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Abstract 

 

Soil moisture distribution and fluxes are among the fundamental components of the 

hydrological cycle. One-dimensional Richard’s Equation (hereafter RE) (Richards, 1931) is often 

used to represent the physics of water moisture distribution and flow in soils by the forces of 

capillarity and gravity at the local-field and watershed scales. However, obtaining an accurate and 

efficient numerical solution of RE has remained challenging due to its high non-linearity. In this 

study, a depth-averaged solution to RE was presented to advance the current knowledge of soil 

moisture modeling in the root zone and vadose zone. 

Chapter 1 presented a literature review on modeling soil moisture in saturated/unsaturated 

soils. The importance of soil moisture and soil moisture modeling was provided. Three forms of 

RE were explained followed by several issues related to the numerical solution of RE, including 

nonlinearity, spatial and temporal discretization, and computational costs as well as the problems 

of applying RE in wetland environment were summarized. In addition, the objectives of this study 

were presented. 

In Chapter 2, a two-layer approximation of RE was developed, which describes vertically-

averaged soil moisture content and flow dynamics in the root zone and the unsaturated soil below. 

The two-layer solution of RE converted the partial differential equation (PDE) of RE into two-

coupled ordinary differential equations (ODEs) describing dynamic vertically-averaged soil 

moisture variations in the two soil zones subject to a deep or shallow water table in addition to 
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variable soil moisture flux and pressure conditions at the surface. The numerical model was 

evaluated for three common soil textures with free-drainage and zero-pressure head at the bottom 

boundary under various atmospheric conditions. Simulated values showed that the new model is 

numerically stable and generally accurate in simulating vertically-averaged soil moisture in the 

two layers under various flux and prescribed pressure boundary conditions (BCs). A hypothetical 

simulation scenario involving desaturation of initially saturated soil profile caused by 

exponentially declining water table demonstrated robustness of the numerical model in tracking 

vertically-averaged moisture contents in the roots layer and the lower vadose soil as the water table 

continued to fall.  

In Chapter 3, a comprehensive assessment of the two-layer RE model was presented. First, 

the two-layer model was evaluated for 231 soil textures under varying soil layer thicknesses, with 

a prescribed upper boundary and two bottom BCs. The vertical soil profile was assumed to be 

uniform. Second, the two-layer model was tested for conditions where the top and bottom soil 

layers have contrasting hydraulic characteristics. Last, a case study of model application at a Soil 

Climate Analysis Network (SCAN) site was presented. The application was combined with the 

Bayesian Monte Carlo (BMC) method for model calibration and uncertainty analysis. Results 

showed that when dealing with a homogeneous soil profile, the two-layer model had excellent 

performance. 99.8% and 87.5% of the simulations among 92,400 simulations were found to have 

root mean square error (RMSE) of moisture contents smaller than 0.015 m3/m-3 for free-drainage 

and zero-pressure head bottom BC, respectively. With heterogeneous soil profiles, the soil 

moisture contents and fluxes from the two-layer model agreed well with those from HYDRUS 

(Šimůnek et al., 2008). The two-layer model combined with the BMC method showed good 

agreement with the observed average soil moisture of the root zone and vadose zone below. Soil 
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moisture observation data, hydroclimate data, and model structural uncertainties contributed to the 

overall model uncertainty the most. The model input parameters had very small contribution to the 

overall model uncertainty. The posterior parameter space and their likelihood values obtained by 

BMC in calibration process were used for model validation. The overall RMSE was smaller than 

0.023 m3/m-3 and the Nash–Sutcliffe efficiency (NSE) was greater than 0.72 for both soil layers 

during model validation. 

In Chapter 4, a multiple layer-averaged solution of RE is developed. The layer-averaged 

RE (LARE) solution solves the coupled ODEs using Heun’s method with time adaptive algorithm 

and it accounts for prescribed flux and pressure head boundary conditions at the soil surface, 

including precipitation, ponding, soil evaporation, and plant transpiration, subject to deep and 

shallow dynamic water table. LARE was evaluated through five testing scenarios by comparison 

against analytical solutions, HYDRUS 1-D solver, and field soil moisture observations. The model 

provided accurate estimations of moisture contents for multiple soil layers, and it was 

computationally efficient in terms of CPU time and storage usage compared to the finite volume 

RE scheme in accounting for complex, dynamic prescribed boundary conditions without any 

convergence issues. 

The focus of Chapter 5 was modification of soil moisture module and plant growth module 

in a process-based biogeochemical model WetQual for wetland nutrient cycling in the ponded and 

variably saturated compartments. The Updated model adopted the two-layer model to simulate soil 

moisture dynamics subjected to various atmospheric conditions at the soil top and changing 

shallow groundwater level in the variably saturated compartment of the wetland. Plant water 

uptake was specified for plants in the wetland environment. The primary productivity module was 

modified to consider environmental factors including temperature stress, water stress, and plant 
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dormancy. The updated model was evaluated by applying it to a restored wetland located on Kent 

Island, Maryland, USA, by two numerical experiments using different bottom boundary conditions 

for moisture movement in the variably saturated compartment. The results showed that the model 

had good performance in estimating nutrient loads. The moisture contents in the variably saturated 

compartment had significant differences between the two bottom conditions using deep and 

shallow water tables. Besides, the use of the zero-pressure head and free-drainage bottom boundary 

conditions applied in the variably saturated compartment had significant influences on NH4, TSS, 

and TOC exports but did not show influences on other nutrient constituents in the ponded 

compartment. Sensitivity analysis revealed that the parameters’ sensitivities in the ponded and 

variably saturated compartments more or less confirmed the sensitivity results of the Original 

(Hantush et al., 2013) and the Expanded (Sharifi et al., 2017) models, but the order of sensitivities 

differed. Nevertheless, N, C, and P cycles did not show sensitivity to soil hydraulic parameters. 

The mass balance analysis showed that using different bottom boundary conditions for moisture 

flow in the variably saturated compartment had influences on N, C, and P budgets. The model 

estimated biomass in the study wetland reflected the effects of temperature and water stress in 

addition to the period of dormancy. The estimated plant biomass and nutrient uptake had good 

matches with field measurements.  
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Chapter 1: Introduction 

1. Soil moisture 

Soil moisture is commonly defined as the total amount of water that reside in the pores of 

the soil in the vadose zone, also termed as unsaturated soil zone, the region between the soil surface 

and the groundwater table. Volumetric water content and soil matric potential are two commonly 

used parameters for quantifying soil water availability. Volumetric water content is defined as the 

ratio of the volume of water to the unit volume of the soil and has the unit of [L3
H2O/L3

soil]. It can 

be also expressed as percentage or depth of water per depth of soil [LH2O/Lsoil]. Volumetric water 

content is applicable to various spatial scales, from field scale to continental scales (e.g. Crave and 

Gascuel‐Odoux, 1997; Raffelli et al., 2017; Roberti et al., 2018). Soil matric potential is a measure 

of the forces (capillary and adsorptive forces) of the soil particles binding water molecules and it 

is commonly expressed in pressure unit, such as 𝑘𝑘𝑘𝑘𝑘𝑘. It is an important indicator to determine the 

relative availability of water held in the soil for plants. The force or energy in plants must exceed 

the soil matric potential in order for plants to extract water from the soil. The moisture contents at 

saturation (𝜃𝜃𝑠𝑠), field capacity (𝜃𝜃𝑓𝑓𝑓𝑓), and the permanent wilting point (𝜃𝜃𝑤𝑤𝑤𝑤) are three major soil 

characteristics, which are typically defined as corresponding to soil matric potentials of 

approximately −0.1 𝑘𝑘𝑘𝑘𝑘𝑘 , −10 to −33 𝑘𝑘𝑘𝑘𝑘𝑘 , and −1500 𝑘𝑘𝑘𝑘𝑘𝑘 , respectively (Hillel, 1998). The 

matric potentials for 𝜃𝜃𝑠𝑠 , 𝜃𝜃𝑓𝑓𝑓𝑓 , and 𝜃𝜃𝑤𝑤𝑤𝑤  are similar across different soil types, while the 

corresponding volumetric moisture contents mainly depend on soil texture (Hillel, 1998).  

Soil moisture is one of the key variables regulating many ecosystem processes and 

feedback loops in the land-atmosphere system and further controling the terrestrial energy and 
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biochemical cycles (McGuire et al., 2000; Seneviratne et al., 2010). Soil moisture functions as a 

source of water for the atmosphere through the process of evapotranspiration (Maxwell and 

Condon, 2016). Land evapotranspiration is the second-largest component of the terrestrial 

hydrological cycle. It returns more than 60% of land precipitation to the atmosphere (Korzoun, 

1978; Oki and Kanae, 2006). Meanwhile, the energy used for land evapotranspiration takes up 

more than half of the total solar energy absorbed by land surfaces (Trenberth et al., 2009). Through 

this process, soil moisture controls the fractions of latent and sensible heat fluxes, which have 

effects on air temperature and precipitation (Koster et al., 2004, 2009; Hirschi et al., 2014).  

 

2. Modeling of variably saturated flow 

Soil moisture connects surface water and groundwater through unsaturated flow. 

Precipitation reaching the ground surface may either infiltrate into the soil or runs off the soil 

surface (runoff). Within the soil, water moves according to the gradients of the soil water potential. 

Water may be removed from the soil by evaporation at the soil surface and plant water uptake in 

the root zone, or be lost to deeper layers by drainage and transported out of the soil by lateral flow. 

Soil may also get water from groundwater by groundwater discharge. The processes that water 

moves within the unsaturated soil zone are referred to as variably saturated flow processes.  

Variably saturated flow modeling is fundamental for multiple disciplines such as 

environmental science, agriculture, and hydrology because  variably saturated flow is one of the 

essential processes in these field (Zeng and Decker, 2009). Many numerical models have been 

developed to describe and solve for variably saturated flow in porous soil media. Among them, 

the simplest model is the soil water balance bucket model (Manabe, 1969). It represents the major 

hydrological processes involved in the soil water budget using conceptualized soil layers as 
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buckets for receiving and retaining all incident water. This method is numerically efficient and 

stable regarding the calculating time and computational burden, and thus, is used in many 

hydrological models, such as Laio et al. (2001), Romano et al. (2011), Arnold et al. (2012), Orth 

et al. (2013), Davis et al. (2017), and Sanchez‐Mejia and Papuga (2017). However, the water 

budget model may be prone to errors and cannot correctly quantify the water transport in the 

unsaturated zone due to the oversimplification of the physical process. As an alternative, 

physically-based models provide relatively accurate information about the flow characteristics in 

the vadose zone. They are generally developed more or less based on the solution of conservation 

equations of fluid mechanics with appropriate boundary conditions (e.g. Green and Ampt, 1911; 

Richards, 1931; Philip, 1957). Among different physically-based models, one of the fundamental 

and well-known equations is often adopted to describe variably saturated flow in porous media is 

the Richard’s Equation (RE) (Richards, 1931). The RE is often used to represent the physics of 

moisture distribution and flow in soils by the forces of capillarity and gravity at the local-field and 

watershed scales. The RE combines the mass balance equation and Darcy’s equation and often 

considers a sink/source term. The RE can be written in the volumetric soil moisture form, mixed 

form, and matric pressure head form, which each having advantages and disadvantages. The 

commonly used mixed form RE is written as,  

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐾𝐾(𝜃𝜃) �

𝜕𝜕𝜕𝜕(𝜃𝜃)
𝜕𝜕𝜕𝜕

+ 1�� − 𝑆𝑆(𝑧𝑧) (1) 

where 𝜃𝜃 is the volumetric water content [L3L-3]; t is time [T]; z is the vertical coordinate [L] 

(positively oriented downward); 𝐾𝐾(𝜃𝜃)  is unsaturated hydraulic conductivity [LT-1]; 𝜓𝜓(𝜃𝜃)  is 

capillary pressure head (negative of porewater pressure head) [L]; and 𝑆𝑆 is a sink term for plant 

water uptake [T-1]. In the mixed form RE, 𝜃𝜃 and 𝜓𝜓 are the two unknown variables (dependent 
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variables) and are often solved numerically. Hence, a closure relationship, the soil-water retention 

function is employed to relate 𝜃𝜃 and 𝜓𝜓(𝜃𝜃).  

The soil moisture form of RE is written as advection-diffusion form and it is solely a 

function of the moisture content, 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐷𝐷(𝜃𝜃)

𝜕𝜕𝜕𝜕
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+ 𝐾𝐾(𝜃𝜃)� − 𝑆𝑆(𝑧𝑧) (2) 

where 𝐷𝐷(𝜃𝜃) is the soil-water diffusivity [L2T-1], in which 𝐷𝐷(𝜃𝜃) = 𝐾𝐾(𝜃𝜃)(𝑑𝑑𝑑𝑑(𝜃𝜃)/𝑑𝑑𝑑𝑑). The term 

𝐷𝐷(𝜃𝜃)(𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕) represents diffusion by capillarity and 𝐾𝐾(𝜃𝜃) represents advection due to gravity. 

The moisture form of RE is mass conservative and has less nonlinearity compared to other forms 

of RE. However, these advantages only apply to homogeneous relatively dry soil. If soil is 

saturated, moisture content keeps constant and the derivative 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 becomes zero at smaller than 

or equal to air-entry capillary pressure, resulting in the soil-water diffusivity being infinity, which 

could lead to unstable numerical solution. When taking pressure head as the primary variable and 

using the chain rule, the head form of RE can be written as,  

 𝐶𝐶(𝜓𝜓)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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𝜕𝜕
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+ 1�� − 𝑆𝑆(𝑧𝑧) (3) 

where 𝐶𝐶(𝜓𝜓) is the specific moisture capacity [L-1], in which 𝐶𝐶(𝜓𝜓)  = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑. The head form of 

RE can be applied in both unsaturated and saturated flow conditions, because the pressure head is 

continuous over the soil profile, making it capable to solve heterogeneous soil problems. However, 

the head form RE may experience mass balance error introduced by the nonlinear term 𝐶𝐶(𝜓𝜓) (Zha 

et al., 2017). The special design of the numerical iteration technique needs to be applied to avoid 

mass balance errors (e.g. Celia et al., 1990; Rathfelder and Abriola, 1994; Tocci et al., 1997; Miller 

et al., 2006).   
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3. Problems of solving RE 

The common issue among all forms of RE is nonlinearity. RE is known as a highly 

nonlinear, degenerate elliptic-parabolic partial differential equation (Farthing and Ogden, 2017a). 

Besides, two empirical, highly nonlinear soil hydraulic functions, unsaturated hydraulic 

conductivity function 𝐾𝐾(𝜃𝜃) and soil-water characteristic curve 𝜓𝜓(𝜃𝜃), make the solution of RE 

unstable especially when soil is extremely dry or close to saturation (List and Radu, 2016). Also, 

when applying RE to the conditions with dynamic upper and lower boundary conditions, the 

moisture or pressure head could change rapidly in space and time. The numerical solution may 

experience stability and mass conservation issues in such conditions. To address the nonlinearity 

of RE and make the RE solution stable and mass conservative, various numerical solutions of RE 

have been proposed using a special design of spatial and temporal discretization schemes in 

methods of finite differences (Celia et al., 1990; Ross, 1990; Rathfelder and Abriola, 1994; 

Herrada et al., 2014), finite volume (Kumar et al., 2009; Caviedes-Voullième et al., 2013; Lai and 

Ogden, 2015; and Svyatskiy and Lipnikov, 2017), finite element (Forsyth et al., 1995; Lee and 

Abriola, 1999; Simunek et al., 2008), and combination of these schemes (Helmig, 1997).  

When setting the spatial discretization, the size of the mesh is the most important 

consideration since it determines the accuracy of the numerical solutions (Or et al., 2015). There 

are three major spatial discretization methods: uniform mesh, non-uniform mesh, and adaptive 

mesh. The uniform mesh is the simplest, but fine vertical resolution is often needed for the 

numerical solution to yield relatively accurate results. The non-uniform discretization scheme 

usually has fine vertical resolution at the soil surface and is coarsened along with depth. The finer 

mesh at the soil top tracks the rapid variations of fluxes and hydraulic gradient under various 
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atmospheric boundary conditions, while coarse mesh in deeper soil reduces the computational cost 

(Downer and Ogden, 2004a; Dickinson et al., 2014). For a thick and dry soil profile, the wetting 

front creates a sharp hydraulic gradient when moving downward. Adaptive discretization can be 

employed in this situation. The mesh becomes finer around the wetting front to track the time 

evolution of the moving wetting front.  

  The other problem related to RE is the computational expense. The computational cost in 

terms of the CPU utilization and the time used for convergence of the numerical solution associated 

with the numerical schemes listed above could vary differently according to the conditions RE 

being applied. In laboratory or field scale, computation time is not a major concern because the 

simulation time is relatively short. However, when applying RE in a large watershed model with 

high vertical resolution or in a distributed regional model having thousands or millions of nodes, 

the computation time would accumulate during a long simulation period and eventually lead to the 

total simulation time being undesirably long. One way to avoid high computational costs is to 

coarsen the spatial discretization at a reasonable resolution to yield relatively accurate results. 

Another method is to use an adaptive time-stepping scheme to optimize the computational cost by 

adjusting the time step size (Pop, 2002; Miller et al., 2006). Time step becomes smaller when 

boundary condition changes rapidly to ensure the accuracy of the solution and it becomes larger 

to increase the efficiency when numerical solutions converge fast.   

  The water flow between plant roots and the surrounding soil is one of the essential 

processes linking the vadose zone hydrology with the atmosphere. Many models simulate plant 

water uptake by the sink term S(z) applied in RE, which assumes the entire root system as a single 

unit to simulate the compound effects of individual roots (e.g. Feddes et al., 1976; Molz and 

Remson, 1971; Molz, 1981; Van Genuchten, 1987). Among them, Feddes et al. (1978) model is 
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one of the fundamental models that considers partitioning potential transpiration over depth 

according to root density and applying a water-stress response function. New generation of models 

borrowed this concept (Dogan and Motz, 2005; Ojha and Rai, 1996; Perrochet, 1987; Prasad, 1988; 

Van Genuchten, 1987). They extended this concept by adding more physical processes in the sink 

term such as soil-water pressure head, root growth, root permeability, and root water extraction. 

The selection of the proper mathematical model for certain plant type and environmental 

conditions can impact the accuracy of the prediction of plant water uptake.  

 

4. Modeling soil moisture dynamics in wetland environments 

Wetlands are defined as those environments with soils intermittently covered with shallow 

water or with water present either at or near the soil surface, and vegetation adapted to saturated 

soil conditions (Mitsch and Gosselink, 2000). Wetland hydrology is one of the important 

characteristics that determine wetland ecosystems and functions. Wetland soils are often made of 

fine-texture clay-rich soils and often flooded and saturated or near-saturated, but during different 

states of hydroperiod, wetland soils can experience saturation and unsaturated conditions. Moisture 

content in wetland soil is sensitive to the wetland water budget. Small changes in water inputs can 

have significant effects on the moisture status of the soil. The switch between saturated and 

unsaturated conditions of the wetland soils regulates oxygen level in the soils, which further 

influence the soil microbial community structure and microbial respiration, thereby control the 

biogeochemical processes of the wetland (Reddy and DeLaune, 2008; Manzoni et al., 2012; 

Moyano et al., 2013; Chen et al., 2015; Limpert et al., 2020). When soil is getting wet but not fully 

saturated, soil moisture is positively correlated with microbial activity (Brockett et al., 2012; 

Manzoni et al., 2012). Wickland and Neff (2008) reported that the soil organic decomposition rate 
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increased with the increase of soil moisture. It reached the highest value when the relative 

saturation rate was about 0.5 to 0.75, then it decreased when soil is close to saturation. The frequent 

dry/wet events increased the activity of autotrophic nitrifier populations (Fierer and Schimel, 2002). 

The maximum nitrogen mineralization occurred at intermediate soil moisture (Sleutel et al., 2008). 

Decreasing of soil moisture content increases air-filled porosity, which leads to reduction of 

nitrification rate (Manu et al., 2021). Soil moisture has a strong impact on greenhouse gas 

emissions. Schaufler et al. (2010) found that nitrous oxide emissions were positively correlated 

with soil moisture, while NO emission was negatively correlated with soil moisture. The highest 

CO2 emissions occurred at intermediate soil moisture. Oxygen level decreases with increased 

moisture content resulting in decreased redox potential in wetland soils (Picek et al., 2000). 

Consequently, as conditions become more anoxic and reducing, microorganisms tend to use 

alternative electron acceptors, which would change the dominant metabolic activity in the soil 

(Mitsch and Gosselink, 2000). 

Although the soil in the wetland area is often saturated or close to saturation, understanding 

the variations of moisture content of wetland soil is still necessary for precisely evaluating the 

biochemical process in the wetland. Sharifi A. et al., (2017) applied and slightly modified the finite 

difference numerical solution to RE developed by van Dam and Feddes (2000) to simulate soil 

moisture dynamics in variably saturated soil around ponding area of the wetland. This RE solution 

was integrated into a wetland hydrology and nutrient model, WetQual. The solution considers 

various flux or head-controlled top boundary conditions including precipitation, soil evaporation, 

plant water uptake, and surface ponding. The bottom boundary condition can be head controlled 

or flux controlled depending on the position of the groundwater level. However, Sharifi A. et al., 

(2017) reported that the finite difference solution to RE crashed frequently during simulations 
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especially when the soil was close to saturation due to the hyperbolic nature of RE and the high 

non-linearity of soil hydraulic functions. The overall model stability was interrupted because of 

the multiple crashes of the numerical model.  In addition, the plant growth module in WetQual 

were modeled using simple mass balance equations (Hantush et al., 2013). However, it did not 

consider detailed seasonal plant phenology (such as plant dormancy and maturity) and the effect 

of environmental stress on plant growth, such as temperature and water stress. 

 

5. Study Objectives  

The first objective of this study was to develop and verify a two-layer approximation of 

RE (called the two-layer model). The two-layer model is later integrated into the WetQual model 

(objective 4). The solution of the two-layer model converts the partial differential equation of RE 

into two coupled ordinary differential equations. It describes vertically averaged soil moisture 

content and flux dynamics in the root zone and the unsaturated vadose zone below as well as it 

accounts for various upper atmospheric conditions including precipitation, evapotranspiration, and 

ponding and handles dynamic groundwater level within or below the soil column. The two-layer 

model is numerically stable and computationally efficient and it yields relatively accurate 

estimations of layer-averaged soil moisture contents and boundary fluxes. Numerical experiments 

were conducted to evaluate the performance of the two-layer model including three soil textures 

with different permeability and various atmospheric conditions subject to a dynamic groundwater 

level at the bottom boundary. The derivations of the two-layer model, numerical solutions, and 

testing scenarios are presented in Chapter 2. 

The strength and weakness of the two-layer model in simulating soil moisture content 

under complex and changing environments were not fully explored in Chapter 2. Accordingly, the 
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second objective was to perform an in-depth assessment of the two-layer model. The two-layer 

model was first evaluated for uniform soil profiles made up of 231 soil textures with varying soil 

layer thicknesses, under a prescribed upper boundary and two bottom boundary conditions. Then, 

the two-layer model was tested with stratified layers. Last, the developed model was applied at 

field scale to a Soil Climate Analysis Network (SCAN) site. The Bayesian Monte Carlo and 

Maximum Likelihood estimation (BMCML) methodology was performed for model calibration 

and predictive uncertainty estimation. The model evaluation results were compared against 

HYDRUS and field observations. The methodology, numerical experiments, and application 

scenarios are explained in Chapter 3. 

Although the two-layer model was comprehensively tested in Chapter 3 for its performance 

under various environmental conditions, it has some structural shortcomings. If modeling soil 

moisture content and fluxes is desired at higher vertical resolution, a multi-layer scheme can be 

implemented. Consequently, the third objective of this study was to extend the two-layer solution 

of depth-averaged RE to a multiple Layer-Averaged RE solution, called LARE. The solution of 

LARE simulates average moisture contents of multiple predefined soil layers governed by several 

coupled ordinary differential equations. The coupled governing equations are solved explicitly by 

Heun’s method integrated with a time adaptive algorithm. Additionally, the numerical scheme 

LARE was evaluated against analytical solutions, HYDRUS 1-D solver, and field soil moisture 

observations. The numerical derivations and solutions of LARE as well as numerical experiments 

and application scenarios are presented in Chapter 4. 

The moisture content estimation module in WetQual developed by Sharifi et al. (2017) 

reported numerically unstability issues in the wetland environment. There is a need to improve the 

soil moisture estimation module in WetQual. Besides, the plant growth/death module in WetQual 
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is too simple that cannot appropriately capture the seasonal growth/death pattern of the wetland 

plants. Consequently, the fourth objective was to improve the soil moisture module and plant 

growth/death module in WetQual. The two-layer model was integrated into WetQual and it was 

used for simulating moisture content for the variably saturated compartment of the wetland and 

estimating actual plant water uptake to regulate plant growth. The plant growth/death module was 

improved for taking into account temperature stress, water stress on plant growth, and plant 

dormancy. The improved WetQual model was evaluated by two numerical experiments using the 

generalized likelihood uncertainty estimation technique (GLUE) and global sensitivity analysis 

(GSA) methods. The plant growth/death module was assessed by comparing the results of 

estimated biomass with field measurements. The improvements of model components and 

evaluation scenarios are presented in Chapter 5. 

 

6. Dissertation Organization 

The structure of the dissertation is organized as follows: 

Chapter 1 describes the background and the motivation of this research, presenting the 

research objectives.  

Chapter 2 provides detailed description of the two-layer model including the derivation of 

the governing equations and the numerical method for solving the equations. The numerical 

scheme was verified with two numerical tests by comparing the model outputs with the benchmark 

model HYDRUS 1-D in response to the first objective. 

Chapter 3 presents the methodology, numerical experiments, and case study application 

for a thorough assessment and validation of the two-layer model in response to the second 
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objective of this study. Meanwhile, the model parameter sensitivity and prediction uncertainty 

were also evaluated using a Bayesian framework.  

Chapter 4 describes the methods of the development of the multiple Layer Averaged 

Richards Equation (LARE) and the description of the associated numerical method in response to 

the third objective. This chapter also provides five testing scenarios for LARE against analytical 

solutions, HYDRUS 1-D solver, and field soil moisture observations in response to the third 

objective.  

Chapter 5 provides the improvements of unsaturated flow and plant growth modules in 

WetQual and presents three numerical scenarios for model evaluation in response to the fifth 

objective. Each chapter from Chapter 2 to Chapter 5 was written as standalone journal paper.  

Chapter 6 summarizes the entire research and presents the significant findings through this 

study. Potential improvements and suggestions for future work are also provided. 
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Chapter 2: Two-Layer Vertically-Averaged Soil Moisture Dynamics: Numerical Model 

Abstract 

Simulating water moisture flow in variably saturated soils with a relatively shallow water table is 

challenging due to the high nonlinear behavior of Richards' equation (RE). A two-layer 

approximation of RE was derived in this paper, which describes vertically-averaged soil moisture 

content and flow dynamics in the root zone and the unsaturated soil below. To this end, the partial 

differential equation (PDE) describing RE was converted into two-coupled ordinary differential 

equations (ODEs) describing dynamic vertically-averaged soil moisture variations in the two soil 

zones subject to a deep or shallow water table in addition to variable soil moisture flux and pressure 

conditions at the surface. The coupled ODEs were solved numerically using the iterative Huen's 

method for a variety of flux and pressure-controlled top and bottom boundary conditions (BCs). 

The numerical model was evaluated for three typical soil textures with free-drainage and mixed 

flux-pressure head at the bottom boundary under various atmospheric conditions. The results of 

soil water contents and fluxes were validated using HYDRUS-1D as a benchmark. Simulated 

values showed that the new model is numerically stable and generally accurate in simulating 

vertically-averaged soil moisture in the two layers under various flux and prescribed pressure BCs. 

A hypothetical simulation scenario involving desaturation of initially saturated soil profile caused 

by exponentially declining water table demonstrated the robustness of the numerical model in 

tracking vertically-averaged moisture contents in the roots layer and the lower vadose soil as the 

water table continued to fall. The two-layer model can be used by researchers to simulate variably 

saturated soils in wetlands and by water resources planners for efficient coupling of land-surface 

systems to groundwater and management of conjunctive use of surface and groundwater.  
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1. Introduction 

Soil moisture distribution and fluxes are fundamental components in the hydrological cycle. 

They connect surface water and groundwater and function as a source for evaporation demand, 

including plant transpiration (Maxwell and Condon, 2016). Besides, soil moisture is also known 

to control terrestrial biogeochemical processes by regulating the soil microbial respiration 

(Orchard and Cook, 1983; Liu et al., 2009). Soil moisture and fluxes should be well represented 

by hydrological and biogeochemical models as they play important roles for water resources 

planning and management and tracking water and solute mass budgets of a watershed.  

One of the fundamental and well-known equations to describe unsaturated flow in porous 

media is Richard's Equation (hereafter RE) (Richards, 1931). It is often used to represent the 

physics of water distribution and flow in soils (root and vadose zones) by the forces of capillarity 

and gravity at the local-field and watershed scales. The RE is obtained by substituting Darcy's 

equation into the continuity equation and considering applicable sink/source terms. The one-

dimensional form of RE can be written as 

 𝜕𝜕𝜕𝜕
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where 𝜃𝜃 is the volumetric water content [L3L-3]; 𝐾𝐾 is unsaturated hydraulic conductivity [LT-1]; 𝜓𝜓 

is capillary pressure head (negative of soil water pressure head) [L]; 𝑡𝑡 is time [T]; 𝑆𝑆 is a sink term 

for plant roots' uptake [T-1]; and 𝑧𝑧 is the vertical coordinate [L] (positively oriented downward). 

RE is known as a highly nonlinear, elliptic-parabolic partial differential equation (PDE). 

Although numerous studies have been done to address the non-linearity of RE, obtaining an 

accurate and efficient numerical solution of RE has remained challenging (Farthing and Ogden, 

2017). Besides, RE is coupled with two empirical, highly nonlinear soil hydraulic functions: 
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unsaturated hydraulic conductivity function 𝐾𝐾(𝜃𝜃) and soil-water characteristic curve 𝜓𝜓(𝜃𝜃). A 

condition known as degeneration can be introduced to the solution of RE when either or both of 

the values of unsaturated hydraulic conductivity and capillary-pressure head are close to zero (List 

and Radu, 2016). Algorithms have been developed for solving RE numerically in saturated and 

unsaturated flow problems. Various numerical solutions of RE have been proposed using spatial 

and temporal discretization schemes in methods of finite differences (Celia et al., 1990; Ross, 1990; 

Rathfelder and Abriola, 1994; Herrada et al., 2014), finite volume (Kumar et al., 2009; Caviedes-

Voullième et al., 2013; Lai and Ogden, 2015; and Svyatskiy and Lipnikov, 2017), and finite 

element (Forsyth et al., 1995; Lee and Abriola, 1999; Šimůnek et al., 2008). Ross (1990) presented 

an efficient finite difference scheme for solving RE using hyperbolic Sine transformation of matric 

potential considering soil infiltration. Caviedes-Voullième et al. (2013) applied an implicit finite 

volume scheme based on the mixed form of RE and implemented Celia et al. (1990) method to 

infiltration and column drainage flow scenarios. They concluded that this scheme is mass 

conservative and can solve the equation under saturated conditions and when soil transitions from 

unsaturated to saturated conditions. Further, for numerical stability and efficiency, it is better to 

use relatively large time steps with coarse meshes. Varado et al. (2006) expressed flux in terms of 

matrix (Kirchoff) potential and presented and validated a finite difference scheme expressed in 

terms of soil saturation. Besides demonstrating efficiency of the numerical solution, they 

concluded that it is necessary to use finer spatial discretization near the soil surface for accurately 

modeling the cumulative infiltration in fine-textured soils. Despite these efforts and many others, 

the spatial and temporal discretization of RE continue to pose a challenge, especially for soils with 

initially low moisture contents and high heterogeneity due to mass balance errors and numerical 

oscillation and dispersion (e.g., Belfort et al., 2013; and Caviedes-Voullième et al., 2013).  
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  Although application of RE at the laboratory and field scales has been relatively successful 

(Lai and Ogden, 2015; Liu et al., 2018; Zha et al., 2013), application of RE to larger scale systems 

such as wetlands and watersheds can be even more challenging. Using the numerical scheme 

proposed by van Dam and Feddes (2000), Sharifi et al. (2017) reported the frequent crashing of 

the RE solver, especially when soil is near saturation. In that study, high resolution of soil moisture 

values with depth was irrelevant and only layer-average values were important in simulating 

nitrogen and carbon cycling. Contemporary medium or large-scale soil moisture models often 

consider simplified representation of RE for moisture dynamics to decrease the computational 

burden. Some examples to this include RE coupled mass conservation equation (Zhu et al., 2016), 

analytical solution of RE (Huang and Wu, 2012; Su et al., 2018), coarse finite difference resolution 

(Downer and Ogden, 2004), and simpler functions for water retention parameters (Hayek, 2016).  

  Watershed and land surface models often rely on average soil moisture content than point 

values to simulate energy balance and biochemical processes such as CLM (Oleson et al., 2010), 

GSSHA (Downer and Ogden , 2004) and SVAT (Sellers et al., 1986). In these approaches, average 

moisture content for each soil layer is calculated either by integrating computed soil moisture over 

the layer or by selecting a nodal value to represent the average soil moisture content. Although RE 

estimates soil moisture from a physical perspective, the numerical schemes can be unstable and 

computational cost can increase exponentially at such scales. This is especially true when a 

solution is required over large areas and repetitive model simulations are needed to quantify model 

predictive uncertainty using, e.g., Monte Carlo simulations. Moreover, estimation of soil moisture 

values at high vertical resolution might be redundant and unnecessary (Cao and Yue, 2014) and 

can be unreliable in some applications (Farthing et al., 2003). Although several simplified 

approaches have been proposed to calculate moisture content for certain depth of soil in watershed 
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scale applications, such as the soil water balance bucket model (Sanchez‐Mejia and Papuga, 2017), 

these approaches cannot account for the complexities of soil water movement as RE does. 

Therefore, a stable and efficient numerical solution of RE is needed for large-scale soil moisture 

estimations and when modeling the coupling land surface and surface water to groundwater. The 

solution should be able to deal with the interactions between unsaturated soil and fluctuating 

groundwater levels by the actions of recharge, accretion or evaporative losses. Furthermore, a 

numerical scheme should be designed to approximate vertically-averaged volumetric soil moisture 

content with some mathematical rigor, with quantifiable errors to eliminate the need for high-

resolution details and thus reduce computational resource usage in terms of computation time and 

memory storage.  

Despite presenting integrated form of Eq. (1) (e.g., Lee and Abriola, 1999; Herrada et al., 

2014; and Lai and Ogden, 2015), analyses often proceeded with essentially finite-differences 

approximation of point values. All these schemes were proposed to obtain solutions at high vertical 

resolution, by discretizing the flow domain into multiple numerical cells. They are not designed to 

obtain moisture content averaged over vertically delineated soil layers (e.g., root zone and 

intermediate vadose zone), unless solutions are further processed. Worth noting is the work by 

Kumar (2004) where RE was averaged over a sloping soil to describe depth-averaged mean 

moisture content considering the effect of soil heterogeneity. The analysis emphasized relative 

contributions of various components of the lateral flow, but a solution was not presented and 

verified. While much of the literature has focused on numerical algorithms for solving RE at the 

point scale, much less effort has been devoted to the solution of layer-averaged forms with 

emphases on numerical efficiency and presence of water table at relatively shallow depth. 



18 
 

The interaction between saturated and unsaturated zone plays a critical role in the 

hydrological cycle (Zeng and Decker, 2009; Bizhanimanzar et al., 2019; Dai et al., 2019). Water 

table fluctuations can affect soil moisture in the root zone and regulate soil evaporation and plant 

water uptake (Sulis et al., 2011). During dry periods, soil profile can receive upward water flux 

from the water table, which could potentially be a crucial source of water to plants. The interactions 

between unsaturated (typically root zone) and saturated zone can be one-directional when water 

table is relatively deep (e.g., Celia et al., 1990; Varado et al., 2006; Herrada et al., 2014; Lai and 

Ogden, 2015; Hayek, 2016; Zhang et al., 2016; Rahman et al., 2019), and two-directional when 

the water table is relatively shallow and has significant effects on the water storage in the vadose 

soil. The numerical solution of RE becomes degenerate when the water table is within the root 

zone and close to the surface (Ogden et al., 2017). This further underscores the need for a stable, 

efficient and operational numerical model that can couple soil surface to groundwater and simulate 

saturation and desaturation close to the surface under highly variable climate conditions and 

fluctuating water table.  

This paper presents a new numerical model for two-layer vertically-averaged RE 

describing one-dimensional vertical water movement in the root zone and the vadose layer below. 

The solution is derived from first-order approximation (truncated error of order (∆𝑧𝑧)2 ) of 

vertically-averaged soil moisture content and the mixed form of RE. It converts the PDE to two-

coupled ODEs describing vertically-averaged moisture content and flow in two layers. The 

numerical model considers various atmospheric conditions along with plant water uptake and 

water movement between soil and fluctuating water table. The objectives of this paper are to: 1) 

derive a vertically-averaged and mass-conservative approximation of RE; 2) verify the model 

performance by comparison with the reference model HYDRUS considering various types of BCs; 
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and 3) demonstrate the capability of the model in simulating the presence of a dynamic water table. 

The overarching goal is to develop a numerically stable and efficient module for field and 

watershed-scale soil moisture and flux simulations.  

In the following sections, the mathematical derivation of the two-layer model is first 

described. This is followed by sections describing soil hydraulic properties, methods of plant water 

uptake and soil evaporation, and numerical scheme. The model is then evaluated by comparing the 

results of soil moisture and fluxes with those from HYDRUS-1D model for different soil texture 

and various BCs. The application concludes with a hypothetical scenario demonstrating model 

ability to simulate average soil moisture between ground surface and a dynamic water table. The 

manuscript ends with summary and conclusions. 

 

2. Methodology 

2.1. Water table below the root zone layer (two-layer model) 

The equation governing one-dimensional vertical water movement in soils is the flow 

continuity equation: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑆𝑆 (2) 

where, 𝜃𝜃 is volumetric water content [L3L-3]; t is time [T]; z is soil depth below the surface [L], 

positive downward; 𝑆𝑆 is a soil moisture sink term (e.g. plant transpiration) [L3L-3T-1]; and 𝑞𝑞 is flux 

per unit area [L3T-1L-2], given by Darcy's law:  

 
𝑞𝑞 = 𝐾𝐾

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐾𝐾 (3) 

where, 𝐾𝐾 is unsaturated hydraulic conductivity [LT-1]; and 𝜓𝜓 is negative of soil pressure head 

(capillary pressure head or matric potential) [L]. 
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Figure 2.1 is a schematic illustration of a soil profile with a root zone of thickness h and 

water table at depth H(t) and time t. Two layers are delineated; the first layer with thickness h 

denotes the root zone. The second layer with thickness (H-h) corresponds to vadose soil extending 

from the bottom of the first layer to the water table. We derive coupled ODEs of average moisture 

contents 𝜃̅𝜃1 and 𝜃̅𝜃2 for the root zone layer and the second layer, respectively. First, let us assume 

groundwater level is initially below the first layer (𝐻𝐻(𝑡𝑡) > ℎ), 𝜃̅𝜃1 and 𝜃̅𝜃2 are defined as 

 
𝜃̅𝜃1(𝑡𝑡) =

1
ℎ
�𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑
ℎ

0

 (4) 

 
𝜃̅𝜃2(𝑡𝑡) =

1
𝐻𝐻(𝑡𝑡) − ℎ

� 𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑

𝐻𝐻(𝑡𝑡)

ℎ

 (5) 

We start by integrating Eq. (2) from z = 0 to z = h:  

 
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

ℎ

0

𝑑𝑑𝑑𝑑 = −�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
ℎ

0

− �𝑆𝑆
ℎ

0

𝑑𝑑𝑑𝑑 (6) 

which yields 

 
ℎ
𝑑𝑑𝜃̅𝜃1
𝑑𝑑𝑑𝑑

= 𝑞𝑞|𝑧𝑧=0 − 𝑞𝑞|𝑧𝑧=ℎ − ℎ𝑆𝑆̅ (7) 

where, 𝑞𝑞|𝑧𝑧=0 is flux at soil surface [LT-1]; 𝑞𝑞|𝑧𝑧=ℎ is interface flux between the first layer and the 

second layer [LT-1]; and 𝑆𝑆̅  is average transpiration rate over the root zone [L3L-3T-1]: 𝑆𝑆̅ =

 ∫ 𝑆𝑆 𝑑𝑑𝑑𝑑ℎ
0 /ℎ. Integrating (2) over the second layer, from z = h to z = H(t), and taking out the S term  

 
�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐻𝐻(𝑡𝑡)

ℎ

𝑑𝑑𝑑𝑑 = − �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

𝐻𝐻(𝑡𝑡)

ℎ

 (8) 

and applying Leibnitz rule yields 
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(𝐻𝐻 − ℎ)

𝑑𝑑𝜃̅𝜃2
𝑑𝑑𝑑𝑑

− 𝜃𝜃2𝑠𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞|z=ℎ − 𝑞𝑞|z=𝐻𝐻 (9) 

where, 𝜃𝜃2𝑠𝑠 is the saturated moisture content of the second layer [L3L-3]; 𝑞𝑞|𝑧𝑧=𝐻𝐻 is the flux at bottom 

of the second layer [LT-1]. 

At the interface of two layers (z = ℎ), 𝑞𝑞|z=ℎ is given by: 

 
𝑞𝑞|z=ℎ = 𝐾𝐾|z=ℎ

∂𝜓𝜓
∂z
�
z=ℎ

+ 𝐾𝐾|z=ℎ (10) 

Taylor series expansion of 𝜓𝜓 around z = h is 

 
𝜓𝜓(z, t) = 𝜓𝜓(ℎ, t) +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=ℎ

(𝑧𝑧 − ℎ) +
1
2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑧𝑧2

�
𝑧𝑧=ℎ

(𝑧𝑧 − ℎ)2 + ⋯ (11) 

Integrating (11) from z = 0 to z = h and retaining zero and first-order terms yield 

 
𝜓𝜓�1 ≅ 𝜓𝜓(ℎ, t) −

1
2
∂𝜓𝜓
∂z
�
z=ℎ

ℎ (12) 

thus,  

 ∂𝜓𝜓
∂z
�
z=ℎ

≅ 2
𝜓𝜓(ℎ, t) − 𝜓𝜓�1

ℎ
 (13) 

where, 𝜓𝜓�1 is the average of 𝜓𝜓1in the first layer  [L], 𝜓𝜓�1 = ∫ 𝜓𝜓(z, t) 𝑑𝑑𝑑𝑑ℎ
0  /ℎ. 

