−1(t, ·) is the inverse ofX(t, ·). Let J(t, y) = JX(t, y) be the determinant ofDX(t, y).

Then J ∈ W 1,1([0, T ];Cb) and satisfies

d

dt
J(t, y) = (divu)(t,X(t, y))J(t, y), J(0, y) = 1.
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Consequently,

exp
(
−‖ divu‖L1

t (L
∞)

)
≤ J(t, y) ≤ exp

(
‖ divu‖L1

t (L
∞)

)
.

In particular, if divu = 0, then JX(t, y) is identical to 1.

Now we turn to the well-posedness of the continuity equation (2.12).

Definition 2.18. Let ρ0 ∈ L∞(Rn). A bounded function ρ is called a weak solution to (2.12) if

for any test function ϕ ∈ C∞c ([0, T )× Rn),

ˆ T

0

ˆ
Rn
ρ(∂tϕ+ u · ∇xϕ) dx dt+

ˆ
Rn
ρ0ϕ(0, x) dx = 0,

and ρ(t)
∗
⇀ ρ0 in L∞(Rn) as t→ 0+.

Theorem 2.19 (see, e.g., [5, Proposition 2.1]). For any ρ0 ∈ L∞(Rn), (2.12) has a unique

weak solution that is given by the formula

ρ(t, x) =
ρ0(X−1(t, x))

JX(t,X−1(t, x))
= JX−1(t, x)ρ0(X−1(t, x)).

In particular, if divu = 0, we have ρ(t, x) = ρ0(X−1(t, x)).

Next, we assume more regularity on u:

u ∈ C([0, T ]; Ḃ
n/p−1
p,1 (Rn)) ∩ L1([0, T ]; Ḃ

n/p+1
p,1 (Rn)) (2.13)

for some p ∈ [1,∞). Then the corresponding trajectory Xu is also more regular. To see this,

we need the following result which guarantees that Besov regularity of a function is preserved

under changes of variables. To state the assumption of the lemma, let us recall that a function

f is called a multiplier for Ḃs
p,q(Rn) if f defines a continuous linear operator on Ḃs

p,q(Rn) by

pointwise multiplication. If f is a multiplier for Ḃs
p,q(Rn), we write f ∈ M (Ḃs

p,q(Rn)) and
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define the multiplier norm by

‖f‖M (Ḃsp,q(Rn)) := sup
‖φ‖Ḃsp,q=1

‖fφ‖Ḃsp,q .

Lemma 2.20 (see [22, Lemma 2.1.1]). LetX be a C1 diffeomorphism over Rn. Let p ∈ [1,∞),

q ∈ [1,∞] and s ∈ (−n/p′, n/p). Then the linear map f 7→ f ◦X is continuous on Ḃs
p,q(Rn)

if one of the following conditions holds

(i) s ∈ (0, 1),

(ii) s ∈ (−1, 0) and JX−1 ∈M (Ḃ−sp′,q′(Rn)).

Remark 2.21. The above lemma extends to s = 0 by interpolation, and to higher order regu-

larities if we make stronger assumptions on X (again, see [22]).

By the above lemma and product laws in Besov spaces, one can prove the following

Lemma 2.22. Let u satisfy (2.13) and X = Xu solve (2.11). Define A = Au = (DXu)
−1,

J = JX = detDX , and A = Au = adjDX (the adjugate of DX , i.e., A = JA). Then

DX − In, J − In, A− In,A − In ∈ C([0, T ]; Ḃ
n/p
p,1 (Rn)).

Now for any scalar function φ = φ(x) and any vector field v = v(x), it is easy to see that

(∇φ) ◦X = Aᵀ∇(φ ◦X), (2.14)

and

(div v) ◦X = Tr[AD(v ◦X)], (2.15)

where TrA denotes the trace of A. On the other hand, using an integration by part argument as

in the appendix of [20], we also have

(div v) ◦X = J−1 div(A (v ◦X)). (2.16)
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This along with (2.15) gives the following identity

Tr[AD(v ◦X)] = div(A (v ◦X)). (2.17)

Applying (2.14) and (2.15), we see that

(∇ div v) ◦X = Aᵀ∇Tr(AD(v ◦X)). (2.18)

By writing ∆ = div∇, we get from (2.14) and (2.16) that

(∆v) ◦X = J−1 div(A Aᵀ∇(v ◦X)). (2.19)

Note that all the above equations hold even if u is not divergence free. But if divu = 0, we

have J ≡ 1, and thus, A = A .

2.4.2 From Lagrangian to Eulerian coordinates

Throughout, we denote variables in Lagrangian coordinates by bold letters (e.g., ρ, u, P, etc.).

Given a velocity field v in Lagrangian coordinates, we define

Xv(t, y) = y +

ˆ t

0

v(τ, y) dτ.

A smallness condition will be needed to recover the Eulerian velocity field v.

Lemma 2.23 (see also [20]). Suppose that v ∈ L1([0, T ];C1
b (Rn;Rn)) satisfies

‖∇v‖L1
T (L∞) ≤

1

2
. (2.20)
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Then Xv(t, ·) is a C1-diffeomorphism over Rn for every t ∈ [0, T ]. Denote by X−1
v (t, ·) the

inverse of Xv(t, ·). It holds that

‖DXv − In‖L∞T (L∞) ≤‖Dv‖L1
T (L∞), (2.21)

‖DX−1
v − In‖L∞T (L∞) ≤2‖Dv‖L1

T (L∞). (2.22)

Proof. The first inequality (2.21) is easily seen. Let Yv(t, x) be the solution of the integral

equation Yv(t, x) = x −
´ t

0
v(τ, Yv(t, x)) dτ . Note that this equation is solvable under the

assumption (2.20). Then it is not difficult to see that Yv(t, ·) and Xv(t, ·) are inverses to each

other. One can readily get ‖DYv‖L∞T (L∞) ≤ 2, which further implies (2.22).

Next, we assume additionally that v satisfies

v ∈ C([0, T ]; Ḃ
n/p−1
p,1 (Rn)) ∩ L1((0, T ); Ḃ

n/p+1
p,1 (Rn)) (2.23)

and

‖∇v‖
L1
T (Ḃ

n/p
p,1 )
≤ c0, (2.24)

so that (2.20) is fulfilled. The number c0 may be chosen even smaller later. Define Av =

(DXv)−1, JXv = detDXv, and Av = adjDXv. Then we have the following:

Lemma 2.24 (see [20]). There exists a constant C > 0 such that

‖DXv − In‖L∞T (Ḃ
n/p
p,1 )

+ ‖DX−1
v − In‖L∞T (Ḃ

n/p
p,1 )
≤C‖Dv‖

L1
T (Ḃ

n/p
p,1 )

,

‖∂tX−1
v ‖L2

T (Ḃ
n/p
p,1 )
≤C‖v‖

L2
T (Ḃ

n/p
p,1 )

.

We conclude this section with some estimates that will be used to prove the existence and

stability of solutions to the Lagrangian formulation of (1.2) or (1.3).
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Lemma 2.25 (see [17, 20]). Let v,v1 and v2 be vector fields satisfying (2.23) and (2.24). Let

δv = v1 − v2. Then we have

‖Av − In‖L∞T (Ḃ
n/p
p,1 )

+ ‖Av − In‖L∞T (Ḃ
n/p
p,1 )
.‖∇v‖

L1
T (Ḃ

n/p
p,1 )

, (2.25)

‖J±1
v − 1‖

L∞T (Ḃ
n/p
p,1 )
.‖∇v‖

L1
T (Ḃ

n/p
p,1 )

, (2.26)

‖Av1 − Av2‖L∞T (Ḃ
n/p
p,1 )

+ ‖Av1 −Av2‖L∞T (Ḃ
n/p
p,1 )
.‖∇δv‖

L1
T (Ḃ

n/p
p,1 )

, (2.27)

‖J±1
v1
− J±1

v2
‖
L∞T (Ḃ

n/p
p,1 )
.‖∇δv‖

L1
T (Ḃ

n/p
p,1 )

, (2.28)

‖∂tAv(t)‖
Ḃ
n/p
p,1
.‖∇v(t)‖

Ḃ
n/p
p,1
, (2.29)

‖∂tAv(t)‖
Ḃ
n/p−1
p,1

.‖v(t)‖
Ḃ
n/p
p,1
, if p < 2n, (2.30)

‖∂t(Av1 −Av2)‖
L1
t (Ḃ

n/p
p,1 )
.‖∇δv‖

L1
t (Ḃ

n/p
p,1 )

, (2.31)

‖∂t(Av1 −Av2)‖
L2
t (Ḃ

n/p−1
p,1 )

.‖δv‖
L2
t (Ḃ

n/p
p,1 )

, if p < 2n, . (2.32)

22



Chapter 3

Incompressible Viscous Fluids

In this chapter, we mainly investigate the global existence and stability for solutions to (1.2) in

three dimension.

3.1 Main results and strategy of the proof

Our first main theorem concerns the global existence and maximal L1-in-time regularity esti-

mates for solutions to (1.2) provided the initial velocity is small in the Besov space Ḃ1/2
2,1 (R3).

But we do not require the initial density to stay close to an equilibrium. First, let us be clear

about what it means by a solution to (1.2). Let PḂ1/2
2,1 (R3) be the space that consists of all

divergence free vector fields whose components belong to Ḃ1/2
2,1 (R3).

Definition 3.1. Let T ∈ (0,∞]. Suppose that ρ0 − 1 ∈ Ḃ3/2
2,1 (R3) and u0 ∈ PḂ1/2

2,1 (R3). We

say that (ρ, u,∇P ) is a strong solution to (1.2) if


ρ− 1 ∈ C([0, T ); Ḃ

3/2
2,1 (R3)), ∂tρ ∈ L2

loc([0, T ); Ḃ
1/2
2,1 (R3)),

u ∈ C([0, T );PḂ1/2
2,1 (R3)),

(∂tu,∆u,∇P ) ∈
(
L1
loc([0, T ); Ḃ

1/2
2,1 (R3))

)3

,

and (ρ, u,∇P ) satisfies (1.2) for a.e. t ∈ (0, T ).

Theorem 3.2. Assume that the initial density ρ0 satisfies (1.4), ρ0 − 1 ∈ Ḃ
3/2
2,1 (R3), and the

initial velocity u0 ∈ PḂ1/2
2,1 (R3). Then there exists some T > 0 such that (1.2) has a unique
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local-in-time solution (ρ, u,∇P ) with ρ verifying

m ≤ ρ(t, x) ≤ 1

m
, ∀t ≥ 0, a.e. x ∈ R3.

Moreover, there exists a positive constant ε0 depending on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

such that

if u0 satisfies

‖u0‖Ḃ1/2
2,1
≤ ε0, (3.1)

then the above solution exists globally in time and verifies

‖u‖
L∞(Ḃ

1/2
2,1 )

+ ‖∆u, ∂tu,∇P‖L1(Ḃ
1/2
2,1 )
≤ C0‖u0‖Ḃ1/2

2,1
, (3.2)

and

‖ρ− 1‖
L∞(Ḃ

3/2
2,1 )
≤ C1‖ρ0 − 1‖

Ḃ
3/2
2,1
, (3.3)

where C0 is a constant depending on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

, and C1 is an absolute constant.

Remark 3.3. The estimate of the L1(R+; Ḃ
1/2
2,1 ) norm in (3.2) is a maximal regularity type

estimate. To our knowledge, this is the first such result concerning maximal L1 regularity for

density-dependent viscous fluids without any smallness assumption on the fluctuation of the

initial density.

Remark 3.4. The regularity assumption on the initial density can be weakened to allow a

slight discontinuity. But to simplify the exposition and avoid unpleasant technicalities, we

do not pursue the optimal regularity assumption on ρ0. Nevertheless, we do not know if our

method can be improved to give maximal L1 regularity estimates for weak solutions to (1.2)

with merely measurable (or, piecewise constant) initial densities.

Remark 3.5. The estimate ‖u‖
L∞(Ḃ

1/2
2,1 )
≤ C‖u0‖Ḃ1/2

2,1
for weak solutions to (1.2) has been

recently obtained by Zhang in [59], in which he also obtained some globalL2-in-time estimates.
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The initial density in [59] is merely bounded and bounded from zero. But the uniqueness

of weak solutions in critical spaces is not known, unless the initial velocity field has more

regularity so that one can prove a local L1-in-time estimate for the Lipschitz seminorm of the

velocity field (see also [13,48]). However, the energy methods used in [13,48, 59] are unlikely

to give (3.2), even if the data is smooth.

As an application of (3.2), we prove a second result concerning the long time asymptotics

for the globally-defined velocity constructed in Theorem 3.2.

Theorem 3.6. Let (ρ0, u0) be the initial data in Theorem 3.2 that generates a global solution

(ρ, u,∇P ) to (1.2). Then it holds that

lim
t→∞
‖u(t)‖

Ḃ
1/2
2,1

= 0. (3.4)

The proof of Theorem 3.6 relies on Theorem 3.2, so let us only elaborate the strategy for

the proof of Theorem 3.2.

Step 1. Reformulating (1.2) in Lagrangian coordinates. The Lagrangian coordinate

is a natural coordinate system at fluid motion, in which the observer follows an individual

fluid parcel as it moves through space and time. It can be used to convert a free boundary

problem into an equivalent problem in a fixed domain (see, e.g., [54]); or to convert a coupled

hyperbolic-parabolic system into a merely parabolic system (see, e.g., [17, 20, 21]).

Let us introduce new unknowns

(ρ,u,P)(t, y) = (ρ, u, P )
(
t,X(t, y)

)
.

In view of the continuity equation in (1.2), we have ρ ≡ ρ0. Using eqs. (2.14) to (2.17)

and (2.19) and the chain rule, one can formally convert the system (1.2) into its Lagrangian
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formulation that reads 
ρ0∂tu− div(AuA

ᵀ
u∇u) + A ᵀ

u∇P = 0,

div(Auu) = Tr(AuDu) = 0,

u|t=0 = u0.

(3.5)

In this new system, we associate Au with the new velocity u so that the system is closed (i.e.,

determined). Precisely, we denote

Au = adjDXu, with Xu(t, y) = y +

ˆ t

0

u(τ, y) dτ. (3.6)

Remark 3.7. One can writeAu := (DXu(t, y))−1 in place of Au in the “momentum” equation

of (3.5). But as in the work of Solonnikov [54], one should use Au in the second equation. The

reason is that, when linearizing (3.5) to seek existence, we will need the fact that (2.17) is an

identity, whether u is divergence free or not. Of course, once the existence issue is settled, we

can use either Au or Au in (3.5). More precisely, the linearized system of (3.5) reads


ρ0∂tu−∆u +∇P = div((AvA

ᵀ
v − I)∇v) + (I −A ᵀ

v )∇Q,

divu = div((I −Av)v) = Tr((I −Av)Dv),

u|t=0 = u0.

(3.7)

To obtain a priori estimates for this system, we need to write divu in two different ways. To

conclude, we will solve (3.7) without assuming detDXv ≡ 1.

Definition 3.8. Let ρ0 − 1 ∈ Ḃ3/2
2,1 (R3) and u0 ∈ PḂ1/2

2,1 (R3). We say that (u,∇P) is a strong

solution to (3.5) if for some T ∈ (0,∞],


u ∈ C([0, T ); Ḃ

1/2
2,1 (R3)),

Au − I ∈ C([0, T ); Ḃ
3/2
2,1 (R3)),

(∂tu,∆u,∇P) ∈
(
L1
loc([0, T ); Ḃ

1/2
2,1 (R3))

)3

,
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and (u,∇P) satisfies (3.5) for a.e. t ∈ (0, T ).

The justification of equivalence between Eulerian and Lagrangian can be found in [17,20],

or one can show it using the preliminaries collected in Section 2.4. Let us now state a well-

posedness result for (3.5).

Theorem 3.9. Assume that the initial density ρ0 satisfies (1.4), ρ0 − 1 ∈ Ḃ
3/2
2,1 (R3), and the

initial velocity u0 ∈ PḂ1/2
2,1 (R3). Then there exists some T > 0 such that (3.5) has a unique

local solution (u,∇P) with u verifying

‖∇u‖
L1
T (Ḃ

3/2
2,1 )
≤ c0 (3.8)

for some positive constant c0.

Moreover, there exists another constant ε0 depending on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

so that if u0

satisfies

‖u0‖Ḃ1/2
2,1
≤ ε0,

the local solution becomes globally in time and verifies

‖u‖
L∞(R+;Ḃ

1/2
2,1 )

+ ‖∆u, ∂tu,∇P‖L1(R+;Ḃ
1/2
2,1 )
≤ C0‖u0‖Ḃ1/2

2,1

for some constant C0 depending on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

.

Step 2. Maximal regularity for Stokes system. The heart of the present paper is the

well-posedness issue for the linearized system (3.7). To this end, we will mainly focus on the

maximal L1 regularity for the following linear Stokes-like system


ρ(x)∂tu−∆u+∇P = f, (t, x) ∈ R+ × R3,

divu = divR = g, (t, x) ∈ R+ × R3,

u(0, x) = u0(x), x ∈ R3.

(3.9)
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Here the coefficient ρ is a time-independent function that satisfies (1.4) and no other assump-

tion is needed temporarily. The system is supplemented with the compatibility condition

divu0(x) = divR(0, x). For simplicity, we will take R(0, ·) = 0, since this is the case in

applications.

We are going to construct solutions to (3.9) using the theory of semigroups and abstract

Cauchy problem. In doing so, let us introduce a new variable

v := u−QR = u+∇(−∆)−1g,

where Q = −∇(−∆)−1 div is the Hodge operator. Then the system (3.9) can be equivalently

reformulated as 
ρ∂tv −∆v +∇(P − g) = f − ρQ∂tR,

div v = 0,

v(0, x) = u0(x).

(3.10)

We shall obtain maximal L1 regularity estimates for the above system. Compared with the

classical Stokes system, this is a challenging problem because the velocity and the pressure are

strongly coupled in the presence of the density. Let us now explain how to achieve our goal.

Denote b = ρ−1 and let Eb = − div(b∇). Applying div b to the first equation of (3.10) and using

the second equation, we see that

Eb(P − g) = − div[b(∆v + f − ρQ∂tR)].

