
 

 

 

 

 

Elucidating Interactions within Photoautotroph-Methanotroph Cocultures at Both Systems 

and Molecular Levels 

 

by 

 

Kiumars Badr 

 

 

 

 

A dissertation submitted to the Graduate Faculty of 

Auburn University 

in partial fulfillment of the 

requirements for the Degree of 

Doctor of Philosophy 

 

Auburn, Alabama 

August 7, 2021 

 

 

 

 

Keywords: Photoautotroph, Methanotroph, Cocultures, Biogas Conversion, Kinetic Models, 

Genome-Scale Models 

 

 

Copyright 2021 by Kiumars Badr 

 

 

Approved by 

 

Jin Wang, Chair, Walt and Virginia Woltosz Endowed Professor of Chemical Engineering 

Q. Peter He, Co-chair, Associate Professor of Chemical Engineering 

Andrew Adamczyk, Assistant Professor of Chemical Engineering  

Alexander Beliaev, Biologist (Team Lead), Pacific Northwest National Laboratory 

Marina Kalyuzhnaya, Associate Professor of Biology, San Diego State University 

Evert Duin, Professor of Chemistry and Biochemistry



2 

 

Abstract 

 

 

 In the US, the biogas produced from anaerobic digestion (AD) of industrial, municipal and 

agricultural waste streams has a great potential as a renewable feedstock. To tap into the immense 

biogas potential while reducing greenhouse gas (GHG) emissions, effective biotechnologies such 

as methanotroph-photoautotroph (M-P) coculture that can operate at ambient pressure and 

temperature without requiring biogas cleaning/upgrading are urgently needed. Although it has 

been recognized that microbial communities offer a number of advantages over monocultures, the 

utilization of microbial communities for biotechnological applications have been limited. This 

work aims to help change that by developing effective experimental and computational tools to 

enable the exploration of interactions in microbial communities. 

This study investigates and addresses the following major challenges in developing an M-

P coculture-based biotechnology: (1) lack of experimental and computational tools to efficiently 

and accurately characterize the coculture in real-time; (2) lack of tools and methodologies in 

determining largely unknown interspecies dependencies and their contributions among the species; 

(3) lack of understanding and modeling strategies to quantitatively characterize the highly complex 

dynamics of the coculture cells and their metabolic interactions over time, which hinders the design 

and scale-up of M-P photobioreactors, as well as the optimization and control of operation 

conditions. 

In this work, the advantages of the M-P coculture over sequential photoautotroph and 

methanotroph single cultures for biogas conversion are investigated. An experimental-

computational protocol is proposed for fast, easy and accurate quantitative characterization of M-

P cocultures. A semi-structured kinetic model is proposed that can accurately predict the coculture 

growth under a wide range of cultivation conditions. A genome-scale metabolic network model 
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(GEM) is employed to develop steady-state M-P coculture models, to postulate potential molecular 

interactions responsible for the enhanced growth observed in the coculture. The kinetic model and 

coculture GEM model were utilized to develop a dynamic GEM model that can determine the 

metabolic flux profile and contribution of mutualistic interactions over time.  
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: Introduction 

1.1 Greenhouse gases and its environmental impact 

Greenhouse gases (GHGs) in the atmosphere have an important influence on the climate 

of our planet. Simply stated, GHGs impede the outward flow of infrared radiation more effectively 

than they impede incoming solar radiation. Because of this asymmetry, the earth, its atmosphere, 

and its oceans are warmer than they would be in the absence of such gases [1].  

The major GHGs are water vapor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). 

Without the naturally occurring GHGs (primarily water vapor and CO2), the earth's average 

temperature would be about 33°C (59°F) colder than it is [2], and the planet would be much less 

suitable for human habitation. The possible warming due to increased concentrations of these gases 

is called ''greenhouse warming." An overview of U.S. GHGs emissions is shown in Figure 1 [3]. 

While CO2 emissions come from a variety of natural sources, human-related emissions are 

responsible for the increase that has occurred in the atmosphere since the industrial revolution [4]. 

The main human activity that emits CO2 is the combustion of fossil fuels (coal, natural gas, and 

oil) for energy and transportation, although certain industrial processes and land-use changes also 

emit CO2. The main sources of CO2 emissions in the United States are shown in Figure 2a. CO2 

is constantly being exchanged among the atmosphere, ocean, and land surface as it is both 

produced and absorbed by many microorganisms, plants, and animals. However, emissions and 

removal of CO2 by these natural processes tend to balance, absent anthropogenic impacts [5]. 

In 2019, CH4 accounted for about 10 percent of all U.S. GHG emissions from human 

activities [6]. Methane's lifetime in the atmosphere is much shorter than CO2, but CH4 is more 

efficient at trapping radiation than CO2 [6]. Pound for pound, the comparative impact of CH4 is 25 

times greater than CO2 over a 100-year period [7]. 
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Figure 1. Total U.S. Emissions in 2019 = 6,558 Million Metric Tons of CO2 equivalent (excludes 

land sector). Percentages may not add up to 100% due to independent rounding [3]. 

 

CH4 is emitted from energy, industry, agriculture, land use, and waste management 

activities, are shown in Figure 2b. Domestic livestock such as cattle, swine, sheep, and goats 

produce CH4 as part of their normal digestive process. These animals have a fore-stomach (or 

rumen) containing microbes called methanogens, which are capable of digesting coarse plant 

material and which produce methane as a by-product of digestion (enteric fermentation): this 

methane is released to the atmosphere by the animal belching [8]. Also, when animal manure is 

stored or managed in lagoons or holding tanks, CH4 is produced [6]. Natural gas and petroleum 

systems are the second largest source of CH4 emissions in the United States. CH4 is generated in 

landfills as waste decomposes and in the treatment of wastewater. Landfills are the third-largest 

source of CH4 emissions in the United States [9]. CH4 is also generated from domestic and 

industrial wastewater treatment and from composting and anerobic digestion. CH4 is also emitted 

https://www.epa.gov/ghgemissions/overview-greenhouse-gases#colorbox-hidden
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from several natural sources. Natural wetlands are the largest source, emitting CH4 from bacteria 

that decompose organic materials in the absence of oxygen [6].  

 

 

 

Figure 2. Source of U.S. (a) CO2 and (b) CH4 emissions in 2019. All emission estimates from 

the Inventory of U.S. GHG Emissions and Sinks: 1990–2019 (excludes land sector) [3]. 

 

1.1.1 Impacts of climate change 

Climate change will have many kinds of impacts. Climate change will affect ecosystems 

and human systems—such as agricultural, transportation, and health infrastructure—in ways we 

are only beginning to understand (see Figure 3). There will be positive and negative impacts of 

climate change, even within a single region. For example, warmer temperatures may bring longer 

growing seasons in some regions, benefiting those farmers who can adapt to the new conditions 

but potentially harming native plant and animal species [10]. In general, the larger and faster the 

changes in climate are, the more difficult it will be for human and natural systems to adapt [10]. 

a b 

https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
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Unfortunately, the regions that will be most severely affected are often the regions that are the 

least able to adapt.  

Developed nations, including the United States, also will be affected. For example, most 

models indicate that snowpack is likely to decline on many mountain ranges in the West, which 

would bring adverse impacts on fish populations, hydropower, water recreation, and water 

availability for agricultural, industrial, and residential use [11]. However, wealthy nations have a 

better chance of using science and technology to anticipate and adapt to sea level rise, threats to 

agriculture, and other climate impacts. 

 

Figure 3. Climate changes could have potentially wide-ranging effects on both the natural 

environment and human activities and economies. Source: U.S. Environmental Protection 

Agency [12]. 

 

Polar regions are already experiencing major changes in climate. Like the proverbial canary 

in the coal mine, changes in the polar regions can be an early warning of things to come for the 

rest of the planet, and the environmental changes now being witnessed at higher latitudes are 
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alarming. For example, Arctic Sea ice cover is decreasing rapidly, and glaciers are retreating and 

thinning. NASA data show that Arctic Sea ice shrunk to a new record low in 2007 [13]; 24 percent 

lower than the previous record (2005), and 40 percent lower than the long-term average [13].  

A number of ecosystem changes, such as plants flowering earlier in the year and declines 

in animal species that depend on sea ice for habitat, have been attributed to the strong warming 

observed at northern latitudes [14]. Changing climate is also having human impacts: some Alaskan 

villages have been moved to higher ground in response to increasing storm damage, and the 

thawing of permafrost is undermining infrastructure, affecting houses, roads, and pipelines in 

northern communities around the world [14]. 

1.1.2 Reducing GHGs Emissions 

Most climate and integrated assessment models project that the concentration of 

atmospheric CO2 would have to stop increasing (and perhaps start decreasing) by the second half 

of the century for there to be a reasonable chance of limiting warming and the associated dangerous 

climate impacts. The focus of climate mitigation is to reduce energy sector emissions by 80-100 

percent, requiring massive deployment of low-carbon technologies between now and 2050 [15]. 

Most climate mitigation technologies are intended to decrease the rate at which we take additional 

carbon from fossil fuel reservoirs and ecosystems and add it to the atmosphere as CO2. These 

include renewable electricity, increased energy efficiency, and carbon capture and storage of 

emissions from fossil power plants [16].  

Progress toward these targets could be made by deploying negative emissions technologies 

(NETs), which remove carbon from the atmosphere and sequester it [15]. Under the present 

conditions, where fossil CO2 is continuously added to the atmosphere, removing CO2 from the 

atmosphere and storing it has exactly the same impact on the atmosphere and climate as 
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simultaneously preventing emission of an equal amount of CO2 [15]. These negative emissions 

technologies, or NETs, have received much less attention by researchers than traditional mitigation 

technologies. NETs have been part of the portfolio to achieve net emissions reductions, at least 

since reforestation, afforestation, and soil sequestration were brought into the United Nations 

Framework Convention on Climate Change, albeit as mitigation options, more than two decades 

ago. Recent analyses found that deploying NETs may be less expensive and less disruptive than 

reducing some emissions, such as a substantial portion of agricultural and land-use emissions and 

some transportation emissions [15]. 

Using biological processes to increase carbon stocks in microorganism, forests, and 

wetlands is the first way to mitigate GHGs, and then the second way is production of energy from 

biomass, while capturing and storing the resulting CO2 emissions. Third, using chemical processes 

to capture CO2 directly from the air and then sequester it in geologic reservoirs, and forth, 

enhancing geologic processes that capture CO2 from the atmosphere and permanently bind it with 

rocks. In this work, we satisfy first two ways of GHGs mitigation by using a novel coculture 

system. Since source of GHGs are broad and different, our group focus on biogas, specifically the 

biogas produced from anaerobic digestions of waste treatment facilities.  

1.2 Immense potential of biogas- products and challenges 

1.2.1 Biogas production 

Here is an overview of the proposed biotechnology in capturing biogas and producing high 

value fuels and chemicals (Figure 4).  
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Figure 4. An overview of biotechnology (the coculture system) in wastewater treatment industry 

 

Biogas is a renewable and valuable energy resource as a byproduct of anaerobic digestion. 

Anaerobic digestion is a series of biological processes in which microorganisms digest plant and/or 

animal material in sealed containers, producing biogas, which is a mixture of CH4, CO2 and other 

gases. The organic material left over, known as digestate, is rich in organic matter and nutrients 

such as nitrogen, phosphate and potash. Typically, biogas contains 50-70% CH4 and 30-50% CO2 

and the ratio of these two gases in biogas depends on the substrate, operating conditions and pH 

among other factors [17]. At water resource recovery facilities (WRRFs), the anaerobic digester 

substrate usually comprises of the sludge from the primary settling basin as well as waste activated 

sludge from the secondary clarifier tanks. However, co-digestion of organic wastes with sludge is 

applied as a strategy for increasing the digester gas production and yield [18]. Fats, oil and grease 

(FOG) is a lipid-rich organic waste that that is currently utilized in numerous WRRFs across the 

United States. As a result, biogas production at WRRFs will benefit from improved efficiency and 

conversion of waste to energy. This energy may be used in many different ways. 

1.2.2 Biogas utilization and challenges 
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1.3 Co-culture biomass as feedstock for valuable products 

Photoautotrophs and methanotrophs have immense potential as renewable feedstocks - the 

microbial biomass can be used for producing a variety of products. Under different operating 

conditions, both photoautotrophs and methanotrophs can accumulate various energy compounds 

(carbohydrates, proteins and lipids) to use as feed, other products and especially for energy 

products as biofuels.  

1.3.1 Biofuel potential 

The limited supply of fossil fuel as well as its negative effects on the environment 

(contribution to global warming) has led to the reduction of fossil fuels for energy. Consequently, 

balancing the increasing global energy demand while decreasing use of traditional fossil fuel has 

prompted continued research into alternative fuels from sustainable feedstock. Photoautotroph has 

attracted significant interest to the scientific community as a renewable resource of energetic 

compounds (carbohydrates, lipids) which can be converted to biofuels [29]. Biofuels consist of 

biodiesel, bio-oil or bioethanol. First generation biofuels are acquired from crops. Three major 

challenges of first-generation biofuels are: 1-reduced human food production, 2-increased use of 

arable land and 3-environmental damage [29]. 

Second generation biofuels utilized non-crop feedstocks such as agricultural and forest 

residue, grass and waste oil; however, its production has is not profitable as it requires expensive 

technology. Third generation biofuels are promising in overcoming the challenges posed by 1st 

and 2nd generation biofuels [30,31]. Advantages of third generation biofuels include: 

1. Rapid growth rate of photoautotroph as compared to plants as feedstock 
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2. Cultivation of photoautotroph on various waste nutrient sources promotes bioremediation 

through efficient removal of mainly inorganic N and P. 

3. Higher photosynthetic efficiencies (4-5%) can be reached as compared to plant (1-2%) [29]. 

1.3.1.1 Bioethanol 

Photoautotroph contains carbohydrates that serve as the feedstock for fermentative 

bioethanol production. Carbohydrates are present in microalgae and cyanobacteria as either stored 

(glycogen, starch) or as a structural component of the cell wall (cellulose, sulphated 

polysaccharides).  Different physical (bead milling, freeing, agitation, high pressure 

homogenization), chemical (acidic or alkaline hydrolysis), and enzymatic pretreatments are 

required to release the carbohydrate content. It is important to note that the lack of lignin in 

microalgae requires less harsh pretreatment as compared to 1st generation bioethanol. Then 

microalgal biomass is hydrolyzed to convert polymeric carbohydrate to glucose (most abundant 

monomeric sugar) for subsequent fermentation by yeast or bacteria. Low carbohydrate content in 

photoautotroph will not favor economic production of bioethanol; thus, there are increasing efforts 

to enhance and optimize the carbohydrate content of photoautotroph cells through manipulation of 

the culture conditions (irradiance, temperature, CO2 supply, pH and nutrients) [29,32,33]. Some 

of the challenges of third generation bioethanol are dewatering algae culture, pretreating biomass 

for releasing carbohydrates, and optimizing the fermentation process. 

1.3.1.2 Bio-oil 

Photoautotroph biomass have gained ground as feedstock for high-value biofuels due to 

their energy-rich biomolecules (carbohydrate, protein and lipids). However, high nutrient cost 

coupled with the use of limited freshwater sources pose significant challenges for commercial 



 32 

application. The AD effluent and biogas produced at WRRFs is a convenient and sustainable 

source of essential nutrients (nitrogen, phosphorus and trace metals) and carbon substrate (CO2) 

required for high growth rates and biomass production. The significant advantages offered through 

this approach are 1) reduction in environmental pollution by capturing the nutrients and 2) low-

cost biomass production which can be used for production bioenergy such as biofuels. However, 

the energy and cost-intensive downstream processing of microalgal biomass for biodiesel 

production is a major drawback for the economic feasibility of converting microalgae to biofuels. 

Producing biodiesel from lipids by the conventional transesterification process is energy intensive 

as the biomass has to be dried and the residual biomass containing proteins and carbohydrates are 

not utilized [34]. The traditional transesterification process also utilizes hazardous organic solvents 

[35] which can increase operating costs. Furthermore, acquiring high lipid content of 

photoautotroph is usually stimulated by nutrient depletion which in turn would affect 

photoautotroph growth rates and biomass productivity. In order to address these shortcomings, 

researchers are focusing on converting photoautotroph biomass to biofuels through hydrothermal 

liquefaction (HTL). HTL greatly reduces the energy input as wet biomass can be directly converted 

to biocrude and all components of the biomass can be converted to biocrude. HTL is more 

ecofriendly as it does not involve harmful solvents for oil extraction. Thus, integration of the 

methanotroph- photoautotroph co-culture for bioconversion of wastewater treatment to biocrude 

can yield significant economic and environmental benefits while addressing the shortfalls of the 

microbial biomass to biodiesel process.  

1.3.2 Single cell protein 

Global consumption demands of animal-derived protein is predicted to require 1,250 

million tons of meat and dairy to be produced annually by 2050 [36]. However, increasing meat 
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production faces the major limitation of low feed conversion ratio by beef, pork and poultry 

[36,37]. Additionally, meeting increased protein demands from plant-based sources such as bean 

will be limited by the arable land and water requirements. Seafood, wild-catch and aquaculture is 

reported as the largest animal protein industry in the world and over the past two decades the 

largest increase in animal protein sectors results from aquaculture.  By lowering the feed 

production cost, aquaculture has the potential to become more a sustainable animal protein 

industry towards meeting global protein demands.  

Single cell protein (SCP) is protein produced by microbial cells and has been investigated for 

decades for enhancing protein content in animal feed. Especially when waste side streams of 

carbon and nutrients are valorized, and arable land is not required [38]. By weight percent, the 

protein in meat, milk and soybean are about 45%, 25% and 35%, respectively [36]. Various 

microorganisms identified as suitable for SCP are algae (cyanobacteria and microalgae), bacteria 

(methanotrophs) and yeast (Candid, Saccharomyces, etc.) amongst others. Vitamin, amino acid, 

fat and high protein content [36,38] of these microorganisms make them attractive at animal feed 

supplement. Advantages of SCP processes over conventional plant and animal sources of protein 

include higher efficiency in substrate conversion and high productivity derived from fast growth 

rate of microorganisms. In addition, these microorganisms afford the ability to utilize carbon from 

waste feedstocks originating from agricultural, municipal and industrial sources while recovering 

harmful pollutants. For example, agricultural and municipal waste streams have been increasingly 

investigated as a cheap and economical medium for methanotrophic bacteria, yeast and microalgae 

cultivation with intended use as single cell protein [36]. This approach is intended to produce SCP 

more economically while utilizing the microorganism for bioremediation. The gaseous carbon 

(CO2, CH4) from waste gas streams of anaerobic digesters serves as substrate for photoautotroph 



 34 

and methanotrophic bacteria eliminating the threat of release of GHGs. Organic compounds in 

wastewater have also demonstrated the potential for promoting microalgal growth. Furthermore, 

photoautotroph and methanotrophic bacteria are capable of reducing pollutants by assimilating 

nitrogen, phosphorus and COD from wastewater effluents [24,39]. Conversely, the SCP process 

has a principal disadvantage of high nucleic acid content which can cause health disorders [36,38] 

such as kidney and bladder stones in long-lived animals. Any use in short-lived animals requires 

further processing [40]. Secondly, animal feed supplemented with SCP originating from waste 

feedstock substrates may introduce toxic and carcinogenic compounds into animal feed. Extensive 

testing of SCP products is performed before being marketed for animal feed [36,40]. 

Photoautotroph can survive in high concentrations of heavy metals whereas excessive 

concentrations of heavy metals can be detrimental to animals. Another challenge is the technical 

and economic cost of harvesting microorganisms cultivated for SCP. Lastly, wide-spread 

commercial application of SCP from wastewater treatment will heavily rely on addressing 

production cost by reducing downstream product modification and separation processes. 

1.3.3 Biofertilizers 

Microalgae and cyanobacteria have gained interest for use as biofertilizers since research 

in the last few decades have indicated that these microbes are of significant agricultural 

importance. Of the various type of biofertilizers, algal-derived biofertilizers have demonstrated 

considerable benefits such as contributing to the improvements in crop yields, plant growth and 

soil quality as a result of the stimulation of soil microbial interactions [41]. These interactions aid 

in plant growth by improving soil nitrogen, secretion of essential metabolites and organic carbon, 

mineralization, release of macro and micro-nutrients and production of growth hormones [42,43]. 

Nitrogen-fixing cyanobacteria has shown to enhance the N availability in the soil especially as 
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they do not compete with plants for their N demand. Swarnalakshmi et al. 2013 has reported a 

reduction in chemical fertilizer use when algal cells were inoculated in soil of wheat crop [44]. 

Excessive nitrogen in soil creates an environmental concern of leaching; however, as compared to 

chemical fertilizer, excessive N is biologically fixed to the soil in complex chemical forms. 

Consequently, leaching through biofertilizers is thought to be low as leaching is only increased 

after release of inorganic forms of N [41].     

Another contribution of microalgae- and cyanobacterial-based biofertilization is mineralization 

and solubilization of macro- and micro-nutrients that can improve plant growth [45]. 

Photoautotroph can also secrete siderophores which are organic compounds that help chelate iron 

or copper such that they are made available to plants and other microbes. Furthermore, there are 

reports of increased micronutrients (Fe, Mn, Cu, and Zn) in plants when a consortia including 

microalgae, bacteria and cyanobacteria was used [46]. 

Photoautotroph also has the potential to secrete phytohormones (growth hormones) which can play 

critical roles in the development of plants. Various hormones such as cytokinin and auxin are 

reportedly produced intracellularly in green microalgae and some strains can also excrete 

hormones in the cell broth [47,48]. Besides microalgae, methanotrophs may also play a role in 

plant growth by shaping bacterial communities in paddy rice root [49]. Therefore, utilization of 

photoautotrophs and methanotrophs as biofertilizer can be a good agronomic practice for 

stimulating plant growth and crop yield.  

Cultivation of photoautotroph and methanotrophic bacteria for biofertilizer require large amounts 

of nutrients. As growth media can be a large fraction of production costs, utilization of wastewater 

as low-cost medium is critical for improving economic viability. As discussed in earlier sections, 

municipal wastewater effluents can contain macronutrients (N, P, K) as well as micronutrients (Fe, 
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Cu, Mn, Zn) required for good growth of algae and methanotrophic bacteria. By this approach, 

both wastewater treatment and biomass production can be achieved. However, use of wastewater 

as cultivation media pose potential challenges. Municipal wastewater contains heavy metals that 

can accumulate in photoautotroph and hinder its use as fertilizer. Besides, biomass production on 

unsterilized wastewater effluents is the most economically viable method, but there is the risk of 

transferring viruses and other potentially harmful bacteria to crops and plants. The use of algal and 

methanotrophic fertilizer cultivated on wastewater for crop and vegetable fertilizer will depend on 

the source of the wastewater and the quality of biomass produced.  Thus, growth of the co-culture 

on appropriate wastewater effluents has the potential to be used as an environmentally friendly 

biofertilizer when the biomass produced meets the biomass feedstock quality requirements. Lastly, 

co-culture biomass as biofertilizer can also reduce GHG emissions through methanotrophic CH4 

oxidation and microalgal CO2 bio fixation. Also, the production of chemical fertilizer is an energy 

intensive process that result in GHG emissions. Thus, increasing biofertilizer use will also reduce 

GHG emissions from chemical-based fertilizers. 

1.3.4 Bioplastics  

The world-wide demand for petroleum-based plastics is increasing as a variety of consumer 

products utilize these plastics due to their strength, low weight and resistance to degradation by 

water, light and chemicals [50]. While these properties make plastics attractive and suitable for 

use in numerous applications and products, petroleum-based plastics have raised both economic 

and environmental concerns. Polystyrene is a widely used plastic, but its production is an energy 

costly process and the use of crude oil as a conventional plastic feedstock consumes an already 

diminishing resource. Further, the resistance to degradation by petroleum-based plastics increase 
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the amount of solid waste that has to be managed by landfills and waste generated by resin 

production can cause air and water pollution [50].  

To meet increasing plastic consumption demands in a sustainable manner, bioplastics from 

natural feedstocks offer an alternative to conventional plastics. Starch and cellulose derived from 

corn, wheat, oil seeds have been used as a feedstock for bioplastics [51]. Also, proteins in crops 

(e.g. soybean and sunflower) also serves as a base material for bioplastics [52]. A major limitation 

of crop-derived bioplastics is the competition of these crops for food and feed. Furthermore, these 

crops require time to grow, arable land, water and fertilizer to produce sufficient amounts the crop 

biomass necessary for offsetting petroleum-based plastic feedstocks. 

In recent years, microalgae have presented as an attractive, alternative for bioplastics 

feedstock. Microalgae biomass can reach relatively high fractions of protein (30-70%) that render 

them suitable for use in bioplastics. Some of the advantages of microalgal feedstock for bioplastics 

include rapid microalgal growth in comparison to terrestrial crops, elimination competition for 

food, feed and arable land. Moreover, microalgae can be sustainably cultivated on waste streams 

where AD liquid digestate serves as a low-cost and economical nutrient (N & P) source and CO2 

in biogas is a gaseous substrate for microalgal growth which renders a more economical process 

but also remediating water for reuse and reducing GHG emissions. Recent studies suggest that 

microalgal biomass with the proper protein content can be used in bioplastics. In addition to 

microalgae, methanotroph biomass also contains high fractions of protein that make them proper 

for use in bioplastics.  

Consequently, once the methanotroph-photoautotroph co-culture contains a proper fraction of 

protein that yields the desired bioplastic properties, the co-culture technology can potentially be a 

suitable biomass feedstock for bioplastics.  
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: Photoautotroph-Methanotroph coculture- A flexible platform for efficient 

biological CO2-CH4 co-utilization 

Abstract 

Industrial, municipal, and agricultural waste streams containing stranded organic carbon, 

which can be converted into biogas through anaerobic digestion. It has been demonstrated that 

biogas has immense potential as a renewable feedstock for producing high-density fuels and 

commodity chemicals. However, the utilization of biogas represents a significant challenge due to 

its low pressure and presence of contaminants such as H2S, ammonia, and volatile organic carbon 

compounds. To tap into this immense potential, effective biotechnologies that co-utilize both CO2 

and CH4 are needed. Using the basic metabolic coupling principles used by natural consortia, we 

have demonstrated that photoautotroph- methanotroph co-cultures offers a flexible and highly 

promising platform for biological CO2/CH4 co-utilization. 

Redrafted after: 

Badr K, Hilliard M, Roberts N, He QP, Wang J. Photoautotroph-Methanotroph Coculture–A 

Flexible Platform for Efficient Biological CO2-CH4 Co-utilization. IFAC-PapersOnLine. 

2019;52(1):916-921. 

2.1 Introduction 

Industrial, municipal, and agricultural waste streams containing stranded organic carbon 

represent a significant and underutilized feedstock to produce fuels and chemicals. Biogas, which 

contains 50%~70% CH4, 30%~40% CO2 and trace amount of contaminants such as H2S and NH3, 

can be produced during anaerobic digestion of various waste streams. CO2 and CH4 are the two 

leading GHGs that cause global warming and many detrimental effects to the earth’s ecosystem, 

including climate change. If the anaerobic digestion of waste material happens in an uncontrolled 
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fashion such as in landfill, the produced biogas would be released into atmosphere and cause global 

warming; at the same time, CH4 is a valuable fuel; if anaerobic digestion happens in a controlled 

condition such as within an anaerobic digester, the produced biogas can be further processed to 

generate electricity or simply used for heating.  

It has been shown that biogas has immense potential as a renewable feedstock for producing high-

density fuels and commodity chemicals. EPA estimates that currently US biogas production 

potential from animal farms alone is 654 billion cubic feet per year, which could displace 7.5 

billion gallon of gasoline [53].  However, the utilization of biogas represents a significant 

challenge due to its low pressure and presence of contaminants such as H2S, ammonia, and volatile 

organic carbon compounds. As a result, although anaerobic digester (AD) is a mature technology 

that can offer significant environmental and social benefits, as well as the enormous energy and 

economic potential, the deployment of AD is rather limited. For example, As of August 2017, out 

of 8113 US dairy and swine farms identified by AgSTAR as candidates for profitable AD biogas 

recovery systems, only 250 (3% of total potential) manure AD biogas recovery systems were in 

operation [53]. In addition, most of the AD produced biogas is currently flared or used for 

heating/cooking with only a fraction to generate electricity or upgraded to a liquefied 

transportation fuel. Specifically, among all livestock farms that have AD installed, only ~3% of 

them use biogas to produce CNG and 30% of them use biogas for electricity generation [54]. In 

short, the low value of biogas is the main factor that hinders the wide adoption of AD and 

exploration of biogas potential as a feedstock for production of high-density fuels and commodity 

chemicals. To tap into the immense potential of biogas produced from waste streams, effective 

biotechnologies that can operate at ambient pressure, temperature and are economically viable at 

small to mid-scale are needed, especially the ones that could co-utilize both CH4 and CO2.  
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Recent studies have demonstrated that natural microbial communities have developed a 

highly efficient way to recover the energy and capture carbon from both CH4 and CO2 through 

metabolic coupling of CH4 oxidation to oxygenic photosynthesis [55–57]. This coupling represents 

a major sink of both CH4 and CO2 at oxic-anoxic interfaces across various aquatic and terrestrial 

ecosystems, where the methanotrophic activity is fuelled by in situ photosynthetic production of 

O2. Specifically, recent findings suggest that the coupling of CH4 oxidation (by aerobic 

methanotroph) and oxygenic photosynthesis (by peat moss or photosynthetic algae) is prevalent in 

nature [56,57].  

2.2 Current status 

These recent findings suggest that the coculture of photoautotroph and methanotroph 

presents not only a feasible, but also a highly promising strategy for simultaneous conversion of 

biogas (both CO2 and CH4) into useful products, including high density fuel, commodity chemicals 

and animal feed, etc. In fact, such coupling has been partially validated in laboratory settings. (1) 

It was reported that coculture of Scenedesmus sp. (microalgae) and Methylocystis parvus 

(methanotroph) can achieve total microbial conversion of both CH4 (60%) and CO2 (40%) in a 

synthetic biogas without external O2 supply [58]; (2) coculture of Synechococcus PCC 7002 

(cyanobacteria) and Methylomicrobium alcaliphilum (methanotroph) exhibit robust growth on 

diverse gas mixtures including raw biogas and synthetic natural gas [59]; (3) coculture of Chlorella 

sorokiniana (microalgae) and Methylococcus capsulatus (methanotroph) can recovery nutrient 

contained in waste water from a potato processing plant and produce single cell protein as animal 

feed [24]. 

As the very first attempts to explore the potential of photoautotroph-methanotroph for 

biogas conversion, these published research mainly aimed to demonstrate the feasibility of the 
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coculture for CO2/CH4 co-utilization, without any efforts to mathematically model the coculture 

and to examine the potential interactions within the cocultures. In addition, it is important to realize 

that currently how to effectively characterize the coculture still present significant challenges to 

such research effort. Specifically, how to track the individual biomass concentration in a mixed 

culture in real-time is still an unsolved problem; in addition, in the photoautotroph-methanotroph 

coculture, both strains contribute to the production and consumption of CO2 and O2, which adds 

additional difficulty to the characterization of the coculture.  

Using the principles that drive the natural consortia, we have assembled and investigated 

several different photoautotroph-methanotroph cocultures that exhibit stable growth under varying 

substrate delivery and illumination regimes. In addition, we have developed experimental and 

computation protocols to characterize of the coculture accurately, easily and frequently. These 

protocols are the key enables to the quantitative examination of the photoautotroph-methanotroph 

coculture systems. Finally, we have developed an unstructured kinetic model that can accurately 

capture the growth of each individual strains in the coculture under various growth conditions. In 

this chapter, we briefly present our progress in understanding the photoautotroph-methanotroph 

coculture. 

2.3 Strains and their characteristics for our model coculture system 

While several saltwater cocultures have been established, the coculture pair of focus will 

be Methylomicrobium buryatense 5GB1 and Arthrospira platensis (Spirulina platensis) (Figure 

5). These microbes grow well in similar pH ranges and temperatures, and their medium 

components are comparable (our group previously found the optimum medium for this pair). A. 

platensis, the most cultivated and a nutritionally enriched filamentous cyanobacterium, is widely 

used as an alternative protein source for cultured fish, a feed supplement, and a source of fine 
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chemicals [25,60,61]. To summarize, methanotrophs are bacteria that assimilate CH4 (largely 

through aerobic processes) for their sole source of carbon and energy. M. buryatense 5GB1 is a 

relatively fast-growing methanotroph [62]. 

 

Figure 5. The saltwater pair was used in this work as the model coculture system 

2.4  Advantage of the coculture platform over sequential single cultures  

From an engineering perspective, coupling photosynthesis to methanotrophic metabolism 

offers several advantages for the design of robust microbial catalysts for biogas conversion, as 

listed in Figure 6. Figure 6 shows that the exchange of the in situ produced O2 and CO2 appears 

to be a major synergistic interaction between the two strains; in addition, there may be other 

potential “metabolic links” that could promote or inhibit the growth of the coculture.  
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Potential advantages of the coculture: 

• Exchange of in situ produced O2 and CO2 dramatically reduces mass transfer 

resistance of the two gas substrates 

• In situ O2 consumption removes inhibition on photoautotroph and eliminates risk 

of explosion 

• Interdependent yet compartmentalized configuration of the coculture offers 

flexibility and more options for metabolic engineering 

 

Figure 6. Photoautotroph-methanotroph coculture: potential interactions and its advantages 

 

However, the synergy caused by substrate exchange could also be achieved through 

culturing the two strains separately and sequentially (photoautotroph then methanotroph). 

Therefore, the first question we aimed to answer is the following: are there clear benefits of using 

the coculture than using single cultures sequentially for biogas conversion. In fact, this is a critical 

question applicable to any consortia-based biotechnologies, as the operation of the mixed culture 

can be more challenging than maintaining two single cultures sequentially. 
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the exchange of in situ produced O2 between the coculture, where the amount of O2 produced by 

the cyanobacterium in the coculture was injected into the methanotroph single culture.  

 

 

 

 

 

 
 

 

 

Figure 7. Preliminary comparison experiments to demonstrate the advantages of coculture. 

 

All experiments were carried out in 250ml serum bottles with 100ml media under batch 

operations, with gas phase composition 70% CH4 and 30% CO2, light:dark cycle of 16:8, and light 

intensity of 180 µmol/m2/s. Figure 8(a) compares the growth of the methanotroph in the three 

cases over 4 days (4 light periods and 3 dark periods), and Figure 8 (b) compares the growth of 

cyanobacterium in case A and B for the same period (as CO2 is available from head space, case C 

does not apply to cyanobacterium), and Figure 8 (c) compares the O2 produced by cyanobacterium 

in Cases A and B. Figure 8 clearly shows that both cyanobacterium and methanotroph in coculture 

(Case A) grew significantly faster than the sequentially operated single cultures (Case B). In 

addition, the improvement of the methanotroph growth cannot be fully explained by the 

availability of the extra O2 produced in coculture (Case C). Figure 8 (b) and (c) further confirmed 

that cyanobacterium in the coculture grow faster than the single culture and produce more O2. 

