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Abstract

Manipulators extend the application of mobile platforms, such as unmanned aerial vehi-

cles, underwater vehicles, and satellites. The dynamic coupling between the manipulators and

mobile base brings great challenges to the motion control of this complex model. The existence

of external disturbances and systematic uncertainties requires high robust control strategies.

This dissertation focuses on the trajectory tracking control and force control in joint space and

in task space. Theoretic analysis and simulation work are given to show the effectiveness of the

proposed controllers.

Three types of control strategy are proposed to follow desired joint trajectories:

1. adaptive backstepping with fuzzy logic

2. neural-adaptive control

3. adaptive dual integral sliding mode control

These controllers are explored by computer simulations.

A controller designed in task space is proposed to follow desired end-effector trajectory.

The mapping relationship between joint space and task space is modified to guarantee system

stabilities and a neural network is used to approximate system uncertainties. Simulation results

show the stability when applied to trajectory and force control tasks.

Since neural networks are used in several of the proposed controllers, a simplified robot

arm is built to verify the effectiveness of neural network. Two types of controllers, torque

control and position control, are tested in this platform and reasons are given to explain the

performance of the two controllers. In the experiments, the neural network compensator is able

to reduce the Integral of Squared Error (ISE) by more than 15x that achieved by the uncom-

pensated (“open-loop”) commercial controller, and 8x-20x better than the PID compensated

system.
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Chapter 1

Introduction

Robots have been widely used in many areas in recent decades. One typical application

is that they can work in dangerous environments. In industrial fields, robots are adopted to

reduce labor costs for sorting, fabrication, assembly, and painting. In the field of search and

rescue, robots are deployed to transimit real-time information. To explore the application of

robot arms, one novel strategy is to install one or more arms on a mobile base, such as drones,

land vehicles, and underwater vehicles. Compared to industrial robots with fixed base, they are

not restricted and move freely in space. Furthermore, with manipulators mounted on a floating

base, the combined system can carry out aerial and underwater manipulation tasks, such as

inspection of infrastructure, detection of fault, and submarine sampling.

1.1 Mobile end-effector applications

The utilization of manipulators extends the application of mobile platforms. Fig. 1.1 shows

four application examples [1][2][3]. Installed on a ground mobile base, the combined robot

can be applied in the areas of defense, rescue and security, and counter-terrorism [4]. In space,

robot arms are used to finish dangerous tasks, such as repair, capture debris and manoeuvre it

to lower orbit, which requires that the robotic spacecraft controls its orbit and attitude to reduce

the relative motion between the chaser and the target [5]. In the field of aerial manipulation,

mobile robots are used to deliver packages, inspect and repair high-voltage electric lines, and

wind rotor blade [6]. In underwater environment, the manipulator can be used to remove the oil

spill, grasp and transport objects, and dock to a subsea structure [7][8][9]. In addition, mobile

manipulators are widely used in other interaction environment, such as medical and education

system.
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Figure 1.1: Mobile manipulator application examples

1.2 Trajectory planning methods

To move an end-effector to a desired position in task space, inverse kinematics is necessary

to calculate the desired position for each joint. However, as the number of degree of freedom

(DOF) increases, infinite solutions exist due to system redundancy, which means it is difficult

to find one specified trajectory for every joint. Therefore, multiple trajectory planning methods

have been proposed based on different considerations.

Task-priority redundancy resolution has been suggested for end-effector path planning.

[10]. One primary task is assigned and multiple secondary tasks are selected. Lower level tasks

yield to higher level task when they conflict with each other. Antonelli and Chiaverini proposed

a fuzzy technique merged with task-priority inverse kinematics approach to distribute the mo-

tion between vehicle and manipulator for an underwater vehicle-manipulator system (UVMS)
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[11]. A multi-tasking, co-operative control framework was presented in [12] to handle multi-

tasking conflicts both in task and joint space for dual-arm robots. However, inequality con-

trol objectives are not integrated efficiently, which means the joint trajectories are not smooth.

To address the non-smoothness problem, Tang et al. [13] proposed a redundancy resolution

with restoring moments optimized on acceleration level to avoid sudden acceleration change.

Simetti et al. [14][15] used task-oriented regularization and the singular value-oriented method

to eliminate discontinuities.

Joint-space redundancy makes it challenging to plan a path for a mobile end-effector, but

its advantages are utilized to avoid obstacles. Slotine et al. [16] implemented a constraint task

that allowed the manipulator to avoid an obstacle while the end-effector tracked a trajectory

satisfactorily. Lillo et al. [17] proposed an algorithm to generate a repulsive velocity for colli-

sion avoidance by computing the minimal distance between the control points and the objects

in the environment. A novel approach taking into account multiple control points and multiple

obstacles was presented in [18][19] to avoid obstacles. If the obstacle avoidance has the highest

priority in the hierarchy, all of the constraints will be respected. Considering multiple different

obstacles, Mu et al. [20] used the self-motion of the redundant manipulator to optimize the

normalized pseudo-distance by adaptive redundancy resolution.

1.3 Trajectory tracking control methods

A mobile base provides more flexibility while the manipulators remain kinematically redun-

dant, which increases the difficulty of trajectory planning. The dynamic coupling between the

mobile vehicle and manipulators makes it a highly nonlinear system. External disturbances,

such as airflow, water current, obstacles, and collision, increases the difficulties of stability

analysis and control. Considering the above factors, it is necessary to design robust controllers

to reduce the effect of disturbances and guarantee system stabilities for specific tasks.

1.3.1 Coupled and decoupled approaches

There are mainly two types of controllers depending on the structural features, coupled

and decoupled strategies. The coupled approach takes a model as a complete system while

3



decoupled approach takes it as a combination of two independent devices, a mobile platform

and multiple manipulators. The effect of dynamic coupling is seen as an external disturbance

in the decoupled approach.

Hovering capability of aerial platforms is an important factor for manipulators attached on

unmanned aerial vehicles, also called unmanned aerial manipulator (UAM) [21]. As a coupled

system, the dynamic modeling is developed and a full-state feedback linear quadratic regulator

controller is designed through obtaining linearized model near steady state in [22]. In order

to keep position holding when picking and releasing an object, Kim et al. [23] proposed and

tested an adaptive sliding mode control strategy. A stable backstepping-based controller for

the multirotor that uses the coupled full dynamic model is proposed in [24], and an admittance

controller for the manipulator arm is outlined. In addition, A hierarchical control structure was

proposed in [25] to tackle the problem of motion control of the end-effector of an UAM. For

mobile platforms working in underwater, such as underwater vehicles, the effect of external

environment should be considered when designing control strategies. To mitigate the distur-

bances of system noise and measurement noise, an indirect adaptive controller fused with an

extended Kalman filter (EKF) has shown high robustness even under severe disturbance condi-

tions [26]. Considering uncertainties in system parameters and thruster nonlinearities, a robust

controller with integral action was developed to improve the performance of a UVMS in uncer-

tain conditions [27]. For highly nonlinear systems, fuzzy logic systems have been employed

to model nonlinear functions and unknown components, which means fuzzy logic theory is

also able to be applied to trajectory tracking control of a mobile end-effector. A sliding mode

controller using fuzzy logic was designed in [28] to track the trajectory by adjusting the gains.

One advantage of the decoupled approach is researchers are able to design controllers

separately for the mobile base and manipulators. Since the two components are controlled in-

dependantly and dynamic coupling exists between them, the motion of manipulators can be

seen as a perturbation for the platform and vice versa. The literature review reveals a mul-

tilayer architecture to control multirotor UAVs equipped with a servo robot arm [29], where

the momentum-based observer presented in [30], [31] is employed to compensate neglected

aerodynamic effects and the arm dynamics. A neural network was utilized to approximate the
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dynamics of the UVMS in decentralized form in [32]. However, to guarantee stability, it is

necessary design a disturbance compensator if the coupling effect is large [33].

Coupled and decoupled approach can be both adopted if they meet our trajectory tracking

requirements. In [34], decoupled and coupled control strategies were tested on a same model

using a parallel position/force control structure with sliding mode controllers and incorporating

the mathematical model of the system, in which both of the two different control strategies

showed reliable performance.

1.3.2 Joint space and task space control

Depending on the space where controllers are designed, control methods can be divided into

joint space control and task space control. The control input is derived directly for each joint

for joint space control while the controller is designed in task space and the input is mapped

into joint space for task space control. Joint space control focuses on the trajectory of each joint

and task space control is usually used to follow a trajectory for the end-effector.

The mobile base and manipulators suffer from external disturbances, such as wind, cur-

rent, and collision. Some disturbance compensators are designed in joint space to increase

trajectory tracking accuracy. A sliding mode control fused with an uncertainty and disturbance

estimator is proposed in [35] to follow a desired trajectory for the end-effector. A nonlinear

disturbance observer using delayed estimates is utilized in [36] to perform motion control for

the mobile base and each joint. A joint space coordinate controller using nonlinear disturbance

observer is designed in [37] to reduce the effect of unknown disturbances. One crucial aspect

of control strategies is to consider the parametric uncertainties since the dynamic modeling is

developed in joint space firstly. Neural networks can be used to approximate unknown con-

tinuous functions and control complicated multi-input multi-output (MIMO) systems [38][39].

A recurrent wavelet neural network structure was designed for the approximation of uncertain

dynamics in [40]. In UVMS areas, the neural network is also used to determine task-oriented

dexterity indices, which avoids lengthy calculation and reduces computational time [41].

In order to follow a desired trajectory for the end-effector, inverse kinematics is necessary

for joint space control. However, infinite solutions exist due to system redundancy. As a result,
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task space control, which avoids the calculation of inverse kinematics, is adopted in many

areas. The first step for task space control is to transform the dynamic model expressed in joint

space to task space [42]. A feedback linearizing control in task coordinates and an extended

Kalman filter (EKF) as a state observer are used in [43][44] to maintain its position in the

presence of unknown disturbances. A task space passivity-based controller with self-motion

of the mobile base was proposed to perform power efficient trajectory in task space because of

its kinematically redundant nature [45]. A robust single input fuzzy logic control scheme was

proposed in [46] and applied to UVMS task-space trajectory control. To reduce the end-effector

interaction forces with the environment, an impedance control scheme was proposed in [47] in

end-effector space.

Transformation of dynamic model is necessary and the mapping between two spaces is

involved in task space control. However, tracking errors of end-effector can be used in the

feedback loop without calculating the inverse kinematics. It provides a convenient way for

the force control as well in task space. There is no need to transform the dynamic model and

disturbances can be integrated to controllers directly in joint space control. However, inverse

kinematics may be a tedious process for joint space control.

1.4 Research problems

Although the control methods described above demonstrate good performance in some cases,

the main drawback of these works is implementation complexity that is due to the high compu-

tation or complicated adaptation laws. The backstepping control methodology [48][49][50] is

one decentralized control scheme with a systematic recursive design procedure that has widely

attracted researchers attention in recent years. There is also no need of linearizing the model

and the controller can be directly applied to nonlinear system satisfying strict feedback form

[51]. A fuzzy logic can be used to eliminate nonlinear terms. Inspired by these observations,

an adaptive backstepping control method fused with fuzzy logic is proposed for joint trajectory

tracking problems.

One crucial aspect of control strategies is to consider the parametric uncertainties. As

neural network can approximate unknown continuous functions, it is used to compensate for
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system parametric uncertainties. A nonlinear control method based on nominal dynamic model

is designed and an adaptive neural network is adopted to reduce the effect of systematic uncer-

tainties. Integral sliding mode control has the advantage of remaining high robustness under

uncertain conditions. Therefore, a dual integral sliding mode control strategy is proposed to

guarantee stability. For the control methods designed in task space [52][53][54][55], the dy-

namic model in task space is acquired using pseudo-inverse Jacobian matrix, which increases

calculations. The corresponding stability is verified in task space and the control input in task

space is mapped into joint space through a system Jacobian matrix. However, considering sys-

tem redundancy, a stable analysis in task space is not guaranteed to correspond to a stable state

in joint space. To address these issues, a control scheme without using pseudo-inverse Jacobian

matrix is proposed and the stabilities are verified both in joint space and task space.

In practice, there are unknown controllers inside the servos. Position and torque limit

are commonly used as inputs. A joint trajectory tracking controller using a neural network is

tested on a four-link robot arm. Besides, a neural network trajectory compensator is designed

to improve the performance of unknown controllers in the servo.