Integrating (11) from z = h to z = H and dropping higher-order terms yields 

 
𝜓𝜓�2 ≅ 𝜓𝜓(ℎ, t) +

1
2
∂𝜓𝜓
∂z
�
z=ℎ

(𝐻𝐻 − ℎ) (14) 

Hence, 

 ∂𝜓𝜓
∂z
�
z=ℎ

≅ 2
𝜓𝜓�2 − 𝜓𝜓(ℎ, t)

𝐻𝐻 − ℎ
 (15) 

where, 𝜓𝜓�2 = ∫ 𝜓𝜓(z, t) 𝑑𝑑𝑑𝑑𝐻𝐻
ℎ /(𝐻𝐻 − ℎ). Equations (13) and (15) lead to this approximation: 

 
2
𝜓𝜓(ℎ, t) − 𝜓𝜓�1

ℎ
= 2

𝜓𝜓�2 − 𝜓𝜓(ℎ, t)
𝐻𝐻 − ℎ

 (16) 
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which can be solved for 𝜓𝜓(ℎ, 𝑡𝑡),  

 𝜓𝜓(ℎ, t) = 𝛽𝛽𝜓𝜓�1 + (1 − 𝛽𝛽)𝜓𝜓�2 (17) 

where, 𝛽𝛽 = 𝐻𝐻−ℎ
𝐻𝐻

, 1 − 𝛽𝛽 = ℎ
𝐻𝐻

. 

Substituting (17) into either (12) or (14) yields 

 ∂𝜓𝜓
∂z
�
z=ℎ

=
2
𝐻𝐻

(𝜓𝜓�2 − 𝜓𝜓�1) (18) 

Using the Taylor-series expansion of 𝐾𝐾 around z = h:  

 
𝐾𝐾(z, t) = 𝐾𝐾(ℎ, t) +

∂𝐾𝐾
∂z
�
z=ℎ

(z − ℎ) +
1
2
∂2𝐾𝐾
∂z2

�
z=ℎ

(z − ℎ)2 + ⋯ (19) 

Similarly, by integrating (19) from z = 0 to z = h and dropping higher-order terms, one can show 

 ∂𝐾𝐾
∂z
�
z=ℎ

= 2
𝐾𝐾(ℎ, t) − 𝐾𝐾�1

ℎ
 (20) 

where, 𝐾𝐾�1 = ∫ 𝐾𝐾(z, t) 𝑑𝑑𝑑𝑑ℎ
0 /ℎ. Hereafter, we make the approximation 𝐾𝐾�1 ≅ 𝐾𝐾1(𝜃̅𝜃1). 

Integrating (19) from z = h to z = H and dividing by (𝐻𝐻 − ℎ) yields 

 ∂𝐾𝐾
∂z
�
z=ℎ

= 2
𝐾𝐾�2 − 𝐾𝐾(ℎ, t)

𝐻𝐻 − ℎ
 (21) 

where, 𝐾𝐾�2 = ∫ 𝐾𝐾(z, t) 𝑑𝑑𝑑𝑑𝐻𝐻
ℎ /(𝐻𝐻 − ℎ) ≅ 𝐾𝐾2(𝜃̅𝜃2). 

Comparison of (20) with (21) leads to 

 
2
𝐾𝐾(ℎ, t) − 𝐾𝐾�1

ℎ
= 2

𝐾𝐾�2 − 𝐾𝐾(ℎ, t)
𝐻𝐻 − ℎ

 (22) 

Hence,  

 𝐾𝐾(ℎ, t) = 𝛽𝛽𝐾𝐾�1 + (1 − 𝛽𝛽)𝐾𝐾�2 (23) 

Underlying Eq. (23) is the assumption that K(z,t) is a continuous function and differentiable with 

respect to z.  
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Substituting (18) and (23) into (10) yields this expression for 𝑞𝑞|z=ℎ: 

 𝑞𝑞|z=ℎ =
2
𝐻𝐻

(𝛽𝛽𝐾𝐾�1 + (1 − 𝛽𝛽)𝐾𝐾�2)(𝜓𝜓�2 − 𝜓𝜓�1) + 𝛽𝛽𝐾𝐾�1 + (1 − 𝛽𝛽)𝐾𝐾�2 (24) 

The top flux 𝑞𝑞|z=0 is controlled by precipitation and evaporation,  

a) If 𝑖𝑖 > 0 and 𝑖𝑖 < 𝐾𝐾𝑠𝑠1,  

 𝑞𝑞|z=0 = 𝑖𝑖 (25) 

where, 𝐾𝐾𝑠𝑠1 is saturation conductivity of the first layer [LT-1]; and 𝑖𝑖 is precipitation rate [LT-1]. 

b) If 𝑖𝑖 > 0 and 𝑖𝑖 > 𝐾𝐾𝑠𝑠1, Eq. (25) holds until the first layer is saturated. Ponding occurs immediately 

after the first layer is saturated. If the ponding depth is d [L], we have 

 
𝑞𝑞|z=0 = 2𝐾𝐾𝑠𝑠1

𝜓𝜓�1 + 𝑑𝑑
ℎ

+ 𝐾𝐾𝑠𝑠1 (26) 

c) If 𝑖𝑖 = 0, 

 𝑞𝑞|z=0 = −𝑒𝑒𝑒𝑒𝑎𝑎 (27) 

where, 𝑒𝑒𝑒𝑒𝑎𝑎 is soil actual evaporation rate [LT-1]. 

At z = H, flux to the water table is 

 
𝑞𝑞|z=𝐻𝐻 = 𝐾𝐾|z=𝐻𝐻

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=𝐻𝐻

+ 𝐾𝐾|z=𝐻𝐻 (28) 

and  

 𝐾𝐾|z=𝐻𝐻 = 𝐾𝐾𝑠𝑠2 (29) 

Once again, we expand 𝜓𝜓 around z = H and integrate from z = h to z = H to obtain 

 ∂𝜓𝜓
∂z
�
z=𝐻𝐻

= 2
𝜓𝜓(𝐻𝐻, t) − 𝜓𝜓�2

𝐻𝐻 − ℎ
 (30) 

Let 𝜓𝜓(𝐻𝐻, t) = 𝜓𝜓𝑏𝑏, where 𝜓𝜓𝑏𝑏 is the critical bubbling suction (i.e., negative of air-entry capillary 

pressure) of the soil. Thus, 
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𝑞𝑞|z=𝐻𝐻 = 2𝐾𝐾𝑠𝑠2

𝜓𝜓𝑏𝑏 − 𝜓𝜓�2
𝐻𝐻 − ℎ

+ 𝐾𝐾𝑠𝑠2 (31) 

If water table drops deep below H, free drainage condition holds at the bottom and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=H

= 0. It 

can be shown using Taylor-series expansion of 𝐾𝐾 around z = H and noting that ∂𝐾𝐾
∂z
�
z=H

= 0 for free 

drainage BC, that to the first-order, flux 𝑞𝑞|z=H becomes   

 𝑞𝑞|z=H = 𝐾𝐾�2 ≅ 𝐾𝐾2(𝜃̅𝜃2) (32) 

Equations (7) and (9) with flux expressions (24-27) and (31), and interface expressions (17) and 

(23) collectively form two-coupled ordinary differential equations describing the dynamics of 

average volumetric water content in the root zone and the lower  vadose soil bounded by the  water 

table at the bottom. Here after, we refer to Eqs (7) and (9) with (24) and (31) as the two-layer 

model.  

 

2.2. Water table within the first layer (one-layer model) 

Here, we address the case where groundwater level is within the root zone (first soil layer), 

0 < 𝐻𝐻 ≤ ℎ. The average water content in the root zone is calculated by a weighted average of 

moisture content in both the saturated and unsaturated parts: 

 
𝜃̅𝜃1(𝑡𝑡) =

𝐻𝐻𝜃̅𝜃1𝑢𝑢(𝑡𝑡) + (ℎ − 𝐻𝐻)𝜃𝜃1𝑠𝑠(𝑡𝑡)
ℎ

 (33) 

where, 𝜃̅𝜃1𝑢𝑢 is moisture content of unsaturated part of the first layer [L3L-3], 𝜃𝜃1𝑠𝑠 is saturation water 

content of the first layer [L3L-3]. 

𝜃̅𝜃1𝑢𝑢(𝑡𝑡) is defined as  

 
𝜃̅𝜃1𝑢𝑢(𝑡𝑡) =

1
𝐻𝐻(𝑡𝑡)

� 𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑

𝐻𝐻(𝑡𝑡)

0

 (34) 
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Following similar steps, Integration of Eq. (2) from z = 0 to z = 𝐻𝐻(𝑡𝑡) yields 

 
𝐻𝐻
𝑑𝑑𝜃̅𝜃1𝑢𝑢
𝑑𝑑𝑑𝑑

− 𝜃𝜃1𝑠𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞|𝑧𝑧=0 − 𝑞𝑞|𝑧𝑧=𝐻𝐻 − 𝐻𝐻𝑆𝑆𝑢̅𝑢 (35) 

where, 𝑞𝑞|𝑧𝑧=𝐻𝐻 is  flux at the water table [LT-1]; and 𝑆𝑆𝑢̅𝑢 =  ∫ 𝑆𝑆 𝑑𝑑𝑑𝑑𝐻𝐻
0 /𝐻𝐻. 

Similar to (31), 𝑞𝑞|𝑧𝑧=𝐻𝐻 to the first-order is given by  

 
𝑞𝑞|𝑧𝑧=𝐻𝐻 = 2𝐾𝐾𝑠𝑠1

𝜓𝜓𝑏𝑏 − 𝜓𝜓�1𝑢𝑢
𝐻𝐻

+ 𝐾𝐾𝑠𝑠1 (36) 

where, 𝜓𝜓�1𝑢𝑢 is capillary pressure head  of the unsaturated part of the first layer [L]. 

The time-dependent H and dH/dt terms account for the expansion and contraction of the 

layers over which 𝜃̅𝜃1 and 𝜃̅𝜃2 are computed. In the context of this scenario, the two layers are virtual 

and not physical; they cease to exist when the water table rises to the surface and the entire soil 

profile is saturated. The first layer evolves from zero thickness to H(t) until the water table drops 

to the level lower than the root zone where thickness becomes constant at h. The second layer then 

start evolving from zero thickness and expands to H(t)-h as the water table continues to fall.    

 

2.3. Unsaturated soil hydraulic properties 

The two-layer model uses the Van Genuchten (1980) model for the soil hydraulic 

characteristic relationships 𝜓𝜓 and 𝐾𝐾:  

 
𝐾𝐾(𝑆𝑆𝑒𝑒) = �𝐾𝐾𝑠𝑠𝑆𝑆𝑒𝑒

𝜆𝜆 �1 − �1 − 𝑆𝑆𝑒𝑒
1
𝑚𝑚�

𝑚𝑚
�
2

   𝜓𝜓 < 0

𝐾𝐾𝑠𝑠                                               𝜓𝜓 ≥ 0
 (37) 

 
𝜓𝜓(𝑆𝑆𝑒𝑒) =

1
𝛼𝛼
�𝑆𝑆𝑒𝑒

−1𝑚𝑚 − 1�
1−𝑚𝑚

 (38) 

 𝑆𝑆𝑒𝑒 =
𝜃𝜃 − 𝜃𝜃𝑟𝑟
𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟

 (39) 
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 𝑚𝑚 = 1 −
1
𝑛𝑛

 (40) 

where, 𝜃𝜃𝑟𝑟  and 𝜃𝜃𝑠𝑠  are residual and saturated water content, respectively [L3L-3], 𝐾𝐾𝑠𝑠  is saturated 

hydraulic conductivity [LT–1], 𝑆𝑆𝑒𝑒 is effective saturation rate [-], 𝑛𝑛 is an empirical shape-defining 

parameter [-], 𝜆𝜆 is the pore size distribution index [-] and 𝛼𝛼 is a fitting parameter [L-1].  

 

2.4. Transpiration estimation 

The sink term S, which is defined as the volume of water removed from a unit volume of 

soil per unit time due to plant water uptake, is calculated using the water stress function proposed 

by Feddes (1982), 

 𝑆𝑆(𝜓𝜓) = 𝛾𝛾(𝜓𝜓)𝑆𝑆𝑝𝑝 (41) 

where 𝛾𝛾(𝜓𝜓) is soil water stress response function of the soil capillary pressure (0 ≤ 𝛾𝛾 ≤ 1) and 

𝑆𝑆𝑝𝑝 is potential plant transpiration rate [T-1]. The plant water uptake is calculated by water stress 

response function as shown in Figure 2.2.  When soil is approaching saturation with capillary 

pressure smaller than 𝜓𝜓1 or losing water to the point capillary pressure is above 𝜓𝜓4, plant water 

uptake ceases (𝛾𝛾 = 0). Water uptake is equal to the potential rate when soil capillary pressure is 

between certain predefined capillary pressure heads (𝜓𝜓2  and 𝜓𝜓3 ). As for capillary pressure 

between 𝜓𝜓1  and 𝜓𝜓2  (or 𝜓𝜓3  and 𝜓𝜓4 ), water uptake is calculated as linearly increasing (or 

decreasing) with 𝜓𝜓.  

 

2.5. Evaporation estimation 

Evaporation is calculated from potential evaporation for water content of the first layer 

greater than wilting point using the relationship, 
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𝑒𝑒𝑒𝑒𝑎𝑎 = 𝑒𝑒𝑒𝑒𝑝𝑝 �

𝜃̅𝜃1 − 𝜃𝜃𝑤𝑤𝑤𝑤
𝜃𝜃𝑓𝑓𝑓𝑓 − 𝜃𝜃𝑤𝑤𝑤𝑤

�
𝑝𝑝

 (42) 

where, 𝑒𝑒𝑒𝑒𝑝𝑝 is potential evaporation rate [LT-1], 𝜃𝜃𝑤𝑤𝑤𝑤 is moisture content at wilting point (-33 kPa) 

[L3L-3], 𝜃𝜃𝑓𝑓𝑓𝑓 is volumetric water content at field capacity (-1500 kPa) [L3L-3] and p is an exponent 

coefficient [-]. The value of p was set to 1. Potential transpiration rate (𝑆𝑆𝑝𝑝 ) and potential 

evaporation rate (𝑒𝑒𝑒𝑒𝑝𝑝) can be calculated by partitioning of potential evapotranspiration calculated 

either by process-based or empirical equations, such as Penman-Monteith method (Allen et al., 

2005), Hargreaves equation (Jensen et al., 1997) and Priestley-Taylor equation (Priestley and 

Taylor, 1972). 

 

2.6. Numerical Scheme 

The governing equations (7) and (9) with (24) and (31) for the two-layer model are solved 

explicitly by using the predictor-corrector algorithm Heun's method (Chapra and Canale, 2015). 

First, the fluxes 𝑞𝑞𝑛𝑛 (𝑞𝑞0 refers to the top flux 𝑞𝑞|𝑧𝑧=0, 𝑞𝑞1 refers to the interface flux of two layers 

𝑞𝑞|𝑧𝑧=ℎ and 𝑞𝑞2 refers to bottom flux 𝑞𝑞|𝑧𝑧=𝐻𝐻) at the boundaries are obtained from 𝜓𝜓� and 𝐾𝐾� of each 

layer, which are calculated at the beginning of each computational time step using the Van 

Genuchten soil characteristic relationships (Eqs. 37-40) soil hydraulic model. The time derivative 

or slope of the function 𝜃̅𝜃𝑖𝑖(𝑡𝑡) at the beginning of the computational time interval (Euler's slope) is 

expressed as  

 𝑑𝑑𝜃̅𝜃𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑛𝑛𝑗𝑗� (43) 

where, subscript i denotes layer number; subscript j indicates time tj; and 𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑛𝑛𝑗𝑗� can be 

deduced from Eqs. (7) and (9) after arranging terms; it is evaluated at the beginning of the 
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computational time step (tj). Equation (43) is used to extrapolate 𝜃̅𝜃𝑖𝑖 linearly to the end of the 

computational time step 

 𝜃̅𝜃𝑖𝑖0 = 𝜃̅𝜃𝑖𝑖
𝑗𝑗 + 𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑛𝑛𝑗𝑗�∆𝑡𝑡 (44) 

in which the superscript 0 refers to the intermediate prediction of 𝜃̅𝜃𝑖𝑖 at time tj+1, which refers to 

the standard Euler method and ∆𝑡𝑡 is the computational time step [T], ∆𝑡𝑡 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 . The fluxes 

per unit area 𝑞𝑞𝑛𝑛0 are obtained from 𝜓𝜓�𝑖𝑖0 and 𝐾𝐾�𝑖𝑖0 which are calculated from 𝜃̅𝜃𝑖𝑖0 and Van Genuchten 

soil characteristic model. The slope of the function 𝜃̅𝜃𝑖𝑖(𝑡𝑡) at the end of the time interval is given 

by: 

 𝑑𝑑𝜃̅𝜃𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝑓𝑓�𝑡𝑡𝑗𝑗+1, 𝑞𝑞𝑛𝑛0� (45) 

where, the superscript j+1 refers to time 𝑡𝑡𝑗𝑗+1. The correction for the prediction (44) is calculated 

using the average slope for the interval:  

 
𝜃̅𝜃𝑖𝑖
𝑗𝑗+1 = 𝜃̅𝜃𝑖𝑖

𝑗𝑗 +
𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑛𝑛𝑗𝑗� + 𝑓𝑓�𝑡𝑡𝑗𝑗+1, 𝑞𝑞𝑛𝑛0�

2
∆𝑡𝑡 (46) 

The slope in (45) is updated based on this correction (𝜃̅𝜃𝑖𝑖
𝑗𝑗+1) and a revised correction is 

obtained using (46) once again. These steps are repeated until convergence. A termination criterion, 

ɛ, for the convergence of the corrector is provided by: 

 �𝜃̅𝜃𝑖𝑖
𝑗𝑗+1,𝑝𝑝 − 𝜃̅𝜃𝑖𝑖

𝑗𝑗+1,𝑝𝑝−1� ≤  ε (47) 

where, 𝜃̅𝜃𝑖𝑖
𝑗𝑗+1,𝑝𝑝−1 and 𝜃̅𝜃𝑖𝑖

𝑗𝑗+1,𝑝𝑝 are the results from the prior iteration and the present correction. 

 

2.7. Model Evaluation 

We evaluated the two-layer model by comparing scenario simulations of volumetric 

moisture content and fluxes with corresponding HYDRUS layer-averaged results for three soil 
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textures with various prescribed upper and bottom BCs as well as a moving water table. The 

selected soil textures were with high, moderate, and low permeability according to their saturated 

hydraulic conductivity: sandy loam, loam, and clay loam, respectively. The van Genuchten soil 

hydraulic characteristics model was used for calculating unsaturated hydraulic conductivity and 

pressure head. The soil characteristics properties of the three soil textures are shown in Table 1. 

The thickness of the first layer and depth to the water table were set to ℎ = 10 cm and 𝐻𝐻 = 40 cm. 

The upper BCs (𝑞𝑞0) involved two combinations of precipitation and potential transpiration (Tp) 

scenarios (Table 2). Soil evaporation was not considered in model comparison owing to the 

different ways this model and HYDRUS estimate actual evaporation. We assumed that the 

vegetation cover was pasture, for which the root water uptake parameters 𝜓𝜓1, 𝜓𝜓2, 𝜓𝜓3, and 𝜓𝜓4 in 

the water stress response function were set to the values obtained from Wesseling et al. (1991), 

which were: 10 cm, 25 cm, 800 cm, and 8000 cm, respectively. We considered three distinct water 

table (WT) scenarios: 1) free-drainage at depth H (deep WT); 2) WT at depth H below the root 

zone; and 3) dynamic WT: sudden rise of WT to the surface and exponential decline afterward. 

The third scenario exemplifies the capability of the model to simulate desaturation of the two soil 

layers. For the shallow WT scenario, we imposed zero-pressure head BC (Eq. 31) assuming 𝜓𝜓𝑏𝑏 = 

0. The initial moisture contents for three soil textures were set to 80% of effective saturation rate 

(𝑆𝑆𝑒𝑒). Simulations were performed for a 20-day period with 0.001 days of computational time step 

(about 1.44 minutes).  

In scenario 3, we hypothesize that the soil domain is instantly saturated by a sudden rise of 

the WT from initial depth H0 = 40 cm to H = 0 at the soil surface at time t = 0 days followed by a 

gradual desaturation. During desaturation, we assume an exponential decline of the WT to its 

initial depth 𝐻𝐻0:  
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 𝐻𝐻(𝑡𝑡) = 𝐻𝐻0(1 − 𝑒𝑒−0.03𝑡𝑡) (48) 

This scenario was simulated for 100 days with computational time step of 0.001 day. Without loss 

of generality, the upper BC was set to zero rain and zero evapotranspiration. 

HYDRUS was used as a benchmark to evaluate the two-layer model performance. 

HYDRUS software package is a computer-based program that solves RE numerically for transient 

flow in saturated and unsaturated soils using a finite element method with a mass conservative 

implicit iterative scheme (Šimůnek et al., 2008). The finite element mesh here was constructed by 

discretizing the soil profile into 101 elements. Because HYDRUS solves RE at multiple discretized 

nodes, the averaged water contents for two soil layers were calculated by summing the values of 

water contents over all nodes and dividing by the number of nodes within each layer (nodes are 

evenly spaced in each layer). The time step used in HYDRUS was the same as that used in the 

two-layer model for each simulation scenario. For consistency, the adaptive time-stepping scheme 

was not implemented in HYDRUS. The tolerance in convergence criterion between the iterations 

(Eq. 47) was set to the water content difference of 0.0001 in both the two-layer model and 

HYDRUS. We used root mean square error (RMSE) to measure the model performance. In practice, 

the precision of the in-situ soil moisture measurement probes is assumed to be good for 

RMSE≤0.02 (Robinson et al., 2008).  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝜃𝜃∗𝑖𝑖 − 𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (49) 

where, 𝜃𝜃∗𝑖𝑖  is the 𝑖𝑖𝑡𝑡ℎ  simulated soil moisture by the two-layer model; 𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑖𝑖  is the 𝑖𝑖𝑡𝑡ℎ 

simulated value by HYDRUS; and N is number of simulated days. 
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3. Results 

Figures 2.3-2.6 compare simulated moisture and cumulative fluxes at the surface and 

bottom of the soil profiled (z = H) between the two models under the two weather scenarios in 

Table 2.2 and free-drainage and WT BCs. The performance statistics RMSE is shown in Table 2.3. 

Figure 2.7 shows the results for simulation Scenario 3, moisture comparison between two models 

with water table exponentially receding from soil surface to its initial depth H0 = 40 cm (30 cm 

below the bottom of the first layer). Overall, the two-layer mode simulated layer-averaged 

moisture content compared very well with those obtained by integrating the nodal values 

calculated by HYDRUS.  

3.1. Free-drainage BC 

Soil moisture contents and fluxes simulated by the two-layer model compared well to the 

corresponding layer-averaged HYDRUS results with free-drainage BC (Figures 2.3 and 2.4). The 

RMSE values for layer-averaged θ were between 0 to 0.010 and 0 to 0.011 for the first and the 

second layers, respectively (Table 2.3). Coarse textured soil (sandy loam) showed the fastest rate 

to reached steady than fine-textured soils, as the moisture content plots in Figures 2.3 and 2.4 show. 

The estimated moisture content of the second layer by the two-layer model compared better with 

corresponding HYDRUS values under rainfall scenario (i = 0.5 cm/day, Tp = 0 cm/day) (Figure 

2.3) than the scenario of plant water uptake by transpiration (i = 0 cm/day, Tp = 0.2 cm/day) (Figure 

2.4).  

The top and bottom cumulative flux values of the three soils agreed well with those 

simulated by HYDRUS. The fluxes were identical to those from HYDRUS (e.g. Figure 2.4b). The 

temporal behavior of water flux at both boundaries was well captured by the two-layer model. 

Computed cumulative fluxes in the rainfall scenario had a much better match with those from 
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HYDRUS than for the transpiration-only scenario. The two-layer model and HYDRUS initially 

estimated cumulative transpiration at the potential rate, when the soil water potential was between 

𝜓𝜓2 and 𝜓𝜓3, as depicted by the linear trend in Figure 2.3. When soil moisture of the root zone 

decreased by the influences of plant extraction and gravity, transpiration rate started to decrease at 

the time when water potential reached the range between 𝜓𝜓3  and 𝜓𝜓4 . The two-layer model 

estimated cumulative transpiration was larger than those estimated by HYDRUS in the transition 

period toward steady-state values (from about 10 days to 20 days for sandy loam and after about 

15 days for loam and clay loam soil in Figure 2.3b). The two-layer model estimated cumulative 

transpiration compared better in loam and clay loam than in sandy loam. For sandy loam, the lower 

values of the average soil moisture in the second layer after 10 days was contributed by higher 

estimated transpiration rates in the two-layer model (Figure 2.3a). The near flat bottom cumulative 

flux in the second layer implies free drainage has seized after 10 days and the continued decrease 

of computed average moisture thereafter can only be explained by the second layer contributing 

to simulated plant uptake in the first layer (root zone).  

 

3.2. Zero-pressure BC (Water Table) 

With zero-pressure head BC (Eq. 31), the water table can exchange moisture with the 

second layer and becomes a source of water moisture to the overlying soil during dry periods. The 

RMSE values for layer-averaged θ ranged between 0.001 to 0.006 and 0.001 to 0.008 for the first 

and the second layers, respectively (Table 2.3). Similar to the free-drainage scenario, the two-layer 

mode results for soil water content and cumulative fluxes were in a very good agreement with 

those obtained from HYDRUS with groundwater at the bottom of the soil domain. In this scenario, 

the second layer receives water from the saturated zone and contributes flux to the first layer to 
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meet plant water demand. Except for sandy loam in layer 1 where free drainage dominated, 

comparison of Figure 2.4(a) with Figure 2.6(a) and Figure 2.3(a) with Figure 2.5(a) shows the 

effect of shallow water table on moisture build-up in both layers. All simulations reached steady-

state relatively fast (in two days). For clay loam, the two-layer model reached steady state faster 

than HYDRUS with the transpiration scenario, but was slower with the rainfall scenario. 

Computed cumulative fluxes by the two-layer model were in perfect match with those from 

HYDRUS. Both models simulated transpiration rates at the potential rate in all simulations as the 

root zone matric potentials were between 𝜓𝜓2 and 𝜓𝜓3. This is supported by the computed linear 

cumulative transpiration in Figure 2.5(b). 

 

3.3. Dynamic WT  

This hypothetical scenario depicts a sudden rise of WT to the surface at t = 0 and 

subsequent desaturation, assuming an exponential falling rate of the WT (Eq. 48). Numerical 

results of soil water contents for sandy loam, loam and clay loam are shown in Figure 2.7. 

Estimated soil moisture for the first and the second layer all showed the same trend with HYDRUS 

results. The two-layer model showed excellent performance in calculating soil moisture for both 

layers (Table 2.3). The differences between the moisture content values estimated by the two 

models decreased as the soil texture became finer. The evolution of 𝜃̅𝜃1 and 𝜃̅𝜃2 was well captured 

by the current model. The transition from saturated to unsaturated conditions caused by 

groundwater decline was well captured with no numerical stability problems. Note the initially 

steady values of 𝜃̅𝜃2 at saturation until around t = 9.6 days when it starts declining. This corresponds 

to the time when the WT reaches the bottom of layer 1 (H= 10 cm) and the ensuing desaturation 
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of layer 2 as the water table continues falling to the original position at depth 40 cm. Before t = 

9.6 days, the water table is situated within layer 1, and layer 2 consequently is saturated.  

 

4. Discussion 

Soil moisture dynamics is normally governed by solving Richard's elliptic-parabolic partial 

differential equation or a variant of it. Current numerical models are either too simple to achieve 

the desired accuracy (e.g., Ducoudré et al., 1993; Neitsch et al., 2011) or too complex, time-

consuming, and computationally expensive to implement on large spatial scales and finer temporal 

resolution (Farthing and Ogden, 2017b; Harter et al., 2004; Qi et al., 2018). The vertically-

averaged solution to RE describes one-dimensional water movement and soil moisture dynamics 

averaged over the thicknesses of the root zone and the vadose zone below. The proposed numerical 

scheme solves for layer-averaged moisture content in each soil zone as opposed to point values 

(nodal or grid-centered values). This is because the two-layer model is derived based on integrated 

form of the finite differences approximations and expressed in terms of layer thickness-averaged 

values. The numerical scheme of the two-layer model involves an adequate parameterization of 

soil physics and it is relatively simple, stable, and robust. It is accurate and requires less CPU time. 

The numerical solutions in tested simulations all converged very fast. The predicted top and bottom 

fluxes as well as plant transpiration compared very well with HYDRUS results for both cases of 

free-drainage and WT as the bottom BCs. The newly developed two-layer model was able to 

reproduce salient features of drainage under capillary and gravity forces. The simulation for sandy 

loam soil showed that coarse soil textures which have relatively high conductivity tend to lose 

water faster than fine textured soils due to gravity drainage and have moisture content close to 

wilting point at steady state (Figures 2.3(a) and 2.4(a)). The ability of the two-layer model to 
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simulate supply of moisture from the WT to both layers was evident in fine-textured soils (Figures 

2.5(a) and 2.6(a)). Despite the presence of WT, the model simulated quick drainage of the water 

by gravity in the two layers for sandy loam and loam very well (Figures 2.5(a) and 2.6(a)). When 

considering water table at the bottom of the soil profile, groundwater can move upward due to 

suction forces, and the upward flux from the second layer to the first layer is highly determined by 

the soil characteristics and layer thicknesses. The finer the soil texture, the higher the soil water 

contents of the first and the second layer at steady state will be. As shown in Figures 2.5 and 2.6, 

the second layer of clay loam reaches saturated conditions and the moisture content of the first 

layer stays close to saturation. 

The differences between the two-layer model and HYDRUS can be attributed to truncation 

errors of order (Δz)2. The greater the layer thickness the larger the error and the differences with 

integrated finer-discretization solution computed by HYDRUS (based on 100 cells here). Higher-

order corrections might be needed to improve model performance. Moreover, transpiration rate is 

computed slightly differently in both models. In the two-layer model, plant roots are assumed to 

be uniformly distributed within the root zone and transpiration is calculated using the layer-

averaged capillary pressure head (matric potential), which, in turn, is calculated from layer-

averaged soil moisture content using the soil characteristic relationship. In HYDRUS, however, 

the sink term is described by the plant root water uptake distribution function, which is non-

uniformly distributed in the root zone. This could underestimate the computed transpiration rate 

in some nodes relative to others during the soil drying process. The averaging approach in the two-

layer model is producing higher transpiration than that in HYDRUS, although the average soil 

moisture contents are similar in both models. (see Figure 3b).  
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Because only two soil layers are considered in this new model, the two coupled ordinary 

differential equations involving top, interfacial and bottom fluxes govern water movement in the 

soil profile. Results showed that Heun's method in the two-layer model is a simple numerical 

method; it gives stable, robust and relatively accurate results. These simplifications make the 

computer program taking up less memory and CPU usage than those taken by HYDRUS. In 

addition, we have tested the 4th order Runge-Kutta method in solving the coupled equations and 

compared to Heun's method. The results regarding moisture contents for the two soil layers and 

fluxes (data not shown) matched precisely those obtained using Heun's method. However, the CPU 

time in Runge-Kutta method was a little longer than the Heun's method. The Runge-Kutta method 

requires two additional sets of variables compared to Heun's method to allocate the parameters that 

are used for calculating 3rd and 4th slope. Besides, during the simulation, if the soil moisture change 

between time steps is small, the numerical solution can converge faster. Four slopes still need to 

be calculated in one iteration in Runge-Kutta method, while Heun's method only calculates two 

slopes. Thus, the use of Heun's method with the corrector-predictor algorithm using certain 

predefined termination criteria in the numerical scheme can ensure the accuracy of the calculation 

during the iterations and minimize the number of iterations during each time step.  

The newly developed two-layer model can be an efficient soil moisture and water fluxes 

estimation algorithm for coupling surface water and groundwater systems at field and watershed 

scales or even at larger scales. We showed that the model produces relatively accurate estimations 

of averaged soil moisture and water fluxes, and is robust enough to account for the effect of 

fluctuating, shallow water table. In a follow-up paper, we comprehensively evaluate the two-layer 

model including application to real site soil moisture data and model predictive uncertainty 

estimation. Distributed watershed models and land surface models need to perform simulations at 
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hydrologic response unit level or grid level, often for long periods (Fatichi et al., 2016a). Therefore, 

computational cost is something that needs to be accounted for. Input parameters for this new 

model are relatively less, which makes it easy to set up and function, and thus ideal for large-scale 

hydrologic modeling. This model is also suitable in applications where groundwater is relatively 

shallow and where average soil moisture suffices for estimating biogeochemistry in complex 

ecosystems (e.g., wetlands), and when determining fluxes between surface water and groundwater 

systems is of interest. Wetland nutrient and carbon cycling models requiring averaged soil 

moisture content to simulate biochemical processes in variably saturated/unsaturated soils can 

greatly benefit from this model (Sharifi A. et al., 2017). In recent years, remote sensing techniques 

have provided large-scale soil moisture data and continuous surface soil moisture monitoring 

(Wagner et al., 2013; Babaeian et al., 2018). However, remote sensing observation provides near-

surface soil moisture data only (about 0 - 5 cm). The determination of deeper soil moisture content 

can be equally important and control water fluxes between the surface water and the groundwater 

systems (Sadeghi et al., 2019). 

 

5. Summary and Conclusion 

We have developed a new, stable and robust vertically-averaged form of one-dimensional 

RE to model vertical unsaturated water movement in a two-layered soil. The two-layer model 

simulates averaged soil moisture content by connecting hydroclimate conditions to the vadose 

zone with shallow and deep WTs. The PDE of RE is replaced with two-coupled ODEs and 

solutions are obtained numerically using the simple Huen's method. A novel feature is the term in 

the second ODE accounting for a dynamic WT. The numerical method is mass-conservative. The 

objective of the model is to couple land surface and aquatic ecosystems to the vadose soil and 
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groundwater to simulate surface water and groundwater interactions at larger than local scales, 

such as in wetlands and watersheds. At such scales where the areal extent is much greater than the 

vertical, average fluxes can be well represented by soil moisture averaged over the roots layer and 

the vadose zone, especially for shallow surficial aquifers. Besides numerical errors caused by 

truncation of higher-order terms, the model does not simulate horizontal flow nor account for the 

effect of sloping soil surfaces.  

The performance of the two-layer model was investigated in terms of computational 

accuracy and efficiency by comparison with HYDRUS as a reference model for three simulation 

scenarios, free drainage at the bottom of the soil profile, WT at the bottom of the soil domain, and 

falling water table. Three soil textures and different combinations of plant transpiration and rainfall 

rates were considered. The results showed that the two-layer model was robust and accurate in 

simulating variably saturated flows. The new model can capture the dynamics of depth-averaged 

soil moisture under different surface flux BCs in the presence of deep and shallow water table. 

Overall, simulated cumulative fluxes agreed very well with those from HYDRUS for all scenarios. 

Although some relatively small discrepancies of moisture estimates between the two models were 

observed, the RMSE values, overall, indicate excellent model performance. Moreover, the two-

layer model captured actual evaporation dynamics well in the root zone, mimicking the behavior 

of the root zone or the biologically active sediment layer in wetlands. Further, numerical 

simulations conducted for desaturation of an initially saturated soil profile by a falling WT showed 

that the two-layer model could successfully capture the dynamics of average soil moisture above 

the water table within the root zone and the lower vadose soil as the WT retreats.  

Although the two-layer model proved very promising and accurate under various 

conditions, there is certainly room for improvement. For instance, while the model has excellent 
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performance when soil layers are relatively shallow, the accuracy drops when soils become deep. 

Further, natural soils could be very heterogeneous, and thus, soil properties could be highly 

variable. The current model can only deal with two uniform soil layers. If the soil within the 

domain consists of more than two soil textures, extra calculations are needed to obtain averaged 

soil properties for two layers. While recent advances using stochastic theory can furnish formulas 

for estimating effective properties for use in the two-layer model, this does not negate the errors 

inherited by truncating higher-order terms and other assumptions made to derive the coupled ODEs.  

The CPU times required to run the two-layer model for numerical experiments in this paper 

were less than that for HYDRUS. The two-layer model has fewer input parameters and uses a 

simple numerical method, making use of less memory and CPU than finite-element-based RE 

solutions. For simulations and applications from field-scale to large watershed scale where 

resolution of water content with depth is not needed, the two-layer model can be a reliable 

numerical method for simulating soil moisture spatial and temporal variability. This is especially 

true for watershed simulations involving relatively shallow groundwater and computing 

biogeochemistry of complex ecosystems. Although simple numerical tests were conducted, the 

strength and weakness of the two-layer model are not fully comprehended. In a follow-up paper, 

the model will be investigated in more detail, considering differences in hydraulic properties 

between the two layers and various surface and bottom BCs. In addition, model predictive 

uncertainty will be examined by application to field site data where climate and soil moisture data 

are available at high temporal resolution, along with measured soil properties. This application 

will provide further evidence on model robustness to simulate moisture content in the field under 

complex hydroclimate conditions.  
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Table 2.1: Soil properties for van Genuchten model (Carsel and Parrish, 1988) 

Soil type 𝛼𝛼 
(cm-1) 𝑛𝑛 𝜃𝜃𝑟𝑟 

(cm3 cm-3) 
𝜃𝜃𝑠𝑠 

(cm3 cm-3) 
𝐾𝐾𝑠𝑠 

(cm day-1) 
𝜆𝜆  

Sandy Loam 0.075 1.89 0.065 0.41 106.1 0.5 
Loam 0.036 1.56 0.078 0.43 24.96 0.5 

Clay loam 0.019 1.31 0.095 0.41 6.24 0.5 
 

 

 

Table 2.2: Upper boundary conditions 

Scenario 
# 

Rainfall intensity 
i (cm/day) 

Potential transpiration rate 
Tp (cm/day) 

1 0 0.2 
2 0.5 0 

 

 

 

 

Table 2.3: RMSE of soil moisture content for numerical simulations 

Numerical scenarios Soil textures i=0 cm/day, Tp =0.2 cm/day i =0.5 cm/day, Tp =0 cm/day 
First layer Second layer First layer Second layer 

Free-drainage 
Sandy Loam 0.005 0.011 0.002 0.004 

Loam 0.010 0.007 0.002 0.002 
Clay Loam 0.010 0.004 0.000 0.000 

Zero-pressure head 
Sandy Loam 0.004 0.008 0.006 0.005 

Loam 0.001 0.001 0.001 0.002 
Clay Loam 0.005 0.004 0.002 0.007 

  i=0 cm/day, Tp =0 cm/day 
  First layer Second layer 

Groundwater decline 
Sandy Loam 0.004 0.006 

Loam 0.001 0.000 
Clay Loam 0.000 0.000 
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Figure 2.1: Schematic illustration of soil profile and the two-layer model depicting the root zone 
and vadose soil below. d is the ponding depth; h is the first layer (zoot zone) depth; H(t) is depth 
of WT at time t; and H0 is initial depth; 𝑞𝑞0, 𝑞𝑞1 and 𝑞𝑞2 are the top, middle and bottom flux 
(positive downward) , respectively. 

 

 
Figure 2.2: Schematic of the plant water stress response function (Eq. 41) 
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Figure 2.3: Moisture contents and cumulative fluxes with free-drainage BC, i = 0 cm/day, Tp = 
0.2 cm/day. (a) represents results for soil moisture comparison between two-layer model and 
HYDRUS; (b) represents results for cumulative top, bottom fluxes and transpiration comparison 
between two-layer model and HYDRUS; where 𝑞𝑞0 and 𝑞𝑞2 donate top and bottom flux terms, 
respectively; 𝑇𝑇 donates actual transpiration) 
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Figure 2.4: Moisture contents and cumulative fluxes with free-drainage BC, i = 0.5 cm/day, Tp = 
0 cm/day (note that the top and bottom cumulative fluxes and cumulative transpiration from the 
two-layer model are overlapped with those from HYDRUS) 
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Figure 2.5: Moisture contents and cumulative fluxes with zero-pressure head BC, i = 0 cm/day, 
Tp = 0.2 cm/day 
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Figure 2.6: Moisture contents and fluxes with zero-pressure head BC, i = 0.5 cm/day, Tp = 0 
cm/day 

 

 
Figure 2.7: Moisture contents with declining water table, i = 0 cm/day, Tp = 0 cm/day
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Chapter 3: Two-Layer Vertically Averaged Soil Moisture Dynamics: Model Assessment 

and Bayesian Uncertainty Estimation 

Abstract 

Modeling water movement in variably saturated soils with relatively shallow water table is 

important in land system models. A two-layer approximation of Richards’ equation (RE) was 

recently developed by the authors for this purpose and its utility was shown for few simple cases. 

This study presents a comprehensive assessment of the two-layer RE model. First, the two-layer 

model was evaluated for 231 soil textures under varying soil layer thicknesses, with a prescribed 

upper boundary and two bottom boundary conditions. The vertical soil profile was assumed to be 

uniform. Second, the two-layer model was tested for conditions where the top and bottom soil 

layers have contrasting hydraulic characteristics. For this, we tested two extreme conditions with 

a highly permeable soil overlying a low permeability soil, and vice versa. For the first two cases, 

the performance of the two-layer model was evaluated by comparing the results of volumetric 

soil moisture contents and fluxes from the two-layer model and HYDRUS. Last, a case study of 

model application at a Soil Climate Analysis Network (SCAN) site was presented. The 

application was combined with the Bayesian Monte Carlo (BMC) method for model calibration 

and uncertainty analysis. Computed vertically averaged soil moisture of two delineated soil 

layers were compared with observed data. Results showed that when dealing with a 

homogeneous soil profile, the two-layer model had excellent performance. 99.8% and 87.5% of 

the simulations among 92,400 simulations were found to have root mean square error (RMSE) of 

moisture contents smaller than 0.015 for free-drainage and zero-pressure head bottom boundary 

condition, respectively. With heterogeneous soil profiles, the soil moisture contents and fluxes 

from the two-layer model agreed well with those from HYDRUS (Šimůnek et al., 2008). The 
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two-layer model combined with the BMC method showed good agreement with the observed 

average soil moisture of the root zone and vadose zone below. Soil moisture observation data, 

hydroclimate data, and model structural uncertainties contributed to the overall model 

uncertainty the most. The model input parameters had very small contribution to the overall 

model uncertainty. The posterior parameter space and their likelihood values obtained by BMC 

in calibration process were used for model validation. The overall RMSE was smaller than 0.023 

and NSE was greater than 0.72 for both soil layers during model validation. 