Together, Figure 8 suggests that there could be other factors that promote cell growth of both 

strains in the coculture; in other words, the photoautotroph-methanotroph coculture offer 

significantly more benefit than sequentially operated single cultures.  
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(a) Methanotroph 

 

(b) Microalgae 

 

(c) O2 production 

Figure 8. Comparison experiments show that both strains growth much faster in coculture (Case 

A) than in sequential (Case B) as shown in (a) and (b). (c) shows that with the same inoculum, 

microalgae produce more O2 in coculture than in single couture; Even with coculture O2 amount 

injected into methanotroph single culture (Case C), its growth is still slower than coculture as 

shown in (a), suggesting other factors that play a role in enhancing coculture growth. Shaded 

periods indicate dark cycles and light cycles are denoted as L followed by a number. 

 

Next, to verify the flexibility of the coculture platform, our group has demonstrated that 

several pairs of the photoautotroph-methanotroph cocultures can form self-regulating systems that 

can maintain functional homeostasis in response to external or environmental perturbations [63]. 
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Among them, some pairs prefer high salt and alkaline condition which we term as saltwater pair, 

and some prefer neutral pH and very low salt condition which we term as freshwater pair. For each 

pair, we have identified the range of liquid media that enable stable growth of the coculture; 

validated the stability of the coculture over multiple transfer; conducted H2S tolerance test and 

verified that fresh water pairs can maintain healthy growth for H2S up to 3000ppm while saltwater 

pair can tolerate even higher concentration of H2S; finally, by using digestate collected from 

Columbus Water Works, we showed that after adaptation, the freshwater pairs can growth well on 

digestate diluted using clarifier water (the water ready to be discharged from the water treatment 

facility), and even better than synthetic media [63]. 

2.5 Investigation of the cocultures at both systems and molecular level 

Multispecies associations are ubiquitous in nature as they provide key ecosystem services 

such as carbon, nutrient, and metal cycling. It was shown that a mixed culture could offer a number 

of advantages over a conventional single-culture, such as complete utilization of substrate, better 

stability and robustness, higher product yield, higher growth rate, as well as the capability to carry 

out multistep transformation that would be impossible for a single organism.  

Despite these potential significant advantages, utilization of mixed cultures for biotechnological 

applications in bioenergy and related areas have been limited partially due to the methodological 

gaps. Specifically, the methodological gap refers to the lack of effective, fast and low-cost 

analytical tools to characterize mixed culture systems frequently or in real-time. In the next chapter 

(Chapter 3), we report the experimental and computational protocols that we have developed to 

quantitatively characterize the photoautotroph-methanotroph coculture.  
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Figure 9. Bioreactor level (Mathematical) models focus on describing population dynamics and 

evaluating the stability of communities under various conditions or perturbations. 

Metabolic models focus on cellular metabolism and explicit cross-feeding interactions to 

predict population properties of microbiomes [64]. 

 

Given the prevalence and importance of microbiomes in nature, much effort has been 

invested in the past decade to unravel the members, structures, functions, interactions, and 

governing principles of microbial communities [65]. With the advent of next-generation 

sequencing, metagenomics first emerged as an important tool in the study of microbial 

communities. It allowed quantitative analysis of the diversity, composition, and dynamics of these 

systems [66]. Statistical modeling approaches, such as multiple linear regression and multi-

dimensional cluster analysis, were then used to interpret the wealth of metagenomics data to 

identify microbial community trends and correlations between metagenomics data and other 
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observable system variables [67]. These statistical modeling approaches provided new hypotheses 

regarding potential interactions and functions of communities. However, metagenomics data alone 

could not predict causal relationships in microbial communities. For this, new computational 

models were needed that allowed a more systematic and rigorous interpretation and interrogation 

of the huge amount of heterogeneous data that was generated [68] (Figure 9). Once a model was 

constructed, systems biological properties could be analysed by comparing model simulations with 

experimentally observed data. Mathematical models of microbial communities thus provided 

critical tools for generating and testing biological hypotheses to better understand and predict the 

dynamics and interactions among community members [69].  

Therefore, there are knowledge gaps that have made the utilization of mixed cultures for 

biotechnological applications limited. Specifically, how the coculture grow at various conditions 

and also what interactions happen between the species when they grow together. In the Chapter 4, 

we investigate the coculture system and their interaction in systems level by developing 

mathematical models. In the Chapters 5 and 6, we elucidate the interactions within the coculture 

in molecular level by developing metabolic models. 
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: Fast and Easy Quantitative Characterization of Methanotroph-Photoautotroph 

Cocultures 

Abstract 

Recent research has demonstrated that synthetic methanotroph-photoautotroph cocultures 

offer a highly promising route to convert biogas into value-added products. However, there is a 

lack of techniques for fast and accurate characterization of cocultures, such as determining the 

individual biomass concentration of each organism in real-time. To address this unsolved 

challenge, we propose an experimental-computational protocol for fast, easy and accurate 

quantitative characterization of the methanotroph-photoautotroph cocultures. Besides determining 

the individual biomass concentration of each organism in the coculture, the protocol can also 

obtain the individual consumption and production rates of O2 and CO2 for the methanotroph and 

photoautotroph, respectively. The accuracy and effectiveness of the proposed protocol was 

demonstrated using two model coculture pairs, Methylomicrobium alcaliphilum 20ZR - 

Synechococcus sp. PCC7002 that prefers high pH high salt condition, and Methylococcus 

capsulatus - Chlorella sorokiniana that prefers low salt and neutral pH medium. The performance 

of the proposed protocol was compared with a flowcytometry based cell counting approach. The 

experimental results show that the proposed protocol is much easier to carry out and delivers faster 

and more accurate results in measuring individual biomass concentration than the cell counting 

approach without requiring any special equipment. 

Redrafted after: 

Badr K, Whelan W, He QP, Wang J. Fast and easy quantitative characterization of methanotroph–

photoautotroph cocultures. Biotechnol Bioeng. 2021;118(2):703-714. 
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3.1 Introduction 

Biogas is comprised primarily of methane (CH4, 50%~70%) and carbon dioxide (CO2, 30% 

~50%). It can be produced through AD of various organic waste sources, including landfill waste; 

animal manure; wastewater sludge; and industrial, institutional, and commercial organic wastes. 

CO2 and CH4 are the two leading GHGs that cause many detrimental effects to our ecosystem, 

including climate change. On the other hand, CH4 is also a valuable fuel. It is estimated that 

currently US biogas production potential is 654 billion cubic feet per year, which could displace 

7.5 billion gallon of gasoline [70].  Although waste-derived biogas has immense potential as a 

renewable feedstock for producing high-density fuels and commodity chemicals, the contaminants 

(e.g., H2S, NH3, and volatile organic carbon (VOC) compounds) present significant challenges to 

biogas utilization. Currently the AD-derived biogas is primarily used for heating/cooking or flared, 

with only a small fraction for electricity generation due the cost associated with biogas clean-up 

[70]. To tap into this immense potential, effective technologies that can co-utilize both CO2 and 

CH4 without costly biogas clean-up are needed. 

Recent studies have demonstrated that natural microbial communities have developed a 

highly efficient way to recover the energy and capture carbon from natural biogas streams through 

interspecies metabolic coupling of CH4 oxidation to oxygenic photosynthesis [55,56,71]. Figure 

10(a) illustrates the key synergistic interactions within the methanotroph-photoautotroph 

coculture: the photoautotroph converts CO2 into biomass while producing O2 via photosynthesis 

and the methanotroph utilizes the in situ produced O2 to convert CH4 into biomass while producing 

CO2 for the photoautotroph. Figure 10(b) depicts the total mass balance and key substrate 

exchanges in the coculture. 

Following the principles that drive the natural consortia, different synthetic methanotroph-

photoautotroph (e.g., cyanobacteria or microalgae) cocultures have been demonstrated to 
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simultaneously convert both CH4 and CO2 into microbial biomass without external oxygen supply 

[58,72–75]. The biogas-derived coculture biomass could be further processed to produce biofuels 

(such as biodiesel), directly used as single cell protein for animal feed supplement or serves as 

feedstock to produce bioplastics. In addition, the coculture could be engineered to produce other 

value-added chemicals (such as succinate or lactic acid) using biogas as feedstock. Therefore, the 

methanotroph-photoautotroph coculture offers a highly promising biological platform for waste-

to-value conversion.  

In order to develop methanotroph-photoautotroph based biotechnology for biogas 

conversion, a key prerequisite is an effective tool to enable fast, easy and accurate characterization 

of each organism in the coculture in terms of biomass growth and biogas conversion performance. 

However, currently no such tool is available. In fact, one major challenge associated with 

characterizing any mixed culture is the accurate determination of the individual biomass 

concentration for each microorganism. Existing approaches to quantify individual biomass 

concentration in mixed culture include molecular biological, biochemical, and microbiological 

method [76,77]. However, these methods require either expensive equipment such as flow 

cytometry, community genome sequencing, or time-consuming and challenging techniques, such 

as RNA/DNA extraction, isolation, or amplification. Therefore, these approaches are suitable for 

off-line, infrequent characterization of mixed culture, and cannot provide the frequent or real-time 

measurements desired for dynamic modelling of the coculture systems. As a result, among the 

published methanotroph-photoautotroph research, only Hill et al. (2017) tracked the individual 

biomass concentration over time through cell counting using flow cytometry, while others just 

reported the total optical density of the coculture over time without differentiating the contribution 

from the methanotroph and the photoautotroph [58,75]. 
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Besides individual biomass concentration, the individual substrate consumption rates and 

product excretion rates of each organism are needed in order to develop a kinetic model for the 

coculture. However, when there is cross-feeding in the coculture (i.e., any exchange of 

metabolite(s) between different organisms), it is highly challenging to obtain the individual 

consumption/production rates because they cannot be measured directly. For the case of 

methanotroph-photoautotroph coculture, as shown in Figure 10(b), both O2 and CO2 are cross-

feeding metabolites: O2 is produced by the photoautotroph while consumed by the methanotroph, 

while CO2 is produced by the methanotroph and consumed by the photoautotroph. However, what 

can be directly measured are the overall or total consumption/production rates of O2 and CO2 by 

the coculture, not individual rates by each organism. Currently how to use the measured overall 

rate to infer or estimate the individual consumption/production rates remains an unsolved problem. 

It is worth noting that in our experiments, oftentimes no oxygen was detectable in the gas phase 

or liquid phase, as all the O2 produced by the photoautotroph was consumed by the methanotroph 

in situ. 

 

(a) 
 

(b) 

Figure 10. (a) The interdependency within methanotroph-photoautotroph cocultures; (b) Total 

mass balance and substrate exchange within the coculture, where 𝑋 denotes biomass, and 

the subscripts “𝑚𝑒𝑡ℎ” and “𝑝ℎ𝑜𝑡𝑜” denote methanotroph and photoautotroph, 

respectively; Δ indicates the amount of change in the variable; blue-coloured variables are 
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directed measured and black coloured variables are calculated based on the cell growth 

stoichiometry. For example, (∆𝑂2)𝑚𝑒𝑡ℎ is the consumed oxygen by methanotroph. 

 

To address the above-mentioned challenges, we have developed an experimental-

computational (E-C) protocol to fully characterize the synthetic methanotroph-photoautotroph 

coculture based on the overall mass balance and each organism’s growth stoichiometry. Besides 

tracking the biomass concentration of each organism in the coculture over time, the E-C protocol 

also obtains estimates on the substrate consumption rates (CH4 and O2 uptake rates for the 

methanotroph and CO2 uptake rate for the photoautotroph) and product secretion rates (CO2 for 

the methanotroph and O2 for the photoautotroph). Such quantitative characterizations will enable 

better understanding of the coculture growth kinetics, and will lay the foundation for the 

development of the coculture-based biotechnology to convert biogas into valuable products. The 

E-C protocol only requires the commonly measured variables including total optical density for 

the coculture (UV/Vis spectroscopy), gas phase composition (GC), dissolved CO2 in the culture 

broth (total carbon analyser). Therefore, the E-C protocol does not require any special equipment, 

and it does not require any special sample preparation such as DNA/RNA extraction or cell fixation 

in order to achieve the above-mentioned characterizations.  

In this chapter, we use one methanotroph-cyanobacteria pair and one methanotroph-

microalgae pair to demonstrate the performance of the developed protocol; To validate its 

accuracy, we compared the individual biomass concentrations obtained by the E-C protocol with 

cell counting results obtained using flow cytometry. In this work, the methanotroph-cyanobacteria 

coculture pair is Methylomicrobium alcaliphilum 20ZR  - Synechococcus sp. PCC7002 , which 

prefers high salt and high pH medium and has demonstrated robust growth on different 

concentrations of biogas [72]. The methanotroph-microalgae coculture pair is Methylococcus 
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capsulatus - Chlorella sorokiniana, which prefers low salt and neutral pH medium and has been 

used for wastewater treatment [75]. 

3.2 Materials and Methods 

3.2.1 Microorganism and growth media 

Methylomicrobium alcaliphilum 20ZR was provided by Dr. Marina Kalyuzhnaya, San 

Diego State University, and Synechococcus sp. PCC7002 was provided by Dr. Alexander Beliaev, 

Pacific Northwest National Lab. M. alcaliphilum 20ZR cells were grown in modified P-medium. 

Synechococcus sp. PCC7002 cells were grown in A+ medium. For the coculture, the growth media 

consisted of 10% P-medium and 90% A+ medium.  

Methylococcus capsulatus was acquired from the American Type Culture Collection (ATCC 

33009), and Chlorella sorokiniana (UTEX 2805) was acquired from UTEX Culture Collection of 

Algae. M. capsulatus Bath cells were grown in NMS medium. C. sorokiniana cells were grown in 

N8 medium. For the coculture, the growth media consisted of 10% NMS medium and 90% N8 

medium. It is worth to mention that all species have different size. Methanotrophs are colourless 

and photoautotroph species have different chlorophyll which make them light and dark green 

colour.  

3.2.2 Sampling procedure 

Composition of gas samples was analysed using GC (Agilent 7890B gas chromatograph 

customized with FID, TCD, Unibeads IS 60/80 mesh and MolSieve 5A 60/80 SST columns). It is 

worth noting that the consumption and production of various gases will result in changes in system 

pressure (for batch operations) or off-gas flow rate (for continuous operations). These changes 

would cause significant errors in the estimated gas component uptake and production rates if they 
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were not accounted for. To address it, our group have previously developed a protocol [78], which 

is followed in this work. The optical density of each liquid sample was measured using a Beckman 

Coulter DU® 730 UV/Vis spectrophotometer at OD750. To determine the amount of the dissolved 

CO2 in the liquid phase, we first removed cell mass through centrifugation, then measure the total 

inorganic carbon (TIC) using a Shimadzu TOC-VCSN Analyzer, also following the procedures 

reported in [78]. 

3.2.3 Cell counting through flow cytometry 

For M. alcaliphilum 20ZR - S. sp. PCC7002 pair, two 0.5 mL samples of culture broth were 

taken and each sample was immediately treated with 0.25 mL of 50 mM EDTA and 0.25 mL of 

4% paraformaldehyde to fix the cells. After 10 minutes of fixation, the samples were centrifuged 

at 10,000 RPM and 0.5 ml of supernatant was removed, then each sample was treated with 0.5 mL 

of 0.05% Tween-20 detergent for 20 minutes (away from light) to minimize cells sticking to each 

other. Next, after removing Tween-20 through centrifugation, the samples were washed and re-

suspended in DI water. For M. capsulatus – C. sorokiniana pair, the overall procedure is similar, 

with the differences being that the samples were first treated with 0.2% Tween-20 detergent for 20 

minutes and then treated with 200 mM EDTA and 4% paraformaldehyde for 20 minutes to fix the 

cells. After sample preparation, 25 µL of the re-suspended sample was counted on a Beckman 

Coulter Cytoflex LX cytometer with 6 active lasers and 21 channels for fluorescence detection. 

FlowJo Version 10.6.1 was used to analyze the data obtained from the flow cytometer. As both 

the cyanobacteria and microalgae used in this work are green, and both methanotrophs are white, 

different filter of excitation wavelengths were used to help differentiate the cells in the coculture. 

For M. alcaliphilum 20ZR - S. sp. PCC7002 pair, the forward scatter (FSC-H) was paired with the 

filter of excitation wavelength at 610nm (Y610-mCHERRY-H fluorochrome) to separate the two 
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populations. For M. capsulatus – C. sorokiniana pair, the FSC-H was paired with the filter of 

excitation wavelength of 710nm (Y710-PC5.5-H) to separate the two populations. 

3.2.4 Calibration and testing for the cell counting approach 

To establish the calibration relationship between biomass concentration and cell counting 

results, we first conducted cell counting experiments for each single culture (M. alcaliphilum 

20ZR, S. sp. PCC7002, M. capsulatus and C. sorokiniana). For each strain, cell counting was 

performed for 4 different biomass concentrations, with triplicates for each sample. To validate the 

effectiveness of the cell counting approach, we prepared static coculture samples by mixing given 

amounts of each individual microorganisms together. For each coculture pair, six coculture 

samples with different compositions were tested with triplicates. 

3.2.5 Demonstration of the E-C protocol in characterizing coculture dynamic growth 

In these experiments, the E-C protocol was applied to characterize the dynamic growth of 

both model coculture pairs. To validate the E-C protocol’s accuracy, the individual biomass 

concentration within the coculture was also measured through cell counting using flow cytometry 

for comparison. For each coculture pair, three different inoculum concentrations were tested with 

duplicates. For the M. alcaliphilum 20ZR - S. sp. PCC7002 pair, the inoculum OD ratios between 

the methanotroph and the cyanobacteria were 1:15, 1:10, and 1:5, with the same amount of 

methanotroph for all three cases. For the M. capsulatus - C. sorokiniana pair, the inoculum OD 

ratios were 1:3, 1:2 and 1:1, also with the same amount of methanotroph for all three cases. Before 

and after the inoculation, all vials were flushed with the feeding gas (80% CH4 and 20% CO2), and 

were put under the same light intensity (190 µmol/m2/s). The coculture growth lasted for 3 days 
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and was sampled once daily. The vials were flushed with feeding gas to replenish the gas phase 

after each sampling.  

3.3 Modeling Framework for the Experimental-Computational Protocol  

The protocol was developed based on each organism’s growth stoichiometry, the substrate 

exchange relationship within the coculture as shown in Figure 10(b), and the total mass balance. 

Eqns. (1) and (2) show the growth stoichiometry for the methanotroph and photoautotroph, 

respectively. 
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where 𝑋 denotes biomass, and the subscripts “𝑚𝑒𝑡ℎ” and “𝑝ℎ𝑜𝑡𝑜” denote methanotroph and 

photoautotroph, respectively; 𝑌𝑎
𝑏
 denotes the stoichiometric coefficients between “𝑎” and “𝑏”, 

where “𝑏” is CH4 for methanotroph and CO2 for photoautotroph. These coefficients can be 

obtained from literature  (Akberdin et al., 2018; Bernstein et al., 2016; Kliphuis et al., 2011). If the 

coculture growth medium is vastly different from what is commonly used for the single culture 

and could affect the microorganism’s growth stoichiometry, then experimental data of the single 

 

Table 1. Stoichiometric coefficient values used in this work 

Coefficient 

Methanotroph 

M. alcaliphilum 20ZR M. capsulatus 

𝑌 𝑂2
𝐶𝐻4

 1.26 (Akberdin et al., 2018) [82] 1.60 [This study] 

𝑌𝐶𝑂2
𝐶𝐻4

 0.48 (Akberdin et al., 2018) [82] 0.33 [This study] 

𝑌 𝑥
𝐶𝐻4

 9.60 (Akberdin et al., 2018) [82] 10.60 [This study] 

 Photoautotroph 
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 S. sp. PCC7002 C. sorokiniana 

𝑌 𝑂2
𝐶𝑂2

 1.28 [This study] 1.34 [This study] 

𝑌 𝑥
𝐶𝑂2

 23.73 [This study] 23.68 [This study] 

𝑌 𝑥
𝑂2

 18.53 (Bernstein, 2016) [80] 17.67 (Kliphuis et al., 2011) [81] 

 

culture cultivated on the coculture medium should be used to estimate the coefficients. The 

coefficients used in this work are listed in Table 1. The yields for coculture could be different 

compared to single culture, however, we used the same yields (reported or experimentally 

achieved) for single culture. The error of the calculation is very small that the mentioned difference 

could not affect the accuracy of the model. Moreover, all the yields for biomass (x) are in the unit 

of gram/mol of substrate and other yields are mol/mol.  

As shown in Figure 10 (b), only the methanotroph within the coculture can consume CH4, 

therefore the amount of cell growth for methanotroph can be estimated based on the measured CH4 

consumption (i.e., ∆𝐶𝐻4). Similarly, the amount of the O2 required for CH4 consumption and the 

amount of CO2 produced can be estimated using stoichiometric coefficients as follows.  

(∆𝑋)𝑚𝑒𝑡ℎ = (𝑌 𝑋

𝐶𝐻4

)
𝑚𝑒𝑡ℎ

∆𝐶𝐻4                      (3) 

(∆𝑂2)𝑚𝑒𝑡ℎ = (𝑌 𝑂2
𝐶𝐻4

)
𝑚𝑒𝑡ℎ

∆𝐶𝐻4                      (4) 

(∆𝐶𝑂2)𝑚𝑒𝑡ℎ = (𝑌𝐶𝑂2
𝐶𝐻4

)
𝑚𝑒𝑡ℎ

∆𝐶𝐻4                      (5) 

Next, based on the overall mass balance of O2 and CO2, as shown in Eqns (6) and (7), we can 

determine the amount of CO2 consumed and the amount of O2 produced by the photoautotroph. 

The subscript “gas” and “liquid” denote the measurements obtained from headspace samples and 

liquid samples, respectively. 



 59 

(∆𝑂2)𝑔𝑎𝑠 = (∆𝑂2)𝑝ℎ𝑜𝑡𝑜 − (∆𝑂2)𝑚𝑒𝑡ℎ                      (6) 

(∆𝐶𝑂2)𝑔𝑎𝑠 = (∆𝐶𝑂2)𝑚𝑒𝑡ℎ − (∆𝐶𝑂2)𝑝ℎ𝑜𝑡𝑜 − (∆𝐶𝑂2)𝑙𝑖𝑞𝑢𝑖𝑑             (7) 

where CO2 and O2 in the gas phase (i.e., (∆𝐶𝑂2)𝑔𝑎𝑠,  (∆𝑂2)𝑔𝑎𝑠) are measured through GC, and 

the dissolved CO2 in the liquid phase (i.e., (∆𝐶𝑂2)𝑙𝑖𝑞𝑢𝑖𝑑) are measured through total carbon 

analyser. In Eqn (6), we neglect the contribution from dissolved O2 due to its small solubility in 

aqueous solutions; however, in Eqn. (7), dissolved CO2 has to be considered due to its much larger 

solubility in aqueous solutions, especially under high pH conditions. Although it is difficult to 

determine the amount of dissolved CO2 in one sample due to the carbonate (𝐶𝑂3
2−) and bicarbonate 

(𝐻𝐶𝑂3
−) salts contained in the culture medium and the equilibrium among different forms of 

dissolved CO2, the change in dissolved CO2 between two sampling points can be easily determined 

by the difference in the total inorganic carbon content of these two samples. Therefore, based on 

the overall mass balances (i.e., Eqns (6) and (7)), the amount of CO2 consumed and O2 produced 

by photoautotroph can be obtained, as shown in Eqns (8) and (9). 

(∆𝑂2)𝑝ℎ𝑜𝑡𝑜 = (∆𝑂2)𝑔𝑎𝑠 + (∆𝑂2)𝑚𝑒𝑡ℎ                      (8) 

(∆𝐶𝑂2)𝑝ℎ𝑜𝑡𝑜 = (∆𝐶𝑂2)𝑚𝑒𝑡ℎ − (∆𝐶𝑂2)𝑔𝑎𝑠 − (∆𝐶𝑂2)𝑙𝑖𝑞𝑢𝑖𝑑             (9) 

With the amount of CO2 consumed and O2 produced by the photoautotroph available, the amount 

of biomass produced by photoautotroph growth can be obtained through two ways using growth 

stoichiometry, either from CO2 consumption (Eqn. (10)) or from O2 production (Eqn. (11)). 

(∆𝑋)𝑝ℎ𝑜𝑡𝑜−1 = (𝑌 𝑋

𝐶𝑂2

)
𝑝ℎ𝑜𝑡𝑜

(∆𝐶𝑂2)𝑝ℎ𝑜𝑡𝑜                  (10) 

(∆𝑋)𝑝ℎ𝑜𝑡𝑜−2 = (𝑌 𝑋

𝑂2

)
𝑝ℎ𝑜𝑡𝑜

(∆𝑂2)𝑝ℎ𝑜𝑡𝑜                   (11) 

where biomass yield with respect to O2 can be obtained as the following: 
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(𝑌 𝑋

𝑂2

)
𝑝ℎ𝑜𝑡𝑜

= (𝑌 𝑋

𝐶𝑂2

)
𝑝ℎ𝑜𝑡𝑜

(𝑌 𝑂2
𝐶𝑂2

)
𝑝ℎ𝑜𝑡𝑜

⁄                   (12) 

In this work, we use the average of these two approaches to estimate photoautotroph biomass 

accumulation, as shown Eqn. (13). 

(∆𝑋)𝑝ℎ𝑜𝑡𝑜 =
1

2
[(∆𝑋)𝑝ℎ𝑜𝑡𝑜−1 + (∆𝑋)𝑝ℎ𝑜𝑡𝑜−2]                  (13) 

 

 

  

  
Figure 11. Flow cytometry calibration curves with single cultures. (a) M. alcaliphilum 20ZR; (b) 

S. sp. PCC7002; (c) M. capsulatus; (d) C. sorokiniana 

 

(a) (b) 

(c) (d) 



 61 

3.4 Results and Discussion 

3.4.1 Calibration and validation of the cell counting approach 

The flow cytometry calibration plots for each microorganism are given in Figure 11. These 

results confirmed excellent linear relationship between biomass concentration and the cell 

counting results, with R2 ranging 0.979 – 0.983. Figure 11 also shows that cell counting with flow 

cytometry is more reliable/consistent when cell concentrations are low. Using the calibration 

relationship obtained from the single cultures, we validated the accuracy of the flow cytometry 

measurements using static coculture samples with known individual biomass concentrations. For 

each coculture pair, six samples with different compositions were tested. The individual biomass 

concentrations for each microorganism in the cocultures measured using flow cytometry are 

plotted against the known concentrations in Figure 12 (a) ~ (d), with the detailed results provided 

in Table 2. As shown in these figures, the measured individual biomass concentrations (converted 

from cell counting based on the calibration curves in Figure 11) show good agreement with the 

known concentrations. However, there are relatively large variations among the triplicates for each 

sample, especially for higher concentrations, which is consistent with the similar trend observed 

in the calibration curves in Figure 11. In addition, when the same sample was measured multiple 

times, the measurements showed same level of variations, suggesting the source of the variation 

was cell counting. One possible reason for such large variation is the non-uniform distribution of 

the cells in the liquid sample, and the small sample volumes (25 µL) for cell counting makes such 

variation more pronounced for higher concentrations, as observed in both calibration and 

validation experiments. Another possible reason, which we believe is more important for mixed 

culture samples, is the effect of sample fixation process on cell counting. As shown in Figure 12 

(c), for the M. capsulatus – C. sorokiniana coculture which turned out to be more challenging in 
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sample preparation, the measurement error for M. capsulatus was consistently larger for both low 

and high cell density samples. 

Table 2. Detailed flow cytometry cell counting results on the static coculture samples with known 

individual biomass concentrations 

Sample 

Number 

Known Concentration 

(gDCW/L) 

Concentration measured by cell 

counting ± STD (gDCW/L) 

Error% 

 M. 

alcaliphilum 

20ZR 

S. sp. PCC7002 M. alcaliphilum 

20ZR 

S. sp. PCC7002 M. 

alcaliphilum 

20ZR 

S. sp. PCC7002 

1 0.0154 0.0876 0.0146±0.0007 0.0843±0.0030 5.41% 3.71% 

2 0.0232 0.0827 0.0209±0.0016 0.0784±0.0028 9.81% 5.15% 

3 0.0132 0.0751 0.0132±0.0009 0.0736±0.0027 0.38% 1.94% 

4 0.0199 0.0709 0.0190±0.0016 0.0705±0.0025 4.45% 0.50% 

5 0.0110 0.0626 0.0109±0.0011 0.0625±0.0017 1.07% 0.15% 

6 0.0165 0.0591 0.0148±0.0006 0.0597±0.0005 10.55% 1.13% 

 M. capsulatus C. sorokiniana M. capsulatus C. sorokiniana M. 

capsulatus 

C. sorokiniana 

1 0.0159 0.0736 0.0156±0.0022 0.0692±0.0053 1.93% 5.99% 

2 0.0298 0.0646 0.0295±0.0040 0.0657±0.0068 1.11% 1.70% 

3 0.0367 0.0601 0.0335±0.0038 0.0578±0.0018 8.89% 3.79% 

4 0.0228 0.0511 0.0236±0.0034 0.0504±0.0019 3.31% 1.41% 

5 0.0395 0.0403 0.0339±0.0048 0.0369±0.0028 14.3% 8.29% 

6 0.0507 0.0331 0.0453±0.0035 0.0330±0.0008 10.6% 0.25% 

 

In this work, we had to optimize the sample fixation protocols multiple times in order to 

obtain the acceptable validation results. Figure 12 (e) and (f) compare the cell counting results for 

a same static coculture sample. Figure 12 (e) was obtained following the cell fixation protocol 

initially developed for the salt water pair, while Figure 12 (f) following the protocol optimized for 

the fresh water pair. The known and measured individual biomass concentration are provided in 

Table 3.  The large measurement errors shown in Figure 12 (e) (-88.3% for M. capsulatus and 

18.0% for C. sorokiniana) indicate that some methanotroph cells stuck to the microalgae cells and 

the flow cytometer could not separate them properly. With the optimized protocol, methanotroph 

cells were much better separated from microalgae cells, which resulted in significantly reduced  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 12. Validation of flow cytometry measurements using static coculture samples with known 

individual biomass concentrations for coculture pairs of M. alcaliphilum 20ZR - S. sp. 
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PCC7002 and M. capsulatus - C. sorokiniana. (a) M. alcaliphilum 20ZR; (b) S. sp. 

PCC7002; (c) M. capsulatus; (d) C. sorokiniana; (e) Erroneous cell counting by flow 

cytometry when an inadequate sample fixation protocol is used; (f) Significantly improved 

cell counting by flow cytometry after optimizing sample fixation protocol. (e) and (f) used 

the same statically mixed coculture sample with known individual biomass concentrations 

listed in Table 3. 

 

measurement error (-7.9% for M. capsulatus and -6.5% for C. sorokiniana). Currently the flow 

cytometry has been commonly used to characterize the composition of synthetic microbiome. This 

example highlights the importance of performing validation experiments to confirm the 

appropriateness of the experimental protocol and the accuracy of the cell counting result to avoid 

misleading conclusions.   

 

Table 3. Effect of cell fixation protocols on cell counting using flow cytometry 

Species 

Known 

Concentration 

(gDCW/L) 

Before optimizing protocol (Figure 2(e))  After optimizing protocol (Figure 2(f)) 

Concentration from cell 

counting (gDCW/L)  
Error%  

 Concentration from cell 

counting (gDCW/L)  
Error%  

M. capsulatus 0.0367 0.0043 -88.3%  0.0338 -7.9% 

C. sorokiniana 0.0601 0.0709 18.0%  0.0562 -6.5% 

 

3.4.2 Validation of E-C protocol using dynamic growth of the coculture  

The E-C protocol is not applicable to the static coculture with known concentrations, as it is based 

on the growth stoichiometry of individual microorganisms.  Therefore, in this subsection, we use 

coculture batch growth experiments to demonstrate and validate the E-C protocol. With the 

validity of the cell counting method established, the individual biomass concentration obtained  
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Figure 13. Gas phase composition over three days: (a) salt water coculture pair M. alcaliphilum 

20ZR – S. sp. PCC7002 for inoculum OD ratio of 1:15; (b) fresh water coculture pair M. 

alcaliphilum 20ZR – S. sp. PCC7002 for inoculum OD ratio of 1:3; (c) salt water coculture 

pair M. alcaliphilum 20ZR – S. sp. PCC7002 for inoculum OD ratio of 1:5; (d) fresh water 

coculture pair M. alcaliphilum 20ZR – S. sp. PCC7002 for inoculum OD ratio of 1:1. 

 

from the cell counting method were used to validate the E-C protocol. Figure 14 (a) and (b) plot 

the total OD of the coculture over 3 days for the salt water pair and fresh water pair, respectively; 

and Figure 14 (c) and (d) plot the gas phase composition for each coculture pair for one inoculum 

ratio (1:10 for the salt water pair and 1:2 for the fresh water pair), respectively. The gas 

compositions for the other inoculum ratios are provided in Figure 13. For the fresh water 

methanotroph-microalgae pair, higher inoculum concentration of the microalgae resulted in better 

(b) 

(c) 
(d) 

(a) 
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growth of the coculture. This is because the microalgae grows much slower than the methanotroph, 

so the methanotroph growth is limited by O2 availability. Therefore, more microalgae in the 

inoculum enabled better growth of the methanotroph. For the salt water pair, higher inoculation 

concentration of the cyanobacteria did not have much impact on coculture growth. This is because 

the cyanobacteria grew much faster than the methanotroph, and the methanotroph growth is limited 

by mass transfer of CH4 from gas phase.  

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 14. (a) Measured total OD of the salt water coculture pair M. alcaliphilum 20ZR – S. sp. 

PCC7002 over three days for inoculum OD ratio of 1:15, 1:10, and 1:5; (b) Measured total 
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OD of the fresh water coculture pair M. capsulatus – C. sorokiniana over three days for 

inoculum OD ratio of 1:3, 1:2, and 1:1; (c) Gas phase composition of  salt water coculture 

pair M. alcaliphilum 20ZR – S. sp. PCC7002 over three days for inoculum OD ratio of 

1:10; (d) Gas phase composition of  fresh water coculture pair M. alcaliphilum 20ZR – S. 

sp. PCC7002 over three days for inoculum OD ratio of 1:2. 

 

Figure 15 compares the individual biomass concentration measured through the cell 

counting approach and the E-C protocol for both coculture pairs, where each point represents one 

of the duplicates, and the error bar represents the standard deviation from three cell counting 

measurements for the same sample. As can be seen from these figures, the results obtained from 

the two approaches correlated very well, particularly at low biomass concentrations. The R2 for 

the linear relationship between the results from the E-C protocol and cell counting approach ranges 

0.90 – 0.98, which validates the results obtained from the E-C protocol.  