1.5 Overview of the contributions

In the following chapters, the research problems mentioned above are discussed in detail.A

UVMS model is used to study the performance of the proposed controllers in this work. In

Chapter 2, the kinematic and dynamic model of a UVMS with a three-link manipulator are

developed. In Chapter 3, three joint space controllers, backstepping control, adaptive neural

network control, and dual integral sliding mode control, are proposed and simulations explore

their effectiveness. In Chapter 4, a trajectory and force control method designed in task space

is proposed and system stability is analyzed. In Chapter 5, a torque-based controller and a

position-based neural network compensator are tested on a robot arm. Conclusions and future

work are given in Chapter 6.
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Chapter 2

Kinematics and dynamics modeling of a UVMS

The controllers with a feedback form in this work are designed based on the kinematics and

dynamics model. Therefore, kinematic analysis is given and dynamic model of a UVMS is

developed in this chapter.

2.1 Kinematic analysis

The simplified model of a UVMS with assigned frames is shown in Fig. 2.1. It consists of

one ellipsoid vehicle and a three-joint manipulator. The manipulator is mounted on a base in

the vehicle. The generalized coordinates are expressed as:

ζ = [ηT
1 η

T
2 q

T]T. (2.1)

where vector η1 = [x y z]T is the position of the vehicle expressed in the inertial frame. Scalars

x, y, and z are called surge, sway, and heave position, respectively. Vector η2 = [φ θ ψ]T is the

set of vehicle Euler angles in the inertial frame (also called roll, pitch, yaw angles, respectively).

Vector q = [q1 q2 q3]T is the set of manipulator joint angles.

The inertial frame ΣI and vehicle coordinate frame Σb can be written asOI−xIyIzI , and

Ob−xbybzb, respectively. Define v1 = [u v w]T as the linear velocity of the vehicle expressed

in vehicle frame Σb. The velocity is related to the inertial frame velocity as:

v1 = RB
I η̇1. (2.2)
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Figure 2.1: Frame assignment of a UVMS

where RB
I is is the rotation matrix expressing the transformation from ΣI to Σb. Expressed in

terms of Euler angles,RB
I can be written as:

RB
I =


cψcθ sψcθ −sθ

−sψcφ + cψsθsφ cψcφ + sψsθsφ sφcθ

sψsφ + cψsθcφ −cψsφ + sψsθcφ cφcθ

 . (2.3)

where cα and sα are short notations for cos(α) and sin(α), respectively.

Define v2 = [p q r]T as the angular velocity of the body-fixed frame for the vehicle with

respect to the earth-fixed frame expressed in the body-fixed frame. We have the following

relationship between v2 and η̇2 as:

v2 = Jabη̇2. (2.4)
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where the matrix Jab can be expressed in terms of Euler angles as:

Jab =


1 0 −sθ

0 cψ cθsψ

0 −sψ cθcψ

 . (2.5)

The manipulator base coordinate frame Σ0 is written as: O0 − x0y0z0. The vector from

the origin of Σb to the origin of Σ0 expressed in vehicle body-fixed frame is written as rbb0. The

rotation matrix expressing the transformation from Σ0 to Σb is:

RB
0 =


0 1 0

1 0 0

0 0 −1

 . (2.6)

The linear and angular velocities for the center of the ith link expressed in local frame are

expressed as:

vic,i = J iLc,iξ. (2.7)

ωii = J iA,iξ. (2.8)

where ξ = [vT
1 v

T
2 q̇

T]T represents the velocity of the UVMS expressed in body frames. Ma-

trices J iLc,i and J iA,i are the Jacobians corresponding to the point of force/moment application

[56]. Similarly, the linear and angular accelerations for the center of the ith link expressed in

local frame are expressed as:

v̇ic,i = J iLc,iξ̇ + J̇ iLc,iξ. (2.9)

ω̇ii = J iA,iξ̇ + J̇ iA,iξ. (2.10)

Based on Eq. (2.2) and (2.4), we have the relationship between body frame and inertial

frame velocities:

ξ = J bI ζ̇. (2.11)
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where

J bI =


RB
I

Jab

I3

 . (2.12)

2.2 Dynamics modeling

There are mainly two methods used to develop the dynamic model for a UVMS, Lagrange’s

method and Newton-Euler method. Considering the structure of the UVMS used in this work,

the recursive Newton-Euler method is adopted to build its dynamic model. The process in-

cludes three steps. Firstly, a dynamic model in free space is developed, which means the hy-

drodynamics and restoring force are ignored. Secondly, the effect of hydrodynamics is added

to the model. Finally, a complete dynamic model is built by adding the restoring force and

moment.

2.2.1 Dynamic modeling in free space

The inertial force and moment for the center of the ith component (including the vehicle and

manipulator) expressed in local frame can be written as:

F i
i = miv̇

i
c,i = miJ

i
Lc,iξ̇ +miJ̇

i
Lc,iξ. (2.13)

N i
i = I ic,iω̇

i
i + ωii × I ic,iωii = I ic,i(J

i
A,iξ̇ + J̇ iA,iξ) + (J iA,iξ)× I ic,i(J iA,iξ). (2.14)

where mi is the mass of the ith component and I ic,i is the moment of inertia at the center. The

total force and moment exerted on the ith component expressed in local frame are expressed

as:

f ii = Ri
i+1f

i+1
i+1 + F i

i . (2.15)

nii = N i
i +Ri

i+1n
i+1
i+1 + pici × F

i
i + pii+1 ×Ri

i+1f
i+1
i+1 . (2.16)
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where Ri
i+1 is the transformation matrix from the (i + 1)th frame to the ith frame. Vector pici

is the set of mass center position for the ith component expressed in body frame. Vector pii+1

is the origin of the (i + 1)th coordinate frame expressed in the ith coordinate frame. Then, the

moment of the ith component is written as:

τi = nii
T
ẑ. (2.17)

where ẑ = [0 0 1]T. Incorporating all the forces and moments, the dynamic equation of a

UVMS in a microgravity environment can be expressed as:

Mf ξ̇ +Cfξ = τf . (2.18)

whereMf andCf are the mass matrix and Coriolis and centripetal matrix, respectively. Vector

τf represents the resultant input in free space.

2.2.2 Hydrodynamics

The theory of fluidodynamics is rather complex and it is difficult to develop a reliable

model for most of the hydrodynamic effects. A rigorous analysis for incompressible fluids

would need to resort to the Navier-Stokes equations. However, the hydrodynamic effects are

considered in a context of automatic control, which means the calculation of hydrodynamic

effects is simplified. In underwater environment, the hydrodynamics mainly includes added

mass and inertia, hydrodynamic damping, current effects and buoyancy [57]. In this part, the

effect of hydrodynamics is discussed in detail.

(1). Added mass and inertia

The movement of a rigid body is able to cause the acceleration of the surrounding fluid,

which results in a reaction force that is equal in magnitude and opposite to the direction of

motion. That reaction force is called added mass and inertia term. Different properties hold

with respect to the (6 × 6) inertia matrix of a rigid body due to the fact that the added mass is
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a function of the body’s surface geometry. Considering the geometry shape of the UVMS, the

added mass and inertia for an ellipsoid and cylinder are introduced in this part.

For a 6-DOF rigid body, the added mass and inertia term can be expressed as [58]:

MrAv̇ +CrAv = τrA. (2.19)

in which

MrA =

A11 A12

A21 A22

 . (2.20)

CrA =

 03×3 −S(A11vL +A12vA)

−S(A11vL +A12vA) −S(A21vL +A22vA)

 . (2.21)

v = [vT
L v

T
A]T. (2.22)

where vL and vA are the linear and angular velocity of the rigid body. v̇ is the acceleration of

the rigid body. S is the skew-symmetric cross product matrix.

If the body is completely submerged in the water, the velocity is low and it has three planes

of symmetry as common for underwater vehicles, the following structure of matricesMrA and

CrA can therefore be considered:

MrA = −diag{Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ} (2.23)

CrA =



0 0 0 0 −Zẇw Yv̇v

0 0 0 Zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


. (2.24)
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The added mass coefficients, [Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ], can be theoretically derived

by exploiting the geometry of the rigid body and applying the strip theory. For a cylindrical

rigid body of mass m̄, length L̄, and circular section of radius r̄, the following added mass

coefficients can be derived:

Xu̇ =− 0.1m̄

Yv̇ =− πρr̄2L̄

Zẇ =− πρr̄2L̄

Kṗ =0

Mq̇ =− 1

12
πρr̄2L̄3

Nṙ =− 1

12
πρr̄2L̄3

. (2.25)

Now, for the ith component, the added mass effects can be expressed as external forces/moments

in the task space as:

FrA,i = MrA,i

J iLc,iξ̇ + J̇ iLc,iξ

J iA,iξ̇ + J̇ iA,iξ

+CrA,i

J iLc,iξ
J iA,iξ

 (2.26)

By multiplying the Jacobian matrix of the application pint, the added mass effects can be

written in joint space as:

τrA,i =

J bLc,i
J bA,i


T  Rb

i 03×3

03×3 Rb
i

FrA,i (2.27)

As the Jacobian matrices are expressed in the base-fixed coordinate, it is necessary to

change the expression of external forces/moments from the local coordinate of ith component

to that of the base before multiplying by rotation matrices.

(2). Hydrodynamic damping

The viscosity of the fluid also causes the presence of dissipative drag and lift forces on the

body. The former are parallel to the relative velocity between the body and the fluid, while the

latter are normal to it. Both drag and lift forces are supposed to act on the center of mass of
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the body. A common simplification is to consider only linear and quadratic damping terms and

group these terms in a matrixD(v)v, where

D(v) =D1(v) +D2(v) = diag{Xu, Yv, Zw, Kp,Mq, Nr}

+ diag{Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|}.
(2.28)

In Eq. (2.28), the coefficients of this matrix are considered to be constant, and the detailed

analysis can be found in [59].

For cylindrical manipulators, if the x-axis of the local coordinate coincides with the cylin-

der axis, the damping effects along y and z axis are written as [60]:

fDy = −0.5ρCD,iri

∫ li

0

(vy(x))2dx. (2.29)

fDz = −0.5ρCD,iri

∫ li

0

(vz(x))2dx. (2.30)

in which ρ is the water density, CD,i is the drag coefficient, ri is the radius of link, vy and vz are

the link velocities along y and z axis. To simplify the calculation process, the velocity of mass

center is used instead of integration. Therefore, the total damping force of the ith link in body

frame is written as

f iD,i =

[
0 fDy,i fDz,i

]T

. (2.31)

Expressed in joint space, the damping effect of the ith link is written as:

Di = J bLc,i
T
Rb
if

I
D,i (2.32)

2.2.3 Current effects

Control of marine vehicles cannot neglect the effects of specific disturbances such as waves,

wind and ocean current. Currents can be very different due to local climatic and/or geographic
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characteristics. In this work, we assume that ocean current, expressed in the inertial frame, vIc

is constant and irrotational, such that

vIc =

[
vc,x, vc,y, vc,z, 0, 0, 0

]T

. (2.33)

v̇Ic = 0. (2.34)

Current effects can be added to the dynamic of the ith component moving in a fluid simply

considering the relative velocity in body-fixed frame

vr,i = vi −Ri
Iv

I
c . (2.35)

in the derivation of the Coriolis and centripetal terms and the damping terms.

2.2.4 Restoring force

The gravity and buoyancy of any component of a UVMS in inertial frame are obtained as:

Gi +Bi = (mi − ρ4i)
Ig. (2.36)

Here, Gi and Bi are the gravity and buoyancy of any component of a UVMS expressed in

inertial frame. 4i is the volume. Ig is the gravitational acceleration. Denoted by β, the

cumulative effect of the gravity and buoyancy in joint space is obtained as:

βi = J bLc,i
T
Rb
I(Gi +Bi). (2.37)

2.2.5 Complete dynamics model

By writing all the terms described above together, the complete dynamics equation of the

UVMS is:

M(ζ, ξ)ξ̇ +C(ζ, ξ)ξ +D(ζ, ξ) +G(ζ) = τ + fe. (2.38)
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where M (ζ, ξ) is the inertia (mass) matrix and C(ζ, ξ) is the Coriolis and centripetal matrix.

Vectors D(ζ, ξ) and G(ζ) describe the drag and restroing forces, respectively. The process

input is written as τ and fe is the external force/moment mapped into joint space.

2.3 Dynamic model characteristics and transformation

2.3.1 Characteristics of the dynamic model

Controllers in the following chapters are designed based on the model (2.38). The dynamic

model posseses two mathematical properties:

1. Matrix M (ζ, ξ) is positive definite, which means σ0 > 0 (σ0 ∈ R) exists to satisfy

0 <M (ζ, ξ) < σ0I .

2. The relationship betweenM (ζ, ξ) and C(ζ, ξ) is

ξT(Ṁ (ζ, ξ)− 2C(ζ, ξ)ξ = 0. (2.39)

To make the design process in a compact manner, in the following chapters, M , C, D

andG are used to representM(ζ, ξ), C(ζ, ξ),D(ζ, ξ) andG(ζ), respectively.