 

1. Introduction 

Richards equation (RE, 1931) has widely been used to describe water movement in 

saturated/unsaturated flows in porous media because of its physical basis. However, due to the 

high nonlinearities of the partial differential expression of RE and two empirical water retention 

relations (unsaturated hydraulic conductivity and soil water pressure head) integrated with it, 

achieving a numerically stable, robust, and accurate solution of RE still remain challenging 

(Vereecken et al., 2016; Farthing and Ogden, 2017a). In laboratory and small-scale applications, 

RE has shown to provide remarkably good estimates of water flow and moisture distribution in 

soils (Ma et al., 2010; Selle et al., 2011; Romano, 2014; Lai and Ogden, 2015a). Nevertheless, 

when applying RE in large spatial and temporal scale modeling, solving RE can be 

computationally expensive due to its high nonlinearity. Besides, in such scale, estimation of high 

vertical resolution of soil moisture content is often not necessary. Simpler numerical methods have 

been developed as an alternative and adopted for soil water movement in watershed and large scale 

hydrological models, such as simplified RE scheme (e.g. Best et al., (2011)) and reservoir cascade 

scheme (e.g. Romano et al., (2011); Arnold et al., (2012)). Although these approaches have 
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provided satisfactory predictions of soil water movement and soil moisture contents for certain 

depth of soil, they often did not consider all soil hydrological processes due to model simplicity. 

Thus, there is a need for developing an efficient and stable numerical solution of RE, which 

considers layer-averaged moisture content and accounts for various infiltration processes and the 

interactions between soil and dynamic groundwater level. Recently, we have developed a two-

layer approximation of RE to explicitly simulate one-dimensional vertical unsaturated flow in the 

root zone and the vadose soil below the root zone under dynamic atmospheric conditions (He et 

al., 2021a). The model computes vertically averaged soil moisture content in the roots layer and 

lower vadose soil as well as maintains continuity of fluxes at the soil surface and a relatively 

shallow groundwater. The model is described by the following coupled ordinary differential 

equations (refer to Figure 3.1 on flow domain schematic illustration): 

 ℎ
𝑑𝑑𝜃̅𝜃1
𝑑𝑑𝑑𝑑

= 𝑞𝑞0 − 𝑞𝑞1 − ℎ𝑆𝑆̅ (50) 

 (𝐻𝐻 − ℎ)
𝑑𝑑𝜃̅𝜃2
𝑑𝑑𝑑𝑑

− 𝜃𝜃2𝑠𝑠
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞1 − 𝑞𝑞2 (51) 

in which 

 𝜃̅𝜃1(𝑡𝑡) =
1
ℎ
�𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑
ℎ

0

, 𝜃̅𝜃2(𝑡𝑡) =
1

𝐻𝐻(𝑡𝑡) − ℎ
� 𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑

𝐻𝐻(𝑡𝑡)

ℎ

 (2a) 

 𝑞𝑞2 =
2
𝐻𝐻

(𝛽𝛽𝐾𝐾�1 + (1 − 𝛽𝛽)𝐾𝐾�2)(𝜓𝜓�2 − 𝜓𝜓�1) + 𝛽𝛽𝐾𝐾�1 + (1 − 𝛽𝛽)𝐾𝐾�2  (2b) 

where, 𝜃̅𝜃1 and 𝜃̅𝜃2 are the first (root zone) and the second layer (lower vadose soil) average moisture 

contents, respectively [-]; 𝜃𝜃2𝑠𝑠  is the saturated water content of the second layer [-]; ℎ  is the 

thickness of the first layer [L]; 𝐻𝐻 is depth to water table[L]; 𝑞𝑞0 is the moisture flux at the soil-

atmosphere interface [LT-1] (positive downward); 𝑞𝑞1 is the moisture flux at the interface of the two 

layers [LT-1] (Figure 3.1); 𝑞𝑞2 is the moisture flux at the bottom of the second layer and accounts 
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for flux interactions between vadose zone and water table [LT-1]; 𝑆𝑆̅ is the transpiration rate [T-1]; 

𝐾𝐾�1 and 𝐾𝐾�2 are average unsaturated conductivities of the first and the second layer, respectively 

[LT-1]; 𝜓𝜓�1 and 𝜓𝜓�2 are average soil capillary pressure heads for the first and the second layer, 

respectively [L]; and 𝛽𝛽 = (𝐻𝐻 − ℎ)/𝐻𝐻. The coupled ordinary differential equations (Eqs. 1 and 2) 

of the two-layer model are solved by Heun’s method with the iterative corrector to reduce 

truncation error and improve stability. Actual plant transpiration rate (𝑆𝑆̅) is calculated based on the 

moisture content of the root zone by the method proposed by Feddes (1982). The actual bare soil 

evaporation is evaluated according to average moisture content and moisture contents at field 

capacity and wilting point of the root zone layer. Details of the model description are given in He 

et al. (2021a). 

The model was evaluated for relatively simple atmospheric and bottom soil profile 

boundary conditions by comparing its results to the one-dimensional finite element model 

HYDRUS 1-D (Šimůnek et al. 2008) as a benchmark. The assessment was performed for a 

homogenous soil profile with three soil textures under different prescribed pressure and flux 

atmospheric and bottom boundary conditions as well as for a scenario involving feedback with 

shallow and dynamic water table (He et al. 2021a). The two-layer model has shown good 

performance in terms of model accuracy and efficiency in estimating average moisture contents of 

the two soil layers and top and bottom fluxes as well as transpiration estimation when compared 

with HYDRUS under prescribed boundary conditions. However, the two-layer model was not fully 

tested to understand its true strengths and limitations for different soil textures and layered soil 

(layers with contrasting soil texture) as well as its performance under varying hydroclimate 

conditions. The model was also not tested with field data and its potential in predicting site-level 

soil moisture movement, hence, needs to be explored.  
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Application of RE in practice requires estimation of soil hydraulic parameters which are 

critical inputs to obtain accurate solutions (Baroni et al., 2010). Field-scale applications rely on 

field or laboratory measurements of soil hydraulic parameters. However, studies have shown that 

these parameters are often measured at a scale different than the scale they are applied to, which 

raises questions about their suitability for representing soil water movement at large scale (Jacques 

et al., 2002; Guber et al., 2006; Wöhling et al., 2008). Besides, direct measurement is always time-

consuming and labor-intensive. Indirect methods for estimating soil parameters at the field scale 

can be achieved through inverse modeling, whereby differences between model simulated values 

and corresponding observational data are minimized using an objective function. In practice, soil 

information is often insufficient in modeling approaches, especially for large scales. Soil 

pedotransfer functions (PTFs) have been developed and applied to predict soil hydraulic 

parameters in many regions to large scale soil water movement studies (Sanchez et al., 2009; Jana 

and Mohanty, 2011; Piedallu et al., 2011; Xu et al., 2015; Bayabil et al., 2019). PTFs can provide 

relatively accurate predictions with limited soil information or easily measurable soil properties 

(such as soil separates and bulk density). However, calibration efforts still have to be carried out 

because uncertainties in predicted soil hydraulic parameters may have impact on soil hydrological 

modeling (Minasny and Mc Bratney, 2002; Loosvelt et al., 2011). Model parameters and predictive 

uncertainty will be estimated using Bayesian Monte Carlo, with Maximum Likelihood Estimation 

as the strategy for estimating statistical parameters; henceforth, referred to BMC (Hantush and 

Chaudhary, 2014a). The BMC technique is a noniterative formal Bayesian estimation approach 

that can produce results similar to the Markov Chain Monte Carlo (MCMC) and has shown good 

versatility in water quality applications for model calibration and uncertainty analysis (Hantush 
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and Chaudhary, 2014a; Chaudhary and Hantush, 2017a). Its noniterative nature and simplicity 

make it a suitable candidate for quantifying uncertainty associated with the highly nonlinear RE.  

The main objective of this paper is to perform an in-depth evaluation of the two-layer 

model through the following steps:  

 (1) The two-layer model was evaluated on homogeneous soil profile under prescribed 

atmospheric condition for 231 soil textures classified by the fractions of sand, silt, and clay 

separate. We explored free-drainage and variable flux as the soil profile bottom boundary 

conditions. The latter corresponds to a relatively shallow water table. The soil thickness of the first 

and the second layer was varied between 10 cm to 200 cm, respectively. Estimated soil moisture 

contents averaged over each layer were compared with those from HYDRUS as a reference.  

(2) The two-layer model was tested for two soil layers having contrasting hydraulic 

characteristics. In this case, we considered a highly permeable soil overlaying a soil with very low 

permeability and vice versa. Soil moisture estimates of two soil layers, and top and bottom fluxes 

along with transpiration estimations were again compared with those from HYDRUS. 

 (3) The two-layer model was applied at a Soil Climate Analysis Network (SCAN) site in 

the United States with real climate data. The BMC method was used to calibrate the two-layer 

model and evaluate model predictive uncertainty. The results of Bayesian soil moisture estimation 

along with 95% confidence band were provided by the BMC method. The model performance was 

evaluated by comparison with the site observations. 

The structure of the paper is as follows. First, the methodology used in the evaluation of 

homogeneous and heterogeneous soil scenarios is presented. This is followed by the description 

of the SCAN site used in field-level application of the two-layer model. Next, the BMC method 

used in parameter and uncertainty estimation was described. The Results section provides 
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qualitative and quantitative comparison of the two-layer model results to HYDRUS as well as to 

field-measured soil moisture estimates. The strengths and weaknesses of the two-layer model are 

scrutinized under Discussion. The manuscript ends with Summary and Conclusions. 

 

2. Methods 

2.1. Soil Water Retention Curve 

The soil hydraulic characteristic relationships 𝜃𝜃(𝜓𝜓), and 𝐾𝐾(𝜃𝜃) in this study were described 

by the Van Genuchten (1980) model. 

 𝐾𝐾(𝜃𝜃) = �𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑒𝑒
1
2 �1 − �1 − 𝑆𝑆𝑒𝑒

1
𝑚𝑚�

𝑚𝑚
�
2

   𝜓𝜓 < 0

𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠                                                𝜓𝜓 ≥ 0
 (52) 

 𝜓𝜓(𝑆𝑆𝑆𝑆) =
1
𝛼𝛼
�𝑆𝑆𝑆𝑆−

1
𝑚𝑚 − 1�

1−𝑚𝑚
 (53) 

 𝑆𝑆𝑆𝑆 =
𝜃𝜃 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟
𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟

 (54) 

where 𝑆𝑆𝑒𝑒 is relative saturation [-]; 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 is saturated hydraulic conductivity [LT–1]; 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 and 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 

are residual and saturated water content, respectively [-]; 𝑛𝑛 is pore-size distribution index [-]; 𝑚𝑚 is 

a fitting parameter defined as 𝑚𝑚 = 1 − 1
𝑛𝑛
; and 𝛼𝛼 is the fitting parameter [L-1]. The parameters 𝑛𝑛, 𝜆𝜆 

and 𝛼𝛼 are considered to be empirical coefficients affecting the shape of the hydraulic functions. 

 

2.2. Simulation Scenarios 

2.2.1. Testing with homogeneous soil profile  

In this test, the two-layer model was run with homogeneous soil profile with 231 soil 

textures and 400 soil layer thickness scenarios under one prescribed upper boundary condition and 
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two bottom boundary conditions. Similarly, the reference model HYDRUS was run with the same 

combinations of soil, layer thickness, climate, and boundaries conditions.  

Each homogeneous soil profile in the numerical simulations was made up by soil texture 

identified by varying the percentage of soil separate of sand, silt, and clay. During simulations, the 

soil separates in each soil texture varied from 0% to 100%, by 5% increments. Thus, total of 231 

soil textures were generated which covered all possible textures on the soil texture triangle. We 

used the van Genuchten (1980) soil hydraulic model to describe soil water retention characteristics. 

The soil hydraulic parameters including water retention parameters and saturated hydraulic 

conductivity (𝐾𝐾𝑠𝑠) were calculated by ROSETTA3. ROSETTA3 is a Python based open-sourced 

PTFs model based on artificial neural network (ANN) analysis developed by Zhang and Schaap 

(2017). This provided us the flexibility to generate the soil hydraulic parameters and saturated 

hydraulic conductivity for all 231 soil textures using sand, silt, and clay percentages as input.  

The thickness of the first (root zone) and the second layer (lower vadose soil) was varied 

from 10 to 200 cm, at 10 cm increments. Thus, the total soil depth varied from a minimum of 20 

cm to a maximum of 400 cm. This resulted in 400 soil-layer-thickness combinations for each soil 

texture. The upper boundary condition involved an atmospheric scenario with a cycle of prescribed 

rainfall intensities and potential transpiration rates (Figure 3.2). The first 5 days had no rain, but 

there was a 0.2 cm/day potential transpiration. Days 5-10 had 2 cm/day of constant rain, but no 

transpiration demand. This cycle was repeated until day 50. We only considered plant transpiration, 

i.e. no soil evaporation to allow for consistent comparison of the two-layer model with HYDRUS. 

The methods applied for calculating soil evaporation in the two-layer model and HYDRUS are 

different. Both the two-layer model and HYDRUS adopts the root-water uptake water stress 

response function proposed by Feddes et al. (1978) to calculate the actual plant transpiration rate. 
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The parameters for the stress reduction function were set to the values in Wesseling (1991) for 

pasture (values of root-water uptake water stress response function parameters were: 𝜓𝜓1=10 cm, 

𝜓𝜓2=25 cm, 𝜓𝜓3=800 cm, 𝜓𝜓4= 8000 cm). 

Two bottom boundary conditions were applied: 1) free-drainage, which refers to zero 

pressure gradient boundary at the bottom. This boundary condition is suitable for situations where 

the water table is far below the domain of interest; 2) zero-pressure head boundary condition, 

which describes the situation where the water table is at the bottom of the soil column (water table 

depth is equal to the total depth of the soil column H). We set the initial moisture contents for all 

soil textures to the moisture content at -33 kPa (field capacity). Simulations were carried out by 

the two-layer model and HYDRUS for a 50-day period using a computational time step of 0.001 

day. In HYDRUS, the soil domain was discretized using 101 equidistant nodes. The soil moisture 

estimations for the first and the second layers were obtained by averaging soil moisture contents 

of the nodes within each layer. We evaluated model performance using the root mean square error 

(RMSE). 

Note that for fine-textured soils, which have the Genuchten water hydraulic parameter 𝑛𝑛 

less than 1.3 as defined by Vogel et al. (2000), van Genuchten model with -2 cm air entry value is 

typically recommended in HYDRUS applications to overcome the convergence issue (Vogel and 

Cislerova, 1988). This configuration significantly alters the hydraulic conductivity function. 

However, this modification in air entry pressure for fine-textured soils was not necessary for the 

two-layer model. In order to make the two models comparable, this option was not selected in 

HYDRUS. Instead, the maximum number of iterations during any time step was changed from the 

default value of 10 to 100. This change sacrificed efficiency for accuracy in HYDRUS using the 

standard van Genuchten model for fine-textured soils.  
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2.2.2. Testing with heterogeneous soil profile  

The two-layer model was tested for a configuration where the two soil layers have 

contrasting permeability. We assessed the performance of the two-layer model with coarse-

textured soil on top of fine-textured soil and vice versa. The coarse and fine-textured soils used in 

this study were loamy fine sand and silty clay loam obtained from Hills et al. (1989). The van 

Genuchten soil hydraulic parameter values of these two soil textures are shown in Table 3.1. The 

thicknesses of the two soil layers were set to 30 cm. The upper boundary condition was the same 

as the 5-day cycle climate pattern described earlier (Figure 3.2) for a duration of 15 days. We 

assigned 0.2 cm/day of potential transpiration for the first 5 days, then 2 cm/day of rain for the 

next 5 days, followed by 0.2 cm/day of potential transpiration. The free-drainage and zero-pressure 

head bottom boundary conditions were applied. The initial moisture contents of both soil textures 

were set to the moisture content at -33 kPa: 0.2694 for loamy fine sand and 0.4483 for silty clay 

loam. Results of soil moisture contents, top, and bottom flux terms, as well as estimated 

transpiration rates, were compared with those from HYDRUS.  

 

2.2.3. Site level application 

The two-layer model was applied to a SCAN site to assess its soil moisture prediction 

capability. Site Tuskegee (SCAN site ID: 2115) from Alabama, USA, was chosen as the study site, 

which is located at 32°26′ N and 85°45′ W and at an elevation of 122 meters above mean sea 

level (Figure 3.3). SCAN dataset provides site-level soil moisture and meteorological data at 

hourly and daily time step (Schaefer et al., 2007). Soil moisture was measured at five different soil 

depths, which are 5 cm (2 inches), 10 cm (4 inches), 20 cm (8 inches), 50 cm (20 inches), and 100 
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cm (40 inches). To avoid the periods that had days with air temperature below zero, data were 

collected at daily time interval from February 24th to October 31st in year 2018 and 2019, 

respectively. Data from 2018 were used for model calibration and data from 2019 were used for 

model validation. Based on our preliminary test, the moisture redistribution always occurred 

within 2 days. To eliminate the effect of the initial moisture content, the first five days from 

February 24th to 28th were model warm-up period. Results of the model simulated moisture 

contents were compared with field measurements for the period between March 1st to October 31st. 

To make the model outputs comparable with the observed soil moisture data, the measured soil 

moisture contents at different depths were grouped into two soil layers by following the logic in 

the two-layer model that the first layer represents the root zone where the plant water uptake occurs 

and the second layer acts as in the lower vadose soil. At the SCAN site, the weather station and 

soil moisture sampling point were installed at the same location where the area was covered by 

short grass or natural fallow for most of the time (Albergel et al., 2015). We consulted with the 

local USDA service center in Tuskegee for vegetation cover and rooting depth. The dominant 

species for this SCAN site is Bahiagrass (Paspalum notatum). The depth where the majority of 

root biomass located is about 18 cm. Thus, we assumed the top 20 cm thickness of soil to be the 

root zone layer, and the 30 cm below was the second layer. Besides, based on Web Soil Survey 

(Soil Survey Staff), the groundwater level at the site was below 200 cm. However, there was a 

small creek located about 500 meters southeast of the site. The groundwater level in the area 

around the creek was about 110 cm, which could potentially influence soil moisture measurement 

in the deeper soil (100 cm). Owing to the lack of detailed data for groundwater level, the fifth 

sensor was excluded for model comparison. Thus, we considered the total soil depth of interest to 

be 50 cm that includes the top four moisture sensors. The first two moisture sensors belonged to 
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the first layer and the fourth sensor belonged to the second layer. The third sensor was located at 

the boundary between two layers. 

Soil properties for four soil horizons within 50 cm soil profile were provided by National 

Cooperative Soil Survey (Survey, 2017) including percentage of sand, silt, clay and organic carbon, 

bulk density, moisture content at field capacity, and moisture content at wilting point. Because the 

first and the second layer of the model domain contained several horizons, the soil physical 

properties of each layer were calculated by weighted average according to the depth of the horizons 

within the layer. Percentage of sand, silt, clay, and organic carbon, as well as moisture contents at 

field capacity and wilting point, were used as inputs to the ROSETTA3 model to estimate Van 

Genuchten soil hydraulic parameters. The prediction uncertainties of each Van Genuchten 

parameter were provided by ROSETTA3 in terms of their standard deviations. Meteorological 

data were collected at daily time step during the simulation period including precipitation, 

maximum and minimum air temperature, relative humidity, solar radiation, wind speed, etc. FAO-

56 Penman-Monteith method (Allen et al., 1998) was applied to calculate daily potential 

evapotranspiration (PET) rate.  

For model calibration, the two-layer model was run from February 24th, 2018 to Oct 31st, 

2018. The upper boundary condition was atmospherically controlled which was described by 

observed precipitation and PET. Calculated PET and observed precipitation data for the model 

calibration period are shown in Figure 3.4. Potential evaporation for bare soil and potential 

transpiration rate for grass were calculated by partitioning of PET by an area index (𝑓𝑓𝑠𝑠). The area 

index represents the fraction of bare soil (range from 0 to 1) and 1 − 𝑓𝑓𝑠𝑠  stands for fraction of 

vegetation cover. In the study site, the area of vegetation cover was unknown. This area index can 

be calibrated in the model calibration process. The bottom boundary condition was set to free-
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drainage. We ran the two-layer model with ∆t=0.001 day (86 s) during calibration and validation 

periods. The initial moisture contents for the two layers were set to the values equal to the observed 

moisture contents at the first day. 

 

2.2.3.1. Bayesian model calibration and uncertainty Estimation 

The uncertainties introduced by input data and data used for calibration, model parameters 

and imperfection in model structure make the model output subject to errors. The uncertainties of 

the two-layer model in model applications stem mainly from the following specific sources: 1) 

uncertainties may be introduced due to measurement errors, limited soil moisture data and 

interpolation of observed data to obtain vertically averaged soil moisture contents for the two soil 

layers in the model domain; 2) estimation of Van Genuchten parameter from basic soil texture data 

using ROSETTA3; 3) averaging soil properties from different horizons to obtain averaged soil 

properties of two soil layers as inputs for ROSETTA3; and 4) model structural errors introduced 

by neglecting higher-order terms in the derivation of Equations (1) and (2) as well as not 

accounting for soil heterogeneity and other potentially important processes, such as lateral flow 

and preferential pathways. Quantifying the uncertainties of the two-layer model can provide a 

better idea of how the two-layer model performs at site level. 

During the model calibration and uncertainty estimation, we employed the Bayesian Monte 

Carlo and Maximum Likelihood (referred to as BMC) estimation methodology for model 

calibration and uncertainty estimation. The detailed methodology and procedure of BMC can be 

found in Hantush and Chaudhary (2014) and Chaudhary and Hantush (2017). In this study, we 

considered five soil hydraulic and van Genuchten parameters and an area index 𝚯𝚯 = (𝛼𝛼, 𝑛𝑛, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟, 

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐾𝐾𝑠𝑠 , 𝑓𝑓𝑠𝑠 ) to be random variables. Uniform distributions of the values or log values are 
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commonly assumed as priors for the unknown parameters (e.g., Vrugt and Bouten, 2002; Wöhling 

and Vrugt, 2008; Huisman et al., 2010; Mboh et al., 2012; Köpke et al., 2019). The effect of priors 

diminishes with the size of the observed data and the choice of the prior distribution, therefore, 

becomes increasingly less important. Following Scharnagl et al., (2011), here, the prior distribution 

of van Genuchten soil hydraulic parameters is defined as 𝑝𝑝(𝑥𝑥)~𝑈𝑈(𝑎𝑎𝑥𝑥,𝑏𝑏𝑥𝑥), where 𝑎𝑎𝑥𝑥 and 𝑏𝑏𝑥𝑥 are 

lower and upper bounds, respectively. 𝑎𝑎𝑥𝑥 and 𝑏𝑏𝑥𝑥 are calculated as 𝛾𝛾 ± 4σ, where 𝛾𝛾 is ROSETTA3 

predicted values, and σ is the standard deviations of the predicted parameters. The predicted values 

and corresponding standard deviations of 𝛼𝛼, 𝑛𝑛, and 𝐾𝐾𝑠𝑠 from ROSETTA3 were given in log form. 

The log values of these three parameters were assumed uniformly distributed based on their 

logarithmic standard deviations as prior distributions. The values of these three parameters were 

sampled from the uniform distributions of the log10 values and then inverted to their original values. 

The area index (𝑓𝑓𝑠𝑠) is assumed uniformly distributed a priori, 𝑝𝑝(𝑓𝑓𝑠𝑠)~𝑈𝑈(0,1). The upper and lower 

bounds of prior distributions of model input parameters are shown in Table 3.2. The relationship 

between site soil moisture observation at time t (O(t)) and the corresponding simulated output 

( 𝜃𝜃(𝚯𝚯, 𝑡𝑡) ) from the two-layer model can be expressed as: 𝑂𝑂(𝑡𝑡) = 𝜃𝜃(𝚯𝚯, 𝑡𝑡) + 𝜀𝜀 , where 𝜀𝜀 =

(𝜀𝜀1, 𝜀𝜀2, … , 𝜀𝜀𝑚𝑚), 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝜀𝜀2) is assumed to be zero-mean, independent and normally-distributed 

model residual error; and 𝑚𝑚 is number of observations. The error 𝜀𝜀 accounts for all sources of 

modeling errors described above (observational, parametric, structural, hydrometeorological 

inputs). We generated 1,000,000 parameter sets by randomly drawing parameter values from their 

prior distributions. What follows, is a summary description of the BMC methodology. Based on 

Bayes’ theorem, the posterior joint probability density function is given by,  

 𝑃𝑃(𝚯𝚯𝒊𝒊|𝑶𝑶) = 𝑘𝑘𝑘𝑘(𝚯𝚯𝒊𝒊)𝑃𝑃(𝚯𝚯𝒊𝒊) (55) 
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where 𝑶𝑶 = (𝑂𝑂1,𝑂𝑂2, … ,𝑂𝑂𝑚𝑚) is set of m observed moisture content values; 𝑃𝑃(𝚯𝚯𝒊𝒊|𝑶𝑶) is the posterior 

probability mass of parameter set 𝚯𝚯 = �𝛼𝛼𝑖𝑖 𝑛𝑛𝑖𝑖  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 𝐾𝐾𝑠𝑠𝑖𝑖 𝑓𝑓𝑠𝑠
𝑖𝑖� ; 𝑖𝑖 = 1, 2, … ,𝑛𝑛 , where 𝑛𝑛  is 

number of randomly sampled parameter sets (𝑛𝑛 = 1,000,000); 𝑙𝑙(𝚯𝚯𝒊𝒊) = 𝑃𝑃(𝑶𝑶|𝚯𝚯𝒊𝒊) is the likelihood 

of observations given 𝚯𝚯𝒊𝒊 ; 𝑃𝑃(𝚯𝚯𝒊𝒊)  is the prior probability mass of parameter set 𝚯𝚯𝒊𝒊 ; 𝑘𝑘  is a 

normalizing factor such that ∑ 𝑃𝑃(𝚯𝚯𝒊𝒊
𝑛𝑛
𝑖𝑖=1 |𝑶𝑶) = 1 ; that is 𝑘𝑘 = 𝑛𝑛/∑ 𝑙𝑙(𝜽𝜽𝑖𝑖)𝑛𝑛

𝑖𝑖=1 , where we have 

assumed equally likely parameter sets a prior, 𝑃𝑃(𝚯𝚯𝒊𝒊) = 1
𝑛𝑛
. 

The likelihood of each generated parameter set 𝚯𝚯𝒊𝒊 can be obtained by maximizing the joint 

log-likelihood function of 𝜀𝜀𝑖𝑖, i 1,2,…m (Chaudhary and Hantush, 2017):  

 𝑙𝑙(𝚯𝚯𝒊𝒊) = �2𝜋𝜋𝜋𝜋𝜎𝜎�𝜀𝜀,𝑖𝑖
2 �

−𝑚𝑚2  (56) 

in which 

 𝜎𝜎�𝜀𝜀,𝑖𝑖
2 =

1
𝑚𝑚
� [𝜀𝜀𝑘𝑘(𝚯𝚯𝒊𝒊)]2

𝑚𝑚

𝑘𝑘=1
 (7a) 

The posterior probability mass of 𝚯𝚯𝒊𝒊 is given by 

 𝑃𝑃(𝚯𝚯𝒊𝒊|𝑶𝑶) =
𝑙𝑙(𝑥𝑥𝑖𝑖)

∑ 𝑙𝑙(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1

 (57) 

The Bayesian estimate of moisture content (𝜃𝜃) of the first and the second layer at any point in time 

is the conditional mean of 𝜃𝜃 given the observation, 

 𝐸𝐸(𝜃𝜃|𝑶𝑶) ≈�𝐸𝐸(𝜃𝜃|𝚯𝚯𝒊𝒊)
𝑛𝑛

𝑖𝑖=1

𝑃𝑃(𝚯𝚯𝒊𝒊|𝑶𝑶) =
1

∑ 𝑙𝑙(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1

�𝜃𝜃(𝚯𝚯𝒊𝒊, 𝑡𝑡)𝑙𝑙(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (58) 

in which we made use of 𝐸𝐸(𝜃𝜃|𝚯𝚯𝒊𝒊) = 𝜃𝜃(𝚯𝚯𝒊𝒊, 𝑡𝑡)  and Eq. (6). Posterior probability distribution 

functions (PDFs) of the parameters 𝚯𝚯 = �𝛼𝛼𝑖𝑖 𝑛𝑛𝑖𝑖 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖  𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖  𝐾𝐾𝑠𝑠𝑖𝑖 𝐾𝐾𝑐𝑐𝑖𝑖� can be obtained from the sampled 

values of each model parameter and corresponding posterior probability masses computed by Eq. 
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(6). The confidence band for simulated posterior (i.e., conditional on the observed data) soil 

moisture content at time t can be generated from the following cumulative distribution function 

(CDF) (Hantush and Chaudhary, 2014):   

 
𝐹𝐹(𝑦𝑦|𝑶𝑶) ≈

1
2

+
1
2
�𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛

𝑖𝑖=1

�
𝑦𝑦 − 𝜃𝜃(𝚯𝚯𝒊𝒊, 𝑡𝑡)

√2𝜎𝜎�𝜔𝜔,𝑖𝑖
� 𝑃𝑃(𝚯𝚯𝒊𝒊|𝑶𝑶)

                           =
1
2

+
1

2 ∑ 𝑙𝑙(𝒙𝒙𝒊𝒊)𝑛𝑛
𝑖𝑖=1

�𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛

𝑖𝑖=1

�
𝑦𝑦 − 𝜃𝜃(𝚯𝚯𝒊𝒊, 𝑡𝑡)

√2𝜎𝜎�𝜔𝜔,𝑖𝑖
� 𝑙𝑙(𝒙𝒙𝒊𝒊)

 (59) 

This equation can be inverted using any of the root-finding techniques to obtain percentiles 

and construct confidence band for moisture content at any point in time given the hydroclimate 

data. 

Model performance was evaluated by using RMSE and Nash Sutcliffe efficiency (𝐸𝐸𝑁𝑁𝑁𝑁). 

Because the soil moisture observations were measured at discrete distances, in order to compare 

model outputs with measurements for two simulated soil layers, linear interpolation method was 

applied to field measurements. We first interpolated the soil moisture contents along 50 cm soil 

column according to the observations at four depths, and then calculated averaged moisture 

contents for the first and the second layer by averaging interpolated values from 1 cm to 20 cm 

and 20 cm to 50 cm, respectively. The model performance indices were calculated for each layer 

separately. 

 

3. Results 

3.1. Model performance with homogeneous soil profiles 

The two-layer model was tested for 231 soil textures and 400-layer thickness combinations. 

The results of two-layer soil moisture content were compared with those from HYDRUS (Šimůnek 

et al., 2008). The performance of the two-layer model was evaluated using averaged RMSE of soil 
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moisture contents. Averaged RMSE was calculated by averaging RMSE values of moisture 

contents from two soil layers. There are 231 plots of RMSE patterns each with different thicknesses 

of two soil layers for two bottom boundary conditions, respectively. Due to space limitations, the 

results of three soil textures are shown in this manuscript. All the results can be found in 

supplementary materials. The three selected soil textures were coarse, medium, and fine-textured 

soils, which are sand, loam, and clay. Specific percentages of sand, silt, and clay were selected to 

represent these three soil textures following the USDA soil texture classification (Soil Survey Staff, 

1999). Sandy soil was 90% sand, 5% silt, and 5% clay. Loamy soil was 40% sand, 40% silt, and 

20% clay, while clay soil was 10% sand, 15% silt, and 75% clay.  

The RMSE values between the two-layer model and HYDRUS for three soil textures with 

free-drainage and zero-pressure head bottom boundary conditions are shown in Figure 3.5. (Figure 

3.6 shows one example of the simulated moisture contents of two soil layers from the two-layer 

model and HYDRUS for three soil textures and two bottom boundary conditions with 50 cm 

thickness of the first and 50 cm thickness of the second layer) The plots show the contour lines 

and heat maps of RMSE with different thickness of the first (root zone) and the second layer (lower 

vadose soil). As shown in Figure 3.5, RMSE has an increasing trend with the increase of the 

thickness of either the first or the second layer. With the free-drainage bottom boundary condition, 

the RMSE for three soil textures was always lower than 0.015. With shallow root zone (less than 

30 cm), RMSE increased rapidly with increasing thickness of the second layer. The same trend was 

observed with thin second layer, but this was less pronounced in the figures. When considering 

water table at the bottom of the soil profile (zero-pressure head), the performance of the two-layer 

model varied for different soil textures. The performance on coarse-textured soils dropped with 

increased thickness of both layers. RMSE was highest for sand and clay soil texture under water-
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table boundary condition. The highest RMSE among all the soil textures was 0.048 and it was 

obtained with a soil with 95% sand and 5% silt (results are shown in supplementary materials). In 

Figure 3.5, for sand, RMSE was lower than 0.01 only when the first layer thickness was less than 

60 cm and the second layer thickness was below 90 cm. When soil texture became finer, model 

performance improved. RMSE for loam dropped below 0.010 for all thickness scenarios whereas 

for clay the maximum RMSE was 0.020. When all 231 soil textures are pooled, the minimum and 

maximum RMSE was 0 and 0.018, respectively, for free-drainage bottom boundary condition, and 

0 and 0.048 for zero-pressure head bottom boundary condition, respectively. 

 Figure 3.5 summarized model performances as a function of layer thicknesses for a given 

soil texture assuming a homogenous soil profile. Another way of assessing model performance is 

plotting RMSE as a function of soil texture on the soil texture triangle, for various soil layer 

thicknesses. Figure 3.7 shows one such example, where the variation of RMSE with soil texture is 

shown for 50 cm root zone depth combined with second layer thicknesses of 10, 100, and 200 cm, 

under the two bottom boundary conditions. RMSE heat maps for all other thickness combinations 

are available in the supplementary materials. In Figure 3.7, the two-layer model had better 

performance with the free-drainage bottom boundary condition compared to the water table bottom 

boundary condition, and this was also the case with other thickness combinations (supplementary 

materials). The general pattern in each soil triangle is that RMSE increases with sand fraction. 

Model performance also generally increases with increased silt fraction, which is more evident for 

deeper soils. The maximum RMSE in free-drainage bottom boundary condition was 0.008 in 

Figure 3.7, and it corresponds to the case with the second layer thickness being 200 cm and very 

high sand fraction. With the zero-pressure head (water table) boundary condition, the maximum 

error was 0.038 which happened with the same thickness and soil texture. The general trends for 
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RMSE for all other thickness combinations are similar to the ones in Figure 3.7 (see supplement). 

Thus, RMSE values from free-drainage bottom boundary condition were lower than those from 

zero-pressure head bottom boundary condition. With the increase of soil thickness, RMSE values 

often increased from soil textures with high percentage of sand, then from soil textures with high 

percentage of clay.  

 

3.2. Model performance with heterogeneous soils 

The simulations with the two-layer model and HYDRUS for 30 cm of loamy fine sand 

(high permeability) overlaying 30 cm of silty clay loam (low permeability) and vice versa are 

shown in Figures 3.8 and 3.9, respectively. Simulated soil moisture contents of the low 

permeability layer were always higher than the high permeability layer by both models, as shown 

in Figures 3.8 and 3.9. The soil moisture contents of two soil layers and flux estimations from the 

two-layer model matched very well with those from HYDRUS. Moisture contents for two layers 

varied correspondingly with atmospheric condition, i.e. moisture contents in both layers declined 

in response to the transpiration demand, which was followed by an increase over the next 5 days 

due to rain. For the soil layer configuration with high permeability soil overlaying the low 

permeability soil, the two-layer model showed excellent performance with free-drainage bottom 

boundary condition, for the RMSE of both layers were lower than 0.01. The cumulative top flux 

and cumulative bottom flux from the two-layer model were identical to those from HYDRUS, 

while the cumulative transpiration was little higher than from HYDRUS. With zero-pressure head 

bottom boundary condition, moisture content in the first layer from the two-layer model was higher 

than that from HYDRUS in the first 5 days with only transpiration, while in the next 5 days with 

precipitation, moisture content of the first layer was lower than that from HYDRUS. RMSE for the 
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first layer was 0.02, while moisture contents of the second layer matched very well with that from 

the reference model with RMSE equals to 0.002. The cumulative top flux and transpiration rate 

were identical to those from HYDRUS. The cumulative bottom flux for the first 5 days was higher 

(absolute value) than that from HYDRUS but similar for the next 10 days. When the low 

permeability soil overlaid the high permeability soil (Figure 3.9), soil moisture and cumulative 

fluxes estimated by the two-layer model were almost identical to their counterparts generated by 

HYDRUS for both bottom boundary conditions. RMSE values for the average moisture contents 

of the first and the second layers in both bottom boundary conditions were always lower than 0.01. 

 

3.3. Application of two-layer model to the SCAN site  

Figures 3.10 (A1) and (A2) show the two-layer model calibration results for the period 

from March 1st, 2018 to October 31st, 2018: the Bayesian estimates (Eq. 9), 95% confidence 

interval and observed soil moisture contents of the root zone and the soil layer below, respectively. 

The 95% confidence limits are obtained by inverting Eq. (10) using the bisection method. The 

Bayesian estimated, vertically averaged soil moisture contents of both layers compare well with 

the corresponding aggregated observations given the uncertainty and errors in preprocessing of 

limited and discrete observed point data set and linear interpolation of what could actually be a 

nonlinear soil moisture distribution. The RMSE and 𝐸𝐸𝑁𝑁𝑁𝑁 values are 0.016 and 0.726 for the first 

layer, and 0.021 and 0.622 for the second layer, respectively. All the observed soil moisture values 

fell within the 95% confidence bands. The 95% confidence intervals and the Bayesian estimates 

(a posteriori) of model input parameters and 𝜎𝜎�𝜀𝜀2calculated by BMC are shown in Table 3.3. Figures 

3.10 (B1) and (B2) shows the results of BMC predicted soil moisture contents along with 95% 

confidence bounds and observed soil moisture contents of both soil layers for the validation period 
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(March 1st - October 31st, 2019). The soil variability and magnitude of moisture contents are 

adequately captured by the BMC estimates as shown in Figure 3.10 (B1) and (B2). Although model 

performance dropped somewhat for the validation period, it can still be considered good with 

RMSE values equal to 0.023 and 0.023, and 𝐸𝐸𝑁𝑁𝑁𝑁 values equal to 0.733 and 0.719 for the first layer 

and the second layer, respectively. The two-layer model appears robust in simulating 

hydrometeorological conditions outside the range used for model calibration.  

 

4. Discussion of Results 

The numerical simulations on homogeneous soil profiles revealed the performance of the 

two-layer model on various soil textures and layer thickness conditions. Overall, the two-layer 

model has better performance with the free-drainage than the zero-pressure head bottom boundary 

condition. With the influence of the water table, groundwater affects the soil moisture of the layer 

above mainly through capillary actions. In the two-layer model solution, the suction force in the 

second layer is averaged over the layer corresponding to the thickness. The truncation errors 

committed by neglecting higher than first-order terms leading to Eqs. (1) and (2) increase the error 

in deeper soil and can be more pronounced near the water table where capillary pressure gradient 

can be highly nonlinear. With the exception of coarse-textured soil with the water table at the 

bottom (Figure 3.5) where the two-layer model suffers with increased thickness of both layers, 

model performance with all other soil textures deteriorates only with relatively thicker lower 

vadose soil. The model still performed very well for a relatively thick roots layer (2 m), except for 

sandy soil and water table at the bottom. The highly nonlinear relationship between matric pressure 

head and moisture content in coarse soils near saturation amplifies the truncation errors in the 
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computed matric pressure head gradient at the water table and, consequently, the average soil 

moisture computed by the model.  

Soil textures and thickness of the soil layers influence the accuracy of soil moisture 

estimates with varying degrees. Figure 3.11 shows the empirical probability densities of soil 

separates and the thicknesses of two layers for RMSE≤ 0.015 and RMSE ≥ 0.015, assuming 0.015 

as the model performance acceptability threshold. In practice, the precision of the in-situ soil 

moisture measurement, described by RMSE, with the value of 0.02 or smaller is often considered 

to be good (Robinson et al., 2008). RMSE=0.015 is a little on the conservative side in this regard. 

With the free-drainage bottom boundary condition, only 199 simulations among 92,400 

simulations had RMSE greater than 0.015, which is 0.2% of total simulations. This indicates that 

almost all (99.8%) simulations results were nearly perfect. From Figure 3.11 (A1), the probability 

of inadequate model performance is higher for coarse-textured soil than for fine-textured soil. 

Besides, the cases with very thin thickness of the first layer showed the highest probability for 

poor model performance. We found that these cases generally had 10 cm thickness of the first 

layer and were combined with either 190 cm or 200 cm thickness of the second layer. This can be 

seen from the probability densities of the second layer that model performance deteriorates with 

increasing thickness of the second layer (also shown in Figure 3.5). With zero-pressure head 

bottom boundary condition (Figure 3.11 B), 87.5% of simulations had RMSE smaller than 0.015. 

11,543 among 92,400 simulations were considered to have low model performance. Same soil 

texture compositions as in the case of free drainage had low model performance, which were soils 

with high percentage of sand and low percentage of silt and clay (Figure 3.11 B1). Very thin (10 

or 20 cm) and thick (>100 cm) roots layer and thick lower vadose soil (>180 cm) had the highest 

probability of less than adequate model performance. Again, low model performance with thin 
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first layer was associated with thick lower layer. When we consider the water table at bottom of 

the soil, the effect of upward capillary flux on the whole soil domain is weakened by a deep soil 

profile. The feedback from the water table deteriorates in the two-layer model when compared to 

the finite element solution of RE in HYDRUS due to higher truncation errors incurred in the 

derivation of Eq. (2) and q2. Furthermore, for both boundary conditions, the probability densities 

when RMSE≤0.015 were very low with high percentage of any one of three soil separates (Figures 

3.11 (A2) and (B2)). 