However, Figure 15 also shows that the agreement between the cell counting approach 

and the E-C protocol deteriorates at higher concentrations of coculture growth. To determine 

which approach performs better, we calculated the total OD for each sample using the measured 

individual biomass concentrations, and plotted them against the measured total OD. The results 

are shown in Figure 16 (a) and (b) for the salt water pair and the fresh water pair respectively. 

Both figures showed that the total OD calculated from the E-C protocol were almost exactly the 

same as the measured total OD. On the other hand, the total OD calculated from the cell counting 

approach showed larger deviation from the measured total OD, particularly at higher 

concentrations. The bar chart of the mean squared error (MSE) of predictions in the total OD based 

on six experimental runs (three inoculum concentrations with duplicates) are plotted in Figure 16. 

The error bar represents one standard deviation of MSE’s. Student’s t-test shows that the MSE’s 

of the cell counting is statistically significantly larger than that of the E-C protocol, with a p-value  
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(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 15. Individual biomass concentration measured through the cell counting approach and the 

E-C protocol for both coculture pairs, where each point represents one of the duplicate 

samples, and the error bar represents the standard deviation from three cell counting 

measurements for the same sample. (a) M. alcaliphilum 20ZR; (b) S. sp. PCC7002; (c) M. 

capsulatus; (d) C. sorokiniana. 

Table 4. Biomass concentration vs OD calibration Relationship 

M. alcaliphilum 20ZR Conc(gDCW/L) = OD730×0.4411+0.006 

S. sp. PCC7002 Conc(gDCW/L) = OD730×0.2582+0.003 

M. capsulatus Conc(gDCW/L) = OD730×0.5566-0.005 

C. sorokiniana Conc(gDCW/L) = OD730×0.3607-0.003 
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of 0.0158 for the salt water pair and 0.0030 for the fresh water pair. The calibration relationship 

between biomass concentration (gDCW/L) and OD for all four strains were obtained through cell 

drying experiment in house, and are provided inTable 4. 

Besides obtaining individual biomass concentration for each microorganism in the coculture 

accurately and quickly, the E-C protocol also provides estimates of individual substrate 

consumption rates and product excretion rates. Figure 17 (a) and (b) plot the individual  

  
(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 16. (a) and (b) are the comparison of the measured total OD vs. the total OD calculated 

using the individual biomass concentrations obtained through cell counting and the E-C 

protocol: (a) the salt water coculture pair M. alcaliphilum 20ZR – S. sp. PCC7002; (b) the 

fresh water coculture pair M. capsulatus – C. sorokiniana. (c) and (d) are bar chart of MSE 
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in total OD predictions based on six experimental runs (three inoculum concentrations with 

duplicates): (c) the salt water coculture pair M. alcaliphilum 20ZR – S. sp. PCC7002; (d) 

the fresh water coculture pair M. capsulatus – C. sorokiniana. The error bar represents one 

standard deviation of the six MSE’s. Student’s t-tests were performed to compare MSE’s 

of two approaches where symbol ‘*’ denotes p-value ≤ 0.05; ‘**’ denotes p-value ≤ 0.01, 

indicating the performance improvement of the E-C protocol over flow cytometry is 

statistically significant at 95% confidence level for the salt water pair and at 99% 

confidence level for the fresh water pair. 

 

consumption and production rates of O2 and CO2 respectively by M. alcaliphilum 20ZR and S. sp. 

PCC7002 over a three-day period for the inoculum ratio of 1:10, and Figure 17 (c) and (d) plot 

those values for M. capsulatus – C. sorokiniana, for the inoculum ratio of 1:2.   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 17. Individual and overall consumption/production rates of O2 and CO2 over the growth 

period of 3 days: (a) O2 for salt water M. alcaliphilum 20ZR – S. sp. PCC7002 pair at 1:10 

inoculum OD ratio; (b) CO2 for salt water M. alcaliphilum 20ZR – S. sp. PCC7002 pair at 
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1:10 inoculum OD ratio; (c) O2 for fresh water M. capsulatus – C. sorokiniana pair at 1:2 

inoculum OD ratio; (d) CO2 for fresh water M. capsulatus – C. sorokiniana pair at 1:2 

inoculum OD ratio. 

 

Figure 17 shows that although for many cases very small amounts of O2 were detected in 

the gas phase (e.g., day 2 and 3 for the salt water pair and all 3 days for the fresh water pair), 

significant amount of O2 was produced by the photoautotroph, which was completely consumed 

in situ by the methanotroph. Similarly, Figure 17 shows that the actual amount of CO2 consumed 

by the photoautotroph was much larger than what was directly measured in the experiment, 

because the CO2 produced by the methanotroph would be preferably consumed by the 

photoautotroph, as it was produced in situ and did not involve the mass transfer resistance from 

gas to liquid.  

3.5 Conclusions 

It has been recognized that methanotroph-photoautotroph cocultures offer a highly promising 

biological platform for biogas conversion. Through the interspecies metabolic coupling of CH4 

oxidation to oxygenic photosynthesis, the coculture can simultaneously convert both CH4 and CO2 

into microbial biomass without external oxygen supply. However, one key obstacle in developing 

methanotroph-photoautotroph based biotechnology for biogas conversion is the lack of an 

effective tool for fast, accurate and frequent characterization of the coculture growth dynamics. In 

this work, based on the organism’s growth stoichiometry, the interspecies metabolic coupling and 

the total mass balance, we developed an E-C protocol to characterize the coculture. The E-C 

protocol provides not only accurate estimates of the individual biomass concentration within the 

coculture, but also the individual substrate consumption and product excretion rates of each 

organism. To the best of our knowledge, the developed E-C protocol is the first ever approach that 
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could obtain individual substrate consumption and product excretion rates for methanotroph-

photoautotroph or any other cocultures. 

The accuracy of the developed E-C protocol was validated by cell counting approach using flow 

cytometry. In addition, by comparing the predicted total OD from the individual biomass 

concentration with the measured total OD, we showed that the E-C protocol provided better 

accuracy than the cell counting approach through statistical testing. It is worth noting that the 

developed E-C protocol only requires commonly used analytical equipment to provide quick and 

accurate characterization of the methanotroph-photoautotroph cocultures. 

Finally, we showed that it is very important to use static cocultures with known concentration to 

validate the cell counting method, as the cell fixation protocol could result in severely skewed cell 

counting results. Currently, although cell counting with flow cytometry has become increasingly 

common in determining the individual biomass concentration in mixed culture or microbiome, 

very few publications have presented validation results on their cell counting approaches.  
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: Semi-structured kinetic modeling for methanotroph-photoautotroph cocultures 

Abstract 

Through metabolic coupling of CH4 oxidation and oxygenic photosynthesis, methanotroph-

photoautotroph (M-P) cocultures offer a highly promising technology platform for biogas 

conversion. Real-time accurate characterization of the M-P coculture and kinetic models that can 

accurately predict the coculture growth under different conditions are key enablers of the M-P 

coculture based biotechnologies. In our recent work, we have developed an experimental-

computational protocol to accurately characterize the M-P coculture in real-time. In this work, we 

present a semi-structured kinetic model for the M-P coculture that explicitly models the exchange 

of in situ produced O2 and CO2. Using Methylomicrobium buryatense 5GB1- Arthrospira platensis 

as the model coculture and a series of designed experiments, it was demonstrated that the semi-

structured kinetic model can accurately predict the coculture growth under a wide range of growth 

conditions. In addition, the mechanistic details provided by the validated model enabled 

fundamental understanding on the coculture growth dynamics. 

Redrafted after: 

Badr K, He QP, Wang J. Semi-structured kinetic modeling for methanotroph-photoautotroph 

cocultures. Bioresource technology. 2021 (submitted). 

4.1 Introduction 

Industrial, municipal, and agricultural waste streams containing stranded organic carbon 

represent a significant and underutilized feedstock to produce fuels and chemicals. Among 

different waste management approaches, anaerobic digestion (AD) is a mature and efficient 

solution for handling organic waste streams and mitigating pathogens and odor. During the AD 
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process, a large fraction (up to 60%) of organic matter is broken down into biogas (50%~70% 

CH4, 30%~40% CO2 and trace amount of contaminants such as H2S and NH3). CO2 and CH4 are 

the two leading (GHGs) that cause global warming and many detrimental effects to the earth’s 

ecosystem, and AD enables the containment of biogas produced from waste degradation that 

otherwise would be released into atmosphere. AD produced biogas can be used to produce energy, 

including electricity, heat and compress natural gas. In addition, AD contributes significantly to 

prevent the leaching of excessive amount of N and P into soil and water (both surface and ground 

water) caused by waste storage (especially manure storage), which has caused severe 

eutrophication; AD is also highly effective in mitigating odor associated with waste storage and 

decomposition, as well as removing pathogens that can pose significant risk to animal and human 

health.  

Currently biogas production is led by the European Union and the United States, with other 

regions (such as Asia, Latin America and Africa) increasingly deploying the technology [83–85]. 

In 2000, global biogas production was 280 Petajoule, and in 2014, global biogas production 

increased to 1280 Petajoule, representing an increase of 457% [86]. The biogas potential as a 

feedstock for producing energy and commodity chemicals is immense across the world. For 

example, in the United States, more than 2100 biogas plants were operating in 2017, compared to 

the estimated potential of 13,000 biogas plants that could be built (8241 in farms, 1086 at land fill 

sites and 3681 at waste water treatment plants) [87]; in Europe, biogas production reached 18 

billion m3 in 2015, while the potential of biogas production is estimated to be about 78 billion m3 

[88]. In China, about 9 billion m3 biomethane was generated in 2014, compared to the estimated 

potential of 200-250 billion m3 biomethane annually [89,90]. 
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Because of the presence of contaminants such as H2S, ammonia, and volatile organic 

carbon compounds, the utilization of biogas beyond heat and electricity generation is quite limited. 

The significant capital expanse (CapEx) and maintain cost required to remove the contaminants, 

as well as the low value of the products (heat and electricity) results in unfavorable return-of-

investment for biogas production. Therefore, despite the fact that AD is a mature technology that 

can offer significant environmental and social benefits, as well as the enormous energy potential, 

the deployment of AD is still quite limited. Specifically, for the US, out of 8113 US dairy and 

swine farms identified by AgSTAR as candidates for profitable AD biogas recovery systems, only 

250 (3% of total potential) manure AD biogas recovery systems were in operation in 2017 [19]. 

To tap into the immense potential of biogas produced from waste streams, effective 

biotechnologies that can operate at ambient pressure, temperature without requiring biogas 

cleaning/upgrading and are economically viable at small to mid-scale are needed. In addition, the 

technologies that can co-utilize both CH4 and CO2 are particularly attractive.   

Recent studies have demonstrated that natural microbial communities have developed a 

highly efficient approach to recover energy and recycle carbon from both CH4 and CO2 through 

metabolic coupling of CH4 oxidation to oxygenic photosynthesis [55–57], as illustrated in Figure 

18a. This coupling enables significant reductions of CH4 and CO2 emission at oxic-anoxic 

interfaces across various aquatic and terrestrial ecosystems, where the in situ photosynthetic 

production of O2 enables methanotrophic activities [55]. Inspired by these research findings, 

different methanotroph-photoautotroph (M-P) cocultures have been examined recently for biogas 

conversion. For example, van der Ha et al. [58] reported that a coculture of Methylocystis parvus- 

Scenedesmus sp. could completely convert a synthetic biogas (60% CH4, 40% CO2) into microbial 

biomass without external oxygen supply; Hill et al. [59] demonstrated that Methylomicrobium 
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alcaliphilum- Synechococcus PCC 7002 could maintain stable growth on gas mixtures with wide 

range of composistions, including raw biogas and synthetic biogas; Most recently, Rasouli et al. 

[24] and Roberts et al. [63] showed that Methylococcus capsulatus- Chlorella sorokiniana can 

efficiently recover nutrient (N and P) contained in waste water while converting biogas into 

microbial biomass.  

These recent developments clearly demonstrated that M-P cocultures offer a highly 

promising biotechnology platform for biogas conversion. For the development of various 

biotechnologies. kinetic models that can accurately predict microbial growth and product excretion 

patterns under different conditions serve as an essential tool. A high-quality kinetic model provides 

a foundation to guide the design, optimization and scale up of the bioreactors, as well as the 

optimization of the operation conditions and controls of the bioreactor. However, most of the 

existing results on the M-P coculture are limited to qualitative proof-of-concept experiments, and 

there is a lack of quantitative understanding on the growth kinetics of the M-P coculture. Given 

the added complexity of the M-P cocultures, i.e., in situ exchange of CO2 and O2 between the 

methanotroph and the photoautotroph, as well as the largely unknown interspecies interactions, 

obtaining a kinetic model is highly challenging, but also imperative for the development of the 

coculture-based biogas conversion technologies. 

A prerequisite to the development of a coculture kinetic model is the time-series 

measurements of individual biomass concentrations in the coculture, as well as the individual 

substrate uptake rates and product excretion rates. Currently, there is a lack of effective tools to 

obtain the real-time, accurate measurements for each species in the coculture needed for kinetic 

modeling. To address this challenge, we recently developed an experimental-computational (E-C) 

protocol to deliver fast, easy and accurate quantitative characterization of the M-P coculture. The 
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E-C protocol only uses easily measured variables such as gas compositions and total inorganic 

carbon in liquid broth, and doesn’t require specialized equipment such as flow cytometer, or 

advanced technologies such as next-generation sequencing. Based on each organism’s growth 

stoichiometry, the interspecies metabolic coupling of O2/CO2, and the total mass balance, the E-C 

protocol provides not only accurate estimates of the individual biomass concentration, but also the 

individual substrate consumption and product excretion rates. The accuracy of the E-C protocol 

was validated via the cell counting approach using flow cytometry on two model M-P coculture 

pairs. In addition, by comparing the total OD predicted using the individual biomass concentration 

determined through either the E-C protocol or flow cytometer with that directly measured via a 

UV/Vis spectrometer, it was demonstrated through statistical testing that the E-C protocol 

delivered better accuracy than the cell counting approach using flow cytometer. More details of 

the E-C protocol can be found in [91].  

Enabled by the real-time characterization of the M-P coculture, in this work we report a 

semi-structured kinetic model that can accurately predict the individual growth rate, as well as the 

individual consumption/production rates of O2 and CO2 for the methanotroph and photoautotroph 

in the coculture under a wide range of growth conditions. We term the developed kinetic model 

“semi-structured”, because the exchange of in situ produced O2 and CO2 between the two species 

explicitly captured in the model. The rest of the paper is organized as the following: Method and 

Material are covered in Section 4.2, which also include the details of the developed semi-structure 

kinetic model; Results (both experimental and computational) and discussion are provided in 

Section 4.3, and Conclusions are provided in Section 4.4. 
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Figure 18. (a) Illustration of metabolic coupling of methane oxidation to oxygenic photosynthesis, 

(b) an overview of the semi-structured kinetic modeling framework 

4.2 Method and Material 

4.2.1 Strains and media 

Methylomicrobium buryatense 5GB1 (provided by Prof. Mary Lidstrom, University of 

Washington) and Arthrospira platensis (UTEX LB 2340) were grown under coculture and axenic 

conditions. All cultures were grown in one of the two previous described minimal salts media, 

NMS2 medium [62] or Zarrouk medium [92], or the mixture of these media (10% NMS2 and 90% 

Zarrouk). 

4.2.2 Batch cultivations 

The growth experiments of the M. buryatense 5GB1- A. platensis coculture and their 

sequential single culture were conducted using sealed 250 ml serum bottles with working volumes 

(a) 

(b) 
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of 100 ml. All bottles placed in a rotary shaker set at 200 rpm, with a temperature of 30°C and pH 

kept at 8.8-9. Various factors were tested to examine their effect on the coculture growth, and the 

conditions for each set of designed experiments are listed Table 5.  

Table 5. Various conditions for each set of designed coculture experiments 

Experiment 

(Case) 
System Condition Gas (CH4:CO2:O2)* Inoculum ratio (P:M) Light intensity (µmol/m2 s) 

A Coculture 
a 

70:30:0 12.5 : 1 
180 

b 60 

B Light intensities 

a 

80:20:0 12.5 : 1 

180 

b 140 

c 100 

d 60 

C Gas compositions 

a 20:10:0 

      12.5 : 1 180 
b 60:30:0 

c 60:30:10 

d 80:20:0 

D Inoculum ratios 

a 

80:20:0 

      12.5 : 1 

         180 
b       8.5 : 1 

c       4 : 1 

d       1.5 : 1 

E 
Coculture vs Sequential 

single culture 

coculture 70:30:0       12.5 : 1 

         180 
A. platensis 70:30:0 

Inoculum conc. (0.218 

gDCW/L) 

M. buryatense 70:30:0** 
Inoculum conc. (0.018 

gDCW/L) 

* Volume/mole percentage. N2 is the inert gas to make up to 100% when needed. 

** The oxygen produced by the single photoautotroph was injected to the single methanotroph 

 

For each growth experiment, after inoculation, the bottles were flushed with appropriate feed gas 

for 15 minutes, and the bottles were refed every 24 hours. All experiments were carried out with 

triplicates. Gas and liquid samples were taken twice per day, before and after feeding. 

Compositions of the gas samples were analyzed following a protocol we published previously 

[78]. For the liquid samples, total optical density (OD), pH and total inorganic carbon (TIC) were 

measured following our previous work [63]. Individual biomass concentrations were determined 

using the E-C protocol [91]. 
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4.3 Semi-structured kinetic modeling framework for the M-P coculture 

Figure 18b provides an overview of the semi-structured kinetic modeling framework for 

the M-P coculture. The overall kinetic model consists of four components: (1) biomass growth of 

the photoautotroph; (2) biomass growth of the methanotroph; (3) mass balance in liquid phase; 

and (4) mass balance in gas phase. The interdependency among different components is also shown 

in the figure, where the growth of each organism in the coculture is coupled with the gas phase 

composition changes through the mass balances in the liquid and gas phase. As gas composition 

can be measured accurately, such coupling provides an additional route for model validation. 

Table 6. Variables used in the semi-structured kinetic model 

𝑗 : superscript indicating different microorganism; 𝑀 = methanotroph, 𝑃 = photoautotroph; 

𝑖 : subscript indicating different metabolite, (e.g., 𝐶𝐻4, 𝑂2, 𝐶𝑂2, or a = light intensity); 

𝑘 : subscript indicating concentration of different phases; 𝑔 = gas, 𝑙 = liquid; 

𝑋𝑗 : biomass concentration of species 𝑗 (g/L); 

𝜇𝑚𝑎𝑥
𝑗

 : maximum growth rate of species 𝑗 (1/hr); 

𝜇𝑗 : growth rate of species 𝑗 (1/hr); 

𝐾𝑆,𝑖
𝑗

 : half saturation constant of substrate 𝑖 for species 𝑗, (mmol/L); 

𝑣𝑖
𝑗
 : consumption/production rate of metabolite 𝑖 for species 𝑗, (mmol/g hr); 

[ 𝑖 ]𝑘 : concentration of metabolite 𝑖 in phase k, (mmol/L); 

𝐻𝑖
𝑒 : effective Henry’s constant for gas substrate 𝑖, (-); 

𝑌𝑎
𝑏⁄

𝑗
 : yield coefficient between metabolite 𝑖 and biomass for species 𝑗; 𝑖 = 𝐶𝐻4, 𝑂2, 𝑜𝑟 𝐶𝑂2; 𝑗 = 𝑀 𝑜𝑟 𝑃 (mmol/g) 

𝐼 : light intensity, (𝜇mol photons m-2 s-1); 

𝑉𝑘 : volume of liquid and gas phase in the system, (L); 

𝑘𝐿𝑎𝑖 : volumetric mass transfer coefficient for substrate 𝑖, (1/hr). 

 

In the semi-structured kinetic modeling framework, cell growth is described using Monod 

equations; the substrate consumption rates and product excretion rates are determined through the 

yield coefficients between the corresponding substrate/product and the biomass. We term the 

coculture kinetic model a semi-structured model, as the exchange of in situ produced O2 and CO2 

were explicitly modeled in the framework, while the other potential interspecies interactions were 

captured through lumped parameters, i.e., maximum growth rate of each organism. Table 6 listed 

the notations of the variables utilized in this work. In the following, we describe each modeling 

component in detail.  
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4.3.1 Growth of the photoautotroph 

The growth of the photoautotroph is described using Monod model, as shown in Eqn. (14), 

where CO2 and light energy input (Ia) are the two substrates. CO2 uptake rate and O2 production 

rate are determined through the corresponding yield coefficients with respect to biomass 

production, i.e., Eqns (15) & (16); As the available light energy to the cells in the culture broth 

depends on the biomass concentration due to the “self-shading” effect, we use the Beer-Lambert 

law for light distribution to estimate the light attenuation effect [93]. As shown in Eqn. (17), I0 is 

the direct measurement of incident light intensity (𝜇𝑚𝑜𝑙 𝑚−2𝑠−1); m is the absorption coefficient, 

𝑚 = 𝑎𝐼0 + 𝑏, where the model parameters (i.e., 𝑎 and 𝑏) were estimated using coculture growth 

experiments under the highest and lowest incident light intensities (180 𝜇𝑚𝑜𝑙 𝑚−2𝑠−1and 60 

𝜇𝑚𝑜𝑙 𝑚−2𝑠−1respectively in this work). 

µ 𝑃 = µ 𝑚𝑎𝑥
𝑃  ∙

[𝐶𝑂2]𝑙

𝐾𝑆,𝐶𝑂2
𝑃 +[𝐶𝑂2]𝑙

∙
𝐼𝑎

𝐾𝑆,𝐼
𝑃 +𝐼𝑎

         (14) 

𝑣𝐶𝑂2
𝑃 = 𝜇𝑃. 𝑌𝐶𝑂2 𝑋𝑃⁄           (15) 

𝑣𝑂2
𝑃 = 𝜇𝑃. 𝑌𝑂2 𝑋𝑃⁄           (16) 

𝐼𝑎 = 𝐼0exp [−𝑚(𝑋
𝑀 + 𝑋𝑃)]         (17) 

4.3.2 Growth of the methanotroph 

Similar to the photoautotroph, the growth of the methanotroph is also described using 

Monod model, as shown in Eqn. (18), where CH4 and O2 are the substrates. CH4 and O2 uptake 

rates, as well as CO2 production rate are determined through the corresponding yield coefficients 

as shown in Eqns (19) - (21). 

µ 𝑀 = µ 𝑚𝑎𝑥
𝑀 ∙

[𝑂2]𝑙

𝐾𝑆,𝑂2
𝑀 +[𝑂2]𝑙

∙
[𝐶𝐻4]𝑙

𝐾𝑆,𝐶𝐻4
𝑀 +[𝐶𝐻4]𝑙

        (18) 

𝑣𝐶𝐻4
𝑀 = 𝜇𝑀. 𝑌𝐶𝐻4 𝑋𝑀⁄           (19) 
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𝑣𝑂2
𝑀 = 𝜇𝑀. 𝑌𝑂2 𝑋𝑀⁄           (20) 

𝑣𝐶𝑂2
𝑀 = 𝜇𝑀. 𝑌𝐶𝑂2 𝑋𝑀⁄           (21) 

4.3.3 Mass balance in liquid phase 

The mass balance in the liquid phase links the coculture growth and gas phase composition 

changes. In this work, the dissolved CH4 and O2 concentrations in the liquid phase were not 

measured, therefore cannot be used for model validation. In fact, the dissolved CH4 concentration 

has hardly been reported in the literature due to the lack of CH4 probes. The dissolved O2 

concentration was not measured due to limited volume of the serum bottle. In addition, as the 

growth of the methanotroph is usually under oxygen-limited condition, the dissolved O2 

concentration can be close to zero and may not be detectable, which is the case for all the conditions 

tested in this work except for the case where external O2 is provided through feed gas.   

For different gas components, the mass balance consists of the amount of the gas component 

transferred from the gas phase, as well as the amount produced and/or consumed by the 

methanotroph or photoautotroph.  In this way, the exchange of in situ produced CO2 and O2 can 

be directly captured by its corresponding mass balance, as shown in Eqn. (23) and (24). Finally, 

Eqns. (25) and (26) describe the biomass accumulation in the liquid phase.  

𝑑[𝐶𝐻4]𝑙

𝑑𝑡
= 𝑘𝑙𝑎𝐶𝐻4(𝐻𝐶𝐻4

𝑒 [𝐶𝐻4]𝑔 − [𝐶𝐻4]𝑙) − 𝑣𝐶𝐻4
𝑀 𝑋𝑀      (22) 

𝑑[𝑂2]𝑙

𝑑𝑡
= 𝑘𝑙𝑎𝑂2(𝐻𝑂2

𝑒 [𝑂2]𝑔 − [𝑂2]𝑙) − 𝑣𝑂2
𝑀𝑋𝑀 + 𝑣𝑂2

𝑃 𝑋𝑃     (23) 

𝑑[𝐶𝑂2]𝑙

𝑑𝑡
= 𝑘𝑙𝑎𝐶𝑂2(𝐻𝐶𝑂2

𝑒 [𝐶𝑂2]𝑔 − [𝐶𝑂2]𝑙) − 𝑣𝐶𝑂2
𝑃 𝑋𝑃 + 𝑣𝐶𝑂2

𝑀 𝑋𝑀    (24) 

𝑑𝑋𝑃

𝑑𝑡
= 𝜇𝑃𝑋𝑃           (25) 

𝑑𝑋𝑀

𝑑𝑡
= 𝜇𝑀𝑋𝑀           (26) 
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The above mass balance equations were derived based on the assumption of batch cultivation, 

which can be easily modified to continuous cultivation. 

As indicated in Eqns. (22) – (24), we assume ideal mixing of the liquid phase and ignore the mass 

transfer resistance associated with the transport of the dissolved gas substrate across the bulk liquid 

phase to reach the cells. This simplification is reasonable, as in this work the liquid volume was 

small (100 ml) and the vials were under continuous rotation (200 rpm). As shown in “Result and 

Discussion”, this simplification was validated by the experimental results, as the model predictions 

(both individual biomass concentrations and gas phase compositions) showed excellence 

agreement with experimental measurement under wide range of growth conditions.  

4.3.4 Mass balance in gas phase 

The concentration of different gas components in the gas phase is linked to those in the 

liquid phase through mass transfer between the two phases. As shown in Eqns. (27) – (29), we 

assume the distribution of various gas components between the gas and liquid phase are at 

equilibrium all the time.  In order to capture the effect of the biomass and culture medium on the 

solubility of different gas components, we used effective Henry’s constant to determine the 

solubility of different gas components in the coculture broth 

𝑑[𝐶𝐻4]𝑔

𝑑𝑡
= −𝑘𝑙𝑎𝐶𝐻4(𝐻𝐶𝐻4

𝑒 [𝐶𝐻4]𝑔 − [𝐶𝐻4]𝑙)
𝑉𝐿

𝑉𝐺
      (27) 

𝑑[𝑂2]𝑔

𝑑𝑡
= −𝑘𝑙𝑎𝑂2(𝐻𝑂2

𝑒 [𝑂2]𝑔 − [𝑂2]𝑙)
𝑉𝐿

𝑉𝐺
       (28) 

𝑑[𝐶𝑂2]𝑔

𝑑𝑡
= −𝑘𝑙𝑎𝐶𝑂2(𝐻𝐶𝑂2

𝑒 [𝐶𝑂2]𝑔 − [𝐶𝑂2]𝑙)
𝑉𝐿

𝑉𝐺
      (29) 

It is worth noting that it has been very challenging to determine the partition of CO2 between the 

gas phase and liquid culture broth, mainly due to the dissociation of dissolved CO2 into HCO3
− and 

CO3
2− (𝐶𝑂2 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻𝐶𝑂3

− + 𝐻+ ↔ 𝐻𝐶𝑂3
− + 2𝐻+). To address this challenge, we didn’t 
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differentiate the various forms of dissolved CO2, instead, we lumped them all into a “total 

dissolved CO2” that can be tracked experimentally by measuring total inorganic carbon (TIC) of 

the liquid sample.  Then the partition of the CO2 between the gas and liquid phase (i.e., total 

dissolved CO2) can be determined using a linear empirical relationship obtained through designed 

experiments.  

Since gas phase composition can be measured accurately, the coupling of the gas phase, 

liquid phase and coculture growth provides an additional route to validate the kinetic model. If the 

model predicted gas phase composition agrees with the experimental measurements over time, it 

would be very convincing that the semi-structured kinetic model can accurately describe the 

coculture growth dynamics, and many details predicted by the kinetic model that are difficult to 

obtain experimentally could help reveal what actually happened in the coculture liquid broth. 

4.4 Results and Discussion 

In this work, using M. buryatense 5GB1 and A. platensis as the model coculture, we first 

use batch growth experiments to demonstrate that the semi-structured kinetic model can 

adequately capture and accurately describe the growth dynamics of the M-P coculture. The 

parameters involved in the semi-structured kinetic model were determined based on literature as 

well as data obtained from just two coculture batch growth experiments (under the same condition 

except with different light intensities) as a training step. Next, we examine the effect of different 

environmental factors on the coculture growth, which include light intensity, gas composition and 

inoculum ratio, as the testing step. The experimental measurements obtained under a wide range 

of growth conditions were compared with model predictions (using the same set of model 

parameters) to validate the model. Once validated, the mechanistic details that are difficult to 

measure experimentally can be obtained through in silico experiments using the kinetic model to 
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obtain fundamental understanding on the M-P coculture growth dynamics. An overview of training 

and validating (testing) the model is shown in Table 7. Finally, by comparing the coculture growth 

with sequential single culture growth using both wet lab experiments and kinetic modeling, we 

were able to confirm the existence of other emergent metabolic interactions, in addition to the 

exchange of the in situ produced O2 and CO2, as well as to quantify the effect of these unknown 

metabolic interactions on coculture growth.  

Table 7. An overview of training and testing the Semi structured kinetic model 

Semi structured kinetic model 

Step Used Experiments 

Training (fitting) A (two conditions) 

Validating (testing) 

B (four conditions) 

C (four conditions) 

D (four conditions) 
 

4.4.1 The semi-structured kinetic model accurately captures the coculture growth dynamics 

Table 8. Optimized values of model parameters based on literature and experimental data 

Parameter 
Obtained 

value 
Unit Ref.  Parameter 

Obtained 

value 
Unit Ref. 

µ 
𝑚𝑎𝑥
𝑃

single 0.024 ℎ𝑟−1  [94]  𝑌𝑃𝐶𝑂2
𝑋𝑃

 31.85 𝑚𝑚𝑜𝑙/𝑔𝐷𝐶𝑊 [95] 

µ 𝑚𝑎𝑥
𝑀

single 0.098 ℎ𝑟−1  This study  𝑌𝑃𝐶𝑂2
𝑋𝑃

 40.82 𝑚𝑚𝑜𝑙/𝑔𝐷𝐶𝑊 [96] 

µ 𝑚𝑎𝑥
𝑃

coculture 0.034 ℎ𝑟−1 This study  𝑌𝑀𝐶𝐻4
𝑋𝑀

 85.47 𝑚𝑚𝑜𝑙/𝑔𝐷𝐶𝑊 [97,98] 

µ 𝑚𝑎𝑥
𝑀

coculture 0.145 ℎ𝑟−1 This study  𝑌𝑀𝐶𝑂2
𝑋𝑀

 40.98 𝑚𝑚𝑜𝑙/𝑔𝐷𝐶𝑊 [97] 

𝐾𝑆,𝐶𝑂2
𝑃  0.240 𝑚𝑚𝑜𝑙 𝐿−1 [99]  𝑌𝑀 𝑂2

𝑋𝑀
 114.94 𝑚𝑚𝑜𝑙/𝑔𝐷𝐶𝑊 [97] 

𝐾𝑆,𝑂2
𝑀  0.005 𝑚𝑚𝑜𝑙 𝐿−1 [100]  𝐻𝐶𝐻4 0.0014 𝑚𝑜𝑙 𝐿−1 𝑎𝑡𝑚−1 [101] 

𝐾𝑆,𝐶𝐻4
𝑀  0.028 𝑚𝑚𝑜𝑙 𝐿−1 [100,102]  𝐻𝑂2 0.0013 𝑚𝑜𝑙 𝐿−1 𝑎𝑡𝑚−1 [101] 

𝐾𝑆,𝐼
𝑃  4.33 𝜇𝑚𝑜𝑙 𝑚−2𝑠−1 This study  𝐻𝐶𝑂2  0.035 𝑚𝑜𝑙 𝐿−1 𝑎𝑡𝑚−1 [101] 

a -0.0175 - This study  𝐻𝐶𝐻4
𝑒  0.0341 - This study 

b 6.40 - This study  𝐻𝑂2
𝑒  0.0317 - This study 

𝑘𝐿𝑎𝐶𝐻4  100 ℎ−1 [103]  𝐻𝐶𝑂2
𝑒  1.6120 - This study 

𝑘𝐿𝑎𝑂2 
1.17 ×

𝑘𝐿𝑎𝐶𝐻4  
ℎ−1 [104]      

𝑘𝐿𝑎𝐶𝑂2 
0.90 ×

𝑘𝐿𝑎𝐶𝐻4  
ℎ−1 [105]      
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In this subsection, we use the model fitting performance to demonstrate that the semi-

structured kinetic model can adequately capture and accurately describe the growth dynamics of 

the coculture. The conditions for the designed coculture growth experiments in this subsection are 

listed in Table 5 (Experiment A). Specifically, the coculture was cultivated under continuous 

illumination with light intensity of 60 or 180 𝜇𝑚𝑜𝑙 𝑚−2𝑠−1, inoculum ratio of 12.5 :1 (P:M) and 

gas composition of 70%CH4, 30% CO2.  

The model parameters were determined based on available literature data and fitting to the 

experimental data (Experiment A). The fitted model parameters for the coculture of M. buryatense 

5GB1-A. platensis are provided in Table 8, and were utilized in all the model predictions for the 

rest of the paper. 

  

  

(c) 

(a) (b) 

(d) 
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Figure 19. Comparison of the experimental measurements with the model prediction for various 

variables, (a) the individual biomass concentrations, (b) gas composition, (c) CH4 

consumption for each day, (d) individual growth rates (model prediction only). 

 

Figure 19 compares the experimental measurements with the model prediction for various 

variables: the individual biomass concentrations (Figure 19a, measurements obtained through the 

E-C protocol), gas composition (Figure 19b), CH4 consumption for each day (Figure 19c) and 

individual growth rates (Figure 19d, model prediction only). The reset of the gas phase 

composition every 24 hours was due to the refeeding that happened daily. Similarly, the model 

predicted growth rate for the methanotroph dropped to zero after refeeding because dissolved O2 

became zero due to refeeding. 