Next, we introduce the Hodge operator

Qb := −∇E−1
b div b (3.11)
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associated with Eb, and let

Pb = I −Qb. (3.12)

Then we can write

∇(P − g) = Qb(∆v + f − ρQ∂tR). (3.13)

Plugging (3.13) in (3.10), we hence introduce a generalized Stokes operator

S := bPb∆, (3.14)

so (3.10) can be further reformulated as an abstract Cauchy problem


∂tv − Sv = f̃ := bPb(f − ρQ∂tR),

v(0, x) = u0(x).

(3.15)

We will show that the Stokes operator S generates a semigroup etS on

PL2 := {u ∈ L2(R3,R3)| divu = 0}.

So by Duhamel’s principle, we can formally write the solution v to (3.15) as

v(t) = etSu0 +

ˆ t

0

e(t−τ)S f̃(τ) dτ. (3.16)

To obtain maximal regularity estimates for v, we will characterize some Besov norms for di-

vergence free vector fields via the semigroup etS . In fact, we are able to prove the following:

Theorem 3.10. Assume that b satisfies (1.4). For any s ∈ (0, 2), any q ∈ [1,∞], and any

u0 ∈ PH2 := {u ∈ H2(R3,R3)| divu = 0},
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we have

‖u0‖Ḃs2,q '
∥∥t−s/2‖tSetSu0‖2

∥∥
Lq(R+,

dt
t

)
'
∥∥t−s/2‖t∆etSu0‖2

∥∥
Lq(R+,

dt
t

)
.

Remark 3.11. Note that we do not need any regularity for the coefficient b at this point.

Applying Theorem 3.10 (with q = 1) to (3.16) gives us an a priori maximal regularity

estimate for v:

‖v‖L∞T (Ḃs2,1) + ‖∂tv,Sv‖L1
T (Ḃs2,1) . ‖u0‖Ḃs2,1 + ‖f̃‖L1

T (Ḃs2,1). (3.17)

This gives good estimates for (u,∇P ) except for ‖u‖L∞T (Ḃs2,1). If we apply (3.17) to bound

‖u‖L∞T (Ḃs2,1) directly, we need to use ‖QR‖L∞T (Ḃs2,1), which would cause trouble when proving

local existence of large solutions to (3.5). To overcome this difficulty, we view ∇P in the first

equation of (3.9) as a source term, and write

∂tu− b∆u = b(f −∇P ). (3.18)

Then the maximal L1 regularity estimate for u can be obtained by equivalent characterizations

of Besov norms via the semigroup etb∆.

Step 3. Elliptic estimates. It remains to bound the inhomogeneous term f̃ in (3.15). For

this, we need to study the continuity of the operator bPb on Besov spaces. In other words, we

need to study the gradient estimates for solutions to the divergence form elliptic equation

−EbP = div f. (3.19)

But this is again a difficult problem for it is well-known that ∇E−1
b div is not of Calderón-

Zygmund type. In general, ∇E−1
b div is not bounded on Lp for p not close enough to 2, even

if the coefficient b is smooth (see [39]). In fact, in order to prove continuity of ∇E−1
b div on

homogeneous function spaces, one should treat it as a zeroth-order operator. This suggests that
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b should be in some function spaces that have the same scaling as L∞. So we once again need

b to be in some “critical” spaces.

Our strategy is to use an iteration scheme to gain elliptic regularity. In the initial iteration,

we prove an inequality of the form

‖∇E−1
b div f‖Ḃs0p0,r ≤ C‖f‖Ḃsp,r ,

in which a loss of regularity is allowed, but the scalings of both Besov spaces are the same,

meaning that s0 − 3
p0

= s− 3
p

with s0 < s. The proof relies on Lemma 2.15, Lemma 2.16 and

the boundedness of the Riesz transform ∇E−1/2
b on Lp, 1 < p ≤ 2 (see Section 2.2). In this

step, we only require b to satisfy (1.4). But if b has more regularity (in critical spaces), the loss

of regularity can be recovered via an iteration scheme. We are able to eventually prove that

∇E−1
b div is bounded on some homogeneous Besov spaces including Ḃ1/2

2,1 (R3). Such a result

is nontrivial for Ḃ1/2
2,1 (R3) has the same scaling as L3(R3). Indeed, our method also applies to

Lp elliptic gradient estimates for p slightly larger than the space dimensions.

Carrying out the details of the strategy, we can prove the following maximal L1 regularity

theorem for the Stokes system (3.9).

Theorem 3.12. Let T ∈ (0,∞]. Assume that ρ = ρ(x) satisfies (1.4), ρ − 1 ∈ Ḃ3/2
2,1 (R3) and

u0 ∈ PḂ1/2
2,1 (R3). Suppose that f, g, R satisfy

R ∈ Cb([0, T ); Ḃ
1/2
2,1 (R3)), (f,∇g, ∂tR) ∈

(
L1((0, T ); Ḃ

1/2
2,1 (R3))

)3

,

R(0) = 0, and divR = g. Then the system (3.9) has a unique strong solution (u,∇P ) in the

class

u ∈ Cb([0, T ); Ḃ
1/2
2,1 (R3)), (∆u, ∂tu,∇P ) ∈

(
L1((0, T ); Ḃ

1/2
2,1 (R3))

)3

.
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Moreover, there exists a constant C depending on m and ‖ρ− 1‖
Ḃ

3/2
2,1

such that

‖u‖
L∞T (Ḃ

1/2
2,1 )

+ ‖∂tu,∆u,∇P‖L1
T (Ḃ

1/2
2,1 )
≤ C‖u0‖Ḃ1/2

2,1
+ C‖f, ∂tR,∇g‖L1

T (Ḃ
1/2
2,1 )

. (3.20)

The remainder of this chapter is organized as follows. Section 3.2 is devoted to the proof

of maximal L1 regularity for the Stokes system (3.9). To this end, we give equivalent character-

izations of homogeneous Besov norms via the semigroup generated by the generalized Stokes

operator, and prove elliptic gradient estimates. Then, in Section 3.3, we apply the results estab-

lished in Section 3.2 to prove Theorem 3.2 and Theorem 3.9. The proof of Theorem 3.6 will

be given in Section 3.4.

3.2 Maximal L1 regularity for Stokes system

This section is devoted to the proof of Theorem 3.12, which is the heart of this chapter.

3.2.1 Stokes operator

We present some useful properties for the Stokes operator. Let ρ = ρ(x) satisfy (1.4) and denote

b = ρ−1. In the sequel, we use the notations L2 = L2(R3;R3), PL2 = {u ∈ L2| divu = 0},

‖ · ‖ the L2 norm induced by the standard L2 inner product 〈·, ·〉, and ‖ · ‖ρ the weighted norm

induced by the inner product

〈u, v〉ρ =

ˆ
R3

u(x) · v(x)ρ(x) dx.

Let Qb, Pb and S be defined by (3.11), (3.12) and (3.14), respectively. It is well know that Qb

is bounded on L2 and ‖Qbf‖b ≤ ‖f‖b for every f ∈ L2. If b ≡ 1, we denote P = P1 and

Q = Q1. Formally, we have divP = 0. It is for this reason we use P in front of a space of

vectors to denote its subspace of divergence-free vectors.

Lemma 3.13. With the above notations, we have

(i) bPb : L2 → PL2 is bounded and it holds that Q(bPb) = bPbQ ≡ 0, and P(bPb) =

bPbP ≡ bPb.
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(ii) bPb : PL2 → PL2 is invertible with a continuous inverse Pρ. Thus, it holds that

‖bPbu‖ ' ‖u‖, ∀u ∈ PL2. (3.21)

(iii) bPb : L2 → L2 is self-adjoint on (L2, 〈·, ·〉), while bPb : PL2 → PL2 is self-adjoint

on both (PL2, 〈·, ·〉) and (PL2, 〈·, ·〉ρ).

(iv) S : PH2 ⊂ PL2 → PL2 is a self-adjoint operator on (PL2, 〈·, ·〉ρ).

The proof is straightforward and thus left to the reader.

Lemma 3.14. The Stokes operator S : PH2 ⊂ PL2 → PL2 generates an analytic semigroup

of contraction {etS}t≥0 on (PL2, 〈·, ·〉ρ), and etSbPb is self-adjoint on (L2, 〈·, ·〉) for every

t ≥ 0.

Proof. For u ∈ PH2, we have

〈Su, u〉ρ =

ˆ
Rn
Pb∆u(x) · u(x) dx = −‖∇u‖2 ≤ 0.

Since S is self-adjoint on (PL2, 〈·, ·〉ρ), so by Theorem 2.4, S generates an analytic semigroup

of contraction {etS}t≥0 on (PL2, 〈·, ·〉ρ). Moreover, etS is self-adjoint on (PL2, 〈·, ·〉ρ). Then

we have for all u, v ∈ L2 that

〈etSbPbu, v〉 = 〈etSbPbu, bPbv〉ρ = 〈bPbu, etSbPbv〉ρ = 〈u, etSbPbv〉.

This means that etSbPb is self-adjoint on (L2, 〈·, ·〉).

Proposition 3.15. For any u0 ∈ PL2, it holds that limt→∞ ‖etSu0‖ = 0.

Proof. In view of Lemma 3.14 and (3.21), we apply Gagliardo–Nirenberg inequality to get

‖etSu0‖p ≤ C‖etSu0‖1−θ‖SetSu0‖θ ≤ Ct−θ‖u0‖, ∀u0 ∈ PL2,

where 1
p

= 1
2
− 2θ

3
, p ∈ (2,∞], and θ ∈ (0, 1). Now for any u0 ∈ L2, since bPbu0 ∈ PL2, we get

‖etSbPbu0‖p ≤ Ct−θ‖u0‖. By duality, we obtain ‖etSbPbu0‖ ≤ Ct−θ‖u0‖p′ with 1
p′

= 1
2

+ 2θ
3

.
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So for any u0 ∈ PL2 ∩ Lp′ , we have

‖etSu0‖ = ‖etSbPb(ρu0)‖ ≤ Ct−θ‖u0‖p′ ,

which implies limt→∞ ‖etSu0‖ = 0. By a density argument, the result still holds for u0 ∈ PL2.

This completes the proof.

3.2.2 Characterizations of Besov norms via semigroup etS

In order to obtain maximal regularity estimates for the Stokes system, we use the semigroup etS

to give equivalent characterizations of certain Besov norms for divergence-free vector fields.

First, let us prove an easy but useful lemma.

Lemma 3.16. Let w(t, τ) be a nonnegative weight function satisfying

sup
τ>0

ˆ ∞
0

w(t, τ)
dt

t
+ sup

t>0

ˆ ∞
0

w(t, τ)
dτ

τ
≤ C.

Then for any q ∈ [1,∞], we have

∥∥∥∥ˆ ∞
0

w(t, τ)f(τ)
dτ

τ

∥∥∥∥
Lq(R+,

dt
t

)

≤ C‖f‖Lq(R+,
dt
t

).

Proof. The cases q = 1 and q = ∞ are trivial. Assume that f ≥ 0. For q ∈ (1,∞), we apply

Hölder’s inequality to see that

ˆ ∞
0

w(t, τ)f(τ)
dτ

τ
≤
(ˆ ∞

0

w(t, τ)
dτ

τ

)1/q′ (ˆ ∞
0

w(t, τ)f q(τ)
dτ

τ

)1/q

.

By the assumption of the lemma, we obtain

(ˆ ∞
0

w(t, τ)f(τ)
dτ

τ

)q
≤ C

ˆ ∞
0

w(t, τ)f q(τ)
dτ

τ
.

Integrating both sides over (0,∞) with respect to dt
t

, the result follows from the assumption

again and the Fubini’s theorem.
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As in many other works (see, e.g., [11,36]) concerning characterizations of function spaces

via semigroups, a fundamental ingredient is to obtain a sort of reproducing formulas associated

with the semigroups. The following reproducing formula depends on the very special (and

simple) structure of the operator S.

Lemma 3.17. For any u0 ∈ PL2, it holds that

u0 = −
ˆ ∞

0

∆eτSbPbu0 dτ := lim
ε→0+

−
ˆ 1/ε

ε

∆eτSbPbu0 dτ, (3.22)

where the limit converges in L2.

Proof. Since etS is an analytic semigroup, the function u(t) = etSu0 is an classical solution to

the equation u′(t) = Su(t). Integrating this equation in time from s to t, we get

u(t)− u(s) =

ˆ t

s

Su(τ) dτ.

Obviously, u(s)→ u0 in L2 as s→ 0+. This together with Proposition 3.15 implies that

u0 = −
ˆ ∞

0

SeτSu0 dτ.

Replacing u0 by bPbu0 and recalling the expression for S, we have

bPbu0 = −
ˆ ∞

0

bPb∆eτSbPbu0 dτ.

Then the desired formula follows from the fact that bPb is invertible on PL2.

Let us first consider characterizations of Besov norms with negative regularity.

Theorem 3.18. Suppose that s ∈ (0, 2) and q ∈ [1,∞]. For any u0 ∈ PL2, we have

∥∥ts/2‖etSbPbu0‖
∥∥
Lq(R+,

dt
t

)
' ‖u0‖Ḃ−s2,q

.

35



Proof. Let us first assume that u0 ∈ Ḃ−s2,q . We need the reproducing formula (by taking b ≡ 1

in (3.22))

u0 = −
ˆ ∞

0

∆eτ∆u0 dτ, u0 ∈ PL2.

Next, applying etSbPb to both sides of the above equation gives rise to

etSbPbu0 = −
ˆ ∞

0

etSbPb∆eτ∆u0 dτ.

We may estimate the L2 norm of the integrand in two different ways: we get from Lemma 3.14

that

‖etSbPb∆eτ∆u0‖ = ‖SetSeτ∆u0‖ ≤
C

t
‖eτ∆u0‖ ≤

C

t
‖e

τ
2

∆u0‖,

alternatively,

‖etSbPb∆eτ∆u0‖ ≤ C‖∆eτ∆u0‖ ≤
C

τ
‖e

τ
2

∆u0‖.

Hence, we get

‖etSbPbu0‖ ≤ C

ˆ ∞
0

(
1

t
∧ 1

τ

)
‖eτ∆u0‖ dτ.

Multiplying both sides by ts/2, we write

ts/2‖etSbPbu0‖ ≤ C

ˆ ∞
0

(
t

τ

)s/2 (τ
t
∧ 1
)
‖τ s/2eτ∆u0‖

dτ

τ
.

Now if s ∈ (0, 2), it is easy to verify that

sup
t>0

ˆ ∞
0

(
t

τ

)s/2 (τ
t
∧ 1
) dτ

τ
+ sup

τ>0

ˆ ∞
0

(
t

τ

)s/2 (τ
t
∧ 1
) dt

t
≤ C.
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It follows form Lemma 3.16 and Lemma 2.13 that

∥∥ts/2‖etSbPbu0‖
∥∥
Lq(R+,

dt
t

)
≤ C

∥∥ts/2‖et∆u0‖
∥∥
Lq(R+,

dt
t

)
≤ C‖u0‖Ḃ−s2,q

.

For the reverse inequality, we apply et∆ to both sides of (3.22) to get

et∆u0 = −
ˆ ∞

0

et∆∆eτSbPbu0 dτ.

Again, in view of Lemma 3.14, a similar argument as before gives rise to

‖et∆u0‖ ≤ C

ˆ ∞
0

(
1

t
∧ 1

τ

)
‖eτSbPbu0‖ dτ.

The rest of the steps are exactly the same as before. So the proof of the theorem is completed.

Now Theorem 3.10 is an immediate consequence of Theorem 3.18.

Proof of Theorem 3.10. Since u0 ∈ PH2, the result immediately follows from Theorem 3.18

if we replace u0 by ∆u0 ∈ PL2.

With Theorem 3.10 in hand, we can extrapolate etS to a semigroup on Besov spaces with-

out assuming any regularity on the coefficient b. To this end, let us first study some regularity

estimates of etS on PḂs
2,q.

Proposition 3.19. Suppose that s ∈ (0, 2), q ∈ [1,∞] and k ∈ N∪{0}. There exists a positive

constant C such that for any u0 ∈ PH2,

‖(tS)ketSu0‖Ḃs2,q ≤ C‖u0‖Ḃs2,q , ∀t ≥ 0, (3.23)

and

∥∥∥‖(tS)k+1etSu0‖Ḃs2,q
∥∥∥
Lq(R+,

dt
t

)
≤ C‖u0‖Ḃs2,q . (3.24)
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Proof. The first inequality follows immediately from Theorem 3.10 and the fact that etS is a

bounded analytic semigroup on PL2.

For the second inequality, we only need to prove for k = 0 and q <∞. Applying Theorem

3.10, Lemma 3.14 and Fubini’s theorem, we have

ˆ ∞
0

‖τSeτSu0‖qḂs2,q
dτ

τ
'
ˆ ∞

0

ˆ ∞
0

(
t−s/2‖tτS2e(t+τ)Su0‖

)q dt
t

dτ

τ

=

ˆ ∞
0

ˆ ∞
τ

(t− τ)(1−s/2)q−1τ q−1‖S2etSu0‖q dt dτ

=

ˆ ∞
0

‖S2etSu0‖q dt
ˆ t

0

(t− τ)(1−s/2)q−1τ q−1 dτ

≤C
ˆ ∞

0

(
t−s/2‖tSetSu0‖

)q dt
t
≤ C‖u0‖qḂs2,q .

This completes the proof.

In the rest of this subsection, we assume that s and q satisfy

(s, q) ∈ (0, 3/2)× [1,∞), or s ∈ (0, 3/2] and q = 1. (3.25)

Then PḂs
2,q is a Banach space and PH2 is dense in PḂs

2,q. For each t ≥ 0, the inequality (3.23)

(with k = 0) guarantees that etS extends to a bounded operator on PḂs
2,q with bounds uniform

in t. We denote this extension by T (t) = Ts,q(t). Then {T (t)}t≥0 is a bounded semigroup on

PḂs
2,q. Also, it is easy to verify the strong continuity for T (t).

Proposition 3.20. Suppose that (s, q) satisfies (3.25). Then T (t) is a bounded C0 semigroup

on PḂs
2,q.

Proof. For u0 ∈ PH2, the function t 7→ T (t)u0 = etSu0 belongs to C([0,∞);PH2), thus

C([0,∞);PḂs
2,q). By a density argument, we get the strong continuity of T (t) on PḂs

2,q.