The two-layer model mainly focuses on simulating moisture content of the root zone, with 

a lower vadose zone connecting root zone and groundwater. From Figures 3.5, 3.7, 3.11 and the 

plots from the supplemental materials, a full-scope of model simulation capabilities and model 

configurations can be investigated. For a specific soil texture, if the depth of the root zone is 

shallow but the water table is relatively deep, using free-drainage bottom boundary condition can 

lead to better model performance for the lower layer. If the water table is relatively shallow, it can 

have a significant impact on modulating moisture exchange with the root zone. However, modeling 

this situation using the two-layer model is constrained by soil texture and layer depth. From the 

plots, to have a model performance of RMSE lower than 0.015, root zone depth can vary up to 200 

cm, but the thickness of the lower layer should not exceed 100 cm. Soil textures should contain 

less percentage of sand (<75%) and high percentage of silt and clay (>20%).  

Solving RE for layered soils has been a challenging task because of the discontinuity of 

moisture and hydraulic properties moving from one soil texture to another. Two phenomena are 

often related to this discontinuity: the capillary barrier and the hydraulic barrier (Alfnes et al., 2004; 

Si et al., 2011). The capillary barrier often occurs when a fine-textured soil layer overlies a coarse-

textured soil. Under this condition, the saturated hydraulic conductivity of the lower layer is higher 
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than the upper layer. Hydraulic conductivity approaching the interface is not sufficient to transmit 

water downward across the interface. Besides, compared to the lower layer, the capillary pressure 

in the upper layer is relatively large. As a result, water tends to be retained in the upper layer. In 

another situation, when coarse-textured soil overlaying a fine-textured layer, the hydraulic barrier 

could occur. The hydraulic barrier is related to relatively low permeability of the underlying fine 

soil layer As a result, the rate of downward water movement is restricted by the permeability of 

the lower layer. To address or “smooth” the discontinuity, one attempt is to find satisfactory values 

of hydraulic conductivity and metric potential at the interface of two different soil textures (Miller 

et al., 1998; Brunone et al., 2003; Matthews et al., 2004; Szymkiewicz and Helmig, 2011). In the 

two-layer model, the interface flux term ( 𝑞𝑞2 ) is expressed as a function of the hydraulic 

conductivity and vertically averaged capillary pressure of the first and second layer given by Eq. 

(2b) (He et al., 2021a). The two-layer model handles the discontinuity of hydraulic properties 

properly with two extreme soil layering scenarios. The results reflected these two types of barriers. 

Considering free-drainage bottom boundary condition, when loamy fine sand is on top of silty clay 

loam and if flux from the upper layer at the interface is higher than saturated conductivity of the 

lower layer, the hydraulic barrier occurs and only part of water flux is transmitted downward and 

the excess water is initially retained in the upper layer During the first two days of the rainfall 

period (day 6 to day 7), when sand is on top of loam (Figure 3.8 A1), the moisture content of the 

upper layer started to increase at day 6, while the increase of the moisture content for the lower 

layer was observed at day 7 because of the hydraulic barrier. When loam is on top of sand as shown 

in Figure 3.9 (A1), there was a rapid increase of moisture content in the upper layer at day 6, but 

the moisture content in the lower layer gradually increased at day 7. This is because the unsaturated 

conductivity in the lower sandy layer was lower than that in the fine textured upper layer in the 
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dry period, which act as the hydraulic barrier, although sand has higher saturated conductivity than 

loamy soil. The discontinuity created by hydraulic barrier was gradually mitigated when both 

layers were receiving rainfall resulting in increased hydraulic conductivities for both layers. 

Furthermore, the capillary barrier can be observed in Figure 3.9 (A1) during rainfall period. From 

day 6 to day 10, moisture content of the lower layer had slower rate of increase than that in the 

upper layer. When compare between Figure 3.9 (A1) with Figure 3.8 (A1), the highest moisture 

contents of the loam textured layer were similar (0.428 in Figure 3.9 (A1) vs 0.438 in Figure 3.8 

(A1)). However, the highest moisture content of the sandy soil layer in Figure 3.9 (A1) (0.143) 

was lower than that in Figure 3.8 (A1) (0.173), which indicates that the capillary barrier occurred 

during rainfall period in Figure 3.9 (A1). Our results indicate that the first order approximation of 

Taylor expansion of conductivity and metric potential at the interface in the two-layer model can 

be a solution to deal with heterogeneous soil profile.  

In model application at site level, the two-layer model showed its skills in simulating layer 

averaged soil moisture at field scale. A noticeable increase was shown for both layers after the 

rainfall events. Precipitation was the only water input pathway, while evapotranspiration and 

gravity drainage were the two pathways for water leaving the soil domain. The actual transpiration 

was calculated based on soil water availability of the first soil layer which is assumed to be root 

zone layer in the two-layer model. When soil moisture of the root zone was decreasing during dry 

condition with little or no precipitation, the two-layer model calculated actual transpiration and 

evaporation rate according to the soil moisture of the whole root zone layer. In reality, moisture 

content at soil surface may be different from that at deeper soil. These differences could make the 

estimation of transpiration and evaporation under or overestimated for different weather conditions. 

Furthermore, good estimation of potential evapotranspiration could improve overall model 
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performance. Owing to detailed meteorology data provided by SCAN, every term in Penman-

Monteith method was addressed properly. Additional uncertainty could be introduced if other 

simplified potential evapotranspiration calculation methods are used. 

The Bayesian framework proved to be simple and robust in the two-layer model calibration 

and uncertainty estimation. As stated in methodology, we assumed that 𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝜀𝜀2). The Bayesian 

estimated values of residual error variance (𝜎𝜎𝜀𝜀2) for the first layer and the second layer showed in 

Table 3.3 were 2.77 × 10−4 and 4.39 × 10−4, respectively. 𝜎𝜎𝜀𝜀2 accounts for measurement, model 

structural errors and uncertainty in the forcing input hydroclimate data. We further investigated 

model predictive uncertainty using Eq. (10). Random samples of model predicted moisture 

contents at each day for each soil layer were obtained from Eq. (10). The variance of model 

predicted moisture contents for each day were calculated based on sampled values. The sample 

average of the variance (𝜎𝜎2) over the simulations for the first and the second layer, respectively, 

are taken as measures of total model prediction uncertainty. Model prediction variances for the 

first and the second layer were 𝜎𝜎2 = 2.88 × 10−4 and 4.52 × 10−4, respectively. As shown in 

Figures 3.10 (A1) and (A2), the darker grey bands are attributed to model prediction error in terms 

of all sources of errors (parametric, observational, hydroclimate data, and 𝜀𝜀). The ratio 𝜎𝜎𝜀𝜀2/𝜎𝜎2 was 

96% for the first layer and 97% for the second layer, which indicates that after conditioning on the 

processed observed moisture content data bulk of the modeling errors was caused by deficiencies 

in the model structure and errors in the observed and hydroclimate data. The contribution of 

parametric uncertainty to total error appears very small, up to 4% and 3% in layer 1 and 2, 

respectively. To obtain more specific estimate of the error variance attributed to parameters 

uncertainty (𝜎𝜎Θ2), we used the MC simulated moisture contents and their corresponding probability 

masses calculated by Eq. (8). The variance for moisture content at each day was calculated from 
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the MC simulated values. The variances are then averaged over the simulation to represent the 

parametric uncertainty variance (𝜎𝜎Θ2). The calculated 𝜎𝜎Θ2 were 7. 50 × 10−6 and 7.81 × 10−6 for 

the first layer and the second layer, respectively. Parameters uncertainty contributed very little 

(about 2.61% and 1.73% for the first and the second layer, respectively) to the model prediction 

variance. The uncertainty bands before (a prior) and after (a posterior) conditioning on the 

observation data are plotted as grey and blue bands in Figure 3.10, respectively. We note that the 

reduced posterior parametric uncertainty is obtained after conditioning on the sizable, 

preprocessed observed moisture content data. These findings indicate that much of the uncertainty 

is attributed to observational, hydroclimate data, and model structural errors, while parameters’ 

uncertainty contributed very little to the overall model uncertainty.  

The overall good match between Bayesian estimates and observed soil moisture contents 

of two soil layers indicates that the parameters were informed appropriately by the observations 

and are identifiable. Figure 3.12 shows the histograms of posterior distributions overlaying prior 

distributions along with BMC estimated values of model input parameters. Most of the posterior 

distributions of model input parameters clustered around their BMC estimated values as shown in 

Figure 3.12. For the root zone layer, the posterior distributions of 𝑛𝑛, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 , and 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠  narrowed 

around a small region. The posterior distributions of 𝛼𝛼 and 𝐾𝐾𝑠𝑠 were clustered in a range narrower 

than the prior range, while 𝑓𝑓𝑠𝑠 had its posterior distributions extended over a wider region of the 

prior ranges. For the second layer, the posterior distributions of 𝑛𝑛, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟, 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠, and 𝐾𝐾𝑠𝑠 clustered in 

a small region compared to their priors, while the posterior distribution of 𝛼𝛼 showed a wider range. 

Clustered and peaked distributions are associated with well-identifiable parameters and less 

parameter uncertainty, while flat and scattered distributions indicate more parameter uncertainty. 

From Figure 3.12, 𝑛𝑛, 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟, and 𝐾𝐾𝑠𝑠 for the first layer and the second layer were identifiable 
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for their posterior distributions. However, 𝛼𝛼 for the two layers and 𝑓𝑓𝑠𝑠 for the first layer seemed 

non-identifiable. We conducted a nonparametric statistical Kolmogorov-Smirnov (K-S) test 

(Massey Jr, 1951) to further evaluate the identifiability of the model parameters. The K-S test was 

applied to quantify the maximum distance (𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚) between the prior and posterior cumulative 

distribution functions (CDFs) of parameter sets. If 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 is significant at a certain confidence level, 

the parameter can be declared identifiable because the two distributions are statistically different. 

The 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 values from the K-S test are shown in Table 3.4. The p values that correspond to 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 

for all model parameters were smaller than 0.001 indicating that all model parameters were 

identifiable. These findings indicate that all parameters in the first and the second layer can be well 

informed by the site-level soil moisture observations. However, the observations did not provide 

enough information that can be used to fully estimate the values for a water retention parameter 𝛼𝛼 

for the first and the second layer and area index 𝑓𝑓𝑠𝑠 for determining the fraction of bare soil and 

vegetation cover. Studies have reported that in-situ measurements of soil moisture content 

sometimes do not contain sufficient information to constrain Van Genuchten soil hydraulic 

parameters due to the small variability of the observations to represent a whole range of soil water 

states (Wöhling and Vrugt, 2011). Nevertheless, BMC methodology constrained the parameters 

very well for almost all of the parameters. Besides, estimations of parameters for prior distribution 

using pedotransfer function take into account the correlations between soil hydraulic parameters, 

which is better than uninformed prior distribution. Using the informed priors can produce good 

results in terms of estimation of parameter values (Scharnagl et al., 2011). Application of soil 

moisture models requires simplifications of what otherwise a complex unsaturated flow 

phenomenon. The results of the two-layer model and Bayesian MC simulation show a robust 
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framework to model vertically averaged soil moisture and estimate soil characteristic parameters 

at field scale.  

 

5. Summary and Conclusions  

In this study, a numerical model for two-layer vertically-averaged solution of Richards 

equation was evaluated with two numerical experiments and a site-level application. In one of the 

numerical experiments, we ran the model for 231 soil textures under various atmospheric and 

bottom boundary conditions with soil profile depth varied from 10 cm to 400 cm. The thickness 

of the root zone layer and the second layer were varied from 10 cm to 200 cm at 10 cm intervals. 

Soil moisture estimates were compared with vertically averaged HYDRUS simulated nodal values 

as a reference. This experiment revealed the soil texture and layer thickness combinations under 

which the two-layer model has good or poor performance. The second numerical experiment was 

carried to assess the performance of the model with two layers of contrasting (high and low) 

permeabilities. Thirdly, the two-layer model was applied to a SCAN site to simulate site-level soil 

moisture content of two soil layers under real atmospheric and field conditions. BMC methodology 

was integrated with the two-layer model for model calibration and uncertainty estimation. The 

major conclusions are as follows. 

1. Among 92,400 simulations, the two-layer model showed excellent performance with 

free-drainage boundary condition with 99.8% of the total simulations having RMSE 

≤0.015; with the zero-pressure head boundary condition representing water table, this 

percentage became 87.5%.  

2. The two-layer model had excellent performance (RMSE≤0.015) for soil textures with 

one of the sand, silt, and clay separates less than about 30% for free-drainage and zero-
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pressure head bottom boundary conditions. In addition, the two-layer model showed 

good skill in estimating layer averaged moisture contents for soil domains having the 

root zone depth greater than 10 cm and the lower vadose soil layer thickness less than 

150 cm for free-drainage bottom boundary condition. For zero-pressure head bottom 

boundary condition, the model performed very well with the first layer thickness 

between 30 cm to 70 cm and the second layer between 20 cm to 100 cm. 

3. The two-layer model showed satisfactory performance in simulating soil moisture 

contents and top and bottom fluxes as well as actual plant water uptake in stratified 

soils (soil layers with contrasting permeabilities). Compared to the finite element model 

HYDRUS, results from the two-layer model showed RMSE values smaller than 0.02 

for all simulations. The two-layer model solution deals with contrasting hydraulic 

conductivity properly. 

4. The results of the model application indicate that the two-layer model can deal with 

layer averaged soil moisture modeling at field scale with appropriate input data. The 

model performance was found to be good with RMSE values ≤0.023 and NSE values ≥ 

0.62 during both calibration and validation periods. 

5. The uncertainty in soil characteristic parameters and simulated moisture content was 

computed using the Bayesian Monte Carlo method. Much of the uncertainty was 

attributed to observational, hydroclimate data, and model structural uncertainties, while 

parametric uncertainty was found to be very small after conditioning on the observed 

moisture content data. Besides, all model parameters were identifiable using the 

observed data as evaluated by the K-S test. BMC methodology constrained all model 

parameters very well using informed prior distributions. 
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It should be noted that the two-layer approximate solution of Richards equation was 

intended for simulating average moisture content in the root zone (or biologically active sediment 

layer) in the presence of free drainage or a relatively shallow water table. The two-layer numerical 

model is not designed to simulate average soil moisture and fluxes at deep soil depths. Extension 

of the two-layer model solution to multiple soil layers could be interesting for future work.  

 

 

Appendix A. Supplementary materials 

 Supplementary plots of the RMSE of moisture contents from the simulations of 

homogeneous soil profile between two-layer model and HYDRUS can be found by the following 

links: 

1. Plots of RMSE patterns for 231 soil textures with different thickness of two soil layers for 

two bottom boundary conditions: 

https://drive.google.com/drive/folders/1RbjpnVqAy5zFlqGppYBE1Xxyf8tmLn_w?usp=

sharing 

2. Plots of RMSE patterns on the soil texture triangle for various soil layer thicknesses and 

two bottom boundary conditions: 

https://drive.google.com/drive/folders/1f6I0VB4_koXN6m4oS11UEIP05X4J-

zXa?usp=sharing   

https://drive.google.com/drive/folders/1RbjpnVqAy5zFlqGppYBE1Xxyf8tmLn_w?usp=sharing
https://drive.google.com/drive/folders/1RbjpnVqAy5zFlqGppYBE1Xxyf8tmLn_w?usp=sharing
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Table 3.1: Soil hydraulic properties for heterogeneous soil profiles using van Genuchten model 

Soil textures 𝛼𝛼 (cm-1) 𝑛𝑛 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃−33𝑘𝑘𝑘𝑘𝑘𝑘 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 
(cm/day) 

Loamy fine sand 0.0280 2.2390 0.0286 0.3658 0.2694 541.0 
Silty clay loam 0.0104 1.3954 0.1060 0.4686 0.4483 13.1 

 

Table 3.2: Upper and lower bounds of Van Genuchten soil hydraulic parameters applied for 
BMC 

Layer Bound α (cm-1) 𝑛𝑛 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠 (cm/day) 

1 Lower 0.0116 1.0753 0.001 0.3068 58.8 
Upper 0.0792 1.9648 0.0737 0.4156 520.5 

2 Lower 0.0121 1.1776 0.005 0.3178 30.7 
Upper 0.0477 1.6705 0.0806 0.3889 111.6 

 

Table 3.3: Estimated values of the model parameters and their confidence intervals at the SCAN 
site 

 Parameters 2.5th 
Percentile Median 97.5th 

Percentile 
Bayesian 
estimate 

First Layer 

𝛼𝛼 0.0273 0.0446 0.0589 0.0404 
𝑛𝑛 1.4934 1.6362 1.8610 1.6443 
𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 0.0018 0.0228 0.0360 0.0218 
𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 0.3075 0.3200 0.3695 0.3208 
𝐾𝐾𝑠𝑠 305.4 469.5 513.6 440.4 
𝑓𝑓𝑠𝑠* 0.032 0.427 0.693 0.438 
𝜎𝜎𝜀𝜀2 2.74×10-4 2.77×10-4 2.88×10-4 2.77×10-4 

Second Layer 

𝛼𝛼 0.0213 0.0355 0.0458 0.0361 
𝑛𝑛 1.4650 1.5400 1.6652 1.5675 
𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 0.0401 0.0594 0.0797 0.0598 
𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 0.3182 0.3227 0.3415 0.3259 
𝐾𝐾𝑠𝑠 67.3 94.4 110.6 94.4 
𝜎𝜎𝜀𝜀2 4.32×10-4 4.37×10-4 4.56×10-4 4.39×10-4 

* Area index represents fraction of bare soil 

 

Table 3.4: Summary of 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 values from the K-S test between prior and posterior cumulative 
distribution functions (CDFs) of parameter sets 

 𝛼𝛼 (cm-1) 𝑛𝑛 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 
𝐾𝐾𝑠𝑠 

(cm/day) 𝑓𝑓𝑠𝑠 

First Layer 0.40 0.47 0.51 0.67 0.58 0.30 
Second Layer 0.40 0.62 0.52 0.66 0.49 N/A 
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Figure 3.1: Schematic illustration of soil profile and the two-layer model depicting the root zone 
and vadose soil below. d is the ponding depth; h is the first layer (zoot zone) depth; H(t) is depth 
of WT at time t; and H0 is initial depth;  𝑞𝑞0, 𝑞𝑞1 and 𝑞𝑞2 are the top, middle and bottom flux 
(positive downward) , respectively. 

 

 

Figure 3.2: Prescribed atmospheric boundary condition applied for testing scenarios with 
homogeneous and heterogeneous soil profiles.  
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Figure 3.3: Location of study SCAN site in Alabama 

 

 

Figure 3.4: Daily potential evapotranspiration and precipitation for model calibration (year 2018) 
and validation (year 2019)  
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Figure 3.5: Contour plots and heat maps of average RMSE with different thickness of two soil 
layers for sand (1), loam (2) and clay (3) soil textures under free-drainage (A) and zero-pressure 
head (B) bottom boundary conditions (average RMSE was calculated by averaging RMSE values 
for moisture contents from two soil layers).  



81 
 

 

Figure 3.6: Soil moisture contents of homogeneous soil profile with 50 cm of the first layer and 
50 cm of the second layer between the two-layer model and HYDRUS for sand (1), loam (2) and 
clay (3) soil textures under free-drainage (A) and zero-pressure head (B) bottom boundary 
conditions.  
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Figure 3.7: Heat maps for RMSE on soil triangle with 50 cm depth of the first layer and 10 cm 
(1), 100 cm (2), and 200 cm (3) depth of the second layer for free-drainage (A) and zero-pressure 
head (B) bottom boundary conditions. 
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Figure 3.8: Simulated soil moisture content and fluxes by the two-layer model and HYDRUS for 
a soil profile where loamy fine sand (30 cm) overlays silty clay loam (30 cm). A and B represent 
free-drainage and zero-pressure head bottom boundary conditions, respectively. L1 and L2 
represent the first and the second layer, respectively; 𝑄𝑄0 and 𝑄𝑄2 represent top and bottom 
cumulative flux, respectively).  
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Figure 3.9: Simulated soil moisture content and fluxes by the two-layer model and HYDRUS for 
a soil profile where silty clay loam soil (30 cm) overlays  loamy fine sand soil (30 cm). A and B 
represent free-drainage and zero-pressure head bottom boundary conditions, respectively. L1 and 
L2 represent the first and the second layer, respectively; 𝑞𝑞0 and 𝑞𝑞2 represent top and bottom 
cumulative flux, respectively).  
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Figure 3.10: (A) Comparison with observed values of Bayesian estimates (Eq. 7)  and  95% s 
limits of soil moisture contents of the first layer (1) and the second layer (2): (A)  model 
calibration period, and (B) validation period.  
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Figure 3.11: Probability densities of three soil separates and the depth of the two layers for 
simulations that had RMSE values greater than 0.015 (1) and smaller than or equal to 0.015 (2) 
with free-drainage (A) and zero-pressure head (B) bottom boundary conditions.  
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Figure 3.12: Posterior PDFs of model parameters used for BMC (green and blue vertical lines 
represent prior median and BMC estimated values of the parameters, respectively. L1 and L2 in 
subscripts stand for the first layer and the second layer, respectively. The x-axes cover the range 
of prior distribution of parameters listed in Table 2)
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Chapter 4: A Numerical Model for Multiple Layer-Averaged Richards Equation 

Abstract 

Soil moisture plays an essential role in regulating hydrological and biogeochemical processes. 

Accurately modeling moisture content in variably saturated soil media is fundamental to land-

surface coupling simulations in large-scale watershed models and land surface models (LSMs). 

Current large-scale watershed models and LSMs apply either reservoir cascade scheme or 

Richards equation (RE) to estimate vertical water movement and soil moisture content at a 

reasonable computational cost. RE provides relatively accurate predictions of soil moisture over 

other approaches due to its clear physical basis. However, solving RE numerically has always been 

challenging because of its high nonlinearity and computational burden, especially when RE is 

employed in large-scale watershed and hydro-climate applications. Recently, the authors 

developed a two-layer approximation of RE for the situations with shallow water table. The two-

layer model has shown promising results in estimating average soil moisture contents in relatively 

thin soil root zone and the vadose zone below. To address situations that soil profile cannot be 

distinguished into two soil layers (e.g. stratified soil with varying soil textures or applications that 

require higher vertical resolution) and that higher vertical resolution of θ distribution is required, 

the two-layer model was extended to multiple layers in this study, and a numerical scheme was 

developed to solve coupled ordinary differential equations (ODEs) describing layer-averaged soil 

moisture dynamics for predefined soil layers. The multiple layer-averaged RE (LARE) solution 

solves the coupled ODEs using Heun’s method with time adaptive algorithm and like the two-

layer model it also accounts for prescribed flux and pressure head boundary conditions at the soil 

surface, including precipitation, ponding, soil evaporation, and plant transpiration, subject to deep 
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and shallow dynamic water table. LARE was evaluated by five testing scenarios against analytical 

solutions, HYDRUS 1-D solver, and field soil moisture observations. The model provided accurate 

estimations of moisture contents for multiple soil layers, and it was computationally efficient in 

accounting for complex, dynamic prescribed boundary conditions without any convergence issues. 

LARE is numerically stable and computational efficient, it is suitable for modeling water 

movement, and soil moisture for multiple layered soils at both field and watershed scale.  

 

1. Introduction 

Soil moisture is one of the key variables in the land-atmosphere system. It connects various 

hydrologic processes (such as runoff, evapotranspiration, groundwater dynamics, etc.) through 

unsaturated flow and further controls the terrestrial energy and biochemical cycles (McGuire et al., 

2000; Seneviratne et al., 2010). Water movement in variably saturated soils has been considered 

an important component in watershed and land surface models (LSMs) (Pollacco and Mohanty, 

2012; Vereecken et al., 2016; Lawrence et al., 2019). Appropriate and accurate estimation of water 

flux and moisture redistribution in root zone and vadose zone is imperative to predicting 

biochemical processes (Pollacco and Mohanty, 2012; Wood et al., 2013; O’Connell et al., 2018).  

  Many mathematical models have been developed to account for water flow and soil 

moisture dynamics in unsaturated media (Green and Ampt, 1911; Richards, 1931; Philip, 1957; 

Mahrt and Pan, 1984; Guswa et al., 2002; Ogden et al., 2015; Zhu et al., 2016; Sanchez‐Mejia and 

Papuga, 2017). Among them, one-dimensional Richard’s Equation (RE) has been widely applied 

in current LSMs to represent vertical water movement in variably saturated soil. RE is a physical-

based model, integrating the mass conservation equation and Darcy’s law, making it applicable to 

simulate soil moisture movement under various soil, land, and hydro-climatic conditions. RE is a 
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highly nonlinear, elliptic-parabolic partial differential equation, and it is coupled with two 

nonlinear empirical soil hydraulic relations: soil matric potential and unsaturated hydraulic 

conductivity. Therefore, solving the RE numerically poses several challenges (Miller et al., 2013; 

List and Radu, 2016). In general, numerical methods commonly applied for solving RE are finite 

difference (Celia et al., 1990; van Dam and Feddes, 2000; Feddes et al., 1988; Herrada et al., 2014; 

Rathfelder and Abriola, 1994b; Ross, 1990), finite volume (Caviedes-Voullième et al., 2013a; 

Kumar et al., 2009; Lai and Ogden, 2015b; Svyatskiy and Lipnikov, 2017), finite element (Forsyth 

et al., 1995; Lee and Abriola, 1999; Šimůnek and van Genuchten, 2008), and mixed form (Farthing 

et al., 2003). These numerical methods often need special design of spatial and temporal 

discretization schemes for certain conditions (Farthing and Ogden, 2017a). At laboratory and field-

scale studies, RE has shown excellent performance in estimating soil moisture and water flux in 

soils under various conditions (Camporese et al., 2019; B. Chen et al., 2018; Fields et al., 2020). 

However, in large-scale watershed models and LSMs, traditional numerical solutions of RE are 

usually not considered owing to the risks that the RE solution may not convergence in complex 

and changing environmental conditions (such as shallow groundwater level and soil heterogeneity). 

These conditions can eventually create unstable situations for overall model performance (Qi et 

al., 2018; Sharifi et al., 2017). Besides, the overall computational cost associated with the 

numerical schemes listed above could be high due to their numerical complexity, which could lead 

to undesirably long simulation time, especially when RE is applied in a large watershed at a high 

vertical resolution, or RE is solved thousand or million times in a distributed regional model 

(Harter et al., 2004; Orgogozo et al., 2014).  

To decrease the computational burden, many watershed models and LSMs often use rough 

parameterization schemes or consider the simplified representation of RE to simulate water 
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movement in the vadose zone. For example, the Soil and Water Assessment Tool (SWAT) 

(Neitsch et al., 2011b) model uses a simple but efficient storage routing technique to simulate 

water flux through soil layers. Vertical movement of soil water occurs when the water content of 

the upper layer exceeds field capacity and the lower layer is not saturated. The moisture contents 

of each layer are updated at each time step according to the mass balance of water within the soil. 

This method is unconditionally stable and only requires few input parameters that can be easily 

obtained. However, SWAT model does not directly model the unsaturated flow between soil layers. 

Detailed information on water movement may be lost due to the simplification of the physical 

process. The Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) (Downer and Ogden, 

2004b) model uses finite-difference solution of RE to simulate water flux and soil moisture in 

three soil horizons (horizon A, B, and C). The solution yields point soil moisture values (i.e., at 

the center of each layer) and not the thickness-averaged values. The solution in GSSHA accounts 

for free-drainage, water table, and moving water table as bottom boundary conditions. The 

computation cost is determined by user-specified discretization parameters (soil depth and vertical 

grid size), which require expertise in numerical analysis. The Joint UK Land Environment 

Simulator (JULES) (Best et al., 2011) simulates moisture contents for four soil layers with 

different thicknesses in a 2-meter soil domain using finite difference form of RE. This approach 

significantly decreases the computational time but may bring some unexpected errors because of 

the coarse discretization scheme being used to solve for point values of the volumetric moisture 

content. The early version of Organizing Carbon and Hydrology In Dynamic Ecosystems 

(ORCHIDEE) LSM used reservoir cascade scheme to simulate water balance of two soil layers in 

a 2-meter root zone (Ducoudré et al., 1993b). The updated version of ORCHIDEE adopted the 

Fokker-Planck equation to simulate water flow in a 2-meter soil using an implicit numerical 
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scheme (De Rosnay et al., 2002). 2-meter soil is discretized into 11 non-uniform vertical grid 

points that are finer at the top and coarser along with the depth. Nevertheless, ORCHIDEE only 

considers free-drainage as the bottom boundary condition, which is commonly adopted in many 

LSMs such as Hydrology Tiled ECMWF Scheme for  Surface  Exchanges over  Land  (HTESSEL) 

(Persson, 2001), Noah (Niu et al., 2011), and Variable Infiltration Capacity (VIC) Model (Gao et 

al., 2010). Shallow groundwater level and the effect of capillary rise cannot be appropriately 

treated with this bottom boundary condition. Community Land Model version 5.0 (CLM5.0) uses 

adaptive time-stepping algorithm to solve RE in a 50-meter depth soil column with non-uniform 

spatial discretization configuration (Zeng and Decker, 2009; Lawrence et al., 2019). The bedrock 

is specified at the bottom boundary as the default setting which assumes zero-flux boundary 

condition. Similar bottom boundary conditions are also applied in other LSMs such as Land 

Dynamics model (LM3) (Milly et al., 2014). Zero-flux boundary condition could overestimate soil 

water content in certain circumstances (e.g. relatively shallow simulation domain) (Chen et al., 

2018).  

  There has been an increasing trend of development and application of high-resolution 

LSMs to address finer scale (1 km globally, 100 m at continental scale) hydrological and 

biochemical problems (Wood et al., 2011; Fatichi et al., 2016b). At such scale, parameterization 

of soil hydrology requires a more realistic and detailed representation of water movement in soils. 

When using RE to simulate soil water movement at finer scale, some challenges need to be 

appropriately treated. When soil switches from unsaturated condition to saturated condition, RE 

degenerates from parabolic type to elliptic type (Farthing and Ogden, 2017a). Saturated soil is 

often considered unfavorable condition for RE because the soil capillary pressure cannot be 

predicted correctly (for 𝜓𝜓𝑏𝑏 ≥  𝜓𝜓 ≥ 0, 𝜃𝜃 = 𝜃𝜃𝑠𝑠 and 𝜓𝜓(𝜃𝜃) is not a unique function of 𝜃𝜃, where 𝜓𝜓𝑏𝑏 is 
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air-entry capillary pressure). Besides, more than one type of bottom boundary condition is needed 

in the numerical solution that can internally switch between several bottom boundary conditions 

according to the position of groundwater level. In addition, soil heterogeneity has strong impact 

on moisture redistribution (Huang et al., 2011; Cui and Zhu, 2018). In stratified soils, soil 

properties can vary greatly from layer to layer. During the simulation, discontinuity of soil 

moisture and hydraulic conductivity between two adjacent soil textures yield sudden change of 

infiltration rate at the soil interface, making the numerical solution prone to convergence failure 

(Ma et al., 2010; Miller et al., 2013). Several approaches have been developed to resolve these 

discontinuities including special design of spatial discretization (Celia et al., 1990; Pan et al., 1996; 

Ju and Kung, 1997; Ogden et al., 2015; Dai et al., 2019) and finding the best averaging approach 

for equivalent hydraulic conductivity to calculate inter-nodal flux (Belfort and Lehmann, 2005; 

Szymkiewicz and Helmig, 2011; Belfort et al., 2013). However, the use of these approaches is 

mainly depending on the flow conditions and numerical scheme being applied (Szymkiewicz, 2012; 

Szymkiewicz et al., 2015). A universal, straightforward, and accurate formula that contributes less 

numerical oscillations remains challenging. Therefore, there is a need to improve the numerical 

solution of RE to deal with finer-scale water movement in variably saturated soils for large-scale 

hydrological modeling.  

Recently, He et al. (2021a) developed a two-layer approximation of RE that simulates the 

dynamics of soil moisture contents and water flow in the root zone and vadose zone below. The 

two-layer model accounts for variable soil moisture flux and pressure conditions at the soil surface 

and effects of deep or shallow water table. The solution converts the partial differential form of 

RE to two coupled ordinary differential equations (ODEs). The coupled ODEs are solved explicitly 

using iterative Huen’s method, which makes the solution computational efficient. The model was 
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tested for various soil profile configurations and boundary conditions and the results of soil 

moisture contents and fluxes were compared with the benchmark model HYDRUS-1D and field-

scale observations (He, et al., 2021b). The two-layer model had excellent performance in 

estimating depth-averaged moisture contents with the soil profile depth less than 150 cm. However, 

the model performance dropped with the increasing soil depth due to greater truncation errors. 

Besides, the two-layer model is not designed for multiple stratified soil layers. Detailed 

information on soil moisture variation and fluxes are averaged out in stratified soil profiles. For 

example, in the two-layer model, the plant root uptake is integrated over the first layer (root layer), 

but it is evaluated at the average moisture content of the root zone. Plant water uptake could be 

over or underestimated with this simplification if the roots are dispersed in a stratified soil.  

To address the need for higher vertical resolution and handle stratified soil profiles, the 

two-layer model was extended to multiple layers in this study, and a numerical scheme was 

developed to solve coupled ODEs describing layer-averaged soil moisture dynamics for predefined 

soil layers. The new numerical model, called LARE (Layer-Averaged Richards Equation), 

describes one-dimensional vertical unsaturated flow in layered soils. Similar to the two-layer 

model, LARE also considers various atmospheric conditions along with plant water uptake and 

water movement between soil and dynamic water table. The objectives of this study are to: 1) 

derive a layer-averaged approximation of RE for multiple soil layers; 2) evaluate the model 

performance in depth by comparing LARE solutions against analytical solutions, HYDRUS 1-D 

solver as well as in-situ measurement data. The overarching goal is to develop a numerically stable 

and efficient module for variably saturated flow in layered soils at field and watershed scale.  

In the following sections, the mathematical derivation of LARE is first presented, which is 

followed by sections describing methods of plant root distribution, plant water uptake and soil 
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evaporation, soil hydraulic properties, and numerical scheme. The model is then evaluated with 5 

testing scenarios. The results of soil moisture from LARE are compared with those from analytical 

solution, HYDRUS, and site-level observation data. Model performance and some issues are 

discussed after the testing scenarios. The manuscript ends with summary and conclusions. 

 

2. Methodologies 

2.1. Numerical Derivations  

The equation governing the mass conservation of one-dimensional vertical water 

movement in porous medium is the continuity equation: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑆𝑆 (1) 

where  𝜃𝜃 is the volumetric soil water content [L3L-3]; t is time [T]; z is soil depth below the surface 

[L], positive downward; 𝑆𝑆 is a soil moisture sink term (e.g. plant transpiration) [L3L-3T-1]; and 𝑞𝑞 

is the Darcy water flux [LT-1], given by: 

𝑞𝑞 = 𝐾𝐾
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐾𝐾 (2) 

where 𝐾𝐾  is hydraulic conductivity [LT-1]; 𝜓𝜓  is the soil capillary pressure head (negative of 

porewater pressure) [L]. The one-dimensional Richards’ equation is obtained by substituting 

equation (2) into (1).  

The derivation of layer-averaged ODE for general layer m follows the same steps that led 

to the two-layer ODEs (Chapter 2). Consider the compartments within the soil domain shown in 

Figure 4.1. The soil column is divided into n layers and the layer averaged soil moisture content 

of the 𝑚𝑚𝑡𝑡ℎ layer (𝑚𝑚 = 1, … ,𝑛𝑛) is defined as 
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𝜃̅𝜃𝑚𝑚(𝑡𝑡) =
1

ℎ𝑚𝑚 − ℎ𝑚𝑚−1
� 𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑

ℎ𝑚𝑚

ℎ𝑚𝑚−1

(3) 

where, ℎ𝑚𝑚 is the depth from the ground surface to the bottom of the 𝑚𝑚th layer [L]. 

Integrating equation (1) over the 𝑚𝑚𝑡𝑡ℎ layer, from 𝑧𝑧 = ℎ𝑚𝑚−1 to 𝑧𝑧 = ℎ𝑚𝑚 yields 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

ℎ𝑚𝑚

ℎ𝑚𝑚−1

𝑑𝑑𝑧𝑧 = − �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

ℎ𝑚𝑚

ℎ𝑚𝑚−1

− � 𝑆𝑆

ℎ𝑚𝑚

ℎ𝑚𝑚−1

𝑑𝑑𝑑𝑑  

(ℎ𝑚𝑚 − ℎ𝑚𝑚−1)
𝑑𝑑𝜃̅𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚−1 − 𝑞𝑞�
𝑧𝑧=ℎ𝑚𝑚

− (ℎ𝑚𝑚 − ℎ𝑚𝑚−1)𝑆𝑆𝑚̅𝑚 (4) 

where, 𝜃̅𝜃𝑚𝑚 is the average moisture content of the 𝑚𝑚th layer [L3L-3]; 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚−1 is the flux at the top 

of the 𝑚𝑚th layer [LT-1]; 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚  is the flux at the bottom of the 𝑚𝑚th layer [LT-1]; 𝑆𝑆̅ is average 

transpiration rate over the 𝑚𝑚th layer [L3L-3T-1], where 𝑆𝑆𝑚̅𝑚 =  1
ℎ𝑚𝑚−ℎ𝑚𝑚−1

∫ 𝑆𝑆 𝑑𝑑𝑑𝑑ℎ𝑚𝑚
ℎ𝑚𝑚−1

. Note that when 

𝑚𝑚 − 1 = 0, 𝑞𝑞|𝑧𝑧=ℎ0 (= 𝑞𝑞|𝑧𝑧=0) is the top flux which is governed by atmospheric conditions. When 

𝑚𝑚 = 𝑛𝑛, 𝑞𝑞|𝑧𝑧=ℎ𝑛𝑛 is the bottom flux described by bottom boundary conditions. (ℎ𝑚𝑚 − ℎ𝑚𝑚−1)𝑆𝑆̅ is the 

portion of total transpiration in the 𝑚𝑚th layer. If the soil compartment is below the root zone, the 

last term in equation (4) drops, 

(ℎ𝑚𝑚 − ℎ𝑚𝑚−1)
𝑑𝑑𝜃̅𝜃𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚−1 − 𝑞𝑞�
𝑧𝑧=ℎ𝑚𝑚

(5) 

Expressions for 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚−1  and 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚  are needed to solve (4). q|z=0 and q|z=ℎ𝑛𝑛 are top and bottom 

boundary flux for the entire soil column, respectively, which will be explained later.  

At the interface of two adjacent soil layers, at 𝑧𝑧 = ℎ𝑚𝑚, equation (2) gives 

𝑞𝑞|z=ℎ𝑚𝑚 = 𝐾𝐾|z=ℎ𝑚𝑚
∂𝜓𝜓
∂z
�
z=ℎ𝑚𝑚

+ 𝐾𝐾|z=ℎ𝑚𝑚 (6) 
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where, 𝐾𝐾|z=ℎ𝑚𝑚 is the unsaturated hydraulic conductivity at z = ℎ𝑚𝑚 [LT-1]; ∂𝜓𝜓
∂z
�
z=ℎ𝑚𝑚

 is the pressure 

gradient at the interface between layer 𝑚𝑚 and 𝑚𝑚 + 1. 

Following same steps as in Chapter 2, Taylor expansion of 𝐾𝐾 around 𝑧𝑧 = ℎ𝑚𝑚 is 

𝐾𝐾(z, t) = 𝐾𝐾(ℎ𝑚𝑚, t) +
∂𝐾𝐾
∂z
�
z=ℎ𝑚𝑚

(z − ℎ𝑚𝑚) +
1
2
∂2𝐾𝐾
∂z2

�
z=ℎ𝑚𝑚

(z − ℎ𝑚𝑚)2 + ⋯ (7) 

Integrating (7)  from 𝑧𝑧 = ℎ𝑚𝑚−1  to 𝑧𝑧 = ℎ𝑚𝑚  and retaining zero and first-order terms, and then 

dividing by ℎ𝑚𝑚 − ℎ𝑚𝑚−1 yields 

𝐾𝐾�𝑚𝑚 = 𝐾𝐾(ℎ𝑚𝑚, t) −
1
2
∂𝐾𝐾
∂z
�
z=ℎ𝑚𝑚

ℎ𝑚𝑚  

Thus, 

∂𝐾𝐾
∂z
�
z=ℎ𝑚𝑚

= 2
𝐾𝐾(ℎ𝑚𝑚, t) −𝐾𝐾�𝑚𝑚
ℎ𝑚𝑚 − ℎ𝑚𝑚−1

(8) 

where 𝐾𝐾�𝑚𝑚, representing 𝐾𝐾�𝑚𝑚(𝑡𝑡), is the average soil hydraulic conductivity of the 𝑚𝑚th layer [LT-1], 

in which 𝐾𝐾�𝑚𝑚 = 1
ℎ𝑚𝑚−ℎ𝑚𝑚−1

∫ 𝐾𝐾(z, t) 𝑑𝑑𝑑𝑑ℎ𝑚𝑚
ℎ𝑚𝑚−1

. We assume 𝐾𝐾�𝑚𝑚 ≈ 𝐾𝐾(𝜃̅𝜃𝑚𝑚). Thus 𝐾𝐾�𝑚𝑚 can be estimated 

from 𝜃̅𝜃𝑚𝑚 using any of the soil characteristics model. 

Integrating (7) from 𝑧𝑧 = ℎ𝑚𝑚 to 𝑧𝑧 = ℎ𝑚𝑚+1 and dividing by (ℎ𝑚𝑚+1 − ℎ𝑚𝑚) yields 

𝐾𝐾�𝑚𝑚+1 = 𝐾𝐾(ℎ𝑚𝑚, t) +
1
2
∂𝐾𝐾
∂z
�
z=ℎ𝑚𝑚

(ℎ𝑚𝑚+1 − ℎ𝑚𝑚) (9) 

thus, 

∂𝐾𝐾
∂z
�
z=ℎ𝑚𝑚

= 2
𝐾𝐾�𝑚𝑚+1 − 𝐾𝐾(ℎ𝑚𝑚, t)
ℎ𝑚𝑚+1 − ℎ𝑚𝑚

(10) 

where 𝐾𝐾�𝑚𝑚+1  is average soil hydraulic conductivity of the (𝑚𝑚 + 1)th  layer [LT-1], in which 

𝐾𝐾�𝑚𝑚+1 = 1
ℎ𝑚𝑚+1−ℎ𝑚𝑚

∫ 𝐾𝐾(z, t) 𝑑𝑑𝑑𝑑ℎ𝑚𝑚+1
ℎ𝑚𝑚

≈ 𝐾𝐾(𝜃̅𝜃𝑚𝑚+1). 