These results showed excellent agreement between the model fitting and experimental 

measurements, which clearly demonstrated that the semi-structured kinetic model can adequately 

capture and accurately describe the growth dynamics of the coculture. Specifically, the excellent 

agreement between the measured and model predicted gas phase composition over time confirmed 

that the integration of the four modeling components were accurate.   

For the rest of the paper, the same set of model parameters were utilized to predict the 

coculture growth under different conditions, which were compared with experimental 

measurements to further validate the model. Once validated, the semi-structured kinetic model 

provides many details that cannot be directly measured in real-time, which not only allowed us to 

gain better understanding of the coculture growth dynamics, but also enabled us to test different 

hypotheses easily.     
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4.4.2 The effect of light intensity 

We hypothesize that photosynthesis rate is a key factor that determines the coculture 

growth rate, as the growth of the methanotroph depends on the O2 availability and the CO2 

produced by the methanotroph could fuel additional growth of the photoautotroph. To test this 

hypothesis, we performed the set of designed experiments as shown in Table 5, Experiment B. 

These set of experiments were conducted under the same growth conditions except the different 

light intensities (60, 100, 140, 180 𝜇𝑚𝑜𝑙 𝑚−2𝑠−1).  

The model predicted individual biomass concentrations (Figure 20a for M. buryatense 

5GB1 and Figure 20b for A. platensis) were first compared with experimental measurements to 

validate the model. The excellent agreement between experimental measurements and model 

predictions under different light intensities clearly validated the accuracy of the semi-structured 

kinetic model. Further, Figure 20a & b shows that increasing light intensity not only enhanced the 

growth of A. platensis, but also the growth of the M. buryatense 5GB1, confirming our hypothesis.  

Figure 20c & d plotted the model predicted individual growth rates for M. buryatense 

5GB1 and A. platensis respectively, and there are two interesting observations. First, the growth 

rate of A. platensis kept decreasing over the course of the batch experiment; while the growth rate 

of M. buryatense 5GB1 initially increased and reached a maximum, then kept decreasing 

afterward. Second, the enhancement on cell growth rates driven by higher light intensity 

diminished over time. The decreasing cell growth rates and diminishing improvement on cell 

growth over time could be attributed to two possible reasons. One reason is the carbon substrate 

limitation - due to the mass transfer resistance, the total amount of gas components transferred 

from the gas phase to the liquid phase would be limited; therefore, with the increasing biomass 

over time, the specific carbon uptake rate per unit biomass would decrease and cause decreasing 

cell growth rate; the other possible reason is the light availability limitation due to self-shading 
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effect: as the total biomass concentration in the liquid broth increased, light attenuation caused by 

self-shading could limit the photosynthesis rate which in turn reduces the cell growth rate of the 

photoautotroph. In this work, the limitation of macronutrient is not considered as a potential 

reason, as the coculture medium contained sufficient amount of nutrient by design.  

To determine the underlying reason for the decreasing cell growth rates and the diminishing 

effect on cell growth enhancement, we first examined the total substrate uptake rate (CH4 and O2 

for M. buryatense 5GB1 and CO2 for A. platensis), which are plotted in Figure 20e. If carbon 

substrate limitation caused by the combination of mass transfer resistance and increasing biomass 

were the true cause, the total substrate uptake rates (mmol/hr) would initially increase as the 

biomass concentration increases, then reach a maximum and maintain at the maximum, where the 

maximum would be determined by the mass transfer rate of the gas substrate. However, as shown 

in Figure 20e, the total substrate uptake rates first increased as expected, but then decreased. In 

addition, the total uptake of CH4, O2 and CO2 all followed the same trend. This suggest that carbon 

substrate limitation was not the reason for the decreasing cell growth and diminish enhancement 

observed in the experiment. As discussed in the next subsection, the CO2 needed for 

photosynthesis was mainly provided through dissolved CO2 due to the high pH medium, and was 

never in limitation in this research. Therefore, the decreasing CO2 uptake rate was most likely 

driving by the limitation of light availability due to self-shading effect, and the reduced O2 supply 

at higher biomass concentration in turn limited the CH4 uptake rate. As the coculture biomass 

concentration increased, the light availability limitation resulted in the decrease of total substrate 

uptakes rates, which resulted in the decreasing of cell growth rates for both A. platensis and M. 

buryatense 5GB1; in addition, although higher light intensity enables the faster growth of the 
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coculture initially, the faster increase in the coculture biomass also resulted in more severe light 

attenuation, which resulted in the diminishing effect on cell growth enhancement over time.  

To verify this explanation, we conducted in silico experiment to simulate the coculture 

growth without self-shading effect. This was achieved by simply setting 𝐼𝑎 = 𝐼𝑜, and the resulting 

total substrate uptake rates are shown in Figure 20f. When the biomass concentration was low, it 

is clear that the total substrate consumption rate, with or without considering self-shading effect, 

did not show much difference. All three gas components initially were at the similar level and self-

shading effect was negligible as those in Figure 20e; however, when the coculture biomass 

concentration became higher and self-shading effect became dominant, the simulated coculture 

growth without self-shading effect showed substrate uptake rates kept increasing over time. A local 

maximum was achieved at about 71 hours, where the total substrate consumption rates dropped to 

zero because of the substrate provided through gas phase had been completely consumed. Then at 

72 hours when the vial was refed, the growth of coculture resumed and reached even higher level 

until the substrates were fully consumed again before next feeding. However, in the actual 

coculture growth with self-shading effect, the cell growth is limited by light availability far before 

mass transfer becomes the limiting factor.  

The comparison of the individual biomass production and cell growth rate with and without 

self-shading effect showed that without self-shading effect, the total biomass achieved could be 

three times higher than the actual case with self-shading effect. This result suggest that light 

availability is usually the limiting factor when photosynthesis is involved, far before mass transfer 

becomes the limiting factor. Therefore, improving light availability should be the primary 

consideration for improving photo-synthesis rate and enhancing mass transfer of CO2 the 

secondary consideration. 
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Figure 20. Comparison of the model predicted individual biomass concentrations with 

experimental measurements for (a) M. buryatense 5GB1 (b) A. platensis. The model 

predicted individual growth rates for (c) M. buryatense 5GB1 and (d) A. platensis. The 

model predicted total substrate uptake rate (e) with self-shading effect, (f) without self-

shading effect. 

 

(c) 

(b) (a) 

(d) 

(e) (f) 
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It is worth noting that in the semi-structured kinetic model, ideal mixing of both gas phase 

and liquid phase was assumed. In general, such simplification is deemed reasonable for bench 

scale reactors with sufficient agitation. However, mass transfer resistance in the liquid phase 

cannot be ignored for large-scale bioreactors and must be considered for scale up.  

4.4.3 The effect of gas composition 

As the growth of methanotroph in the coculture is usually limited by the oxygen 

availability, the gas phase composition, in addition to the photosynthesis rate, could serve as a key 

manipulated variable to control the growth and population ratio of the coculture. In this section, 

we examine the effect of the gas phase composition on the coculture growth. As shown in Table 

5 (Experiment C), four different gas compositions (with CH4:CO2:O2 of 20:10:0; 60:30:0; 

60:30:10; 80:20:0) were compared, while the other growth conditions were fixed.  

Figure 21a & b plot the individual biomass concentration and Figure 21c & d plot the 

growth rate under different gas compositions for M. buryatense 5GB1 and A. platensis 

respectively. Figure 21b suggests that different CO2 content in the feed gas didn’t have much 

impact on the growth of A. platensis, which can be attributed to the high pH medium and the way 

the bottle was fed. During the daily feeding, the bottle was flushed with the feed gas for 15 minutes 

to ensure the distribution equilibrium between the gas and liquid phase for different gas 

components was achieved. Due to the high pH of the culture broth (pH 8-9), there were large 

amount of CO2 dissolved in the form of HCO3
− and CO3

2−. Therefore, the supply of CO2 for 

phototroph growth was mainly through various forms of dissolved CO2 (including CO2 produced 

by the methanotroph) instead of the CO2 contained in the headspace of the bottle. Regardless of 

the CO2 content in the feed gas, the reduction of gas phase CO2 concentration has been limited, 

and gas phase CO2 was never depleted before the next feeding. Figure 21d confirmed that the 
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growth rate of A. platensis under different feed gas composition followed the same trajectory and 

overlapped with each other, further confirming that CO2 supply was barely affected by changing 

CO2 content in the feed gas. 

Similarly, Figure 21a suggests that the CH4 content in the feed gas has little effect on the growth 

of M. buryatense 5GB1; instead, it is the O2 content in the feed gas that has significant impact on 

the growth of the methanotroph. When there was 10% of O2 in the feed gas, M. buryatense 5GB1 

showed significantly improved growth. As shown in Figure 20c, the growth rate of M. buryatense 

5GB1 from different gas compositions large overlap with each other, except the one with 10% O2 

in the feed gas. For the condition with 10% O2, M. buryatense 5GB1 showed significantly elevated 

growth right after the daily feeding when abundant amount of O2 was available. As the external 

O2 supply was quickly depleted, the growth rate of M. buryatense 5GB1 dropped to a level that 

was lower than the conditions without external O2 supply. Since the amount of O2 produced by A. 

platensis were almost the same across the different conditions, the higher biomass concentration 

of M. buryatense 5GB1 resulted from external O2 supply resulted in lower specific O2 uptake rate 

and therefore lower growth rate after the external supply was depleted. In addition, these results 

confirm that O2 content in the feed gas can serve as an effective “control knob” for the coculture 

growth. By adding 10% of O2 into gas phase, we can achieve largely different methanotroph 

biomass concentration and steady-state population ratio. 

Figure 21e & f both measure the gas phase compositions for the cases with and without 

external oxygen supply (60:30:0 and 60:30:10). With 10% O2 in the feed gas, the kinetic model 

predicted that significant CH4 consumption occurred right after the feeding, then CH4 consumption 

slowed down after external O2 supply was exhausted and the growth of M. buryatense 5GB1 had 

to rely on the O2 produced by A. platensis. It is worth noting that the dynamic details revealed by  
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Figure 21. The individual biomass concentration for (a) M. buryatense 5GB1 and (b) A. platensis. 

The growth rate under different gas compositions for (c) M. buryatense 5GB1 and (d) A. 

platensis. The gas phase compositions for the experiments (e) with and (f) without external 

oxygen supply. 

 

(e) 

(c) (d) 

(f) 

(a) (b) 
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the semi-structured kinetic model can be difficult to capture through experimental measurements 

alone. The limited gas phase measurements completely missed the two-stage growth of M. 

buryatense 5GB1, i.e., with and without external O2 supply, as the gas phase measurements 

showed very similar pattern between the two conditions. 

These results further demonstrated the predict power of the semi-structured model, as the model 

predictions showed excellent agreement with the experimental data in almost all experiments. For 

the case with external O2 supply, the model predicted biomass concentration for M. buryatense 

5GB1 showed larger deviation from their measurements, this is likely due to the fact that the same 

sets of the fixed yield coefficients were utilized in the model, while the cells in the coculture likely 

experienced some adaptation to the coculture conditions, and exhibited somewhat different growth 

phenotype during the course of the coculture experiments.  

4.4.4 The effect of inoculum ratio 

Due to the different innate growth capabilities of the methanotroph and photoautotroph, 

different inoculum ratio could affect the coculture growth rate. However, given the 

interdependency between the photoautotroph and methanotroph, we hypothesize that regardless of 

the inoculum ratio, the P:M population ratio will transition to a steady-state that potentially 

maximize the carry-capacity of both populations under the given light intensity and gas 

composition. To exam the effect of the inoculum ratio on the coculture growth as well as to test 

the hypothesis, in this subsection, we compared 4 different inoculum ratios under the same growth 

condition as shown in Table 5 (Experiment D), with P:M of 12.5:1, 8.5:1, 4:1, 1.5:1 respectively 

and all conditions have the same inoculum concentration of M. buryatense 5GB1. 

Figure 22a & b plot the measured and model predicted individual biomass concentration 

for M. buryatense 5GB1 and A. platensis respectively. These results clearly showed that for the 



 96 

model coculture, the higher the inoculum ratio, the faster the coculture growth. Since in the 

coculture, the maximum growth rate of M. buryatense 5GB1 (0.145 hr-1) was more than three 

times that of A. platensis (0.034 hr-1), higher inoculum of A. platensis would produce more O2 to 

support faster growth of M. buryatense 5GB1. This is confirmed by the model predicted individual 

growth rates of M. buryatense 5GB1 and A. platensis (Figure 22c). It is worth noting that the 

growth rate of A. platensis with higher inoculum showed faster decline over time, further 

confirmed that the growth of the photoautotroph was limited by the light availability. 

Figure 22 d plots the measured and predicted P:M population ratio over time. It clearly 

validated our hypothesis, as the coculture started with different inoculum ratios all converged to 

the same steady-state ratio (about 3:1). As O2 availability is a major factor that determines the 

steady-state population ratio of the coculture, we expect that both light intensity and external O2 

supply would have a big impact on the steady-state population ratio. Figure 22 e & f plotted the 

measured and predicted steady-state population ratio obtained from Experiment B and C 

respectively. Figure 22e suggests that the effect of different light intensity is rather limited, which 

appears to be contradicting to our expectation. However, this can be explained by the fact that the 

population ratio approaches steady-state, the light intensity (photon energy) available to cell 

growth was mainly determined by self-shading effect as shown in Figure 20c & d. The differences 

among cell growth rate for M. buryatense 5GB1 and A. platensis under different light intensities 

diminished as biomass density increased, which explains why there was limited impact from light 

intensity on the steady-state population ratio.  

Figure 22e confirmed that external oxygen supply had significant impact on the steady-

state population ratio, while different CO2 concentration had negligible effect on the steady-state 

population ratio, as the main source of CO2 supply came from dissolved CO2. 
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Figure 22. The measured and model predicted individual biomass concentration for (a) M. 

buryatense 5GB1 and (b) A. platensis. (c) The model predicted individual growth rates of 

A. platensis. (d) The measured and predicted P:M population ratio over time. The measured 

and predicted steady-state population ratio obtained from (e) Experiment B and (f) 

Experiment C. 

 

(e) 

(b) (a) 

(d) (c) 

(f) 
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4.4.5 The effect of other potential metabolic interactions 

Besides the exchange of in situ produced O2 and CO2, there may exist other metabolic 

exchanges that could further enhance the growth of the M-P coculture. In the semi-structured 

kinetic model, the exchange of in situ produced O2 and CO2 are modelled explicitly, and the effect 

of any potential unknown “emergent interactions” can be captured by the lumped model 

parameters (i.e., the maximum cell growth rates, 𝜇𝑚𝑎𝑥, in the Monod model for both species). 

Therefore, using designed experiments (Table 5, Experiment E) to compare coculture with 

sequential single cultures and coupled with the kinetic modeling results, we could determine 

whether there exist additional metabolic exchanges in the M-P coculture and quantify the effect 

these unknown metabolic exchanges on the coculture growth. 

Figure 23a illustrates the designed comparative experiment. In the sequential single culture 

experiment, the culture medium and inoculum concentration for A. platensis and M. buryatense 

5GB1 were the same as those in the coculture experiment, and the amount of O2 produced by the 

A. platensis single culture was injected into the single culture of M. buryatense 5GB1 to support 

methanotroph growth. Figure 23b & c compares the individual biomass concentration in the 

coculture and sequential single culture for both M. buryatense 5GB1 and A. platensis respectively. 

Again, the model predictions demonstrated excellent agreement with the measurements for both 

the coculture and sequential single culture. These figures also clearly showed that both species in 

the coculture exhibited significantly enhanced growth over those in the sequential single cultures. 

To determine whether the enhanced growth of both species in the coculture was due to any 

unknown metabolic interactions existed in the coculture, we used the experimental data collected 

from the sequential single culture to estimate the maximum cell growth rates for each species, 

while keeping the other parameters in the Monod model the same as those in the coculture model. 

As shown in Table 8 for model parameters, both species in the coculture showed greatly enhanced 



 99 

maximum growth rates, with 42% and 48% increase in the 𝜇𝑚𝑎𝑥’s compared to those of the single 

cultures. The significances increase 𝜇𝑚𝑎𝑥 in the coculture for both species not only confirmed the 

existence of additional mutualistic interactions in the coculture besides O2/CO2 exchanges, but 

also quantified the effect these mutualistic interactions have on the growth of each species. In this 

work the maximum growth rate obtained for the M. buryatense 5GB1 single culture (0.098 hr-1) 

was lower than the value reported in the literature (0.205 hr-1) [106], which was most likely due to 

the fact that M. buryatense 5GB1 single culture was cultivated using the coculture medium and 

different agitation rate that those reputed in the literature. To confirm this was the reason, we have 

conducted multiple M. buryatense 5GB1 single culture cultivation experiments and obtained the 

lower 𝜇𝑚𝑎𝑥 consistently. 

 

  

 

Coculture Sequential single culture 

(a) 

(b) (c) 
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Figure 23. (a) Illustration of the designed comparative experiment. Comparison of the individual 

biomass concentration in the coculture and sequential single culture for (b) M. buryatense 

5GB1 and (c) A. platensis. 

4.5 Conclusion 

In this work, we present a semi-structured kinetic modeling framework for methanotroph-

photoautotroph cocultures. By explicitly modeling the exchange of in situ produced O2 and CO2, 

the semi-structured kinetic model can accurately predict the coculture growth dynamics under a 

wide range of growth conditions, demonstrated by a series of designed experiments using a model 

coculture M. buryatense 5GB1- A. platensis. This kinetic model provides a foundation for the 

design, optimization and control of photobioreactors needed for the coculture-based biogas 

conversion technologies. In addition, by coupling the individual biomass growth with gas phase 

composition changes, the modeling framework not only provides additional way to validate the 

model prediction, but also allows the testing of different hypotheses on the limiting factors of 

coculture growth. Specifically, the details provided by the model confirms that light availability, 

constrained by self-shading effect, is the limiting factor for coculture growth and it happens far 

before carbon substrate availability, limited by mass transfer resistance, becomes the limiting 

factor. Finally, by comparing the maximum growth rates obtained for M. buryatense 5GB1 and A. 

platensis using the coculture and sequential single culture experimental data, we confirmed that 

there exist additional emergent metabolic exchanges that further enhanced the growth both M. 

buryatense 5GB1 and A. platensis. 
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: Genome-scale metabolic models of Arthrosipira platensis - Methylomicrobium 

buryatense 5GB1 predict potential metabolic links 

5.1 Introduction 

5.1.1 Genome Scale Metabolic Models and Flux Balance Analysis 

With continuous progress of omics technology, mathematical model representations of 

cellular metabolisms have grown in complexity and popularity. In doing so, in silico 

experimentation can provide insight on the effects of designed mutation and synthetic carbon flux 

through the metabolic network. Instead of focusing on individual genes or enzymes, genome-scale 

models enable researchers to envisage the cellular metabolism as a system comprised of many 

individual components that interact with each other to achieve a common goal. As a result, the 

field of Systems Biology has evolved to further elucidate the complex relationships that exist 

between genes and enzymes as well as intracellular metabolism and extracellular environmental 

conditions. At the core of Systems Biology are these genome-scale metabolic models (GEMs), 

which as the name suggests, are constructed based on the cell’s genome to provide a map of the 

possible enzymes and their corresponding reaction pathways. As such, these models build a bridge 

to relate organism’s genotype and phenotype by incorporating genomics and experimentally 

observed data into model building and establishing constraints [107,108]. 

 Specifically, GEMS enable researchers to examine how a system (i.e., cellular metabolism) 

comprised of many individual components (i.e., reactions) interact to achieve a common objective. 

Models are created via a system of equations in a stoichiometric matrix that represents the reactions 

and metabolites that comprise an organism’s metabolism via knowledge of the annotated genome. 

The rows represent the metabolites, and the columns represent the reactions taking place in the 

model. Each entry represents the stoichiometric coefficient of each metabolite. A negative entry 

accounts for metabolite consumption and a positive entry for metabolite production in all reactions. 
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Metabolites that are not involved in the reaction simply receive a zero value. Since the matrix 

developed is based on the complete stoichiometry of reactions, it is inherently mass balanced at 

steady state.  It is important to note that most genome sequences are only partially characterized; 

therefore, modifications, such as various gap filling tools connected to genome bank, are made for 

improvement [107].  

 Models consist of hundreds or even thousands of reactions and metabolite. Universally, 

reactions far outnumber the metabolites in GEMs creating a stoichiometric matrix in the model 

that in turn, generates an underdetermined system of equations. Therefore, the most common 

technique for quantitative evaluation of GEMs is through constraint-based optimization. These 

constraints may be physicochemical, environmental, thermodynamic, or experimentally derived 

so that the solution space is logically reduced [109].  

 As the goal of GEMs is to understand and predict how cells utilize substrates, and how 

metabolites flow through the metabolic network to produce different products, several strategies 

have been developed over the past several years to solve for the flux distribution including flux 

balance analysis (FBA), elementary flux modes analysis (EFM), and 13C-metabolic flux analysis 

to evaluate GEMs [110–112]. The model predicted flux through particular reactions are then 

compared to the experimentally measured flux values which are often limited to secreted products 

and biomass growth rate. For this research, FBA is used which is a powerful technique that treats 

the complex cellular metabolism as a linear programming problem. An objective function is 

defined and is used to calculate an optimal solution [111]. In this study, the objective function is 

set to maximize the predicted growth rate of the methanotroph or photoautotroph in the single 

culture or both in the coculture system. Reversibility data for reactions are used for the lower and 

upper bounds to constrain the possible reaction fluxes through each pathway and evaluated to 
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achieve the objective function (e.g., maximize growth). Constraints commonly applied to the 

model are uptake rates of the substrates and production rates from extracellular metabolites. For 

example, for model analysis of methanotroph, methane and oxygen are the substrates, while 

formate or CO2 could be constrained for production rates if desired.   

 It is important to note that FBA does not require kinetic parameters, but uses defined 

constraints based on mass balances and bounds set by experimental data. This method does not 

incorporate regulatory effects of genes or enzyme activity [113]. Since FBA is a steady state 

approached, it uses time-invariant substrate (mmol g DCW-1 hr-1) consumption rates and thus, 

primarily used for continuous experiments, but it can be used in batch experiments as well by 

calculating consumption/production rates between two sample points [114,115]. Dynamic flux 

balance analysis (DFBA) mostly has been used for batch experiments that will be discussed in the 

next chapter. 

 A basic overview of GEMs and the FBA process is shown in Figure 24 [116]. Using the 

genome model to understand the placement and stoichiometry of known reactions, a stoichiometric 

matrix, S, can be produced. For example, the first reaction is the consumption of metabolite A and 

metabolite B and production of D. Thus, reaction (R1) will have a value of -1 for the consumption 

of A and B in the S table and a value of +1 for production of D. From this table, the concentration 

flux (dx/dt) over time is defined. FBA’s key steady state assumption removes the derivative term 

and leaves Sv =0. The v matrix is the fluxes of individual reactions and is what is being solved by 

FBA. Using define bounds (lb and ub) of the metabolites and substrates, an optimal solution is 

found for the defined objective function (often the flux through the biomass equation called the 

growth rate). 
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Figure 24. Summary of genome metabolic models and flux balance analysis [117] 

 

5.1.2 Refinement of Genome‑scale metabolic models 

Similar to models developed in various science and engineering fields, the quality of a 

GEM determines the successfulness of its applications. Therefore, model validation plays an 

important role in GEM development. Besides assessing its size and connectivity, the current 

standard approach for GEM validation is to compare model predictions with experimental data 

under different conditions [118]. Most often the experimental data consist of measured cross-

membrane fluxes, i.e., various substrate uptake rates, product excretion rates, and cell growth rate. 

Each experimental condition represents a single (although potentially high dimensional) point. For 

well-characterized organisms, point-matching approaches work well, because their metabolic 

network structures have been well-studied and well-defined. However, for some GEM, especially 

a less studied one, matching numerical experimental data over a few limited conditions does not 
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necessarily indicate a high-quality GEM and can result in very misleading conclusions. This was 

clearly demonstrated in our group study on the evaluation of the two GEMs of s. stipitis [119,120]. 

Therefore, at this work, we (1) use system identification-based framework to refine the 

model, (2) cure the model manually and (3) validate it with experimental data to assure our models 

are high-quality GEMs. 

5.1.2.1 System identification‑based GEM validation 

Currently, GEM refinement is typically accomplished through trial-and-error by modifying 

different reactions in the model and examining whether model predictions improve. This process 

relies heavily on the modeler’s knowledge and capability to sort out clues from various simulation 

results. Therefore, GEM refinement is usually labor intensive and time consuming [121,122]. To 

address this issue, our group has developed a system identification (SID) based framework for 

GEM validation [119]. In the SID framework, biological knowledge embedded in a GEM is first 

extracted from a series of designed in silico experiments through multivariate analysis methods 

such as principal component analysis (PCA); next, the extracted knowledge, such as how cells 

respond under a given stimulus, is visualized and compared with the existing knowledge for model 

validation and analysis. We term the proposed approach “knowledge-matching” as the simulation 

results are not directly compared with experimental data; instead, the knowledge captured by the 

model is compared with available knowledge. 

 

5.1.2.1.1 The SID‑based framework for GEM refinement 

For GEM refinement, the biggest challenge is to identify the root cause of an erroneous 

model behavior. Because of the complex interconnectivity in a GEM, many times seemingly 

unrelated reactions located far away from the “problematic” reactions (i.e., reactions that are not 
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carried out in the expected way) play a key role in changing model behavior, and the experimental-

matching validation does not provide information on such “hidden” relations.  

 

Figure 25. Demonstration of the SID based framework for GEM refinement [120] 

 

Our group previously has shown how the SID-based framework can be applied to identify 

candidate root causes for a particular model faulty behavior, and in doing so, expedite GEM 
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refinement [120]. As an example, the refinement of iBB814 for one particular error has been 

illustrated the four steps in the SID-guided GEM refinement as shown in Figure 25. 

This example shows that the malate oxidation reaction, the root cause of the erroneous 

model behavior, i.e. inactive oxyPPP under aerobic condition, is located quite away from oxyPPP 

pathway. Without the guidance of the SID framework, it could be very difficult to quickly identify 

this source of error. However, with the SID-based analysis, the overall network response provides 

key information to help quickly identify the root cause of the error. 

In this work, we improve GEM of Arthrospira platensis and Methylomicrobium buryatense 

5GB1 with existing knowledge (SID framework and manual curation) and then compare and 

validate them with experimental data. 

5.2 Description and validation of the GEM of individual strains 

5.2.1 Methanotroph: Methylomicrobium buryatense 5GB1 

In 2015, a full  metabolic model from the genome of 5GB1 was reconstructed  [123]. The 

composition of the biomass flux (which represents growth rate) was designed from direct 

measurement of metabolites (i.e., amino acids, fatty acids, phospholipids, etc.), primary literature, 

and assumed values from well-studied organisms including M. alcaliphilum 20z and E. coli.  The 

stoichiometric matrix for the model was further reduced by efforts of Dr. Marina Kalyuzhnaya’s 

group, removing futile cycles and non- expressed reactions.  

For the model, a few key assumptions and summarizations are made. The first is the grouping of 

the reactions involved in the electron transport chain where the cells produced the energetic unit 

ATP via aerobic respiration. Instead of accounting for the hydrogens pumped across the 

intercellular membranes for ATP generation, the overall reactions are summarized below assuming 

oxygen as the electron acceptor and NADH as the main electron donor. 
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2𝑁𝐴𝐷𝐻/𝐻+ + 𝑂2 + 6 𝐴𝐷𝑃 + 6 𝑃𝑖 + 8 𝐻
+ ↔ 2 𝑁𝐴𝐷 + 8𝐻2𝑂 + 6 𝐴𝑇𝑃          (1) 

The general equation for ETC above has been further broken down to the individual 

complexes [124,125]. The number of hydrogen ions pumped by these enzymes is of interest and 

thus are labeled specifically in these models. These labeled hydrogen ions are then used by the 

ATP synthase with a set ratio of hydrogen to ATP production. The process is called oxidative 

phosphorylation and it is assumed that 1 ATP is produced per 3 H+ ions translocated across the 

membrane. For this particular study, the summarized form is maintained but this assumed ratio of 

ATP/H pumped is of interest. 

The produced ATP can be used for metabolic reactions, non-growth associated 

maintenance, and growth associated maintenance. Non-growth associated maintenance is typical 

energy requirements by the cells to stay viable but is separate from the energy needed for 

reproduction. Growth associated maintenance is the energy utilized for cell duplication and 

growing biomass. In the GEM model, non-growth associated maintenance (NGAM) is accounted 

for via a reaction directing ATP to ADP at an initially assumed flux of 10.6 mmol ATP gDCW-1 

h-1, while growth associated maintenance (GAM) was set via as a coefficient in the biomass flux 

at 23 mmol ATP gDCW -1. Phenotype phase plane analysis also was performed to predict different 

phenotypes. For example, Figure 26 shows 3D PhPP diagram with NGAM set to 10.6 

mmolATP/(gDCW·hr). More information about GEM modeling, different phenotypes of 5GB1 

and chosen parameters has been provided in Appendices (B). 

Furthermore, formate, acetate, and lactate are removed from the biomass equation and put 

in the model as separate byproducts. Formate and acetate have especially been known to be 

produced by 5GB1 under both methane and oxygen limited conditions [126,127]. However, the 

production in this particular methanotroph is not solely owed to a “fermentation mode” as seen in 
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the fellow methanotroph strain, Methylomicrobium alcaliphilum 20z [98]. Recent research 

indicates a redox balance and nutrient limitation (nitrate and trace elements such as copper) may 

play a larger role [128]. Moreover, Visio was used to visualize the model’s central carbon pathway. 

Eventually, SID framework had applied at this step to assure the quality of the model after manual 

curation. Measured O2, CH4 uptake rate was put as the constraints into the model to interpret 

carbon distribution through central carbon network. 

 

 

Figure 26. 3D PhPP diagram with NGAM set to 10.6 mmolATP/(gDCW·hr). The black line 

represents the line of optimality (LO). 

 

The modified reconstruction model of M. buryatense 5GB1 was used and validated in 

different conditions of continuous experiments in our group (see Appendices (B)). However, at 

this work, in order to let organism to produce and consume metabolites in the coculture system, 

several reactions were added to the model to bring some metabolites (ammonium, amino acids, 

citrate, etc.) from cytoplasm to extracellular. The last version of the model is described in Table 

9. The model prediction on single culture was explored using experimental data.  
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Table 9. Modified GEM reconstruction of iMb5G(B1) 

unique 

metabolites 

metabolic 

reactions 

genes compartments Constraints for FBA simulation 

403 520 313 3 Methane and Oxygen 

 

 

Figure 27. Model predicted fluxes for the model’s central carbon network (CCN). 
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Single batch culture experiment of M. buryatense 5GB1 growth has performed in triplicate 

(Experiment for advantage of the coculture over sequential single cultures, see the Chapter 4). CH4 

and O2 consumption rate were measured and put as constraints in the model (Figure 27, Table 

10). Growth rate was used to validate the accuracy of the model (Figure 28). As it is shown the 

last version of the model could accurately capture growth rate of the methanotroph at the designed 

batch experiment. 

Table 10. Constraints for validation of the M. buryatense 5GB1 model 

Methanotroph CH4 (constraint) O2 (constraint) 

Single culture (Experiment E) -3.134 -4.319 

 

 

Figure 28. Comparison of the model prediction and experimental measurement for M. buryatense 

5GB1 growth at condition Experiment E (chapter 4). 

 

5.2.2 Photoautotroph: Arthrospira platensis  

The reconstruction model for A. platensis NIES-39  [129] was used for this study, and 

several modifications were applied on the model. First, certain refinements using SID platform 

was performed. Figure 29 shows central carbon flux of the model during SID refinement. Figure 
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29 (a) shows GEM model prediction at the beginning. The biomass prediction was much lower 

than expected. Therefore, after performing PCA in SID framework refinement, the major issue 

was identified to be the cyclic pathway between G3P and 13DPG as it is highlighted. In Figure 

29 (b) the cyclic pathway was addressed, however, there is no oxygen production. The issue was 

identified to be a reaction for glycine that needs to be blocked as it is shown in Table 11. The 

model could predict oxygen production at this step, however, there was some other irregularity, 

according to the existing knowledge, such as converting FDP to F6P or G6P to 6PGL as shown in 

Figure 29 (c). As it is shown in Figure 29 (d) all issues of the model were addressed using SID 

framework. 

After preforming the refinements, which was mostly on central carbon pathway such as 

Pyruvate metabolism and Glycolysis / Gluconeogenesis, the model could predict the growth rate 

and oxygen production. Moreover, some further refinements applied to the model using the 

literature that have been studied on A. platensis [130,131], specifically focused on different 

pathways such as Photosynthesis and electron transport chain, Calvin cycle / Pentose phosphate 

pathway and Pyrimidine/ serine/glutamate metabolism. Furthermore, the ammonium uptake rate 

was set to zero and as an autotrophic condition, the photon uptake rate was set to a given value, 

and the glucose uptake rate was set to zero. Growth associated ATP maintenance of the model was 

set to 40 based on the recent literatures [130,132]. The Table 11 shows the described modifications 

on the GEM model. 

 

 



 113 

 
 

 
 

(a) (b) 



 114 

Figure 29. Gem refinement steps of A. platensis using SID based framework. 

 

Table 11. Selected modification on A. platensis NIES-39 GEM model using SID framework and 

existing knowledge 

Reaction Modification Description and Reason 

1 gly-L + nad + thf -> co2 + h + mlthf + nadh + 

nh4 

blocked Glycine, serine and threonine metabolism was 

excessive.  