2.3.2 Dynamic model transformation

From Eq. (2.2) and (2.4), we have

ξ = J bI ζ̇

ξ̇ = J bI ζ̈ + J̇ bI ζ̇.

(2.40)

where

J bI =


RB
I

Jab

I3

 . (2.41)
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Substituting Eq. (2.40) into Eq. (2.38), we have

MI ζ̈ +CI ζ̇ +D +G = τ + fe. (2.42)

where
MI = MJ bI

CI = MJ̇ bI +CJ̇ bI

(2.43)

Since Eq. (2.42) is a transformation of (2.38), it does not satisfy the characteristics de-

scribed above. In the following chapter, both dynamic models will be used.

2.4 Summary

In this chapter, the kinematics of a UVMS with a three-joint manipulator is derived and

Jacobian matrix is used to describe the velocities and accelerations. To develop the dynamic

model, the recursive Newton-Euler method is adopted and hydrodynamics, such as added mass

and inertia, hydrodynamic damping, currents, and restoring forces, is considered into the dy-

namic model. The corresponding characteristics of the dynamic model are introduced and a

transformation is derived.
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Chapter 3

Joint space trajectory tracking control

To complete a trajectory tracking task for an end-effector, the controllers are commonly

designed in joint space or task space. The general scheme for joint space controller is shown

in Fig. 3.1. It can be seen that inverse kinematics is necessary and the controller is designed to

follow desired joint trajectory. Considering systematic uncertainties, three joint space trajectory

tracking controllers are proposed in this chapter. The control theories are demonstrated in detail

and simulation results show their effectiveness when applied to follow desired joint trajectories.

Figure 3.1: The general joint space trajectory tracking controller scheme

3.1 Adaptive backstepping control with fuzzy logic

As a decentralized control scheme, the backstepping control methodology can be applied to a

nonlinear system without linearizing the model. A fuzzy logic estimator is able to approximate

unknown system terms. Therefore, we can design an adaptive backstepping controller with

fuzzy logic for a UVMS by using their advantages. The detailed design process is demonstrated

as below [61].
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1. System states should be defined and trajectory tracking methods are kinematically de-

signed.

2. Dynamic controller is designed in this step to follow desired trajectory.

3. A fuzzy logic estimator is designed to eliminate system uncertainties and disturbances.

4. Stability is verified.

The proposed control scheme is shown in Fig. 3.2.

Figure 3.2: The proposed adaptive backstepping controller scheme

3.1.1 Controller design

To apply backstepping control strategy, two states are defined as:

x1 = ζ

x2 = ζ̇.

(3.1)
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Here, ζ, ζ̇ are the generalized coordinates defined in the previous chapter. According to

Eq. (2.42), we have the state equations:

ẋ1 =x2

ẋ2 =M−1
I [τ −CIx2 −D −G].

(3.2)

Step 1:

The main objective of this controller is to follow desired joint trajectories. Given pd as the

desired position of a UVMS. Define error

z1 = x1 − pd

z2 = x2 −α1

(3.3)

where α1 is the estimated value of x2. By selecting α1 appropriately, z2 approaches to zero.

Differentiating z1, we have:

ż1 = ẋ1 − ṗd = z2 +α1 − ṗd (3.4)

Select α1 as:

α1 = −λ1z1 + ṗd. (3.5)

in which λ1 is a constant.

For step 1, the Lyapunov function is defined as:

V1 =
1

2
zT

1 z1. (3.6)

Then,

V̇1 = zT
1 ż1 = −λ1z

T
1 z1 + zT

1 z2. (3.7)

If z2 = 0, then V̇1 ≤ 0. which means the system is stable.

Step 2:
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The state variable of z2 can be written as:

ż2 = ẋ2 − α̇1 = M−1
I [τ −CIx2 −D −G]− α̇1. (3.8)

Define the Lyapunov function as:

V2 = V1 +
1

2
(J bIz2)TM(J bIz2). (3.9)

Then,

V̇2 = −λ1z
T
1 z1 + zT

1 z2 + (J bIz2)TM ˙(J bIz2) +
1

2
(J bIz2)TṀ (J bIz2). (3.10)

Substitute Eq. (3.8) into the above equation,

V̇2 = −λ1z
T
1 z1 + zT

1 z2 + (J bIz2)T(f + τ ). (3.11)

where

f = −CI ζ̇ −D −G−MJ bI α̇1 +
1

2
MJ bIz2 +MJ̇ bIz2. (3.12)

It can be seen that f contains modeling parameters of the UVMS.

Define the control input as:

τ = −λ2J
b
Iz2 −

J bIz2

||J bIz2||2
zT

1 z2 −ϕ (3.13)

in which λ2 is a positive diagonal matrix. Vector ϕ is the output of a fuzzy logic system used

to approximate the UVMS modeling parameters. Substitute Eq. (3.13) into Eq. (3.11),

V̇2 = −λ1z
T
1 z1 − (J bIz2)Tλ2J

b
Iz2 + (J bIz2)T(f −ϕ). (3.14)

If ϕ is selected approximately to satisfy f − ϕ = 0, then V̇2 ≤ 0, so the trajectory tracking

error is stable.
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3.1.2 Fuzzy logic scheme

In this part, a fuzzy logic system is used to approximate the modeling parameters in

Eq. (3.12). A fuzzy logic system consists of four parts: the knowledge base, the fuzzifier,

the fuzzy inference engine and the defuzzifier [62]. The knowledge base is composed of a col-

lection of fuzzy IF-THEN rules in the following form:

Rk: IF h1 is µk1 and ... and hn is µknf
, then β is Bk (k = 1, 2, ..., N)

where N is the number of rules. The input vector is expressed as H = [h1, ..., hnf
]T ∈ Rnf

and Bk is the corresponding output. In this case, H = x1. The membership function of

hj(j = 1, ..., nf ) is written as µkj .

In this fuzzy logic system, the singleton fuzzifizer, product inference engine and center

average defuzzification are used to calculate the output, which is written as:

β =

N∑
i=1

θi
nf∏
j=1

(µij(hj))

N∑
i=1

nf∏
j=1

µij(hj)

= ΓT(H)Θ. (3.15)

where

Γ = [ξ1(H), ξ2(H), ..., ξN(H)]T. (3.16)

ξi(H) =

nf∏
j=1

µij(hj)

N∑
i=1

nf∏
j=1

µij(hj)

. (3.17)

Θ = [θ1 θ2 ... θN ]T. (3.18)

The mth output can be written as:

ϕm(H) =

N∑
i=1

θmi
nf∏
j=1

(µij(hj))

N∑
i=1

nf∏
j=1

µij(hj)

= ΓT
m(H)Θm (3.19)
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The control input consists of six input force/moment of the vehicle and three joint torques.

Therefore, the total fuzzy logic output is

ϕ = ΛΦ = [ϕ1(H) ϕ2(H) ... ϕ9(H)]T

=


ΓT

1 (H) 0

. . .

0 ΓT
9 (H)




Θ1

...

Θ9

 .
(3.20)

3.1.3 Stability analysis of the complete system

For a given arbitrary ε(ε > 0), an optimal parameter vector Φ∗ exists to satisfy [63]

‖f −ϕ∗‖ ≤ ε. (3.21)

Φ̃ = Φ∗ −Φ. (3.22)

Select the adaptive control theory as:

Φ̇ = γ[(J bIz2)TϕT]T − 2κΦ. (3.23)

where γ and κ are constants, and γ > 0, κ > 0. For the complete system, the Lyapunov

function is chosen as:

V =
1

2
zT

1 z1 +
1

2
(J bIz2)TM (J bIz2) +

1

2γ
Φ̃TΦ̃. (3.24)

V̇ =− λ1z
T
1 z1 − (J bIz2)Tλ2(J bIz2) + (J bIz2)T(f −ΛΦ∗)

+ (J bIz2)T(ΛΦ∗ −ΛΦ)− 1

γ
Φ̃TΦ̇.

(3.25)
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V̇ ≤− 2

2
λ1z

T
1 z1 − (J bIz2)T(λ2 −

I

2
)M−1MJ bIz2 −

κ

2γ
Φ̃TΦ̃

+
2κ

γ
Φ∗TΦ∗ +

1

2
ε2

. (3.26)

in which λ2 is selected as λ2 > I . SinceM ≤ σ0I , then −M−1 ≤ − 1
σ0
I .

V̇ ≤− 2

2
λ1z

T
1 z1 −

2

2σ0

(J bIz2)T(λ2 −
I

2
)M (J bIz2)− κ

2γ
Φ̃TΦ̃

+
2κ

γ
Φ∗TΦ∗ +

1

2
ε2

. (3.27)

Define c0 = min{2λ1,
2
σ0

min{λ2 − I
2
}, κ}, where min{λ2 − I

2
} represents the minimum

nonzero element in the matrix. Then

V̇ ≤ c0V + cvmax. (3.28)

where

cvmax =
2κ

γ
Φ∗TΦ∗ +

1

2
ε2 (3.29)

Solve Eq. (3.28),

V (t) ≤ V0(t)e−c0t +
cvmax
c0

(1− e−c0t)

≤ V (0) +
cvmax
c0

, ∀t ≥ 0

(3.30)

Therefore, V is bounded and all the signals in closed-loop system are bounded. Moreover, the

tracking errors can be made as small as desired by adjusting the control parameters.

3.1.4 Summary of backstepping control

In this section, the adaptive backstepping control using a fuzzy logic scheme is proposed

for a UVMS. The Lyapunov function is used to prove its stability in each step. The simulation

results will be given in the last section of this chapter.
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3.2 Trajectory tracking control using a neural-adaptive network

In section 3.1, the Lyapunov function is bounded, which means the steady-state tracking

error problem exists. To address this problem, there are commonly two strategies, adding a

feedforward term and an integration term. In this section, the integration method is adopted.

A nonlinear controller is designed to eliminate the nonlinear term in the dynamic equation.

Furthermore, an adaptive neural network is adopted to compensate for the uncertainty term

[64].

3.2.1 Controller design based on parametric uncertainties

Under parametric uncertainties, model (2.38) can be written as:

(M̂I + δMI)ζ̈ + (ĈI + δCI)ζ̇ + D̂ + δD + Ĝ+ δG = τ + fe. (3.31)

where
δMI = MI − M̂I

δCI = CI − ĈI

δD = D − D̂

δG = G− Ĝ

(3.32)

In Eq. (3.32), M̂I , ĈI , D̂, and Ĝ are the nominal model parameter values of the inertial matrix,

Coriolis and centripetal matrix, damping matrix, and restoring force matrix, respectively.

Consider the control law:

τ1 = M̂I(ζ̈d +KDė+KPe+KI

∫
e) + ĈI ζ̇ + D̂ + Ĝ (3.33)

where
e = ζd − ζ

ė = ζ̇d − ζ̇
(3.34)
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and ζd and ζ̇d are the desired position and velocity vectors of the UVMS. ParametersKP ,KI ,

and KD are the proportional, integral, and derivative gains, respectively, which are chosen as

diagonal matrices.

Substituting Eq. (3.33) into Eq. (3.31) yields:

ë+KDė+KPe+KI

∫
e = fu. (3.35)

where fu = M̂I

−1
(δMI ζ̈ + δCI ζ̇ + δD + δG − fe). In the absence of uncertainties, the

closed-loop dynamics are decoupled.

Define the error vector:

x =


∫
e

e

ė

 . (3.36)

Then, Eq. (3.35) can be expressed in term of state vector as:

ẋ = Ex+ Ffu (3.37)

where

E =


0 I 0

0 0 I

−KI −KP −KD

 , F =


0

0

I

 . (3.38)

It can be seen that the existence of uncertainties makes it more difficult for tracking error to

converge to zero. Since the uncertainty term is unknown, it is necessary to design a function to

approximate fu and add a compensation term to the controller. Therefore, the modified control

law is expressed as:

τ = τ1 + τ2 (3.39)

where τ2 = M̂I f̂u, and f̂u is the approximation of fu. The diagram of the proposed controller

is shown in Fig. 3.3. Details of the approximation function f̂u are presented next.
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Figure 3.3: Trajectory tracking control scheme using neural network

3.2.2 RBF neural network approximation

The radial basis function (RBF) neural network is a three-layer feed forward network, which

uses a Gaussian function as a transfer function. The mapping from hidden layer to output layer

is linear and the advantage of using RBF neural network is to avoid local minimum problems.