Comparison of (8) with (10) leads to, 
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2
𝐾𝐾(ℎ𝑚𝑚, t) − 𝐾𝐾�𝑚𝑚
ℎ𝑚𝑚 − ℎ𝑚𝑚−1

= 2
𝐾𝐾�𝑚𝑚+1 − 𝐾𝐾(ℎ𝑚𝑚, t)
ℎ𝑚𝑚+1 − ℎ𝑚𝑚

 

Hence, 

𝐾𝐾(ℎ𝑚𝑚, t) = 𝛾𝛾𝑚𝑚𝐾𝐾�𝑚𝑚 + (1 − 𝛾𝛾𝑚𝑚)𝐾𝐾�𝑚𝑚+1 (11) 

from which 𝛾𝛾𝑚𝑚 = ℎ𝑚𝑚+1−ℎ𝑚𝑚
ℎ𝑚𝑚+1−ℎ𝑚𝑚−1

, 1 − 𝛾𝛾𝑚𝑚 = ℎ𝑚𝑚−ℎ𝑚𝑚−1
ℎ𝑚𝑚+1−ℎ𝑚𝑚−1

. 

Taylor series expansion of 𝜓𝜓 around 𝑧𝑧 = ℎ𝑚𝑚 is 

𝜓𝜓(z, t) = 𝜓𝜓(ℎ𝑚𝑚, t) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=ℎ𝑚𝑚

(𝑧𝑧 − ℎ𝑚𝑚) +
1
2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑧𝑧2

�
𝑧𝑧=ℎ𝑚𝑚

(𝑧𝑧 − ℎ𝑚𝑚)2 + ⋯ (12) 

Similarly, by integrating (12) from 𝑧𝑧 = ℎ𝑚𝑚−1 to 𝑧𝑧 = ℎ𝑚𝑚, taking the zero and first-order terms, 

and dividing by (ℎ𝑚𝑚 − ℎ𝑚𝑚−1), one can show 

∂𝜓𝜓
∂z
�
z=ℎ𝑚𝑚

= 2
𝜓𝜓(ℎ𝑚𝑚, t) − 𝜓𝜓�𝑚𝑚
ℎ𝑚𝑚 − ℎ𝑚𝑚−1

(13) 

where 𝜓𝜓�𝑚𝑚  is the average metric potential of the 𝑚𝑚𝑡𝑡ℎ  layer [L] given by 𝜓𝜓�𝑚𝑚 =

1
ℎ𝑚𝑚−ℎ𝑚𝑚−1

∫ 𝜓𝜓(z, t) 𝑑𝑑𝑑𝑑ℎ𝑚𝑚
ℎ𝑚𝑚−1

. 

Integrating (12) from 𝑧𝑧 = ℎ𝑚𝑚 to 𝑧𝑧 = ℎ𝑚𝑚+1 and dropping the higher order terms, then dividing by 

(ℎ𝑚𝑚+1 − ℎ𝑚𝑚) yields, 

∂𝜓𝜓
∂z
�
z=ℎ𝑚𝑚

= 2
𝜓𝜓�𝑚𝑚+1 − 𝜓𝜓(ℎ𝑚𝑚, t)
ℎ𝑚𝑚+1 − ℎ𝑚𝑚

(14) 

where 𝜓𝜓�𝑚𝑚+1  is the average metric potential of the (𝑚𝑚 + 1)th  layer [L], in which 𝜓𝜓�𝑚𝑚+1 =

1
ℎ𝑚𝑚+1−ℎ𝑚𝑚

∫ 𝜓𝜓(z, t) 𝑑𝑑𝑧𝑧ℎ𝑚𝑚+1
ℎ𝑚𝑚

. Thus, by (13) and (14), 

2
𝜓𝜓(ℎ𝑚𝑚, t) − 𝜓𝜓�𝑚𝑚
ℎ𝑚𝑚 − ℎ𝑚𝑚−1

= 2
𝜓𝜓�𝑚𝑚+1 − 𝜓𝜓(ℎ𝑚𝑚, t)
ℎ𝑚𝑚+1 − ℎ𝑚𝑚

 

which can be solved for 𝜓𝜓(ℎ𝑚𝑚, t), 
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𝜓𝜓(ℎ𝑚𝑚, t) = 𝛾𝛾𝑚𝑚𝜓𝜓�𝑚𝑚 + (1 − 𝛾𝛾𝑚𝑚)𝜓𝜓�𝑚𝑚+1 (15) 

Substituting (15) into either (13) or (14) yields, 

∂𝜓𝜓
∂z
�
z=ℎ𝑚𝑚

=
2

ℎ𝑚𝑚+1 − ℎ𝑚𝑚−1
(𝜓𝜓�𝑚𝑚+1 − 𝜓𝜓�𝑚𝑚) (16) 

Substituting (11) and (16) into (6) yields the expression for 𝑞𝑞|z=ℎ𝑚𝑚, 

𝑞𝑞|z=ℎ𝑚𝑚 =
2

ℎ𝑚𝑚+1 − ℎ𝑚𝑚−1
(𝛾𝛾𝑚𝑚𝐾𝐾�𝑚𝑚 + (1 − 𝛾𝛾𝑚𝑚)𝐾𝐾�𝑚𝑚+1)(𝜓𝜓�𝑚𝑚+1 − 𝜓𝜓�𝑚𝑚) + 𝛾𝛾𝑚𝑚𝐾𝐾�𝑚𝑚 + (1 − 𝛾𝛾𝑚𝑚)𝐾𝐾�𝑚𝑚+1(17) 

 

2.2. Water Fluxes at Boundary of the Soil Profile 

The top flux 𝑞𝑞|z=0 is described by atmospheric conditions (precipitation, evaporation, and 

ponding). At z=0, if precipitation rate 𝑖𝑖 < 𝐾𝐾𝑠𝑠1, 

𝑞𝑞|z=0 = 𝑖𝑖 (18) 

where 𝐾𝐾𝑠𝑠1 is saturation conductivity of the first layer [LT-1]; and 𝑖𝑖 is precipitation rate [LT-1]. 

If 𝑖𝑖 > 𝐾𝐾𝑠𝑠1, Eq.(18) holds until the top soil is saturated. If ponding occurs at depth 𝑑𝑑𝑃𝑃, then from 

Darcy’s equation, 

𝑞𝑞|z=0 = 2𝐾𝐾𝑠𝑠1
𝜓𝜓�1 + 𝑑𝑑
ℎ1

+ 𝐾𝐾𝑠𝑠1 (19) 

If 𝑖𝑖 = 0,  

𝑞𝑞|z=0 = −𝑒𝑒𝑒𝑒𝑎𝑎 (20) 

where 𝑒𝑒𝑒𝑒𝑎𝑎 is soil evaporation rate [LT-1]. The calculation of evaporation rate is present in section 

2.5. 

At 𝑧𝑧 = ℎ𝑛𝑛, the expression of 𝑞𝑞|z=ℎ𝑛𝑛 is, 

𝑞𝑞|z=ℎ𝑛𝑛 = 𝐾𝐾|z=ℎ𝑛𝑛
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=ℎ𝑛𝑛

+ 𝐾𝐾|z=ℎ𝑛𝑛 (21) 
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 If the water table is at the bottom of the nth layer, the soil below the nth layer becomes 

saturated. Then, the hydraulic conductivity at the bottom of the nth layer is, 

𝐾𝐾|z=ℎ𝑛𝑛 = 𝐾𝐾𝑠𝑠𝑠𝑠 (22) 

where 𝐾𝐾𝑠𝑠𝑠𝑠 is saturated hydraulic conductivity of the 𝑛𝑛𝑡𝑡ℎ layer [LT-1]. 

 Once again, we expand 𝜓𝜓  around 𝑧𝑧 = ℎ𝑛𝑛  and integrate from 𝑧𝑧 = ℎ𝑛𝑛−1  to 𝑧𝑧 = ℎ𝑛𝑛  and 

divide by (ℎ𝑛𝑛 − ℎ𝑛𝑛−1) to obtain, 

∂𝜓𝜓
∂z
�
z=ℎ𝑛𝑛

= 2
𝜓𝜓(ℎ𝑛𝑛, t) − 𝜓𝜓�𝑛𝑛
ℎ𝑛𝑛 − ℎ𝑛𝑛−1

(23) 

Let 𝜓𝜓(ℎ𝑛𝑛, t) = 𝜓𝜓𝑏𝑏 , where 𝜓𝜓𝑏𝑏  is the critical bubbling suction (i.e., negative of air-entry 

pressure) of the soils [L]. 𝜓𝜓𝑏𝑏 is equal to 0 cm by default. Substitution of equations (22) and (23) 

into (21) yields, 

q|z=ℎ𝑛𝑛 = 2𝐾𝐾𝑠𝑠𝑠𝑠
𝜓𝜓𝑏𝑏 − 𝜓𝜓�𝑛𝑛
ℎ𝑛𝑛 − ℎ𝑛𝑛−1

+ 𝐾𝐾𝑠𝑠𝑠𝑠 (24) 

If the water table drops below ℎ𝑛𝑛, free drainage condition holds at the bottom referring to 

zero-gradient of both soil capillary pressure ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑧𝑧=ℎ𝑛𝑛

= 0 ) and unsaturated conductivity 

(∂𝐾𝐾
∂z
�
z=ℎ𝑛𝑛

= 0). Using Taylor expansion of 𝐾𝐾 around 𝑧𝑧 = ℎ𝑛𝑛 to yield 𝐾𝐾(ℎ𝑛𝑛, t) = 𝐾𝐾�𝑛𝑛. 

Thus, bottom flux q|z=ℎ𝑛𝑛 becomes,  

q|z=ℎ𝑛𝑛 = 𝐾𝐾�𝑛𝑛 (25) 

At this point, soil moisture content of each layer can be obtained by equation (4) coupled 

with top flux from equations (18) to (20) and bottom flux terms either from equation (24) when 

groundwater level is at the bottom of the soil domain or from equation (25) when groundwater 

level is far below the soil of interest. Moisture contents of soil layers within the soil domain are 
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governed by several coupled ordinary differential equations (ODEs) by the extension of equation 

(4). The coupled ODEs are solved explicitly by using Heun’s method. 

 

2.3. Groundwater Table Dynamics 

When groundwater level is within the 𝑚𝑚th (𝑚𝑚 = 1, … ,𝑛𝑛) layer (ℎ𝑚𝑚−1 ≤ ℎ𝑤𝑤 < ℎ𝑚𝑚), soil 

below the water table is saturated. The average moisture content of the 𝑚𝑚th layer is calculated by 

a weighted average of moisture content in both saturated and unsaturated parts, 

𝜃̅𝜃𝑚𝑚(𝑡𝑡) =
(ℎ𝑤𝑤 − ℎ𝑚𝑚−1)𝜃̅𝜃𝑚𝑚𝑚𝑚(𝑡𝑡) + (ℎ𝑚𝑚 − ℎ𝑤𝑤)𝜃̅𝜃𝑚𝑚𝑚𝑚(𝑡𝑡)

ℎ𝑚𝑚 − ℎ𝑚𝑚−1
(26) 

where 𝜃̅𝜃𝑚𝑚𝑚𝑚 is the moisture content of unsaturated part of the 𝑚𝑚th layer [L3L-3], 𝜃̅𝜃𝑚𝑚𝑚𝑚 is saturation 

water content of the 𝑚𝑚th layer [L3L-3]. 

𝜃̅𝜃𝑚𝑚𝑚𝑚(𝑡𝑡) is described as,  

𝜃̅𝜃𝑚𝑚𝑚𝑚(𝑡𝑡) =
1

ℎ𝑤𝑤 − ℎ𝑚𝑚−1
� 𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑

ℎ𝑤𝑤

ℎ𝑚𝑚−1

(27) 

Following similar steps, integrating (1) from 𝑧𝑧 = ℎ𝑚𝑚−1 to 𝑧𝑧 = ℎ𝑤𝑤 yields, 

(ℎ𝑤𝑤 − ℎ𝑚𝑚−1)
𝑑𝑑𝜃̅𝜃𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚−1 − 𝑞𝑞�
𝑧𝑧=ℎ𝑤𝑤

− (ℎ𝑤𝑤 − ℎ𝑚𝑚−1)𝑆𝑆𝑚̅𝑚𝑚𝑚 (28) 

where 𝑞𝑞|𝑧𝑧=ℎ𝑤𝑤 is the flux at the groundwater table [LT-1], and 𝑆𝑆𝑚̅𝑚𝑚𝑚 =  1
ℎ𝑤𝑤−ℎ𝑚𝑚−1

∫ 𝑆𝑆 𝑑𝑑𝑑𝑑ℎ𝑤𝑤
ℎ𝑚𝑚−1

. If the 

groundwater table is below the root zone, equation (28) becomes, 

(ℎ𝑤𝑤 − ℎ𝑚𝑚−1)
𝑑𝑑𝜃̅𝜃𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑞𝑞|𝑧𝑧=ℎ𝑚𝑚−1 − 𝑞𝑞�
𝑧𝑧=ℎ𝑤𝑤

(29) 

Similar approach is employed to derive 𝑞𝑞|𝑧𝑧=ℎ𝑤𝑤 as for (24), which gives, 

𝑞𝑞|𝑧𝑧=ℎ𝑤𝑤 = 2𝐾𝐾𝑠𝑠𝑠𝑠
𝜓𝜓𝑏𝑏 − 𝜓𝜓�𝑚𝑚𝑚𝑚
ℎ𝑤𝑤 − ℎ𝑚𝑚−1

+ 𝐾𝐾𝑠𝑠𝑠𝑠 (30) 
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where 𝜓𝜓�𝑚𝑚𝑚𝑚 is capillary pressure of the unsaturated part of the 𝑚𝑚th layer [L]. 

When groundwater level is below the nth layer, a free-drainage bottom boundary condition 

(25) is applied at the bottom of the nth layer. 

 

2.4. Root Distribution and Plant Transpiration Estimation 

Plants extract water from root zone. The rate of water uptake mainly depends on the water 

availability in the root zone, the root density distribution, and the potential transpiration rate 

(Feddes, 1982; Perrochet, 1987b). The sink term S in equation (4) is defined as the volume of 

water removed from a unit volume of soil per unit time due to plant water uptake and it is calculated 

based on the following relationship 

𝑆𝑆𝑎𝑎𝑎𝑎 = 𝛽𝛽(𝜓𝜓)𝑏𝑏(𝑧𝑧)𝑆𝑆𝑝𝑝 (31) 

where 𝑆𝑆𝑎𝑎𝑎𝑎  is actual plant water uptake rate in layer 𝑚𝑚  in the root zone [L3L-3T-1], 𝛽𝛽(𝜓𝜓) is a 

prescribed dimensionless root-water uptake water stress response function of the soil capillary 

pressure head ( 0 ≤ 𝛽𝛽 ≤ 1) , 𝑏𝑏(𝑧𝑧)  is the normalized water uptake distribution and 𝑆𝑆𝑝𝑝  is the 

potential water uptake rate [L3L-3T-1].  

In our model, we assume that the potential water uptake rate 𝑆𝑆𝑝𝑝 is equally distributed over 

each soil layer within the root zone. Hence, 𝑆𝑆𝑝𝑝 can be calculated as 𝑆𝑆𝑝𝑝 = 𝑇𝑇𝑝𝑝/(ℎ𝑚𝑚 − ℎ𝑚𝑚−1), where 

𝑇𝑇𝑝𝑝 is potential transpiration rate [LT-1]. The stress response function 𝛽𝛽(𝜓𝜓) is based on Feddes, 

1982. When soil is close to saturation (𝜓𝜓𝑎𝑎) or soil moisture is above the wilting point capillary 

pressure head (𝜓𝜓𝑑𝑑), water uptake is assumed to be zero (𝛽𝛽 = 0). Water uptake is considered 

optimal, at potential transpiration rate between certain prescribed capillary pressure heads (𝜓𝜓𝑏𝑏 and 

𝜓𝜓𝑐𝑐). Water uptake decreases (or increases) linearly when 𝜓𝜓𝑐𝑐  < 𝜓𝜓 < 𝜓𝜓𝑑𝑑 or 𝜓𝜓𝑎𝑎< 𝜓𝜓 < 𝜓𝜓𝑏𝑏. Root water 

uptake distribution function 𝑏𝑏(𝑧𝑧) is described by Hoffman and Van Genuchten (1983), which 
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assumes that the top 20% depth of the root zone contributes one-third of plant water uptake and 

the remaining 80% contributes two-thirds of plant water uptake.  

 

2.5. Soil Evaporation Estimation 

Actual evaporation is calculated from potential evaporation based on the soil moisture content 

of the first layer in the model domain. If the water content of the first layer is higher than the field 

capacity (𝜃𝜃𝑓𝑓𝑓𝑓1), the actual evaporation rate is equal to the potential evaporation rate, whereas if the 

value of water content is lower than 𝜃𝜃𝑓𝑓𝑓𝑓1  but higher than the wilting point (𝜃𝜃𝑤𝑤𝑤𝑤1), the actual 

evaporation rate is calculated by the relationship given by Dingman (2015), 

𝑒𝑒𝑒𝑒𝑎𝑎 = 𝑒𝑒𝑒𝑒𝑝𝑝 �
𝜃̅𝜃1 − 𝜃𝜃𝑤𝑤𝑤𝑤1
𝜃𝜃𝑓𝑓𝑓𝑓1 − 𝜃𝜃𝑤𝑤𝑤𝑤1

�
𝑝𝑝

(32) 

where, 𝑒𝑒𝑒𝑒𝑝𝑝 is potential evaporation rate [LT-1], 𝜃𝜃𝑤𝑤𝑤𝑤1 is moisture content of the first layer at wilting 

point (-1500 kPa) [L3L-3], 𝜃𝜃𝑓𝑓𝑓𝑓 is the water content of the first layer at field capacity (-33 kPa) [L3L-

3] and p is an exponent coefficient [-]. The value of p was set to 1 in this study. Potential 

transpiration rate (𝑆𝑆𝑝𝑝) and potential evaporation rate (𝑒𝑒𝑒𝑒𝑝𝑝) can be calculated by partitioning of 

potential evapotranspiration calculated either by process-based or empirical equations, such as 

Penman-Monteith method (Allen et al., 2005), Hargreaves equation (Jensen et al., 1997), and 

Priestley-Taylor equation (Priestley and Taylor, 1972).  

 

2.6. Unsaturated Soil Hydraulic Properties 

The soil hydraulic characteristic relationships between 𝜓𝜓 and 𝐾𝐾 were modeled using the 

Van Genuchten (1980) model. 

𝐾𝐾(𝑆𝑆𝑒𝑒) = 𝐾𝐾𝑠𝑠𝑆𝑆𝑒𝑒
1
2 �1 − �1 − 𝑆𝑆𝑒𝑒

1
𝑚𝑚𝑉𝑉𝑉𝑉�

𝑚𝑚𝑉𝑉𝑉𝑉

�
2

(33) 
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𝜓𝜓(𝑆𝑆𝑒𝑒) =
1
𝛼𝛼
�𝑆𝑆𝑒𝑒

− 1
𝑚𝑚𝑉𝑉𝑉𝑉 − 1�

1−𝑚𝑚𝑉𝑉𝑉𝑉

(34) 

 

where 𝑆𝑆𝑒𝑒  is the relative saturation and calculated by 𝑆𝑆𝑒𝑒 = (𝜃𝜃 − 𝜃𝜃𝑟𝑟)/(𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟) ; 𝜃𝜃𝑟𝑟  and 𝜃𝜃𝑠𝑠  are 

residual and saturated water content, respectively [L3L-3]; 𝐾𝐾𝑠𝑠 is saturated hydraulic conductivity 

[LT–1]; 𝑚𝑚𝑉𝑉𝑉𝑉  [-], 𝑛𝑛𝑉𝑉𝑉𝑉  [-], and 𝛼𝛼 [L-1] are fitting parameters where 𝑚𝑚𝑉𝑉𝑉𝑉 = 1 − 1
𝑛𝑛𝑉𝑉𝑉𝑉

.  

 

2.7. Numerical Scheme 

Soil moisture of each predefined layer in the model domain is governed by a set of coupled 

equations (4) . The coupled ordinary differential equations can be solved explicitly by using 

Heun’s method. First, the flux terms 𝑞𝑞𝑚𝑚 (𝑚𝑚 = 0, 1, … ,𝑛𝑛; 𝑞𝑞0 refers to the top flux 𝑞𝑞|𝑧𝑧=0, and 𝑞𝑞𝑚𝑚 

refers to the flux at the bottom of 𝑚𝑚𝑡𝑡ℎ layer 𝑞𝑞|𝑧𝑧=𝑚𝑚) at the boundaries of each layer are obtained 

from 𝜓𝜓� and 𝐾𝐾� of that layer which are calculated at the beginning of the time step using the Van 

Genuchten soil characteristic relationships. Second, the slope or time derivative of the function 

𝜃̅𝜃𝑖𝑖(𝑡𝑡) at the beginning of the computational time interval (Euler’s slope) is written as,  

𝑑𝑑𝜃̅𝜃𝑖𝑖
𝑗𝑗

𝑑𝑑𝑑𝑑
= 𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑚𝑚𝑗𝑗� (35) 

where subscript i denotes layer number; superscript j indicates time tj; and 𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑚𝑚𝑗𝑗� can be 

deduced from Eq. (4) after arranging terms; it is evaluated at the beginning of the computational 

time step (tj). Eq. (35)  is used to extrapolate 𝜃̅𝜃𝑖𝑖 linearly to the end of the computational time step. 

𝜃̅𝜃𝑖𝑖0 = 𝜃̅𝜃𝑖𝑖
𝑗𝑗 + 𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑚𝑚𝑗𝑗�∆𝑡𝑡 (36) 

where the superscript 0 refers to intermediate prediction of 𝜃̅𝜃𝑖𝑖  at time tj+1, which refers to the 

standard Euler method and ∆𝑡𝑡 is the computational time step [T], ∆𝑡𝑡 = 𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗 . Third, the fluxes 
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𝑞𝑞𝑚𝑚0  are obtained from 𝜓𝜓�𝑖𝑖0 and 𝐾𝐾�𝑖𝑖0 of each layer which are calculated from 𝜃̅𝜃𝑖𝑖0. Fourth, the slope at 

the end of the time interval is given by: 

𝑑𝑑𝜃̅𝜃𝑖𝑖
𝑗𝑗+1

𝑑𝑑𝑑𝑑
= 𝑓𝑓�𝑡𝑡𝑗𝑗+1, 𝑞𝑞𝑚𝑚0� (37) 

where the superscript j+1 refers to time 𝑡𝑡𝑗𝑗+1 . Last, the correction for the prediction (36)  is 

calculated using the average slope for the interval, 

𝜃̅𝜃𝑖𝑖
𝑗𝑗+1 = 𝜃̅𝜃𝑖𝑖

𝑗𝑗 +
𝑓𝑓�𝑡𝑡𝑗𝑗 , 𝑞𝑞𝑚𝑚𝑗𝑗� + 𝑓𝑓�𝑡𝑡𝑗𝑗+1, 𝑞𝑞𝑚𝑚0�

2
∆𝑡𝑡 (38) 

The slope in (37) is updated based on this correction (𝜃̅𝜃𝑖𝑖
𝑗𝑗+1) and a revised correction is obtained 

using (38) once again. These steps are repeated until convergence. A termination criterion for the 

convergence of the corrector is provided by: 

𝜀𝜀𝑖𝑖 =
�𝜃̅𝜃𝑖𝑖

𝑗𝑗+1,𝑝𝑝 − 𝜃̅𝜃𝑖𝑖
𝑗𝑗+1,𝑝𝑝−1�

𝜃̅𝜃𝑖𝑖
𝑗𝑗+1 × 100 

where, 𝜃̅𝜃𝑖𝑖
𝑗𝑗+1,𝑝𝑝−1 and 𝜃̅𝜃𝑖𝑖

𝑗𝑗+1,𝑝𝑝 are the results from the prior iteration and the present correction, 

respectively.  

The adaptive time-step algorithm is applied to improve model efficiency to reduce 

computation time. When numerical solutions during iterations converge fast, larger time step could 

be used to decrease computation time, whereas when the absolute changes in moisture contents 

between consecutive time steps remain higher than prescribed error tolerance, smaller time step 

should be applied to ensure the accuracy of numerical estimations. We followed the procedure 

implemented by Šimůnek et al. (1998). The time increment is adjusted automatically during 

iterations but cannot be less than the predefined minimum time step, nor exceed the maximum 

time step. During each time step, if the numerical solution converges within certain number of 

iterations (predefined numbers), ∆𝑡𝑡  is increased by multiplying by a constant greater than 1; 
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otherwise, if iterations exceed the predefined number of iterations, which indicates the 

convergence difficulties are encountered, ∆𝑡𝑡 is decreased by multiplying it with a number smaller 

than 1. For the worst case when the number of iterations during a time step is greater than 

prescribed maximum number of iterations, ∆𝑡𝑡 is reduced to ∆𝑡𝑡/10 and the iteration for this time 

step is repeated.  

 

3. Results  

This section presents a comprehensive evaluation of LARE, including four numerical 

experiments and one site-level application: (1) steady-state soil profile under constant infiltration 

into layered soils, (2) three homogeneous soil profiles with multiple numerical layers, (3) constant 

infiltration into stratified soil profile with dry initial conditions, (4) dynamic rainfall and 

transpiration on stratified soil profile with changing shallow groundwater level, (5) site-level 

model application. HYDRUS program, which solves RE numerically using finite element method 

with mass conservative implicit iterative scheme (Simunek et al., 2005), was used in the first four 

scenarios as benchmark for assessment of LARE performance. In these five numerical experiments, 

flat surface and no runoff were assumed at the soil surface.  

 

3.1. Scenario 1: Steady State Soil Moisture Profile with Constant Infiltration into Layered 

Soil 

The first scenario was steady-state soil moisture profile with constant water infiltrates into 

layered soils. The results were compared with those from HYDRUS and an analytical solution 

developed by Rockhold et al. (1997), which accounted for one-dimensional vertical steady water 

flow in layered soils with arbitrary hydraulic properties. As presented in the work by Rockhold et 



107 
 

al. (1997), a 6-meter soil profile was divided into three layers with 2 meters of each in thickness. 

Two soil textures were considered which were Berino loamy fine sand for the first and the third 

layer, and Glendale silty clay loam for the middle layer. The van Genuchten soil hydraulic 

properties of the two soil textures are shown in Table 4.1. The top boundary condition was set with 

a constant flux of 13.824 cm/day, and zero-pressure boundary condition (Eq.24) was specified at 

the bottom of the soil profile, which indicates existence of a water table at the soil bottom. LARE 

was run at two spatial discretization schemes: ∆𝑧𝑧=5 cm and ∆𝑧𝑧=40 cm, respectively. HYDRUS 

was run using fine spatial discretization method. It should be noted that HYDRUS uses 101 equally 

spaced elements as the default mesh size. We kept the default spatial discretization in HYDRUS 

for each simulation to ensure good prediction accuracy of the reference model. LARE and 

HYDRUS were run until steady state was reached. To compare the results between LARE, 

HYDRUS and the analytical solution, we averaged the moisture contents from the analytical 

solution and HYDRUS solution obtained at finer spatial resolution over 5 cm and 40 cm 

increments, respectively.  

Results of soil moisture profiles at steady state estimated from LARE and HYDRUS along 

with analytical solution are shown in Figure 4.2. With fine spatial discretization scheme (∆𝑧𝑧=5 

cm), the results from LARE were almost identical to those obtained from the analytical solution 

and HYDRUS (Figure 4.2A). Besides, LARE captured the sudden change of moisture profile at 

200 cm (moisture content increased from 0.3661 to 0.4691) and 400 cm (moisture content 

decreased from 0.4379 to 0.2034), respectively, where the silty clay loam was saturated in the 200 

cm-thickness middle layer. However, there was a small difference between LARE and analytical 

solution between 100 cm and 200 cm depth. This difference was caused by the spatial 

discretization scheme being used. However, the purpose of developing LARE was not for such 
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fine spatial resolution. Thus, we tested the performance of LARE with a coarse spatial 

discretization too using ∆𝑧𝑧=40 cm. As shown in Figure 4.2(B), the results from LARE were almost 

identical to the averaged analytical solution and averaged moisture contents obtained from 

HYDRUS. 

 

3.2. Scenario 2: Infiltration with Pulse Rainfall into Three Homogeneous Soil Profiles with 

Multiple Numerical Discretization Layers 

The second scenario was to test infiltration into homogeneous soil profile with different 

layer configurations. In this scenario, the hypothetical homogeneous soil domains were made up 

of three U.S. Department of Agriculture (USDA) soil textures: sand, loam, and clay loam. The van 

Genuchten soil hydraulic properties of three soil textures are shown in Table 4.1. Simulations were 

conducted by LARE and HYDRUS on these three homogeneous soil profiles with the total soil 

depth varied from 20 cm to 200 cm, at 10 cm increments. The soil column was evenly divided into 

2 to 10 layers for each depth setting. The upper boundary was controlled by a pulse rain condition. 

There was no rain for the first 5 days, followed by 2 cm/day of rain over the next 5 days, and then 

rain ceased for 5 days, followed by rain condition for 5 days, and so on. The pulse rain condition 

lasted for 50 days. Free-drainage (Eq. 25) and zero-pressure bottom boundary conditions were 

considered in this test. The initial conditions for three soil textures were set to the moisture content 

at field capacity (−33 𝑘𝑘𝑘𝑘𝑘𝑘). The results were compared with those from HYDRUS as reference. 

Because HYDRUS solves RE at multiple discretized nodes, estimation of averaged moisture 

content for each soil layer was obtained by averaging moisture contents over all nodes within that 

layer. After calculating the moisture content of each layer using each soil configuration from 

LARE and HYDRUS, we calculated the time series of averaged moisture contents of all layers 
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from the two models. The time series of moisture content averaged over the layers were used to 

calculate root mean square error (RMSE) for evaluation of model performance.  

The heatmaps of RMSE values obtained between LARE and HYDRUS for different soil 

depth and soil layer configurations are shown in Figure 4.3. With free-drainage bottom boundary 

condition, RMSE values were below 0.01 for most of the simulations. There was a decreasing trend 

of RMSE with the increase of soil depth for three soil textures. Thin soil profiles (about 20 to 30 

cm) tended to have relatively higher RMSE regardless of the number of layers. For loam and clay 

loam, the number of layers had little influence on model performance, since contour lines of RMSE 

showed vertical patterns. For sand, when the total soil depth was smaller than 80 cm, RMSE 

showed similar vertical patterns. However, for depths greater than 80 cm, model performance 

increased with increased number of layers. When the water table was at the bottom of the soil 

domain, sand showed the highest overall RMSE among other soil textures. For sand, deep soil with 

fewer layers tended to have high RMSE, while RMSE values dropped when more layers were added. 

The highest RMSE was found to be 0.043 for 200 cm soil profile with only two layers, while the 

lowest value was 0.002 for 20 cm soil with 10 layers. Same patterns were found for loam and clay 

loam such that deep soils with few layers had higher RMSE values than those with more soil layers. 

However, RMSE values from loam and clay loam were much lower than those from sand.  

 

3.3. Scenario 3: Constant Infiltration into Stratified Soil Profiles with Two Dry Initial 

Conditions 

The third case was water infiltrating into stratified soil. Following Hills et al. (1989), the 

model domain was a 1-meter heterogeneous soil column with 5 layers. Each layer was 20 cm in 

thickness. The first, third, and fifth layers were filled with loamy fine sand, and the second and the 
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fourth layer were filled with silty clay loam as listed in Table 4.1. A constant infiltration rate of 2 

cm/day was specified at the soil top. Free-drainage bottom boundary condition was applied at soil 

bottom. Two initial conditions were applied, one with dry initial capillary pressure of 1000 cm and 

another with very dry initial capillary pressure of 10,000 cm. ∆𝑧𝑧 of 4 cm and 10 cm were used to 

discretize soil profile in both LARE and HYDRUS. Besides, for consistency in comparing 

different models, the same temporal discretization, time adaptive algorithm, and convergence 

criterion were applied in two models. 

Soil moisture profiles obtained from LARE and HYDRUS with infiltration into stratified 

soil discretized by ∆𝑧𝑧=4 cm and ∆𝑧𝑧=10 cm at t=5 days with two initial conditions were compared 

with those from Hills et al. (1989), who applied finite difference numerical scheme of RE, as 

shown in Figure 4.4. For fine discretization scheme, with ℎ0 = −1000 cm, results from LARE 

and HYDRUS were almost identical (Figure 4.4A). They all agreed very well with the results from 

Hills et al. (1989). Notice that moisture contents of the first, third, and last layers were much lower 

than the second and the fourth layers. LARE captured these sharp turning points on the moisture 

profile at the interface of different soil textures. Excellent agreement between LARE results and 

reference was observed with very dry initial soil profile (ℎ0 = −10000 cm). Small difference was 

noticed between HYDRUS and reference at the fourth layer, where the wetting front was located 

at t= 5 day. LARE correctly captured the movement of the wetting front. For the coarse spatial 

discretization scheme (∆𝑧𝑧=10 cm), moisture profiles from LARE and HYDRUS were almost 

identical. However, compared with the 10 cm-averaged moisture profile of the results from Hills 

et al. (1989), outputs from two models showed some discrepancies for both initial conditions 

(Figure 4.4C and D). These differences were shown around the interface between two distinct soil 

textures (e.g. 40 cm and 60 cm). 
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3.4. Scenario 4: Dynamic Rainfall and Transpiration on Stratified Soils with Changing 

Shallow Ground Water Level 

The fourth scenario was dynamic rainfall and transpiration on a stratified soil column with 

changing groundwater level in a wetland area. The purpose was to evaluate the performance of 

LARE with dynamic shallow groundwater level and the estimation of plant water uptake in layered 

soils. In this case, a numerical experiment was performed in a restored wetland located on Kent 

Island, Maryland. The wetland hydrological components such as inflow, outflow, precipitation, 

potential evapotranspiration, and average surface water level were collected by Jordan et al. (2003) 

from June 29, 1995 to September 30, 1995 for 94 days. Detailed information on data collection 

and analysis can be found in Jordan et al. (2003) and Kalin et al. (2013). The simulation was 

conducted in the variably saturated soil (the bank of the wetland) upgradient from the ponded part 

of the wetland. The total depth of the soil domain was set to 60 cm. We assumed that the 

groundwater was at the same level as the surface water in the wetland. During the data sampling 

period, the groundwater level varied between 45 cm and 55 cm of the depth from the soil surface 

according to the measurements of average water table level. Input data of groundwater level, 

precipitation, and potential evapotranspiration are shown in Figure 4.5. Soil texture data including 

soil separates of sand, silt, and clay, bulk density of each soil horizon were obtained from Web 

Soil Survey (Soil Survey Staff). There were three soil horizons within the 60 cm soil profile, each 

having about 20 cm thickness. The Van Genuchten soil hydraulic parameters were calculated by 

the ROSETTA3 model developed by Zhang and Schaap (2017). The soil physical and hydraulic 

properties are shown in Table 4.2. We divided the three horizons into five layers for model 

simulation, which were 5 cm, 5 cm, 10 cm, 20 cm, and 20 cm, respectively. Because soil moisture 
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was not measured, HYDRUS was applied as reference for results comparison. We only tested plant 

water uptake here and soil evaporation was not considered because the way LARE estimates soil 

evaporation is different than in HYDRUS. Whigham et al. (2002) reported that the most dominant 

macrophyte species in the wetland were blunt spikerush (Eleocharis obtuse (Willd.) Schult.), 

water-purslane (Ludwigia palustris (L.) Elliott), and American bulrush (Schoenoplectus 

americanus (Pers.) Volkart ex Schinz & R. Keller). The maximum rooting depth of these plant 

species was about 20 cm. The parameters for the root-water uptake water stress response functions 

for these wetland macrophyte species have not been reported in any literature. We borrowed the 

water stress function from Xu et al. (2016), who used the S-shaped model developed by Van 

Genuchten (1987) to evaluate the plant water uptake in a floodplain wetland. We modified the S-

shaped model to fit 𝛽𝛽(𝜓𝜓) in Eq. (31). The parameters in 𝛽𝛽(𝜓𝜓) were set to: 𝜓𝜓a=0 cm, 𝜓𝜓b=10 cm, 

𝜓𝜓c=350 cm, 𝜓𝜓d= 4000 cm. The bottom boundary condition was zero-pressure with variable water 

table depth (Eq. 30). Default spatial discretization of 101 nodes was applied in HYDRUS to get 

accurate estimations, while in LARE, five soil layers were used. Two models were run for two 

days as a warm-up with the initial moisture contents of each soil texture equaled to the values at 

field capacity. Simulations were then carried out for the period from July 1 to September 30 by 

setting the initial moisture contents equaled to the outputs from the warm-up period. The model 

was evaluated by RMSE and Nash Sutcliffe efficiency (NSE) calculated between outputs of 

moisture contents and actual transpiration rate from LARE and HYDRUS. 

Simulation results of moisture contents for five soil layers and estimated actual 

transpiration rate from LARE and HYDRUS are shown in Figure 4.6. The performance indices of 

RMSE and NSE are shown in Table 4.3. As shown in Figure 4.6 (A), results from LARE matched 

well with those from HYDRUS. The RMSE values for all layers were below 0.0004. NSE values 
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were greater than 0.92 for the first three layers, while they were 0.854 and 0.882 for the fourth and 

the fifth layer, respectively. During the simulation period, due to the influence of the groundwater 

level, moisture contents of all five layers were close to saturation but showed some variations 

corresponding to variations of precipitation and positions of the water table. Soil moisture contents 

were decreasing with the decrease of water level and vice versa. The spikes in soil moisture values 

were in response to precipitation. Estimated plant water uptake from LARE and HYDRUS were 

almost identical as shown in Figure 4.6 (B).  

 

3.5. Scenario 5: Field Scale Application  

The last testing case was the application of LARE at field scale. We applied LARE to a 

Soil Climate Analysis Network (SCAN) site in Mason, Illinois (SCAN site ID: 2004). The site is 

located at 40°19′ N and 89°54′ W at an elevation of 174 meters above mean sea level. Soil 

moisture, soil physical properties data for each soil horizon along with meteorology data were 

provided by SCAN dataset at hourly and daily time interval (Schaefer et al., 2007). Soil moisture 

sensors were installed at five soil depths, which were 5 cm, 10 cm, 20 cm, 50 cm, and 100 cm. 

Data were collected from April 21st to October 31st, 2018 and April 21st to September 21st, 2019 

to avoid the winter period with air temperature below zero and missing data. Data from 2018 were 

used for model calibration and data from 2019 were used for model validation. The weather station 

located at the study site provides meteorological data including daily precipitation, maximum and 

minimum air temperature, relative humidity, solar radiation, wind speed, and air pressure.FAO-56 

Penman-Monteith method (Allen et al., 1998) was applied to calculate daily potential 

evapotranspiration (ET) rate. Figure 4.7 shows the precipitation and potential evapotranspiration 

applied for 2018 and 2019. The numerical soil domain was set to 120 cm in depth with five layers 
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that covered 5 soil moisture sensors. The first four layers had 20 cm thickness, and the thickness 

of the last layer was 40 cm. At the study site, there were five soil horizons from 0 cm to 126 cm. 

We calculated the physical properties of each soil layer by weighted average according to the 

portion of the soil horizon within each layer. Soil hydraulic parameters for the van Genuchten 

model were calculated by ROSETTA3. The soil texture for the first layer was loamy sand and it 

was sandy loam for the next four layers. The top three layers had high permeability (𝐾𝐾𝑠𝑠 varied 

from 80 cm/day to 130 cm/day), while the bottom two layers had relatively low conductivity 

(𝐾𝐾𝑠𝑠≈20 cm/day). According to the Web Soil Survey, the groundwater level at the sites was below 

80 feet (24.38 meters), which is deep enough for free-drainage bottom boundary condition at depth 

120 cm. The upper boundary was controlled by atmospheric conditions using observed 

precipitation and calculated potential evapotranspiration (PET) rate. Potential evaporation and 

potential transpiration rate were calculated by partitioning of PET by an area index (𝑓𝑓𝑠𝑠). The area 

index represents the fraction of bare ground at the site and 1 − 𝑓𝑓𝑠𝑠 is the fraction of area covered by 

vegetation. PET × 𝑓𝑓𝑠𝑠  is the potential bare soil evaporation rate and PET × (1 − 𝑓𝑓𝑠𝑠) is potential 

plant transpiration rate. At the sites, weather station and soil moisture sampling point were located 

at the area covered by grass or natural fallow for most of the time (Albergel et al., 2015). However, 

the area covered by grass was unknown. The area index (𝑓𝑓𝑠𝑠) was calibrated in model calibration 

step to determine the fraction of bare soil and vegetation cover. In addition, the root depth of the 

grass was unknown. We assumed that the grass roots were dispersed anywhere between the first 

and the fourth layer (20 cm to 80 cm) in the soil profile. We introduced a root position index (𝑓𝑓𝑟𝑟) 

that can take values of 1, 2, 3, and 4 to determine the position of the root in the top four layers. For 

example, if 𝑓𝑓𝑟𝑟 = 3, the root is located in the top three layers. The model was run with ∆𝑡𝑡 of 0.001 

day for the simulation period. The soil moisture observations were measured at discrete points 
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along soil profile. To make observations comparable with model outputs, we interpolated 

observation data along 100 cm soil depth using measured data and then calculated layer averaged 

moisture content for each layer from interpolated observation data. The initial conditions for five 

soil layers were set to the moisture contents equaled to those from observation data on the first day 

of simulation. Data from 2018 were used for model calibration and those from 2019 were used for 

model validation. The first 10 days from April 21st to April 30th were model warm-up period. 

Results of the model estimated moisture contents for five soil layers were compared with 

observations starting from May 1st. 