6 h + 2 fdrd + pq  -> 2 fdox + 4 h[t] + pqh2 added Photosynthesis and electron transport chain (Peltier, 

Aro, and Shikanai 2016) 

atp + f6p  -> adp + fdp + h  blocked Calvin cycle / Pentose phosphate pathway; 

inactivated by light (Plaxton 1996) 

g6p + nadp  -> 6pgl + h + nadph  blocked Pentose phosphate pathway; light inhibits it (Plaxton 

1996) 

fdp + h2o  -> f6p + pi blocked Calvin cycle / Pentose phosphate pathway; light 

inactivates it (Lemaire 2004; Matsumoto 2008) 

ser-L  -> nh4 + pyr blocked Serine metabolism; This reaction is not present 

(KEGG) 

glu-L + h2o + nadp  <=> akg + h + nadph + nh4 Upper bound=0 Glutamate metabolism; This reaction is irreversible 

reaction (Muro-Pastor 2005) 

gtp + h2o  -> gmp + h + ppi blocked This reaction is not present (KEGG) 

Pyrimidine metabolism 

dgtp + h2o  -> dgmp + h + ppi blocked This reaction is not present (KEGG) 

dutp + h2o  -> dump + h + ppi blocked This reaction is not present (KEGG) 

h2o + utp  -> h + ppi + ump blocked This reaction is not present (KEGG) 

10fthf + h2o  -> for + h + thf blocked This reaction is not present (KEGG) 

One carbon pool by folate 

Metabolites Name 

f6p D-fructose-6-phosphate 

fdp D-fructose-1,6-bisphosphate 

g6p D-glucose-6-phosphate 

g3p Glyceraldehyde3-phosphate 

13dpg 1,3-Bisphospho-D-glycerate 

6pgl 6-phospho-D-glucono-1-5-lactone 

ser-L L-Serine 

pyr Pyruvate 

glu-L L-Glutamate 

gly-L[c] Glycine 

mlthf 5-10-Methylenetetrahydrofolate 

nh4 Ammonium 

akg 2-Oxoglutarate 

10fthf 10-Formyltetrahydrofolate 

thf Tetrahydrofolate 

for Formate 

h[t] H+ in thylakoid 

 

The original model had 735 metabolites and 745 reactions. In order to let organism to be 

able to produce and consume metabolites ( such as ammonium, malate, succinate, amino acids, 
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etc.) in the coculture, several reactions was added to the model to bring the metabolites from 

cytoplasm to extracellular [131]. After the modification, the model had 796 reactions, however, 

many of the reactions were inactive or blocked. To address this issue and make the model simpler 

(without any effects on prediction), “ReducedModel” code in Cobra Toolbox was implemented to 

find blocked reactions which cannot carry any fluxes in the given simulation conditions and 

remove them from the model to form a reduced model (the unused metabolites were removed 

along the reactions).  The GEM model of A. platensis NIES-39 has described at Table 12. 

 

Table 12. Modified GEM reconstruction of A. platensis NIES-39 

metabolites metabolic 

reactions 

compartments Constraints for  FBA simulation 

508 579 4 Carbon dioxide and photon 

* O2, H2O, sulfate, phosphate, and nitrate were assumed to be freely exchanged 

 

At the end, the prediction of the model on A. platensis growth on single culture using 

experimental data (Experiment E, Chapter 4) was investigated. Table 13 and Figure 30 shows the 

model prediction results. There is an excellent agreement between model prediction and 

experimental measurements for oxygen production and growth rate of A. platensis. 

Table 13. Constraints for single culture cyanobacteria GEM model 

Cyanobacteria CO2 

(constraint) 

Light photon(constraint)* 

Single culture (Experiment E) -0.681 -6.42 

* This amount is the photon was received by the cells in unit of mmol/gDCW/hr (in the GEM 

model) which estimated by performing several in silico experiments and comparing with 

the experimental data (CO2 uptake) at light intensity of 180 µmol photon/m2/s 
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Figure 30. Comparison of the model prediction and experimental measurement for A. platensis  

growth and O2 production at condition Experiment E (chapter 4). 

 

In short, the GEM for the A. platensis refined to incorporate recent finding on 

photosynthetic electron transport components. The model predicted oxygen production and 

biomass growth showed a better agreement with experimental data.  

5.3 Coculture modeling framework 

In order to model the community, we have followed the approach proposed by SteadyCom 

[133] and microbe-microbe interactions in Microbiome Modeling Toolbox (MMT) [134] which 

are reformulation of cFBA [135] with the computational advantage that the number of LPs to be 

solved is independent of the number of organisms in the community. We used two GEM models 

to make sure the results are consistent and similar solution are predicted. Specific fluxes 

(mmol/gDCW/hr) are integrated as model constraints, where gDCW indicates grams of dry cell 

weight for all biomass in the coculture. Using these GEM models, we can account for species 

abundance in the community. The biomass of each species is calculated based on the community 
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biomass and the species ratio. In addition to this, steady-state and equal growth rate of species are 

assumed. 

5.3.1 Coculture GEM reconstruction 

 

 
Figure 31. Dependencies applied to the coculture model to describe possible interactions. Both 

organisms have a common compartment to share the metabolites of their needs.  

 

M. buryatense 5GB1 and A. platensis GEM models were combined to form one coculture 

model that shows syntrophic relations of the organisms when they grow together. To model the 

interaction between two strains, we used modified model of each organism and added a common 

compartment ([u], community compartment) to exchange of metabolites. It is worth to mention 

that unfortunately the model reconstructions had different name’s format since they achieved 

form various database. The metabolite names could be totally different between different 

database/generators. To address this challenge, we used a developed code in our group to refine 

the metabolite names in the reconstruction models and make them all similar to universal format 

of metabolites.  

Furthermore, to achieve a coculture GEM, all metabolites that were defined as extracellular 

([e]) in its original models, will be defined as exchange metabolites in the common community 
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compartment of the model, [u].  Metabolites that are shared between species, will be exchanged 

through this common compartment, being first transported from the corresponding extracellular 

compartment to the community compartment, or vice versa. For example, acetate in extracellular 

of methanotroph (M1ac[e]), transferred to the community compartment as following:  M1ac[e] 

<=> ac[u]. It is worth mentioning that multi-species generator recognizes extracellular reactions if 

there is “EX_” in their name. Therefore, all extracellular reaction names in the models curated 

manually based on the mentioned requirement. In principle, all metabolites that are present in both 

extracellular compartments and are defined in the community compartment, can be exchanged, 

being the directionality of the associated reactions favorable to produce the exchange. However, 

some dependencies have been assumed in the model based on experimental evidences. Finally, the 

coculture GEM model was transformed into MATLAB file. 

Next, the coculture GEM model was developed by SteadyCom and MMT for predicting 

metabolic flux distributions for a growth rate of the coculture. Figure 31 shows the 

compartments of the system. Where [c] shows cytoplasm, [p] periplasm, [t] thylakoid, [e] extra 

cellular, 𝑢𝑖
𝑐community uptake rate, 𝑒𝑖

𝑐 community export rate. 

 

5.3.2 Coculture GEM modelling for E.coli toy systems 

To test the coculture GEM model before applying on our coculture system, a published 

E.coli model, iAF1260 [136], was used and a toy coculture system (followed by a literature 

[133]) was made by making two mutant of E.coli (Figure 32). Both biomass composition of 

mutants is the same. Therefore, mutants need both amino acids (Lys-L and Arg-L) to grow, even 

though the gene of an amino acid might be knockout in their cell. 
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Figure 32. The designed toy model for investigation of Coculture GEM modeling. Ec1 is missing 

the gene for synthesis of Lys-L, and needs to uptake it from outside to grow. Ec2 is missing 

the gene for synthesis of Arg-L and needs to uptake it from outside to grow. Lys-L and 

Arg-L are part of the biomass composition of both mutants. 

 

We considered three scenarios to show accuracy of the coculture GEM modeling. Figure 

33 shows different scenarios and model prediction results for coculture growth rate and each 

mutant abundance in the coculture. Figure 33 (a) shows the scenario when there is unlimited Arg-

L in the community compartment. As it is shown, Ec2 got the needed amino acid from the 

community, grew and became the dominant specie. Figure 33 (b) shows the scenario when there 

is Arg-L in the community compartment, but it is limited by a constraint. As it is shown, Ec2 

consumed the amino acid in the community compartment, but it also produces some Lys-L for Ec2 

to get more Arg-L. But Ec2 is still has 82% of the coculture since there was some Arg-L in the 

community. And third scenario is when there is not any amino acid in the community compartment 

(Figure 33 (c)). Therefore, the mutants need each other to get the required amino acid.  

This modeling on E. coli toy model clearly shows the mutual intentions and metabolic links 

between the organisms which coculture GEM could predict it successfully.  
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Figure 33. Different scenarios and coculture GEM model prediction results of the E. coli toy 

system 

 

5.4 GEM models of A. platensis – M. buryatense 5GB1 system 

As it is mentioned, the coculture GEM model was developed by SteadyCom and MMT for 

predicting metabolic flux distributions for a growth rate of the coculture. The experimental data 

from Experiment A (Chapter 4) was used to test and validate the GEM models.  

(a) 

(b) 

(c) 
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5.4.1 SteadyCom 

Just CO2 and photon were used as constraints for the coculture model. Table 14 shows the 

constraints for the modeling. O2 constraint for the community was set to zero for lower and upper 

bound, which means the only oxygen source is from production by cyanobacteria and all of it must 

be consumed by methanotroph, since there was not any oxygen remained in the coculture systems 

(experimental data). 

Table 14. Constraints implemented in the SteadyCom GEM model 

Case A 

CO2 Photon 

Constraint 

mmol/gDCW/hr 

0.680 6.98* 

* This amount is the photon was received by the cells in unit of mmol/gDCW/hr (in the GEM 

model) which estimated by performing several in silico experiments in order to produce 

the proper amount of Oxygen for methanotroph. 

 

  

(a) 
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Figure 34. Comparison between the experimental data (Case A) and SteadyCom GEM model 

prediction of (a) population ratio; (b) growth rate; (c) Oxygen (O2) and methane (CH4) 

consumption, in the coculture system. 

 

As it is shown in Figure 34, the model could accurately predict biomass ratio of 

photoautotroph over methanotroph and growth rate of the coculture. The consumption rate of O2 

and CH4 also agree with experimental data for methanotroph in the coculture.  

Table 15 shows the metabolic interactions between photoautotroph and methanotroph predicted 

by the model. The table is ordered based on higher to lower flowrate that depicts the contribution 

of each metabolite in this interaction. It is worth to mention that some metabolites are the major 

metabolites in TCA cycle (Table 15 in red color) and need to be excluded from metabolic links or 

just one or two of them can be included, otherwise the solution for the GEM models is infeasible. 

Decision on which major metabolites should be included in the metabolic links makes several 

scenarios. Therefore, at this case, just Malate was included in metabolic links and other major 

metabolites were excluded (in red font).  

 

(b) (c) 



 123 

Table 15. Potential metabolic links in the coculture predicted by SteadyCom (When “malate” is 

allowed to exchange). The amount shows the flow rate (mmol/gDCW/hr) with different 

color for each strain. 

No. Metabolite Name Amount 

1 NH
4
 ammonium 0.1601 

2 glu-L L-glutamate 0.0664 

3 cit citrate 0.0652 

4 for formate 0.049 

5 mal-L L-malate 0.0311 

6 gln-L L-glutamine  0.0241 

7 ser-L L-serine 0.0118 

8 leu-L L-leucine 0.0083 

9 phe-L L-phenylalanine  0.0034 

10 tyr-L L-tyrosine 0.0034 

11 ala-L L-alanine  0.0025 

12 sucr sucrose 0.0018 

13 val-L L-valine 0.0014 

14 thr-L L-threonine 0.0011 

15 ile-L L-isoleucine 0.0011 

16 lys-L L-lysine 0.001 

17 trp-L  L-tryptophan 0.0008 

18 arg-L L-arginine 0.0008 

19 pro-L L-proline 0.0008 

20 met-L L-methionine 0.0005 

21 his-L L-histidine 0.0002 

22 cys-L L-cysteine 0.0001 

23 ac acetate 2E-05 

  succ Succinate   

 pyr Pyruvate 
 

  mal-L L-malate   

 

 

 

A visualization for the coculture system was made to show all the reactions quickly and 

clearly. This coculture visualization shows the main carbon fluxes and metabolite exchange 

between the organisms (Figure 35). Therefore, it is easy to keep track of the consumption and 

production of metabolites. The dash black line shows the whole community compartment, where 

both cells are present, getting their feed (CH4, CO2, photon) from bulk, and able to exchange their 
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metabolites. The left green solid line shows the photoautotroph, and the right orange solid line 

shows the methanotroph. 

 

 

Figure 35. Schematic representation of the simulated metabolism of the coculture system when 

cells are allowed to exchange the metabolites. 

 

As it is shown, cyanobacteria (shown with green line, left) mainly consumed photon and 

carbon dioxide, and produce oxygen for methanotroph (shown with orange line, right). Calvin, 

pentose phosphate cycle are active in cyanobacteria and the TCA cycle is half active as it has been 

shown by other studies [129]. 
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5.4.1.1 Coculture GEM modeling without metabolic links 

In order to demonstrate the importance of metabolic links in the GEM modeling, all the 

metabolic links were blocked, except oxygen and carbon dioxide, so the strains cannot exchange 

any metabolites. Figure 36 shows the visualization of central carbon pathways when the metabolic 

links are blocked (a) and the comparison of the coculture growth rate between the SteadyCom 

models when metabolic links exist and when it does not exist (b).  
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Figure 36. The visualization of central carbon pathways and the growth rate of the coculture 

system when strains are not allowed to exchange any metabolites. 

 

As it is shown, there is no exchange of metabolites between the strains. Photoautotroph 

produced “formate” and methanotroph produced “acetate”, but the other strain was not allowed to 

use it, then the produced metabolites accumulated in bulk (medium). Each strain has to produce 

all amino acids by itself since there is not any metabolic links. Moreover, the GEM model predicted 

a lower growth rate for the coculture when they cannot exchange any metabolites which proves 

the importance and contribution of the metabolic links in the coculture system. 

5.4.2 Microbe-microbe interactions/ Microbiome Modeling Toolbox (MMT) 

The constraints for each microbe (CO2 for photoautotroph and CH4 for methanotroph) 

should be added to the microbe-microbe interaction in MMT GEM model, otherwise, the model 

could not be solved. In general, the results of MMT were more accurate than SteadyCom, 

therefore, we used MMT model for the next chapter. Table 16 shows the constraints for the 

modeling. O2 constraint for the community was set to zero for lower and upper bound, which 

means the only O2 source is O2 produced by cyanobacteria and all of it must be consumed by 

methanotroph, since there was not any O2 remained in the coculture systems (experimental data). 

 

Table 16. Constraints implemented in the MMT GEM model 

Case A 

CO2 CH4 

Constraint 

mmol/gDCW/hr 

0.680 0.640 
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Figure 37. Comparison between the experimental data (Case A) and MMT GEM model prediction 

of (a) growth rate; and (b) Oxygen (O2) consumption, in the coculture system. 

 

Table 17. Potential metabolic links in the coculture predicted by MMT (When “malate” is allowed 

to exchange). The amount shows the flow rate (mmol/gDCW/hr) with different color for 

each strain. 

No. Metabolite amount 

1 NH3 0.1015 

2 mal-L 0.0925 

3 cit 0.0857 

4 lac 0.0848 

5 glu-L 0.073 

6 for 0.0614 

7 gln-L 0.0246 

8 sucr 0.0089 

9 thr-L 0.0083 

10 leu-L 0.0081 

11 val-L 0.0067 

12 ser-L 0.0065 

13 ile-L 0.0052 

14 ala-L 0.0036 

15 phe-L 0.0033 

16 tyr-L 0.0033 

17 lys-L 0.0015 

18 arg-L 0.0012 

19 pro-L 0.0012 

20 trp-L 0.0008 

21 met-L 0.0007 

22 his-L 0.0005 

23 cys-L 0.0002 

(a) (b) 
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24 ac 2E-05  
fum 

 

 
succ 

 

 
pyr 

 

 
oaa 

 

 
akg 

 

 

 

As it is shown in Figure 37, the model could accurately predict growth rate and 

consumption rate of O2 in the coculture system. This validated the accuracy of the model in 

molecular level for predicting of strains behavior in the coculture. Table 17 shows the potential 

metabolic interactions between photoautotroph and methanotroph predicted by the MMT model. 

The table is ordered based on higher to lower flowrate that depicts the contribution of each 

metabolites in this interaction. At this case, just “malate” was included in metabolic links and other 

major metabolites were excluded (in red font).  

Figure 38 (a) shows the visualization of central carbon pathways where  and the 

comparison of the coculture growth rate between the SteadyCom models when metabolic links 

exist versus when it does not exist. The whole idea is to see if the GEM coculture model also 

differentiate the effect of metabolic links on coculture growth. Figure 32 (a) The GEM model 

predicted a lower growth rate for the coculture when they cannot exchange any metabolites which 

proves the importance and contribution of the metabolic links in the coculture system. 
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Figure 38. (a) Schematic representation of the simulated metabolism of the coculture system when 

cells are allowed to exchange the metabolites; (b) the comparison of the coculture growth 

rate between the MMT models when metabolic links exist and when it does not exist. 

 

5.4.3 Comparison of SteadyCom and MMT 

Both SteadyCom and microbe-microbe interactions (MMT) coculture GEM could 

accurately capture the coculture growth rate, the population ratio and main product consumption 

(b) 

(a) 
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/productions of the coculture under different conditions. However, it seems MMT was more 

accurate and consistent in predicting the coculture behavior. Table 18 shows models prediction of 

the exchange metabolites for two different scenarios: 1- succinate and pyruvate are included in the 

metabolic links (malate is excluded), 2- just pyruvate is included in the metabolic links 

(succinate/malate are excluded). Considering the prediction for potential metabolic links, even 

though the order and flowrate of the metabolites was slightly different between the models,  

 

Table 18. Models’ prediction of the exchange metabolites for two different scenarios 

1- pyr/succ 

Microbe-microbe model SteadyCom model 
No. Metabolite amount No. 
1 succ 0.3982 0.5489 1 
2 lac 0.1944 0  
3 NH4 0.1613 0.1572 3 
4 sucr 0.0565 0.0553 5 
5 cit 0.0453 0.0369 7 
6 for 0.0437 0.0528 6 
7 glu-L 0.0406 0.0363 8 
8 pyr 0.0288 0.3411 2 
9 gln-L 0.0233 0.0247  
10 ser-L 0.0082   
11 leu-L 0.0075   
12 val-L 0.0062   
13 thr-L 0.0049   
14 ile-L 0.0049   
15 ala-L 0.0044   
16 pro-L 0.0043   
17 lys-L 0.0037   
18 phe-L 0.0031   
19 tyr-L 0.0031   
20 arg-L 0.0015   
21 trp-L 0.0008   
22 ac 0.0007   
23 his-L 0.0006   
24 cys-L 0.0004   
25 met-L 0.0003   

 asp-L 0 0.1365 4 
 

2- pyr 

Microbe-microbe model SteadyCom model 
No. Metabolite amount No. 
1 cit 0.159 0.0747 3 
2 NH4 0.1518 0.1555 1 
3 for 0.1378 0.0475 4 
4 glu-L 0.0666 0.0759 2 
5 sucr 0.053 0  
6 pyr 0.0383 0.0246 5 
7 gln-L 0.0258 0.0234 6 
8 leu-L 0.0087 0.008 7 
9 thr-L 0.0081 0.0011  

10 val-L 0.0072   
11 ser-L 0.006   
12 ile-L 0.0056   
13 pro-L 0.0049   
14 phe-L 0.0035   
15 tyr-L 0.0035   

16 ala-L 0.0029   
17 lys-L 0.0012   
18 arg-L 0.001   
19 trp-L 0.0009   
20 ac 0.0007   
21 cys-L 0.0005   
22 his-L 0.0004   
23 met-L 7E-05   

 lac 0 0  
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however, interestingly top predicted exchange metabolites were always similar between the 

models. “lactate” and “aspartic acid” are examples of different metabolite prediction between the 

models. lactate production happens in microbe-microbe model by methanotroph, however the 

prediction of lactate by SteadyCom is zero. The similarity between the models investigated by 

metabolites and also their exchange which means they produce by the same organism. The color 

in the table shows the production of the metabolites by photoautotroph or methanotroph. As it is 

shown, the top exchange metabolites are similar between two models. 

Table 18 comparison of the order of predicted potential exchange metabolites between 

microbe-microbe model (MMT) and SteadyCom model, for two different scenarios: 1- succinate 

and pyruvate are included in the metabolic links (malate is excluded), 2- just pyruvate is included 

in the metabolic links (succinate/malate are excluded). Amounts in orange color are produced 

metabolite by methanotroph and amounts in green color are produced metabolites by 

photoautotroph. 

 

Table 19. Top predicted exchanged metabolite from SteadyCom and microbe-microbe 

interactions models 

succinate NH3 formate citrate 

sucrose glutamate pyruvate glutamine 

 

This result agrees with literatures that used microbe-microbe interaction modeling. They 

found metabolite in TCA cycle and amino acids as the main cross-fed metabolites [137]. It is worth 

to mention that we included “succinate” and “pyruvate”, as the major metabolite in TCA cycle, in 

the metabolic link and excluded “malate” since we found more evidence in literature that formers 

are more possible options [137,138]. Table 19 shows the top predicted exchange metabolites and 
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Figure 39 depicts the central carbon pathway along with potential metabolic links between 

photoautotroph and methanotroph based on our most recent knowledge and analysis.   

 

 
Figure 39. Schematic representation of the simulated metabolism of the coculture system when 

cells are allowed to exchange the metabolites (“Succinate” and “pyruvate” are allowed to 

exchange at the major metabolites in TCA cycle).  

 

The GEM models identified key metabolites links in the coculture. Although microbial 

social interaction spans over a wide range of sophistication, even the simplest cooperative 

interaction can be difficult to explain when it brings population benefits but comes at the expense 

of individuals. Xavier [139] mentioned that a good illustration of this conflict is the trade-off 

between slow growth rates with a high yield versus fast but wasteful growth. The trade-off can be 

a consequence of irreversible thermodynamics on heterotrophic cell metabolism and has important 

consequences for populations. Higher yields make a more economic use of limited resources, and 
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therefore can be beneficial to the entire population. The population benefit comes at the expense 

of individual-level restraint, as cells could grow faster with lower yields. This exactly could happen 

in photoautotroph-methanotroph cooperation. 

As it is shown in Figure 39, photoautotroph provides main favourable carbon source and 

nitrogen source, such as succinate and ammonium respectively, for methanotroph. In response, 

methanotroph produce more amino acids for both organisms. We believe the reason is that 

methanotroph can produce most of the amino acids less expensive biologically/thermodynamically 

than photoautotroph. Some literatures mentioned the advantageous of methanotroph for the 

production of TCA-derived products [140,141]. Hillesland and Stahl [142] have showed in their 

study that strains in a coculture with mutualistic relationship adapt themselves to use resources 

more efficiently. When populations first engage in a mutualistic relationship, they must adapt to 

new growth conditions, and they most likely use preexisting traits for new functions. Thus, one of 

the first adaptations for mutualism may be optimization of these traits for mutualistic performance. 

In support of this hypothesis, both species in nearly every studied coculture appear to have 

substituted mutations that improved the overall productivity of syntropy. Cocultures could grow 

faster and produce more cells even though the resources remained constant throughout the 

experiment. Each species contributed to one or both of these community-level changes, 

presumably because they were able to more efficiently use the available resources and hence 

acquire more energy for growth. 

Moreover, though empirical testing of the simulation we performed is inaccessible at this 

time (we need to test coculture medium with metabolomic analysis to quantify all metabolites and 

compare with metabolites in the single culture), we note that experimental data from previously 

published work supports key portions of our predictions. We reviewed the literatures to find the 
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evidence of production or exchange of the predicted metabolites in order to validate the possibility 

of the predicted exchange metabolites between photoautotroph and methanotroph (next section). 

5.5 Evidence and explanation on interactions between photoautotroph and bacteria 

We are interested here in interactions between free-living species. One example is the two-

species aggregate Chlorochromatium aggregatum (Figure 40), in which nonmotile, 

photosynthetic sulfur bacteria attach to motile β-proteobacteria, providing them with fixed organic 

carbon in exchange for a ride toward sulfide-rich areas. 

 

 
Figure 40. Electron microscopy image of the two-species aggregate Chlorochromatium 

aggregatum, showing photosynthetic sulfur bacteria (E) attached to a betaproteobacterial 

cell (C) by thin filaments (arrows) [143]. 

 

However, because of difficulties in cultivating the aggregate or its individual species, it 

remains unclear whether the interaction does indeed result in overall fitness gains for both parties. 

Attachment also occurs between the bacterium Pelotomaculum thermopropionicum and the 

methanogenic archeaon Methanothermobacter thermautotrophicus, whereby P. 

thermopropionicum uses its flagella to attach to M. thermautotrophicus, with flagella attachment 

inducing the latter to exchange metabolic services with the former. This example illustrates some 

key elements that are likely to be important for a cooperative interaction to stably emerge between 

species. First, the two species have very different metabolisms, which limits ecological 
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competition between them. Second, their metabolism is so different that one species can live off 

of the hydrogen produced by the other. Finally, the two species are physically attached to one 

another and respond to each other metabolically, which suggests that anything that a focal cell 

does to the other genotype is likely to feedback on itself. The prevalence of physical attachment in 

all of these examples may suggest that it is a particularly important component of between-

genotype cooperation [143].  

To discuss the previous study on our coculture pair, it is worth to compare their key 

hypothesis in our case. In our coculture system, cyanobacteria use CO2 and methanotroph use CH4 

as carbon source, which eliminate competition between them for the main carbon source. 

Cyanobacteria produce oxygen and needs to get rid of it because it inhibits its metabolism and 

methanotroph live off the oxygen produced as byproduct by cyanobacteria. Finally, both strains 

could be physically attached to one another and respond to each other metabolically as it has been 

seen methanotroph around cyanobacteria cells under microscope (unfortunately SEM pictures are 

unavailable at this moment). 

Generally, photoautotroph provide O2 and organics through photosynthesis for bacterial 

consumption, whereas the bacteria produce CO2 and inorganic substances through respiration to 

sustain photoautotroph growth [144]. The definition of photoautotroph covers all unicellular and 

simple multi-cellular microorganisms including prokaryotic microalgae (cyanobacteria), 

eukaryotic microalgae, and diatoms. Due to the mutually beneficial interactions of CO2 and O2, 

capital costs with regard to the oxygenation of activated sludge tanks and the risk of volatilization 

can obviously be reduced [145]. Besides, it is now acknowledged that bacteria secrete 

micronutrient metabolites such as vitamin B12, phytohormones (IAA, abscisic acid, cytokinins, 
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ethylene, and gibberellins), thiamine derivatives, and siderophores to accelerate photoautotroph 

metabolism and biomass growth [146,147].  

As it mentioned before, in order to investigate the metabolic links, we need to first focus 

on oxygen which is the main metabolic link in this coculture and could be a significant force or 

trigger for more cooperation between the organisms. As Heinken and Thiele [137] have shown 

that microbe-microbe interactions with and without oxygen differed significantly in microbiota 

environment. In fact, all but one of the mutualistic interactions observed without oxygen were 

abolished in the presence of oxygen. These results highlight that in the presence of oxygen, most 

microbes were able to efficiently extract energy from the supplied dietary nutrients and did not 

rely on metabolites secreted by other microbes. In the absence of oxygen, however, the microbes 

were forced to cooperate to achieve optimal growth by exchanging metabolites with each other. 

Accordingly, mutualistic pairs switched to parasitic giver-consumer interactions in the presence of 

oxygen.  

The substrate exchange is not limited to micronutrients. Macronutrients such as nitrogen-

mediated interactions also occur between photoautotroph and bacteria. In photoautotroph, nitrate 

assimilation is performed by two transport and two reduction steps: First, nitrate is transported into 

the cell, then a cytosolic Nitrate Reductase (NR) catalyzes nitrate reduction to nitrite, which 

subsequently is transported into the chloroplast, where the enzyme Nitrite Reductase (NiR) 

catalyzes its reduction to ammonium [148,149]. Finally, ammonium is incorporated to carbon 

skeletons by rendering glutamate, through the glutamine synthetase/glutamine oxoglutarate amino 

transferase or glutamate synthase (GS/GOGAT) cycle [150]. First, ammonium is incorporated as 

the amide group of glutamine in a reaction involving glutamate and ATP (catalyzed by GS); then, 
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the amide group is transferred reductively to a-oxoglutarate to form two molecules of glutamate 

[151]. 

Recently, de-Bashan et al. [152] clearly showed that co-evolution is not a prerequisite for 

a functioning synthetic mutualism between a microalga and a bacteria. Using highly specific 

analytical tools capable of analyzing single cells within the association such as NanoSIMS isotopic 

imaging and fluorescent in situ hybridization (FISH), combined with enforcing initial proximity 

between cells of the two species in alginate beads, they directly showed that C and N containing 

compounds were exchanged during interaction and association, which is beneficial to both 

microorganisms as demonstrated by their mutually enhanced growth. Furthermore, because this 

association was man-made and created almost spontaneously without lengthy co-evolution, it 

challenges a basic paradigm of mutualism. This association arises relatively fast and forms a stable 

association lasting for at least 10 days. 

Moreover, a recent study investigated a stable mutualism between winery wastewater 

isolated C. sorokiniana and S. cerevisiae under synthetic growth conditions. They observed 

mutualistic relationship based on carbon (C) and nitrogen (N) cross-feeding which involves the 

reciprocal exchange of C in the form of CO2 to the microalgae and ammonium (derived from 

inaccessible nitrite) as N to the yeast [153]. Ammonium is the preferred N source due to its reduced 

state and energetically favorable assimilation. It is well-established that ammonium has a negative 

effect on nitrate assimilation [149]  

Research has been shown production of formate by cyanobacteria through the action of pyruvate 

formate lyase (PFL). PFL catalyzes CoA-dependent cleavage of pyruvate to form acetyl-CoA 

without the associated production of NADH or reduced ferredoxin according to the following 

reaction [154]:  



 138 

𝐶𝐻3𝐶𝑂𝐶𝑂𝑂𝐻 + 𝐶𝑜𝐴𝑆𝐻 → 𝐶𝐻3𝐶𝑂𝑂𝐶𝑜𝐴 + 𝐶𝐻𝑂𝑂𝐻          (30) 

This reaction notably does not result in the production of NADPH or reduced ferredoxin and allows 

for ATP synthesis from acetyl-CoA through the combined action of phosphotransacetylase and 

acetate kinase [154,155]. 

One question here could be whether the strain is able to recognize presence of amino acid 

in the bulk (produced by methanotroph) and most importantly whether the strain is able to manage 

the production or quenching of amino acids. Riccardi et al. [156] have shown the amino acid 

regulation in cyanobacteria in response to external effect that help us to explain the relationship of 

strains in the coculture. They showed in their review that biosynthetic pathways are highly 

responsive to some specific exogenous amino acids. Some idea of the importance of amino acid 

biosynthesis in the carbon economy of the cell can be obtained from the estimate that 59% of the 

carbon assimilated from glucose by E. coli is in the form of amino acids. For growth in a glucose 

minimal medium, the diversion of this large component of assimilated carbon to amino acids is 

essential. However, there would be a strong selective pressure for mechanisms allowing a complete 

quenching of amino acid biosynthesis in the presence of an exogenous source of preformed amino 

acids. The extent to which such quenching occurs depends on the organism and on the pathway 

involved.  

Another question could be the ability of the strains for execration of the metabolites. To 

answer this question, we refer a study that has illustrated cyanobacteria as sources of bioactive 

compounds with interesting biological activities, for example, antibacterial, antifungal, antiviral, 

antialgal, anticancer, anti-inflammatory, and so forth. These bioactive compounds include 

lipopeptides (40%), amino acids (5.6%), fatty acids (4.2%), macrolides (4.2%), and amides (9%). 

The excretion of bioactive compounds by cyanobacteria into the aquatic environments is possible 
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allelopathy strategy used by cyanobacteria to outcompete other microorganisms within the same 

ecosystem [157]. Furthermore, many studies have shown that a wild type [158] and mutant 

[159,160] cyanobacteria can excrete amino acids and other compounds if there is 

overproduction/accumulation of the metabolite [161]. For example, previously it has been proved 

that knockout of the glycogen synthesis pathway could effectively promote accumulation and 

excretion of pyruvate in cyanobacteria [162], thus the strains can secrete any metabolite if the 

condition is provided.  

Moreover, Riccardi et al. [156] have shown that mutants of Spirulina platensis resistant to 

phenylalanine, which excrete phenylalanine, produce concentrations of amino acids that are up to 

50-fold higher than those produced by the parental strain. Only about 45% of the amino acid over-

produced is released into the medium during growth while the rest (> 50%) remains in the cell and 

is released only at cell lysis. From the other side, produced citrate, lactate and sucrose by 

methanotroph is consumed by cyanobacteria. Cyanobacteria used sucrose as a carbon source to 

increase the fluxes of PPH pathway and Calvin cycle; and used citrate and lactate to produce more 

glutamate and beside it some other required aminoamides. 

Zhu et al. [163] have been shown releasing of citrate by methanotrophs. Briefly, CH4 is 

initially catalyzed by methane monooxygenase (MMO), soluble MMO (sMMO) or particulate 

MMO (pMMO), to produce methanol as the first intermediate. Afterwards, methanol is 

transformed into formaldehyde by methanol dehydrogenase. Formaldehyde may be assimilated 

into biomass through the ribulose monophosphate pathway or the serine pathway, releasing multi-

carbon intermediates such as acetate and citrate; Or formaldehyde can be dissimilated to CO2 via 

formate for energy production. 

Gilman et al. [164] showed that M. buryatense 5GB1 has able to produce lactate and succinate. 
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But et al. [165] have investigated the biochemical pathways for sucrose metabolism in 

methanotroph Methylomicrobium alcaliphilum 20Z and showed the ability of the organism for 

sucrose production. It worth mentioning that until recently, sucrose was thought to be accumulated 

mainly in phototrophic organisms, including plants, unicellular algae, and cyanobacteria. 

However, studies have shown that a number of methylotrophic bacteria utilizing methane, 

methanol, or methylated amines can accumulate sucrose as a primary or secondary solute. The 

methanotroph synthesizes sucrose in response to the increased salinity of growth media. 

In conclusion, the coculture GEM models were able to predict the growth rate, ratio of 

organisms and metabolic links that make sense for reaching a stable mutual coculture. Moreover, 

cross-fed metabolites have been seen and confirmed by other studies as it discussed in this section. 
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: Dynamic genome-scale metabolic modeling suggests the establishment of 

mutualism without co-evolution within a synthetic microbiome  

6.1 Introduction 

GEMs work under a pseudo-steady state assumption and utilize linear optimization to 

extract feasible flux distributions. These fluxes are integrated over time in dynamic GEM. There 

is this possibility to predict the changes of initial conditions over time such as the consumption 

and production of metabolites, changes in biomass, and shifts in metabolism in response to 

environmental changes. Dynamic GEM simulates a whole time of experiment, as opposed to 

standard GEM that just provide a single snapshot of the steady state condition [166]. The schematic 

diagram of dynamic GEM in Figure 41 clearly shows integration of fluxes and other 

characterization that was explained. As shown in Figure 41, bioreactor dynamic model integrates 

the substrate uptake rate and feeds it to the steady state genome scale modeling for each strain, 

then the genome modeling provides product and growth rate and feeds those back to the dynamic 

model for integrating over next time segment. In fact, dynamic GEM just captures the bioreactor 

dynamics which is coupled to steady state genome scale modeling. The sequential product rate 

will be fed back to the bioreactor dynamic model from the genome modeling. 