The structure of a multiple-input and multiple-output (MIMO) RBF neural network is

shown in Fig. 3.4. The input vector is denoted asX = [x1 x2 ... xN ]T, andH = [h1 h2 ... hm]T

is the radial basis vector, where hj has the Gaussian function form:

hj = exp(−||X − cj||
2

2b2
j

), j = 1, 2, ...,m. (3.40)

Vector cj = [cj1 cj2 ... cjN ]T is the set of center points of the jth basis function, and B =

[b1 b2 ... bm]T is the stretch constant vector. The weight matrix isW T = [w1 w2 ...wm], where

ws = [ws1 ws2 ... wsn]T, s = 1, 2, ...,m. Therefore, the output is

Y = [y1 y2 ... yn]T = W TH . (3.41)
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Figure 3.4: RBF neural network structure

If the unknown uncertainty term fu is continuous and bounded, there exist a RBF neural

network fu(W ?) to approximate fu.

max ||fu(W ?)− fu|| ≤ ε0. (3.42)

W ? = arg min
W
{sup ||fu − fu(W )||}. (3.43)

in which fu(W ?) = W ?TH , and ε0 is a very small positive number. Here, W ? is the best

neural network output of the approximation function. Therefore, the tracking error state vector

equation (3.37) can be expressed as:

ẋ = Ex+ F {fu(W ?) + µ} (3.44)

where µ is the RBF neural network error, with the form µ = fu − fu(W ?). In addition, µ is

bounded, with bound µ0 = sup ||fu − fu(W ?)||. So Eq. (3.44) can be written as:

ẋ = Ex+ F {W ?TH + µ} (3.45)
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3.2.3 Adaptive law and stability analysis

In this part, we choose to approximateW ? in Eq. (3.45). Chosse f̂u as:

f̂u = Ŵ TH . (3.46)

Then substituting (3.46) into (3.39) and (3.31) yields:

ẋ = Ex+ F {−W̃
T
H + µ}. (3.47)

W̃ T = Ŵ T −W ?T. (3.48)

Define the Lyapunov function:

V =
1

2
xTPx+

1

2γ
||W̃ ||2. (3.49)

where γ > 0. Matrix P is symmetric positive definite, and satisfies the Lyapunov equation:

PE +ETP = −Q. (3.50)

in whichQ ≥ 0.

The time derivative of Eq. (3.49) is:

V̇ =
1

2
[xTP ẋ+ ẋTPx] +

1

γ
tr(

˙̃
W

T

W̃ )

=
1

2
{xTP [Ex+ F (−W̃ TH + µ)]

+ [xTET + (−W̃ TH + µ)TF T]Px}+
1

γ
tr(

˙̃
W

T

W̃ )

=
1

2
[xT(PE +ETP )x] + [−W̃ TH + µ]TF TPx+

1

γ
tr(

˙̃
W

T

W̃ )

= −1

2
xTQx−HTW̃F TPx+ µTF TPx+

1

γ
tr(

˙̃
W

T

W̃ ).

(3.51)
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Because

HTW̃F TPx = tr(F TPxHTW̃ ). (3.52)

Then Eq. (3.51) can be written as;

V̇ = −1

2
xTQx+ µTF TPx+

1

γ
tr(−γF TPxHTW̃ +

˙̃
W

T

W̃ ). (3.53)

The adaptive law is selected as:

˙̂
W = γHxTPF . (3.54)

Therefore,

V̇ = −1

2
xTQx+ µTF TPx. (3.55)

As noted earlier, µ is bounded, and F is known in Eq. (3.38). Therefore,

||µT|| ≤ ||µ0||, ||F || = 1. (3.56)

If λmin(Q) is the minimum eigenvalue of Q and λmax(P ) is the maximum eigenvalue of

P , then

V̇ ≤ −1

2
λmin(Q)||x||2 + ||µ0||λmax(P )||x||

= −1

2
||x||[λmin(Q)||x|| − 2||µ0||λmax(P )]

. (3.57)

To make V̇ ≤ 0, λmin(Q) should satisfy the condition:

λmin(Q) ≥ 2λmax(P )

||x||
||µ0||. (3.58)

Therefore, V is bounded and the error states are bounded in the closed loop system. Moreover,

the tracking errors can approximate to zero with the integral term in τ1.
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3.2.4 Summary of neural network control

In this section, a nonlinear controller is used to eliminate the nonlinear dynamic term and a

neural network is used to approximate system uncertainties. An adaptive law is given and the

stability of the system is proved using Lyapunov function. The simulation results will be given

in the last section of this chapter.

3.3 Adaptive dual integral sliding mode control

Sliding mode control is assumed to be a robust technique capable of stabilizing nonlinear sys-

tems in uncertain conditions [65][66]. However, chattering phenomenon exists when applied

to a nonlinear system [67]. In a worse situation, the dynamic system can not remain robust

against uncertainties. Therefore, integral sliding mode control was proposed in [68][69][70] to

guarantee a strong robustness. This strategy handles problems based on the prerequisite that the

nonlinear dynamics and all the states of the system are available [71]. However, not all states

measurements are available in real applications and nonlinear dynamics is not exactly known.

One approach is to use neural networks to enhance robustness by eliminating the uncertainties

and disturbances [72][73]. Therefore, the combination of integral sliding mode control and

neural networks can guarantee strong robustness for an uncertain and nonlinear system. In this

part, an adaptive dual integral sliding mode controller is proposed based on the nominal model,

which contains an inner dynamics control loop and an outer kinematics control loop. A neural

network is designed to eliminate the uncertain disturbance term.

3.3.1 Proposed controller

The proposed controller contains three parts: an inner integral sliding mode dynamic control

loop (also called velocity loop) is proposed to control the position of the UVMS; An outer

kinematic control loop (also called position loop) is designed to give the desired velocity for the

inner loop; A neural network is used to overcome the effect of uncertainties and disturbances.

The combined three parts work together to provide strong robustness for the system. Before

the explicit explanation of the three parts, the complete control scheme is shown in Fig. 3.5.
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Figure 3.5: Complete control scheme

3.3.2 Inner loop design

Based on Eq. (2.38), we have

ξ̇ = M̂−1(τ − Ĉξ − D̂ − Ĝ− d). (3.59)

The scheme of inner loop controller is shown in Fig. 3.6. Vector ωd is the reference

velocity of the inner loop, which is the output of outer loop as well. The tracking error is

written as:

ωe = ωd − ξ. (3.60)

Figure 3.6: Inner loop scheme
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Then, an integral sliding mode surface is defined as below,

sn = ωe + kn

∫ t

0

ωedt. (3.61)

where kn = diag{kn1, kn2, ..., kn8}.

The derivative of the integral sliding mode surface is written as:

ṡn = ω̇e + knωe = ω̇d − ξ̇ + knωe. (3.62)

Substituting Eq. (3.59) into Eq. (3.62), we have

ṡn = ω̇d − M̂−1(τ − Ĉξ − D̂ − Ĝ− d) + knωe. (3.63)

Based on Eq. (3.63), the control input is designed as:

τ = τ1 + τ2 + τ3. (3.64)

where

τ1 = M̂ (ω̇d + knωe) + Ĉξ + D̂ + Ĝ+ Ĉsn + µsn. (3.65)

τ2 = ρn sign(sn). (3.66)

τ3 = Ŵ TH . (3.67)

For the control input in Eq. (3.64), τ1 is designed based on the nominal model and τ2 is a

robust term to overcome the effect of control errors. Parameters µ and ρn are constant numbers.

To avoid trajectory tracking chattering, a neural network, τ3, is utilized to eliminate the effect

of uncertainties and disturbances.
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Substituting Eq. (3.64), (3.65), (3.66), and (3.67) into Eq. (3.63),

ṡn = −M̂−1[Ĉsn + µsn + ρn sign(sn)− W̃ TH − µ0]. (3.68)

where µ0 is bounded and satisfies ||µ0|| ≤ ε0.

3.3.3 Adaptive law and stability analysis

Define the following Lyapunov function for the UVMS,

V =
1

2
sT
nM̂sn +

1

2γ
||W̃ ||2. (3.69)

The time derivative of Eq. (3.69) is

V̇ =
1

2
sT
n

˙̂
Msn + sT

nM̂ṡn +
1

γ
tr(W̃ T ˙̃

W ). (3.70)

Because ˙̂
M −2Ĉ is a skew-symmetric matrix, then substituting Eq. (3.68) into Eq. (3.70)

yields:

V̇ = −sT
n [µsn + ρn sign(sn)− µ0 − W̃ TH ]

+
1

γ
tr(W̃ T ˙̃

W )

= −µsT
nsn − (|sn|ρn − sT

nµ0) + sT
nW̃

TH

+
1

γ
tr(W̃ T ˙̃

W ).

(3.71)

Because

sT
nW̃

TH =
1

γ
tr(γW̃ THsT

n ). (3.72)

Select the adaptive law as:

˙̃
W = − ˙̂

W = −γHsT
n . (3.73)
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Substituting Eq. (3.72) and (3.73) into Eq. (3.71), we have

V̇ = −µsT
nsn − (|sn|ρn − sT

nµ0). (3.74)

If ρn is chosen as ρn > ||µ0||, then V̇ < 0, which means the inner loop is asymptotically

stable.

3.3.4 Outer loop design

The outer loop is a position loop, which is used to generate desired velocity inputs for the

inner loop. The outer loop scheme is shown in Fig. 3.7.

Figure 3.7: Outer loop scheme

Give the desired position input ζd, the tracking error is:

e = ζd − ζ. (3.75)

The outer loop integral sliding mode function is defined as:

sw = e+ kw

∫ t

0

edt. (3.76)

where kw = diag{kw1, kw2, ..., kw8}. Then,

ṡw = ė+ kwe = ζ̇d − ζ̇ + kwe. (3.77)
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Based on the inner velocity loop analysis, there exists a small error vector ε to satisfy:

ζ̇ = ωdw + ε. (3.78)

where ωdw is the output velocity of the outer loop, in which the velocity of vehicle is expressed

in inertial frame. The relationship between ωdw and ωd is written as:

ωd = J bIωdw. (3.79)

Therefore,

ṡw = ζ̇d − ωdw − ε+ kwe. (3.80)

Here, ωdw is selected as:

ωdw = ζ̇d + kwe+ ρw sat(sw, cw). (3.81)

where ρw is a constant number. sat(sw, cw) is a saturation function, which has the following

form:

sat(∆, c) =


∆
c
, |∆| ≤ c

sign(∆), |∆| > c
(3.82)

where c is a constant number.

Substituting Eq. (3.81) into Eq. (3.80) yields:

ṡw = −ρw sat(sw, cw)− ε. (3.83)

Then,

sT
wṡw = −ρwsT

w sat(sw, cw)− sT
wε. (3.84)

If ρw is selected large enough to satisfy sT
wṡw ≤ 0, then the outer position loop is stable.
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3.3.5 Summary of dual integral sliding mode control

In this part, a dual integral sliding mode controller is proposed and the stability is analyzed. A

neural network is adopted to eliminate system uncertainties as well. Lyapunov function shows

its robustness and the performance is shown in next section.

3.4 Simulation results and discussion

In this section, the application of the proposed three joint space trajectory tracking control

strategies are simulated and the performance is compared.

3.4.1 Description of the UVMS

The UVMS model consists of one ellipsoid vehicle and a three-joint manipulator with

cylindrical links. The geometric and mass properties and the hydrodynamic parameters of the

UVMS are shown in Table. 3.1 and 3.2. Vector rbb0 is set to be rbb0 = [0 0 − 0.4]Tm.

Mass Dimensions Ixx Iyy Izz 4
(kg) (m) (kg ·m2) (kg ·m2) (kg ·m2) (m3)

Vehicle 200
b = 0.5

13.6 7.2 13.6 0.1885
a, c = 0.3

Link 1 5
L = 0.3

0.0407 0.0407 0.0063 5.89× 10−4

r = 0.025

Link 2 10
L = 0.4

0.0093 0.1047 0.1047 7.854× 10−4

r = 0.025

Link 3 10
L = 0.4

0.0093 0.1047 0.1047 7.854× 10−4

r = 0.025

Table 3.1: The mass and geometric parameters of the UVMS

Vehicle
MrA = diag{38.633, 72.54, 38.633, 0.579, 0, 0.579}
D1(v) = diag{−20, −7, −20, −10, −3, −10}

D2(v) = diag{−150, −100, −150, −50, −7, −50}

Link 1
MrA = diag{0.589, 0.589, 0.5, 0.0044, 0.0044, 0}

CD = 1.1

Link 2
MrA = diag{1, 0.7854, 0.7854, 0, 0.0105, 0.0105}

CD = 1.1

Link 3
MrA = diag{1, 0.7854, 0.7854, 0, 0.0105, 0.0105}

CD = 1.1

Table 3.2: Hydrodynamic parameters
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3.4.2 Description of the task

A desired joint trajectory is given to test the three controllers. The desired motion of the

vehicle is to remain stationary, which means ηd = 0. The desired joint motion is:

q1d = sin(− π

10
t)

q2d = sin(
π

10
t) +

π

6

q3d = sin(
π

10
t)− π

6

(3.85)

3.4.3 Parameters of the controllers

A. Parameters of backstepping control

For each input variable H of the fuzzy logic, the Gaussian membership functions are

defined as

µ1
j = e−

1
2

(
hi+1

0.5
)2 (3.86)

µ2
j = e−

1
2

(
hi
0.5

)2 (3.87)

µ3
j = e−

1
2

(
hi−1

0.5
)2 (3.88)

The initial Φ and other parameters are set as follows:

Φ = 0.1× 13×9

k = 100, γ = 30, λ1 = 50

λ2 = diag{500 500 1000 100 100 100 100 100 100}

(3.89)

B. Parameters of the neural network control

The center point vector matrix of the neural network is :

Cneural = [c1 c2 c3 c4 c5]

= [−2127×1 − 127×1 027×1 127×1 2127×1]

(3.90)
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The stretch constant vector is selected as B = [1 1 1 1 1]T. The initial weight matrix is

set as W = 0.1 × 15×9. The matrix Q is selected as Q = 200 × I27. The adaptation gain is

γ = 50. Gain matricesKP ,KD, andKI are selected as:

KP = diag{[250 250 250 100 100 100 250 250 250]}

KD = diag{[50 50 50 50 50 50 50 100 100]}

KI = diag{[50 50 50 50 50 50 50 100 100]}

(3.91)

C. Parameters of the dual integral sliding mode control

The center point vector matrix of the neural network is :

Cneural = [c1 c2 c3 c4 c5]

= [−2118×1 − 118×1 018×1 118×1 2118×1]

(3.92)

The stretch constant vector is selected as B = [3 3 3 3 3]T. The adaptation gain is γ = 2.