We consider van Genuchten parameters for five soil layers (𝛼𝛼𝑖𝑖, 𝑛𝑛𝑖𝑖, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖, 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖, 𝐾𝐾𝑠𝑠𝑖𝑖, where 

i denotes layer number), area index (𝑓𝑓𝑠𝑠) and root position index (𝑓𝑓𝑟𝑟) as calibration parameters for 

which 𝚯𝚯 = (𝛼𝛼𝑖𝑖, 𝑛𝑛𝑖𝑖, 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖, 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖, 𝐾𝐾𝑠𝑠𝑖𝑖, 𝑓𝑓𝑠𝑠, 𝑓𝑓𝑟𝑟). The prior distributions of van Genuchten parameters 

for each soil layer were defined as 𝑝𝑝(𝑥𝑥)~𝑈𝑈(𝑎𝑎𝑥𝑥,𝑏𝑏𝑥𝑥), where 𝑎𝑎𝑥𝑥 and 𝑏𝑏𝑥𝑥 are lower and upper bounds, 

respectively. The values of 𝑎𝑎𝑥𝑥 and 𝑏𝑏𝑥𝑥were calculated by ±4σ , where 𝛾𝛾 is ROSETTA predicted 

values, and σ is the standard deviations of the predicted parameters. The prior distributions of van 

Genuchten hydraulic parameters for five layers are shown in Table 4.4. The prior distribution of 

area index (𝑓𝑓𝑠𝑠) and root position index (𝑓𝑓𝑟𝑟) were defined as 𝑝𝑝(𝑓𝑓𝑠𝑠)~𝑈𝑈(0,1) and 𝑓𝑓𝑟𝑟 = {1, 2, 3, 4}, 

respectively. During the Monte Carlo simulations, 100,000 parameter sets were generated by 

randomly drawing values from their prior distributions. Model performance was evaluated by 

RMSE and NSE calculated between observed and model predicted moisture content of each layer.  

Figure 4.8 shows the model calibration results for Bayesian estimates, 95% confidence 

interval, and observed soil moisture contents of five soil layers in 2018. LARE captured the 

variations of soil moisture by the influence of precipitation and evapotranspiration. Almost all 

observation data fell within the 95% confidence bounds. RMSE and NSE calculated between 
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Bayesian estimations and observations are also shown in Figure 4.8. LARE showed excellent 

performance in the model calibration. RMSE values were lower than 0.019 cm3/cm3 and NSE 

values were higher than 0.61 for 5 layers. The lowest RMSE was found to be 0.014 cm3/cm3 for 

layer 2, while the highest RMSE was 0.019 cm3/cm3 for layer 3. The NSE showed the highest value 

as 0.847 for layer 2 and the lowest value was 0.610 for layer 4. From the middle of July to the 

middle of August 2018, there was a dry period.  Soil moisture stayed low in all layers during this 

period. Moisture observations of layer 1 showed variations in response to precipitation but lower 

layers did not show any response to precipitation. Precipitation in this period was consumed by 

the first layer by plant water uptake and surface evaporation. The lower layers contributed to plant 

roots uptake during the dry season indicated by the decreasing trend of observed moisture contents 

for layers 3 to 5 shown in Figure 4.8. The results from LARE showed this moisture variations in 

dry period. Bosch (2004) reported that the accuracy of the soil moisture probe (Hydro Probe) used 

by SCAN dataset was within 0.04 cm3 cm−3. LARE predicted moisture contents showed smaller 

error than the accuracy of the moisture sensors for five layers. LARE did a decent job in predicting 

moisture contents for layered soils during model calibration.  

The results of BMC predicted moisture contents along with the 95% confidence bounds 

and observed soil moisture contents for five soil layers for the validation period are shown in 

Figure 4.9. The soil variability and magnitude of moisture contents for all layers are adequately 

captured by the BMC estimates compared with observed soil moisture contents. During the dry 

period from July to August, not only the first layer showed drying trend with observation, but the 

deeper four layers also matched with observations, exhibiting a gradually decreasing trend. Model 

performance increased from layer 1 to layer 4 but dropped at layer 5. RMSE from the first four 

layers were all below 0.012 cm3/cm3 with the lowest value of 0.008 cm3/cm3 found for layer 4, 
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while RMSE was highest in layer 5 with the value of 0.020 cm3/cm3. NSE values were higher than 

0.89 for all five layers with the highest value of 0.979 found in layer 4, whereas layer 5 had the 

lowest NSE value at 0.898. 

We also investigated the model uncertainties. The detailed procedures of investigating 

model uncertainties can be found in Chaudhary and Hantush (2017), Hantush and Chaudhary 

(2014), and He et al. (2021). The BMC methodology assumes 𝜀𝜀~𝑁𝑁(0,𝜎𝜎𝜀𝜀2), where 𝜀𝜀 is model 

residual error and 𝜎𝜎𝜀𝜀2  is the residual error variance, which accounts for measurement, model 

structural errors and uncertainty in the forcing input hydroclimate data. The Bayesian estimated 

𝜎𝜎𝜀𝜀2 for the five layers are showed in Table 4.5. The second layer had the highest 𝜎𝜎𝜀𝜀2 of 1.97 × 10−4, 

while the fourth layer had the lowest value of 𝜎𝜎𝜀𝜀2 of 1.60 × 10−5. We further investigated model 

predictive uncertainty ( 𝜎𝜎2 ). 𝜎𝜎2  accounts all sources of errors (parametric, observational, 

hydroclimate data, and 𝜀𝜀). As shown in Table 4.5, the highest model predictive uncertainty was 

found in the fifth layer (3.27 × 10−3 ), while the lowest value was found in the first layer 

(6.96 × 10−4). The ratio 𝜎𝜎𝜀𝜀2 𝜎𝜎2⁄  for five layers were 96%, 81%, 98%, 98%, and 98%, respectively. 

These indicate that much of the modeling uncertainty was caused by errors in model structure, 

observed soil moisture and forcing data. Moreover, we investigated the parameters uncertainty 

(𝜎𝜎Θ2) for five soil layers (Table 4.5). We found that the parameters uncertainty contributed very 

little to the whole model prediction uncertainty, which were about 3%, 18%, 1%, 1%, and 1% for 

the five layers, respectively. The findings in uncertainty analysis indicate that much of the 

uncertainty is attributed to observational, forcing data, and model structural errors, while 

parameters’ uncertainty contributed very little to the overall model uncertainty. 

 

4. Discussion 
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Based on the illustrative examples, the multiple layer-averaged solution to RE has shown 

its robustness for the following reasons: 

First, LARE produces relatively accurate layer-averaged moisture contents for multiple 

soil layers with various thicknesses for different environmental conditions. The solution accounts 

for changing upper boundary conditions including precipitation, soil evaporation, and plant 

transpiration. The proposed solution also deals with dynamic groundwater table within and below 

the soil domain by switching the bottom boundary conditions internally during iterations based on 

the location of groundwater level. The first-order approximations of matric gradient and hydraulic 

conductivity at the soil interface deal with water flux between soil layers properly.  

Second, the numerical scheme of LARE uses the similar integrated form of RE applied in 

finite volume scheme (Eq. 4). However, the solution of LARE is different than other numerical 

methods. LARE considers the finite-differences approximation of layer-integrated values as 

opposed to nodal values (or centered values) in finite differences and finite element method. 

Besides, LARE transforms PDEs to ODEs and solves these using the relatively simple Huen’s 

method. Moreover, the algorithms we proposed for the derivations of interfacial matric gradient 

and conductivity are different from those in finite volume and finite difference schemes. Unlike 

other numerical schemes, which adopt differential form of matric gradient and different methods 

for calculation of interface hydraulic conductivity, LARE calculates the interfacial matric gradient 

and conductivity directly from adjacent soil layers (or control volumes) using their capillary 

pressure, unsaturated conductivity, and thickness using first-order Taylor series expansion of the 

moisture content integrated over the layer, rather than the point value. In addition, there are many 

methods to calculate interface hydraulic conductivity such as arithmetic mean (Douglas Jr et al., 

1959), geometric mean (Bouwer, 1969), upstream mean (Brutsaert, 1971), harmonic mean 
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(Chaudhari, 1971), etc. The selection of averaging method can significantly affect the performance 

of the numerical solution, especially with varying grid size (Belfort and Lehmann, 2005; Caviedes-

Voullième et al., 2013b). The averaging approach for calculating interface hydraulic conductivity 

applied in LARE is based on fundamental calculus and provides accurate results with consideration 

of different layer thickness without the need for finding the optimal method for interface hydraulic 

conductivity. Note that if soil layers are evenly spaced in the model domain, Eq. (11) becomes 

𝐾𝐾(ℎ𝑚𝑚, t) = 0.5(𝐾𝐾�𝑚𝑚 + 𝐾𝐾�𝑚𝑚+1) , which is exactly the arithmetic mean. Besides, the averaging 

method in LARE deals with discontinuity of hydraulic conductivity appropriately. One of the cases 

related to discontinuity is the sharp wetting front. Generally, the sharp wetting problem is often 

solved by changing spatial configuration such as fine mesh to the entire soil column or adaptive 

mesh at the depth where wetting front is located, and temporal settings such as decreasing ∆𝑡𝑡 or 

increasing iterations in every time step. LARE captured the movement of sharp wetting front 

skillfully and seamlessly when water infiltrates into dry soil with both thin and thick layer 

thickness without additional numerical adjustments (Figure 4.4B and D). Furthermore, no 

convergence issue was observed in five simulation scenarios, hence, indicating a numerically 

stable solution. Additionally, this approach simplifies the numerical complexity and permits 

elegant coding. 

Third, with the proposed method for estimation of interfacial matric gradient and hydraulic 

conductivity, soil layer configurations with different thicknesses and textures can be considered in 

the modeling approach rather than fine grid size applied in finite volume or finite difference 

schemes. Besides, with no issues with convergence so far, the thickness of each layer can be set 

up arbitrarily without the implementation of additional model algorithms such as grid refinement. 

With this feature, soil stratification can be correctly addressed. The numerical soil domain can be 
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discretized by soil textures or horizons. Thus, each soil layer is treated as homogeneous. Extra 

calculations (such as averaging soil texture to calculate soil hydraulic parameters) become 

unnecessary. Moreover, relatively accurate estimations of moisture contents in certain layers of 

interests can be obtained. In LSMs, the exponential grid is often applied as default, which uses 

fine grid size near the surface to track soil moisture variation for partitioning of rainfall and energy, 

and coarse grid at lower soil to decrease computational burden (Downer and Ogden, 2004a). LARE 

further simplified this procedure. With appropriate layer setup for specific depth of soil domain 

and soil texture, LARE can yield accurate soil moisture estimations with low computational cost. 

Last, the layer-averaged RE converted the partial differential equation of RE into coupled 

ordinary differential equations (Eq. 4). The coupled governing equations are solved by simple 

explicit Heun’s method. This reduces the computational complexity. The solution further couples 

with time adaptive algorithm. This algorithm adjusts delta t for the next time step based on the 

convergence performance (number of iterations) in the current time step during the iterations, 

which optimizes the computational time. Compared to the complete implicit numerical scheme 

applied in HYDRUS, computational time (CPU time) in LARE was 5 to 10 times faster than that 

from HYDRUS based on the numerical simulations in testing scenarios 2 to 4. Numerical solution 

converged in less than 3 iterations for each time step for most of the time (not shown in this work). 

With homogeneous soil profile, under steady rainfall or no rain condition, ∆𝑡𝑡 often switched to the 

maximum value predefined as model input, because the solution during each time step tended to 

converge fast. On the other hand, in heterogeneous soil and initially dry soil, smaller ∆𝑡𝑡 was used 

at the beginning of the simulation to track the sharp changes in moisture content. In addition, 

although LARE scheme is numerically stable; no convergence problem was found in any of the 

testing scenarios.  
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5. Summary and Conclusions 

In this study, we proposed a numerical scheme of layer-averaged Richards equation, named 

LARE. LARE was an extension of the solution of the two-layer approximation of RE developed 

for wetlands and larger-scale hydrologic simulations to multiple soil layers. The solution of LARE 

converted the partial differential equation of RE into multiple coupled ordinary differential 

equations derived from the integrated form of RE. Several coupled governing equations are solved 

by explicit Heun’s method to describe layer averaged soil moisture contents for multiple soil layers. 

The proposed model is designed for simulating soil moisture dynamics in layered or stratified soils 

under various atmospheric conditions and with bottom boundary condition that is suited for deep 

or shallow fluctuating water table.  

Four numerical experiments and one site level application were conducted to evaluate 

LARE. LARE performance was compared against analytical solutions, finite element RE solution 

by HYDRUS 1-D, and field-scale soil moisture observations from SCAN dataset. The results 

showed that LARE has the capability to simulate soil moisture in both homogeneous and 

heterogeneous soil profiles with either fine or coarse grids, for different upper and lower boundary 

conditions. LARE showed excellent performance with free drainage bottom boundary condition 

for various soil depth and layer thicknesses, while the model performance dropped for deep soil 

profiles with fewer layers (i.e., coarser spatial discretization) for zero-pressure head bottom 

boundary condition. Besides, LARE perfectly estimated layer-averaged soil moisture contents 

with dynamic shallow groundwater level within the soil column without any convergence issues. 

With the correct soil moisture prediction, the actual plant water uptake was properly estimated. At 

site level application, LARE showed good performance under real soil and atmospheric conditions. 
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The uncertainty analysis showed that the observational, hydroclimate data, and model structural 

uncertainties contributed to much of the uncertainty, while parametric uncertainty was found to be 

very small. From the numerical tests, the proposed solution is numerically stable and found to be 

computationally efficient for different infiltration scenarios, soil initial conditions, soil textures, 

and layer configurations. LARE is suitable for modeling soil moisture movement at both field and 

watershed scale, and it can potentially be used in large scale LSMs for land-atmosphere coupling 

simulations.  
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Table 4.1: Van Genuchten soil hydraulic properties for soil textures applied  in numerical 
experiments 1, 2 and 3 

Soil textures 𝛼𝛼 (cm-1) 𝑛𝑛𝑉𝑉𝑉𝑉  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠 (cm/d) 
Berino loamy fine sand 0.0280 2.2390 0.0286 0.3658 541.0 
Glendale silty clay loam 0.0104 1.3954 0.1060 0.4686 13.1 

Sand 0.145 2.68 0.045 0.43 712.8 
Loam 0.036 1.56 0.078 0.43 24.96 

Clay loam 0.019 1.31 0.095 0.41 6.24 
 

Table 4.2: Soil layer physical and van Genuchten hydraulic properties applied in numerical 
experiment 4  

Depth Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

BD  
(g cm-1) 

𝛼𝛼 
(cm-1) 𝑛𝑛𝑉𝑉𝑉𝑉  𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 

𝑘𝑘𝑠𝑠  
(cm day-1) 

0-20 17 71 12 1.4925 0.0043 1.5219 0.0713 0.3879 18.40 
20-40 16 70 14 1.47 0.0042 1.5171 0.0745 0.3947 17.87 
40-60 15 63 22 1.6375 0.0049 1.3951 0.0884 0.3649 4.62 

 

Table 4.3: Performance of LARE against HYDRUS in testing numerical experiment 4 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Transpiration 
RMSE 0.0004 0.0003 0.0003 0.0003 0.0001 0.0001 
NSE 0.928 0.940 0.926 0.854 0.882 1.000 

 

Table 4.4: Upper and lower bounds of prior distributions of Van Genuchten soil hydraulic 
parameters applied for BMC in site-level model application 

Layer Bound α (cm-1) 𝑛𝑛 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 𝐾𝐾𝑠𝑠 (cm/day) 

1 Lower 0.0237 1.6239 0.0010 0.2868 117.6 
Upper 0.0274 1.8544 0.1043 0.3484 134.3 

2 Lower 0.0212 1.4944 0.0117 0.2989 79. 1 
Upper 0.0254 1.7125 0.0898 0.3764 90.3 

3 Lower 0.0089 1.000 0.0010 0.2000 33.7 
Upper 0.0569 3.7063 0.1500 0.7138 177.9 

4 Lower 0.0113 1.2108 0.0010 0.2682 17.2 
Upper 0.0177 1.5641 0.2054 0.4749 22 

5 Lower 0.0070 1.000 0.0010 0.2000 8.4 
Upper 0.0353 3.6109 0.1500 0.7119 52.1 
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Table 4.5: Bayesian estimates of modeling uncertainty for five soil layers 

Layer 𝜎𝜎2 𝜎𝜎𝜀𝜀2 𝜎𝜎Θ2 
1 7.21 × 10−4 1.93 × 10−5 (3%) 6.96 × 10−4 (96%) 
2 1.09 × 10−3 1.97 × 10−4 (18%) 8.88 × 10−4 (81%) 
3 2.58 × 10−3 1.93 × 10−5 (1%) 2.54 × 10−3 (98%) 
4 2.66 × 10−3 1.60 × 10−5 (1%) 2.62 × 10−3 (98%) 
5 3.34 × 10−3 3.70 × 10−5 (1%) 3.27 × 10−3 (98%) 

Note: 𝜎𝜎2 accounts for total model prediction uncertainty, 𝜎𝜎𝜀𝜀2 accounts for measurement, model 
structural errors and uncertainty in the forcing data, and 𝜎𝜎Θ2 accounts for parameters uncertainty. 
Numbers in the parentheses are values normalized with total model prediction uncertainty. 
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Figure 4.1: Schematic of soil profile for layer-averaged solution to Richards equation (where d is 
the ponding depth [L]; 𝜃̅𝜃𝑚𝑚 is average soil moisture content of the 𝑚𝑚𝑡𝑡ℎ layer [-]; ℎ𝑚𝑚 is the depth 
of the 𝑚𝑚𝑡𝑡ℎ layer [L]; ℎ𝑤𝑤 is groundwater depth [L]; 𝑞𝑞0 is the top flux (positive downward) [LT-1]; 
𝑞𝑞𝑚𝑚 is the flux at the bottom of the 𝑚𝑚𝑡𝑡ℎ layer [LT-1]) 
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Figure 4.2: Soil moisture profile at steady state with steady infiltration into layered soil in 
numerical experiment 1 (Analytical solution was proposed by Rockhold et al. (1997)). A and B 
represent soil moisture contents calculated by LARE using ∆𝑧𝑧 = 5 cm and ∆𝑧𝑧 = 40 cm, 
respectively. 
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Figure 4.3: Contour plots and heat maps of RMSE values with different layer depth and number 
of layers for 1) sand, 2) loam and 3) clay loam with A) free-drainage and B) zero-pressure head 
bottom boundary conditions under pulse rain top boundary condition in numerical experiment 2 
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Figure 4.4: Soil moisture profiles for infiltration into heterogeneous soil column in numerical 
experiment 3 using ∆𝑧𝑧=4 cm (A and B) and ∆𝑧𝑧=10 cm (C and D) when t=5 days with initially 
dry soils (A and C) and very dry soils (B and D)  
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Figure 4.5: Precipitation rate, potential evapotranspiration rate and groundwater level for 
numerical experiment 4 (day 0 represents June 29, 1995) 

 

 

 

Figure 4.6: A) Moisture contents for 5 soil layers with shallow water table, and B) estimated 
transpiration rate between LARE and HYDRUS (day 1 represents May 1, 1995) from numerical 
experiment 4 
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Figure 4.7: Precipitation and potential evapotranspiration rate at SCAN site Mason, Illinois 
applied in the model application scenario for model calibration in 2018 and model validation in 
2019 
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Figure 4.8: Model calibration results of BMC estimated and observations of moisture contents 
for five soil layers along with 95% confident intervals from May 1st to October 31st, 2018 in 
field-scale application scenario. 



132 
 

 

Figure 4.9: Model validation results of BMC estimated moisture contents for five soil layers 
along with 95% confident intervals from May 1st to Sep 21st, 2019 in field-scale application 
scenario. 



133 
 

 

Chapter 5: Modeling Nutrient Dynamics in Wetland Water and Variably Saturated Soils 

Using Wetland Model 

Abstract 

In this paper, the authors updated the soil moisture movement and plant growth modules 

in a process-based biogeochemical model WetQual for wetland nutrient cycling in the ponded and 

variably saturated compartments. The Updated model adopted a two-layer model developed by He 

et al. (2021a) to simulate soil moisture dynamics subjected to various atmospheric conditions at 

the soil surface and changing shallow groundwater level in the variably saturated compartment of 

the wetland. Plant water uptake was specified for plants in the wetland environment. The primary 

productivity module was modified to consider environmental factors including temperature stress, 

water stress, and plant dormancy. The updated model was evaluated by applying it to a restored 

wetland located on Kent Island, Maryland, USA, utilizing two numerical experiments using 

different bottom boundary conditions for moisture movement in the variably saturated 

compartment. The results showed that the model had excellent performance in estimating NO3 and 

TOC loads and moderate performance in capturing ON, NH4, and TN loads, but not as good in 

estimating TSS and P loads. The moisture contents in the variably saturated compartment had 

significant differences between the two bottom conditions. Besides, the use of the zero-pressure 

head and free-drainage bottom boundary conditions applied in the variably saturated compartment 

had significant influences on NH4, TSS, and TOC exports but did not show influences on other 

nutrient constituents in the ponded compartment. Sensitivity analysis revealed that the parameters 

showed sensitivities in the ponded and variably saturated compartments more or less confirmed 

the sensitive parameters of the Original and the Expanded models, but the order of sensitivities 



134 
 

differed. Nevertheless, N, C, and P cycles did not show sensitivity to soil hydraulic parameters. 

The mass balance analysis showed that using different bottom boundary conditions for moisture 

flow in the variably saturated compartment had influences on N, C, and P budget. The model 

estimated biomass in the study wetland reflected the temperature and water stress in addition to 

the period of dormancy. The estimated plant biomass and nutrient uptake had good matches with 

field measurements. The modified equations for plant growth are capable of estimating plant 

biomass in wetland environments. 

 

1. Introduction 

Wetlands are defined as transitional areas between terrestrial and aquatic systems where 

the water table is usually at or near the surface or the land is covered by shallow water, and 

vegetation (also known as hydrophytes) are adapted to saturated soil conditions (Cowardin, 1979). 

Among different aquatic ecosystems, wetlands are important environments providing many 

ecosystem services such as water supply, flood storage, water quality protection and improvement, 

groundwater replenishment, biomass production, and habitats for aquatic animals and wildlife 

(Mitsch and Gosselink, 2000). Wetlands not only regulate global and regional climate through the 

exchange of water, heat, and energy with the atmosphere through evapotranspiration, but also they 

have impacts on the global biogeochemical cycle through greenhouse gas emission (Fan and 

Miguez-Macho, 2011; Russi et al., 2013).  

 Wetland hydrology is one of the most important factors driving the wetland ecosystem and 

describing the characteristics of the wetland. Wetlands with shallow topographical depressions 

situated between terrestrial and aquatic ecosystems results in complex hydrology in both spatial 

and temporal aspects. Wetlands can receive water from surface inflow, lateral flow, groundwater 
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discharge, and precipitation and lose water by outflow, groundwater recharge, and 

evapotranspiration. The water balance between inflow and outflow, known as a water budget, 

characterizes the hydrological signature of a wetland (Mitsch and Gosselink, 2000). The presence 

and duration of open water, known as a hydroperiod, have dynamic variations across different time 

scales. For example, the hydroperiod of tidal wetlands tends to change daily due to tidal 

movements (Montalto et al., 2006). Floodplain riparian wetlands have seasonal or annual 

hydroperiods with at least one dry and one wet phase (Ameli and Creed, 2017). Hydroperiod of 

prairie pothole wetlands can have daily, seasonal, or even interannual variations due to their 

geographic and climate conditions (Ewel and Myers, 1990). Isolated wetlands such as ephemeral 

wetlands can hold water for a few days or weeks, while water in semipermanent and permanent 

wetlands can stay for years (Baber et al., 2004). The water level in constructed wetlands is often 

managed at a certain level to maintain their function and has less variation over time (Kadlec and 

Wallace, 2008).  

 Wetland hydrology has strong influences on wetland structure, ecosystem functions, and 

biogeochemical cycles. Surface inflow transports sediments, nutrients, and contaminants to 

wetland, and further influences the biochemical condition. Water outflow flushes away biotic 

and abiotic materials. Inflow and outflow can modify the physicochemical environment of 

wetlands (Mitsch and Gosselink, 2000). Hydrology affects wetland biota by changing the 

physicochemical environment. Hydroperiod affects wetland size and species richness (Snodgrass 

et al., 2000). Water regime determines the plant community development and patterns of plant 

zonation in wetlands (Casanova and Brock, 2000). Also, wetland hydrology changes soil 

moisture content by partitioning soil into saturated and unsaturated parts as a result of water level 

fluctuation during different states of hydroperiods. Soil moisture regulates oxygen level in 
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wetland soils, which in turn has a significant impact on the microbial community structure and 

microbial activity, thereby changing nutrient availability during wet-dry phases (Reddy and 

DeLaune, 2008; Manzoni et al., 2012; Moyano et al., 2013; Chen et al., 2015; Limpert et al., 

2020). In unsaturated conditions, soil moisture has a positive correlation with total microbial 

biomass and activity across biomes and climatic conditions (Brockett et al., 2012; Manzoni et al., 

2012). Soil moisture is highly correlated with the decomposition rate of soil organic matters. The 

decomposition rate of soil organic material increases when soil moisture increases (Dan et al., 

2016). However, when soil moisture is higher than a threshold or close to saturation, 

decomposition rate decreases (Murwira et al., 1990). In saturated soil condition, oxygen 

concentration is lower than that in unsaturated soils. Redox potential in wetland soils drops as 

oxygen level decreases. Consequently, wetland soil tends to become more reduced and 

biogeochemical processes change in response to such conditions.  

Process-based models are useful tools to understand and investigate complex wetland 

biogeochemical processes. The WetQual model is a process-based numerical model that simulates 

hydrology and nitrogen, phosphorus, and carbon dynamics in wetlands (Hantush et al., 2013; Kalin 

et al., 2013; and Sharifi et al., 2013). The model accounts for nutrient dynamics in two basic 

wetland elements: free water and saturated soil below. The soil column is divided into aerobic and 

anaerobic layers to address different biogeochemical reaction rates based on oxygen availability 

in these two layers. In these two wetland elements, WetQual simulates nitrogen dynamics 

(including ammonification, nitrification, denitrification, and volatilization), phosphorus retention 

and release, and carbon cycle (including carbon storage, oxidation of carbon-related chemical 

species, and organic carbon export and retention). The model has been extended to account for 

dynamic soil moisture content in wetland soils around the ponding area with variably saturated 
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conditions (Sharifi et al., 2017). Nitrogen and carbon cycling was simulated in saturated and 

unsaturated soils separately. The biogeochemical transformation/exchanges between the ponded 

part and the surrounding variably saturated soils are also captured in the model (Sharifi et al., 2017). 

They reported that nitrogen loss due to denitrification in the variably saturated area was seven 

times higher than that in ponded part. Cycling of carbon-related constituents showed high 

sensitivity to soil moisture in the variably saturated compartment.  

Sharifi et al., (2017) applied the finite difference numerical solution to Richards equation 

(RE) to simulate soil moisture dynamics in variably saturated soils around ponded areas of 

wetlands. The numerical solution considered various flux or head-controlled top boundary 

conditions including precipitation, soil evaporation, plant water uptake, surface ponding. The 

bottom boundary condition depends on the groundwater table, which can be free-drainage if the 

groundwater level is nonsexist or very deep, and zero-pressure head assuming water table at 

bottom of the soil profile. The RE solution embedded in WetQual was capable of tracking soil 

moisture in unsaturated wetland soil. However, Sharifi et al., (2017) reported that the numerical 

scheme crashed frequently during a Monte Carlo (MC) simulation, especially when the soil was 

close to saturation, which precluded a wide range of MC simulated moisture content values. Since 

WetQual is a compartmental model whereby constituents’ concentrations are averaged over the 

active sediment layer, solving RE at multiple nodal points was unnecessary, given that sediment 

layer-averaged volumetric moisture content is what was needed in calculating various mass 

balances. In addition, the plant growth module in WetQual were based on simple mass balance 

equations (Hantush et al., 2013) and did not consider detailed seasonal plant phenology, such as 

plant dormancy and maturity, and the effects of environmental stress on plant growth, such as 

temperature and water stress. 
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In this study, we replaced the previous finite difference RE solution in the WetQual model 

with the two-layer RE solution developed by He et al. (2021a) to simulate moisture dynamics in 

unsaturated soils. The first layer accounts for the biologically active sediment layer (roots layer) 

and the second layer is intended to account for potential feedback from shallow water table in the 

vadose soil bellow the root zone. In the case of a relatively deep phreatic surface, free drainage 

can be assumed at the bottom of the active sediment layer. The plant growth component of 

WetQual was also improved to better capture the seasonal variations of primary production in 

wetland environments. The modified WetQual model was applied to a restored wetland located on 

Kent Island, Maryland, USA to evaluate its performance. The goals of this study are to (1) replace 

the soil moisture simulation algorithm in WetQual with a more efficient and compatible module, 

(2) update the plant growth equations by considering water stress and temperature stress, which 

will allow for interannual variation of primary productivity, (3) evaluate the overall performance 

of WetQual on simulating nutrient cycling in variably saturated wetlands, (4) explore the effect of 

variably saturated conditions on nitrogen, phosphorus, and carbon cycling  and their budgets in the 

wetland.  

In the following sections of this chapter, we described the improvements to WetQual for 

the variably saturated compartment. Then we describe the model application to a restored wetland 

and model assessment. This is followed by the presentation of results and discussion. The chapter 

ends with a summary and conclusions.  

 

2. Methodology 

2.1. WetQual Model for Variably Saturated Compartment 
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The WetQual versions developed by Hantush et al. (2013), Kalin et al. (2013), and Sharifi 

et al. (2013) only considered nitrogen, phosphorus, and carbon dynamics in the flooded section of 

a wetland. Sharifi et al. (2017) modified the model to account for both ponded and variably 

saturated compartments around the ponded area (Figure 5.1A). In the ponded compartment, 

oxygen and nutrient dynamics, primary productivities of free-floating plants, and rooted aquatic 

plants are explicitly simulated as presented in works by Hantush et al. (2013), Kalin et al. (2013), 

and Sharifi et al. (2013). When considering the variably saturated compartment in a wetland, the 

soil is divided into an unsaturated part and saturated part determined by the location of the water 

level in the wetland. The saturated soil consists of an aerobic layer and an anaerobic layer. As 

shown in Figure 5.1 (A), the variably saturated compartment is divided into three layers. 

Unsaturated soil layer (S0,u) is at the top. A thin aerobic soil layer (S1,u) is in the middle just below 

the water table, underneath which is a relatively thick layer of anaerobic soil layer (S2,u). Nutrient 

constituents are calculated in each layer. Constituent concentrations are assumed as averaged 

values for each layer. Biochemical reactions in unsaturated soil are adjusted based on soil moisture 

in the unsaturated soil layer. The reaction rates are adjusted using a generic correction factor 

according to available soil water content in the unsaturated soil layer, which is given by 

 𝑘𝑘(𝜃𝜃) = 𝑘𝑘𝜃𝜃𝑠𝑠(
𝜃𝜃
𝜃𝜃𝑠𝑠

)𝜀𝜀 (60) 

where 𝑘𝑘(𝜃𝜃) is the soil moisture adjusted reaction rate, 𝑘𝑘𝜃𝜃𝑠𝑠 is any of the first-order reaction rates 

for saturated soil (e.g. mineralization rate, 𝑘𝑘𝑚𝑚𝑚𝑚),  𝜃𝜃 is the soil moisture content in unsaturated soil, 

𝜃𝜃𝑠𝑠 is saturation moisture content or porosity, 𝜀𝜀 is an exponent (0.01 < 𝜀𝜀 < 1) and was treated as 

a calibration parameter. The soil moisture adjusted governing equations for nitrogen and carbon 
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related constituents are described in Sharifi et al. (2017). The relationships for phosphorus related 

constituents in the variably saturated compartment of the wetland are given by 

 𝑑𝑑𝑉𝑉0𝑃𝑃0
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑝𝑝𝑝𝑝𝐴𝐴(𝐹𝐹𝑑𝑑𝑑𝑑𝑃𝑃1 − 𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥𝑃𝑃0) + 𝐹𝐹𝑃𝑃𝑃𝑃0 − 𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑔𝑔𝑔𝑔(𝜃𝜃)𝑓𝑓0𝑏𝑏 + 𝑉𝑉0𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚(𝜃𝜃)𝑁𝑁𝑜𝑜𝑜𝑜

+ 𝑉𝑉0𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚(𝜃𝜃)𝑁𝑁𝑜𝑜𝑜𝑜 

(2) 

 𝑑𝑑𝑉𝑉1𝑃𝑃1
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝑝𝑝𝑝𝑝𝐴𝐴(𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥𝑃𝑃0 − 𝐹𝐹𝑑𝑑𝑑𝑑𝑃𝑃1) + 𝐹𝐹𝑃𝑃𝑃𝑃1 − 𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑔𝑔𝑔𝑔(𝜃𝜃)𝑓𝑓1𝑏𝑏 + 𝑉𝑉1𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚(𝜃𝜃)𝑁𝑁𝑜𝑜𝑜𝑜

+ 𝑉𝑉1𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚(𝜃𝜃)𝑁𝑁𝑜𝑜𝑜𝑜 + 𝛽𝛽𝑝𝑝2𝐴𝐴(𝑓𝑓𝑑𝑑𝑑𝑑𝑃𝑃2 − 𝐹𝐹𝑑𝑑𝑑𝑑𝑃𝑃1) 

(3) 

 𝑑𝑑𝑉𝑉2𝑃𝑃2
𝑑𝑑𝑑𝑑

= 𝑉𝑉2𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚(𝜃𝜃)𝑁𝑁𝑜𝑜𝑜𝑜 + 𝑉𝑉2𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑚𝑚𝑚𝑚(𝜃𝜃)𝑁𝑁𝑜𝑜𝑜𝑜 − 𝛽𝛽𝑝𝑝2𝐴𝐴(𝑓𝑓𝑑𝑑𝑑𝑑𝑃𝑃2 − 𝐹𝐹𝑑𝑑𝑑𝑑𝑃𝑃1) + 𝐹𝐹𝑃𝑃𝑃𝑃2

− 𝑎𝑎𝑝𝑝𝑝𝑝𝑘𝑘𝑔𝑔𝑔𝑔(𝜃𝜃)𝑓𝑓2𝑏𝑏 

(4) 

where 𝑡𝑡 is time [T]; 𝑃𝑃0, 𝑃𝑃1, and 𝑃𝑃2 are total inorganic phosphorus concentration in unsaturated soil, 

aerobic saturated soil, and anaerobic saturated soil layer, respectively [ML-3]; 𝑉𝑉0, 𝑉𝑉1, and 𝑉𝑉2 are 

volume of the unsaturated soil column, aerobic saturated soil layer, and anaerobic saturated soil 

layer, respectively [L3]; 𝐴𝐴 is the area of the unsaturated part of the wetland [L2]; 𝑓𝑓0, 𝑓𝑓1, and 𝑓𝑓2 are 

volumetric fractions of the unsaturated soil, aerobic, and anaerobic saturated soil layer, 

respectively; 𝛽𝛽𝑝𝑝𝑝𝑝 is the diffusive mass-transfer rates of inorganic phosphorus between unsaturated 

soil and saturated aerobic soil layer [LT-1]; 𝛽𝛽𝑝𝑝2 is the diffusive mass-transfer rates of inorganic 

phosphorus between saturated aerobic soil layer and anaerobic soil layer [LT-1]; 𝐹𝐹𝑃𝑃𝑃𝑃0 , 𝐹𝐹𝑃𝑃𝑃𝑃1 , and 𝐹𝐹𝑃𝑃𝑃𝑃2  

are net advective groundwater contribution of total phosphorus to the unsaturated layer, aerobic 

layer, and anaerobic layer, respectively [MT-1]; 𝐹𝐹𝑑𝑑𝑑𝑑, 𝐹𝐹𝑥𝑥𝑥𝑥𝑥𝑥, and 𝑓𝑓𝑑𝑑𝑑𝑑 are the dissolved fraction of total 

inorganic phosphorus in unsaturated soil, aerobic layer, and anaerobic layer, respectively; 𝑎𝑎𝑝𝑝𝑝𝑝 is 

gram of phosphorus per gram of Chlorophyll-a; 𝑎𝑎𝑝𝑝𝑝𝑝 is phosphorus to nitrogen mass ratio produced 

by mineralization of POM; 𝑏𝑏 is mass of rooted plants [M chl a]; 𝑘𝑘𝑔𝑔𝑔𝑔 is the growth rate of the 
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benthic and rooted plant [T-1]; 𝑘𝑘𝑚𝑚𝑚𝑚  and 𝑘𝑘𝑚𝑚𝑚𝑚  are first-order rapid and slow mineralization rate, 

respectively [T-1]; 𝑁𝑁𝑜𝑜𝑜𝑜  is the concentration of labile organic nitrogen [ML-3]; 𝑁𝑁𝑜𝑜𝑜𝑜  is the 

concentration of refractory organic nitrogen in wetland soil [ML-3]; and 𝜃𝜃 is soil moisture content 

[L3L-3]. Those terms have been marked with a (𝜃𝜃) indicate soil moisture adjusted reaction rates.  

Similar to Sharifi et al. (2017), the hydrology in WetQual was first solved over the entire 

simulation period by ignoring the exchange of water between the ponded and variably saturated 

compartments. After the wetland depth, area, volume, and outflow were determined over the 

simulation period, the exchange of water and nutrients between the two compartments was then 

simulated, To track the mass exchanges of constituents between ponded and variably saturated 

compartments when the inundated area expands and shrinks during simulation, a transitional 

compartment was introduced (blue area shown in Figure 5.1). Depending on the rising and falling 

of the water level at each time step, the constituent concentrations in the transitional compartment 

will either be those from ponded or variably saturated compartments. At the end of each time step, 

the transitional compartment will merge into either ponded or variably saturated compartments 

using the volumetric averaging algorithm to update the concentration in these two compartments. 

The procedure for determining the transitional compartment and the algorithm for updating 

concentration in ponded and variably saturated compartments can be found in Sharifi et al. (2017). 

 

2.2. Two-layer depth-averaged solution to RE 

In Sharifi et al. (2017), soil moisture dynamics in variably saturated soil was described by 

finite difference solution to RE developed by van Dam and Feddes (2000). However, this 

numerical solution was not stable in wetland soil conditions and frequent crashes were observed 

during Monte Carlo (MC) simulations. In this study, we replaced the finite difference solution with 
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the two-layer approximation of RE (hereafter two-layer model) developed by He et al. (2021a). 

The two-layer model focuses on vertically-averaged soil moisture contents and flow dynamics in 

two soil layers. The first layer is the root zone, and the second layer extends from the bottom of 

the root zone to the water table (Figure 5.2). It converts the partial differential equation of RE into 

two coupled ordinary differential equations, which are given by, 

 
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝜃̅𝜃1
𝑑𝑑𝑑𝑑

= 𝑞𝑞0 − 𝑞𝑞1 − 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆 ̅ (5) 

 
(𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

𝑑𝑑𝜃̅𝜃2
𝑑𝑑𝑑𝑑

− 𝜃𝜃2𝑠𝑠
𝑑𝑑𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑞𝑞1 − 𝑞𝑞2 (6) 

where, 𝜃̅𝜃1  and 𝜃̅𝜃2  are the first (root zone) and the second layer average moisture contents, 

respectively [L3L-3]. 𝜃̅𝜃1(𝑡𝑡) = 1
ℎ ∫ 𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

0 , and  𝜃̅𝜃2(𝑡𝑡) = 1
𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)−𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∫ 𝜃𝜃(𝑧𝑧, 𝑡𝑡) 𝑑𝑑𝑑𝑑𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

; 𝜃𝜃2𝑠𝑠 

is the saturated water content of the second layer [L3L-3]; 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the depth of the first layer [L]; 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the depth from soil top to the water table [L]; 𝑆𝑆̅ is the transpiration rate [T-1]; 𝑞𝑞0 is the 

moisture flux at the soil-atmosphere interface [LT-1] (positive downward); 𝑞𝑞1 is the moisture flux 

at the interface of the first and the second soil layers [LT-1]; and 𝑞𝑞2 is the moisture flux at the 

bottom of the second layer and accounts for flux interactions between the vadose zone and the 

water table [LT-1]. Two coupled ordinary differential equations were solved explicitly by Heun’s 

method. The two-layer model considers various atmospheric boundary conditions including 

precipitation, soil evaporation, and ponding. It also deals with varying bottom boundary conditions 

determined by the dynamic water table within or below the soil profile. Soil hydraulic 

characteristic relations of capillary pressure and unsaturated conductivity were described by van 

Genuchten model (1980). Details about the derivations, numerical solutions, and different 

boundary conditions of the two-layer model can be found in He et al. (2021a).  
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2.3. Plant Growth in Wetlands  

The previous version of WetQual simulated plant productivity of two types of wetland 

plants, free-floating plants (e.g. algae) and rooted aquatic plants (e.g. macrophytes), using simple 

governing equations as a function of annual growth rates and death rates. Growth rates were 

adjusted by daily solar radiation. In this study, we improved the growth/death pathways for 

wetland plants. 

A water stress factor was added to adjust the growth rate for rooted plants. The growth rate 

was adjusted according to the actual and potential transpiration rate, which is given by, 

 𝑘𝑘𝑔𝑔𝑔𝑔,𝑤𝑤𝑤𝑤 =
𝐸𝐸𝑎𝑎
𝐸𝐸𝑝𝑝
𝑘𝑘𝑔𝑔𝑔𝑔 (7) 

where 𝑘𝑘𝑔𝑔𝑔𝑔,𝑤𝑤𝑤𝑤 is the adjusted growth rate for rooted plants [T-1]; 𝑘𝑘𝑔𝑔𝑔𝑔 is the maximum growth rate 

for rooted plants [T-1]; 𝐸𝐸𝑎𝑎 is daily actual root water uptake rate [LT-1], which is estimated by the 

two-layer model; and 𝐸𝐸𝑝𝑝 is daily potential root water uptake rate [LT-1].  

Plant root water uptake in the variably saturated compartment was estimated by the two-

layer model. The actual root water uptake rate was evaluated using the plant water stress function. 