The use of linear optimization requires an objective function, but more importantly a 

biologically relevant objective function. Most standard GEM applications use maximization of an 

artificial biomass equation representing the production of metabolic constituents of biomass as the 

objective function. However, in the dynamic GEM, metabolites, species abundance and metabolic 

states are free to change by changing the environment or response to interactions. Thus, there is 

no need to a community objective function (still we need objective function for each strains) and 

proper bounds on interspecies fluxes to be defined, since the proper kinetic parameters are given 

to the model. As an example, Hanly and Henson [167] were performed dynamic flux balance 
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modeling of a coculture (Escherichia coli and Saccharomyces cerevisiae). Each microbe consumes 

a unique sugar (glucose or xylose), objective function was maximizing summation of biomass of 

the strains and the whole simulation was used to optimize ethanol production. Zhuang et al. [168] 

developed the dynamic multispecies metabolic modeling (DyMMM) framework, which is an 

alternative form of dynamic GEM for community modeling, to model the competition of two 

acetate oxidizing and Fe(III) reducer. Challenges with the implementation of dynamic GEM are 

inserting the kinetic parameters such as Michaelis–Menten kinetics (constants), particularly uptake 

rates of limiting metabolites such as methane, carbon dioxide and oxygen in our study.  

 

 
 

Figure 41. Schematic diagram of dynamic GEM 

 

In this work, it was decided to first reproduce the results generated by Hanly and Henson 

study [167]. A Matlab based simulator developed by Barton group [169] named DFBAlab was 

used for modeling. This model uses the LP feasibility problem to obtain an extended system, and 

also lexicographic optimization to yield unique exchange fluxes. The performances are 

comparable to DyMMM. 

 

Bioreactor dynamic model 

S. 

cerevisiae 
E. coli 

𝒗𝑬.𝒄𝒐𝒍𝒊𝝁𝑬.𝒄𝒐𝒍𝒊 𝒗𝒊
𝑬.𝒄𝒐𝒍𝒊 𝒗𝑺.𝒄𝒆𝒓.𝝁𝑺.𝒄𝒆𝒓. 𝒗𝒊

𝑺.𝒄𝒆𝒓. 
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6.2 Dynamic GEM modeling using DFBAlab 

6.2.1 Reproduction of a published results 

The Dynamic GEM of E.coli and Saccharomyces cerevisiae co-culture from the Hanly and 

Henson’s paper [167] was built and compared with experimental data. The rebuilt model 

prediction was almost matched with the paper’s result as it shown in Figure 42.  

 

  
Figure 42. Experimental data (points) and coculture prediction (lines) by model for aerobic batch 

fermentation (a) The result from the literature [167], (b) The result generated in this work. 

 

The literature used the fix oxygen uptake rate; however, it was decided to improve the 

prediction ability since the model is unable to catch most of yeast biomass production (S. 

cerevisiae) specifically after depletion the glucose in the system.  

The concentration of dissolved oxygen depends on the oxygen transfer rate from the air 

bubbles to liquid phase, the oxygen uptake rate of cells for growth, maintenance, and the metabolite 

production by the cells. The mass balance of the dissolved oxygen in the assumed well mixed 

liquid phase was written in equation 31. 

𝑑𝐶𝑜2

𝑑𝑡
= 𝑘𝑙𝑎 (𝐶

∗ − 𝐶𝑡1) − 𝑞𝑜2. 𝑋        (31) 

(a) (b) 
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where 
𝑑𝐶𝑜2

𝑑𝑡
 is the accumulation of oxygen in the liquid phase, the first term on the right hand side 

is the oxygen transfer rate, (Ct1 is the oxygen concentration at time 1), the second term is the 

oxygen uptake rate which can be expressed by 𝑞𝑜2 (specific oxygen uptake rate), and X is the 

biomass concentration. Most of the studies have used Michaelis-Menten equation for specific 

oxygen uptake rate (𝑞𝑂2 =
𝑣𝑚×𝐶𝑂2

𝐾𝑚+𝐶𝑂2
) as it was explained at previous sections. The 𝑘𝑙𝑎 was obtained 

from literature [170]. Hence the system is coculture and both strains need oxygen to grow, the 

uptake by both strains was considered in the equation (Equation 32).  

𝑑𝐶𝑜2

𝑑𝑡
= 𝑘𝑙𝑎 (𝐶∗ − 𝐶𝑡1) − 𝑞𝑜2,1.  𝑋1 − 𝑞𝑂2,2𝑋2      (32)  

It is a valid consideration that when oxygen concentration is low, the change of dissolved oxygen 

in the coculture system by time is zero ( 
𝑑𝐶𝑜2

𝑑𝑡
= 0), and it is assumed that specific uptake rate for 

both strains is almost the same (𝑞𝑜2,1= 𝑞𝑜2,2). The updated specific oxygen uptake rate shows in 

equation 33. 

𝑞𝑜2 =
𝑘𝑙𝑎 (𝐶∗−𝐶𝑡1)

𝑋1+𝑋2
          (33) 

The mass transfer formula was used and implemented into the model and the better match with 

experimental data was achieved.  

  

(a) (b) 



 145 

Figure 43. Comparison between dynamic GEM modeling with fixed specific oxygen uptake rate 

and changeable specific oxygen uptake rate. 

 

Figure 43 shows the improvement after implementing the specific oxygen uptake rate into 

the model. As shown, there has been a great improvement in prediction of S. cerevisiae biomass 

compare to before. Next step was using this dynamic GEM model and simulating the 

photoautotroph-methanotroph coculture system.  

6.2.2 M-P coculture system 

As it is mentioned, challenges with the implementation of dynamic GEM are inserting the 

kinetic parameters such as Michaelis–Menten kinetics and constants, particularly for uptake rates 

of limiting metabolites such as methane, carbon dioxide and oxygen in our study. The prediction 

of single culture using DFBAlab was tested first to make sure the models were worked properly 

(Figure 44). 

  

Figure 44. DFBAlab prediction for biomass concentration of (a) cyanobacteria single culture 

and (b) methanotroph single culture. 

 Beside the kinetics and constant parameters, which are difficult to find and fairly 

dependent on experimental conditions, one the most significant shortcoming of DFBAlab is 

absence of a common compartment, which means the metabolites cannot freely exchange between 

Cyanobacteria Methanotroph 
(a) (b) 



 146 

species in the coculture. Therefore, we had to rely on Growth associated maintenance (GAM) and 

Non-growth associated maintenance (NGAM) to capture the effect of those molecular interactions 

that are not captured by the dynamic GEM model. As it is shown in the Table 20, the GAM and 

NGAM values had to decrease in order to predict the biomass concentration of individual strains 

in the coculture. It means that strains need less energy to grow when they are presence in the 

coculture system. Figure 45 shows the prediction of the DFBAlab after modification. However, 

we still could not predict any metabolic links here, and we again proved the effect of the metabolic 

links. 

Table 20. The GAM and NGAM values used in DFBAlab model. 

GAM&NGAM Cyanobacteria Methanotroph 

GAM NGAM GAM NGAM 

Single Culture 60 0.6 23 10.6 

Coculture 40 0.05 23 5.6 

 

  

Figure 45. Comparison of biomass concentration of individual strain in the coculture versus 

single culture by DFBAlab for (a) cyanobacteria, (b) methanotroph. 

To overcome these shortcomings, we decided to approach the issue from a different angle 

by developing a new dynamic GEM.   

(a) (b) 
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6.3 Developed dynamic GEM 

While several GEM modeling approaches have been developed for microbial communities, 

little emphasis has been placed on the need for actual and reliable constraints of these complex 

systems, especially when the behavior of these communities is dynamic. Moreover, metabolic flux 

predictions based on constraint-based approaches can be inaccurate, as they often disagree with 

experimentally measured fluxes using techniques such as 13C metabolic flux analysis, as was 

shown recently for E. coli. [171]. 

To address these challenges, we employ the validated semi-structured kinetic model to 

provide the cross-membrane fluxes, i.e., substrate pickup rates, product excretion rates and 

biomass growth rates, as constraints to the coculture GEM. These constraints not only allow the 

reduction of the feasible solution space of the GEM model, but also enables the simulation of the 

dynamic GEM, which can significantly improve metabolic flux predictions. Because the gene-

regulation is much faster than the bioreactor dynamics, we can assume that the cellular metabolism 

is always in a pseudo-steady-state. Therefore, we can use the substrate uptake rates predicted by 

the kinetic model as constraints to the GEM, and use the steady-state GEM to determine the 

metabolic flux profile under then given pseudo-steady state. In this way, by integrating the kinetic 

model with the steady-state GEM for the coculture, we were able to obtain the dynamic metabolic 

flux changes over time. Figure 46 shows our proposed dynamic GEM model. 
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Figure 46. Mathematical models of microbial communities provide critical tools for generating 

and testing biological hypotheses. New computational approaches and software tools are 

needed that can promote fundamental understanding of microbial communities through 

comprehensive model-based analysis of omics data sets across multiple scales, from 

intracellular metabolism, to metabolite cross-feeding interactions between cells, to the 

emergent behaviors, structures and functions of microbial communities (adapted from 

Antoniewicz 2020 [64]). 

6.4 Material and Methods 

Microbe-microbe interaction (MMT) was implemented for pseudo-steady-state GEM of 

the dynamic GEM model. Experimental data of Experiment C (for different gas composition in 

coculture), condition (b) (Gas composition of 60%CH4, 30%CO2, 10%N2) (Chapter 4, Table 5) 

was used as experimental data to run in the developed dynamic GEM model. As it is mentioned, 

the integration is a continuous process, however in order to reduce the volume of the results and 

be able to interpret the results easier, several time steps were chosen as an output of the dynamic 

GEM. The picked times are shown in Figure 47. Since the uptake rate of CH4 and CO2 are the two 

major constraints for the GEM model, the time steps were chosen to cover all range and irregularity 

of these variables (time steps: 2,5.5,8,14,20,26,32,38,42,50,58,64,74,82,90). 
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Figure 47. Chosen time steps for dynamic GEM model according to the behavior of the coculture 

uptake rates. All the black lines are the picked time shown in (a) uptake rate and (b) total 

uptake rate plots. Time: 2,5.5,8,14,20,26,32,38,42,50,58,64,74,82,90. 

 

6.5 Results and discussion 

The following figures show the visualization results of the coculture behavior and their 

metabolic interaction in progress with time steps by using dynamic GEM. This means CH4 and 

CO2 uptake rates from semi-structure kinetic model at each time step was put in MMT coculture 

model and generated the solution for the coculture system. The solution of the simulation at each 

time step was depicted below for observation of the pathway changes and further investigation.  

(a) (b) 
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Time= 
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Time= 
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Time= 

90 hrs 

 
Figure 48. Schematic representation of the simulated metabolism of the coculture system by 

dynamic coculture GEM for 15-time steps.  

 

Our extensive simulations under various in silico setups with the GEM consistently 

predicted the same top exchanged metabolites, as shown in Figure 48. The top exchanged 

metabolites were plotted for each 15 time steps to demonstrate their change and significant by time 

(Figure 49). CH4 and CO2 consumption were included in the plot to depict the comparison between 

the main carbon sources and the exchanged metabolites. Figure 49 (a) shows the flowrates 

normalized by CH4 uptake rate (mmol X/mmol CH4) where X is a metabolite. Figure 49 (b) shows 

the flowrates normalized by total growth rate (mmol X/gDCW). The metabolites (except CH4) 

showed above zero line are produced by methanotroph, and the metabolites (except CO2) below 

zero line are produced by photoautotroph. As it is shown there are some abnormalities in the 

exchanged metabolites at time 2 and 64 which could be inaccurate model prediction. Both plots  
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Figure 49. Top exchanged metabolites for each 15-time steps. (a) the flowrates normalized by 

CH4 uptake rate (mmol X/mmol CH4), (b) the flowrates normalized by total growth rate 

(mmol X/gDCW) where X is a metabolite. The metabolites (except CH4) showed above 

zero line are produced by methanotroph, and the metabolites (except CO2) below zero line 

are produced by photoautotroph. 

show a similar trend and a meaningful prediction for the top 9 exchanged metabolites. It seems 

after 38 hours (establishing the mutualistic relationship), photoautotroph produced more pyruvate 

-5

-4

-3

-2

-1

0

1

2

3

2 5.5 8 14 20 26 32 38 42 50 58 64 74 82 90

m
m

o
l X

/m
m

o
l C

H
4

Time Step (hrs)

CH4 CO2 succinate lactate NH4 pyruvate citrate sucrose formate glutamate glutamine

-130

-80

-30

20

70

2 5.5 8 14 20 26 32 38 42 50 58 64 74 82 90

m
m

o
l X

/g
D

C
W

Time step (hrs)

CH4 CO2 succinate lactate NH4 pyruvate citrate sucrose formate glutamate glutamine

(b) 

(a) 



 159 

and glutamate and kept providing NH4, succinate and formate for methanotroph. From the other 

side, methanotroph produced more citrate and slightly more glutamine and kept providing lactate 

and sucrose for photoautotroph. 

It is also interesting to point out that the dynamic coculture GEM predicts the establishment 

of the mutualistic relationship between the methanotroph and cyanobacteria. Specifically, the 

dynamic GEM predicts an emergent N-exchange being established when M. buryatense and A. 

platensis are cocultured together. After the establishment of the mutualistic interaction, only the 

cyanobacteria uptakes nitrate, while the methanotroph consumes ammonium excreted by the 

cyanobacteria. This phenomena has been observed and validated experimentally (using nanoscale 

secondary ion mass spectrometry image analysis) before in the coculture of cyanobacteria-

heterotroph [172] which the cyanobacteria at some point uptake nitrate and produce ammonium 

for heterotrophs [173]. And then heterotroph stop up taking nitrate and just consume ammonium 

since it is the preferred N source due to its reduced state and energetically favorable assimilation 

[149]. In this study, the establishment of this mutualism can be shown clearly by observing the 

methanotroph nitrate uptake in Figure 48 until time = 32 hours, where nitrate uptake by the 

methanotroph is significant. And then after establishing a mutualistic relationship as it is shown in 

Figure 48 at time =38 hours until the end of the experiment, the only Nitrogen source come from 

the cyanobacteria by providing ammonium where nitrate uptake by the methanotroph is zero. 
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: Conclusions and Recommendations for Future Work 

7.1 Understanding on M-P coculture for biogas conversion 

Anaerobic digestion (AD) produced biogas (in which CH4 is a valuable fuel) can be used 

to produce energy, including electricity, heat and high-density fuels. In addition to economic 

benefits from energy generation, AD offers many environmental benefits, including reducing 

greenhouse gases (GHGs) emission, significant reduction of soil, water and air pollutions, plus 

odor and pathogen controls. CO2 and CH4 are the two leading GHGs that cause global warming 

and many detrimental effects to the earth’s ecosystem, and AD enables the containment of biogas 

produced from waste degradation that otherwise would be released into atmosphere. The low value 

of biogas is the main factor that hinders the wide adoption of AD and exploration of biogas 

potential as a feedstock for production of high-density fuels and commodity chemicals. To tap into 

the immense potential of biogas produced from waste streams, effective biotechnologies that can 

operate at ambient pressure, temperature and are economically viable at small to mid-scale are 

needed. In addition, the technologies that can co-utilize both CH4 and CO2 are particularly 

attractive.   

Recent studies have demonstrated that natural microbial communities have developed a 

highly efficient way to recover the energy and capture carbon from both CH4 and CO2 through 

metabolic coupling of methane oxidation to oxygenic photosynthesis. Inspired by these research 

findings, different methanotroph-photoautotroph (M-P) cocultures have been examined recently 

for biogas conversion. These recent developments clearly demonstrated that M-P cocultures offer 

a highly promising biotechnology platform for biogas conversion. However, existing results are 

limited to qualitative proof-of-concept experiments, and there is a lack of understanding on the 

growth and interaction of species in systematic and molecular levels. One of the key challenges in 
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microbiome research is identifying and manipulating cross-feeding interactions between 

community members that drive system dynamics and functions. Even for a simple two-member 

system there are a large number of possible interactions. To better understand microbiomes and 

make quantitative predictions, some advanced methods were established in this work. The 

availability of a kinetic model for the coculture growth is one of the prerequisites for developing 

coculture-based biotechnology, as it provides a foundation for design and scale-up of the 

bioreactor, as well as the optimization of operation conditions. In addition, currently how to 

quickly and accurately characterize mixed culture in real-time is still an unsolved problem, which 

is likely one major obstacle in developing kinetic models for the M-P cocultures. For the M-P 

coculture, besides tracking the individual biomass concentrations, an added difficulty is how to 

determine the substrate consumption rates and product excretion rates for each strain. 

To address these limitations, this work proposes an experimental-computational (E-C) 

protocol that can deliver accurate characterization of the M-P cocultures in real time, which only 

require commonly measured variables such as gas composition, total optical density of the 

coculture and the inorganic carbon in the liquid broth. The accuracy of the proposed E-C protocol 

was validated by cell counting approach using flow cytometry. In addition, by comparing the 

predicted total OD from the individual biomass concentration with the measured total OD, this 

work shows that the E-C protocol provided better accuracy than the cell counting approach through 

statistical testing.  

With the real-time characterization of the M-P coculture, this work proposes a semi-

structured kinetic model that can accurately predict the growth rate, as well as the 

consumption/production rates of O2 and CO2 for the methanotroph and photoautotroph in the 

coculture. The proposed kinetic model is termed “semi-structured”, because the exchange of in 
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situ produced O2 and CO2 between the two species were explicitly modelled. Using the semi-

structure dynamic modeling and the designed experiment, this work confirms that there exist other 

emergent interactions within the methanotroph-photoautotroph coculture, and quantified the effect 

of these emergent interactions, albeit unknown, on the growth of each species. 

The structured Genome-scale metabolic (GEM) models have been used to predict 

population behaviors based on each organism’s capabilities and potential competitive or 

cooperative interactions in microbial communities. In GEM modeling approaches, the quality of 

the reconstruction of complex community model depends on highly curated reconstructions of 

single organisms. Therefore, the GEM model for the A. platensis was refined to incorporate recent 

finding on photosynthetic electron transport components. The model predicted oxygen production 

and biomass growth showed a better agreement with experimental data after the refinements. The 

GEM model for M. buryatense 5GB1 was curated manually based on recent knowledge and 

validated using several sets of batch and continuous experiments. This work proposes the very first 

coculture GEM that is capable to predict potential “metabolic links”; because of these metabolic 

links, the individual growth rate predicted by the coculture GEM showed excellent agreement with 

experimental value without changing the model parameters, i.e., growth-associated and non-

growth associated maintenance energy.  

Moreover, this work proposes a dynamic GEM model by employing the validated semi-

structured kinetic model to provide the cross-membrane fluxes, i.e., substrate pickup rates, product 

excretion rates and biomass growth rates, as constraints to the coculture GEM. These constraints 

not only allowed the reduction of the feasible solution space of the GEM model, but also enabled 

the simulation of the dynamic GEM, which could significantly improve metabolic flux predictions. 

In this way, by integrating the kinetic model with the steady-state GEM for the coculture, we were 
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able to obtain the dynamic metabolic flux changes over time. Both coculture GEM and dynamic 

GEM models consistently predicted the same top exchanged metabolites under different conditions 

contributing to enhanced coculture growth. It is also interesting to note that the dynamic coculture 

GEM predicted the establishment of the mutualistic relationship between the methanotroph and 

cyanobacteria. Specifically, the dynamic GEM predicted an emergent N-exchange being 

established when M. buryatense and A. platensis were cocultured together. After the establishment 

of the mutualistic interaction, only the cyanobacteria consumed nitrate, while the methanotroph 

consumed ammonium excreted by the cyanobacteria. 

7.2 Recommendations for Future Work 

While the GEM models developed and utilized in this work enable us to develop 

hypotheses about metabolic interactions of the micro-organisms studied, there are still many 

questions that need to be answered. The investigation into the potential metabolic interactions 

identified several interdependencies. Experimentally validation of these cross-feeding interactions 

is required. The validation of the predicted metabolic exchanges can be achieved by running the 

dynamic transcriptomic analysis. This method should capture at least top metabolic links and 

validate accuracy of the prediction. Another idea for validating the predicted coculture GEM 

model is designing and performing experiments using isotopes labeling 13C and 15N, NanoSIMS 

or combination of the mentioned methods. These methods can reveal the stablished mutual 

interactions in the coculture. Furthermore, using collected experimental data on the coculture, one 

can revise and improve the coculture GEM model for more accurate prediction. 

To test the presence of the metabolic links, the medium of the coculture could be examined 

using metabolomic analysis and be compared with supernatant of individual single cultures. It may 

capture some residual or difference of metabolites between coculture and single culture. Moreover, 



 164 

supernatant of single cyanobacteria can be used for culturing the single methanotroph and vice 

versa. By comparing the results with growth in standard medium, some difference could be seen 

that needs more investigation such as transcriptomic analysis in order to recognize the metabolic 

links.   

Since some species need physical contact in their cell membrane, as it was mentioned in 

Chapter 5, coculture biomass samples can be taken at different time steps during establishment of 

the mutual interaction and the images of the samples will be produced by scanning electron 

microscope (SEM). The pictures can validate the hypothesis about the need of physical contact for 

metabolic interactions. 

Ultimately, it is envisioned that integrated model of microbiomes will enhance our 

fundamental understanding of microbial communities and establish new theories and mechanisms 

that govern the structure and function of these complex biological systems. 

  



 165 

References 

 

[1] National Academy of Engineering, Policy Implications of Greenhouse Warming, 1991. 

https://books.google.com/books?id=-

iEs4ZFoW8UC&pg=PT15&lpg=PT15&dq=Because+of+this+asymmetry,+the+earth,+its

+atmosphere,+and+its+oceans+are+warmer+than+they+would+be+in+the+absence+of+s

uch+gases&source=bl&ots=TG0oYnGhx8&sig=ACfU3U3ABHjasY-hNxA-

ZcDXJH5U0gI (accessed June 25, 2021). 

[2] E. Britannica, Causes of Global Warming, Saving Earth, (n.d.). 

https://www.britannica.com/explore/savingearth/global-warming-problem (accessed June 

25, 2021). 

[3] US EPA, Greenhouse Gas (GHG) Emissions, (n.d.). https://www.epa.gov/ghgemissions 

(accessed May 24, 2021). 

[4] IPCC, AR5 Climate Change 2013: The Physical Science Basis, (n.d.). 

https://www.ipcc.ch/report/ar5/wg1/ (accessed May 24, 2021). 

[5] US EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks, Greenhouse Gas 

(GHG) Emissions, (n.d.). https://www.epa.gov/ghgemissions/inventory-us-greenhouse-

gas-emissions-and-sinks (accessed June 25, 2021). 

[6] US EPA, Overview of Greenhouse Gases, Greenhouse Gas (GHG) Emissions, (n.d.). 

https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed June 25, 2021). 

[7] IPCC, AR4 Climate Change 2007: Synthesis Report, (n.d.). 

https://www.ipcc.ch/report/ar4/syr/ (accessed May 24, 2021). 

[8] Department of Primary Industries and Regional Development’s Agriculture and Food, 

Carbon farming: reducing methane emissions from cattle using feed additives, (n.d.). 

https://www.agric.wa.gov.au/climate-change/carbon-farming-reducing-methane-

emissions-cattle-using-feed-additives (accessed July 13, 2021). 

[9] US EPA, Basic Information about Landfill Gas, Landfill Methane Outreach Program 

(LMOP), (n.d.). https://www.epa.gov/lmop/basic-information-about-landfill-gas (accessed 

June 25, 2021). 

[10] National Research Council, What We Know About Climate Change and Its Interactions 

with People and Ecosystems, in: Adv. Sci. Clim. Chang., National Academies Press, 

2011: pp. 1–526. https://doi.org/10.17226/12782. 

[11] U. Forest Service, United States Department Of Agriculture Forest Service Pacific 

Northwest Research Station, 2010. http://www.fs.fed.us./pnw/ (accessed June 25, 2021). 

[12] NOAA Climate.gov, Teaching Essential Principle 6: Human activities are impacting the 

climate system, (n.d.). https://www.climate.gov/teaching/essential-principles-climate-

literacy/teaching-essential-principle-6-human-activities-are (accessed June 25, 2021). 

[13] NASA, Arctic Sea Ice Shrinks To New Low In Satellite Era, (n.d.). 

https://www.nasa.gov/topics/earth/features/arctic-seaice-2012.html (accessed June 25, 

2021). 

[14] The National Academies, Climate change 2008 edition, 2008. 

[15] National Academies of Sciences, Negative Emissions Technologies and Reliable 

Sequestration, National Academies Press, 2019. https://doi.org/10.17226/25259. 

[16] H. Eldardiry, E. Habib, Carbon capture and sequestration in power generation: review of 

impacts and opportunities for water sustainability, Energy. Sustain. Soc. 8 (2018) 1–15. 

https://doi.org/10.1186/s13705-018-0146-3. 



 166 

[17] Environmental and Energy Study Institute (EESI), Fact Sheet, Biogas: Converting Waste 

to Energy, White Papers, (n.d.). https://www.eesi.org/papers/view/fact-sheet-

biogasconverting-waste-to-energy (accessed June 25, 2021). 

[18] Y. Shen, J.L. Linville, M. Urgun-Demirtas, M.M. Mintz, S.W. Snyder, An overview of 

biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in 

the United States: Challenges and opportunities towards energy-neutral WWTPs, Renew. 

Sustain. Energy Rev. 50 (2015) 346–362. https://doi.org/10.1016/j.rser.2015.04.129. 

[19] U.S. AgSTAR, Market Opportunities Report for Biogas Recovery in the Agriculture 

Sector, US EPA. (2018). https://www.epa.gov/sites/production/files/2018-

06/documents/epa430r18006agstarmarketreport2018.pdf (accessed June 11, 2021). 

[20] W. Zhang, X. Ge, Y.F. Li, Z. Yu, Y. Li, Isolation of a methanotroph from a hydrogen 

sulfide-rich anaerobic digester for methanol production from biogas, Process Biochem. 51 

(2016) 838–844. https://doi.org/10.1016/j.procbio.2016.04.003. 

[21] J.P. Sheets, X. Ge, Y.F. Li, Z. Yu, Y. Li, Biological conversion of biogas to methanol 

using methanotrophs isolated from solid-state anaerobic digestate, Bioresour. Technol. 

201 (2016) 50–57. https://doi.org/10.1016/j.biortech.2015.11.035. 

[22] E. Ryckebosch, M. Drouillon, H. Vervaeren, Techniques for transformation of biogas to 

biomethane, Biomass and Bioenergy. 35 (2011) 1633–1645. 

https://doi.org/10.1016/j.biombioe.2011.02.033. 

[23] M. Bahr, I. Díaz, A. Dominguez, A. González Sánchez, R. Muñoz, Microalgal-

biotechnology as a platform for an integral biogas upgrading and nutrient removal from 

anaerobic effluents, Environ. Sci. Technol. 48 (2014) 573–581. 

https://doi.org/10.1021/es403596m. 

[24] Z. Rasouli, B.V. Pérez, M. D’Este, D. De Francisci, I. Angelidaki, B. Valverde-Pérez, M. 

D’Este, D. De Francisci, I. Angelidaki, Nutrient recovery from industrial wastewater as 

single cell protein by a co-culture of green microalgae and methanotrophs, Biochem. Eng. 

J. 134 (2018) 129–135. https://doi.org/10.1016/j.bej.2018.03.010. 

[25] J. Masojídek, G. Torzillo, M. Koblízek, Photosynthesis in Microalgae, in: Handb. 

Microalgal Cult. Appl. Phycol. Biotechnol. Second Ed., wiley, 2013: pp. 21–36. 

https://doi.org/10.1002/9781118567166.ch2. 

[26] H.L. MacIntyre, T.M. Kana, T. Anning, R.J. Geider, Photoacclimation of photosynthesis 

irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria, 

J. Phycol. 38 (2002) 17–38. https://doi.org/10.1046/j.1529-8817.2002.00094.x. 

[27] A. Benson, M. Calvin, The dark reductions of photosynthesis, Science (80-. ). 105 (1947) 

648. https://doi.org/10.1126/science.105.2738.648. 

[28] M. Calvin, The photosynthetic carbon cycle, J. Chem. Soc. (1956) 1895. 

https://doi.org/10.1039/jr9560001895. 

[29] G.E. Lakatos, K. Ranglová, J.C. Manoel, T. Grivalský, J. Kopecký, J. Masojídek, 

Bioethanol production from microalgae polysaccharides, Folia Microbiol. (Praha). 64 

(2019) 627–644. https://doi.org/10.1007/s12223-019-00732-0. 

[30] S. Behera, R. Singh, R. Arora, N.K. Sharma, M. Shukla, S. Kumar, Scope of Algae as 

Third Generation Biofuels, Front. Bioeng. Biotechnol. 2 (2015) 90. 

https://doi.org/10.3389/fbioe.2014.00090. 

[31] K.W. Chew, J.Y. Yap, P.L. Show, N.H. Suan, J.C. Juan, T.C. Ling, D.J. Lee, J.S. Chang, 

Microalgae biorefinery: High value products perspectives, Bioresour. Technol. 229 (2017) 

53–62. https://doi.org/10.1016/j.biortech.2017.01.006. 



 167 

[32] M.I. Khan, J.H. Shin, J.D. Kim, The promising future of microalgae: Current status, 

challenges, and optimization of a sustainable and renewable industry for biofuels, feed, 

and other products, Microb. Cell Fact. 17 (2018) 36. https://doi.org/10.1186/s12934-018-

0879-x. 

[33] W. Qu, C. Zhang, Y. Zhang, S.H. Ho, Optimizing real swine wastewater treatment with 

maximum carbohydrate production by a newly isolated indigenous microalga 

Parachlorella kessleri QWY28, Bioresour. Technol. 289 (2019) 121702. 

https://doi.org/10.1016/j.biortech.2019.121702. 

[34] G. Goswami, B.B. Makut, D. Das, Sustainable production of bio-crude oil via 

hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled 

with effective wastewater treatment, Sci. Rep. 9 (2019) 1–12. 

https://doi.org/10.1038/s41598-019-51315-5. 

[35] H. Cao, Z. Zhang, X. Wu, X. Miao, Direct biodiesel production from wet microalgae 

biomass of chlorella pyrenoidosa through in situ transesterification, Biomed Res. Int. 2013 

(2013). https://doi.org/10.1155/2013/930686. 

[36] A. Ritala, S.T. Häkkinen, M. Toivari, M.G. Wiebe, Single cell protein-state-of-the-art, 

industrial landscape and patents 2001-2016, Front. Microbiol. 8 (2017). 

https://doi.org/10.3389/fmicb.2017.02009. 

[37] S.W. Jones, A. Karpol, S. Friedman, B.T. Maru, B.P. Tracy, Recent advances in single 

cell protein use as a feed ingredient in aquaculture, Curr. Opin. Biotechnol. 61 (2020) 

189–197. https://doi.org/10.1016/j.copbio.2019.12.026. 

[38] S. Rasoul-Amini, M.H. Morowvat, G. Younes, Single Cell Protein: Production and 

Process Anticancer compounds View project Effect of Fibrin Packing on Managing 

Hepatic Hemorrhage and Liver Wound Healing in a Model of Liver Stab Wound in Rat 

View project CITATIONS SEE PROFILE, Artic. Am. J. Food Technol. (2011). 

https://doi.org/10.3923/ajft.2011.103.116. 

[39] D. Putri, A. Ulhidayati, I.A. Musthofa, A.K. Wardani, Single cell protein production of 

Chlorella sp. using food processing waste as a cultivation medium, in: IOP Conf. Ser. 

Earth Environ. Sci., Institute of Physics Publishing, 2018: p. 012052. 

https://doi.org/10.1088/1755-1315/131/1/012052. 

[40] P.J. Strong, M. Kalyuzhnaya, J. Silverman, W.P. Clarke, A methanotroph-based 

biorefinery: Potential scenarios for generating multiple products from a single 

fermentation, Bioresour. Technol. 215 (2016) 314–323. 

https://doi.org/10.1016/j.biortech.2016.04.099. 

[41] N. Renuka, A. Guldhe, R. Prasanna, P. Singh, F. Bux, Microalgae as multi-functional 

options in modern agriculture: current trends, prospects and challenges, Biotechnol. Adv. 

36 (2018) 1255–1273. https://doi.org/10.1016/j.biotechadv.2018.04.004. 

[42] Y. Lu, J. Xu, Phytohormones in microalgae: A new opportunity for microalgal 

biotechnology?, Trends Plant Sci. 20 (2015) 273–282. 

https://doi.org/10.1016/j.tplants.2015.01.006. 

[43] E. Yilmaz, M. Sönmez, The role of organic/bio–fertilizer amendment on aggregate 

stability and organic carbon content in different aggregate scales, Soil Tillage Res. 168 

(2017) 118–124. https://doi.org/10.1016/j.still.2017.01.003. 

[44] K. Swarnalakshmi, R. Prasanna, A. Kumar, S. Pattnaik, K. Chakravarty, Y.S. Shivay, R. 

Singh, A.K. Saxena, Evaluating the influence of novel cyanobacterial biofilmed 

biofertilizers on soil fertility and plant nutrition in wheat, Eur. J. Soil Biol. 55 (2013) 107–



 168 

116. https://doi.org/10.1016/j.ejsobi.2012.12.008. 

[45] J. Coppens, O. Grunert, S. Van Den Hende, I. Vanhoutte, N. Boon, G. Haesaert, L. De 

Gelder, The use of microalgae as a high-value organic slow-release fertilizer results in 

tomatoes with increased carotenoid and sugar levels, J. Appl. Phycol. 28 (2016) 2367–

2377. https://doi.org/10.1007/s10811-015-0775-2. 

[46] N. Renuka, R. Prasanna, A. Sood, R. Bansal, N. Bidyarani, R. Singh, Y.S. Shivay, L. 

Nain, A.S. Ahluwalia, Wastewater grown microalgal biomass as inoculants for improving 

micronutrient availability in wheat, Rhizosphere. 3 (2017) 150–159. 

https://doi.org/10.1016/j.rhisph.2017.04.005. 

[47] H. Mazur, A. Konop, R. Synak, Indole-3-acetic acid in the culture medium of two axenic 

green microalgae, J. Appl. Phycol. 13 (2001) 35–42. 

https://doi.org/10.1023/A:1008199409953. 

[48] K.O. Romanenko, I. V. Kosakovskaya, P.O. Romanenko, Phytohormones of microalgae: 

Biological role and involvement in the regulation of physiological processes. Pt II. 

Cytokinins and gibberellins, Int. J. Algae. 18 (2016) 179–201. 

https://doi.org/10.1615/InterJAlgae.v18.i2.70. 

[49] K. Minamisawa, H. Imaizumi-Anraku, Z. Bao, R. Shinoda, T. Okubo, S. Ikeda, Are 

symbiotic methanotrophs key microbes for N acquisition in paddy rice root?, Microbes 

Environ. 31 (2016) 4–10. https://doi.org/10.1264/jsme2.ME15180. 

[50] M.A. Zeller, R. Hunt, A. Jones, S. Sharma, Bioplastics and their thermoplastic blends 

from Spirulina and Chlorella microalgae, J. Appl. Polym. Sci. 130 (2013) 3263–3275. 

https://doi.org/10.1002/app.39559. 