Let us denote by G = Gs,q the generator of T (t) on PḂs
2,q. In general, it is not easy to

identify the domain of the generator of a semigroup. However, it would be easier to find a core

for the generator.
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Lemma 3.21. Suppose that (s, q) satisfies (3.25). Define C = {u ∈ PH2|Su ∈ PḂs
2,q}.

Then C is a core for G, and it holds that G|C = S|C . In other words, G is the closure of

S : C ⊂ PḂs
2,q → PḂs

2,q.

Proof. Note that the domain D(S2) of S2 is contained in C . Since D(S2) is dense in D(S) =

PH2 and PH2 is dense in PḂs
2,q, so C is also dense in PḂs

2,q. For every u0 ∈ C , since

T (t)u0 = etSu0 is a classical solution to the equation u′(t) = Su(t), we have

T (t)u0 − u0 =

ˆ t

0

eτSSu0 dτ =

ˆ t

0

T (τ)Su0 dτ.

So, we have

1

t
(T (t)u0 − u0) =

1

t

ˆ t

0

T (τ)Su0 dτ.

By strong continuity of T (t) on PḂs
2,q, the limit as t → 0+ on the right exists and equals to

Su0. We thus infer that C ⊂ D(G) and G|C = S|C . Obviously, C is invariant under T (t).

Thus, by Lemma 2.5, C is a core for G. This completes the proof.

Proposition 3.22. Suppose that (s, q) satisfies (3.25). Then T (t) is a bounded analytic semi-

group on PḂs
2,q.

Proof. We know from the above lemma that C is dense in PḂs
2,q, and that GT (t)u0 = SetSu0

for u0 ∈ C . It then follows from (3.23) that ‖tGT (t)u0‖Ḃs2,q ≤ C‖u0‖Ḃs2,q . This completes the

proof.

Remark 3.23. Now (3.24) actually holds for data in PḂs
2,q, that is,

∥∥∥‖(tG)etGu0‖Ḃs2,q
∥∥∥
Lq(R+,

dt
t

)
≤ C‖u0‖Ḃs2,q , ∀u0 ∈ PḂs

2,q.

In particular, choosing q = 1 gives

‖GetGu0‖L1(R+;Ḃs2,1) ≤ C‖u0‖Ḃs2,1 , ∀u0 ∈ PḂs
2,1. (3.26)
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We conclude this subsection with a maximal L1 regularity result for the following abstract

Cauchy problem

u′(t)− Gu(t) = f(t), u(0) = u0. (3.27)

Theorem 3.24. Suppose that s ∈ (0, 3/2] and T ∈ (0,∞]. Let u0 ∈ PḂs
2,1 and f ∈

L1((0, T );PḂs
2,1). Then (3.27) has a unique strong solution u ∈ Cb([0, T );PḂs

2,1). More-

over, there exists a positive constant C = C(m, s) such that

‖u‖L∞T (Ḃs2,1) + ‖u′,Gu‖L1
T (Ḃs2,1) ≤ C‖u0‖Ḃs2,1 + C‖f‖L1

T (Ḃs2,1).

Proof. The homogeneous part etGu0 is a classical solution, and satisfies the estimates by Propo-

sition 3.22 and (3.26). Denote the inhomogeneous part by If(t) =
´ t

0
e(t−τ)Gf(τ) dτ . Since etG

is uniformly bounded, we have ‖If‖L∞T (Ḃs2,1) ≤ C‖f‖L1
T (Ḃs2,1). Using again (3.26) and Fubini’s

theorem, we have

‖GIf‖L1
T (Ḃs2,1) ≤

ˆ T

0

ˆ t

0

‖Ge(t−τ)Gf(τ)‖Ḃs2,1 dτ dt

=

ˆ T

0

dτ

ˆ T

τ

‖Ge(t−τ)Gf(τ)‖Ḃs2,1 dt ≤ C‖f‖L1
T (Ḃs2,1).

So by Lemma 2.6, u is a strong solution to (3.27). The estimate for u′ follows directly from the

previous estimates and the equation (3.27). So the proof is completed.

3.2.3 Elliptic estimates

So far we have not assumed any regularity on the coefficient b. In what follows, we shall

prove that bPb is bounded on some Besov spaces if b has suitable “critical” regularity. We

allow a slight discontinuity for b and point out that it is of independent interest to study elliptic

estimates with discontinuous coefficients. The continuity of bPb will also help us identify the

domain of G.

In the sequel, P ∈ Ḣ1(R3) is the weak solution to (3.19) with b satisfying (1.4), and µ is

the Hölder index in Lemma 2.7. The main result in this subsection is the following:
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Theorem 3.25. Given any (p, r) ∈ [2, 3
1−µ) × [1,∞], any s ∈ (0, 3

p
+ µ − 1). If b satisfies

∇b ∈ Ḃ3/q−1
q,∞ (R3) with 3

q
> s∨ (1−µ), there exists a constant C depending on m and ‖b‖

Ḃ
3/q
q,∞

such that

‖∇P‖Ḃsp,r ≤ C‖f‖Ḃsp,r

for all vectors f whose components belong to L2(R3) ∩ Ḃs
p,r(R3).

The proof of Theorem 3.25 takes two steps. In the first step, we do not assume any

regularity on the elliptic coefficients and allow a loss of regularity for∇P .

Lemma 3.26. Given any (p, r) ∈ [2, 3
1−µ) × [1,∞], any s ∈ (0, 3

p
+ µ − 1). For any −s0 ∈

(1 − µ, 3
p
− s], let p0 be defined by s0 − 3

p0
= s − 3

p
. Then there exists a constant C > 0 such

that

‖∇P‖Ḃs0p0,r ≤ C‖f‖Ḃsp,r , ∀f ∈ L
2(R3) ∩ Ḃs

p,r(R3).

Proof. Note that the assumptions on (p, r, s) guarantee the existence of (p0, s0). By Lemma

2.12 (i), we may assume that s0 > −1 and p0 < ∞. First, by Lemma 2.15 and Lemma 2.16,

we have

‖∇P‖Ḃs0p0,r '‖E
−1/2R∗f‖

Ḃ
s0+1
p0,r

'
∥∥∥t− 1

2
− s0

2 ‖(tE)
1
2 e−tEE−1/2R∗f‖p0

∥∥∥
Lr(R+,

dt
t

)

=
∥∥∥t− s02 ‖e−tER∗f‖p0

∥∥∥
Lr(R+,

dt
t

)
.

Next, applying e−tER∗ to the reproducing formula

f(x) =
1

(k − 1)!

ˆ ∞
0

(−τ∆)keτ∆f(x)
dτ

τ
with k >

s

2
,
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we write

e−tER∗f(x) =
1

(k − 1)!

ˆ ∞
0

e−tER∗e
τ
2

∆(−τ∆)ke
τ
2

∆f(x)
dτ

τ
.

The Lp − Lq estimates for heat semigroups and the boundedness of R∗ from Lp(R3,R3) to

Lp(R3) (2 ≤ p <∞) then imply that

‖e−tER∗f‖p0 ≤ C

ˆ ∞
0

(
1

t
∧ 1

τ

) 3
2

( 1
p
− 1
p0

)

‖(τ∆)keτ∆f‖p
dτ

τ
.

Thus,

t−
s0
2 ‖e−tER∗f‖p0 ≤ C

ˆ ∞
0

(τ
t

)s0/2 (τ
t
∧ 1
) s−s0

2
τ−s/2‖(τ∆)keτ∆f‖p

dτ

τ
.

Note that s and −s0 are positive numbers. One can readily check that

sup
τ>0

ˆ ∞
0

(τ
t

)s0/2 (τ
t
∧ 1
) s−s0

2 dt

t
+ sup

t>0

ˆ ∞
0

(τ
t

)s0/2 (τ
t
∧ 1
) s−s0

2 dτ

τ
≤ C.

Finally, we apply Lemma 3.16 and Lemma 2.13 to conclude the proof.

In the second step, if the coefficient b has suitable regularity, the loss of regularity of ∇P

can be recovered using an iteration technique in the spirit of De Giorgi-Nash-Moser. To this

end, we need the following commutator estimates that can help us gain regularity.

Lemma 3.27. Suppose that r ∈ [1,∞], 1 ≤ p2 < p1 ≤ ∞, q ∈ [1,∞), (s1, s2) ∈ R2,

s1 − 3
p1

= s2 − 3
p2

, and

1

p2

≤ 1

p1

+
1

q
,

1

p2

<
1

p1

+
1

3
,

3

q ∨ p2

> s2,
3

q ∨ p′1
> −s1.

If a ∈ L∞(R3) and ∇a ∈ Ḃ3/q−1
q,∞ (R3), then there exists a constant C such that

∥∥∥∥(2js2‖[∆̇j, a]f‖p2

)
j

∥∥∥∥
lrj

≤ C‖a‖
Ḃ

3/q
q,∞
‖f‖Ḃs1p1,r ,
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where [∆̇j, a]f denotes the commutator ∆̇j(af)− a∆̇jf .

Proof. This type of estimate is nowadays classical (see, e.g., [9, Section 2.10]). We give proof

here for the sake of completeness.

By Bony’s paraproduct, we split the commutator [∆̇j, a]f into four terms:

[∆̇j, Ṫa]f + ∆̇j(Ṫfa) + ∆̇j(Ṙ(a, f))− Ṫ ′
∆̇jf

a. (3.28)

Many terms in the summation can be canceled out because of the frequency localization of the

dyadic blocks. Specifically, the first term can be expressed as

[∆̇j, Ṫa]f =
∑
|j′−j|≤4

2nj
ˆ
h(2jy)

(
Ṡj′−1a(x− y)− Ṡj′−1a(x)

)
∆̇j′f(x− y) dy

Choosing p such that 1
p2

= 1
p

+ 1
p1

, we use Hölder’s inequality to see

‖[∆̇j, Ṫa]f‖p2 .
∑
|j′−j|≤4

2nj
ˆ
|h(2jy)|‖Ṡj′−1a(· − y)− Ṡj′−1a(·)‖p‖∆̇j′f‖p1 dy

.2−j
∑
|j′−j|≤4

‖∇Ṡj′−1a‖p‖∆̇j′f‖p1 .

Noticing that p ≥ q and 1− 3
p
> 0, we use Lemma 2.9 to get

‖∇Ṡj′−1a‖p .
∑

k≤j′−2

23k(1/q−1/p)‖∆̇k∇a‖q

.
∑

k≤j′−2

2k(1−3/p)‖∇a‖
Ḃ

3/q−1
q,∞

. 2j
′(1−3/p)‖a‖

Ḃ
3/q
q,∞
.

Consequently,

‖[∆̇j, Ṫa]f‖p2 . cj,r2
−js2‖a‖

Ḃ
3/q
q,∞
‖f‖Ḃs1p1,r . (3.29)
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For the second term in (3.28), if q ≥ p2, we redefine p by 1
p2

= 1
p

+ 1
q
. Again, applying

Hölder’s inequality and Lemma 2.9, we get

‖∆̇j(Ṫfa)‖p2 .
∑
|j′−j|≤4

‖∆̇j′a‖q‖Ṡj′−1f‖p . cj,r2
−js2‖a‖

Ḃ
3/q
q,∞
‖f‖Ḃs1p1,r , (3.30)

where in the second inequality we need the fact that p ≥ p1 and 3
q
> s2. In the case q ≤ p2,

thanks to Lemma 2.12 (i), the same result stays true whenever 3
p2
> s2.

For the third term in (3.28), we first assume 1
p1

+ 1
q
≤ 1 and redefine p by 1

p
= 1

p1
+ 1

q
.

Using Lemma 2.9 and Hölder’s inequality, and noticing that p ≤ p2 and 3
q

+ s1 > 0, we obtain

‖∆̇j(Ṙ(a, f))‖p2 . 2
3j( 1

p
− 1
p2

)
∑
j′≥j−3

‖∆̇j′a‖q‖ ˜̇∆j′f‖p1 . cj,r2
−js2‖a‖

Ḃ
3/q
q,∞
‖f‖Ḃs1p1,r . (3.31)

If 1
p1

+ 1
q
≥ 1, the result still holds provided that 3

p′1
+ s1 > 0.

For the last term in (3.28), redefining p by 1
p2

= 1
q

+ 1
p

if q ≥ p2, we see that

‖Ṫ ′
∆̇jf

a‖p2 .
∑
j′≥j−2

‖∆̇j′a‖q‖∆̇jf‖p . cj,r2
−js2‖a‖

Ḃ
3/q
q,∞
‖f‖Ḃs1p1,r , (3.32)

where in the second inequality we need the condition q < ∞. If p2 ≥ q, the same result holds

under the assumption that p2 <∞.

Putting (3.29)-(3.32) together finishes the proof.

Remark 3.28. The technical assumption a ∈ L∞(R3) is needed in order for the product af to

be well-defined via paraproducts.

With the above commutator estimates at our disposal, we are now able to prove the fol-

lowing elliptic regularity which will be used for iteration.

Lemma 3.29. Suppose that r ∈ [1,∞], 2 ≤ p2 < p1 ≤ ∞, q ∈ [1,∞), (s1, s2) ∈ R2,

s1 − 3
p1

= s2 − 3
p2

, and

1

p2

≤ 1

p1

+
1

q
,

1

p2

<
1

p1

+
1

3
,

3

q ∨ p2

> s2,
3

q ∨ p′1
> −s1.
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Let b satisfy ∇b ∈ Ḃ3/q−1
q,∞ (R3). If in addition, f ∈ L2(R3) ∩ Ḃs2

p2,r
(R3) and ∇P ∈ Ḃs1

p1,r
(R3),

then there exists a constant C > 0 such that

‖∇P‖Ḃs2p2,r ≤ C‖f‖Ḃs2p2,r + C‖b‖
Ḃ

3/q
q,∞
‖∇P‖Ḃs1p1,r .

Proof. Testing v = ∆̇j(|∆̇jP |p2−2∆̇jP ) ∈ H∞(R3) in the equation

ˆ
R3

b∇P · ∇v dx =

ˆ
R3

f · ∇v dx,

we have

ˆ
R3

b|∆̇j∇P |2|∆̇jP |p2−2 dx =

ˆ
R3

(∆̇jf − [∆̇j, b]∇P ) · ∆̇j∇P |∆̇jP |p2−2 dx.

Applying [15, Lemma A.5], Lemma 2.9 and Hölder’s inequality, we get

‖∆̇j∇P‖p2 . ‖∆̇jf‖p2 + ‖[∆̇j, b]∇P‖p2 .

Multiplying both sides by 2js2 and taking lr norm with respect to j, we obtain

‖∇P‖Ḃs2p2,r . ‖f‖Ḃs2p2,r +

∥∥∥∥(2js2‖[∆̇j, b]∇P‖p2

)
j

∥∥∥∥
lrj

.

The desired result then follows from Lemma 3.27.

We are now in a position to complete the proof of Theorem 3.25.

Proof of Theorem 3.25. We start with choosing s0 and p0. Since (−3
q
) ∨ (s − 3

p
) < µ − 1,

we can choose an s0 between both sides of this inequality. Define p0 by s0 − 3
p0

= s − 3
p
,

then p0 ∈ (p,∞). By Lemma 3.26, we have ‖∇P‖Ḃs0p0,r ≤ C‖f‖Ḃsp,r . Next, we shall choose

(p1, s1) ∈ [p, p0)× (s0, s] that satisfies the assumptions in Lemma 3.29. It is not difficult to see

that those assumptions can be reduced to s1 − 3
p1

= s− 3
p

and

1

p1

≤ 1

p0

+
1

q
,

1

p1

<
1

p0

+
1

3
.
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If (p1, s1) = (p, s) satisfies the above assumptions, we are done by using Lemma 3.29. Other-

wise, we define p1 by 1
p1

= 1
p0

+ 1
2(q∨3)

, and get

‖∇P‖Ḃs1p1,r . ‖f‖Ḃs1p1,r + ‖b‖
Ḃ

3/q
q,∞
‖∇P‖Ḃs0p0,r . ‖f‖Ḃsp,r .

The (pk, sk) is defined by 1
pk

= 1
p0

+ k
2(q∨3)

and sk − 3
pk

= s − 3
p
. So the iteration scheme will

end in a finite number of steps. This completes the proof.

Remark 3.30. If we know a priori that the norm ‖∇P‖Ḃsp,r is finite, then the iteration process

is not needed. We apply Lemma 3.29 only once to get

‖∇P‖Ḃsp,r ≤ C‖f‖Ḃsp,r + C‖b‖
Ḃ

3/q
q,∞
‖∇P‖Ḃs1p1,r

with some s1 ∈ (0, s). To complete the proof, we use Lemma 2.12 (ii) and Young’s inequality.

In this way, we can also remove the technical assumption that q < 3
1−µ .

Given Theorem 3.25, we are now able to identify G and its domainD(G). In order to avoid

some unpleasant technicalities, we will simply assume that b− 1 ∈ Ḃ3/q
q,1 (R3). Then by Lemma

2.12 (v), ρ− 1 = (1− b)/b satisfies the same assumption.

Lemma 3.31. Let 0 < s < 1
2

+ µ and 1 ≤ q < 3
s∨(1−µ)

. Assume that b− 1 ∈ Ḃ3/q
q,1 (R3). Then

G = Gs,1 coincides with the operator G̃ defined by

G̃ = bPb∆ : PḂs
2,1 ∩ PḂs+2

2,1 ⊂ PḂs
2,1 → PḂs

2,1.

Proof. First, we get from Theorem 3.25 that ∇E−1
b div extends to a continuous operator on

Ḃs
2,1. In view of product laws in Besov spaces and Lemma 3.13 (ii), bPb is also continuous

on Ḃs
2,1, and the restriction of bPb on PḂs

2,1 is invertible with a continuous inverse Pρ. Based

on this, it is not difficult to see that G̃ is a closed operator. Note that the space C (defined in

Lemma 3.21) coincides with the inhomogeneous space PBs+2
2,1 , so it is dense in D(G̃). This

shows that G̃ is the closure of S : C ⊂ PḂs
2,1 → PḂs

2,1. So we have G = G̃ as a consequence

of Lemma 3.21.
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With a slight abuse of notation, we shall not distinguish between S and G.