For the inner integral sliding mode control, kn = I9×9, ρn = 1.5, and µ = 150. For the outer

integral sliding mode loop, kw = I8×8, ρw = 1, and cw = 0.003.

3.4.4 Simulation results and discussion

In this part, simulation results are given to show the performance of the three controllers. To

demonstrate the results briefly, backstepping control, neural network control, and dual integral

sliding mode control are written as BS, NN, and DL, respectively. The vehicle position and

attitude response are shown in Fig. 3.8 - 3.13. It can be seen that there are steady state tracking

errors for the backstepping control. As explained in Section. 3.1, the adaptive law and param-

eters are selected to guarantee system stability and tracking errors can be made as small as

desired by adjusting the control parameters, which means tracking errors can not be eliminated

completely. For the neural network control strategy, tracking errors converge to zero due to the

integral term in the control model. For the dual integral sliding mode control, it can be seen

that the UVMS remains highly robustness and the tracking errors converge to zero quickly.
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The periodic desired joint trajectories are shown in Fig. 3.14. The joint tracking errors are

shown in Fig. 3.15 - 3.17. For the backstepping control, there are fluctuations when the joint

starts to move because the fuzzy logic adjusts its parameters adaptively. For the neural network

control, similar tracking errors occur in every period. The UVMS keeps high robustness and

the tracking errors remains very small for the dual integral sliding mode control.

Figure 3.8: Vehicle position in x direction

3.5 Summary

In this chapter, three joint space trajectory tracking controllers, backstepping control, neural

network control, and dual integral sliding mode control, are proposed and tested. Backstepping

control is a decentralized strategy which can be applied to nonlinear system directly. Dynamic

model of the UVMS is not used in this method, which means there is no need to develop

the dynamic model for complex system. A fuzzy logic is designed to approximate uncertain

dynamic terms. In the neural network control part, a nonlinear controller based on nominal

dynamic model is given and an adaptive neural network is proposed to eliminate system uncer-

tainties. Considering the advantages of integral sliding mode control and neural network, the
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Figure 3.9: Vehicle position in y direction

Figure 3.10: Vehicle position in z direction
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Figure 3.11: Vehicle attitude along x-axis

Figure 3.12: Vehicle attitude along y-axis
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Figure 3.13: Vehicle attitude along z-axis

Figure 3.14: Desired joint trajectory
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Figure 3.15: Joint 1 error

Figure 3.16: Joint 2 error
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Figure 3.17: Joint 3 error

combination of the two parts are utilized to control the UVMS and the performance shows high

robustness. The advantages and disadvantages are summarized as below.

Advantages:

Backstepping control: Dynamic model is not necessary, which means it is a good choice

for complex models; It is a decentralized control scheme with a systematic recursive design

procedure; Tracking errors can be made as small as possible by adjusting controller parameters.

Neural network control: Steady state tracking errors are eliminated; Neural network is

used to approximate system uncertainties.

Dual integral sliding mode control: This method shows high robustness when used to

complete tasks.

Disadvantages:

Backstepping control: Steady state tracking errors exist and can not be eliminated; There

are fluctuations at the beginning.

Neural network control: Periodic tracking errors exist for periodic joint motion.

Dual integral sliding mode control: The design process is complex.

46



Chapter 4

Task space trajectory tracking and force control

Robot dynamics are typically modeled in joint space coordinates, but ultimately, such systems

must complete their work in the task space. In the previous chapter, an inverse kinematics

model is necessary for joint space control, and joint space controllers can be applied to finish

simple tasks. Inverse kinematics can be difficult to derive for complex tasks, however, and

may notbe unique, especially for redundant manipulators, including UVMS. To address such

challenges, a task space trajectory tracking and force control strategy is proposed in this chapter

and computer simulations explore its effectiveness.

4.1 Problem specification

The dynamic model of (2.38) can be written as:

M̂ξ̇ +H + δ = τ . (4.1)

whereH = Ĉξ+D̂+Ĝ. δ is a clumped uncertainty term. The inertia matrix M̂ is symmetric

and positive definete. Therefore, we have:

ξ̇ + M̂−1(H + δ) = M̂−1τ . (4.2)

For a robot system, the force in joint space can be seen as a mapping from forces in task

space. The relationship is expressed as

τ = JTFee. (4.3)
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where J is the Jacobian matrix mapping joint velocities into task space. Vector Fee is an

equivalent external force excerted on the end-effector.

The velocity of end-effector expressed in task space is

ẋe = Jξ. (4.4)

Differentiating both sides, we have

ẍe = Jξ̇ + J̇ξ. (4.5)

Substituting Eq. (4.3) and (4.5) into Eq. (4.2), we have

Λẍe + ΛJM̂−1(H + δ)−ΛJ̇ξ = Fee. (4.6)

where Λ = (JM̂−1JT)−1. In order to control the trajectory of end-effector in task space, one

classical strategy commonly adopted is

Fee = Λ(ẍed +Kvė+Kpe+Ki

∫
e) + ΛJM̂−1H −ΛJ̇ξ. (4.7)

where e = xed−xe and ė = ẋed−ẋe. Vectors xed and ẋed are the desired end-effector position

and velocity. Diagonal matrices Kv, Kp, and Ki are the corresponding gains, respectively.

The integral term is used to eliminate steady-state tracking errors. Substituting Eq. (4.7) into

Eq. (4.6), we have

ë+Kvė+Kpe+Ki

∫
e = ∆. (4.8)

where ∆ = JM̂Tδ. The existance of uncertainty term ∆ can affect the tracking accuracy.

For a redundant UVMS, there are infinite joint velocity solutions corresponding to one

specific velocity vector in task space. Similarly, due to the redundancy, there are infinite joint

space force solutions corresponding to one specific task space force vector as well. Therefore,

one risk of using Eq. (4.3) as control input is that the system is not guaranteed to be stable
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in joint space. The relationship between control inputs in joint space and task space is shown

in Fig. 4.1. A stable task space force vector corresponds to infinite joint space forces, which

cover both the stable and unstable areas. An unstable task space force vector corresponds an

unstable force area in joint space. Therefore, a stable task space input Fee is not guaranteed

to correspond to a stable area in joint space. Fig. 4.2 shows a case where the task space force

input lies in the stable area while the corresponding joint space force input lies in the unstable

area. The end-effector is able to track the desired task space, which means it is stable in task

space. However, the roll angle φ increases exponentially, which means it is unstable in joint

space.

Figure 4.1: The relationship between joint and task space force

4.2 Task space trajectory tracking control

Considering the issues in section 4.1, we have the following concerns when designing a

control strategy in task space:
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Figure 4.2: Unstable case
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1. The mapping relationship of Eq. (4.3) should be modified to make sure a stable control

input in task space lies in the stable area in joint space as well.

2. A compensator should be designed to eliminate the effect of uncertainty term ∆.

3. The stability should be verified in both joint space and task space.

4.2.1 Task space trajectory tracking controller design

The mapping relationship of Eq. (4.3) should be modified to guarantee system stability. Let

us define:

J̃ = M̂−1JTΛ. (4.9)

J̃ is a generalized inverse of the Jacobian matrix corresponding to the system that minimizes

the instantaneous kinetic energy of the UVMS [74][75].

Lemma : The unconstrained end-effector is subjected to the task space force Fee if and

only if the generalized joint space control input is expressed as:

τ = JTFE + τN . (4.10)

where

τN = (I(6+n) − JTJ̃T)τ0. (4.11)

Here, I(6+n) is a (6 + n) × (6 + n) identity matrix. Scalar n is the number of joints for the

manipulator. Vector τ0 is an arbitrary joint space input vector and τN corresponds to a null task

space input vector, which means any joint space input τ0 has no effect on the task space control

vector. An appropriate τ0 should be selected to guarantee the stability in joint space. In this

section, τ0 is selected as:

τ0 = −kξM̂ξ. (4.12)
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where kξ is a positive coefficient. Substituting Eq. (4.12) into Eq. (4.11), we have

τN = kξJ
TΛẋ− kξM̂ξ. (4.13)

Finally, the control input in joint space is expressed as:

τ = JTFee + kξJ
TΛẋ− kξM̂ξ. (4.14)

The stability of using Eq. (4.14) is analyzed in 4.2.3. To eliminate the effect of uncertainty

term ∆, a same neural network as shown in section 3.2.2 is adopted in this part. The actual

output of neural network is expressed as:

f̂n = Ŵ TU . (4.15)

in which Ŵ is the actual weights of the neural network andU is the radial basis vector. There-

fore, the uncertainty term can be expressed as:

∆ = f(W ∗) + µ0. (4.16)

where µ0 is bounded and satisfies ||µ0|| ≤ ε0

4.2.2 Adaptive law design and stability analysis in task space

Considering the neural network compensator, the control input in task space can be expressed

as:

FE = Λ(ẍd +Kvė+Kpe+Ki

∫
e) + Λ(JM̂−1H − J̇ξ + fn). (4.17)

Then substituting Eq. (4.16) and (4.17) into Eq. (4.6) yields:

ë+Kvė+Kpe+Ki

∫
e = −W̃ TU + µ0. (4.18)
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where W̃ T = Ŵ T −W ∗T. Define the error state vector:

s =


∫
e

e

ė

 . (4.19)

Then Eq. (4.18) can be expressed in term of state vector as:

ṡ = Aṡ+ F (−W̃ TU + µ0). (4.20)

where

A =


0 I 0

0 0 I

−Ki −Kp −Kv

 , F =


0

0

I

 . (4.21)

Define the Lyapunov function:

V =
1

2
sTPs+

1

2γ
||W̃ ||2. (4.22)

where γ > 0. Matrix P is symmetric positive definite, and satisfies the Lyapunov equation:

PA+ATP = −Q. (4.23)

in whichQ ≥ 0.

The time derivative of Lyapunov function is:

V̇ =
1

2
[sTP ṡ+ ṡTPs] +

1

γ
tr(

˙̃
W

T

W̃ )

=
1

2
{sTP [As+ F (−W̃ TU + µ0)] + [sTAT + (−W̃ TU + µ0)TF T]Ps}

+
1

γ
tr(

˙̃
W

T

W̃ )

=
1

2
[sT(PA+ATP )s] + [−W̃ TU + µ0]TF TPs+

1

γ
tr(

˙̃
W

T

W̃ )

= −1

2
sTQs−UTW̃F TPs+ µT

0F
TPs+

1

γ
tr(

˙̃
W

T

W̃ ).

(4.24)
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Because

UTW̃F TPs = tr(F TPsUTW̃ ). (4.25)

then Eq. (4.24) can be written as:

V̇ =− 1

2
sTQs+ µT

0F
TPs

+
1

γ
tr(−γF TPsUTW̃ +

˙̃
W

T

W̃ )
. (4.26)

The adaptive law is selected as:

˙̂
W = γUsTPF . (4.27)

Therefore,

V̇ = −1

2
sTQs+ µT

0F
TPs. (4.28)

As noted earlier, ||µ0|| ≤ ε0 and ||F || = 1. If λmin(Q) is the minimum eigenvalue of Q and

λmax(P ) is the maximum eigenvalue of P , then

V̇ ≤ −1

2
λmin(Q)||s||2 + ε0λmax(P )||s||

= −1

2
||s||[λmin(Q)||s|| − 2ε0λmax(P )]

(4.29)

To make V̇ ≤ 0, λmin(Q) should satisfy the condition:

λmin(Q) ≥ 2ε0λmax(P )

||s||
. (4.30)

Therefore, the error states and Lyapunov function V are both bounded, which means the

controller designed in task space is stable.
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4.2.3 Stability Analysis in Joint Space

The mapping relationship of Eq. (4.14) is used to implement the control input of Eq. (4.17).