[51] V. Piemonte, Bioplastic Wastes: The Best Final Disposition for Energy Saving, J. Polym. 

Environ. 19 (2011) 988–994. https://doi.org/10.1007/s10924-011-0343-z. 

[52] L. Zhang, P. Chen, J. Huang, G. Yang, L. Zheng, Ways of strengthening biodegradable 

soy-dreg plastics, J. Appl. Polym. Sci. 88 (2003) 422–427. 

https://doi.org/10.1002/app.11718. 

[53] U.S. AgSTAR, Market {Opportunities} for {Biogas} {Recovery} {Systems} at {U}.{S}. 

{Livestock} {Facilities}, (2018) 42. https://www.epa.gov/agstar/agstar-market-

opportunities-report. 

[54] C.A. Jones, C. Coker, K. Kirk, L. Reynolds, Food Waste Co-Digestion at Water Resource 

Recovery Facilities: Business Case Analysis, 2019. www.waterrf.org (accessed May 31, 

2021). 

[55] N. Kip, J.F. Van Winden, Y. Pan, L. Bodrossy, G.J. Reichart, A.J.P. Smolders, M.S.M. 

Jetten, J.S.S. Damsté, H.J.M. Op Den Camp, Global prevalence of methane oxidation by 

symbiotic bacteria in peat-moss ecosystems, Nat. Geosci. 3 (2010) 617–621. 

https://doi.org/10.1038/ngeo939. 

[56] J. Milucka, M. Kirf, L. Lu, A. Krupke, P. Lam, S. Littmann, M.M.M. Kuypers, C.J. 

Schubert, Methane oxidation coupled to oxygenic photosynthesis in anoxic waters, ISME 

J. 9 (2015) 1991–2002. https://doi.org/10.1038/ismej.2015.12. 

[57] A.A. Raghoebarsing, A.J.P. Smolders, M.C. Schmid, W.I.C. Rijpstra, M. Wolters-Arts, J. 

Derksen, M.S.M. Jetten, S. Schouten, J.S. Sinninghe Damsté, L.P.M. Lamers, J.G.M. 

Roelofs, H.J.M. den Camp, M. Strous, Methanotrophic symbionts provide carbon for 

photosynthesis in peat bogs, Nature. 436 (2005) 1153–1156. 

https://doi.org/10.1038/nature03802. 

[58] D. Van Der Ha, L. Nachtergaele, F.M. Kerckhof, D. Rameiyanti, P. Bossier, W. 



 169 

Verstraete, N. Boon, Conversion of biogas to bioproducts by algae and methane oxidizing 

bacteria, Environ. Sci. Technol. 46 (2012) 13425–13431. 

https://doi.org/10.1021/es303929s. 

[59] E.A. Hill, W.B. Chrisler, A.S. Beliaev, H.C. Bernstein, A flexible microbial co-culture 

platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks, 

Bioresour. Technol. 228 (2017) 250–256. https://doi.org/10.1016/j.biortech.2016.12.111. 

[60] Z. Khan, P. Bhadouria, P. Bisen, Nutritional and Therapeutic Potential of Spirulina, Curr. 

Pharm. Biotechnol. 6 (2005) 373–379. https://doi.org/10.2174/138920105774370607. 

[61] T. Kaji, Y. Fujiwara, Y. Inomata, C. Hamada, C. Yamamoto, S. Shimada, J.B. Lee, T. 

Hayashi, Repair of wounded monolayers of cultured bovine aortic endothelial cells is 

inhibited by calcium spirulan, a novel sulfated polysaccharide isolated from Spirulina 

platensis, Life Sci. 70 (2002) 1841–1848. https://doi.org/10.1016/S0024-3205(01)01555-

7. 

[62] A.W. Puri, S. Owen, F. Chu, T. Chavkin, D.A.C. Beck, M.G. Kalyuzhnaya, M.E. 

Lidstrom, Genetic tools for the industrially promising methanotroph Methylomicrobium 

buryatense, Appl. Environ. Microbiol. 81 (2015) 1775–1781. 

https://doi.org/10.1128/AEM.03795-14. 

[63] N. Roberts, M. Hilliard, Q.P. He, J. Wang, A Microalgae-Methanotroph Coculture is a 

Promising Platform for Fuels and Chemical Production From Wastewater, Front. Energy 

Res. 8 (2020) 230. https://doi.org/10.3389/fenrg.2020.563352. 

[64] M.R. Antoniewicz, A guide to deciphering microbial interactions and metabolic fluxes in 

microbiome communities, Curr. Opin. Biotechnol. 64 (2020) 230–237. 

https://doi.org/10.1016/j.copbio.2020.07.001. 

[65] J. Friedman, L.M. Higgins, J. Gore, Community structure follows simple assembly rules 

in microbial microcosms, Nat. Ecol. Evol. 1 (2017) 1–7. https://doi.org/10.1038/s41559-

017-0109. 

[66] J.C. Wooley, A. Godzik, I. Friedberg, A primer on metagenomics, PLoS Comput. Biol. 6 

(2010) e1000667. https://doi.org/10.1371/journal.pcbi.1000667. 

[67] J.J. Faith, N.P. McNulty, F.E. Rey, J.I. Gordon, Predicting a human gut microbiota’s 

response to diet in gnotobiotic mice, Science (80-. ). 333 (2011) 101–104. 

https://doi.org/10.1126/science.1206025. 

[68] C. Zuñiga, L. Zaramela, K. Zengler, Elucidation of complexity and prediction of 

interactions in microbial communities, Microb. Biotechnol. 10 (2017) 1500–1522. 

https://doi.org/10.1111/1751-7915.12855. 

[69] K.Z. Coyte, J. Schluter, K.R. Foster, The ecology of the microbiome: Networks, 

competition, and stability, Science (80-. ). 350 (2015) 663–666. 

https://doi.org/10.1126/science.aad2602. 

[70] Market Opportunities for Biogas Recovery Systems at U.S. Livestock Facilities, 2018. 

www.epa.gov/agstar (accessed June 11, 2021). 

[71] A.A. Raghoebarsing, A.J.P. Smolders, M.C. Schmid, W.I.C. Rijpstra, M. Wolters-Arts, J. 

Derksen, M.S.M. Jetten, S. Schouten, J.S.S. Damsté, L.P.M. Lamers, J.G.M. Roelofs, 

H.J.M. Op Den Camp, M. Strous, Methanotrophic symbionts provide carbon for 

photosynthesis in peat bogs, Nature. 436 (2005) 1153–1156. 

https://doi.org/10.1038/nature03802. 

[72] E.A. Hill, W.B. Chrisler, A.S. Beliaev, H.C. Bernstein, A flexible microbial co-culture 

platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks, 



 170 

Bioresour. Technol. 228 (2017) 250–256. https://doi.org/10.1016/j.biortech.2016.12.111. 

[73] J. Wang, Q.P. He, Methanotroph-microalgae coculture, US Provisional Pat. Appl. 

62/664,565. (2018). 

[74] K. Badr, M. Hilliard, N. Roberts, Q.P. He, J. Wang, Photoautotroph-Methanotroph 

Coculture – A Flexible Platform for Efficient Biological CO2-CH4 Co-utilization, IFAC-

PapersOnLine. 52 (2019) 916–921. https://doi.org/10.1016/j.ifacol.2019.06.179. 

[75] Z. Rasouli, B. Valverde-Pérez, M. D’Este, D. De Francisci, I. Angelidaki, Nutrient 

recovery from industrial wastewater as single cell protein by a co-culture of green 

microalgae and methanotrophs, Biochem. Eng. J. 134 (2018) 129–135. 

https://doi.org/10.1016/j.bej.2018.03.010. 

[76] W. Sabra, D. Dietz, D. Tjahjasari, A.-P. Zeng, Biosystems analysis and engineering of 

microbial consortia for industrial biotechnology, Eng. Life Sci. 10 (2010) 407–421. 

[77] D. Spiegelman, G. Whissell, C.W. Greer, A survey of the methods for the characterization 

of microbial consortia and communities, Can. J. Microbiol. 51 (2005) 355–386. 

[78] K.A. Stone, Q.P. He, J. Wang, Two Experimental Protocols for Accurate Measurement of 

Gas Component Uptake and Production Rates in Bioconversion Processes, Sci. Rep. 9 

(2019) 5899. https://doi.org/10.1038/s41598-019-42469-3. 

[79] I.R. Akberdin, M. Thompson, R. Hamilton, N. Desai, D. Alexander, C.A. Henard, M.T. 

Guarnieri, M.G. Kalyuzhnaya, Methane utilization in Methylomicrobium alcaliphilum 

20Z R: a systems approach, Sci. Rep. 8 (2018) 2512. 

[80] H.C. Bernstein, R.S. McClure, E.A. Hill, L.M. Markillie, W.B. Chrisler, M.F. Romine, 

J.E. McDermott, M.C. Posewitz, D.A. Bryant, A.E. Konopka, others, Unlocking the 

constraints of cyanobacterial productivity: acclimations enabling ultrafast growth, MBio. 

7 (2016) 949. 

[81] A.M.J. Kliphuis, M. Janssen, E.J. van den End, D.E. Martens, R.H. Wijffels, Light 

respiration in Chlorella sorokiniana, J. Appl. Phycol. 23 (2011) 935–947. 

[82] I.R. Akberdin, M. Thompson, R. Hamilton, N. Desai, D. Alexander, C.A. Henard, M.T. 

Guarnieri, M.G. Kalyuzhnaya, Methane utilization in {Methylomicrobium} alcaliphilum 

{20ZR}: a systems approach, Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-

20574-z. 

[83] N. Scarlat, J.F. Dallemand, F. Fahl, Biogas: Developments and perspectives in Europe, 

Renew. Energy. 129 (2018) 457–472. https://doi.org/10.1016/j.renene.2018.03.006. 

[84] B.C. Murray, C.S. Galik, T. Vegh, Biogas in the United States: estimating future 

production and learning from international experiences, Mitig. Adapt. Strateg. Glob. 

Chang. 22 (2017) 485–501. https://doi.org/10.1007/s11027-015-9683-7. 

[85] P. Kumaran, D. Hephzibah, R. Sivasankari, N. Saifuddin, A.H. Shamsuddin, A review on 

industrial scale anaerobic digestion systems deployment in Malaysia: Opportunities and 

challenges, Renew. Sustain. Energy Rev. 56 (2016) 929–940. 

https://doi.org/10.1016/j.rser.2015.11.069. 

[86] (WBA) World Bioenergy Association, Global Bioenergy Statistics 2020 WBA, (2020). 

https://www.worldbioenergy.org/uploads/201210 WBA GBS 2020.pdf (accessed June 10, 

2021). 

[87] American Biogas Council, Championing the biogas industry, advancing a biogas future, 

(2017). https://americanbiogascouncil.org/ (accessed June 10, 2021). 

[88] A. Aebiom, A Biogas Road Map for Europe Content, (2010). https://www.big-

east.eu/downloads/Brochure_BiogasRoadmap_WEB%5B1%5D.pdf (accessed June 10, 



 171 

2021). 

[89] REN21, Renewables 2015 Global Status Reports, Renewable Energy Policy Network for 

the 21st Century, (2017). https://www.ren21.net/reports/global-status-report/ (accessed 

June 10, 2021). 

[90] L. Jingming, The Future of Biogas in China. Biogas World, in: Biogas World Berlin, Ger. 

April 1, 2014, (2014). https://silo.tips/download/the-future-of-biogas-in-china#modals 

(accessed June 10, 2021). 

[91] K. Badr, W. Whelan, Q.P. He, J. Wang, Fast and easy quantitative characterization of 

methanotroph–photoautotroph cocultures, Biotechnol. Bioeng. 118 (2021) 703–714. 

https://doi.org/10.1002/bit.27603. 

[92] C. Zarrouk, Contribution a l’etude d’une Cyanophycee. Influence de Divers Facteurs 

Physiques et Chimiques sur la croissance et la photosynthese de Spirulina mixima., 

Thesis. Univ. Paris, Fr. (1966). 

[93] Q. Béchet, A. Shilton, B. Guieysse, Modeling the effects of light and temperature on algae 

growth: State of the art and critical assessment for productivity prediction during outdoor 

cultivation, Biotechnol. Adv. 31 (2013) 1648–1663. 

https://doi.org/10.1016/j.biotechadv.2013.08.014. 

[94] P.H. Ravelonandro, D.H. Ratianarivo, C. Joannis-Cassan, A. Isambert, M. 

Raherimandimby, Improvement of the growth of {Arthrospira} ({Spirulina}) platensis 

from {Toliara} ({Madagascar}): {Effect} of agitation, salinity and {CO2} addition, Food 

Bioprod. Process. 89 (2011) 209–216. https://doi.org/10.1016/j.fbp.2010.04.009. 

[95] G. Cogne, J.-B. Gros, C.-G. Dussap, Identification of a metabolic network structure 

representative ofarthrospira (spirulina) platensis metabolism, Biotechnol. Bioeng. 84 

(2003) 667–676. https://doi.org/10.1002/bit.10808. 

[96] T.M. Sobczuk, F.G. Camacho, F.C. Rubio, F.G.A. Fernández, E.M. Grima, F.G. 

Fernandez, E.M. Grima, Carbon dioxide uptake efficiency by outdoor microalgal cultures 

in tubular airlift photobioreactors, Biotechnol. Bioeng. 67 (2000) 465–475. 

https://doi.org/10.1002/(SICI)1097-0290(20000220)67:4<465::AID-BIT10>3.0.CO;2-9. 

[97] A. de la Torre, A. Metivier, F. Chu, L.M.L. Laurens, D.A.C. Beck, P.T. Pienkos, M.E. 

Lidstrom, M.G. Kalyuzhnaya, Genome-scale metabolic reconstructions and theoretical 

investigation of methane conversion in {Methylomicrobium} buryatense strain 

{5G}({B1}), Microb. Cell Fact. 14 (2015). https://doi.org/10.1186/s12934-015-0377-3. 

[98] M.G. Kalyuzhnaya, S. Yang, O.N. Rozova, N.E. Smalley, J. Clubb, A. Lamb, G.A.N. 

Gowda, D. Raftery, Y. Fu, F. Bringel, S. Vuilleumier, D.A.C. Beck, Y.A. Trotsenko, V.N. 

Khmelenina, M.E. Lidstrom, Highly efficient methane biocatalysis revealed in a 

methanotrophic bacterium, Nat. Commun. 4 (2013). https://doi.org/10.1038/ncomms3785. 

[99] S. Kasiri, A. Ulrich, V. Prasad, Kinetic modeling and optimization of carbon dioxide 

fixation using microalgae cultivated in oil-sands process water, Chem. Eng. Sci. 137 

(2015) 697–711. https://doi.org/10.1016/j.ces.2015.07.004. 

[100] P. van Bodegom, F. Stams, L. Mollema, S. Boeke, P. Leffelaar, Methane {Oxidation} and 

the {Competition} for {Oxygen} in the {Rice} {Rhizosphere}, Appl. Environ. Microbiol. 

67 (2001) 3586–3597. https://doi.org/10.1128/AEM.67.8.3586-3597.2001. 

[101] R. Sander, Compilation of {Henry}’s law constants (version 4.0) for water as solvent, 

Atmos. Chem. Phys. 15 (2015) 4399–4981. https://doi.org/10.5194/acp-15-4399-2015. 

[102] A. AlSayed, A. Fergala, S. Khattab, A. Eldyasti, Kinetics of type I methanotrophs mixed 

culture enriched from waste activated sludge, Biochem. Eng. J. 132 (2018) 60–67. 



 172 

https://doi.org/10.1016/j.bej.2018.01.003. 

[103] R. Mariyana, M.S. Kim, C. Il Lim, T.W. Kim, S.J. Park, B.K. Oh, J. Lee, J.G. Na, Mass 

transfer performance of a string film reactor: A bioreactor design for aerobic methane 

bioconversion, Catalysts. 8 (2018) 490. https://doi.org/10.3390/catal8110490. 

[104] Y. Yu, J.A. Ramsay, B.A. Ramsay, On-line estimation of dissolved methane concentration 

during methanotrophic fermentations, Biotechnol. Bioeng. 95 (2006) 788–793. 

https://doi.org/10.1002/bit.21050. 

[105] M.A. Babcock, D.F. Pegelow, C.A. Harms, J.A. Dempsey, Effects of respiratory muscle 

unloading on exercise-induced diaphragm fatigue, J. Appl. Physiol. 93 (2002) 201–206. 

https://doi.org/10.1152/japplphysiol.00612.2001. 

[106] Y. Fu, L. He, J. Reeve, D.A.C. Beck, M.E. Lidstrom, Core metabolism shifts during 

growth on methanol versus methane in the methanotroph methylomicrobium buryatense 

5GB1, MBio. 10 (2019). https://doi.org/10.1128/mBio.00406-19. 

[107] B.Ø. Palsson, Systems Biology: Properties of Reconstructed Networks, 1st ed., Cambridge 

University Press, 2006. 

[108] R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew, J. Nielsen, The RAVEN 

Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium 

chrysogenum, PLoS Comput. Biol. 9 (2013) e1002980. 

https://doi.org/10.1371/journal.pcbi.1002980. 

[109] J. Schellenberger, R. Que, R.M.T. Fleming, I. Thiele, J.D. Orth, A.M. Feist, D.C. 

Zielinski, A. Bordbar, N.E. Lewis, S. Rahmanian, J. Kang, D.R. Hyduke, B.Ø. Palsson, 

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA 

Toolbox v2.0, Nat. Protoc. 6 (2011) 1290–1307. https://doi.org/10.1038/nprot.2011.308. 

[110] J. Zanghellini, D.E. Ruckerbauer, M. Hanscho, C. Jungreuthmayer, Elementary flux 

modes in a nutshell: Properties, calculation and applications, Biotechnol. J. 8 (2013) 

1009–1016. https://doi.org/10.1002/biot.201200269. 

[111] J.D. Orth, I. Thiele, B.Ø. Palsson, What is flux balance analysis?, Nat Biotech. 28 (2010) 

245–248. https://doi.org/10.1038/nbt.1614. 

[112] N.E. Lewis, H. Nagarajan, B.O. Palsson, Constraining the metabolic genotype-phenotype 

relationship using a phylogeny of in silico methods, Nat. Rev. Microbiol. 10 (2012) 291–

305. https://doi.org/10.1038/nrmicro2737. 

[113] R. Ramakrishna, J.S. Edwards, A. McCulloch, B.O. Palsson, Flux-balance analysis of 

mitochondrial energy metabolism: consequences of systemic stoichiometric constraints, 

Am. J. Physiol. Integr. Comp. Physiol. 280 (2001) R695–R704. 

https://doi.org/10.1152/ajpregu.2001.280.3.R695. 

[114] J. Lee, H. Yun, A.M. Feist, B.Ø. Palsson, S.Y. Lee, Genome-scale reconstruction and 

<{Emphasis} {Type}="{Italic}">in silico</{Emphasis}>analysis of the <{Emphasis} 

{Type}="{Italic}">{Clostridium} acetobutylicum</{Emphasis}>{ATCC} 824 metabolic 

network, Appl Microbiol Biotechnol. 80 (2008) 849–862. https://doi.org/10.1007/s00253-

008-1654-4. 

[115] C.B. Milne, J.A. Eddy, R. Raju, S. Ardekani, P.-J. Kim, R.S. Senger, Y.-S. Jin, H.P. 

Blaschek, N.D. Price, Metabolic network reconstruction and genome-scale model of 

butanol-producing strain {Clostridium} beijerinckii {NCIMB} 8052, BMC Syst Biol. 5 

(2011) 130. https://doi.org/10.1186/1752-0509-5-130. 

[116] M.B. Biggs, G.L. Medlock, J.A. Papin, Metabolic network modeling of microbial 

communities, WIREs Syst Biol Med. 7 (2015) 317–334. 



 173 

https://doi.org/10.1002/wsbm.1308. 

[117] M.B. Biggs, G.L. Medlock, G.L. Kolling, J.A. Papin, Metabolic {Network} {Modeling} 

of {Microbial} {Communities}, Wiley Interdiscip Rev Syst Biol Med. 7 (2015) 317–334. 

https://doi.org/10.1002/wsbm.1308. 

[118] B.J. Sánchez, J. Nielsen, Genome scale models of yeast: towards standardized evaluation 

and consistent omic integration, Integr. Biol. 7 (2015) 846–858. 

[119] A.L. Damiani, Q.P. He, T.W. Jeffries, J. Wang, Comprehensive evaluation of two 

genome‐scale metabolic network models for Scheffersomyces stipitis, Biotechnol. Bioeng. 

112 (2015) 1250–1262. 

[120] M. Hilliard, A. Damiani, Q.P. He, T. Jeffries, J. Wang, Elucidating redox balance shift in 

Scheffersomyces stipitis’ fermentative metabolism using a modified genome-scale 

metabolic model, Microb. Cell Fact. 17 (2018) 140. https://doi.org/10.1186/s12934-018-

0983-y. 

[121] T. Österlund, I. Nookaew, J. Nielsen, Fifteen years of large scale metabolic modeling of 

yeast: Developments and impacts, Biotechnol. Adv. 30 (2012) 979–988. 

[122] D. McCloskey, A.M. Palsson Bernhard Øand Feist, Basic and applied uses of genome‐

scale metabolic network reconstructions of Escherichia coli, Mol. Syst. Biol. 9 (2013). 

[123] A. de la Torre, A. Metivier, F. Chu, L.M.L. Laurens, D.A.C. Beck, P.T. Pienkos, M.E. 

Lidstrom, M.G. Kalyuzhnaya, Genome-scale metabolic reconstructions and theoretical 

investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1), 

Microb. Cell Fact. 14 (2015) 188. https://doi.org/10.1186/s12934-015-0377-3. 

[124] A. Gilman, Y. Fu, M. Hendershott, F. Chu, A.W. Puri, A.L. Smith, M. Pesesky, R. 

Lieberman, D.A.C. Beck, M.E. Lidstrom, Oxygen-limited metabolism in the 

methanotroph Methylomicrobium buryatense 5GB1C, PeerJ. 5 (2017) e3945. 

https://doi.org/10.7717/peerj.3945. 

[125] I.R. Akberdin, M. Thompson, R. Hamilton, N. Desai, D. Alexander, C.A. Henard, M.T. 

Guarnieri, M.G. Kalyuzhnaya, Methane utilization in Methylomicrobium alcaliphilum 

20ZR: a systems approach, Sci. Rep. 8 (2018) 2512. https://doi.org/10.1038/s41598-018-

20574-z. 

[126] C.A. Henard, H. Smith, N. Dowe, M.G. Kalyuzhnaya, P.T. Pienkos, M.T. Guarnieri, 

Bioconversion of methane to lactate by an obligate methanotrophic bacterium, Sci. Rep. 6 

(2016) 21585. https://doi.org/10.1038/srep21585. 

[127] A. Gilman, L.M. Laurens, A.W. Puri, F. Chu, P.T. Pienkos, M.E. Lidstrom, Bioreactor 

performance parameters for an industrially-promising methanotroph Methylomicrobium 

buryatense 5GB1, Microb. Cell Fact. 14 (2015) 182. https://doi.org/10.1186/s12934-015-

0372-8. 

[128] A. Gilman, Development of a Promising Methanotrophic Bacterium as an Industrial 

Biocatalyst, University of Washington, 2017. 

[129] K. Yoshikawa, S. Aikawa, Y. Kojima, Y. Toya, C. Furusawa, A. Kondo, H. Shimizu, 

Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and 

Metabolic Design for Cyanobacterial Bioproduction, PLoS One. 10 (2015) e0144430. 

https://doi.org/10.1371/journal.pone.0144430. 

[130] K. Yoshikawa, Y. Toya, H. Shimizu, Metabolic engineering of Synechocystis sp. PCC 

6803 for enhanced ethanol production based on flux balance analysis, Bioprocess Biosyst 

Eng. 40 (2017) 791–796. https://doi.org/10.1007/s00449-017-1744-8. 

[131] M. Toyoshima, Y. Toya, H. Shimizu, Flux balance analysis of cyanobacteria reveals 



 174 

selective use of photosynthetic electron transport components under different spectral light 

conditions, Photosynth Res. 143 (2020) 31–43. https://doi.org/10.1007/s11120-019-

00678-x. 

[132] G. Peltier, E.-M. Aro, T. Shikanai, {NDH}-1 and {NDH}-2 {Plastoquinone} 

{Reductases} in {Oxygenic} {Photosynthesis}, Annu Rev Plant Biol. 67 (2016) 55–80. 

https://doi.org/10.1146/annurev-arplant-043014-114752. 

[133] S.H.J. Chan, M.N. Simons, C.D. Maranas, {SteadyCom}: {Predicting} microbial 

abundances while ensuring community stability, PLOS Comput. Biol. 13 (2017) 

e1005539. https://doi.org/10.1371/journal.pcbi.1005539. 

[134] F. Baldini, A. Heinken, L. Heirendt, S. Magnusdottir, R.M.T. Fleming, I. Thiele, The 

{Microbiome} {Modeling} {Toolbox}: from microbial interactions to personalized 

microbial communities, Bioinformatics. 35 (2019) 2332–2334. 

https://doi.org/10.1093/bioinformatics/bty941. 

[135] R.A. Khandelwal, B.G. Olivier, W.F.M. Röling, B. Teusink, F.J. Bruggeman, Community 

{Flux} {Balance} {Analysis} for {Microbial} {Consortia} at {Balanced} {Growth}, 

PLoS One. 8 (2013) e64567. https://doi.org/10.1371/journal.pone.0064567. 

[136] A.M. Feist, B.Ø. Palsson, The {Growing} {Scope} of {Applications} of {Genome}-scale 

{Metabolic} {Reconstructions}: the case of {E}. coli, Nat Biotechnol. 26 (2008) 659–667. 

https://doi.org/10.1038/nbt1401. 

[137] A. Heinken, I. Thiele, Anoxic {Conditions} {Promote} {Species}-{Specific} 

{Mutualism} between {Gut} {Microbes} {In} {Silico}, Appl. Environ. Microbiol. 81 

(2015) 4049–4061. https://doi.org/10.1128/AEM.00101-15. 

[138] K. Zecher, K.R. Hayes, B. Philipp, Evidence of Interdomain Ammonium Cross-Feeding 

From Methylamine- and Glycine Betaine-Degrading Rhodobacteraceae to Diatoms as a 

Widespread Interaction in the Marine Phycosphere, Front. Microbiol. 11 (2020) 2431. 

https://doi.org/10.3389/fmicb.2020.533894. 

[139] J.B. Xavier, Social interaction in synthetic and natural microbial communities, Mol. Syst. 

Biol. 7 (2011) 483. https://doi.org/10.1038/msb.2011.16. 

[140] Y. Fu, Y. Li, M. Lidstrom, The oxidative {TCA} cycle operates during methanotrophic 

growth of the {Type} {I} methanotroph {Methylomicrobium} buryatense {5GB1}, 

Metab. Eng. 42 (2017) 43–51. https://doi.org/10.1016/j.ymben.2017.05.003. 

[141] D.T.N. Nguyen, O.K. Lee, S. Hadiyati, A.N. Affifah, M.S. Kim, E.Y. Lee, Metabolic 

engineering of the type {I} methanotroph {Methylomonas} sp. {DH}-1 for production of 

succinate from methane, Metab. Eng. 54 (2019) 170–179. 

https://doi.org/10.1016/j.ymben.2019.03.013. 

[142] K.L. Hillesland, D.A. Stahl, Rapid evolution of stability and productivity at the origin of a 

microbial mutualism, PNAS. 107 (2010) 2124–2129. 

https://doi.org/10.1073/pnas.0908456107. 

[143] S. Mitri, K. Richard Foster, The {Genotypic} {View} of {Social} {Interactions} in 

{Microbial} {Communities}, Annu. Rev. Genet. 47 (2013) 247–273. 

https://doi.org/10.1146/annurev-genet-111212-133307. 

[144] J.-H. Wang, T.-Y. Zhang, G.-H. Dao, X.-Q. Xu, X.-X. Wang, H.-Y. Hu, Microalgae-based 

advanced municipal wastewater treatment for reuse in water bodies, Appl Microbiol 

Biotechnol. 101 (2017) 2659–2675. https://doi.org/10.1007/s00253-017-8184-x. 

[145] F.G. Acién, C. Gómez-Serrano, M.M. Morales-Amaral, J.M. Fernández-Sevilla, E. 

Molina-Grima, Wastewater treatment using microalgae: how realistic a contribution might 



 175 

it be to significant urban wastewater treatment?, Appl. Microbiol. Biotechnol. 100 (2016) 

9013–9022. https://doi.org/10.1007/s00253-016-7835-7. 

[146] R. Ramanan, B.H. Kim, D.H. Cho, H.M. Oh, H.S. Kim, Algae-bacteria interactions: 

Evolution, ecology and emerging applications, Biotechnol. Adv. 34 (2016) 14–29. 

https://doi.org/10.1016/j.biotechadv.2015.12.003. 

[147] B. Zhang, W. Li, Y. Guo, Z. Zhang, W. Shi, F. Cui, P.N.L. Lens, J.H. Tay, Microalgal-

bacterial consortia: {From} interspecies interactions to biotechnological applications, 

Renew. Sustain. Energy Rev. 118 (2020) 109563. 

https://doi.org/10.1016/j.rser.2019.109563. 

[148] E. Fernandez, A. Galvan, Inorganic nitrogen assimilation in Chlamydomonas, in: J. Exp. 

Bot., J Exp Bot, 2007: pp. 2279–2287. https://doi.org/10.1093/jxb/erm106. 

[149] E. Fernandez, A. Galvan, Nitrate assimilation in Chlamydomonas, Eukaryot. Cell. 7 

(2008) 555–559. https://doi.org/10.1128/EC.00431-07. 

[150] B.J. Miflin, P.J. Lea, Glutamine and asparagine as nitrogen donors for reductant 

dependent glutamate synthesis in pea roots, Biochem. J. 149 (1975) 403–409. 

https://doi.org/10.1042/bj1490403. 

[151] E. Sanz-Luque, A. Chamizo-Ampudia, A. Llamas, A. Galvan, E. Fernandez, 

Understanding nitrate assimilation and its regulation in microalgae, Front Plant Sci. 6 

(2015). https://doi.org/10.3389/fpls.2015.00899. 

[152] L.E. de-Bashan, X. Mayali, B.M. Bebout, P.K. Weber, A.M. Detweiler, J.P. Hernandez, L. 

Prufert-Bebout, Y. Bashan, Establishment of stable synthetic mutualism without co-

evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites 

(NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ 

hybridization), Algal Res. 15 (2016) 179–186. https://doi.org/10.1016/j.algal.2016.02.019. 

[153] J.R. Oosthuizen, R.K. Naidoo, D. Rossouw, F.F. Bauer, Evolution of mutualistic 

behaviour between Chlorella sorokiniana and Saccharomyces cerevisiae within a synthetic 

environment, J. Ind. Microbiol. Biotechnol. 47 (2020) 357–372. 

https://doi.org/10.1007/s10295-020-02280-w. 

[154] B.R. Crable, C.M. Plugge, M.J. McInerney, A.J.M. Stams, Formate {Formation} and 

{Formate} {Conversion} in {Biological} {Fuels} {Production}, Enzyme Res. 2011 

(2011) 1–8. https://doi.org/10.4061/2011/532536. 

[155] M. Ihara, Y. Kawano, M. Urano, A. Okabe, Light {Driven} {CO2} {Fixation} by 

{Using} {Cyanobacterial} {Photosystem} {I} and {NADPH}-{Dependent} {Formate} 

{Dehydrogenase}, PLoS One. 8 (2013). https://doi.org/10.1371/journal.pone.0071581. 

[156] G. Riccardi, E. de Rossi, A. Milano, Amino acid biosynthesis and its regulation in 

cyanobacteria, Plant Sci. 64 (1989) 135–151. https://doi.org/10.1016/0168-

9452(89)90018-6. 

[157] N.-S. Lau, M. Matsui, A.A.-A. Abdullah, Cyanobacteria: {Photoautotrophic} {Microbial} 

{Factories} for the {Sustainable} {Synthesis} of {Industrial} {Products}, Biomed Res Int. 

2015 (2015). https://doi.org/10.1155/2015/754934. 

[158] L.J. Stal, R. Moezelaar, Fermentation in {cyanobacteria1Publication} 2274 of the 

{Centre} of {Estuarine} and {Coastal} {Ecology}, {Yerseke}, {The} {Netherlands}.1, 

FEMS Microbiol. Rev. 21 (1997) 179–211. https://doi.org/10.1016/S0168-

6445(97)00056-9. 

[159] X. Liu, J. Sheng, R.C. Iii, Fatty acid production in genetically modified cyanobacteria, 

PNAS. 108 (2011) 6899–6904. https://doi.org/10.1073/pnas.1103014108. 



 176 

[160] J. Zhou, H. Zhang, Y. Zhang, Y. Li, Y. Ma, Designing and creating a modularized 

synthetic pathway in cyanobacterium {Synechocystis} enables production of acetone from 

carbon dioxide, Metab. Eng. 14 (2012) 394–400. 

https://doi.org/10.1016/j.ymben.2012.03.005. 

[161] C.J. Knoot, J. Ungerer, P.P. Wangikar, H.B. Pakrasi, Cyanobacteria: {Promising} 

biocatalysts for sustainable chemical production, J. Biol. Chem. 293 (2018) 5044–5052. 

https://doi.org/10.1074/jbc.R117.815886. 

[162] G. Luan, Y. Qi, M. Wang, Z. Li, Y. Duan, X. Tan, X. Lu, Combinatory strategy for 

characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell 

factories, Biotechnol Biofuels. 8 (2015) 184. https://doi.org/10.1186/s13068-015-0367-z. 

[163] J. Zhu, X. Xu, M. Yuan, H. Wu, Z. Ma, W. Wu, Optimum {O2}:{CH4} {Ratio} 

{Promotes} the {Synergy} between {Aerobic} {Methanotrophs} and {Denitrifiers} to 

{Enhance} {Nitrogen} {Removal}, Front. Microbiol. 8 (2017). 

https://doi.org/10.3389/fmicb.2017.01112. 

[164] A. Gilman, Y. Fu, M. Hendershott, F. Chu, A.W. Puri, A.L. Smith, M. Pesesky, R. 

Lieberman, D.A.C. Beck, M.E. Lidstrom, Oxygen-limited metabolism in the 

methanotroph {Methylomicrobium} buryatense {5GB1C}, PeerJ. 5 (2017). 

https://doi.org/10.7717/peerj.3945. 