3.2.4 Proof of Theorem 3.12

We give a proof of Theorem 3.12 in this subsection. To further simplify the exposition, we

assume that b − 1 ∈ Ḃ3/2
2,1 (R3). First, let us go back to the maximal regularity for the abstract

Cauchy problem

u′(t)− bPb∆u(t) = bPbf(t), u(0) = u0. (3.33)

As a consequence of Theorem 3.24, Theorem 3.25 and Lemma 3.31, we have:

Corollary 3.32. Let T ∈ (0,∞]. Assume that b satisfies (1.4) and b − 1 ∈ Ḃ
3/2
2,1 (R3). Let

u0 ∈ PḂ1/2
2,1 (R3) and f ∈ L1((0, T ); Ḃ

1/2
2,1 (R3)). Then (3.33) has a unique strong solution u ∈

Cb([0, T );PḂ1/2
2,1 (R3)). Moreover, there exists a constant C depending on m and ‖b − 1‖

Ḃ
3/2
2,1

such that

‖u‖
L∞T (Ḃ

1/2
2,1 )

+ ‖u′,∆u‖
L1
T (Ḃ

1/2
2,1 )
≤ C‖u0‖Ḃ1/2

2,1
+ C‖f‖

L1
T (Ḃ

1/2
2,1 )

.

Let us now give the proof of the well-posedness part of Theorem 3.12.

Proof of the well-posedness part of Theorem 3.12. Note that b = ρ−1 satisfies the same as-

sumptions as ρ. By Corollary 3.32, we see that the following Cauchy problem

∂tv(t)− bPb∆v(t) = bPb(f − ρQ∂tR), v(0) = u0

has a unique strong solution v ∈ Cb([0, T );PḂ1/2
2,1 (R3)) satisfying

‖v‖
L∞T (Ḃ

1/2
2,1 )

+ ‖∂tv,∆v‖L1
T (Ḃ

1/2
2,1 )
. ‖u0‖Ḃ1/2

2,1
+ ‖f, ∂tR‖L1

T (Ḃ
1/2
2,1 )

. (3.34)

Define u = v + QR = v − ∇(−∆)−1g and ∇P = Q(f − ρ∂tv − ρQ∂tR) + ∇g. One can

readily check that (u,∇P ) is a strong solution to (3.9).
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By (3.34) and the construction of∇P , we also have

‖∇P‖
L1
T (Ḃ

1/2
2,1 )
. ‖u0‖Ḃ1/2

2,1
+ ‖f, ∂tR,∇g‖L1

T (Ḃ
1/2
2,1 )

. (3.35)

But if we apply (3.34) to bound u directly, we have to include the term ‖QR‖
L∞T (Ḃ

1/2
2,1 )

on the

right side of (3.20). This would cause serious trouble for us to prove local existence of large

solutions to (3.5). Thanks to (3.35), we can view ∇P in the first equation of (3.9) as a source

term. So we choose to prove the maximal regularity for the solution u to the parabolic system

(3.18). Having had success in establishing maximal L1 regularity for (3.33) based on Theorem

3.10, we are going to obtain maximal L1 regularity for the parabolic Cauchy problem

∂tu− b∆u = f, u(0) = u0 (3.36)

by characterizations of Besov norms via the semigroup etb∆. To simplify the exposition, we

only prove what is needed for the proof of (3.20).

Lemma 3.33. Suppose that b satisfies (1.4), and b and b−1 belong to the multiplier space

M (Ḃ
1/2
2,1 (R3)). Let u0 ∈ Ḃ1/2

2,1 (R3) and f ∈ L1((0, T ); Ḃ
1/2
2,1 (R3)). Then (3.36) has a unique

strong solution u satisfying

‖u‖
L∞T (Ḃ

1/2
2,1 )

+ ‖∂tu,∆u‖L1
T (Ḃ

1/2
2,1 )
. ‖u0‖Ḃ1/2

2,1
+ ‖f‖

L1
T (Ḃ

1/2
2,1 )

.

Proof. Since the proof is analogous to that of Theorem 3.24, we only outline the key steps.

First, b∆ : H2(R3) ⊂ L2(R3) → L2(R3) generates a bounded analytic semigroup etb∆

whose kernel has a Gaussian upper bound (see [31, 46]). So we have limt→∞ ‖etb∆f‖ = 0

for every f ∈ L2(R3). Based on this, we can mimic the proof of Theorem 3.10 to get the

equivalence of norms:

‖u0‖Ḃ1/2
2,1
'
∥∥t−1/4‖tb∆etb∆u0‖

∥∥
L1(R+,

dt
t

)
, ∀u0 ∈ H2(R3).
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This would imply that

sup
t>0
‖etb∆u0‖Ḃ1/2

2,1
+ sup

t>0
‖tb∆etb∆u0‖Ḃ1/2

2,1
+
∥∥∥‖tb∆etb∆u0‖Ḃ1/2

2,1

∥∥∥
L1(R+,

dt
t

)
≤ C‖u0‖Ḃ1/2

2,1
,

for all u0 ∈ H2(R3). So etb∆|H2(R3) extends to a bounded analytic semigroup T (t) on Ḃ1/2
2,1 (R3).

Denote by G the generator of T (t). Then C := {u0 ∈ H2(R3)|b∆u0 ∈ Ḃ1/2
2,1 (R3)} is a core for

G, and G|C = b∆|C . So far, all statements hold if b merely satisfies (1.4).

Next, we assume that both b and b−1 are multipliers of Ḃ1/2
2,1 (R3). Then G coincides with

the operator

b∆ : Ḃ
1/2
2,1 (R3) ∩ Ḃ5/2

2,1 (R3) ⊂ Ḃ
1/2
2,1 (R3)→ Ḃ

1/2
2,1 (R3).

Now that all preparation work is done, we mimic the proof of Theorem 3.24 to finish the

proof of the present lemma. The details are left to the reader.

We conclude this section by completing the proof of Theorem 3.12

Proof of Theorem 3.12. It remains to show (3.20). Applying Lemma 3.33 to (3.18), we have

‖u‖
L∞T (Ḃ

1/2
2,1 )

+ ‖∂tu,∆u‖L1
T (Ḃ

1/2
2,1 )
. ‖u0‖Ḃ1/2

2,1
+ ‖f‖

L1
T (Ḃ

1/2
2,1 )

+ ‖∇P‖
L1
T (Ḃ

1/2
2,1 )

.

This together with (3.35) gives (3.20). Thus, the proof of Theorem 3.12 is completed.

3.3 Well-posedness of (1.2)

In this section, we prove the well-posedness of (3.5), then the well-posedness of (1.2) will

follow. Let E(T ) denote the space of all pairs (u,∇P) satisfying

u ∈ C([0, T ]; Ḃ
1/2
2,1 (R3)), (∂tu,∆u,∇P) ∈

(
L1((0, T ); Ḃ

1/2
2,1 (R3))

)3

,
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endowed with the norm

‖(u,∇P)‖E(T ) = ‖u‖
L∞T (Ḃ

1/2
2,1 )

+ ‖∆u, ∂tu,∇P‖L1
T (Ḃ

1/2
2,1 )

.

Given Theorem 3.12, we can prove the well-posedness of (3.5) in E(T ) by using the

contraction mapping theorem.

Theorem 3.34. Assume that the initial density ρ0 satisfies (1.4) and ρ0 − 1 ∈ Ḃ3/2
2,1 (R3), and

the initial velocity u0 ∈ PḂ1/2
2,1 (R3). Then there exists some T > 0, such that the system (3.5)

has a unique strong solution (u,∇P) ∈ E(T ).

Proof. We shall construct a contraction mapping on E(T ) by solving the linearized system

(3.7). Let us denote the inhomogeneous terms in (3.7) by


f(v,∇Q) = div((AvA

T
v − I)∇v) + (I −A T

v )∇Q,

R(v) = (I −Av)v,

g(v) = Tr((I −Av)Dv),

where (v,∇Q) ∈ E(T ). However, since no smallness is assumed on the initial data, one has

to perform the contraction mapping theorem around a neighborhood of some reference, which

here is chosen as the solution (uL,∇PL) to the homogeneous linear system


ρ0∂tuL −∆uL +∇PL = 0,

divuL = 0,

uL(0, ·) = u0.

(3.37)

In view of Theorem 3.12, we immediately have

‖(uL,∇PL)‖E(T ) ≤ C‖u0‖Ḃ1/2
2,1
. (3.38)
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Hence, we see that

M(t) := ‖∆uL, ∂tuL,∇PL‖L1
t (Ḃ

1/2
2,1 )
→ 0

as t tends to 0. We will solve (3.7) in a closed ball in E(T ) centered at (uL,∇PL) with radius

r, that is,

Br(uL,∇PL) = {(u,∇P) ∈ E(T ) : ‖(ū,∇P̄)‖E(T ) ≤ r},

where (ū, P̄) = (u− uL,P−PL). The numbers r and T will be chosen suitably small later.

Let us estimate the inhomogeneous terms first. For any (v,∇Q) ∈ Br(uL,∇PL), we

denote (v̄, Q̄) = (v − uL,Q−PL). Obviously, we have

‖∇v‖
L1
T (Ḃ

3/2
2,1 )
≤ ‖∇v̄‖

L1
T (Ḃ

3/2
2,1 )

+ ‖∇uL‖L1
T (Ḃ

3/2
2,1 )
≤ r +M(T ).

So Lemma 2.24 and Lemma 2.25 are effective if we require

r +M(T ) ≤ c0.

Then applying (2.25) and product laws in Besov spaces, we see that

‖f(v,∇Q),∇g(v)‖
L1
T (Ḃ

1/2
2,1 )
. ‖∇v‖

L1
T (Ḃ

3/2
2,1 )
‖∆v,∇Q‖

L1
T (Ḃ

1/2
2,1 )

. (3.39)

While applying (2.25) and (2.30), we get

‖∂tR(v)‖
L1
T (Ḃ

1/2
2,1 )
.
ˆ T

0

‖∂tAv‖Ḃ1/2
2,1
‖v‖

Ḃ
3/2
2,1

+ ‖I −Av‖Ḃ3/2
2,1
‖∂tv‖Ḃ1/2

2,1
dt

.‖v‖2

L2
T (Ḃ

3/2
2,1 )

+ ‖∇v‖
L1
T (Ḃ

3/2
2,1 )
‖∂tv‖L1

T (Ḃ
1/2
2,1 )

. (3.40)

So, by Theorem 3.12, the system (3.7) has a unique solution (u,∇P) ∈ E(T ). Subtracting

(3.37) from (3.7), and then applying again Theorem 3.12 to the resulting system for (ū,∇P̄),

51



we obtain

‖(ū,∇P̄)‖E(T ) . ‖f(v,∇Q), ∂tR(v),∇g(v)‖
L1
T (Ḃ

1/2
2,1 )

.

Plugging (3.39) and (3.40) in the above estimate, and using Lemma 2.12 (ii) and (3.38), we

arrive at

‖(ū,∇P̄)‖E(T ) .‖v‖2

L2
T (Ḃ

3/2
2,1 )

+ ‖∇v‖
L1
T (Ḃ

3/2
2,1 )
‖∆v, ∂tv,∇Q‖L1

T (Ḃ
1/2
2,1 )

≤C0‖u0‖Ḃ1/2
2,1
M(T ) + C0(r +M(T ))2,

where C0 depends on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

. Now choosing T and r small enough so that

r ≤ 1

8C0

∧ c0

2
and M(T ) ≤ r ∧ r

2C0‖u0‖Ḃ1/2
2,1

, (3.41)

we have ‖(ū,∇P̄)‖E(T ) ≤ r. So the solution mappingN that assigns (v,∇Q) to (u,∇P) is a

self-mapping on Br(uL,∇PL).

It remains to show thatN is contractive. Let (vi,∇Qi) ∈ Br(uL,∇PL) and (ui,∇Pi) =

N (vi,∇Qi), i = 1, 2. In what follows, for two quantities q1 and q2, δq always denotes their

difference q1 − q2. Then the system for (δu,∇δP) reads


ρ0∂tδu−∆δu +∇δP = δf,

div δu = div δR = δg,

δu|t=0 = 0,

(3.42)

where fi = f(vi,∇Qi), gi = g(vi), and Ri = R(vi) with Ai = Avi .

We write δf = (δf)1 + (δf)2, where

(δf)1 = div((Av1A
T
v1
− I)∇δv) + (I −A T

v1
)∇δQ,

(δf)2 =− (δA )T∇Q2 + div
[
(Av1A

T
v1
−Av2A

T
v2

)∇v2

]
.
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Along the lines of deriving (3.39), we have

‖(δf)1‖L1
T (Ḃ

1/2
2,1 )
. ‖∇v1‖L1

T (Ḃ
3/2
2,1 )
‖∆δv,∇δQ‖

L1
T (Ḃ

1/2
2,1 )

.

Applying (2.25), (2.27) and product laws in Besov spaces, we obtain

‖(δf)2‖L1
T (Ḃ

1/2
2,1 )
. ‖∇δv‖

L1
T (Ḃ

3/2
2,1 )
‖∆v2,∇Q2‖L1

T (Ḃ
1/2
2,1 )

.

Summing up the estimates, we have

‖δf‖
L1
T (Ḃ

1/2
2,1 )
. (M(T ) + r)‖(δv,∇δQ)‖E(T ). (3.43)

Note that ∂tδR = −∂tAv1δv+(I−Av1)∂tδv−∂t(δA )v2−δA ∂tv2. Again, applying (2.25),

(2.27), (2.29) and (2.32) gives

‖∂tAv1δv‖L1
T (Ḃ

1/2
2,1 )
.‖∇v1‖L1

T (Ḃ
3/2
2,1 )
‖δv‖

L∞T (Ḃ
1/2
2,1 )

,

‖(I −Av1)∂tδv‖L1
T (Ḃ

1/2
2,1 )
.‖∇v1‖L1

T (Ḃ
3/2
2,1 )
‖∂tδv‖L1

T (Ḃ
1/2
2,1 )

,

‖∂t(δA )v2‖L1
T (Ḃ

1/2
2,1 )
.‖δv‖

L2
T (Ḃ

3/2
p,1 )
‖v2‖L2

T (Ḃ
3/2
2,1 )

,

‖δA ∂tv2‖L1
T (Ḃ

1/2
2,1 )
.‖∇δv‖

L1
T (Ḃ

3/2
2,1 )
‖∂tv2‖L1

T (Ḃ
1/2
2,1 )

.

Putting things together, and using (3.38) and interpolation inequality in Besov spaces, we arrive

at

‖∂tδR‖L1
T (Ḃ

1/2
2,1 )
. (‖u0‖Ḃ1/2

2,1
M1/2(T ) +M(T ) + r)‖(δv,∇δQ)‖E(T ). (3.44)

For the estimate of δg, we write δg = Tr((I −Av1)Dδv)− Tr(δADv2). We have

‖δg‖
L1
T (Ḃ

3/2
2,1 )
.‖∇v1‖L1

T (Ḃ
3/2
2,1 )
‖∇δv‖

L1
T (Ḃ

3/2
2,1 )

+ ‖∇v2‖L1
T (Ḃ

3/2
2,1 )
‖∇δv‖

L1
T (Ḃ

3/2
2,1 )

.(M(T ) + r)‖(δv,∇δQ)‖E(T ). (3.45)
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Now summing up (3.43)–(3.45) and applying Theorem 3.12 to (3.42), we obtain

‖(δu,∇δP)‖E(T ) .‖δf, ∂tδR,∇δg‖L1
T (Ḃ

1/2
2,1 )

≤C1(‖u0‖Ḃ1/2
2,1
M1/2(T ) +M(T ) + r)‖(δv,∇δQ)‖E(T )

with C1 depending on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

. Taking (3.41) into consideration, we choose r and

T so small that

r ≤ c0

2
∧ 1

8C0

∧ 1

8C1

and M(T ) ≤ r ∧ r

2C0‖u0‖Ḃ1/2
2,1

∧
(

4C1‖u0‖Ḃ1/2
2,1

)−2

.

Then N is a contraction mapping on Br(uL,∇PL). So it admits a unique fixed point (u,∇P)

in Br(uL,∇PL), which is a solution to (3.5) in E(T ). The proof of uniqueness in E(T ) is

similar to the stability estimates. So the proof of the theorem is completed.

Theorem 3.35. Under the assumptions in Theorem 3.34, there exists a constant ε0 depending

on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

such that if

‖u0‖Ḃ1/2
2,1
≤ ε0,

then the local solution (u,∇P) exists globally in time and verifies

‖(u,∇P)‖E(∞) := ‖u‖
L∞(Ḃ

1/2
2,1 )

+ ‖∆u, ∂tu,∇P‖L1(Ḃ
1/2
2,1 )
≤ C‖u0‖Ḃ1/2

2,1
.

Proof. The proof is almost the same as that of Theorem 3.34. Let us just mention a few modi-

fications. First, we should replace E(T ) by E(∞) that consists of all pairs (u,∇P) satisfying

u ∈ Cb([0,∞); Ḃ
1/2
2,1 (R3)), (∂tu,∆u,∇P) ∈

(
L1(R+; Ḃ

1/2
2,1 (R3))

)3

.

Second, we replace the reference solution (uL,∇PL) by (0, 0), and choose r as a small number

depending on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

and ‖u0‖Ḃ1/2
2,1
. r. The details are left to the reader.

For completeness, let us now give the proof of Theorem 3.2 and Theorem 3.9.
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Proof of Theorem 3.9. Theorem 3.34 and Theorem 3.35 constitute a proof of Theorem 3.9.

Proof of Theorem 3.2. First, by Theorem 3.9, we can solve (3.5) for a solution (u,∇P). Define

ρ(t, x) = ρ0(X−1
u (t, x)) and (u, P )(t, x) = (u,P)(t,X−1

u (t, x)).

By Lemma 2.24 and Lemma 2.20, (ρ, u,∇P ) has the regularity stated in Definition 3.1 and

hence is a strong solution to (1.2).

Let (ρi, ui,∇Pi), i = 1, 2, be two strong solutions to (1.2) with the same initial value. By

Lemma 2.22 and Lemma 2.20, the corresponding unknowns (ui,∇Pi) in Lagrangian coordi-

nates are solutions to (3.5) with the same initial value. So it follows from the uniqueness part

of Theorem 3.9 that (ρ1, u1, P1) = (ρ2, u2, P2).