Considering the redundancy characteristic, the stability in joint space should be satisfied as

well. Expanding Eq. (4.14), we have the control input in joint space as:

τ = JT[Λ(ẍ+Kvė+Kpe+Ki

∫
e)

+ Λ(JM̂−1H − J̇ξ + fn)] + dξ.

(4.31)

where

d = −[(Kv − kξI)JTΛJ + kξM̂ ]. (4.32)

The UVMS can be considered as a conservative system subjected to the dissipative forces

due to the velocity damping term −Kvẋ in Eq. (4.17). The forces are expressed as:

fdis = dξ. (4.33)

If min(Kv) ≥ kξ, then d is a negative definite matrix. Lyapunov stability analysis shows

that

ξTdξ < 0. (4.34)

which means the system is asymptotically stable in joint space.

4.2.4 Simulation results and discussion

In this section, the performance of the proposed task space controller is analyzed by applying

it to track a desired trajectory.

The structure parameters of the UVMS and the hydrodynamic parameters are the same as

in Table 3.1 and 3.2. The initial configuration of the UVMS is ζ = [0 0 0 0 0 0 0 90 −30]m, deg.

The desired trajectory of end-effector is to track a triangular with three vertices [0 0.7464 −

0.9]m, [0 0.7464 − 1]m, and [0 0.6464 − 1]m. A fifth-order polynomial trajectory generation

55



approach is used for each segment and the time period is 10s. The sampling frequency is

1000Hz.

The proportion-integration-differentiation parameters are selected as:

Kp =diag{[10 10 10]}

Kv =diag{[5 5 5]}

Ki =diag{[5 5 5]}

. (4.35)

For the mapping modification, kξ = 20. In the neural network, γ = 20, andQ = 100×I9.

The initial value of Ŵ is set to be 0.001 × I5×3. The corresponding Gaussian functions are

shown in Fig. 4.3.

Figure 4.3: Neural network functions

Vehicle position and attitude responses are shown in Fig. 4.4. Despite the trajectory plan-

ning is in task space, the motion of vehicle is smooth with small linear and angular displace-

ment. The vehicle velocities are shown in Fig. 4.5. It can be seen that the linear and angular

velocities approach to zero as the end-effector approach to the destination, which means the

UVMS stays stable in joint space. The manipulator joint angles and velocities are shown in

Fig. 4.6. Compared to vehicle, the manipulator moves in a larger range, which shows that the
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trajectory of end-effector is realized mainly by the manipulator. Joint velocity response shows

the manipulator is stable as well in joint space.

Figure 4.4: Vehicle displacement

In task space,the trajectory of end-effector is shown in Fig. 4.7. The tracking errors are

shown in Fig. 4.8. It can be seen that the proposed controller is capable of tracking desired

trajectory with high accuracy. There are some vibrations at the beginning because the neural
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Figure 4.5: Vehicle velocity
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Figure 4.6: Joint response
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network should adjust its parameters adaptively. After that, the tracking errors are smooth,

showing that the system is stable in task space.

Figure 4.7: End-effector trajectory

4.2.5 Summary of task space trajectory tracking control

In this section, the mapping relationship between joint space and task space is modified to

guarantee the stability in both joint and task space. The simulation results showed its effective-

ness when applied to complete a trajectory tracking task.

4.3 Task space force control

Contact between the manipulator and the environment is usually difficult to model. In this

section, a force control term is added to Eq. (4.31) to finish a force control task.
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Figure 4.8: Tracking error

4.3.1 Contact with the environment

In this part, we will resort to the simple model constituted by a frictionless and elastically

compliant plane. The force at the end-effector is then related to the deformation of the environ-

ment by the following simplified model [76]:

fe = K(x− xc). (4.36)

where x is the position of the end effector expressed in inertial frame. A constant vector xc

represents the position of the unperturbed environment expressed in the inertial frame, and

K = knnT. (4.37)

with k > 0 is the stiffness of the environment. Vector n is normal to the plane. A planar view

of the contact model is shown in Fig. 4.9. The range space of K, R(K), is constituted by all

the vectors parallel to n, which are normal to the plane. Similarly, R(I3×3 − nnT) spans the

space of the vectors parallel to the contact plane.
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Figure 4.9: Planar view of the chosen contact model

4.3.2 Force controller design in task space

In order to implement the force control in task space, a simple force control term is given as:

ffc = −fte +Kfpf̃ +Kfvḟe +Kfi

∫ t

0

f̃dt (4.38)

where Kfp, Kfv, and Kfi are scalar positive gains. The desired force is fd and the external

force is fte. The force tracking error is written as f̃ = fd − fe.

Adding Eq. (4.38) into (4.31), we have the force control expression in joint space as:

τ = JT[Λ(ẍ+Kvė+Kpe+Ki

∫
e) + JTffc

+ Λ(JM̂−1H − J̇ξ + fn)] + dξ.

(4.39)
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4.3.3 Force control task description

In this part, simulation results are presented to demonstrate the effectiveness of the proposed

force control strategy. The initial configuration is:

ζ = [0 0 0 0 0 0 0 120 − 30]T m, deg. (4.40)

which corresponds to the end-effector position xe = [0 0.7464 − 0.5]Tm. The position of

the contact plane is set to be z = −0.8m. The stiffness coefficient of the environment is

k = 104N/m.

Figure 4.10: Initial configuration for force control

The task of the end-effector is to move directly to the plane and apply a constant force on

this plane. The end-effector moves towards the plane in 10 sec. Once the contact is detected,

the force control strategy is used to control the motion of the end-effector. The desired force

is fd = [0 0 200]TN. The force control parameters are Kfp = 0.01, Kfv = 0.005, and Kfi =

0.005, respectively.
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4.3.4 Simulation results and discussion for force control

The vehicle and manipulator response are shown in Fig. 4.11 - 4.13. At t = 10s, the end-

effector contacts with a surface and the force control is activated. It can be seen that the velocity

of vehicle and manipulator approaches to zero, which means the system is stable. Fig. 4.14 -

4.16 shows the position of end-effector. In the x direction, there are small fluctuations due to

the coupling in the neural network. The contact between the surface and end-effector causes

the motion in y direction. However, the end-effector recovers quickly and tends to be stable.

Fig. 4.16 shows the position of end-effector in z direction and Fig. 4.17 shows the force of

end-effector. It can be seen that the proposed control approach is able to complete force tasks

effectively.

4.3.5 Summary of force control

In this section, a force control term is added to the proposed control model in task space

trajectory tracking control. A constant force task is given and the simulation results confirm

the effectiveness of the proposed force control strategy.

4.4 Chapter summary

In this chapter, a task space trajectory/force control strategy is proposed. A mapping re-

lationship from task space to joint space using a Jacobian matrix can not guarantee system

stability. Considering this issue, the mapping relationship is modified and system stability is

analyzed using Lyapunov function. The simulation results show its effectiveness when applied

to trajectory tracking tasks. A PID type force term is added to the controller designed for task

space trajectory tracking. The end-effector is able to apply a constant force on a surface and

stays stable for both the vehicle and manipulator.
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Figure 4.11: Vehicle position and linear velocity for force control
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Figure 4.12: Vehicle attitude and angular velocity for force control
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Figure 4.13: Joint response for force control
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Figure 4.14: End-effector position in x idrection

Figure 4.15: End-effector position in y idrection
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Figure 4.16: End-effector position in z idrection

Figure 4.17: End-effector force
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Chapter 5

Trajectory tracking control experiment using neural network

In the joint space and task space trajectory tracking control, a neural network is adopted

to eliminate system uncertainties. Simulation results show its effectiveness when applied to

different tasks. In this chapter, two control strategies using an adaptive neural network, torque

control and position control, are tested on a four-link robot arm. Practical concerns are given

and the performance of the controllers are analyzed.

5.1 Servo characteristics

In the following experiments, servos are used as actuators. Therefore, it is necessary to

introduce the characteristics of the servo. In this work, DYNAMIXEL AX-12A servos are

used. The output range is [0, 300] degrees, and the input range is [0, 1023] counts, which

yields an approximate position resolution of 0.293◦/count. The stall torque at 12V, 1.5A is

1.5N·m. The front view is shown in Fig. 5.1.

This type of servo is intelligent, which allows us to read the current position and velocity

information and write our desired position. If a present moving speed value is in the range of

0− 1023, it means that the motor rotates to the counter-clockwise (CCW) direction. If a value

is in the range of 1024− 2047, it means that the motor rotates to the clockwise (CW) direction.

The unit of speed value is 0.111 rpm. Torque limit can be changed as well. The output torque

range is [0, 1.5] N·m, and the input range is [0, 1023] counts, which yields an approximate

torque resolution of 1.46× 10−3 N·m/count.
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Figure 5.1: The front view of AX-12A

Compliance slope exists in each direction of CW/CCW and sets the level of torque near

the goal position. Compliance is to set the control flexibility of the motor. Fig. 5.2 shows the

relationship between output torque and position of the motor.

Figure 5.2: Compliance slope of AX-12A

5.2 Robot design

In this experiment, a four-joint robot is designed. The structure of the robot manipulator is

shown in Fig. 5.3. The simplified robot structure with assigned frames is shown in 5.4.
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Figure 5.3: Assembled robot manipulator

Figure 5.4: Simplified robot with assigned frames
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Four servos are connected in series and fixed on a base. A U2D2 adapter is used to connect

the servos to the laptop. U2D2 is a small size USB communication converter that enables to

control and to operate the DYNAMIXEL with the laptop. It uses the USB cable to connect

to the laptop and prevents damage of the USB terminals. It has both JST 3Pin connectors for

TTL communication and JST 4Pin connectors for RS-485 communication. In this experiment,

the TTL communication is used. A photograph of U2D2 and the corresponding block diagram

model that describes the input and output signals are shown in Fig. 5.5. A switched-mode power

supply (SMPS) is used to provide power. However, an adapter, SMPS2Dynamixel, should be

used between the SMPS and the servo. The SMPS is connected to the DC terminal and then

connect the servo using cable. The diagram is shown in Fig. 5.6.

Figure 5.5: U2D2

5.3 Dynamics modeling

A simplified robot structure with assigned frames is shown in Fig. 5.4. The dynamic model

can be expressed as:

M (q, q̇)q̈ +C(q, q̇)q̇ +G(q) + ffric + d = τ + JTFe. (5.1)

73



Figure 5.6: SMPS2DYNAMIXEL

where q is defined as q = [q1 q2 q3 q4]T. Matrices M (q, q̇) and C(q, q̇) are the inertia matrix

and the Coriolis and centripetal matrix, respectively. Vector G(q) is the gravity term. The

friction is written as ffric and d describes the disturbance. The process input torque is τ .

Vector Fe is the external force excerted on the manipulator and J is the corresponding jacobian

matrix.

Considering system uncertainties, the dynamic model can be written as:

M̂q̈ + Ĉq̇ + Ĝ+ f̂fric + δ = τ + JTFe. (5.2)

where
δM = M (q, q̂)− M̂

δC = C(q, q̂)− Ĉ

δG = G(q)− Ĝ

δffric = ffric − f̂fric

δ = δMq̈ + δCq̇ + δG+ δffric + d.

(5.3)
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In Eq. (5.3), M̂ , Ĉ, Ĝ, and f̂fric are the nominal model parameters of the inertial matrix,

Coriolis and centripetal matrix, gravity, and friction term, respectively. δ is the clumped uncer-

tainty term. In this research, system uncertainties are assumed to be continuous with respect to

time.

5.4 Control strategies

Neural network is able to fitting smooth and continuous functions online theoretically. Based

on this characteristics, two control methods are proposed and tested to demonstrate the perfor-

mance of neural network when applied to robot control. The first controller is designed based

on dynamic model and joint torque is used as the input. While the second controller uses joint

position as the input to get desired trajectory.

5.4.1 Torque control

In this part, joint torque is selected as the input. The control scheme is shown in Fig. 5.7 and

he control law is designed as:

Figure 5.7: Torque control scheme

τ = τ1 + τ2. (5.4)

75



where
τ1 = M̂ (q̈d +Kdė+Kpe+Ki

∫
e) + Ĉq̇ + Ĝ+ f̂fric

τ2 = M̂f̂ .