The two-layer model used a plant water stress function proposed by Feddes (1982) to estimate 

actual plant water uptake from the root zone (Chapter 2, Eq. 41). In this study, the water stress 

response function was replaced with a function proposed by Van Genuchten (1987). We further 

modified this function to better represent root water uptake for wetland plants. In the flooded 

wetland, although macrophytes have adaptations to the inundated condition, they may not transpire 

water at the potential rate in the flooded condition because of the inhibition of plant transpiration 

due to hypoxia (Pezeshki, 2001). The updated equation for describing water stress response 

function is given by, 
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 𝛼𝛼(ℎ) =
1

1 + �ℎ − ℎ0
ℎ50

�
𝑝𝑝 (8) 

where 𝛼𝛼 is water stress response function [-]; ℎ is negative of soil capillary pressure head [L]; ℎ50 

is the capillary pressure head at which the water extraction rate is reduced by 50% [L]; ℎ0 is the 

capillary pressure head at which the actual water uptake rate is equal to the potential rate [L]; and 

𝑝𝑝 is a constant [-]. The values of ℎ50 and p depends on vegetation type, and the reported ranges in 

the literature are 1000 to 5000 cm for ℎ50 and 1.5 to 3 for p (Van Genuchten, 1987b; Cardon and 

Letey, 1992; Homaee et al., 2002; Skaggs et al., 2006; Zhu et al., 2009). An example of the 

modified water stress response function is shown in Figure 5.3. In the ponded compartment, the 

actual root water uptake rate is calculated by 𝛼𝛼(0)𝑆𝑆𝑝𝑝, where 𝑆𝑆𝑝𝑝 is potential water uptake rate [LT-

1]. 

Temperature is one of the major constraints for plant growth. Plant growth could be 

suppressed due to very high or low temperatures during the year but plants can experience no stress 

at optimum temperature. We added the following equations (Arnold et al., 2012) to describe 

temperature stress on the growth of free-floating plants and rooted plants, 

 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0, 𝑇𝑇 ≤ 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

exp (
−0.1054�𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇�

2

(𝑇𝑇 − 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2 ), 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 < 𝑇𝑇 ≤ 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜

exp (
−0.1054�𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇�

2

�2𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇 − 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�
2), 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 < 𝑇𝑇 ≤ 2𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

0, 2𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 < 𝑇𝑇

 (9) 

where 𝑇𝑇 is daily mean air temperature [℃]; 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the minimum temperature for the plant to grow 

[℃]; and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 is the optimum temperature for plant to grow [℃]. Figure 5.4 shows the temperature 

stress variation as a function of daily air temperature. 
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Plant dormancy was considered in WetQual to simulate the plant’s growth cycle during 

seasons (Arnold et al., 2012). Plants go dormant when daylength is close to the shortest daylength 

of the year. Plants do not grow, and aboveground biomass starts to decrease during dormancy. The 

starting and ending time of dormancy are defined by a threshold daylength, which is given as, 

 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (10) 

where 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the threshold daylength to initiate dormancy given in hours [T]; 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  is the 

minimum daylength for the watershed during the year [T]; and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the dormancy adjustment 

factor [T], which is calculated based on the latitude of the wetland, where, 

 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

⎩
⎨

⎧ 1.0, 40°N or S < ∅
∅ − 20

20
, 20°N or S ≤ ∅ ≤ 40°N or S

0, ∅ < 20°N or S

 (11) 

where ∅ is the latitude given in degree. During the dormancy period, the biomass of the free-

floating plants (𝑎𝑎 [M chl a]) and the rooted plants gradually decrease but cannot drop below their 

predefined minimum biomass (𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚). When the dormancy period ends, free-floating 

plants start to grow, and rooted plants start to sprout in the growing season. The death rate is 

assumed to be zero during the growing season. 

In the late of the growing season, plant maturity is considered. The biomass of the wetland 

plants increases during the growing season. However, the biomass keeps constant or increases very 

little when plants reach maturity (Stefanik and Mitsch, 2017). Thus, plant growth rate keeps 

constant before plants reach maturity. When plants reach maturity, the growth rate is assumed to 

decrease linearly and reaches 0 on the day plants go dormant. The growth rate during plant maturity 

is adjusted by multiplying with a factor given by, 

 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1 +
𝑛𝑛 − 𝑛𝑛𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑛𝑛𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 (12) 
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where 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the adjustment factor for plant growth rate during plant maturity ranging from 1 

to 0 [-]; 𝑛𝑛 is the day of the year [T]; 𝑛𝑛𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚  is the day that has maximum daylength at the wetland 

site during the year [T]; 𝑛𝑛𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the day of the year that plants go dormancy [T].  

With the consideration of the temperature stress, water stress, plant maturity, and plant 

dormancy, the governing equations for free-floating plants are given by, 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑔𝑔𝑔𝑔𝑎𝑎 − (

𝑄𝑄𝑜𝑜
∅𝑤𝑤𝑉𝑉𝑤𝑤

)𝑎𝑎, 𝐷𝐷𝑛𝑛 > 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑛𝑛 < 𝑛𝑛𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑔𝑔𝑔𝑔𝑎𝑎 − (
𝑄𝑄𝑜𝑜
∅𝑤𝑤𝑉𝑉𝑤𝑤

)𝑎𝑎, 𝐷𝐷𝑛𝑛 > 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑛𝑛 ≥ 𝑛𝑛𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

−𝑘𝑘𝑑𝑑𝑑𝑑𝑎𝑎 − �
𝑄𝑄𝑜𝑜
∅𝑤𝑤𝑉𝑉𝑤𝑤

�𝑎𝑎, 𝐷𝐷𝑛𝑛 ≤ 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑎𝑎 > 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 − �
𝑄𝑄𝑜𝑜
∅𝑤𝑤𝑉𝑉𝑤𝑤

�𝑎𝑎, 𝐷𝐷𝑛𝑛 ≤ 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑎𝑎 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚

 (13) 

where 𝑎𝑎 is mass of free-floating plants [M chl a]; 𝑘𝑘𝑔𝑔𝑔𝑔 is the growth rate of free-floating plants [T-

1]; 𝑘𝑘𝑑𝑑𝑑𝑑 is the death rate of free-floating plants [T-1]; 𝑄𝑄𝑜𝑜 is wetland discharge (outflow) rate [L3T-

1]; ∅𝑤𝑤 is the effective porosity of wetland surface water [-]; 𝑉𝑉𝑤𝑤 is water volume of wetland surface 

water [L3]; and 𝐷𝐷𝑛𝑛 is the daylength of 𝑛𝑛𝑡𝑡ℎ day for a year [T].  

Growth/death of rooted plants b are described by, 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=

⎩
⎨

⎧
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑔𝑔𝑔𝑔,𝑤𝑤𝑤𝑤𝑏𝑏, 𝐷𝐷𝑛𝑛 > 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑛𝑛 < 𝑛𝑛𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑔𝑔𝑔𝑔,𝑤𝑤𝑤𝑤𝑏𝑏, 𝐷𝐷𝑛𝑛 > 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,𝑛𝑛 ≥ 𝑛𝑛𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

−𝑘𝑘𝑑𝑑𝑑𝑑𝑏𝑏, 𝐷𝐷𝑛𝑛 ≤ 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑏𝑏 > 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 
𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚, 𝐷𝐷𝑛𝑛 ≤ 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑏𝑏 ≤ 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

 (14) 

where 𝑏𝑏 is the mass of rooted plants [M chl a]; 𝑘𝑘𝑑𝑑𝑑𝑑 is the death rate of the rooted plant [T-1].  

 

2.4. Study Area 

The study site is a restored wetland, named “Barnstable” as described by Jordan et al. 

(2003), located on Kent Island, Maryland, which is part of the Delmarva Peninsula on the eastern 
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shore of Chesapeake Bay (Figure 5.5). The 1.3-ha wetland was located with a 14-ha watershed 

with average slope less than 1% and it receives water drainage from surrounding farmlands 

(primarily cultivated for corn and soybean production) and forest, which cover about 82% and 18% 

of the watershed area, respectively. The soils in most of the study area were Typic Endoaquults of 

the Othello soil series, which had silt loam texture with moderate or moderately slow permeability. 

Most croplands in the study area were drained by ditches or channels due to the low permeability 

of the soils and low topographic relief of the watershed. There were two sources of water entering 

the wetland: surface runoff from the surrounding watershed and precipitation. Wetland output was 

water via a standpipe drain installed in the dike and evapotranspiration. Because the wetland lacked 

well-defined flow channels, when the water was deep enough to flow out of the drain, the entire 

1.3-ha area of the wetland was submerged. About 0.5 m below the soil surface, there was an 

impermeable clay layer blocking groundwater exchanges and seepage losses.  

The study site was restored and turned into to wetland from cropland in 1986 by the 

Chesapeake Wildlife Heritage to provide habitat for wildlife and improve the quality of runoff 

from surrounding agricultural fields. The wetland vegetation was established by natural succession 

after restoration. There were three most dominant macrophyte species: blunt spikerush (Eleocharis 

obtuse (Willd.) Schult.), water-purslane (Ludwigia palustris (L.) Elliott), and American bulrush 

(Schoenoplectus americanus (Pers.) Volkart ex Schinz & R. Keller) (Jordan et al., 1999; Whigham 

et al., 2002). During the growing season, 70% to 90% of the wetland surface was covered by 

emergent vegetation, while during the nongrowing season, the covered area dropped to about 10% 

to 20% of the wetland surface. 

The water flow and water quality of the wetland were monitored for about two years from 

May 8, 1995 to May 12, 1997. Inflow and outflow concentrations of nitrate N, total ammonia N, 
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organic N, P, TSS, and total organic carbon (TOC) were collected as weekly flow averaged values 

(about 5 to 8 days). Precipitation was measured using a rain gauge. ET data were collected from 

the Wye Research Center (WRC), located 13 km away from the study wetland. The bathymetry of 

the wetland was extracted from the 10-cm elevation contours within the wetland basin. Detailed 

information about data collection and analysis can be found in Jordan et al. (2003). Figure 5.6 

shows the inflow, outflow, and the mean water depth in the ponded compartment of the wetland 

as well as outflow concentrations of TOC, ON, NO3, NH4, P, and TSS from May 1995 to May 

1997. 

 

2.5. Numerical Experiments 

To evaluate the performance of the additions to the model, the updated WetQual model 

was applied to Barnstable wetland to simulate carbon, nitrogen, and phosphorus constituent 

concentrations and wetland plant biomass in both ponded and variably saturated compartments. 

Two numerical experiments with different bottom boundary condition treatments in variably 

saturated compartments were performed. The first numerical experiment assumed that the 

groundwater level in the variably saturated compartment was always at the same level with the 

water surface in the ponded compartment (Figure 5.1A). This is also the assumption followed in 

Sharifi et al. (2017). Zero pressure head bottom boundary condition was applied in the two-layer 

model. For the second numerical experiment, we assumed that there was a deep phreatic surface 

in the study wetland and the soil under the ponded compartment was always saturated as a result 

of ponded water, but soil moisture in variably saturated compartment varied dynamically (Figure 

5.1B). The effect of the deep phreatic surface on the soil in the variably saturated compartment 
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was assumed negligible. Free-drainage was applied at the bottom boundary condition in the two-

layer model.  

Wetland soil in the variably saturated compartment was divided into two layers for the two-

layer model to simulate moisture contents. The maximum depth of the soil (0 at the soil top, 

positive downward) of the banks of the wetland in a variably saturated compartment was assumed 

to be 73 cm based on the bathymetry of the wetland. The soil was divided into root zone and vadose 

zone. The thickness of the root zone and the layer below were varied during the MC simulation in 

the model evaluation step as explained in section 2.5. The groundwater level varied within the soil 

column with the minimum and maximum depth of 26 cm and 59 cm, respectively. The moisture 

content for the unsaturated part (soil above groundwater level) of the soil was needed for WetQual 

to adjust biochemical reactions. The two-layer model estimated layer averaged moisture content 

for the root zone and the unsaturated part of the below vadose zone. The biogeochemical reaction 

rates were adjusted based on the moisture content of the root zone (𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟). 

Soil information (soil type and physical properties) was obtained from the USDA Web Soil Survey 

(Soil Survey Staff) at the study site. Within the 73 cm of soil, there were three horizons. Soil 

particles of sand, silt, and clay for the root zone and vadose zone were calculated from three 

horizons using the depth-weighted function. Soil hydraulic properties for van Genuchten model 

(Van Genuchten, 1980) were calculated by ROSETTA3 model developed by Zhang and Schaap, 

(2017). The physical and hydraulic properties of the root zone and vadose zone are shown in Table 

5.1. The potential evapotranspiration rate of the entire wetland was divided into ponded and 

variably saturated compartments based on the fraction of each compartment.  

 To evaluate the effectiveness of the updated model, we followed the approaches described 

in Kalin et al. (2013), Sharifi et al., (2013), and Sharifi et al. (2017) for the two numerical 
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experiments described above. MC simulation were followed by the Generalized Likelihood 

Uncertainty Estimation technique (GLUE) and Global Sensitivity Analysis (GSA) methods 

(Beven and Binley, 1992; Spear and Hornberger, 1980) to investigate the model prediction 

uncertainty and quantitative sensitivity to model parameters. The methodology of GLUE and GSA 

are described in the model evaluation section. In addition, we also compared the results of the first 

numerical experiments with the results from the previous versions of WetQual reported in Sharifi 

et al. (2017). To avoid confusion in the text, the lumped version of WetQual (Hantush et al., 2013) 

will be referred to as the Original model. The model modified by Sharifi et al. (2017) will be 

referred to as the Expanded model, and the model updated in this study will be specified as the 

Updated model. 

We further evaluated the updated plant growth/death module in WetQual by comparing the 

model estimated biomass of rooted plants with field measurements. Whigham et al. (2002) 

measured annual aboveground biomass in the study wetland from 1994 to 1996. Aboveground 

plant material was harvested in mid-late October each year and biomass was measured as dry 

weight. The mean annual aboveground biomass reported in 1994, 1995, and 1996 were 157.4 g/m2, 

171.3 g/m2, and 415.3 g/m2
 respectively. Further information on the experiment of biomass 

measurement can be found in Whigham et al. (2002). To make the simulation scenario close to the 

reality of the study wetland, in this simulation, the assumption that groundwater level in the 

variably saturated compartment was equal to the depth of water table in the ponded compartment 

was applied in WetQual. The results of MC simulation in the first numerical experiment were used 

to calculate the best estimates of the model input parameters for carbon, based on the equation 

(Sharifi et al., 2013) 
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𝑥𝑥′ = �𝐿𝐿𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (16) 

where 𝑥𝑥′ is the best estimate of the parameter 𝑥𝑥; 𝑥𝑥𝑖𝑖 is the generated value of parameter 𝑥𝑥 in 𝑖𝑖𝑡𝑡ℎ 

parameter set; 𝐿𝐿𝑘𝑘𝑖𝑖 is likelihood estimate from the 𝑖𝑖𝑡𝑡ℎ model run of the MC simulation, which is 

defined in section 2.6; and 𝑛𝑛 stands for the total number of MC simulation. The growth and death 

rates of rooted plants were calibrated during the simulation. The growth rate of rooted plants can 

be roughly estimated by the following relationship proposed by Hall et al. (2014), 

 
𝑘𝑘𝑔𝑔𝑔𝑔 =

ln 𝑏𝑏1 − ln 𝑏𝑏0
𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑡𝑡𝑔𝑔𝑟𝑟𝑜𝑜𝑜𝑜

 (17) 

where 𝑏𝑏0 is the initial biomass of the rooted plants [M chl a]; 𝑏𝑏1 is the biomass before plants go 

dormant (harvested biomass) [M chl a]; 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the Julian day that plants go dormant [T]; and 

𝑡𝑡𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 is the Julian day that plants start to grow [T]. The initial biomass 𝑏𝑏0 was assumed equal to 

the biomass in the nongrowing season. Based on the vegetation cover in growing season and 

nongrowing season reported by (Jordan et al., 2003), the initial biomass in 1995 was roughly 

estimated around 1/8 to 1/4 of the biomass in mid-October 1995. In this study, we compared the 

model estimated biomass for rooted plants with field measurements in 1995 and 1996. 𝑏𝑏1 was 

assumed to be equal to the biomass measured in mid-October 1995 times the total wetland area. 

𝑏𝑏0 can also be calibrated during the simulation according to its estimated value. WetQual simulates 

total plant biomass. Thus, to compare the results of above-ground biomass, the above-ground 

biomass was estimated using the average belowground:aboveground biomass ratio (0.40) of 

wetland macrophytes suggested by Whigham and Simpson (1978).  

 

2.6. Model Evaluation 
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Model performance, uncertainties, and parameter sensitivities were assessed by the 

combination of GLUE and GSA. Here, we describe both methods briefly. The complete 

description of the methodology of GLUE/GSA can be found in Sharifi et al. (2013). First, 100,000 

independent model parameter sets were generated for ponded and variably saturated compartments, 

respectively. The selected model parameters and their respective upper and lower bounds and 

distributions were set to those applied in the previous WetQual studies (Kalin et al., 2013; Sharifi 

et al., 2013). The ranges of soil hydraulic parameters for each soil layer were set to ±5σ around 

their ROSETTA predicted values using uniform distribution, where σ is the standard deviations of 

the predicted parameters. The ranges of values for soil thickness, soil hydraulic model, plant water 

stress response function, and temperature stress function are shown in Table 5.2. The same 100,000 

parameter sets were applied in two numerical experiments. Second, MC simulation were 

performed to run WetQual 100,000 times using generated parameters sets. 100,000 time series for 

each constituent concentration were generated. The initial concentrations were set to the values of 

the first day of simulation (May 9, 1995). Third, model performance for each constituent was 

evaluated by comparing against observations for the calculated weekly averaged nutrient exports 

using two performance criteria, mass balance error (𝑀𝑀𝑀𝑀𝑀𝑀) and Nash-Sutcliffe efficiency (𝐸𝐸𝑛𝑛𝑛𝑛). A 

likelihood estimate (𝐿𝐿𝑘𝑘 ) calculated as a function of MBE and 𝐸𝐸𝑛𝑛𝑛𝑛  was used to evaluate the 

efficiency of model predicted nutrient exports against observed data for each MC simulation 

(Sharifi et al., 2013). 

 
𝐿𝐿𝑘𝑘 = exp (𝐸𝐸𝑛𝑛𝑛𝑛 −

|𝑀𝑀𝑀𝑀𝑀𝑀|
100

− 1) (18) 

where 𝐿𝐿𝑘𝑘 is the likelihood estimate, ranging from 0 to 1. The closer of 𝐿𝐿𝑘𝑘 to 1, the more accurate 

the model is. Fourth, the parameter sets for each compartment were sorted based on their likelihood 

values. The top 1% (1000) parameter sets with the highest likelihood were selected as behavior 
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datasets (B) and the rest were non-behavior datasets (𝑩𝑩′). Last, the Kolmogorov-Smirnov test 

(Massey Jr, 1951) was applied to evaluate the sensitivities of model parameters based on the 

cumulative distribution functions (CDFs) of B and 𝑩𝑩′ obtained from previous step.  

 

3. Results and Discussion 

3.1. Model Performance 

Model performance using the two bottom boundary conditions were evaluated by 

comparing simulated nutrient exports of TN, ON, NH4, NO3, TSS, TOC, and P with their measured 

data in outflow using 𝑀𝑀𝑀𝑀𝑀𝑀, 𝐸𝐸𝑛𝑛𝑛𝑛, and 𝐿𝐿𝑘𝑘. The average model performance criteria of 𝑀𝑀𝑀𝑀𝑀𝑀, 𝐸𝐸𝑛𝑛𝑛𝑛, 

and 𝐿𝐿𝑘𝑘 for behavior simulations (top 1000 simulations) are shown in Table 5.3. 

As shown in Table 5.3, with zero-pressure head bottom boundary condition (presence of 

shallow groundwater) applied in the variably saturated compartment, the model showed excellent 

performance in simulating NO3 and TOC exports with 𝐸𝐸𝑛𝑛𝑛𝑛 greater than 0.90, although the model 

produced a high mass balance error for NO3. The model had good performance in capturing ON, 

NH4, and TN exports from the study wetland with 𝐸𝐸𝑛𝑛𝑛𝑛 ranging from 0.71 to 0.79. However, exports 

for TSS and P were not well captured by the model. They showed high mass balance error (-25.1% 

and -51.5% for TSS and P, respectively) and low 𝐸𝐸𝑛𝑛𝑛𝑛 (0.42 and 0.50 for TSS and P, respectively) 

compared to other nutrient constituents. Compared with the results of model performance from the 

Expanded model developed by Sharifi et al. (2017), the performance of the Updated model in TN, 

ON, and TOC export in this study showed improvement, while the performance of NH4, NO3, and 

TSS was slightly decreased. Note that the measured outflow concentration data used in this study 

were revised versions which had 71 data points for each constituent over 2 years, while the 
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observed data applied in Sharifi et al. (2017) had 47 observation points, which were included in 

those 71 data points. The model performance might be better quantified using these revised 

observation data.  

For the second numerical experiment, when free-drainage was applied in the variably 

saturated compartment, the model performance in estimating exports of these constituents were 

similar to those in the first numerical experiment. The moisture contents of the soil in the banks of 

the wetland with free-drainage were significantly lower (p-value<0.01) than those obtained from 

the first numerical experiment assuming a shallow water table (Figure 5.7).  

𝐸𝐸𝑛𝑛𝑛𝑛 values from 100,000 MC simulations of the two numerical experiments were plotted 

against each other to see how constituent exports are impacted by the choice of the bottom 

boundary condition, and thus by the variation of the soil moisture content. To do this, the 𝐸𝐸𝑛𝑛𝑛𝑛 

values of the same parameter sets from the two simulations were parried. Note that the same 

100,000 parameter sets were utilized in both MC simulations. The results of relation between 𝐸𝐸𝑛𝑛𝑛𝑛 

of TN, ON, NH4, NO3, TSS, TOC, and P from behavior simulations of the two numerical 

experiments are shown in Figure 5.8. For a given constituent, if all the points fall on the identity 

(1:1) line, then selection of the bottom boundary condition, and thus moisture content variability 

has no impact on the constituent export. The deviations between the trends of scatters and the 

identity lines indicate the influences of different bottom boundary conditions on export of the 

constituent in the ponded compartment. From Figure 5.8, the trends of scatters of TN, ON, NO3, 

and P were close to the identity lines, while the trend of scatters of NH4, TSS, and TOC deviated 

from the identity line. Besides, the trend lines of NH4, TSS, and TOC were above the identity lines, 

indicating that the model performance on of NH4, TSS, and TOC from two numerical experiments 

were different from each other and the overall performance of the second numerical experiment 
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was higher than the first numerical experiment. The t-test was performed to investigate whether 

the trend lines were different from the identity line. The results showed that the trend lines of TN, 

ON, NO3, and P were statistically similar with the identity line (𝑝𝑝 > 0.05), indicating that the 

model produced similar results of exports of these constituents in the ponded compartment when 

using two types of lower boundary conditions in the variably saturated compartment. The 

application of different lower boundary conditions in the variably saturated compartment did not 

affect the exports of these constituents in the ponded compartment. However, the t-test showed 

significant differences between the trend lines of NH4, TSS, and TOC and the identity line (𝑝𝑝 <

0.001). The model performance of NH4, TSS, and TOC from the first and the second numerical 

experiment was different from each other. The zero-pressure head and free-drainage bottom 

boundary conditions applied in the variably saturated compartment had significant influences on 

NH4, TSS, and TOC exports in the ponded compartment. 

 

3.2. Soil moisture variations  

Average moisture contents in the variably saturated compartment for the two numerical 

experiments are shown in Figure 5.7. When considering groundwater within the variably saturated 

compartment, water can be exchanged between groundwater and the soil above the groundwater 

table, causing groundwater recharge or discharge. In the first numerical experiment, the 

groundwater level was relatively shallow, and fine-textured soil tended to absorb water from 

groundwater. For most of the time during the study period, the two-layer model estimated the soil 

moisture content near saturation in the variably saturated compartment (Figure 5.7A). Note that 

there was no soil moisture data at the study site, meaning the behavior and non-behavior 

simulations of soil moisture cannot be determined. Thus, we calculated the standard deviations of 
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predicted soil moisture at each day based on the results of moisture content from 100,000 

simulations to evaluate model predicted uncertainty. The standard deviation of the two-layer model 

predicted soil moisture contents during the study period was small (0.02 m3m-3 on average). 

Although moisture contents were close to saturation, the two-layer model captured the dynamic 

variations of soil moisture in response to precipitation. Besides, during the dry period (between 

August 16, 1995 to October 15, 1995), the moisture content in the wetland bank (upgradient 

unsaturated part of the wetland at the outer perimeter with small slope) dropped accordingly in 

response to declining groundwater levels. Compared with the results of moisture content in the 

variably saturated compartment from Sharifi et al. (2017), who applied the finite difference 

numerical scheme to RE, the two-layer model showed promising results of the moisture contents. 

Sharifi et al. (2017)  reported that at the first of the 80 days, moisture content increased gradually 

towards saturation from the initial value, while in this study, moisture content increased suddenly 

after one day, although fine-textured soils were applied in both studies (although the van 

Genuchten parameters were not the same between the two studies). Shallow water table and 

precipitation should cause a rapid saturation of the wetland banks. In addition, Sharifi et al. (2017) 

reported that the finite difference scheme to RE crashed frequently during the MC simulation. We 

did not observe any numerical difficulties using the two-layer model during the 100,000 

simulations. The two-layer model showed its robustness over the finite difference scheme in 

wetland soil conditions where groundwater level was relatively shallow.  

Average moisture contents in the soil of variably saturated compartment using free-

drainage bottom boundary condition are shown in Figure 5.7(B). As mentioned earlier, moisture 

contents in the second numerical experiment were significantly lower than those in the first 

experiment. When the free-drainage bottom boundary condition was applied, water was lost 
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through plant water uptake in the upper layer and through the lower soil boundary by the force of 

gravity and there is no replenishing, upward flow as the case for a shallow water table. There were 

only two sources of soil water: precipitation and exchange between the soil and ponded water 

when wetland shrinks and expands. As shown in Figure 5.7(B), moisture content varied according 

to the average water depth in the ponded compartment and precipitation. During the dry period 

between August 16, 1995 to October 15, 1995, when the water table in the ponded compartment 

dropped to the lowest point, moisture content also reached the lowest point. After day October 15, 

1995, when the water level in ponded compartment raised again, the moisture content increased to 

a relatively high level but never reached saturation. Moisture content varied according to 

precipitation. The average standard deviation of soil moisture was 0.03 m3m-3, higher than that 

from the first numerical experiment. This is because, with the free-drainage bottom boundary 

condition, soil moisture tended to vary in a wider range, while with zero-pressure head bottom 

boundary condition, soil moisture stayed close to saturation for most of the time due to capillary 

replenishment from the water table. 

  

3.3. Plant water uptake 

Seasonal variation of plant water uptake was captured well by the updated model. In the 

first numerical experiment, the average actual plant water uptake rate from 100,000 simulations 

followed the daily and seasonal variations of potential transpiration and was slightly lower than 

the potential rate (Figure 5.9A). Because the soil was close to saturation for most of the time, the 

plants experienced little water stress and the water stress response function 𝛼𝛼(ℎ) was close to 1. 

During the dry period (August 16, 1995 to October 15, 1995), soil moisture slightly decreased. 

The soil capillary pressure head (absolute value of pressure head) was higher than the optimum 
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value ℎ0 at which plants transpire at the potential rate, resulting in the estimation of actual water 

uptake rate lower than the potential rate. When the soil was completely saturated (i.e. July 16, 1996 

and August 15, 1996), actual plant water uptake was also weakened because the soil capillary 

pressure head was lower than ℎ0.  

In the second numerical experiment, the daily and seasonal variations of actual plant water 

uptake were also captured by the two-layer model (Figure 5.9B). Compared to the first numerical 

experiment, the differences between the actual plant uptake rate in the second numerical 

experiment and potential transpiration rate were larger than those in the first numerical experiment. 

This is because with free-drainage bottom boundary condition, the soil was not saturated during 

the study period. The soil capillary pressure head was always higher than the optimum value ℎ0, 

resulting in 𝛼𝛼(ℎ) always being lower than 1. In addition, the variations of actual plant water uptake 

reflected the soil moisture changes during the simulation. As shown in Figure 5.9B, during the dry 

period from August 16, 1995 to October 15, 1995, because of the decrease in the soil moisture, the 

actual plant uptake rate decreased to the lowest point almost to zero, although the potential uptake 

rate remained relatively high. Moisture contents play an important role in estimating actual plant 

water uptake and can eventually affect plant growth, which will be discussed in section 3.6 and 

section 3.8.   

 

3.4. Sensitivity Analysis 

The sensitivities of the model input parameters were evaluated by applying the 

Kolmogorov-Smirnov (K-S) test to the behavioral (B) and non-behavioral (𝑩𝑩′) datasets of each 

compartment for each numerical experiment, respectively. The most sensitive parameters for 

ponded and variably saturated compartment for two numerical experiments in order of sensitivity 
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based on NH4, NO3, TOC, and P exports are shown from Figures 5.10 to 5.13. On the plots, the 

horizontal axes are the most sensitive parameters in order of their sensitivity. The vertical axes 

represent the Dmax value calculated by the K-S test. Similar to Kalin et al. (2013) and Sharifi et al. 

(2017), the criterion for selecting the most sensitive parameters was determined by the significance 

level associated with Dmax value. The parameters with the significance level smaller than 5% in 

the ponded and variably saturated compartments were considered as sensitive parameters. 

For the parameters related to NH4 export, the top panels of Figure 5.10 shows the Dmax 

values for the most sensitive parameters in the first numerical experiment. In the ponded 

compartment, ammonium ion distribution coefficient, 𝐾𝐾𝑑𝑑 , was the most sensitive parameter, 

followed by 𝑓𝑓𝑁𝑁, fraction of total ammonia nitrogen as NH4
+, and 𝑘𝑘𝑚𝑚𝑚𝑚 (mineralization rate in soil). 

High sensitivity of 𝐾𝐾𝑑𝑑 indicates the importance of adsorption of ammonium ions onto negatively 

charged particles. 𝑓𝑓𝑁𝑁 captures the effects of pH and temperature on the fraction of total ammonia 

in ionized form and 𝑘𝑘𝑚𝑚𝑚𝑚 determines the rate of transformation of organic N to ammonia N. In the 

variably saturated compartment, 𝐾𝐾𝑑𝑑 was clearly the most sensitive parameter followed by 𝑙𝑙2 and 

𝑓𝑓𝑁𝑁, which were also among the sensitive parameters in the ponded compartment. The sensitive 

parameters found in this study were similar to those found in Sharifi et al. (2017). However, the 

order of the sensitivity was not the same. In the second numerical experiment, the most sensitive 

parameters for the ponded compartment were similar to those from the first numerical experiment, 

while sensitive parameters differed for the variably saturated compartment. The most sensitive 

parameter in the variably saturated compartment was 𝑝𝑝𝑝𝑝, followed by the growth rate of rooted 

plants 𝑘𝑘𝑔𝑔𝑔𝑔. 𝑝𝑝𝑝𝑝 is a coefficient in 𝑓𝑓𝑁𝑁 and it is a function of temperature. Without groundwater in 

soil, ammonia seems to be affected more by temperature that determine the amount of ionized 

ammonia, and the growth of plants that take up ammonia from the soil. 
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The parameters of the ponded compartment that ended being sensitive for NO3 export from 

the wetland are shown in Figure 5.11 for both numerical experiments. Denitrification (𝑘𝑘𝑑𝑑𝑑𝑑), 𝑙𝑙2, 

and nitrification rate in free water (𝑘𝑘𝑛𝑛𝑛𝑛) were the top three sensitive parameters for the ponded 

compartment in both numerical experiments. Other parameters with relatively lower sensitivities 

appeared in both numerical experiments but with different Dmax values. However, no parameter 

was found to be sensitive in the variably saturated compartment because data was insufficient to 

evaluate the unsaturated compartment.  

From Figure 5.12, 𝑘𝑘𝐷𝐷1  and 𝜃𝜃𝑇𝑇0  in the ponded compartment were two top sensitive 

parameters for TOC export for the first numerical experiment. 𝑘𝑘𝐷𝐷1  is the maximum dissolved 

organic C utilization rate for aerobic respiration. 𝜃𝜃𝑇𝑇0 is an Arrhenius coefficient for temperature 

adjustment. The appearance of these two parameters indicates that TOC has a high sensitivity to 

microbial respiration and temperature. The sensitive parameters found in the ponded compartment 

were similar to those results from Sharifi et al. (2013) and Sharifi et al. (2017). For the variably 

saturated compartment, 𝑘𝑘𝑂𝑂𝑖𝑖𝑖𝑖 (michaelis–Menten oxygen inhabitation coefficient) and 𝑘𝑘𝑔𝑔𝑔𝑔 (growth 

rate of rooted plant) were two sensitive parameters associated with important processes related to 

TOC export (oxygen concentration and plant biomass, respectively). For the second numerical 

experiment shown on the bottom panel of Figure 5.12, the most sensitive parameters in ponded 

compartment were found similar to those from the first numerical experiment. The sensitive 

parameters in the variably saturated compartment were 𝑎𝑎𝑐𝑐𝑐𝑐 (ratio of carbon to chlorophyll-a in 

algae) and 𝐾𝐾𝑀𝑀2  (maximum methane utilization rate for denitrification), which were related to plant 

biomass and methanogenesis, respectively..   

Sensitive parameters for phosphorus export were similar between two numerical 

experiments. As shown in Figure 5.13, 𝐾𝐾𝑤𝑤  (phosphorus distribution coefficient in the water 
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column) was the most sensitive parameter with the highest Dmax among others, and 𝑣𝑣𝑠𝑠 and 𝜙𝜙𝑤𝑤 

(effective settling velocity and effective porosity of wetland surface water) were the second and 

third sensitive parameters in the ponded compartment for both numerical experiments. This result 

confirms the findings in Kalin et al. (2013) that settling and sorption onto soil particles were major 

phosphorous removal processes in water. In the variably saturated compartment, 𝑙𝑙2 was the most 

sensitive parameter when groundwater level was shallow. Phosphorous in saturated soil layer is a 

function of sediment-bound phosphorus depositional fluxes in proportion to the respective 

thicknesses of the soil layer. However, none of the parameters in the variably saturated 

compartment was found sensitive in the second numerical experiment because the observed data 

was not sufficient to evaluate the unsaturated compartment.  

The sensitivities of newly added parameters  (e.g. soil parameters for the two-layer model, 

parameters in temperature stress function and water stress function, etc.) in this study were also 

evaluated. Figure 5.14 summarizes those added model parameters having high sensitivities for 

NO3, NH4, P, and TOC export based on the behavior simulation outputs from two numerical 

experiments. Van Genuchten soil parameters did not have direct impact on the nutrient exports 

from the wetland. Soil moisture estimations in the variably saturated compartment, which showed 

influences on nutrient budgets, are highly associated with these soil parameters. Besides, all 

nutrient exports did not show sensitive to the exponent 𝜀𝜀 in Eq. (1), indicating that the changing 

of reaction rate based on moisture content in the unsaturated soil did not affect the nutrient exports 

from the wetland. The area index 𝐾𝐾𝑐𝑐, which determines the fraction of bare soil and vegetation 

cover in the variably saturated compartment, was a sensitive parameter for NO3, NH4, and TOC 

exports in the variably saturated compartment. The potential soil evaporation rate and potential 

plant transpiration rate were determined by 𝐾𝐾𝑐𝑐  times potential evapotranspiration rate of the 
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variably saturated compartment. Change in 𝐾𝐾𝑐𝑐 can affect actual plant water uptake and eventually 

affect plant growth rate 𝑘𝑘𝑔𝑔𝑏𝑏,𝑤𝑤𝑤𝑤. Most of the nutrient constituents were sensitive to the plant growth 

rate (e.g. Figures 5.10 and 5.12). Temperature related coefficients (𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜), which adjust 

growth rate by affecting temperature stress and water stress, were among the most sensitive 

parameters in NH4, P, and TOC exports. 

 

3.5. Nitrogen budget 

The N, C, and P budgets and their major retention and removal pathways for ponded and 

variably saturated compartments during the study period for two numerical experiments are 

summarized in Tables 4, 5, and 6, respectively. The results of N and C were compared with those 

borrowed from the Expanded model (Sharifi et al., 2017) (Table 5.7). The results of the P budget 

were compared with those results simulated from the Original model (Kalin et al., 2013) (Table 

5.7). All the quantities of source and sink terms were normalized with the incoming load (shown 

in parentheses) to represent their absolute values. The values shown in the tables are means ± one 

standard deviation calculated from the behavioral set simulations. 

When assuming the groundwater was within the soil in the variably saturated compartment, 

the nitrogen budget from the Updated model was similar to that from the Expanded model, but 

there were small differences in some of the components in the nitrogen budget between the two 

models. The N export in the Updated model was less than that obtained by Sharifi et al. (2017) 

(244.0 ± 38.3 kg N versus 260.5 ± 30.4 kg N) Net organic N deposition (settling minus 

resuspension) in the ponded compartment was slightly higher than that from the Expanded model. 

Denitrification in the ponded compartment was slightly higher than that from the Expanded model. 
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However, denitrification in the variably saturated compartment was found about 70% of that 

estimated in the Expanded model. Ammonia volatilization in the ponded compartment was higher 

than that from the Expanded model, while the amount volatilized ammonia in the variably 

saturated compartment was higher than that from the Expanded model. The Updated model 

showed lower uncertainties in net settling, ammonia diffusion in ponded compartment and in 

volatilization and denitrification in the variably compartment compared to the Expanded model.  

For the second numerical experiment, which assumes free-drainage bottom boundary 

condition in the variably saturated compartment, some of the components in the nitrogen budget 

had different values compared with those from the first numerical experiment (Table 5.4). The 

major difference came from denitrification. The denitrification in the ponded compartment was 

higher than that in the first experiment (22.3 ± 10.6 kg N versus 14.2 ± 7.3 kg N). However, there 

was no denitrification in the variably saturated compartment in the second experiment. When using 

free-drainage bottom boundary condition in the variably saturated compartment, the entire soil in 

the banks of the wetland became unsaturated for most of the time. Thus, the denitrification hardly 

took place in the variably saturated compartment due to the aerated soil conditions. Volatilization 

in the variably saturated compartment was only a fraction of that obtained in the first experiment 

(0.06 ± 1.1 kg N versus 3.4 ± 4.4 kg N).  The outflow and volatilization in the ponded compartment 

were slightly lower than those from the first experiment, while the net settling, ammonia diffusion, 

and nitrate diffusion were slightly higher than those from the first experiment.  

 

3.6. Carbon budget 

The carbon budgets in the study wetland obtained from the behavior simulation outputs for 

two numerical experiments are shown in Table 5.5. For the first numerical experiment, during the 
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simulation period, a total of 3849.2 kg of organic carbon was transported into the wetland and 

283.1 kg of atmospheric carbon was fixed by wetland plants (net primary production). 2164.0 ± 

115.2 kg of carbon contributing to 56.2 ± 3.0% of incoming loading was washed out through 

outflow and 1379.9 ± 377.6 kg (35.8 ± 9.8% of loading) of carbon was removed by microbial 

respiration and emitted to the atmosphere. There was a small portion of DOC diffused to the soil 

layer (250.7 ± 171.2 kg as 6.5 ± 4.4% of loading) and was retained in the soil as a result of settling 

(124.6 ± 81.9 kg as 3.2 ± 2.1% of loading). The outflow, gaseous losses, and diffusion in the 

Updated model were similar to those from the Expanded model. However, in the ponded 

compartment, the deposition was lower than those from the Expanded model. The biomass 

accumulation was about 20% of that from the Expanded model (32.9 ± 0.2 kg versus 180.6 ± 88.3 

kg). In the variably saturated compartment, biomass accumulation showed higher value (250.2 ± 

8.2 kg versus 179.7 ± 87.9 kg) compared to those values from the Expanded model. All the 

components, except diffusion, had lower uncertainties compared with those from the Expanded 

model. For the Updated model, the modified plant equations had lower biomass estimation in the 

ponded compartment, which results in smaller amount of carbon returned to the ponded water. The 

Expanded model simulates plant growth in both ponded and variably saturated components 

without considering the water and temperature stress in a saturated condition. The estimated 

biomass accumulations were similar in both compartments. For the Updated model, biomass in 

the ponded compartment was much lower than that in the variably saturated compartment due to 

the water stress.  

One of the major differences between the two numerical experiments were the gaseous 

losses and diffusion. Although the gaseous loss in the ponded compartment was similar to that in 

the first experiment, the amount of gas emitted in the variably saturated compartment was much 
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lower than that estimated in the first experiment (1.0 ± 3.6 kg versus 105.7 ± 129.5 kg). Under the 

free-drainage assumption in the variably saturated compartment, the soil in the bank of the wetland 

hardly formed anaerobic conditions for CO2 and CH4 production. The diffusion in the second 

numerical experiment was higher than that in the first numerical experiment (384.2 ± 242.5 kg 

versus 250.7 ± 171.2 kg). Under the free-drainage assumption in the variably saturated 

compartment, when the ponded area shrank, the chemicals in the soil that belonged to the ponded 

compartment leached out of the soil with moisture flow. When the wetland expanded, the water 

took over the unsaturated part. Organic carbon diffused to the submerged soil due to the low 

concentration of organic carbon in the submerged soil. In addition, the biomass accumulation in 

the ponded compartment was similar to that from the first numerical experiment. However, the 

biomass in the variably saturated compartment was lower than that from the first numerical 

experiment (235.8 ± 10.6 kg versus 250.2 ± 8.2 kg). In the ponded compartment, soil is always 

saturated, plants suffered the same water stress in both numerical experiments. Moisture contents 

in the variably saturated compartment from the second numerical experiment were lower than 

those from the first numerical experiment during the simulation. Thus, plant growth was inhibited 

with lower soil moisture contents.   