3.4 Long-time asymptotics

This section is devoted to the proof of Theorem 3.6. Besides the maximal regularity estimate

(3.2), the proof also relies on a recent result in [59].

Lemma 3.36. Assume that ρ0 satisfies (1.4) and ρ0 − 1 ∈ Ḃ
3/2
2,1 (R3), and u0 ∈ PḂ1/2

2,1 (R3).

There exists a constant ε1 depending on m and ‖ρ0 − 1‖
Ḃ

3/2
2,1

such that if u0 satisfies

‖u0‖Ḃ1/2
2,1
≤ ε1,

then (1.2) has a global solution (ρ, u,∇P ) that verifies (3.2), (3.3) and

‖u‖
L∞(Ḃ

1/2
2,1 )

+ ‖
√
t(∂tu+ u · ∇u)‖

L2(Ḃ
1/2
2,1 )
≤ C2‖u0‖Ḃ1/2

2,1
, (3.46)

where C2 is a constant depending only on m.
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Proof. Let ε1 be so small that the Theorem 3.2 in the present paper and the Theorem 1.2 in [59]

hold. We start with mollifying the data by defining

ρ0,N = 1 +
∑
|j|≤N

∆̇j(ρ0 − 1) and u0,N =
∑
|j|≤N

∆̇ju0.

As in [59], the above data generates a global solution (ρN , uN ,∇PN) to (1.2) that satisfies the

estimates in [59, Theorem 1.2]. On the other hand, in view of Theorem 3.2, (ρN , uN ,∇PN)

also satisfies (3.2) and (3.3). The uniform estimates allow us to pass to a limit to obtain a global

strong solution (ρ, u,∇P ) to (1.2), which is unique due to Theorem 3.2. Finally, we use the

estimates in [59, Theorem 1.2] to get

‖
√
t(∂tu+ u · ∇u)‖

L2(R+;Ḃ
1/2
2,1 )

.‖
√
t∂tu‖L2(R+;Ḃ

1/2
2,1 )

+ ‖
√
tu‖

L∞(R+;Ḃ
3/2
2,1 )
‖u‖

L2(R+;Ḃ
3/2
2,1 )
. ‖u0‖Ḃ1/2

2,1
.

This completes the proof of the lemma.

We are now in a position to give the proof of Theorem 3.6. Our proof is motivated by

[33,34] concerning asymptotics and stability for global solutions to the classical Navier-Stokes

equations.

Proof of Theorem 3.6. Fix any ε < ε1. We first split the initial velocity into two parts u0 =

u0,h + u0,l, where u0,h =
∑

j≥−N ∆̇ju0 is the high frequency part that belongs to the inhomo-

geneous Besov space B1/2
2,1 (R3), while u0,l satisfies that

‖u0,l‖Ḃ1/2
2,1
≤ ε.

By Lemma 3.36, (ρ0, u0,l) generates a global solution (ρl, ul,∇Pl) to (1.2) that satisfies

‖ul‖L∞(R+;Ḃ
1/2
2,1 )

+ ‖∇ul‖L1(R+;Ḃ
3/2
2,1 )

+ ‖
√
t(∂tu+ u · ∇u)‖

L2(R+;Ḃ
1/2
2,1 )
. ‖u0,l‖Ḃ1/2

2,1
, (3.47)
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and

‖ρl − 1‖
L∞(R+;Ḃ

1/2
2,1 )
. ‖ρ0 − 1‖

Ḃ
3/2
2,1
. (3.48)

Let (ρh, uh, Ph) = (ρ− ρl, u− ul, P − Pl). Then (ρh, uh, Ph) satisfies the system



∂tρh + u · ∇ρh + uh · ∇ρl = 0,

ρ(∂tuh + u · ∇uh)−∆uh +∇Ph = −ρuh · ∇ul − ρh(∂tul + ul · ∇ul),

divuh = 0,

(ρh, uh)|t=0 = (0, u0,h).

(3.49)

We shall use the energy method to derive an L4
t (Ḃ

1/2
2,1 ) estimate for uh. Taking the L2 inner

product of the second equation in (3.49) with uh, and using Hölder’s inequality and Sobolev

inequality, we have

1

2

d

dt
‖√ρuh‖2

2 + ‖∇uh‖2
2 =−

ˆ
ρ(uh · ∇ul) · uh dx−

ˆ
ρh(∂tul + ul · ∇ul) · uh dx

.‖∇ul‖∞‖
√
ρuh‖2

2 + ‖ρh‖2‖∂tul + ul · ∇ul‖3‖∇uh‖2.

To bound ‖ρh‖2, we get from the transport equation in (3.49) that

‖ρh(t)‖2 ≤
ˆ t

0

‖uh · ∇ρl‖2 dτ .
ˆ t

0

‖∇uh‖2‖∇ρl‖3 dτ .
√
t‖∇uh‖L2

t (L
2)‖∇ρl‖L∞t (Ḃ

1/2
2,1 )

.

Putting things together and using (3.48), we have

d

dt
‖√ρuh‖2

2 + ‖∇uh‖2
2 . ‖∇ul‖∞‖

√
ρuh‖2

2 + ‖∇uh‖L2
t (L

2)‖
√
t(∂tul + ul · ∇ul)‖3‖∇uh‖2.

Integrating both sides of the above inequality over the time interval [0, t], then using (3.47), we

have

‖√ρuh‖2
2(t) + ‖∇uh‖2

L2
t (L

2) . ‖
√
ρ0u0,h‖2

2 +

ˆ t

0

‖∇ul‖∞‖
√
ρuh‖2

2 dτ + ε‖∇uh‖2
L2
t (L

2).
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So, if ε is small enough, we arrive at

‖√ρuh‖2
2(t) + ‖∇uh‖2

L2
t (L

2) . ‖
√
ρ0u0,h‖2

2 +

ˆ t

0

‖∇ul‖∞‖
√
ρuh‖2

2 dτ.

Applying Gronwall’s inequality and using (3.47) give us that

‖uh‖L∞t (L2) + ‖∇uh‖L2
t (L

2) ≤ C‖u0,h‖2 exp{C‖u0,l‖Ḃ1/2
2,1
}.

We interpolate to have

‖uh‖L4
t (Ḃ

1/2
2,1 )
≤ C‖u0,h‖2 exp{C‖u0,l‖Ḃ1/2

2,1
}.

This implies that there exists a positive number tε such that ‖uh(tε)‖Ḃ1/2
2,1
≤ ε, and so ‖u(tε)‖Ḃ1/2

2,1
.

ε. Now we apply Lemma 3.36 to conclude that

‖u‖
L∞((tε,∞);Ḃ

1/2
2,1 )
. ‖u(tε)‖Ḃ1/2

2,1
. ε,

which implies (3.4) since ε is arbitrarily small. This completes the proof of Theorem 3.6.
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Chapter 4

Compressible Flows

4.1 Introduction

The main purpose of this chapter is to investigate the maximal L1 regularity of (1.6) under

the least regularity assumption on the density ρ. In Chapter 3, we were only able to work in

the L2 (in space) framework due to the presence of pressure. In this chapter, the operator A

in (1.6) will be a local operator, and we will work in the general Lp (in space) framework. A

practical benefit of doing so is that one can lower the regularity of the density (see [20]). For the

analysis in Chapter 3 to adapt to the Lp framework, we need to make the extra effort to obtain

pointwise bounds for the kernel of the semigroup generated by ρ−1A. Let us consider two

concrete examples. For A = ∆ (the Laplacian), McIntosh and Nahmod [46] proved that the

kernel of the L2 semigroup etρ−1∆ generated by ρ−1∆ satisfies Gaussian bounds (see also [31]).

This guarantees that the semigroup etρ−1∆ extrapolates to a bounded analytic semigroup on Lp,

1 < p < ∞. Note that the kernel of etρ−1∆ is essentially a scalar kernel. If A is the Lamé

operator L defined by (2.6), however, (1.6) is a truly coupled system whose fundamental matrix

does not necessarily satisfy Gaussian bounds. Nevertheless, we can prove the bounds for the

fundamental matrix and its derivatives using a rather classical method if the dimensions of the

Euclidean space ≤ 3. The tricks are due to Davies, one is to use Sobolev inequalities to bound

L∞-norm (see [27]), the other is a perturbation technique to obtain exponential decay (see [26]).

In the spirit of [31, 46], once we obtain Gaussian upper bounds of the fundamental matrix

(denoted by Kt(x, y)), we can easily get the C1,γ estimates for the kernel Kt(x, y)ρ−1(y).
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Before we study the maximal regularity for (1.6), we will establish a maximal L1-in-time

regularity result for the abstract Cauchy problem


u′(t)− Su(t) = f(t),

u(0) = x

(4.1)

in homogeneous type spaces. Let us assume that S is an unbounded linear operator on a Banach

space (X, ‖ · ‖) that generates a bounded analytic semigroup etS . Given (4.1) with x = 0, S is

said to have maximal Lr-in-time regularity inX for r ∈ [1,∞], if for every f ∈ Lr((0,∞);X),

(4.1) has a unique solution verifying

‖Su‖Lr((0,∞);X) ≤ C‖f‖Lr((0,∞);X). (4.2)

The maximal Lr regularity issue for r ∈ (1,∞) has been extensively studied in the literature.

We refer to [25,28,30,35,51], amongst which [25] also covered the L1 theory, but the global-in-

time estimate (4.2) holds only if 0 belongs to the resolvent set ρ(S) of S (i.e., S−1 ∈ L (X)).

It goes without saying that such a condition is very demanding in many concrete examples.

Recently, Ri and Farwig [52] established maximal L1 regularity for S in inhomogeneous type

spaces without assuming 0 ∈ ρ(S). Later, a similar result in the homogeneous space setting

was proved by Danchin et al. [18]. The authors in [18] also nicely explained the importance

of maximal L1 regularity for parabolic systems in homogeneous spaces. Our work is more

relevant to the one in [18]. But [18] did not cover maximal regularity in homogeneous spaces

with negative regularity. For us, working in spaces with negative regularity can weaken the

regularity of the density. Here we follow Chapter 3 closely. It turns out that the strategy of the

proof of the concrete result in Chapter 3 works equally well for the abstract problem.

This chapter is organized as follows. In Section 4.2, we prove the C1,γ regularity for

Kt(x, y)b(y), where Kt(x, y) is the matrix-valued heat kernel of −bL and L is the Lamé oper-

ator. We remark that the coefficient b is only bounded and bounded from below by a positive

constant. In Section 4.3, we derive the maximal L1 regularity for the abstract Cauchy problem

(4.1) when S is a composition of bounded and unbounded operators. Then, in Section 4.4, we
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apply the abstract theory to study the maximal L1 regularity for (1.6), where A is the Lapla-

cian or the Lamé operator. Section 4.5 is devoted to the global-in-time well-posedness of the

pressureless system (1.3). The method in Section 4.5 is also suitable for solving compressible

Navier-Stokes equations, and the corresponding result will be reported in Section 4.6.

4.2 Bounds of fundamental matrix

Let ρ be a measurable function defined in Rn satisfying

m ≤ ρ(x) ≤ 1

m
, a.e. x ∈ Rn (4.3)

for some m ∈ (0, 1]. Denote b = ρ−1. The main results of this section, in the spirit of those

in [31, 46], are the Gaussian bounds of the matrix-valued heat kernel of −bL.

For notational convenience, we denote L2 = L2(Rn;Rn), H2 = H2(Rn;Rn). Let ‖ · ‖

be the L2 norm induced by the standard L2 inner product 〈·, ·〉, and ‖ · ‖ρ the weighted norm

induced by the inner product

〈u, v〉ρ =

ˆ
Rn
u(x) · v(x)ρ(x) dx.

Roughly, our method is a classical PDE method, and we will study various weighted

estimates for the solutions to the parabolic Lamé system

ρ(x)∂tu− Lu = 0, in (0,∞)× Rn. (4.4)

Before studying the variable coefficient problem, let us point out a basic fact about the Lamé

operator L. The assumption (2.7) guarantees the ellipticity of −L, and we have

‖(−L)1/2u‖2 = 〈−Lu, u〉 = µ‖∇u‖2 + (µ+ λ)‖ divu‖2 ≥ (µ ∧ ν)‖∇u‖2 (4.5)

for all vectors u ∈ H2.
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Lemma 4.1. The operator bL : H2 ⊂ L2 → L2 generates an analytic semigroup of contraction

{etbL}t≥0 on (L2, 〈·, ·〉ρ), and etbLb is self-adjoint on (L2, 〈·, ·〉) for every t ≥ 0.

Proof. First, it is readily to verify that bL is a self-adjoint operator on (L2, 〈·, ·〉ρ). In view of

(4.5), we have 〈bLu, u〉ρ ≤ 0 for all u ∈ H2. So by Theorem 2.4, bL generates an analytic

semigroup of contraction {etbL}t≥0 on (L2, 〈·, ·〉ρ). Since etbL is self-adjoint on (L2, 〈·, ·〉ρ), we

have for all u, v ∈ L2 that

〈etbLbu, v〉 = 〈etbLbu, bv〉ρ = 〈bu, etbLbv〉ρ = 〈u, etbLbv〉.

This means that etbLb is self-adjoint on (L2, 〈·, ·〉).

Lemma 4.2. Let n ∈ {2, 3}. For every t > 0, the bounded operator etbL on L2 admits a

Schwartz kernel, denoted by Kt(x, y), which is bounded and satisfies the pointwise bound

|Kt(x, y)| ≤ C

tn/2

for some constant C = C(m,µ, λ).

Proof. Since n ∈ {2, 3}, we get from the Gagliardo-Nirenberg inequality and (2.10) that

‖u‖∞ ≤ C‖u‖1−n/4‖Lu‖n/4 u ∈ H2. (4.6)

This along with the analyticity of etbL implies that

‖etbLu0‖∞ ≤ Ct−n/4‖u0‖, u0 ∈ L2.

Then etbL is also bounded from L1 to L2 due to the self-adjointness of etbLb, and from L1 to

L∞ due to the semigroup property. So the Schwartz kernel Kt(x, y) of etbL is indeed bounded

and satisfies the desired bound. This completes the proof.

Next, we adopt the well-known Davies perturbation method (see [26]) to show Gaussian

bounds for the kernel St(x, y) := Kt(x, y)b(y).
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The main theorem in this section is the following:

Theorem 4.3. Let n ∈ {2, 3}. For any γ ∈ (0, 1) and t > 0, each entry of St(x, y) is a

C1,γ(Rn × Rn) function. More precisely, there exist constants C1 = C1(m,µ, λ) and C2 =

C2(m,µ, λ, γ) such that for all t > 0 and x, y, h ∈ Rn,

|St(x, y)|+
√
t|∇xSt(x, y)| ≤ C1

tn/2
exp

{
−|x− y|

2

C1t

}
,

|∇xSt(x+ h, y)−∇xSt(x, y)| ≤
(
|h|√
t

)γ
C2

t(n+1)/2
exp

{
−|x− y|

2

C2t

}
, (4.7)

and

|∇xSt(x, y + h)−∇xSt(x, y)| ≤
(
|h|√
t

)γ
C2

t(n+1)/2
exp

{
−|x− y|

2

C2t

}
(4.8)

provided 2|h| ≤
√
t.

Remark 4.4. In view of Lemma 4.1, we have St(x, y) = Sᵀt (y, x). So the y-derivative also

satisfies each of the bounds.

Let W denote the set of all bounded real-valued smooth functions ψ on Rn such that

‖∇ψ‖∞ ≤ 1 and ‖∇2ψ‖∞ ≤ 1. Let d(x, y) := sup{ψ(x)− ψ(y)|ψ ∈ W }.

Lemma 4.5 (see [27, Lemma 4]). There exists a positive constant C = C(n) such that

C−1|x− y| ≤ d(x, y) ≤ C|x− y|

for all x, y ∈ Rn.
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Given α ∈ R and ψ ∈ W , define ψα(x) = ψ(αx) and φ(x) = eψα(x). The analysis is

based on the key observation that

〈−φ−1Lφv, u〉 =µ

ˆ
(α(∇ψ)α ⊗ v +∇v) : (−α(∇ψ)α ⊗ u+∇u) dx

+ (µ+ λ)

ˆ
(α(∇ψ)α · v + div v)(−α(∇ψ)α · u+ divu) dx (4.9)

for any smooth vector fields u and v. In particular, if u = v, we have

〈−φ−1Lφv, v〉 ≥ ‖(−L)1/2v‖2 − Cα2‖v‖2. (4.10)

In what follows, we divide the proof of Theorem 4.3 into three lemmas.

Lemma 4.6. Let n ∈ {2, 3}. There exists a constant C = C(m,µ, λ) such that for all t > 0

and x, y ∈ Rn,

|Kt(x, y)| ≤ C

tn/2
exp

{
−|x− y|

2

Ct

}
.

Proof. Denote v = φ−1etbL(φu0), where u0 ∈ L2. Then v is a solution to the system


ρ∂tv − φ−1Lφv = 0,

v(0) = u0.

(4.11)

We start with the energy estimates for v. Taking inner product of (4.11) with v, then using

(4.10), we get

1

2

d

dt
‖v‖2

ρ + ‖(−L)1/2v‖2 ≤ Cα2‖v‖2
ρ.

Applying Gronwall’s inequality, we obtain

‖v(t)‖2 +

ˆ t

0

‖(−L)1/2v‖2 dτ ≤ C‖u0‖2eCα
2t. (4.12)
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Differentiating (4.11) with respect to t, we get by a similar argument that

1

2

d

dt
‖∂tv‖2

ρ + ‖(−L)1/2∂tv‖2 ≤ Cα2‖∂tv‖2
ρ.

So the function t 7→ ‖∂tv‖2
ρe
−Cα2t is decreasing. Consequently, we have

‖∂tv‖2
ρe
−Cα2t ≤ 2

t

ˆ t

t/2

‖∂tv‖2
ρe
−Cα2τ dτ. (4.13)

Next, multiplying (4.11) by vt and integrating in x, then using (4.9) and the Cauchy-Schwarz

inequality, we get

‖∂tv‖2
ρ +

1

2

d

dt
‖(−L)1/2v‖2 ≤ C

(
α2‖v‖‖∂tv‖+ |α|‖∇v‖‖∂tv‖

)
.