(5.5)

In Eq. (5.5), e = qd − q. Kp, Kd, and Ki are the proportional, derivative, and integral

gains. f̂ is the estimation of system uncertainties, which is the output of the neural network.

For the torque control, the input is chosen as s = [
∫
eT eT ėT]T. The adaptive law of the

neural network is selected as:

Ẇ = γHsTPF . (5.6)

where γ is a positive constant. P is a symmetric positive definite matrix. F is defined as:

F = [01×8 11×4]T. (5.7)

5.4.2 Position control

The output position of the servo is related to the input position and a torque value, which is

used to move the servo to desired position. Considering the unknown control methods inside

the servo, one strategy is to give a constant torque value and position in every loop. The scheme

is shown in Fig. 5.8. However, due to the compliance slope in Fig. 5.2, tracking error exists

because the torque value decreases as the servo moves close to the goal position. Internal

noise affects the performance as well. Therefore, it is necessary to reduce system nonlinear

uncertainties and improve the performance of servos.

Figure 5.8: Direct servo motion
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As shown in Fig. 5.8, there are two inputs for the position control method. One strategy is

to give a constant torque value and change the desired position. The reason is due to the servo

characteristics and experiment results will show the rationality of this choice.

System uncertainties are assumed to be continuous for the robot arm and a neural network

is utilized to adjust the input position. The structure of the control scheme is shown in Fig. 5.9.

The tracking error at time tk is

Figure 5.9: Control scheme

ek = pd k − pk. (5.8)

Vector pd k = [pd1 k pd2 k pd3 k pd4 k]
T is the desired position and pk = [p1 k p2 k p3 k p4 k]

T is

the output at tk. Considering system uncertainties, pk can be expressed as:

pk = f(pIN k). (5.9)

where pIN k = [pIN1 k pIN2 k pIN3 k pIN4 k]
T is the input at tk and f(·) is the nonlinear function

of the system. As the input, pIN k can be written as:

pIN k = pd k + pneural k. (5.10)

where pneural k is the output of the neural network. The input of the neural network is set as

s = ek and the weight matrix at tk is W T
k . Therefore, the output of the neural network is

expressed as:

pneural k = [pN1 pN2 pN3 pN4]T = W T
k H . (5.11)
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In order to adjust the weights adaptively, the total error at tk is defined as:

Err =
1

2
eT
k ek. (5.12)

The gradient of Err along a single weight is expressed as:

dErr

dw11

= e1 ·
d(pd1 k − p1 k)

dw11

= −e1 ·
dp1 k

dpIN1 k

· h1

dErr

dw21

= e1 ·
d(pd1 k − p1 k)

dw21

= −e1 ·
dp1 k

dpIN2 k

· h2

·

·

·
dErr

dwm4

= e4 ·
d(pd4 k − p4 k)

dwm4

= −e4 ·
dp4 k

dpIN4 k

· hm

(5.13)

The model is a bounded input bounded output (BIBO) system, which means dp1 k

dpIN1 k
,

dp1 k

dpIN2 k
, ..., and dp4 k

dpIN4 k
are restricted to a boundary. To move toward the minimum of Err,

the weight change should be in opposite direction. Therefore, the weight change using steepest

descent direction can be written as:

∆W T
k,k+1 = γekH

T. (5.14)

where γ is a positive constant. Then the updated weight matrix at tk+1 is:

Wk+1 = Wk + ∆Wk,k+1. (5.15)

5.5 Experiment results and discussion

In this section, a series of experiments based on the above two control strategies are tested

and compared. Differences between theoratical analysis and practical experiment results are

analyzed and reasons are given to explain the phenomenon.
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5.5.1 Desired trajectory

The following experiments are based on a same desired trajectory. There are a few factors

that affect the generation of desired trajectory.

(1). There is a max output torque for the servo, which means the acceleration of joint

should not be too large. If the trajectory is not planned appropriately, the calculated torque may

be larger than the max torque of the servo, and the performance of the controller can not be

evaluated properly.

(2). The initial position and destination position should not be too close to the motion

boundary of the servo, especially for the torque control. If the control parameters are not

selected properly, the trajectory of every joint has a chance to get stuck at the boundary.

Due to those concerns, the initial position is set as qs = [40
◦

10
◦ −40

◦
0
◦
]. The destination

position is qe = [90
◦ − 60

◦
10

◦ − 50
◦
]. The robot arm moves from the initial position to

the destination position in 10 seconds and moves back in the same way. The joint motion

trajectory is generated using a fifth order polynomial, which has the advantage that the velocity

and acceleration at the initial and end point are zero. The sampling frequency is 16Hz by setting

the latency time of the laptop USB port.

5.5.2 Robot parameters

The robot parameters are shown in Table. 5.1.

Mass (kg) Length (m) Center (m) Ixx (kg · m2) Iyy (kg· m2) Izz (kg· m2)
Link 1 0.06 0.095 0.08 1.25×10−5 2.05× 10−5 1.7× 10−5

Link 2 0.06 0.095 0.08 1.25×10−5 2.05× 10−5 1.7× 10−5

Link 3 0.06 0.095 0.08 1.25×10−5 2.05× 10−5 1.7× 10−5

Link 4 0.03 0.08 0.06 6.25×10−6 1.025× 10−5 8.5× 10−6

Table 5.1: Physical parameters of the robot

5.5.3 Experiment based on torque control

As shown in Fig. 5.8, each servo receives two signals in one loop, desired position and

output torque value. However, the servo only accepts a torque value without any directions for
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the torque control. Considering the structure of the servo in Fig. 5.1 and the compliance slope

in Fig. 5.2, we use a pair of position and torque as our inputs. If the torque is negative, then the

input is (0, |torque|). If the torque is positive, then the input is set as (1023, |torque|).

The static friction of the joints is set as f̂fric = [80 80 100 100]T, which corresponds

to f̂fric = [0.117 0.117 0.147 0.147]T N·m. The proportional, derivative, and integral gains

are selected as Kp = diag([480 540 2010 2340]), Kd = diag([20 20 30 30]), and Ki =

diag([40 40 60 60]), respectively.

For the neural network, the center point vector matrix is set as:

c = [c1 c2 c3 c4 c5] = [−212×1 − 112×1 012×1 112×1 212×1]. (5.16)

The stretch constant vector is selected as

b = 15×1 (5.17)

The initial weight matrix is:

W T = 14×5. (5.18)

The trajectory of the four joints is shown in Fig. 5.10 - 5.13 and the tracking errors are

shown in Fig. 5.14 - 5.17. The joint torques are shown in Fig. 5.18 - 5.21.

Theoretically, the control methods using neural network should have better performance

than that without neural network. However, the experiment shows different conclusion com-

pared to the theory. It is difficult to tell which one is better or inferior. Some reasons are given

below.

(1). We assumed that system uncertainties are continuous before we design the neural

network. However, uncertainties are not continuous in practice. Static friction is an important

disturbance for this model. In different positions, static friction has different values, which

means a constant estimation is not accurate.
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Figure 5.10: Joint 1 response using torque control

Figure 5.11: Joint 2 response using torque control
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Figure 5.12: Joint 3 response using torque control

Figure 5.13: Joint 4 response using torque control
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Figure 5.14: Joint 1 error using torque control

Figure 5.15: Joint 2 error using torque control
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Figure 5.16: Joint 3 error using torque control

Figure 5.17: Joint 4 error using torque control
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Figure 5.18: Joint 1 torque using torque control

Figure 5.19: Joint 2 torque using torque control
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Figure 5.20: Joint 3 torque using torque control

Figure 5.21: Joint 4 torque using torque control
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(2). The torque control scheme inside the servo is unkonwn. We can write a torque value

derived from the control method into the servo every loop. However, the output torque value

may not be the same as that we write.

(3). The joint trajectory and input torque are not smooth as shown in Fig. 5.10 - 5.13

and Fig. 5.18 - 5.21. The trajectory shows chattering as well. These factors contribute to

incontinuous system uncertainties.

In addition to the unknown torque control scheme in the servo and incontinuous uncer-

tainties, there are some drawbacks when we use torque as our input.

(1). The control parameters are determined through many experiments. If the parameters

are not selected properly, the system can become unstable easily.

(2). The control parameters only applies to this specific trajectory. We need to adjust the

control parameters every time if we change the desired trajectory, which means this control

method losts its generality.

(3). A linear control method is tested as well for this model. However, it is hard find a

group of control parameters to follow the desired trajectory and the performance is even worse

compared to the nonlinear controller described above.

5.5.4 Experiment based on position control

In order to avoid the unknown troque control scheme inside the servo for the position control,

we write a constant torque value every loop. The torque is set as the maximum to afford the

joint motion, which means the input pair is (position, 1023).

Firstly, we test the nonlinearity of the model. The desired trajectory is to move from the

initial position to the destination at a constant speed. The time is set to be 8s, 10s, and 12s,

respectively. The tracking error of the first joint with respect to desired position is shown in

Fig. 5.22. It can be seen that joint velocity has little effect on the tracking errors, which means

the model is a nonlinear system under position control.

For the neural network used in position control, the stretch constant vector is selected as:

b = 15×1. (5.19)
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Figure 5.22: Nonlinearity test

The initial weight matrix is selected as:

W T
0 = 10−4 × 14×5. (5.20)

The constant coefficient γ is selected as γ = 0.03. In order to show the effectiveness

of the neural network, a linear PID controller is used to test the robot arm as well. The cor-

responding parameters are Kp = diag([0.1 0.1 0.1 0.1]), Ki = diag([0.1 0.1 0.1 0.1]), and

Kd = diag([0.05 0.05 0.05 0.05]).

Three experiments are tested to show the performance of the neural network, open loop,

PID control, and neural network control. The tracking trajectory is shown in Fig. 5.23 - 5.26

and the corresponding tracking error is shown in Fig. 5.27 - 5.30. It can be seen that the tracking

error using neural network is reduced significantly compared to that using open loop and PID

control.
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Figure 5.23: Joint 1 response using position control

Figure 5.24: Joint 2 response using position control
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Figure 5.25: Joint 3 response using position control

Figure 5.26: Joint 4 response using position control
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Figure 5.27: Joint 1 error using position control

Figure 5.28: Joint 2 error using position control
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Figure 5.29: Joint 3 error using position control

Figure 5.30: Joint 4 error using position control
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In order to more quantitatively compare the performances of these three methods, Integral

of Squared Error (ISE), which is commonly used to measure the quality of system response

over the whole range of time, is taken into account. The defination is written as

ISE =

∫ ∞
0

e2dt (5.21)

The values of these performance indices for the errors of each joint are computed and

shown in Table. 5.2. Clearly, the ISE which emphasizes transient errors has smaller values by

the neural network control than by open loop and PID control. The neural network compensa-

tion is able to reduce the ISE by more than 15x that achieved by the uncompensated (“open-

loop”) commercial controller, and 8x-20x better than the PID compensated system. That means

the neural network control shows high effectiveness to keep errors near zero during the whole

task.

Joint Open loop PID Neural network
# 1 0.0497 0.0304 0.0031
# 2 0.0187 0.0092 0.0005
# 3 0.0142 0.0086 0.0004
# 4 0.0073 0.0043 0.0003

Table 5.2: The values of the ISE of the joint errors

5.6 Summary

In this section, two control strategies using neural networks based on torque and position are

proposed and tested on a four-joint robot arm. For the torque control, there are large tracking

errors due to the incontinuous uncertainties. For the position control, the neural network is

able to compensate for the system uncertainties and reduce the tracking errors significantly

compared to the open loop and linear PID control methods. The ISE values are compared

to show the effectiveness of neural network control. In addition, the position control strategy

using a neural network can be applied to random trajectories without changing the adaptive law

and control parameters.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this dissertation, trajectory tracking and force control strategies are proposed for a UVMS.

The main contributions are listed below.

First, three joint space trajectory tracking methods are proposed to follow desired joint

path. As a decentralized control strategy, backstepping control can be used directly to a non-

linear system and there is no need to derive its dynamic model. A fuzzy logic is added to

eliminate the uncertain terms. Computer simulation shows its effectiveness when applied to

follow desired joint path. However, steady state tracking errors exist. Considering this prob-

lem, a controller with an integral term is designed based on nominal dynamic model and an

adaptive neural network is adopted to eliminate the effect of system uncertainties. But there

are periodic tracking errors for periodic tasks. Integral sliding mode control has the advantage

of remaining robust against uncertainties. Therefore, a dual integral sliding mode controller is

proposed and it shows good performance when used to follow desired joint trajectories.

Due to system redundancy, it is difficult to calculate the inverse kinematics. To follow a

desired trajectory for an end-effector, a task space trajectory tracking controller is designed. A

neural network is used to eliminate the uncertain term in task space and the mapping relation-

ship between joint space and task space is modified to guarantee system stabilities. In addition,

a force control task is analyzed as well.