 

3.7. Phosphorus budget 

The summary of the total phosphorus budget in the study wetland obtained from the 

behavior simulations is shown in Table 5.6. Compared with other nutrient constituents, the 

phosphorus budget is relatively simple because only a few processes can affect the phosphorus 

cycle. For the first numerical experiment, during the two-year study period, 42.5± 2.4 kg P 

(equivalent to 72.9 ± 4.1% of P load) was flushed out by outflow. 7.4 ± 2.5 kg P (12.6 ± 4.3% of 
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P load) was retained in the wetland through the process of settling. 5.5 ± 2.0 kg P was diffused to 

the bottom sediment contributing to 9.4 ± 3.4% of P load. The phosphorus budget did not show 

much change between the two numerical experiments. With the free-drainage bottom boundary 

condition applied in the second numerical experiment, the total phosphorous budget of each 

component was similar to those from the first numerical experiment. Sharifi et al. (2017) did not 

evaluate the phosphorous budget in the Expanded model. In this study, we compared our results 

with those from the Original model. The results of the total phosphorous budget from the Original 

model are shown in Table 5.7. Comparing between the results from the first numerical experiment 

using the Updated model and the results from the Original model, the outflow from the two 

versions of the model had similar estimations (42.5 ± 2.4 kg P versus 39.3 ± 5.1 kg P). The Updated 

model reports 19.7% less in deposition compared to the Original model. However, the diffusion 

was higher than those from the Original model (5.5 ± 2.0 kg P versus 4.0 ± 1.5 kg P).  

 

3.8. Plant growth and biomass prediction 

The result of the time series for simulated plant aboveground biomass in the study wetland 

from May 1995 to May 1997 is shown in Figure 5.15. Note that WetQual simulates total plant 

biomass (above + below ground). Above-ground biomass was calculated using the average 

belowground:aboveground biomass ratio (0.40) of wetland macrophytes from Whigham and 

Simpson (1978). The results are compared with the aboveground biomass from the once-a-year 

field measurements in mid-to-late October 1995 and 1996, respectively, carried out by Whigham 

et al. (2002). In Figure 5.15, field measurements are plotted at the time before plants go dormant 

in the model simulation. Model simulated biomass started from the initial value on May 9, 1995 

and then gradually increased for 66 days, then then rate of increase decreased when plants 
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approached maturity. The biomass reached the maximum value until plants went dormant on 

November 7, 1995. Biomass decreased during dormancy. On February 7, 1996, plants started 

growing again. The growing season in 1996 was 274 days. On November 6, 1996, plants went 

dormant until February 5, 1997. The biomass in 1995 was lower than that in 1996 because of the 

water stress associated with the lower soil moisture content in the variably saturated compartment 

in the growing season. In 1996, there was no or little water stress to influence plant growth. The 

highest biomass in 1996 was 447.8 g/m2, which was much higher than that in 1995 (214.3g/m2). 

In Figure 5.15, the model estimated biomass at the end of the growing season in 1995 and 1996 

were higher than those from the field measurements. Whigham et al. (2002) reported that due to 

the harvest time and method used, the biomass might be underestimated. It is reasonable that the 

model provided higher biomass estimations for two years, and the maximum biomass was 

simulated before the date of sampling. In addition, based on the information provided by Jordan 

et al. (2003), during the growing season, 70% to 90% of the wetland surface was covered by 

emergent vegetation, while during the nongrowing season, the covered area dropped to about 10% 

to 20% of the wetland surface. Based on this information, the ratio of biomass in terms of 

vegetation cover in the growing season and the nongrowing season varied from 3.5:1 (70%:20%) 

to 9:1 (90%:10%). The model simulated ratios of the maximum and the minimum biomass were 

4.3:1 and 6.3:1 for 1995 and 1996, respectively. The lowest ratio in 1995 was related to the dry 

period. The ratios in both 1995 and 1996 within the range reported in Jordan et al. (2003). 

Furthermore, we communicated the results with the authors from Whigham et al. (2002), 

specifically the temporal biomass dynamics. They found the general shape of the biomass curve 

reasonable (personal communication). This simulation proved that the equations for plant growth 
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applied in the Updated WetQual model are capable to simulate seasonal biomass variations in the 

wetland area.  

We further investigated the plant nutrient uptake in growing season in 1995 and 1996. The 

results of plant net primary productivity (NPP), nitrogen, and phosphorus uptake in growing season 

are shown in Table 5.8. The NPP represents the maximum plant biomass during the growing 

season. Plant uptake nitrogen in forms of ammonium-nitrogen and nitrate-nitrogen, and 

phosphorus in the form of inorganic phosphorus (orthophosphate). In 1995, the NPP was 214.32 

g/m2, and nitrogen and phosphorus uptake were 1.49 g/m2 and 0.47 g/m2, respectively. In 1996, 

NPP increased to 447.79 g/m2, and nitrogen and phosphorus uptake increased to 5.41 g/m2 and 

1.50 g/m2, respectively. The values of NPP, nitrogen, and phosphorus uptake in 1996 were 2.1, 

3.6, and 3.2 times of those in 1995, respectively. The water stress in 1995 inhibited plant growth 

and photosynthesis resulting in lower values of NPP, nitrogen, and phosphorus uptake. Whigham 

et al. (2002) measured total nitrogen, phosphorus in aboveground biomass for the study wetland 

in 1995 and 1996. As shown in Table 5.8, the total nitrogen and phosphorus reported from 

Whigham et al. (2002) were 1.70 g/m2 and 0.26 g/m2, respectively in 1995, and 3.53 g/m2 and 0.88 

g/m2, respectively in 1996. WetQual estimated plant nitrogen and phosphorus uptake higher than 

those reported from Whigham et al. (2002). The higher biomass estimation was likely related to 

higher estimated nutrient uptake. 

 

3.9. Implications of variably saturated compartment in WetQaul 

The results of this study showed that dividing the wetland into ponded and variably 

saturated compartment has impacts on biogeochemical cycles in wetland modeling. Although the 

Updated model showed good performance on estimating nutrient exports in the ponded 
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compartment, comparing the nutrient budgets from the Updated model (the first numerical 

experiment) to those from the Original model (results of nutrient budgets reported from the 

Original model are shown in Table 5.7) reveals some differences. For the nitrogen cycle, the net 

deposition, denitrification, and NO3 diffusion in the ponded compartment decreased in the Updated 

model. The deposition and diffusion in the ponded compartment were offset by separating wetland 

into ponded and variably saturated compartments. For the carbon cycle, the Updated model 

reported less carbon gas production than the Original model. The separation of the wetland 

compartments reduced the total area for microbial decomposition processes, which produce 

gaseous carbon (CO2+CH4) into the atmosphere. Implementing the variably saturated 

compartment to the wetland model did not have much impact on the phosphorus cycle, and this is 

likely due to the simplicity of the phosphorus cycle.  

The use of the two-layer model in the variably saturated compartment eliminates the 

numerical instability in the Updated model and produces reasonable moisture estimations for 

unsaturated soils. Besides, the two-layer model estimates actual plant water uptake that can be 

used to improve the wetland water budget and estimate plant water stress. The Updated model 

benefits from the adding of these detailed information for accurately estimating water budget and 

plant biomass. 

 

4. Summary and conclusion 

In this study, we modified the soil moisture movement and plant growth modules in a 

process-based biogeochemical model WetQual for wetland nutrient cycling. The two-layer model 

developed by He et al. (2021a) was coded into WetQual to simulate soil moisture dynamics in the 

variably saturated compartment of the wetland. The embedded two-layer model deals with various 
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atmospheric boundary conditions including precipitation, evapotranspiration, and ponding 

subjected to changing shallow groundwater levels within the soil. Plant water uptake was 

constrained by a water stress response function to better represent the plant water uptake in wetland 

environment. The primary productivity module was modified to consider environmental factors 

including temperature stress, water stress, and plant dormancy.  

The updated WetQual model (Updated model) was evaluated by applying it to a restored 

wetland located on Kent Island, Maryland by two numerical experiments using different bottom 

boundary conditions of moisture movement in the variably saturated compartment. The first 

numerical experiment assumed a zero-pressure head bottom boundary condition indicating 

presence of very shallow groundwater. Free-drainage bottom boundary condition was applied in 

the second numerical experiment. MC simulations were conducted using 100,000 parameter sets 

for the two numerical experiments. The simulated TN, NO3, NH4, ON, TOC, TSS, and P loads 

were compared against observed loads. Mass balances of N, C, and P were examined to understand 

the differences of source/sink of nutrients between two numerical experiments. The Kolmogorov-

Smirnov test was performed between the behavior and non-behavior parameter sets to evaluate the 

parameter sensitivity. Besides, the model was run using the best-estimated input parameters based 

on the results from the first numerical experiment to estimate the plant biomass under 

environmental stress in the study wetland.  

The results showed that the Updated model estimated weekly average of nutrient loads 

generally matched well with observations for both numerical experiments. The model had 

excellent performance in estimating NO3 and TOC loads and moderate performance in capturing 

ON, NH4, and TN loads, but not as good in estimating TSS and P loads. The model performances 

on TN, ON, and TOC loads improved, while the performance on NH4, NO3, and TSS loads slightly 
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decreased compared to those from Sharifi et al. (2017). Soil moisture contents in the variably 

saturated compartment estimated by the two-layer model were higher in the first numerical 

experiment but significantly lower in the second numerical experiment. Besides, the use of the 

zero-pressure head and free-drainage bottom boundary conditions applied in the variably saturated 

compartment had significant influences on NH4, TSS, and TOC exports in the ponded 

compartment.  

Sensitivity analysis revealed that the most sensitive parameters in the ponded and variably 

saturated compartments more or less confirmed the sensitive parameters of the Original and the 

Expanded models, but the order of sensitivities were not the same. The nitrogen cycle had high 

sensitivity to denitrification, ammonium ion distribution, and temperature. Microbial respiration, 

temperature, and plant growth were the most important processes affecting the carbon cycle. The 

Phosphorous cycle had high sensitivity to the settling and sorption processes in the ponded 

compartment. However, N, C, and P cycles did not show sensitivity to soil hydraulic parameters. 

Mass balance analysis showed that using different bottom boundary conditions for 

moisture flow in the variably saturated compartment influence N, C, and P budget. For N budget, 

the most notable differences appeared in the mass of volatilization and denitrification in the 

variably saturated compartment from the second numerical experiment, which were only a fraction 

of those from the first numerical experiment. The net deposition, denitrification, NH4 diffusion, 

and NO3 diffusion in the ponded compartment in the first numerical experiment were lower than 

those from the second numerical experiment. For C budget, the diffusion in the ponded 

compartment in the first numerical experiment was lower than that in the second numerical 

experiment. In the variably saturated compartment, the plant biomass in the first numerical 

experiment were higher than those in the second numerical experiment. Biomass in both numerical 
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experiments was lower in the ponded compartment and higher in the variably saturated 

compartment compared to the results from the Expanded model due to the water stress applied in 

the Updated model. For P, the outflow reported in the Updated model was higher than that from 

the Original model. Besides, the model uncertainties for sources/sinks components were generally 

smaller in all nutrient constituents compared to the results from Sharifi et al. (2017) and the 

Original model. 

The time series of the model estimated biomass in the study wetland using calibrated model 

parameters showed seasonal variations according to temperature and water stress in addition to the 

period of maturity and dormancy. The model estimated annual biomass predictions for 1995 and 

1996 showed reasonable seasonal variations and had a good match with field measurements. The 

modified equations for plant growth are capable of estimating plant biomass in wetland 

environment.   
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Table 5.1: The physical properties and van Genuchten hydraulic parameters of the root zone and 
vadose zone in the soil from variably saturated compartment of the study wetland 

Layer Depth 
(cm) 

Sand 
(%) 

Silt 
(%) 

Clay 
(%) 

𝜃𝜃𝑟𝑟 
(cm3cm-3) 

𝜃𝜃𝑠𝑠 
(cm3cm-3) 

𝛼𝛼 
(cm-1) 𝑛𝑛 𝐾𝐾𝑠𝑠 

(cm/day) 
Root zone 0-15 20 67 13 0.082 0.405 0.0034 1.566 26.7 

Vadose zone 15-73 15 64 21 0.074 0.380 0.0037 1.497 15.0 
 

Table 5.2: Model parameters considered random, their distributions and minimum and maximum 
values  

Parameters Distribution Min Max 
𝜃𝜃𝑟𝑟1 (cm3cm-3) U 0.039 0.126 
𝜃𝜃𝑟𝑟2 (cm3cm-3) U 0.037 0.110 
𝜃𝜃𝑠𝑠1 (cm3cm-3) U 0.363 0.447 
𝜃𝜃𝑠𝑠2 (cm3cm-3) U 0.333 0.428 
𝛼𝛼1 (cm-1) U 0.0015 0.0076 
𝛼𝛼2 (cm-1) U 0.0015 0.0089 

𝑛𝑛1 U 1.327 1.848 
𝑛𝑛2 U 1.284 1.745 

𝐾𝐾𝑠𝑠1 (cm/day) U 8.1 87.7 
𝐾𝐾𝑠𝑠2 (cm/day) U 5.1 44.4 

𝜀𝜀 U 0.01 1 
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (cm) U 5 25 
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 (℃) U 0 10 
𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (℃) U 10 20 
ℎ0 (cm) U 1 500 
ℎ50 (cm) U 500 2000 

p U 1 4 
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Table 5.3: Maximum and minimum of 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑁𝑁𝑁𝑁𝑁𝑁, and 𝐿𝐿𝑘𝑘 of the behavioral simulation results 
based on mass of export from observed and simulated exports of each constituent for two 
numerical experiments 

Numerical 
experiment Measure TN ON NH4 NO3 TSS TOC P 

1 

𝑀𝑀𝑀𝑀𝑀𝑀(%) Max 3.5 -4.5 16.1 50.2 25.2 -10.7 -16.8 
Min -23.9 -34.4 -25.8 11.2 -55.4 -14.6 -61.1 

𝑁𝑁𝑁𝑁𝑁𝑁 
Max 0.83 0.75 0.78 0.92 0.48 0.93 0.76 
Min 0.78 0.70 0.72 0.89 0.37 0.92 0.42 

𝐿𝐿𝑘𝑘 
Max 0.82 0.71 0.78 0.80 0.56 0.93 0.67 
Min 0.63 0.52 0.59 0.54 0.31 0.80 0.31 

2 

𝑀𝑀𝑀𝑀𝑀𝑀(%) Max 8.6 -3.3 14.3 54.4 51.0 7.8 -15.4 
Min -25.8 -34.2 -20.8 28.7 -73.3 -14.5 -57.2 

𝑁𝑁𝑁𝑁𝑁𝑁 Max 0.83 0.75 0.78 0.91 0.47 0.94 0.76 
Min 0.78 0.71 0.73 0.87 0.23 0.92 0.45 

𝐿𝐿𝑘𝑘 Max 0.84 0.72 0.80 0.67 0.57 0.93 0.68 
Min 0.62 0.53 0.62 0.51 0.22 0.80 0.33 
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Table 5.4: Nitrogen budget in the study wetland 

Component 
1st Numerical experiment 2nd Numerical experiment 

Ponded 
Compartment 

Variably saturated 
compartment Total Ponded 

Compartment 
Variably saturated 

compartment Total 

Watershed runoff 3849.2 N/A 3849.2 
(100%) 3849.2 N/A 3849.2 

(100%) 
Atmospheric 
depositiona 2164.0 ± 115.2 N/A 2164.0 ± 115.2 

(56.2 ± 3.0%) 2137.8 ± 123.3 N/A 2137.8 ± 123.3 
(55.5 ± 3.2%) 

Outflow 1274.2 ± 248.1 105.7 ± 129.5 1379.9 ± 377.6 
(35.8 ± 9.8%) 1211.3 ± 250.9 1.0 ± 3.6 1212.3 ± 254.5 

(31.5 ± 6.6%) 

Net depositionb 124.6 ± 81.9 N/A 124.6 ± 81.9 
(3.2 ± 2.1%) 126.6 ± 68.1 N/A 126.6 ± 68.1 

(3.3 ± 1.8%) 

Volatilization 32.9 ± 0.2 250.2 ± 8.2 283.1 ± 8.3 
(7.4 ± 0.2%) 32.9 ± 0.1 235.8 ± 10.6 268.7 ± 10.7 

(7.0 ± 0.3%) 

Denitrification 250.7 ± 171.2 N/A 250.7 ± 171.2 
(6.5±4.4%) 384.2 ± 242.5 N/A 384.2 ± 242.5 

(10.0 ± 6.3%) 

NH4 diffusionc 3849.2 N/A 3849.2 
(100%) 3849.2 N/A 3849.2 

(100%) 

NO3 diffusion 2164.0 ± 115.2 N/A 2164.0 ± 115.2 
(56.2 ± 3.0%) 2137.8 ± 123.3 N/A 2137.8 ± 123.3 

(55.5 ± 3.2%) 
Note: Results of each component in the nitrogen budget are summation over the simulation period; all units are in kg; numbers in 
parentheses are values normalized with runoff loading + atmospheric deposition. 
aAtmospheric deposition of nitrogen in the variably saturated compartment is assumed as water solute that is transported to the ponded 
part of the wetland by runoff. 
bNet deposition is equal to net organic settling minus resuspension. 
c(+) represents from water column to sediment layer and vice versa. 
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Table 5.5: Carbon budget in the study wetland 

Component 

1st Numerical experiment 2nd Numerical experiment 

Ponded 
Compartment 

Variably 
saturated 

compartment 
Total Ponded 

Compartment 

Variably 
saturated 

compartment 
Total 

Watershed runoff 3849.2 N/A 3849.2 
(100%) 3849.2 N/A 3849.2 

(100%) 

Outflow 2164.0 ± 115.2 N/A 2164.0 ± 115.2 
(56.2 ± 3.0%) 

2137.8 ± 
123.3 N/A 2137.8 ± 123.3 

(55.5 ± 3.2%) 

Gaseous lossesa 1274.2 ± 248.1 105.7 ± 129.5 1379.9 ± 377.6 
(35.8 ± 9.8%) 

1211.3 ± 
250.9 1.0 ± 3.6 1212.3 ± 254.5 

(31.5 ± 6.6%) 

Deposition 124.6 ± 81.9 N/A 124.6 ± 81.9 
(3.2 ± 2.1%) 126.6 ± 68.1 N/A 126.6 ± 68.1 

(3.3 ± 1.8%) 
Biomass 

accumulationb 32.9 ± 0.2 250.2 ± 8.2 283.1 ± 8.3 
(7.4 ± 0.2%) 32.8 ± 0.1 235.8 ± 10.6 268.7 ± 10.7 

(7.0 ± 0.3%) 

Diffusion 250.7 ± 171.2 N/A 250.7 ± 171.2 
(6.5±4.4%) 384.2 ± 242.5 N/A 384.2 ± 242.5 

(10.0 ± 6.3%) 
Note: Results of each component in the carbon budget are summation over the simulation period; all units are in kg; numbers in 
parentheses are values normalized with runoff loading. 
aGaseous carbon is in form of CO2 and CH4. 
bBiomass is measure of plant primary productivity. 
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Table 5.6: Phosphorous budget in the study wetland 

Component 

1st Numerical experiment 2nd Numerical experiment 

Ponded 
Compartment 

Variably 
saturated 

compartment 
Total Ponded 

Compartment 

Variably 
saturated 

compartment 
Total 

Watershed 
runoff 58.3  58.3  

(100%) 58.3  58.3 
(100%) 

Outflow 42.5 ± 2.4  42.5 ± 2.4 
(72.9 ± 4.1%) 37.9 ± 2.5  37.9 ± 2.5 

(65.0 ± 4.3%) 

Deposition 7.4 ± 2.5  7.4 ± 2.5 
(12.6 ± 4.3%) 7.0 ± 2.4  7.0 ± 2.4 

(12.0 ± 4.1%) 

Diffusion 5.5 ± 2.0  5.5 ± 2.0 
(9.4 ± 3.4%) 5.7 ± 2.0  5.7 ± 2.0 

(9.8 ± 3.4%) 
Note: Results of each component in the phosphorous budget are summation over the simulation period; all units are in kg; 
numbers in parentheses are values normalized with runoff loading. 
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Table 5.7: Nitrogen and carbon budgets from the Expanded model and the phosphorous budget form the Original model in the study 
wetland 

 
Component Ponded 

Compartmenta 

Variably 
saturated 

Compartmenta 
Totala Original Modelb 

N
itr

og
en

 b
ud

ge
t 

Watershed runoff 336.3 N/A 336.3 (95.8%) 336.3 (95.8%) 
Atmospheric deposition 14.6 N/A 14.5 (4.2%) 14.5 (4.2%) 

Outflow 260.5 ± 30.4 N/A 262.3 ± 55.9 (74.3 ± 8.7%) 269.2 ± 36.7 (76.7 ± 10.5%) 
Net deposition 81.5 ± 18.4 N/A 81.5 ± 18.4 (23.2 ± 5.2%) 64.6 ± 31.3 (18.4 ± 8.9%) 
Volatilization 11.9 ± 8.5 2.4 ± 4.6 14.3 ± 13.1 (4.1 ± 3.7%) 8.1 ± 6.8 (2.3 ± 1.9%) 
Denitrification 10.3 ± 5.5 69.1 ± 67.2 79.4 ± 72.2 (22.6 ± 20.6%) 27.9 ± 5.8 (7.9 ± 1.6%) 
NH4 diffusion 0.6 ± 3.7 N/A 0.6 ± 3.7 (0.2 ± 1.1%) -1.1 ± 2.8 (-0.3 ± 0.8%) 
NO3 diffusion 12.2 ± 3.5 N/A 12.2 ± 3.5 (3.5 ± 1.0%) 31.6 ± 5.0 (9.0 ± 1.4%) 

C
ar

bo
n 

bu
dg

et
 Watershed runoff 3849 N/A 3849 (100%) 3849 (100%) 

Outflow 2494 ± 148.5 N/A 2338.1 ± 173.4 (63.1 ± 3.9%) 2430 ± 152 (63.1 ± 4.0%) 
Gaseous losses 1308.2 ± 257.6 111.0 ± 145.8 1419 ± 403.4 (36.9 ± 10.5%) 1350 ± 269 (35.1 ± 7.0%) 

Deposition 162.5 ± 94 179.7 ± 87.9 162.5 ± 94.0 (4.2 ± 2.4%) 172 ± 79 (4.5 ± 2.1%) 
Biomass accumulation 180.6 ± 88.3 179.7 ± 87.9 360.1 ± 176.2 (9.4 ± 4.6%) 176 ± 88 (4.6 ± 4.3%) 

Diffusion 260.7 ± 117.2 N/A 260.7 ± 117.2 (6.8 ± 3.0%) 269 ± 122 (7.0 ± 3.2%) 

Ph
os

ph
or

us
 

bu
dg

et
 Watershed runoff    58.3 (100%) 

Outflow    39.3 ± 5.1 (67.4 ± 8.8%) 
Deposition    18.8 ± 5.0 (32.3 ± 8.6%) 
Diffusion    4.0 ± 1.6 (6.6 ± 2.7%) 

Note: Results of each component in the nitrogen, carbon, and phosphorus budgets are summation over the simulation period; all units are 
in kg; numbers in parentheses from nitrogen budget are values normalized with runoff loading + atmospheric deposition; numbers in 
parentheses from carbon and phosphorus budgets are values normalized with runoff loading.  
a Results of ponded compartment, variably saturated compartment, and total in nitrogen and carbon budgets are from Sharifi et al. 
(2017). 
b Results of nitrogen budget and phosphorus budget are from Kalin et al. (2013); results of carbon budget are from Sharifi et al. (2013). 
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Table 5.8: Plant nutrient uptake during growing season in the study wetland in 1995 and 1996 

 
Net Primary 
Productivity 

(g/m2) 

Nitrogen 
Uptakea 
(g/m2) 

Phosphorus 
Uptakeb 
(g/m2) 

Total Nitrogen  
reported in 

Whigham et al. 
(2002)c 
(g/m2) 

Total Phosphorus  
reported in 

Whigham et al. 
(2002)d 
(g/m2) 

1995 214.32 1.49 0.47 1.70 0.26 
1996 447.79 5.41 1.50 3.53 0.88 

Average 346.05 3.45 0.99 2.62 0.57 
Note: a Nitrogen is in form of total ammonia-nitrogen (NH4

+ and NH3) 
b Phosphorus is in form of orthophosphate (PO4

3−, HPO4
2−, H2PO4

−, and H3PO4) 
c Total nitrogen reported in Whigham et al. (2002) was measured from aboveground biomass 
d Total phosphorus reported in Whigham et al. (2002) was measured from aboveground biomass 
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Figure 5.1: Schematic representations of the wetland compartmentalization into ponded and 
variably saturated compartments with A) shallow groundwater (water table same as water surface 
in wetland), and B) deep groundwater ; W stands for water column; S stands for soil column; 0, 1, 
and 2 represent unsaturated soil layer, aerobic sediment layer, and anaerobic sediment layer; 
subscripts p and u refer to ponded and variably saturated compartments, respectively; ℎ(𝑡𝑡) and 
ℎ(𝑡𝑡 + ∆𝑡𝑡), represent water level in the ponded compartment at times t and 𝑡𝑡 + ∆𝑡𝑡, respectively. 

 

 

Figure 5.2: Schematic illustration of soil profile and the two-layer model depicting the root zone 
and vadose soil below (He et al., 2020a). d is the ponding depth; 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the first layer (zoot zone) 
depth; 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is depth of water table at time t; 𝑞𝑞0, 𝑞𝑞1 and 𝑞𝑞2 are the top, middle and bottom flux 
(positive downward), respectively.  
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Figure 5.3: Modified water stress response function 𝛼𝛼(ℎ) (Eq. 8) for wetland plants (using ℎ0=330 
cm, ℎ50=1000 cm, and p=2) 

 

 

Figure 5.4: Impact of mean air temperature on plant growth for a plant with 𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏=0℃ and 
𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜=15℃.  
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Figure 5.5: Study wetland and its watershed (dashed lines) draining into the wetland (modified 
from Kalin et al. (2013)). 
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Figure 5.6: (A) Hydrology of the study wetland over the study period including average water 
depth, inflow, and outflow in ponded compartment; (B) Weekly-average outflow concentration of 
NO3, NH4 and ON; (C) Outflow concentration of P and TOC from May 1995 to May 1997. 𝑄𝑄𝑖𝑖𝑖𝑖 is 
inflow volume; 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 is outflow volume; 𝑄𝑄𝑝𝑝 is precipitation volume falling on the wetland. 
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Figure 5.7: Average soil moisture content in variably saturated compartment from (A) the first 
numerical experiment and (B) the second numerical experiment. Grey bands represent standard 
deviations of moisture contents form 100,000 Monte Carlo simulation around mean values of 
moisture content. 
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Figure 5.8: Relation between 𝐸𝐸𝑛𝑛𝑛𝑛  from 100,000 Monte Carlo simulations of two numerical 
experiments. Blues solid lines represent the trend lines of scatters. Black solid lines represent 
identity lines (1:1 line). 
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Figure 5.9: Model estimated daily actual transpiration rate compared with daily potential 
transpiration of plants in variably saturated compartment from (A) the first numerical experiment, 
and (B) the second numerical experiment. 
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Figure 5.10: Summary of the K-S test and order of sensitivities based on NH4 export for (A) ponded 
and (B) variably saturated compartments from (1) the first and (2) the second numerical 
experiments, respectively. 

 

Figure 5.11: Summary of the K-S test and order of sensitivities based on NO3 export for (A) ponded 
from (1) the first and (2) the second numerical experiments, respectively. No parameters were 
found sensitive for the variably saturated compartment.   
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Figure 5.12: Summary of the K-S test and order of sensitivities based on TOC export for (A) 
ponded and (B) variably saturated compartments from (1) the first and (2) the second numerical 
experiments, respectively. 
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Figure 5.13: Summary of the K-S test and order of sensitivities based on P export for (1) ponded 
and (2) variably saturated compartments from (A) the first and (B) the second numerical 
experiments, respectively.  
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Figure 5.14: Summary of the K-S test and order of sensitivities of newly added parameters based 
on (A) NO3, (B) NH4, (C) P and (D) TOC exports, for variably saturated compartment from (1) 
the first and (2) the second numerical experiments, respectively. 

  



191 
 

 

Figure 5.15: Model estimated and field measured plant biomass of the study wetland. Field 
measured plant biomass were obtained from Whigham et al. (2002). 
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Chapter 6: Conclusions 

1. Summary and Conclusions 

Soil moisture is one of the key variables in hydrological and biogeochemical processes. 

Simulating water movement in variably saturated soils in the root zone and vadose zone is 

important in land system models. Richard’s Equation (RE) (Richards, 1931) is a commonly used, 

physical-based relationship that describes unsaturated flow in porous media. However, simulating 

water moisture flow in variably saturated soils with relatively shallow water table and dynamic 

atmospheric conditions is challenging due to high non-linear behavior of RE. In this study, we 

developed a new numerical solution to the one-dimensional (1-D) RE, which simulates depth-

averaged soil moisture contents in a multiple layer soil profile under dynamic atmospheric 

condition including precipitation, evapotranspiration, and ponding subject to changing 

groundwater level. The solution converts the partial differential equation of RE to several coupled 

ordinary differential equations, which are solved explicitly using Heun’s method. The proposed 

vertically-averaged RE solution was tested against analytical solutions, finite element RE solver 

(HYDRUS 1-D), and field observations. The results indicate that the numerical solution was robust, 

stable, and efficient in predicting depth-averaged soil moisture and water flux, which makes the 

solution trustworthy in hydrological modeling. In addition, the two-layer version of the solution 

was integrated into a wetland model, WetQual, to improve the soil moisture estimation in 

unsaturated soil of the wetland and further improve the biochemical processes in wetland soil. 

Multiple analyses were performed and the major finding emphasized the significance of the role 

that soil moisture dynamics play in wetland nutrient cycles and plant biomass. 
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In Chapter 1, four major objectives were presented. Each of these objectives is summarized 

below, and following that, the most important findings are listed. 

1.1. Objective 1 Develop a two-layer vertically-averaged RE solution to simulate soil moisture 

dynamics under dynamic atmospheric conditions subject to relatively shallow groundwater 

table 

A vertically-averaged form of one-dimensional RE was derived to simulate vertical 

unsaturated water movement in a two-layered soil. The two-layer model simulates averaged soil 

moisture content by connecting hydroclimate conditions to the vadose zone with shallow and deep 

water tables (WTs). The numerical model was obtained by replacing RE with two-coupled ODEs 

and solutions are obtained numerically using the simple Huen’s method. The numerical method is 

mass-conservative. The performance of the two-layer model was investigated in terms of 

computational accuracy and efficiency by comparison with HYDRUS as a reference model for 

three simulation scenarios, free-drainage at the bottom of the soil profile, WT at the bottom of the 

soil domain, and falling WT. Three soil textures with high, medium, and low permeability and 

different combinations of plant transpiration and rainfall rates were considered. The following 

conclusions are drawn: 

1. The two-layer model was robust and accurate in simulating variably saturated flows. It 

can capture the dynamics of depth-averaged soil moisture under different surface flux boundary 

conditions (BCs) in the presence of deep and shallow water table. Overall, simulated cumulative 

fluxes agreed very well with those from HYDRUS for all scenarios. Although some relatively 

small discrepancies of moisture estimates between the two models were observed, the RMSE 

values, overall, indicate excellent model performance. 
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2. The two-layer model captured actual evaporation dynamics well in root zone, mimicking 

the behavior of the root zone or the biologically active sediment layer in wetlands. 

3. The two-layer model can capture the dynamics of average soil moisture above the water 

table within the root zone and the lower vadose soil as the WT retreats. 

4. The CPU time required to run the two-layer model for numerical experiments were less 

than that for HYDRUS. 

 

1.2. Objective 2 Perform an in-depth assessment of the two-layer model to evaluate its 

strength and weakness in simulating soil moisture content under complex and changing 

environments  

The two-layer model was evaluated with two numerical experiments and a site-level 

application. In the first numerical experiment, the model was ran for 231 soil textures under various 

atmospheric and bottom boundary conditions with soil profile depth varied from 10 cm to 400 cm. 

The thickness of the root zone layer and the second layer were varied from 10 cm to 200 cm at 10 

cm intervals. Soil moisture estimates were compared with vertically averaged HYDRUS simulated 

nodal values as a reference. The second numerical experiment was carried to assess the 

performance of the model with two layers of contrasting (high and low) permeabilities. Thirdly, 

the two-layer model was applied to a SCAN site to simulate site-level soil moisture content of two 

soil layers under real atmospheric and field conditions. BMC methodology was integrated with the 

two-layer model for model calibration and uncertainty estimation. The following conclusions were 

drawn: 
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1. Among 92,400 simulations, the two-layer model showed excellent performance with 

free-drainage boundary condition with 99.8% of the total simulations having RMSE ≤0.015; with 

the zero-pressure head boundary condition representing water table, this percentage became 87.5%. 

2. The two-layer model had excellent performance (RMSE≤0.015) for soil textures with 

one of the sand, silt, and clay separates less than about 30% for free-drainage and zero-pressure 

head bottom boundary conditions. In addition, the two-layer model showed good skill in estimating 

layer averaged moisture contents for soil domains having the root zone depth greater than 10 cm 

and the lower vadose soil layer thickness less than 150 cm for free-drainage bottom boundary 

condition. For zero-pressure head bottom boundary condition, the model performed very well with 

the first layer thickness between 30 cm to 70 cm and the second layer between 20 cm to 100 cm. 

3. The two-layer model showed satisfactory performance in simulating soil moisture 

contents and top and bottom fluxes as well as actual plant water uptake in stratified soils (soil 

layers with contrasting permeabilities). Compared to the finite element model HYDRUS, results 

from the two-layer model showed RMSE values smaller than 0.02 for all simulations. The two-

layer model solution deals with contrasting hydraulic conductivity properly. 

4. The results of the model application indicate that the two-layer model can deal with layer 

averaged soil moisture modeling at field scale with appropriate input data. The model performance 

was found to be good with RMSE values ≤0.023 and NSE values ≥ 0.62 during both calibration 

and validation periods. 

5. The uncertainty in soil characteristic parameters and simulated moisture content was 

computed using the Bayesian Monte Carlo method. Much of the uncertainty was attributed to 

observational, hydroclimate data, and model structural uncertainties, while parametric uncertainty 
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was found to be very small after conditioning on the observed moisture content data. Besides, all 

model parameters were identifiable using the observed data as evaluated by the K-S test. BMC 

methodology constrained all model parameters very well using informed prior distributions. 

 

1.3. Objective 3 Extend the two-layer solution of depth-averaged RE to a multiple Layer-

Averaged RE solution to predict high vertical resolution soil moisture contents and the 

stratified soil profile with multiple soil textures 

The solution of the two-layer approximation of RE was extended to a multi-layer-averaged 

numerical scheme of Richards equation, named LARE. The solution of LARE converted the partial 

differential equation of RE into multiple coupled ordinary differential equations derived from the 

integrated form of RE. Several coupled governing equations are solved by explicit Heun’s method 

to describe layer averaged soil moisture contents for multiple soil layers. The proposed model is 

designed for simulating soil moisture dynamics in layered or stratified soils under various 

atmospheric conditions and with a switching bottom boundary condition controlled by dynamic 

groundwater level. LARE performance was compared against analytical solutions, finite element 

RE solution by HYDRUS 1-D, and field-scale soil moisture observations from SCAN dataset. The 

following conclusions were drawn: 

1. LARE has the capability to simulate soil moisture in both homogeneous and 

heterogeneous soil profiles with either fine or coarse grids for different upper and lower boundary 

conditions. 
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2. LARE showed excellent performance with free drainage bottom boundary condition for 

various soil depth and layer thicknesses, while the model performance dropped for deep soil 

profiles with fewer layers for zero-pressure head bottom boundary condition. 

3. LARE perfectly estimated soil moisture contents with dynamic shallow groundwater 

level within the soil column without any convergence issues. With the correct soil moisture 

prediction, the actual plant water uptake was properly estimated. 

4. LARE showed good performance under real soil and atmospheric conditions at site level 

application. The uncertainty analysis showed that parametric uncertainty contributed to the overall 

uncertainty the most, while the model structural uncertainty was very small. 

 

1.4. Objective 4 Improve the soil moisture module and plant growth/death module in 

WetQual and evaluate the performance of the updated WetQual 

We modified the soil moisture movement and plant growth modules in a process-based 

biogeochemical model WetQual for wetland nutrient cycling. The two-layer model developed in 

Chapter 2 was integrated into WetQual to simulate soil moisture dynamics in the variably saturated 

compartment of the wetland. The embedded two-layer model deals with various atmospheric 

boundary conditions including precipitation, evapotranspiration, and ponding, subjected to 

changing shallow groundwater levels within the soil. Plant water uptake was constrained by a 

modified S-shape water stress response function to better represent the plant water uptake in 

wetland environment. The primary productivity module was modified to consider environmental 

factors including temperature stress, water stress, and plant dormancy. The updated WetQual 

model (Updated model) was evaluated by applying it to a restored wetland located on Kent Island, 
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Maryland by two numerical experiments using different bottom boundary conditions of moisture 

movement in the variably saturated compartment. The first numerical experiment assumed a zero-

pressure head bottom boundary condition indicating the presence of very shallow groundwater. 

Free-drainage bottom boundary condition was applied in the second numerical experiment. MC 

simulations were conducted using 100,000 parameter sets for the two numerical experiments. The 

nutrient exports of total nitrogen (TN), nitrate-nitrogen (NO3), ammonium-nitrogen (NH4), organic 

nitrogen (ON), total organic carbon (TOC), inorganic phosphorus (P), and total suspended 

sediment (TSS) were compared with observed data. In addition, model simulated plant biomass 

and plant nutrient uptake were compared with field measurements. The following conclusions 

were drawn: 

1. The Updated model estimated weekly average of nutrient loads generally matched well 

with observations for both numerical experiments. The model had excellent performance in 

estimating NO3 and TOC loads and moderate performance in capturing ON, NH4, and TN loads, 

but not as good in estimating TSS and P loads. 

2. Soil moisture contents in the variably saturated compartment estimated by the two-layer 

model were higher when applying zero-pressured head bottom boundary condition than those 

obtained by applying free-drainage bottom boundary condition. 

3. The use of the zero-pressure head and free-drainage bottom boundary conditions applied 

in the variably saturated compartment had significant influences on NH4, TSS, and TOC exports 

in the ponded compartment. 

4. Sensitivity analysis revealed that the nitrogen cycle had high sensitivity to denitrification, 

ammonium ion distribution, temperature, and thickness of the anaerobic soil layer. Mineralization 



199 
 

of organic carbon under aerobic condition, oxidation of DOC, respiration, temperature, and plant 

growth were the most important processes affecting the carbon cycle. The phosphorous cycle had 

high sensitivity to the settling and sorption processes in the ponded compartment. However, soil 

parameters did not show sensitivity to N, C, and P exports in the ponded compartment. 

5. Mass balance analysis showed that using different bottom boundary conditions for 

moisture flow in the variably saturated compartment influence N, C, and P budget. Comparison of 

nutrient budgets between the Updated model and the Original model without separating the 

wetland into two compartments, the differences were observed, indicating that dividing wetland 

into ponded and variably saturated compartment can affect wetland nutrient biogeochemical cycles. 

6. The time series of the model estimated biomass in the study wetland using calibrated 

model parameters showed seasonal variations according to temperature and water stress in addition 

to the period of dormancy. The model estimated annual biomass predictions for 1995 and 1996 

had a good match with field measurements. 

 

2. Future Research 

In this dissertation, we have presented a novel vertically-averaged numerical solution to 

RE. It brings many possibilities for future work, which can be undertaken in the following areas: 

The numerical solutions of the vertically-averaged RE are based on the mixed form of RE. 

In a fully saturated soil condition, the mixed form of RE may underestimate the water flux between 

soil layers. The numerical solutions could be derived based on the head form of RE using the 

vertically-averaged technique. By doing this, fluxes between soil layers can be accurately 

estimated when the soil profile is saturated. 
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The solutions of the two-layer model and LARE could be used in inverse modeling studies 

for estimating hydraulic properties for layered soils by coupling them with the Bayesian 

framework or Markov chain Monte Carlo (MCMC) method. In practice, soil physical properties, 

such as percentage of sand, silt, and clay, bulk density, and organic content are measured for certain 

depth of the soil. It is very convenient to estimate soil hydraulic properties for each soil layer using 

vertically-averaged solution of RE. The advantage of this approach is that it can be used to estimate 

soil hydraulic properties at larger spatial scales. 

The bottom boundary condition applied in the current solution of vertically-averaged RE 

is groundwater controlled, which can switch between zero-pressure head and free-drainage based 

on the groundwater level as model input. However, in large-scale hydrological modeling, 

groundwater level data is often difficult to obtain and sometimes the database has insufficient 

monitoring data. I suggest adding a subroutine that can track groundwater table within the soil 

profile. This subroutine can update groundwater depth during the iterations according to the 

moisture content or pressure head changes between two soil layers. By adding this feature, the 

two-layer model and LARE can fully connect the groundwater and atmosphere processes. 

The current Earth system models hardly consider full three-dimensional (3-D) numerical 

solutions for surface-subsurface flow modeling because the 3-D solutions are computationally too 

expensive in large-scale applications. Alternatively, the quasi 3-D models, which couple 1-D 

variably saturated flow models with lateral flow equations, can be an alternative to model surface-

subsurface flow (e.g. Yakirevich et al., 1998; Shen and Phanikumar, 2010; Hazenberg et al., 2015). 

The lateral flow equations can be added between grids in the model domain where 1-D vertically-

averaged RE is applied to link lateral flow between grids. 
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LARE can be coupled with some watershed models or Earth system models to improve 

their performance in predicting moisture contents. For example, the Community Land Model 

version 5 (CLM 5) (Lawrence et al., 2019) simulates soil moisture contents in a 50-meter soil 

profile with 25 layers using finite-difference approximations of RE. The solution employs a zero-

flux bottom boundary condition and is solved using implicit time discretization scheme. However, 

this lower boundary condition is relatively simple that can be improved. With several features 

added, LARE can be capable to simulate soil moisture in complex environmental conditions. First, 

more than one plant root distribution function can be added, such as those developed by Feddes 

(1982), Gale and Grigal (1987), and Jackson et al. (1996). These can be applied to different plant 

types. Second, the root growth models (such as Šimůnek and Suarez, 1993; Pagès et al., 2004; 

Leitner et al., 2010) can be added to represent phenology to better estimate plant water uptake 

across different seasons. Third, the groundwater tracking algorithm mentioned above can be added 

to better couple the interactions between groundwater and atmosphere. 

The vertically-averaged solution to RE has shown its robustness in simulating averaged 

soil moisture contents. It will have great significance if this vertically-averaged numerical method 

is applied to another PDE, advection-dispersion differential equation, to simulate depth-averaged 

contaminant transport in porous media. It could be faster than current advection-dispersion 

equation solvers and produce relatively accurate results in simulating contaminant movement. 

.
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