The term ‖∂tv‖ on the right side can be absorbed by ‖∂tv‖2
ρ on the left side. This together with

(4.12) and (4.5) gives

‖∂tv‖2
ρ +

d

dt
‖(−L)1/2v‖2 ≤ C

(
α4eCα

2t‖u0‖2 + α2‖(−L)1/2v‖2
)
.

So,

‖∂tv‖2
ρe
−Cα2t +

d

dt
(‖(−L)1/2v‖2e−Cα

2t) ≤ Cα4‖u0‖2. (4.14)

Combining (4.12) and (4.14), we have

ˆ t

t/2

‖∂tv‖2
ρe
−Cα2τ dτ + ‖(−L)1/2v(t)‖2 ≤ C

(
1

t
+ α4t

)
‖u0‖2eCα

2t,

which together with (4.13) further implies

‖∂tv(t)‖ ≤ C

(
α2 +

1

t

)
‖u0‖eCα

2t ≤ C

t
‖u0‖eCα

2t. (4.15)
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The above estimate should imply the corresponding L2 estimate of Lv. To see this, we get

by a direct computation that

−Lv =− ρ∂tv + µ(α2|∇ψ|2αv + 2α(∇ψ)α · ∇v + α2(∆ψ)αv)

+ (µ+ λ)(α div v(∇ψ)α + α∇v(∇ψ)α + α2(v · (∇ψ)α)(∇ψ)α + α2(∇2ψ)αv).

(4.16)

Then it is easy to see that

‖Lv‖ ≤ C(‖∂tv‖+ α2‖v‖+ |α|‖∇v‖).

The first order derivative can be handled by using the interpolation inequality

‖∇v‖ ≤ C‖v‖1/2‖Lv‖1/2.

So,

‖Lv‖ ≤ C(‖∂tv‖+ α2‖v‖).

Substituting for ‖v‖ and ‖∂tv‖ by (4.12) and (4.15), respectively, we have

‖Lv(t)‖ ≤ C

t
‖u0‖eCα

2t.

Now using the Gagliardo-Nirenberg inequality (4.6), we obtain

‖v(t)‖∞ ≤
C

tn/4
‖u0‖eCα

2t. (4.17)

This means that the operator φ−1etbLφ is bounded from L2 to L∞. A duality argument gives

the bound from L1 to L2, that is,

‖v(t)‖ ≤ C

tn/4
‖u0‖1e

Cα2t. (4.18)
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While this along with the semigroup property of φ−1etbLφ gives

‖v(t)‖∞ ≤
C

tn/2
‖u0‖1e

Cα2t. (4.19)

Noticing that the kernel of φ−1etbLφ is Kt(x, y)eψ(αy)−ψ(αx), we get

|Kt(x, y)| ≤ C

tn/2
exp{Cα2t+ ψ(αx)− ψ(αy)}.

Replacing ψ by −ψ, we have

|Kt(x, y)| ≤ C

tn/2
exp{Cα2t− |ψ(αx)− ψ(αy)|}.

It follows by optimizing with respect to ψ ∈ W and applying Lemma 4.5 that

|Kt(x, y)| ≤ C

tn/2
exp{Cα2t− C−1|α||x− y|}.

Finally, minimizing the bound by choosing α = |x−y|
2C2t

completes the proof.

Lemma 4.7. Let n ∈ {2, 3}. There exists a constant C = C(m,µ, λ) such that for all t > 0

and x, y ∈ Rn,

|∇xSt(x, y)| ≤ C

t(n+1)/2
exp

{
−|x− y|

2

Ct

}
.

Proof. Apparently, we only need to show the bound for |∇xKt(x, y)|. Denote u = etbL(φu0)

and v = φ−1u, where u0 ∈ L2. We need to bound the norm ‖φ−1∇u(t)‖∞. To this end, let us

first study the norm ‖∇v(t)‖∞ since

φ−1∇u(t) = ∇v + α(∇ψ)α ⊗ v. (4.20)

By the equation (4.16), we see that

‖Lv‖∞ ≤ C(‖∂tv‖∞ + α2‖v‖∞ + |α|‖∇v‖∞). (4.21)
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Using Littlewood-Paley and (2.9), one can prove the interpolation inequality

‖∇v‖∞ ≤ C‖v‖1/2
∞ ‖Lv‖1/2

∞ . (4.22)

Plugging (4.22) in (4.21), we easily get

‖Lv‖∞ ≤ C(‖∂tv‖∞ + α2‖v‖∞). (4.23)

Then combining (4.20), (4.22) and (4.23), we arrive at

‖φ−1∇u(t)‖∞ ≤ C
(
|α|‖v(t)‖∞ + ‖v(t)‖1/2

∞ ‖∂tv(t)‖1/2
∞
)
. (4.24)

Next, in order to bound ‖∂tv(t)‖∞, we observe that

∂tv(t) = φ−1e
t
2
bLφ[∂tv(t/2)].

So, in view of (4.17), (4.15) and (4.18), we get

‖∂tv(t)‖∞ ≤
C

tn/4
eCα

2t‖∂tv(t/2)‖ ≤ C

t1+n/4
eCα

2t‖v(t/4)‖ ≤ C

t1+n/2
eCα

2t‖u0‖1. (4.25)

Plugging the above in (4.24) and using (4.19), we have

‖φ−1∇u(t)‖∞ ≤ C

(
|α|
tn/2

+
1

t(n+1)/2

)
eCα

2t‖u0‖1 ≤
C

t(n+1)/2
eCα

2t‖u0‖1. (4.26)

Thus,

|∇xKt(x, y)| ≤ C

t(n+1)/2
exp{Cα2t+ ψ(αx)− ψ(αy)}.

Again, we finish the proof by optimizing the bound with respect to ψ ∈ W and then α ∈ R.

Remark 4.8. From (4.25), we also see that the kernel of tbLetbL has a pointwise Gaussian

upper bound. In particular, tbLetbL extends to a bounded operator on Lp for every t > 0.
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Lemma 4.9. Let n ∈ {2, 3}. For any γ ∈ (0, 1), there exists a constant C = C(m,µ, λ, γ)

such that for all t > 0 and x, y, h ∈ Rn, (4.7) and (4.8) hold whenever 2|h| ≤
√
t.

Proof. Let u = etbLu0. By Lemmas 4.1 and 4.6, we have

tn/4‖Lu(t)‖+ tn/2‖Lu(t)‖∞ ≤
C

t
‖u0‖1.

For any γ ∈ (0, 1), let q = n
1−γ and θ = 2(1−γ)

n
. Then we use the embedding Ẇ 1,q(Rn) ↪→

Ċγ(Rn) to get

‖∇u‖Ċγ ≤ C‖∇2u‖q ≤ C‖Lu‖q ≤ C‖Lu‖θ2‖Lu‖1−θ
∞ ≤ C

t(n+1+γ)/2
‖u0‖1.

Thus, we have for any h ∈ Rn that

|∇xKt(x+ h, y)−∇xKt(x, y)| ≤ C

t(n+1)/2

(
|h|√
t

)γ
.

The exponential decay factor in (4.7) can be easily obtained by the observation that

|∇xKt(x+ h, y)−∇xKt(x, y)|

≤(|∇xKt(x+ h, y)|+ |∇xKt(x, y)|)1−β|∇xKt(x+ h, y)−∇xKt(x, y)|β

for any β ∈ (0, 1). This proves (4.7).

To prove (4.8), we write

ˆ
[∇xSt(x, y + h)−∇xSt(x, y)]u0(y) dy = ∇etbL(bδhu0)

with δhu0(x) = u0(x−h)−u0(x). Using Lemma 4.7, the right side can be estimated as follows

‖∇etbL(bδhu0)‖∞ ≤
C√
t
‖e

t
2
bL(bδhu0)‖∞ ≤

C|h|
t1+n/2

‖u0‖1.

The bound in (4.8) can be shown by a similar argument as the first part of the proof. This

completes the proof of the lemma.
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For completeness, we conclude this section by finishing the proof of Theorem 4.3.

Proof of Theorem 4.3. Lemmas 4.6, 4.7 and 4.9 constitute the proof of Theorem 4.3.

4.3 An abstract L1 theory

In this section, we are concerned with the L1-in-time theory for the abstract Cauchy problem

(4.1), where S is a composition of bounded and unbounded operator. We follow Chapter 3

closely and we do not explicitly use the theory of interpolation spaces.

Let (X, ‖ · ‖) be a Banach space. We temporarily just assume

Assumption 4.1. S : D(S) ⊂ X → X is an one-to-one operator that generates a bounded

analytic semigroup etS on X .

Given s ∈ (0, 2), we define

‖x‖Ḃs,SX,1 := ‖t−s/2‖tSetSx‖‖L1(R+,
dt
t

)

and

‖x‖Ḃ−s,SX,1
:= ‖ts/2‖etSx‖‖L1(R+,

dt
t

).

In view of Lemmas 2.13 and 2.14, the above notations make sense if we pretend that S is a

second-order elliptic operator. For any x ∈ D(S), since ‖tSetSx‖ . ‖x‖ ∧ ‖tSx‖, we easily

see that

‖x‖Ḃs,SX,1 . ‖x‖D(S) := ‖x‖+ ‖Sx‖.

While for x ∈ R(S), the range of S, we have

‖x‖Ḃ−s,SX,1
= ‖S−1x‖Ḃ2−s,S

X,1
. ‖x‖R(S) := ‖x‖+ ‖S−1x‖.
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Definition 4.10. Let s ∈ (0, 2). Define Ḃs,S
X,1 as the completion of (D(S), ‖ · ‖Ḃs,SX,1), and Ḃ−s,SX,1

as the completion of (R(S), ‖ · ‖Ḃ−s,SX,1
).

The space Ḃs,S
X,1 can also be defined via interpolation (see, e.g., [35, Remark 2.4]), but we

do not need this fact in this dissertation.

For notational convenience, we temporarily denote Ḃ±s,SX,1 by Ḃ±s. But we shall not use

the abbreviated notations if the norms are associated with different operators.

Lemma 4.11. For every k ∈ N ∪ {0} and s ∈ (0, 2), there exists a constant C depending on s

and k such that

sup
t>0
‖(tS)ketSx‖Ḃs ≤ C‖x‖Ḃs , ∀x ∈ D(S), (4.27)

sup
t>0
‖(tS)ketSx‖Ḃ−s ≤ C‖x‖Ḃ−s , ∀x ∈ R(S), (4.28)

∥∥‖(tS)k+1etSx‖Ḃs
∥∥
L1(R+,

dt
t

)
≤ C‖x‖Ḃs , x ∈ D(S), (4.29)

and

∥∥‖(tS)k+1etSx‖Ḃ−s
∥∥
L1(R+,

dt
t

)
≤ C‖x‖Ḃ−s , x ∈ R(S). (4.30)

Proof. The first two inequalities follow immediately from the definitions of the norms and the

analyticity of etS .
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The proofs for (4.29) and (4.30) are similar, so let us only prove (4.29). In view of (4.27),

we only need to prove (4.29) for k = 0. Applying Fubini’s theorem, we have

ˆ ∞
0

‖τSeτSx‖Ḃs
dτ

τ
=

ˆ ∞
0

ˆ ∞
0

t−s/2‖S2e(t+τ)Sx‖ dt dτ

=

ˆ ∞
0

ˆ ∞
τ

(t− τ)−s/2‖S2etSx‖ dt dτ

=

ˆ ∞
0

‖S2etSx‖ dt
ˆ t

0

(t− τ)−s/2 dτ

=
2

2− s

ˆ ∞
0

t−s/2‖tS2etSx‖ dt.

Finally, by the analyticity of S, we end up with

∥∥‖(tS)etSx‖Ḃs
∥∥
L1(R+,

dt
t

)
≤ C

ˆ ∞
0

t−s/2‖SetSx‖ dt = C‖x‖Ḃs .

This completes the proof.

The inequality (4.27) (with k = 0) guarantees that etS |D(S) extends to a bounded operator

on Ḃs with bounds uniform in t. Denote this extension by Ts(t). Then {Ts(t)}t≥0 is a bounded

semigroup on Ḃs. Similarly, (4.28) implies that etS also extrapolates to a bounded semigroup

{T−s(t)}t≥0 on Ḃ−s. In fact, both semigroups are strongly continuous.

Lemma 4.12. {Ts(t)}t≥0 (resp., {T−s(t)}t≥0) is a bounded C0 semigroup on Ḃs (resp., Ḃ−s).

Proof. For x ∈ D(S), the function t 7→ Ts(t)x = etSx belongs to C([0,∞);D(S)), hence

C([0,∞); Ḃs) since D(S) ↪→ Ḃs. One can easily get the strong continuity of Ts(t) on Ḃs by a

density argument.

The strong continuity of T−s(t) on Ḃ−s can be proved analogously.

Let us denote by Gs and G−s the generators of Ts(t) and T−s(t), respectively. In general, it

is not easy to identify the domain of the generator of a semigroup. However, it would be easier

to find a core for the generator.

Lemma 4.13. (i) The domainD(S2) of S2 is a core for Gs, and it holds that Gs|D(S2) = S|D(S2),

that is, Gs is the closure of S : D(S2) ⊂ Ḃs → Ḃs.
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(ii) G−s is the closure of S : D(S) ∩R(S) ⊂ Ḃ−s → Ḃ−s.

Proof. Note that D(S2) is dense in Ḃs since D(S2) is dense in D(S) and D(S) is dense in Ḃs.

For every x ∈ D(S2), we have

1

t
(Ts(t)x− x) =

1

t

ˆ t

0

Ts(τ)Sx dτ.

Letting t → 0+, the right side converges to Sx in D(S), thus, in Ḃs. From this, we infer that

D(S2) ⊂ D(Gs) and Gs|D(S2) = S|D(S2). Obviously, D(S2) is invariant under Ts(t). Thus, by

Lemma 2.5, D(S2) is a core for Gs.

We prove the second part along the lines of the above proof. First, D(S) ∩ R(S) is dense

in Ḃ−s since D(S) ∩ R(S) is dense in (R(S), ‖ · ‖R(S)) and R(S) is dense in Ḃ−s. Next, we

can show that D(S) ∩ R(S) ⊂ D(G−s) and G−s|D(S)∩R(S) = S|D(S)∩R(S). Moreover, since

D(S) ∩R(S) is invariant under T−s(t), so it is a core for G−s. This completes the proof.

Lemma 4.14. {Ts(t)}t≥0 (resp., {T−s(t)}t≥0) is a bounded analytic semigroup on Ḃs (resp.,

Ḃ−s).

Proof. We know from Lemma 4.13 that D(S2) is dense in Ḃs, and that GsTs(t)x = SetSx for

x ∈ D(S2). It then follows from (4.27) that ‖tGsTs(t)x‖Ḃs ≤ C‖x‖Ḃs for every t > 0. So

Ts(t) is a bounded analytic semigroup. An analogous argument gives the analyticity of T−s(t)

on Ḃ−s.

Remark 4.15. By Fatou’s lemma, now (4.29) (resp., (4.30)) actually holds for data in Ḃs (resp.,

Ḃ−s). In particular, choosing k = 0, we have

‖GsetGsx‖L1(R+,Ḃs)
≤ C‖x‖Ḃs , ∀x ∈ Ḃ

s (4.31)

and

‖G−setG−sx‖L1(R+,Ḃ−s)
≤ C‖x‖Ḃ−s , ∀x ∈ Ḃ

−s. (4.32)
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Next, we take advantage of Lemma 4.14, (4.31) and (4.32) to obtain the maximal L1

regularity for the abstract Cauchy problems

u′(t)− Gsu(t) = f(t), u(0) = x (4.33)

and

u′(t)− G−su(t) = f(t), u(0) = x. (4.34)

Theorem 4.16. Assume Assumption 4.1. Let s ∈ (0, 2) and T ∈ (0,∞]. There exists a constant

C = C(s) such that

(i) For any x ∈ Ḃs and f ∈ L1((0, T ); Ḃs), the equation (4.33) has a unique strong

solution u ∈ C([0, T ); Ḃs) satisfying

‖u‖L∞T (Ḃs) + ‖u′,Gsu‖L1
T (Ḃs) ≤ C‖x‖Ḃs + C‖f‖L1

T (Ḃs).

(ii) For any x ∈ Ḃ−s and f ∈ L1((0, T ); Ḃ−s), the equation (4.34) has a unique strong

solution u ∈ C([0, T ); Ḃ−s) satisfying

‖u‖L∞T (Ḃ−s) + ‖u′,G−su‖L1
T (Ḃ−s) ≤ C‖x‖Ḃ−s + C‖f‖L1

T (Ḃ−s).

Proof. Let us only give the proof of the first part. The homogeneous part etGsx is a classical

solution to the homogeneous equation, and satisfies the desired estimate by Lemma 4.14 and

(4.31). Denote the inhomogeneous part by If(t) =
´ t

0
e(t−τ)Gsf(τ) dτ . Then it is easy to see

that ‖If‖L∞T (Ḃs) . ‖f‖L1
T (Ḃs). Using again (4.31) and Fubini’s theorem, we have

‖GsIf‖L1
T (Ḃs) ≤

ˆ T

0

ˆ t

0

‖Gse(t−τ)Gsf(τ)‖Ḃs dτ dt

=

ˆ T

0

dτ

ˆ T

τ

‖Gse(t−τ)Gsf(τ)‖Ḃs dt . ‖f‖L1
T (Ḃs).
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So by Lemma 2.6, u = etGsx+ If(t) is a strong solution to (4.33). The estimate for u′ follows

directly by the previous estimates and the equation (4.33). So the proof is completed.

Now we consider the abstract Cauchy problem (4.1) associated with a composite operator

of the form S = BA, where B is a bounded invertible operator andA is an unbounded operator.

Our analysis relies on an abstract version of Theorem 3.10. Such a result has been demonstrated

useful for studying density-dependent fluids.

We start with some assumptions.

Assumption 4.2. The linear operator A : D(A) ⊂ X → X generates a bounded analytic

semigroup etA satisfying limt→∞ ‖etAx‖ = 0 for every x ∈ X .

Assumption 4.3. B ∈ L (X) is invertible with an inverse B−1 ∈ L (X).

Assumption 4.4. S = BA : D(A) ⊂ X → X generates a bounded analytic semigroup etS

satisfying limt→∞ ‖etSx‖ = 0 for every x ∈ X .