Finally, experiments are carried out to explore the application of neural networks. Since

neural networks are used to approximate continuous functions, the performance of the torque
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control method with a neural network shows no obvious improvement due to the discontinuity

of uncertain terms. While a compensator using a network is adopted for the position control and

the performance is compared to that of the uncompensated controller and the PID compensated

method. The experimental results show that the neural network compensation is able to reduce

the ISE by more than 15x that achieved by the uncompensated commercial controller, and

8x-20x better than the PID compensated system.

6.2 Future work

In this work, simple tasks are tested for the joint space control strategies. Inverse kinematics

should be explored to use the control methods.

For the controllers designed in task space, the trajectory of the vehicle and manipulator is

unpredictable, which may arise the following problems.

1. The manipulator is in a singular configuration.

2. Moving the vehicle consumes more energy than moving the manipulator, which causes

energy waste.

So it is necessary to find a way to solve the above problems. Furthermore, time delay is not

considered in this work, which can affect tracking accuracy significantly in some cases. It’s

interesting to introduce a time delay compensator and explore its stability.
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[33] Corina Barbălată, Matthew W. Dunnigan, and Yvan Pétillot. Dynamic coupling and con-

trol issues for a lightweight underwater vehicle manipulator system. In 2014 Oceans-St.

John’s, pages 1-6, IEEE, 2014.

[34] Corina Barbalata, Matthew W. Dunnigan, and Yvan Petillot. Coupled and decoupled

force/motion controllers for an underwater vehicle-manipulator system. Journal of Ma-

rine Science and Engineering, 6(3): 1-23, 2018.

[35] Han Han, Yanhui Wei, Lianwu Guan, Xiufen Ye, and Anqi Wang. Trajectory tracking

control of underwater vehicle-manipulator systems using uncertainty and disturbance es-

timator. In OCEANS 2018 MTS/IEEE Charleston, pages 1-6, IEEE, 2018.

[36] Noboru Sugiyama and Masayoshi Toda. A nonlinear disturbance observer using delayed

estimates-its application to motion control of an underwater vehicle-manipulator system.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 2007-2013, IEEE, 2016.

[37] Jiyong Li, Hai Huang, Lei Wan, Zexing Zhou, and Yang Xu. Hybrid Strategy-based Co-

ordinate Controller for an Underwater Vehicle Manipulator System Using Nonlinear Dis-

turbance Observer. Robotica, 37(10): 1710-1731, 2019.

[38] Sibo Yang, T. O. Ting, Ka Lok Man, and Sheng-Uei Guan. Investigation of neural net-

works for function approximation. Procedia Computer Science, 17: 586-594, 2013.

100



[39] Qudrat Khan and Rini Akmeliawati. Neuro-adaptive dynamic integral sliding mode con-

trol design with output differentiation observer for uncertain higher order MIMO nonlin-

ear systems. Neurocomputing, 226: 126-134, 2017.

[40] Hai Huang, Jiyong Li, Guocheng Zhang, Qirong Tang, and Lei Wan. Adaptive recurrent

neural network motion control for observation class remotely operated vehicle manipu-

lator system with modeling uncertainty. Advances in Mechanical Engineering, 10(10):

1-16, 2018.

[41] Panagiotis Sotiropoulos and Nikos Aspragathos. Neural networks to determine task ori-

ented dexterity indices for an underwater vehicle-manipulator system. Applied Soft Com-

puting, 49: 352-364, 2016.

[42] Pandurang S. Londhe, Mohan Santhakumar, Balasaheb M. Patre, and Laxman M. Wagh-

mare. Task space control of an autonomous underwater vehicle manipulator system by

robust single-input fuzzy logic control scheme. IEEE Journal of oceanic engineering,

42(1): 13-28, 2016.

[43] Yonghyun Kim, Santhakumar Mohan, and Jinwhan Kim. Task space-based control of an

underwater robotic system for position keeping in ocean currents. Advanced Robotics,

28(16): 1109-1119, 2014.

[44] Santhakumar Mohan, Jinwhan Kim, and Yogesh Singh. A robust task space position track-

ing control of an underwater vehicle manipulator system. In Proceedings of the 2015

Conference on Advances In Robotics, pages 1-6, 2015.

[45] Santhakumar Mohan. Task space trajectory tracking control of an underwater vehicle-

manipulator system under ocean currents. NISCAIR-CSIR, 10: 675-683, 2013.

[46] Pandurang S. Londhe, Mohan Santhakumar, Balasaheb M. Patre, and Laxman M. Wagh-

mare. Robust nonlinear task space position tracking control of an autonomous underwater

vehicle-manipulator system. In 2015 IEEE International Conference on Advanced Intel-

ligent Mechatronics (AIM), pages 1713-1718, IEEE, 2015.

101



[47] Elisabetta Cataldi, Giuseppe Muscio, Miguel Angel Trujillo, Yamnia Rodrı́guez,

Francesco Pierri, Gianluca Antonelli, Fabrizio Caccavale, Antidio Viguria, Stefano Chi-

averini, and Anı́bal Ollero. Impedance control of an aerial-manipulator: Preliminary

results. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 3848-3853, 2016.

[48] Joseph Jean-Baptiste Mvogo Ahanda, Jean Bosco Mbede, Achille Melingui, and Bernard

Essimbi. Robust adaptive control for robot manipulators: Support vector regression-based

command filtered adaptive backstepping approach. Robotica, 36(4): 8208-8213, 2018.

[49] T. K. Roy, L. C. Paul, M. F. Pervej, M. I. Sarkar, and F. K. Tumpa. Nonlinear adaptive

backstepping controller design for trajectory flight control of uahs. In 2017 International

Conference on Electrical, Computer and Communication Engineering (ECCE), pages 69-

74, IEEE, 2017.

[50] Fouad Yacef, Omar Bouhali, and Mustapha Hamerlain. Adaptive fuzzy backstepping con-

trol for trajectory tracking of unmanned aerial quadrotor. In 2014 International Confer-

ence on Unmanned Aircraft Systems (ICUAS), pages 920-927, IEEE, 2014.

[51] Barmak Baigzadehnoe, Zahra Rahmani, Alireza Khosravi, and Behrooz Rezaie. On po-

sition/force tracking control problem of cooperative robot manipulators using adaptive

fuzzy backstepping approach. ISA transactions, 70: 432-446, 2017.

[52] Seyed Mohammad Ahmadi, and Mohammad Mehdi Fateh. Task-space control of robots

using an adaptive Taylor series uncertainty estimator. International Journal of Control,

92(9): 2159-2169, 2019.

[53] Donghyeon Lee, Woongyong Lee, Jonghoon Park, and Wan Kyun Chung. Task Space

Control of Articulated Robot Near Kinematic Singularity: Forward Dynamics Approach.

IEEE Robotics and Automation Letters, 2(5): 752-759, 2020.

102



[54] Reza Gholipour, and Mohammad Mehdi Fateh. Adaptive task-space control of robot ma-

nipulators using the Fourier series expansion without task-space velocity measurements.

Measurement, 123: 285-292, 2018.

[55] Douglas R. Isenberg. A Task-Space Control Law for Free-Floating Space Robots. In 2017

25th International Conference on Systems Engineering (ICSEng), pages 33-38, 2017.

[56] S. Ali A. Moosavian and Evangelos Papadopoulos. Explicit dynamics of space free-

flyers with multiple manipulators via SPACEMAPLE. Advanced robotics, 18(2): 223-

244, 2004.

[57] Thor I Fossen. Guidance and control of ocean vehicles. John Wiley & Sons Inc, 1994.

[58] Gianluca Antonelli. Underwater robots. Switzerland: Springer International Publishing,

2014.

[59] G.E. Schubak, and D.S. Scott. A Techno-Economic Comparison of Power Systems for

Autonomous Underwater Vehicles. IEEE Journal Oceanic Engineering, 20: 94-100,

1995.

[60] Scott McMillan, David E. Orin, and Robert B. McGhee. Efficient dynamic simulation of

an underwater vehicle with a robotic manipulator. IEEE Transactions on Systems, Man,

and Cybernetics, 25(8): 1194-1206, 1995.

[61] Jiliang Wang, and John Y. Hung. Adaptive backstepping control for an underwater vehicle

manipulator system using fuzzy logic. In IECON 2018-44th Annual Conference of the

IEEE Industrial Electronics Society, pages 5600-5606, IEEE, 2018.

[62] Shao-Cheng Tong, Yong-Ming Li, Gang Feng, and Tie-Shan Li. Observer-based adaptive

fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE

Transactions on Systems, Man, and Cybernetics Part B (Cybernetics), 41(4): 1124-1135,

2011.

103



[63] Qi Zhou, Peng Shi, Jinjun Lu, and Shengyuan Xu. Adaptive output-feedback fuzzy track-

ing control for a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 19(5):

972-982, 2011.

[64] Jiliang Wang, Edmon Perkins, and John Y. Hung. Trajectory Tracking Control for an Un-

derwater Vehicle Manipulator System Using a Neural-adaptive Network. In 2019 South-

eastCon, pages 1-6, IEEE, 2019.

[65] Vadim I. Utkin. Sliding modes in control and optimization. Springer Science & Business

Media, 2013.

[66] Gianluca Antonelli, and Underwater Robots. Motion and force control of vehicle-

manipulator systems. Springer Tracts in Advanced Robotics. Napoli, 2002.

[67] D. Swaroop, J. Karl Hedrick, Patrick P. Yip, and J. Christian Gerdes. Dynamic surface

control for a class of nonlinear systems. IEEE transactions on automatic control, 45(10):

1893-1899, 2000.

[68] Wen-Jun Cao, and Jian-Xin Xu. Nonlinear integral-type sliding surface for both matched

and unmatched uncertain systems. IEEE Transactions on Automatic Control, 49(8): 1355-

1360, 2004.

[69] Francisco Javier Bejarano, Leonid Fridman, and Alex Poznyak. Output integral sliding

mode control based on algebraic hierarchical observer. International Journal of Control,

80(3): 443-453, 2007.

[70] Francisco Javier Bejarano, Leonid Fridman, and Alex Poznyak. Output integral sliding

mode for min-max optimization of multi-plant linear uncertain systems. IEEE Transac-

tions on Automatic Control, 54(11): 2611-2620, 2009.

[71] Qudrat Khan, and Rini Akmeliawati. Neuro-adaptive dynamic integral sliding mode con-

trol design with output differentiation observer for uncertain higher order MIMO nonlin-

ear systems. Neurocomputing, 226: 126-134, 2017.

104



[72] Dan Wang, and Jie Huang. Neural network-based adaptive dynamic surface control for a

class of uncertain nonlinear systems in strict-feedback form. IEEE transactions on neural

networks, 16(1): 195-202, 2005.

[73] Tairen Sun, Hailong Pei, Yongping Pan, Hongbo Zhou, and Caihong Zhang. Neural

network-based sliding mode adaptive control for robot manipulators. Neurocomputing,

74(14-15): 2377-2384, 2011.

[74] Oussama Khatib. A unified approach for motion and force control of robot manipulators:

The operational space formulation. IEEE Journal on Robotics and Automation, 3(1): 43-

53, 1987.

[75] Michael Mistry, and Ludovic Righetti. Operational space control of constrained and un-

deractuated systems. Robotics: Science and systems, 7: 225-232, 2012.

[76] Gianluca Antonelli, Stefano Chiaverini, and Nilanjan Sarkar. External force control for

underwater vehicle-manipulator systems. IEEE Transactions on Robotics and Automa-

tion, 17(6): 931-938, 2001.

105



Appendices

106



Appendix A

Experiment details

In the experiment, a ThinkPad workstation P53 is used. The computer configuration is shown
below.

Processor: Intel(R) Core(TM) i9-9800H
Graphics card: NVIDIA Quadro RTX 4000
Operating system: Windows 10 Home
Another HP computer is used as well to see if the configuration affects the communication

speed. The configuration is shown below.
Processor: Intel i5-8250U
Graphics card: Intel UHD Graphics 620
Operating system: Windows 10 Home
The experiment results show that there is no difference between the two computers. Mat-

lab R2019b is used for programming. In order to keep communication between the computer
and servos, DYNAMIXEL SDK is added to the Matlab folder. DYNAMIXEL SDK is a soft-
ware development kit that provides DYNAMIXEL control functions using packet communi-
cation, which can be downloaded from https://emanual.robotis.com/docs/en/
software/dynamixel/dynamixel_sdk/overview/.

The sampling frequency is selected by adjusting the latency time of the USB port. In the
experiments, the latency time is set to be 4 milliseconds. There are 16 read and write process in
one loop, which corresponds to 64 milliseconds in one loop. Therefore, the sampling frequency
is 16Hz. The read and write process are shown in Fig. A.1
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Figure A.1: Read and write process
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