Lemma 4.17. Under Assumptions 4.2-4.4, it holds for any (s, q) ∈ (0, 1)× [1,∞] and x ∈ X

that

∥∥ts‖etSx‖∥∥
Lq(R+,

dt
t

)
'
∥∥ts‖etAB−1x‖

∥∥
Lq(R+,

dt
t

)
. (4.35)

Consequently, we have for any x ∈ D(A),

∥∥t−s‖tSetSx‖∥∥
Lq(R+,

dt
t

)
'
∥∥t−s‖tAetAx‖∥∥

Lq(R+,
dt
t

)
. (4.36)

Proof. By Assumption 4.2, we have for any x ∈ X that

x = − lim
ε→0+

ˆ 1/ε

ε

AeτAx dτ,

where the limit converges in X . Replacing x by B−1x gives

B−1x = −
ˆ ∞

0

AeτAB−1x dτ.
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Applying etSB to both sides of the above identity, we obtain

etSx = −
ˆ ∞

0

etSBAeτAB−1x dτ.

We can bound the integrand in two different ways:

‖etSBAeτAB−1x‖ = ‖etSSeτAB−1x‖ . 1

t
‖eτAB−1x‖ . 1

t
‖e

τ
2
AB−1x‖,

or,

‖etSBAeτAB−1x‖ . ‖AeτAB−1x‖ . 1

τ
‖e

τ
2
AB−1x‖.

So we arrive at

‖etSx‖ .
ˆ ∞

0

1

t ∨ τ
‖eτAB−1x‖ dτ.

Multiplying both sides by ts, we get

ts‖etSx‖ .
ˆ ∞

0

(
t

τ

)s (
1 ∧ τ

t

)
τ s‖eτAB−1x‖ dτ

τ
.

Since s ∈ (0, 1), it is easy to verify that

sup
t>0

ˆ ∞
0

(
t

τ

)s (τ
t
∧ 1
) dτ

τ
+ sup

τ>0

ˆ ∞
0

(
t

τ

)s (τ
t
∧ 1
) dt

t
≤ C.

It then follows from Lemma 3.16 that

∥∥ts‖etSx‖∥∥
Lq(R+,

dt
t

)
.
∥∥ts‖etAB−1x‖

∥∥
Lq(R+,

dt
t

)
.
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The reverse inequality can be proved in a similar way. By Assumption 4.4, we have for

any x ∈ X that

x = −
ˆ ∞

0

BAeτSx dτ.

This time we apply etAB−1 to both sides of the above identity to get

etAB−1x = −
ˆ ∞

0

etAAeτSx dτ.

So bounding the integrand in two different ways as before gives rise to

‖etAB−1x‖ .
ˆ ∞

0

1

t ∨ τ
‖eτSx‖ dτ.

This can further imply that

∥∥ts‖etAB−1x‖
∥∥
Lq(R+,

dt
t

)
.
∥∥ts‖etSx‖∥∥

Lq(R+,
dt
t

)
.

Thus, we have verified (4.35).

Finally, (4.36) follows by replacing x by Sx in (4.35).

We assume additionally that

Assumption 4.5. A : D(A) ⊂ X → X is one-to-one.

So S satisfies Assumption 4.1. Then the equivalence of norms implies the equivalence of

spaces. More precisely, we get immediately from Lemma 4.17 that

Corollary 4.18. Let s ∈ (0, 2). Under Assumptions 4.2-4.5, we have

(i) Ḃs,S
X,1 = Ḃs,A

X,1 with equivalent norms.

(ii) Ḃ−s,SX,1 coincides with the completion of R(S) with respect to the norm ‖B−1 · ‖Ḃ−s,AX,1
,

where the spaces and norms associated with A are defined in an obvious way.

It turns out that the operator B acting on Ḃ−s,AX,1 is meaningful. Indeed, (4.35) implies

that B|R(A) extends to a continuous operator, denoted by B, from Ḃ−s,AX,1 to Ḃ−s,SX,1 ; and that
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B−1|R(S) extends to a continuous operator, denoted by B−1, from Ḃ−s,SX,1 to Ḃ−s,AX,1 . Obviously,

B is invertible and B−1
= B−1. These facts can help us identify G−s in the following

Lemma 4.19. Assuming Assumptions 4.2-4.5, then the operator

A : D(A) ∩R(S) ⊂ Ḃ−s,SX,1 → Ḃ−s,AX,1

is closable. Moreover, we have G−s = BA, where A is the closure of the above A.

Proof. We see from Lemma 4.13 (ii) that G−s is the closure of

BA : D(A) ∩R(S) ⊂ Ḃ−s,SX,1 → Ḃ−s,SX,1 .

It follows that A := B−1G−s is the closure of

A : D(A) ∩R(S) ⊂ Ḃ−s,SX,1 → Ḃ−s,AX,1 .

This completes the proof.

We conclude this section with the maximal L1 regularity for the Cauchy problem

B−1
u′(t)−Au(t) = f(t), u(0) = x. (4.37)

Theorem 4.20. Let s ∈ (0, 2) and T ∈ (0,∞]. Assuming Assumptions 4.2-4.5, if x ∈ Ḃ−s,SX,1

and f ∈ L1((0, T ); Ḃ−s,AX,1 ), then (4.37) has a unique strong solution u in the class

u ∈ C([0, T ); Ḃ−s,SX,1 ), u′ ∈ L1((0, T ); Ḃ−s,SX,1 ), Au ∈ L1((0, T ); Ḃ−s,AX,1 ).

Moreover, it holds that

‖B−1
u‖L∞T (Ḃ−s,AX,1 ) + ‖B−1

u′,Au‖L1
T (Ḃ−s,AX,1 ) ≤ C‖B−1

x‖Ḃ−s,AX,1
+ C‖f‖L1

T (Ḃ−s,AX,1 ),

where C depends on s, ‖B‖L (X) and ‖B−1‖L (X).
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Proof. Note that Bf ∈ L1((0, T ); Ḃ−s,SX,1 ). Thanks to the continuity of B and B−1
, and Lemma

4.19, then Theorem 4.20 follows by applying Theorem 4.16 (ii) to the Cauchy problem

u′(t)− BAu(t) = Bf(t), u(0) = x.

4.4 Concrete examples

In this section, we apply the abstract theory to two concrete examples. The linear system to be

considered reads 
ρ∂tu−Au = f, in (0,∞)× Rn,

u(0) = u0, on Rn,

(4.38)

where the coefficient ρ is a time-independent function satisfying (4.3), and A is either the

Laplacian ∆ or the Lamé operator L defined by (2.6). We denote b = ρ−1. From now on, we

always assume

Assumption 4.6. n ≥ 2 if A = ∆, or n ∈ {2, 3} if A = L.

We choose X = Lp = Lp(Rn;Rn) (1 < p < ∞), D(A) = W 2,p = W 2,p(Rn;Rn), and

S = bA. Obviously, Assumptions 4.3 and 4.5 are satisfied. ThatA satisfies Assumption 4.2 is a

classical result (see, e.g., [6, Example 3.7.6]). That b∆ : W 2,p ⊂ Lp → Lp satisfies Assumption

4.4 was essentially proved in [31, 46]. Analogously, we can use Lemma 4.1, Lemma 4.6 and

Remark 4.8 to show that bL satisfies Assumption 4.4 as well.

Let us identify the spaces Ḃ±s,AX,1 . Let s ∈ (0, 2). We know from Lemmas 2.13 and 2.14

that the Ḃ−s,AX,1 -norm is equivalent to the Besov Ḃ−sp,1-norm. One can see from (2.8) and (2.9)

that R(∆) = R(L). It is however easy to see that R(∆) is dense in Ḃ−sp,1. So Ḃ−s,AX,1 is identified

as Ḃ−sp,1 for every s ∈ (0, 2). To identify Ḃs,A
X,1, we assume additionally s ≤ n

p
so that Ḃs

p,1 is

complete. Then applying Corollary 4.18 (i), Lemmas 2.13 and 2.14, and the obvious fact that

D(A) = W 2,p is dense in Ḃs
p,1, we get Ḃs,S

X,1 = Ḃs,A
X,1 = Ḃs

p,1.
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We now turn to the central problem of this section, that is, the maximal L1 regularity for

(4.38). In view of Theorem 4.16 (i) and Lemma 4.13 (i), the smooth solutions to (4.38) should

satisfy the a priori estimate

‖u‖L∞T (Ḃsp,1) + ‖u′, bAu‖L1
T (Ḃsp,1) . ‖u0‖Ḃsp,1 + ‖bf‖L1

T (Ḃsp,1).

But if ρ merely satisfies (4.3), we can not handle the inhomogeneous term, nor can we obtain

the estimate for ‖Au‖L1
T (Ḃsp,1). Solving (4.38) in Besov spaces with negative regularity seems

to be a more promising way to lower the regularity of the density. In fact, from Theorem 4.20,

the a priori estimate for smooth solutions becomes

‖ρu‖L∞T (Ḃ−sp,1) + ‖ρu′,Au‖L1
T (Ḃ−sp,1) . ‖ρu0‖Ḃ−sp,1 + ‖f‖L1

T (Ḃ−sp,1).

Unfortunately, the above is not quite true if u is only a strong solution.

By Corollary 4.18 (ii), the space Ḃ−s,SX,1 agrees with the completion of (R(S), ‖ρ · ‖Ḃ−sp,1).

Then the multiplication by ρ extends to a bounded operator, still denoted by ρ, from Ḃ−s,SX,1 to

Ḃ−sp,1 with a bounded inverse that coincides with the extension of the multiplication by b. By

Lemma 4.19, the operator

A : W 2,p ∩ bA(W 2,p) ⊂ Ḃ−s,SX,1 → Ḃ−sp,1

is closable, and we denote its closure by A. Then One can directly interpret Theorem 4.20 as

follows:

Corollary 4.21. Let s ∈ (0, 2) and T ∈ (0,∞]. If u0 ∈ Ḃ−s,SX,1 and f ∈ L1((0, T ); Ḃ−sp,1), then

(4.38) has a unique strong solution u in the class

u ∈ C([0, T ); Ḃ−s,SX,1 ), ∂tu ∈ L1((0, T ); Ḃ−s,SX,1 ), Au ∈ L1((0, T ); Ḃ−sp,1).
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Moreover, there exists some constant C = C(s,m, µ, ν) such that

‖ρu‖L∞T (Ḃ−sp,1) + ‖ρu′,Au‖L1
T (Ḃ−sp,1) ≤ C‖ρu0‖Ḃ−sp,1 + C‖f‖L1

T (Ḃ−sp,1).

Unfortunately, it is not clear whether ‖∇u‖∞ can be bounded by ‖Au‖
Ḃ
n/p−1
p,1

for n <

p < ∞. Note that an element in Ḃ−s,SX,1 might not even be a distribution. So Theorem 4.16

and Corollary 4.21 may be too abstract to be useful in applications if one insists to work in an

L1-in-time framework. For this, we require a little more regularity on the coefficients.

Lemma 4.22. (i) Let p ∈ (1,∞) and s ∈ (0, 2)∩ (0, n
p
]. Assume that ρ, b ∈M (Ḃs

p,1). Then Gs

coincides with the operator

bA : Ḃs
p,1 ∩ Ḃ2+s

p,1 ⊂ Ḃs
p,1 → Ḃs

p,1. (4.39)

(ii) Let p ∈ (1,∞) and s ∈ (0, 2). Assume that ρ, b ∈ M (Ḃ−sp,1). Then the space Ḃ−s,SX,1

coincides with Ḃ−sp,1, and the operator A is given by

A : Ḃ2−s
p,1 ∩ Ḃ−sp,1 ⊂ Ḃ−sp,1 → Ḃ−sp,1. (4.40)

Proof. (i) First, along the same lines of the proof of Lemma 4.13 (i), we can show that Gs is

the closure of

S : {u ∈ D(S)|Su ∈ Ḃs
p,1} ⊂ Ḃs

p,1 → Ḃs
p,1. (4.41)

Since ρ, b ∈ M (Ḃs
p,1), we can identify {u ∈ D(S)|Su ∈ Ḃs

p,1} = {u ∈ W 2,p|bAu ∈ Ḃs
p,1}

as the inhomogeneous Besov space B2+s
p,1 = Lp ∩ Ḃ2+s

p,1 . On the other hand, it is easy to see

that the operator bA defined in (4.39) is closed and is an extension of the operator S defined in

(4.41). The desired result then follows from the fact that B2+s
p,1 is dense in Ḃs

p,1 ∩ Ḃ2+s
p,1 .
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(ii) Let us first refine several results in Section 4.3. Using (4.35) and the fact that R(A) =

A(W 2,p) is dense in Ḃ−sp,1, we can verify that Ḃ−s,SX,1 agrees with the completion of

D−s := {u ∈ Lp|‖ρu‖Ḃ−sp,1 <∞}

with respect to the norm ‖ρ · ‖Ḃ−sp,1 . Then (4.28) holds for every u ∈ D−s, so T−s(t) is the

continuous extension of etS |D−s to Ḃ−s,SX,1 . From this, we can follow the same lines as the proof

of Lemma 4.13 (ii) to show that G−s is the closure of

bA : W 2,p ∩ Ḃ−s,SX,1 ⊂ Ḃ−s,SX,1 → Ḃ−s,SX,1 .

Now assuming ρ, b ∈M (Ḃ−sp,1), it is easy to see that Ḃ−s,SX,1 coincides with Ḃ−sp,1. So ρG−s

is the closure of

A : W 2,p ∩ Ḃ−sp,1 ⊂ Ḃ−sp,1 → Ḃ−sp,1.

But it is not difficult to see that the closure of the above operator is the one defined by (4.40).

This completes the proof.

Finally, we obtain a concrete version of maximal L1 regularity for (4.38).

Theorem 4.23. Let p ∈ (1,∞), s ∈ (0, 2) and T ∈ (0,∞]. Let ρ satisfy (4.3) and b = ρ−1.

(i) Assume that s ≤ n
p

and ρ, b ∈M (Ḃs
p,1). Then for u0 ∈ Ḃs

p,1 and f ∈ L1((0, T ); Ḃs
p,1),

the equation (4.38) has a unique strong solution u ∈ C([0, T ); Ḃs
p,1) satisfying

‖u‖L∞T (Ḃsp,1) + ‖∂tu, bAu‖L1
T (Ḃsp,1) ≤ C‖u0‖Ḃsp,1 + C‖bf‖L1

T (Ḃsp,1)

for some constant C depending on s,m, µ and ν.

(ii) Assume ρ, b ∈ M (Ḃ−sp,1). If u0 ∈ Ḃ−sp,1 and f ∈ L1((0, T ); Ḃ−sp,1), then (4.38) has a

unique strong solution u ∈ C([0, T ); Ḃ−sp,1) satisfying

‖ρu‖L∞T (Ḃ−sp,1) + ‖ρ∂tu,Au‖L1
T (Ḃ−sp,1) ≤ C‖ρu0‖Ḃ−sp,1 + C‖f‖L1

T (Ḃ−sp,1) (4.42)
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for some constant C depending on s,m, µ and ν.

Proof. The first part follows from Theorem 4.16 (i), the equivalence between Ḃs,S
X,1 and Ḃs

p,1,

and Lemma 4.22 (i). The second part follows from Corollary 4.21 and Lemma 4.22 (ii).

4.5 An application to pressureless flows

In this section, we study the global-in-time well-posedness for the pressureless flow


∂tρ+ div(ρu) = 0, in (0,∞)× Rn,

ρ(∂tu+ u · ∇u)− Lu = 0, in (0,∞)× Rn,

(ρ, u)|t=0 = (ρ0, u0), on Rn,

(4.43)

where L is the Lamé operator defined in (2.6) with coefficients satisfying (2.7). The structure

of our proof is in the spirit of the one established in [20]. But the substantial progress we make

is the removal of the smallness assumption on the fluctuation of the initial density.

In this section, we always assume that

Assumption 4.7. Let n ∈ {2, 3}, p ∈ (1, 2n) \ {n}, ρ0 satisfy (4.3), u0 ∈ Ḃ
n/p−1
p,1 =

(Ḃ
n/p−1
p,1 (Rn))n, and ρ0, ρ

−1
0 ∈M (Ḃ

n/p−1
p,1 ).

Let us be clear about what it means by a solution to the system (4.43).

Definition 4.24. The unknown (ρ, u) is called a global-in-time solution to (4.43) if

ρ ∈ L∞(R+ × Rn) ∩ L∞(R+; M (Ḃ
n/p−1
p,1 )),

u ∈ C([0,∞); Ḃ
n/p−1
p,1 ), (∂tu,Lu) ∈

(
L1(R+; Ḃ

n/p−1
p,1 )

)2

,

ρ is a weak solution to the continuity equation of (4.43) (see Definition 2.18), (ρ, u) satisfies

the momentum equation of (4.43) for a.e. t ∈ (0,∞), u(0) = u0, and ρ(t)
∗
⇀ ρ0 in L∞(Rn) as

t→ 0+.

The main result in the section is the following
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Theorem 4.25. Assuming Assumption 4.7, there exists a positive constant c depending on

m, p, n, µ, ν, ‖ρ0‖M (Ḃ
n/p−1
p,1 )

and ‖ρ−1
0 ‖M (Ḃ

n/p−1
p,1 )

such that if ‖u0‖Ḃn/p−1
p,1

≤ c, then (4.43) has a

unique global-in-time solution.

Remark 4.26. The above theorem holds without constraint on the dimensions if L is replaced

by ∆.

Firstly, we shall convert (4.43) into its Lagrangian formulation. Let X(t, y) = Xu(t, y) be

the trajectory of the velocity field u. Recall the notations A(t, y) =
(
DyX(t, y)

)−1, J(t, y) =

detDX(t, y), and A (t, y) = adjDX(t, y). Then introduce new unknowns in Lagrangian

coordinates and define

(ρ,u)(t, y) = (ρ, u)
(
t,X(t, y)

)
. (4.44)

The continuity equation in (4.43) has a unique weak solution ρ ∈ L∞(R+ × Rn) such that

Jρ ≡ ρ0 (see Theorem 2.19). Using (2.18), (2.19) and the chain rule, one can formally convert

the system (4.43) into its Lagrangian formulation that reads


ρ0∂tu− µ div(AuA

ᵀ
u∇u)− (µ+ λ)A ᵀ

u∇Tr(AuDu) = 0,

u|t=0 = u0,

(4.45)

where we associate Au and Au with the new velocity u, namely,

Au = adjDXu, and Au = (DXu(t, y))−1

with

Xu(t, y) = y +

ˆ t

0

u(τ, y) dτ.

We shall prove the well-posedness of the highly nonlinear system (4.45) using the contraction

mapping theorem. In order to apply the linear theory established in Theorem 4.23, we shall
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rewrite (4.45) as

ρ0∂tu− Lu = f(u),

where

f(u) = µ div((AuA
ᵀ
u − In)∇u) + (µ+ λ){(A ᵀ

u − In)∇Tr(AuDu) +∇Tr((Au − In)Du)}.

To bound the above nonlinear term, we invoke (2.25) and the product laws in Besov spaces

to get

‖f(v)‖
L1(Ḃ

n/p−1
p,1 )

. ‖∇v‖2

L1(Ḃ
n/p
p,1 )

(4.46)

whenever v satisfies (2.24).

Again, in view of Theorem 4.23, we shall perform the contraction mapping theorem in the

Banach space Ep defined as

Ep :=
{
u ∈ Cb([0,∞); Ḃ

n/p−1
p,1 )|∂tu ∈ L1(R+; Ḃ

n/p−1
p,1 ),u ∈ L1(R+; Ḃ

n/p+1
p,1 )

}

endowed with the norm

‖u‖Ep := ‖u‖
L∞(Ḃ

n/p−1
p,1 )

+ ‖∂tu,Lu‖L1(Ḃ
n/p−1
p,1 )

.

Now we can prove the global-in-time well-posedness for (4.45).

Theorem 4.27. Assuming Assumption 4.7, there exists a positive constant c depending on

m, p, n, µ, ν, ‖ρ0‖M (Ḃ
n/p−1
p,1 )

and ‖ρ−1
0 ‖M (Ḃ

n/p−1
p,1 )

such that if ‖u0‖Ḃn/p−1
p,1

≤ c, then (4.45) has a

unique global-in-time strong solution u ∈ Ep satisfying ‖u‖Ep . ‖u0‖Ḃn/p−1
p,1

.
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Proof. For r > 0, let Ep(r) denote the closed ball in Ep centered at u = 0 with radius r. We

shall construct a contraction mapping on Ep(r) by solving the linearized system


ρ0∂tu− Lu = f(v),

u|t=0 = u0,

(4.47)

where the input v ∈ Ep(r). To bound the inhomogeneous term, we require r to be small so that

‖∇v‖
L1(Ḃ

n/p
p,1 )
≤ C‖Lv‖

L1(Ḃ
n/p−1
p,1 )

≤ C1r ≤ c0.

This then implies (4.46).

Now, applying Theorem 4.23, we can solve (4.47) for a strong solution u ∈ Ep satisfying

‖u‖Ep ≤ C‖u0‖Ḃn/p−1
p,1

+ C‖f(v)‖
L1(Ḃ

n/p−1
p,1 )

≤ C2‖u0‖Ḃn/p−1
p,1

+ C2r
2.

To ensure that the mapping v 7→ u is a self-map on Ep(r), we need

r ≤ c0

C1

∧ 1

2C2

and

‖u0‖Ḃn/p−1
p,1

≤ r

2C2

.

Next, we need to show the contraction property of the mapping v 7→ u. Given v1,v2 ∈

Ep(r), let u1,u2 ∈ Ep(r) be the corresponding solutions to (4.47). As before, for two quantities

q1 and q2, we always denote by δq their difference q1 − q2. Then applying Theorem 4.23 to the

system satisfied by δu, we obtain

‖δu‖Ep ≤ C‖f(v1)− f(v2)‖
L1(Ḃ

n/p−1
p,1 )

.
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We write

f(v1)− f(v2) =µ div((A1A
ᵀ
1 − I)∇δv) + µ div((A1A

ᵀ
1 −A2A

ᵀ
2)∇v2)

+ (µ+ λ)(A ᵀ
1 − I)∇Tr(A1Dδv) + (µ+ λ)(A ᵀ

1 − I)∇Tr(δADv2)

+ (µ+ λ)(δA )ᵀ∇Tr(A2Dv2) + (µ+ λ)∇Tr((A1 − I)Dδv)

+ (µ+ λ)∇Tr(δADv2),

where Ai = Avi and Ai = Avi , i = 1, 2. Applying (2.25), (2.27) and product laws in Besov

spaces, we arrive at

‖f(v1)− f(v2)‖
L1(Ḃ

n/p−1
p,1 )

≤ C‖∇v1,∇v2‖L1(Ḃ
n/p
p,1 )
‖∇δv‖

L1(Ḃ
n/p
p,1 )

.

We thus infer

‖δu‖Ep ≤ C‖∇v1,∇v2‖L1(Ḃ
n/p
p,1 )
‖∇δv‖

L1(Ḃ
n/p
p,1 )
≤ C3r‖δv‖Ep ,

from which we see that ‖δu‖Ep ≤ 1
2
‖δv‖Ep if r ≤ 1

2C3
.

Finally, we choose

r =
c0

C1

∧ 1

2C2

∧ 1

2C3

and c =
r

2C2

.

Then the mapping v 7→ u is a contraction on Ep(r), thus, admits a unique fixed point u ∈

Ep(r), which is a solution to (4.45) in Ep. The proof of the uniqueness of strong solutions in

Ep is similar to the proof of the contraction property of the mapping v 7→ u. This completes

the proof of the theorem.

Remark 4.28. For n < p < 2n, in view of (4.42), one can prove the global well-posedness

under the assumption that ‖ρ0u0‖Ḃn/p−1
p,1

≤ c with c only depending on m, p, n, µ, ν.

Let us finish the proof of Theorem 4.25.

Proof of Theorem 4.25. The proof is similar to that of Theorem 3.2.
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4.6 An application to heat-conductive compressible Navier–Stokes

In this section, we study the global well-posedness of the three-dimensional heat-conductive

compressible Navier-Stokes equations



∂tρ+ div(ρu) = 0, in (0,∞)× R3,

ρ(∂tu+ u · ∇u)− Lu+∇P = 0, in (0,∞)× R3,

cvρ(∂tθ + u · ∇θ)− κ∆θ =
µ

2
|∇u+Du|2 + λ(divu)2 − P divu, in (0,∞)× R3,

(ρ, u, θ)|t=0 = (ρ0, u0, θ0), on R3.

(4.48)

Compared with (4.43), a pressure term is added in the momentum equation of (4.48), and the

temperature equation (i.e., the θ equation) is included. L is the Lamé operator defined in (2.6)

with coefficients satisfying (2.7). cv and κ are positive constants. For a perfect gas, a good

approximation of the pressure P is provided by Boyle’s law

P = P (ρ, θ) = Rρθ,

where R is a constant.

There is a vast amount of literature that is devoted to the well-posedness of (4.48), but we

will review a few of the results that are most relevant to ours. Note that (4.48) is invariant under

the scaling

(ρ, u, θ)(t, x) (ρ, u, θ)λ(t, x) := (ρ, λu, λ2θ)(λ2t, λx).

Based on this scaling-invariance, Chikami and Danchin [14] proved the local well-posedness

of the full compressible Navier-Stokes equations with variable coefficients in critical Besov

spaces, but the global well-posedness was not covered in their paper. Global well-posedness of

strong solutions close to the equilibrium (ρ, u, θ) = (1, 0, 1) in Sobolev spaces was first proved

in [45]. This result was generalized in [38] to allow initial vacuum. The smallness assumption
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on the initial data in [38] is imposed as

ˆ (
1

2
ρ0|u0|2 +R(ρ0 log ρ0 − ρ0 + 1) + cvρ0(θ0 − log θ0 − 1)

)
dx� 1,

where ρ0 and θ0 are bounded and nonnegative functions. Note that this assumption implies that

‖ρ0 − 1‖2 + ‖θ0 − 1‖2 � 1.

Global well-posedness in the presence of a vacuum without smallness assumption on the fluc-

tuation of ρ0 was recently obtained by Li [42]. For more results concerning the well-posedness

of (4.48), we refer the reader to the references in [42].

The main result in this section reads

Theorem 4.29. Let p ∈ (1, 3) \ {3
2
}. Assume that ρ0 satisfies (1.4) and (ρ0 − 1, u0, θ0) ∈

Ḃ
3/p
p,1 (R3)×Ḃ3/p−1

p,1 (R3)×Ḃ3/p−2
p,1 (R3). There exists a constant ε0 depending on p,m, µ, λ, cv, κ, R

and ‖ρ0 − 1‖
Ḃ

3/p
p,1

such that if

‖u0‖Ḃ3/p−1
p,1

+ ‖θ0‖Ḃ3/p−2
p,1

≤ ε0, (4.49)

then (4.48) has a unique solution (ρ, u, θ) satisfying

ρ− 1 ∈ Cb([0,∞); Ḃ
3/p
p,1 ), u ∈ Cb([0,∞); Ḃ

3/p−1
p,1 ) ∩ L1(R+; Ḃ

3/p+1
p,1 ),

θ ∈ Cb([0,∞); Ḃ
3/p−2
p,1 ) ∩ L1(R+; Ḃ

3/p
p,1 )

and

‖u‖
L∞(Ḃ

3/p−1
p,1 )

+ ‖∂tu,∆u‖L1(Ḃ
3/p−1
p,1 )

+ ‖θ‖
L∞(Ḃ

3/p−2
p,1 )

+ ‖∂tθ,∆θ‖L1(Ḃ
3/p−2
p,1 )

≤C
(
‖u0‖Ḃ3/p−1

p,1
+ ‖θ0‖Ḃ3/p−2

p,1

)
. (4.50)

Remark 4.30. Compared with [42], we cannot allow an initial vacuum, but the coefficients µ

and λ in our result satisfies (2.7) only, while the assumption 2µ > λ was assumed in [42].

89



Remark 4.31. Roughly, the underlying reason why Theorem 4.29 holds is that (ρ, u, θ) =

(ρ0, 0, 0) is an equilibrium of (4.48). So one can expect global well-posedness of (4.48) under

the assumption (4.49) but without smallness assumption on the fluctuation of ρ0. It is for the

same reason that our method does not work for the barotropic compressible Navier-Stokes

equations because (ρ, u) = (ρ0, 0) is not an equilibrium.

Remark 4.32. If the initial data is smooth, it is quite standard to derive from (4.50) more time-

independent estimates for some higher norms of the solution (ρ, u, θ) and decay estimates for

u and θ.

Remark 4.33. It follows from (4.50) that ‖∇u‖L1(L∞) + ‖θ‖L1(L∞) � 1. By the Cauchy-

Lipschiz theorem, we infer that |X(t,y1)−X(t,y2)|
|y1−y2| ≈ 1 for any t ≥ 0 and y1, y2 ∈ Rn. So the

microscopic motion of the gas particles is quite stable despite the large density oscillation.

This result is in agreement with physics intuition: the motion of the gas particles is inactive in

a low-temperature environment. Nevertheless, the L∞ norm of the initial temperature can be

large.

In the rest of this section, we will just outline the proof of Theorem 4.29 by following the

lines of the proof of Theorem 4.25.

Step 1. Lagrangian formulation of (4.48). As in Section 4.5, we here introduce variables

in Lagrangian coordinates:

(ρ,u,θ)(t, y) = (ρ, u, θ)
(
t,X(t, y)

)
.

Then (4.48) can be reformulated as



ρ0∂tu− µ div(AuA
ᵀ
u∇u)− (µ+ λ)A ᵀ

u∇Tr(AuDu) +R div(ρ0θAu) = 0,

cvρ0∂tθ − κ div(AuA
ᵀ
u∇θ) = µTr[(Aᵀu∇u +DuAu)A ᵀ

u∇u]

+ λTr(AuDu)Tr(AuDu)−Rρ0θTr(AuDu),

(u,θ)|t=0 = (u0, θ0).

(4.51)
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We shall rewrite the above system as


ρ0∂tu− Lu +∇(Rρ0θ) = f(u,θ),

cvρ0∂tθ − κ∆θ = g(u,θ),

(u,θ)|t=0 = (u0, θ0),

where

f(u,θ) =µ div((AuA
ᵀ
u − In)∇u) + (µ+ λ)(A ᵀ

u∇Tr(AuDu)−∇ divu)−R div(ρ0θ(Au − In))

and

g(u,θ) =κ div((AuA
ᵀ
u − In)∇θ) + µTr[(Aᵀu∇u +DuAu)A ᵀ

u∇u]

+ λTr(AuDu)Tr(AuDu)−Rρ0θTr(AuDu).

Step 2. Estimates for linear system. Next, we need the maximal L1 regularity for the

following linear system


ρ0∂tu− Lu+∇(Rρ0θ) = f,

cvρ0∂tθ − κ∆θ = g,

(u, θ)|t=0 = (u0, θ0).

(4.52)

As a consequence of Theorem 4.23, we have the following

Proposition 4.34. Let p ∈ (1, 3) \ {3
2
}. Assume that ρ0 satisfies (1.4) and (ρ0 − 1, u0, θ0) ∈

Ḃ
3/p
p,1 (R3)× Ḃ3/p−1

p,1 (R3)× Ḃ3/p−2
p,1 (R3). Then (4.52) has a unique solution (u, θ) satisfying

u ∈ Cb([0,∞); Ḃ
3/p−1
p,1 ) ∩ L1(R+; Ḃ

3/p+1
p,1 ), θ ∈ Cb([0,∞); Ḃ

3/p−2
p,1 ) ∩ L1(R+; Ḃ

3/p
p,1 )
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and

‖u‖
L∞(Ḃ

3/p−1
p,1 )

+ ‖∂tu,∆u‖L1(Ḃ
3/p−1
p,1 )

+ ‖θ‖
L∞(Ḃ

3/p−2
p,1 )

+ ‖∂tθ,∆θ‖L1(Ḃ
3/p−2
p,1 )

≤C
(
‖u0‖Ḃ3/p−1

p,1
+ ‖θ0‖Ḃ3/p−2

p,1
+ ‖f‖

L1(Ḃ
3/p−1
p,1 )

+ ‖g‖
L1(Ḃ

3/p−2
p,1 )

)
,

where C is a constant depending on p,m, µ, λ, cv, κ, R and ‖ρ0 − 1‖
Ḃ

3/p
p,1

.

Remark 4.35. The assumption p < 3 guarantees that both ρ0 and ρ−1
0 are multipliers of

Ḃs
p,1(R3) for s = 3/p, 3/p− 1 and 3/p− 2.

Step 3. Estimates of nonlinearities. According to the product laws in Besov spaces and

Lemma 2.25, we have

‖f(u,θ)‖
L1(Ḃ

3/p−1
p,1 )

. ‖∇u‖2

L1(Ḃ
3/p
p,1 )

+ ‖∇u‖
L1(Ḃ

3/p
p,1 )
‖ρ0θ‖L1(Ḃ

3/p
p,1 )

, (4.53)

and

‖g(u,θ)‖
L1(Ḃ

3/p−2
p,1 )

. ‖∇u‖
L1(Ḃ

3/p
p,1 )

(
‖θ‖

L1(Ḃ
3/p
p,1 )

+ ‖u‖
L∞(Ḃ

3/p−1
p,1 )

+ ‖ρ0θ‖L∞(Ḃ
3/p−2
p,1 )

)
,

(4.54)

provided that 1 ≤ p < 3 and u satisfies (2.23) and (2.24) with n = 3. Let (ui,θi), i = 1, 2,

satisfy the same assumptions as (u,θ). Then we have

‖f(u1,θ1)− f(u2,θ2)‖
L1(Ḃ

3/p−1
p,1 )

.‖∇u1,∇u2, ρ0θ2‖L1(Ḃ
3/p
p,1 )
‖∇δu‖

L1(Ḃ
3/p
p,1 )

+ ‖∇u1‖L1(Ḃ
3/p
p,1 )
‖ρ0δθ‖L1(Ḃ

3/p
p,1 )

, (4.55)

and

‖g(u1,θ1)− g(u2,θ2)‖
L1(Ḃ

3/p−2
p,1 )

.‖∇δu‖
L1(Ḃ

3/p
p,1 )

(
‖θ2‖L1(Ḃ

3/p
p,1 )

+ ‖u1,u2‖L∞(Ḃ
3/p−1
p,1 )

+ ‖ρ0θ2‖L∞(Ḃ
3/p−2
p,1 )

)
+ ‖∇u1‖L1(Ḃ

3/p
p,1 )

(
‖δθ‖

L1(Ḃ
3/p
p,1 )

+ ‖ρ0δθ‖L∞(Ḃ
3/p−2
p,1 )

)
. (4.56)
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Step 4. Contraction mapping theorem. In view of Proposition 4.34 and the estimates

(4.53)-(4.56), one can apply the contraction mapping theorem to prove the following

Theorem 4.36. Let p ∈ (1, 3) \ {3
2
}. Assume that ρ0 satisfies (1.4) and (ρ0 − 1, u0, θ0) ∈

Ḃ
3/p
p,1 (R3)×Ḃ3/p−1

p,1 (R3)×Ḃ3/p−2
p,1 (R3). There exists a constant ε0 depending on p,m, µ, λ, cv, κ, R

and ‖ρ0 − 1‖
Ḃ

3/p
p,1

such that if

‖u0‖Ḃ3/p−1
p,1

+ ‖θ0‖Ḃ3/p−2
p,1

≤ ε0,

then (4.51) has a unique solution (u,θ) satisfying

u ∈ Cb([0,∞); Ḃ
3/p−1
p,1 ) ∩ L1(R+; Ḃ

3/p+1
p,1 ), θ ∈ Cb([0,∞); Ḃ

3/p−2
p,1 ) ∩ L1(R+; Ḃ

3/p
p,1 )

and

‖u‖
L∞(Ḃ

3/p−1
p,1 )

+ ‖∂tu,∆u‖
L1(Ḃ

3/p−1
p,1 )

+ ‖θ‖
L∞(Ḃ

3/p−2
p,1 )

+ ‖∂tθ,∆θ‖
L1(Ḃ

3/p−2
p,1 )

≤C
(
‖u0‖Ḃ3/p−1

p,1
+ ‖θ0‖Ḃ3/p−2

p,1

)
.

Step 5. Back to Eulerian coordinates. Going back to the Eulerian coordinates, we finish

the proof of Theorem 4.29.
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