[165] S.Y. But, V.N. Khmelenina, A.S. Reshetnikov, I.I. Mustakhimov, M.G. Kalyuzhnaya, 

Y.A. Trotsenko, Sucrose metabolism in halotolerant methanotroph {Methylomicrobium} 

alcaliphilum {20Z}, Arch Microbiol. 197 (2015) 471–480. 

https://doi.org/10.1007/s00203-015-1080-9. 

[166] M.B. Biggs, G.L. Medlock, G.L. Kolling, J.A. Papin, Metabolic network modeling of 

microbial communities, Wiley Interdiscip. Rev. Syst. Biol. Med. 7 (2015) 317–334. 

https://doi.org/10.1002/wsbm.1308. 

[167] T.J. Hanly, M.A. Henson, Dynamic flux balance modeling of microbial co-cultures for 

efficient batch fermentation of glucose and xylose mixtures, Biotechnol. Bioeng. 108 

(2011) 376–385. https://doi.org/10.1002/bit.22954. 

[168] K. Zhuang, M. Izallalen, P. Mouser, H. Richter, C. Risso, R. Mahadevan, D.R. Lovley, 

Genome-scale dynamic modeling of the competition between {Rhodoferax} and 

{Geobacter} in anoxic subsurface environments, ISME J. 5 (2010) 305–316. 

http://dx.doi.org/10.1038/ismej.2010.117. 

[169] J.A. Gomez, K. Höffner, P.I. Barton, {DFBAlab}: a fast and reliable {MATLAB} code 

for dynamic flux balance analysis, BMC Bioinformatics. 15 (2014). 

https://doi.org/10.1186/s12859-014-0409-8. 

[170] H.O. Buhr, S.B. Miller, A dynamic model of the high-rate algal-bacterial wastewater 

treatment pond, Water Res. 17 (1983) 29–37. 

[171] C.P. Long, M.R. Antoniewicz, Metabolic flux responses to deletion of 20 core enzymes 

reveal flexibility and limits of E. coli metabolism, Metab. Eng. 55 (2019) 249–257. 

https://doi.org/10.1016/j.ymben.2019.08.003. 

[172] J.K. Cole, J.R. Hutchison, R.S. Renslow, Y.M. Kim, W.B. Chrisler, H.E. Engelmann, 

A.C. Dohnalkova, D. Hu, T.O. Metz, J.K. Fredrickson, S.R. Lindemann, Phototrophic 

biofilm assembly in microbial-mat-derived unicyanobacterial consortia: Model systems 

for the study of autotroph-heterotroph interactions, Front. Microbiol. 5 (2014) 109. 

https://doi.org/10.3389/fmicb.2014.00109. 

[173] R.S. Renslow, S.R. Lindemann, J.K. Cole, Z. Zhu, C.R. Anderton, Quantifying element 



 177 

incorporation in multispecies biofilms using nanoscale secondary ion mass spectrometry 

image analysis, Biointerphases. 11 (2016) 02A322. https://doi.org/10.1116/1.4941764. 

[174] N. Global Monitoring Laboratory, Carbon cycle greenhouse gases, (2020). 

https://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html (accessed April 22, 2021). 

[175] G. Kim, W. Choi, C.-H. Lee, K. Lee, Enhancement of dissolved inorganic carbon and 

carbon fixation by green alga {Scenedesmus} sp. in the presence of alkanolamine {CO2} 

absorbents, Biochem. Eng. J. 78 (2013) 18–23. https://doi.org/10.1016/j.bej.2013.02.010. 

[176] J.C.M. Pires, F.G. Martins, M.C.M. Alvim-Ferraz, M. Simões, Recent developments on 

carbon capture and storage: {An} overview, Chem. Eng. Res. Des. 89 (2011) 1446–1460. 

https://doi.org/10.1016/j.cherd.2011.01.028. 

[177] C. Stewart, M.-A.A. Hessami, A study of methods of carbon dioxide capture and 

sequestration––the sustainability of a photosynthetic bioreactor approach, Energy 

Convers. Manag. 46 (2005) 403–420. https://doi.org/10.1016/j.enconman.2004.03.009. 

[178] S. Holloway, Carbon dioxide capture and geological storage, Philos. Trans. R. Soc. A 

Math. Phys. Eng. Sci. 365 (2007) 1095–1107. https://doi.org/10.1098/rsta.2006.1953. 

[179] J.C. Abanades, M. Akai, S. Benson, S. Leone, R. Doctor, J. Gale, D. Keith, M. Mazzotti, 

B. Metz, L. Meyer, B. Osman-Elasha, A. Palmer, E. Rubin, This summary, approved in 

detail at the {Eighth} {Session} of {IPCC} {Working} {Group} {III} ({Montreal}, 

{Canada}, 22-24 {September} 2005), represents the formally agreed statement of the 

{IPCC} concerning current understanding of carbon dioxide capture , (n.d.) 16. 

[180] L. de Lary, A. Loschetter, O. Bouc, J. Rohmer, C.M. Oldenburg, Assessing health impacts 

of {CO2} leakage from a geological storage site into buildings: {Role} of attenuation in 

the unsaturated zone and building foundation, Int. J. Greenh. Gas Control. 9 (2012) 322–

333. https://doi.org/10.1016/j.ijggc.2012.04.011. 

[181] C. Yao, J. Ai, X. Cao, S. Xue, W. Zhang, Enhancing starch production of a marine green 

microalga Tetraselmis subcordiformis through nutrient limitation, Bioresour. Technol. 118 

(2012) 438–444. https://doi.org/10.1016/j.biortech.2012.05.030. 

[182] D. Cheng, D. Li, Y. Yuan, L. Zhou, X. Li, T. Wu, L. Wang, Q. Zhao, W. Wei, Y. Sun, 

Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-

stage process with cell dilution, Biotechnol. Biofuels. 10 (2017) 75. 

https://doi.org/10.1186/s13068-017-0753-9. 

[183] M. Qi, C. Yao, B. Sun, X. Cao, Q. Fei, B. Liang, W. Ran, Q. Xiang, Y. Zhang, X. Lan, 

Application of an in situ {CO2}–bicarbonate system under nitrogen depletion to improve 

photosynthetic biomass and starch production and regulate amylose accumulation in a 

marine green microalga {Tetraselmis} subcordiformis, Biotechnol Biofuels. 12 (2019) 

184. https://doi.org/10.1186/s13068-019-1523-7. 

[184] H. Khatoon, N. Abdu Rahman, S. Banerjee, N. Harun, S.S. Suleiman, N.H. Zakaria, F. 

Lananan, S.H. Abdul Hamid, A. Endut, Effects of different salinities and pH on the 

growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated 

from South China Sea cultured under control and natural condition, Int. Biodeterior. 

Biodegrad. 95 (2014) 11–18. https://doi.org/10.1016/j.ibiod.2014.06.022. 

[185] W. Liu, J. Wang, T. Liu, Low pH rather than high CO 2 concentration itself inhibits 

growth of Arthrospira, Sci. Total Environ. 666 (2019) 572–580. 

https://doi.org/10.1016/j.scitotenv.2019.02.312. 

[186] R.D. Gardner, E. Lohman, R. Gerlach, K.E. Cooksey, B.M. Peyton, Comparison of CO2 

and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in 



 178 

Chlamydomonas reinhardtii, Biotechnol. Bioeng. 110 (2013) 87–96. 

https://doi.org/10.1002/bit.24592. 

[187] R.D. Gardner, K.E. Cooksey, F. Mus, R. Macur, K. Moll, E. Eustance, R.P. Carlson, R. 

Gerlach, M.W. Fields, B.M. Peyton, Use of sodium bicarbonate to stimulate 

triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom 

Phaeodactylum tricornutum, J. Appl. Phycol. 24 (2012) 1311–1320. 

https://doi.org/10.1007/s10811-011-9782-0. 

[188] C.F. Knud-Hansen, Pond Fertilization: Ecological Approach and Practical Applications, 

in: Pond Dynamics/Aquaculture Collaborative Research Support Program, 1998: p. 20. 

[189] Oxyacid - Carbonic acid and carbonate salts | Britannica, (n.d.). 

https://www.britannica.com/science/oxyacid/Carbonic-acid-and-carbonate-

salts#ref1000415 (accessed May 11, 2021). 

[190] K.G. Schulz, U. Riebesell, B. Rost, S. Thoms, R.E. Zeebe, Determination of the rate 

constants for the carbon dioxide to bicarbonate inter-conversion in {pH}-buffered 

seawater systems, Mar. Chem. 100 (2006) 53–65. 

https://doi.org/10.1016/j.marchem.2005.11.001. 

[191] K. Ying, J. Gilmour, W.B. Zimmerman, Effects of CO 2 and pH on Growth of the 

Microalga Dunaliella salina, J Microb Biochem Technol. 6 (2014) 167–173. 

https://doi.org/10.4172/1948-5948.1000138. 

[192] S. Van Den Hende, H. Vervaeren, N. Boon, Flue gas compounds and microalgae: (Bio-

)chemical interactions leading to biotechnological opportunities, Biotechnol. Adv. 30 

(2012) 1405–1424. https://doi.org/10.1016/j.biotechadv.2012.02.015. 

[193] A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F.X. Malcata, H. van 

Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: Recent 

developments and future directions, Trends Biotechnol. 28 (2010) 371–380. 

https://doi.org/10.1016/j.tibtech.2010.04.004. 

[194] K. Kumar, D. Banerjee, D. Das, Carbon dioxide sequestration from industrial flue gas by 

Chlorella sorokiniana, Bioresour. Technol. 152 (2014) 225–233. 

https://doi.org/10.1016/j.biortech.2013.10.098. 

[195] Y.-S. Yun, S.B. Lee, J.M. Park, C.-I. Lee2, J.-W. Yang3, Carbon Dioxide Fixation by 

Algal Cultivation Using Wastewater Nutrients, 1997. https://doi.org/10.1002/(SICI)1097-

4660(199708)69:4. 

[196] C. Yoo, S.Y. Jun, J.Y. Lee, C.Y. Ahn, H.M. Oh, Selection of microalgae for lipid 

production under high levels carbon dioxide, in: Bioresour. Technol., Elsevier Ltd, 2010: 

pp. S71–S74. https://doi.org/10.1016/j.biortech.2009.03.030. 

[197] F.F. Li, Z.H. Yang, R. Zeng, G. Yang, X. Chang, J.B. Yan, Y.L. Hou, Microalgae capture 

of CO2 from actual flue gas discharged from a combustion chamber, Ind. Eng. Chem. 

Res. 50 (2011) 6496–6502. https://doi.org/10.1021/ie200040q. 

[198] K. Maeda, M. Owada, N. Kimura, K. Omata, I. Karube, CO2 fixation from the flue gas on 

coal-fired thermal power plant by microalgae, Energy Convers. Manag. 36 (1995) 717–

720. https://doi.org/10.1016/0196-8904(95)00105-M. 

[199] X. Zhang, Microalgae removal of CO 2 from flue gas, 2015. www.iea-coal.org (accessed 

May 13, 2021). 

[200] M.G. de Morais, J.A.V. Costa, Isolation and selection of microalgae from coal fired 

thermoelectric power plant for biofixation of carbon dioxide, Energy Convers. Manag. 48 

(2007) 2169–2173. https://doi.org/10.1016/j.enconman.2006.12.011. 



 179 

[201] B. Zhao, Y. Su, Process effect of microalgal-carbon dioxide fixation and biomass 

production: {A} review, Renew. Sustain. Energy Rev. 31 (2014) 121–132. 

https://doi.org/10.1016/j.rser.2013.11.054. 

[202] C. Jansson, T. Northen, Calcifying cyanobacteria—the potential of biomineralization for 

carbon capture and storage, Curr. Opin. Biotechnol. 21 (2010) 365–371. 

https://doi.org/10.1016/j.copbio.2010.03.017. 

[203] X. Ji, J.M.H. Verspagen, D.B. de Waal, B. Rost, J. Huisman, Phenotypic plasticity of 

carbon fixation stimulates cyanobacterial blooms at elevated {CO} $_{\textrm{2}}$, Sci. 

Adv. 6 (2020) eaax2926. https://doi.org/10.1126/sciadv.aax2926. 

[204] M.R. Badger, G.D. Price, {CO2} concentrating mechanisms in cyanobacteria: molecular 

components, their diversity and evolution, J Exp Bot. 54 (2003) 609–622. 

https://doi.org/10.1093/jxb/erg076. 

[205] G.D. Price, S.I. Maeda, T. Omata, M.R. Badger, Modes of active inorganic carbon uptake 

in the cyanobacterium, Synechococcus sp. PCC7942, in: Funct. Plant Biol., CSIRO, 2002: 

pp. 131–149. https://doi.org/10.1071/pp01229. 

[206] M. Shibata, H. Ohkawa, H. Katoh, M. Shimoyama, T. Ogawa, Two CO2 uptake systems 

in cyanobacteria: Four systems for inorganic carbon acquisition in Synechocystis sp. strain 

PCC6803, in: Funct. Plant Biol., CSIRO, 2002: pp. 123–129. 

https://doi.org/10.1071/pp01188. 

[207] G. Amoroso, D. Sültemeyer, C. Thyssen, H.P. Fock, Uptake of {HCO3}− and {CO2} in 

{Cells} and {Chloroplasts} from the {Microalgae} {Chlamydomonas} reinhardtii and 

{Dunaliella} tertiolecta, Plant Physiol. 116 (1998) 193–201. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35158/ (accessed November 4, 2020). 

[208] S.I. Maeda, M.R. Badger, G.D. Price, Novel gene products associated with NdhD3/D4-

containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the 

cyanobacterium, Synechococcus sp. PCC7942, Mol. Microbiol. 43 (2002) 425–435. 

https://doi.org/10.1046/j.1365-2958.2002.02753.x. 

[209] M.R. Badger, D. Hanson, G.D. Price, Evolution and diversity of CO2 concentrating 

mechanisms in cyanobacteria, in: Funct. Plant Biol., CSIRO, 2002: pp. 161–173. 

https://doi.org/10.1071/pp01213. 

[210] A. Solovchenko, I. Khozin-Goldberg, High-CO2 tolerance in microalgae: Possible 

mechanisms and implications for biotechnology and bioremediation, Biotechnol. Lett. 35 

(2013) 1745–1752. https://doi.org/10.1007/s10529-013-1274-7. 

[211] X. Ji, J.M.H. Verspagen, M. Stomp, J. Huisman, Competition between cyanobacteria and 

green algae at low versus elevated {CO2}: who will win, and why?, J Exp Bot. 68 (2017) 

3815–3828. https://doi.org/10.1093/jxb/erx027. 

 

  



 180 

Appendices 

A. Carbon dioxide uptake mechanism and growth of cyanobacteria and microalgae 

under complex conditions: A mini review 

A.1 Introduction 

Carbon dioxide (CO2) emission to the atmosphere has been increased dramatically in the last 

decade to 417ppm [174] due to many different sources including fossil fuels utilization and 

wastewater treatment facilities. Nature has a way to reduce this effect by absorption through trees, 

which overcutting forests has been making the reduction of CO2 concentration hard for nature. 

Man-made activities have happened in order to control the CO2 emission rate to the stable, safe 

and environmentally acceptable level, including application of Amine absorbents [175][176], 

desiccant absorption[177], geological storage [178] and ocean storage [179]. However, bio-

reduction of CO2 by microalgae and cyanobacteria has been more attractive due to lack of serious 

challenges such as high energy consumption for regeneration (e.g. Amine), large space 

requirements and the risk of CO2 leakage over time concerning geological and ocean storage [180]. 

Furthermore, bio-reduction has affirmative characteristics such as converting water and CO2 to 

organic compounds, oxygen and biomass for various applications without additional energy 

consumption and secondary pollution. However, some factors such as economic aspects, 

physicochemical and hydrodynamic parameters, various type of species and their complicated 

mechanisms for capturing CO2 have made the bio-reduction process much slower at industrial 

level.  

Unlike other gases, CO2 has some unique factors. When CO2 is passed into the aqueous solution, 

it can convert to chemicals such as carbonate, bicarbonate, and carbonic acid besides the aqueous 

form of CO2 (dissolved CO2-dCO2) reducing the pH. pH is the major determinant in relative CO2 

concentration in water and could affect availability of carbon for photoautotroph organisms. 
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A completed and systematic review regarding the carbon uptake mechanism of photoautotrophs, 

especially in various environments and conditions, has not yet been reported. This work attempts 

to summarize and review the studies that investigated the relationship of photoautotroph growth 

with experimental variables such as CO2 concentration, pH, and presence of other forms of 

inorganic carbon. Furthermore, we discuss the reason of photoautotrophs behavior in response to 

different conditions in detail, both on systematic and molecular levels. 

 

A.1.1 Photoautotroph growth on different form of inorganic carbon  

Overall, the studies related to growth of photoautotrophs have focused on the supplementation of 

inorganic carbon in the form of gas (Carbon dioxide-CO2) or solid substrate (Sodium bicarbonate-

NaHCO3) that can be taken up and utilized by microalgae or cyanobacteria. The solid bicarbonate 

has been found to be easier to transport and cost-effective compared to gaseous inorganic carbon 

sources. One of the most common conditions that has been investigated is the growth of 

photoautotrophs under nutrient (nitrate and phosphate) depleted conditions to simulate harsh and 

common environmental situations. 

Photoautotrophs tend to accumulate large quantities of starch with usually more than 50% gDCW 

(gram dry cell weight) in their biomass when they are under stressful situations such as nutrient 

deprivation and high irradiance [181]. Therefore, nitrogen depletion or nitrogen limitation has been 

used for the improvement of starch production. A “two-stage” process has been proposed  using 

Nitrogen depletion condition (stage 1), which applies very small amounts of nitrogen supply, short 

cultivation time, and high light availability, with Nitrogen limitation condition (stage 2), which 

needs longer cultivation time and gets more biomass, in order to maximize the starch production 
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[182]. The carbon supply is one of the main factors for photoautotroph growth and as a result 

starch productivity in these studies.  

In general, photoautotrophs use CO2 as the primary carbon source for photosynthesis and growth; 

however, it provides low biomass productivity if the system only depends on air as a gas source 

because of the low percentage of carbon dioxide (%0.04), or if pH environment is acidic and 

undesirable (pH<5) because of high percentage of carbon dioxide in the gas source. As mentioned, 

bicarbonate salt is another form of carbon supply that most photoautotrophs are able to utilize. It 

has been shown that bicarbonate has high water solubility and could generate a favorable pH 

environment for growth of Tetraselmis subcordiformis under nitrogen depletion [183]. Addition 

of bicarbonate to the medium increased the pH level. Average pH reached 5.2, 6.7, 7.7 and 8.3 by 

adding 0, 0.2, 1 and 5 g/L NaHCO3 respectively (Figure A1c). The best biomass production was 

obtained with the addition of 1g/L bicarbonate where pH was at 7.7 (Figure A1), which is in the 

optimal range of conditions for biomass production of T. suecica. Dramatically lower cell growth 

was observed in the culture without bicarbonate addition in which the pH was around 5.2. It has 

been shown that the low pH has inhibition effect on biomass production of Tetraselmis [184] and 

Arthrospira platensis [185]. Low pH can deactivate some critical enzymes in photosynthesis for 

carbon assimilation which can inhibit growth and biomass production. From the other side, the 

systems with the addition of bicarbonate have lower concentrations of dCO2 compared to the 2% 

CO2 aeration culture. This suggests the higher amount of dCO2, 2.9-4.1 mmol/kg water, which is 

13 to 52 times higher than in the culture with the 1 g/L NaHCO3 addition, could be another reason 

for growth inhibition (Figure A1d).  

However, it has been shown that high concentration of bicarbonate (in the culture with the addition 

of 5 g/L NaHCO3) inhibited the growth of T. subcordiformis compared to 1g/L NaHCO3, without 
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any notable difference in pH. It has been discussed the high concentration of bicarbonate could 

disrupt the energy dependent metabolism and photosynthetic CO2 bio-fixation since bicarbonate 

assimilation needs an active transport in photoautotroph which is energy consuming and 

bioenergetically disadvantaged.  

 

 

 
Figure A1. Cell growth (OD750, a), biomass production (dry weight, b), pH variations (c), 

dissolved CO2 concentration (dCO2, d) of T. subcordiformis cultures with different 

amounts of NaHCO3 addition (0, 0.2, 1 and 5 g L−1) under nitrogen depletion [183]. 

 

A CO2-bicarbonate system was critical to have a proper pH and provide enough carbon source 

without inhibition effect of high dCO2 for the adequate photosynthetic efficiency and improvement 

of biomass productivity in the microalgae T. subcordiformis under nutrient depletion cultivation 

(2.1 fold with addition of 1g/L NaHCO3 compared with the system without bicarbonate and just 

aerated by 2%CO2) [183].  

Another study has been focused on triacylglycerol production, using a CO2-bicarbonate system, 

but it has been shown that using bicarbonate ceased the growth of photoautotroph [186]. The effect 
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of different forms of inorganic carbon on physiological changes of C. reinhardtii and its 

triacylglycerol (TAG) and starch accumulation has been investigated and can provide more insight 

into potential industrial application of photoautotroph for biofuel production. The culture with 

aeration of 5% CO2 had a better growth (1.7 times more) than the cultures with addition of 

bicarbonate, both with ammonium as the nitrogen source. During growth there was a characteristic 

decrease in pH, which is consistent for photoautotroph growth on ammonium and high CO2 levels. 

During ammonium depletion, C. reinhardtii accumulated TAG and starch as carbon storage 

compounds when either 5% CO2 gas-sparge or bicarbonate were used. However, the highest TAG 

accumulation was observed when the system was sparged with 5% CO2. While the 50 mM 

bicarbonate amended cultures to accumulate starch and TAG at a slightly slower rate. Previous 

studies on the Chlorophyte scenedesmus sp. WC-1 showed the same result upon adding 50 mM 

bicarbonate compared to the system with sparged CO2 [187]. The systems with added bicarbonate 

caused a change in metabolism and shifted from biomass production to a product formation as 

evident by lower growth and higher biomass yield compared to no-bicarbonate system. 

As discussed in this section, the conclusion regarding which kind of inorganic carbon is utilizable 

and favorable for photoautotrophs are different among various studies. There are several factors 

that affect the growth of photoautotrophs that we discuss in following sections.   

A.2 Main reactions and effects of dissolved carbon dioxide on growth 

The following reaction happens when gaseous CO2 is absorbed into water: 

𝐶𝑂2 (𝑙) + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻𝐶𝑂3
− + 𝐻+ ↔ 𝐶𝑂3

2− + 2𝐻+    (A1) 

According to the equation, there is dCO2, bicarbonate (HCO3
−) and carbonate (CO3

2−) production 

and an increase of hydrogen ions (H+). This H+ production has a significant role on pH in solution, 
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just as produced OH- by adding CO3
2− and HCO3

− has, since pH is a measure of the equilibrium 

between H2O and concentrations of H+ and OH-. 

𝐻2𝑂 ↔ 𝐻+ + 𝑂𝐻−          (A2) 

For example, in a microalgae culture, when CO2 is produced through respiration, total dissolved 

inorganic carbon (DIC) concentration is increased, and pH is dropped. On the other hand, 

microalgae uptake of CO2 during photosynthesis increases OH- concentration and, as a result, 

raises the pH of the water. The relationship between pH and the relative percentage of DIC 

including dCO2, HCO3
− and CO3

2−, in equilibrium at 25°C has been shown in Table A1 [188].  

Table A1. Relationship between pH and approximate relative percentages of total dissolved 

inorganic carbon (DIC), based on equilibrium reactions between dissolved carbon dioxide 

(dCO2), bicarbonate (HCO3
−), and carbonate (CO3

2−) at 25°C [188]. 

PH dCO2 HCO3
− CO3

2− 

5 95.7 4.3 0 

6 69.2 30.8 0 

7 18.3 81.6 0 

8 2.2 97.4 0.5 

9 0.2 95.3 4.5 

10 0 68.1 31.9 

11 0 17.6 82.4 

 

The main question here is what forms of DIC are utilizable by the microalgae and cyanobacteria. 

It has been shown that all microalgae and cyanobacteria can take up dCO2 readily, and HCO3
− can 

be utilized by many algal species. CO3
2−, however, is not usable for photoautotrophs (Table A2). 

This does not create any significant issues when pH is 8 or less, but for higher pH such as 10, 

almost half (40%) of DIC is CO3
2− in equilibrium (Table A1). 

Table A2. Identification of different forms of dissolved inorganic carbon (DIC) in relation to total 

alkalinity and forms of inorganic carbon generally available for photoautotroph uptake 

[188]. 

 dCO2 HCO3
− CO3

2− 
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DIC X X X 

Alkalinity  X X 

Utilized by Photoautotroph X X  

 

Therefore, a main problem for culturing microalgae and cyanobacteria is how to accurately 

quantify usable and available DIC for photoautotroph uptake, since it changes with pH, 

temperature and time. The effect of pH has been shown clearly, and the temperature affects this 

problem by changing the solubility of CO2 in water. To better explain the effect of time, the main 

reactions and their relative speed have been shown. Consider carbonic acid as a diprotic form of 

bicarbonate and carbonate. For example, at a pH less than 8, the reaction speed of converting dCO2 

to carbonic acid is slow as follows [189]: 

𝑑𝐶𝑂2 + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3  (𝑠𝑙𝑜𝑤)        (A3) 

𝐻2𝐶𝑂3 + 𝑂𝐻
− ↔ 𝐻𝐶𝑂3

− + 𝐻2𝑂  (𝑓𝑎𝑠𝑡)       (A4) 

And for pH above 10, the speed of conversion of dCO2 to bicarbonate is slow: 

𝑑𝐶𝑂2 + 𝑂𝐻
− ↔ 𝐻𝐶𝑂3

−  (𝑠𝑙𝑜𝑤)        (A5) 

𝐻𝐶𝑂3
−   + 𝑂𝐻− ↔ 𝐶𝑂3

2− + 𝐻2𝑂  (𝑓𝑎𝑠𝑡)       (A6) 

Even though in the range of pH 8 to 10 the amount of dCO2 in the liquid is limited and most of the 

carbon is in bicarbonate (Table A1), the reactions show that conversion of dCO2 to carbonic acid 

and bicarbonate is slow and, as a result, dCO2 is distinguishable between other forms of dissolved 

carbon at a wide range of pH (5-11) for algal culturing before it reaches equilibrium. Therefore, 

there is enough time and opportunity for photoautotrophs to uptake dCO2 from the medium if it is 

desirable. 

Some studies have shown the speed of conversion of dCO2 to bicarbonate qualitatively and 

quantitatively. The k+ value of reaction of equation (7) has been calculated by adding CO2 to 

seawater (about 15𝜇𝑚𝑜𝑙/𝑘𝑔) at different pH values ranging from 7 to 9 and different temperatures 
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of 11,16, and 26 °C as shown in the Figure A2. There have been some difficulties in this reaction 

for pH more than 8.5. The correlation between measured and calculated became less clear because 

of unreliable pH determination. Hence, after additions of known amounts of NaHCO3 to the sea 

water, the change of dCO2 concentration was negligible in the measurement system [190].  

 
Figure A2. Graphical illustration of the k+ values determined with the fitting procedure by 

additions of ~15 µmol CO2 /kg seawater at different temperatures and seawater pH (total 

scale). Squares and circles denote seawater with two different buffer solutions [190]. 

 

𝐻2𝑂 + 𝐶𝑂2
𝑘+
→ 𝐻𝐶𝑂3

− + 𝐻+          (A7)  

It has been shown that the concentration of dCO2 is independent of bicarbonate concentration and 

only depends on %CO2 in gas supply. The [CO2]* (the equilibrium concentration of dCO2 under 

a constant bubbling condition) did not change with variation of NaHCO3 concentration when the 

%CO2 was fixed (Figure A3). This phenomenon has been supported by showing that the 

equilibrium dissolved concentration of a gas is in a direct proportion to the partial pressure of the 

gas over the solution (Henry’s law). A correlation between equilibrium pH, NaHCO3 concentration 

and %CO2 in gas supply was found (eq.(8)) [191]. 

𝑝𝐻∗ = 7.65 + 0.41 ln(𝐶𝑂2%) − 0.46 ln(𝑁𝑎𝐻𝐶𝑂3)𝑚𝑜𝑙/𝐿      (A8) 
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Figure A3. Plots of [CO2]* versus NaHCO3 concentration for different CO2 stream 

concentrations. 

 

 
Figure A4. The plot of daily chlorophyll content against culture time for different CO2 stream 

concentrations. 

 

This correlation was used to study the effect of different pH on D. salina in the same dCO2 for 

each culture. It was speculated that the intracellular CO2 concentration was the same for each 

culture according to the two-film theory, which suggested the same intracellular equilibrium pH 

for each culture.  The results showed even though the intracellular pH was identical for all cultures, 

the extracellular pH affected the photoautotroph growth, possibly because the pH gradient across 

the cell membrane.  
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The effect of different %CO2 (5, 20 and 50%) in the gas supply on growth of D. salina in pH 7 

was tested (Figure A4). The growth and photosynthesis of the microalgae was inhibited at the 

condition with 50% CO2 with possible explanation of the intracellular pH can be affected by 

changing the equilibrium concentration of extracellular CO2 despite the extracellular pH is 

constant, and as a result has damaged and hindered the enzymes involved in photosynthesis [191].  

As it is shown the correlation between %CO2, DIC and pH is very complicated and has various 

effects on growth of photoautotroph. 

A.3 Photoautotrophs have different tolerance for amount of dCO2 

In this section, application of different %CO2 in photoautotroph growth experiments has been 

reviewed. Most photoautotrophs, similar to some studies in section 2, showed a growth inhibition 

to high %CO2, but this percentage could be different for different species for potential reasons that 

will be discussed. It is worth mentioning that the gas flow rate for %CO2 in all the studies reviewed 

here are enough to reach the saturation and equilibrium between gas and liquid phases in the 

reactor. When low gas flow rates are applied, even high CO2 concentrations in the gas phase can 

lead to low inorganic carbon loading in the liquid phase and low concentrations of dissolved 

inorganic carbon in the reactor [192].  

It has been found that using 2% CO2 is the optimal amount for Chlorella sorokiniana growth, 

while at 10% CO2 there was a decrease in the specific growth rate compare to 2% [193,194]. The 

highest growth of Chlorella vulgaris was found at 5% CO2 and a growth inhibition at 15% CO2 

was observed [195]. Botryococcus braunii had a higher growth rate at 5.5% CO2 compared to 10% 

CO2. While, Scenedesmus sp. could grow similarly on 5.5% and 10% CO2 [196]. Scenedesmus 

obliquus was able to tolerate industrial flue gas with 12% CO2 with an optimal removal efficiency 

of 67% in the pilot plant system [197].  
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From the other side, some strains have better ability for consuming CO2. Several experiments have 

been carried out at high percentages of CO2 on Chlorella sp. It was confirmed that Chlorella sp. 

can tolerate up to 100% CO2 concentration, but the maximum growth rate was obtained when 

using 10% CO2, even though, no significant decrease in the growth rate up to 50% CO2 

concentration was observed [198]. 

As discussed above, most photoautotrophs grow only at low CO2 concentration levels, but some 

can grow under higher CO2 concentrations (typically 20‒50%). Few photoautotroph species are 

able to tolerate extremely high CO2 levels up to 70% or even 100%. Adaptation to higher CO2 

concentrations during their evolution or previous generations is one of the main factors for defining 

the photoautotroph tolerance to %CO2. Isolation of photoautotroph strains from lakes or ponds in 

the vicinity of coal-fired power plants is a useful strategy to obtain photoautotrophs tolerant to the 

harsh conditions prevalent in the area, as such organism tend to have the ability to grow in the 

presence of the combustion gases produced by the power plants [199]. For instance, the microalgae 

Scenedesmus obliquus and Chlorella kessleri isolated from the waste treatment ponds of a coal-

fired power plant and cultivated with 6% and 12% CO2. It was found that with a gradual increase 

in CO2 concentration, they grew better on 12% CO2 [200]. High density of cell inoculums in 

photoautotrophs also lead to higher tolerance towards CO2 and a faster growth rate. This is because 

the high density of inoculums could minimize the initial lag phase resulting in an immediate 

exponential growth of photoautotroph in the presence of a high concentration of CO2 [199].  

Overall, the CO2 tolerance of microalgae and cyanobacteria is mainly dependent on pH and species 

selection, but other factors such as cell density, nutrients and light can also affect it. CO2 tolerance 

depends on pH because the culture pH decease as the CO2 concentration increases due to formation 

and accumulation of large amount of HCO3
− and H+ as discussed before. This low pH value 



 191 

weakens carbon bio-fixation performance of photoautotrophs. Moreover, CO2 tolerance depends 

on species because some photoautotrophs can adapt to low pH situation by, for instance, gene 

regulation and increasing the energy allocation proportion to maintain the pH stability inside the 

cell. 

Essentially, photoautotroph growth and CO2 fixation are strongly related to the inorganic carbon 

concentrating mechanism (CCM). The low pH value created by high CO2 concentration inhibits 

carbonic anhydrase activity which plays an important catalytic role in the interchange between 

CO2 and HCO3
− and is regarded as an important factor of CCM. However, when a high CO2 

concentration decreases the pH value of the growth medium, some photoautotroph cells are able 

to adapt by, for example, gene regulation and increasing the energy allocation proportion. These 

methods can temporarily reduce the synthesis of organic carbon and simultaneously provide more 

adenosine triphosphate (ATP) to maintain the pH stability inside the cell, enabling it to tolerate 

extremely high CO2 concentrations [201].  

A.4 Inorganic carbon concentrating mechanism (CCM) in microalgae and cyanobacteria 

So far, this review has provided the information about dissolved CO2 reactions and their general 

effects on different microalgae and cyanobacteria growth as well as some potential reasons. In this 

section, CO2 up-taking principle inside the cell and the effect of dCO2 on cell growth will be 

discussed in detail. 
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Figure A5. Model of the carbon-concentrating mechanism (CCM) in a photoautotroph cell. CO2 

enters the cells mainly via active transport of HCO3
− and also through diffusion of dCO2, 

which is converted to HCO3
− during the uptake. Cytosolic HCO3

− is subsequently imported 

to the carboxysome. CA, carbonic anhydrase; Ci, inorganic carbon; EPS, 

exopolysaccharide sheath; NDH, NADPH dehydrogenase; and PET, photosynthetic 

electron transport [202]. 

 

A photoautotroph cell components of the CCM can be illustrated in Figure A5. As it is shown, 

carboxysome is the center of the photoautotroph function, which is a protein within the cell that 

contains the Rubisco of the cell together with a carboxysomal carbonic anhydrase (CA). The CA 

converts the accumulated HCO3
− in cytosol into CO2 for Rubisco within the carboxysome. Most 

inorganic carbon taken up (dCO2 or HCO3
−) by the cell is first converted to HCO3

− in cytosol, 

transported to carboxysomes, converted back to CO2 and fixed into organic carbon by the Rubisco 

enzyme [203].  
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A.4.1 Inorganic Carbon transporters 

The evidence suggests that HCO3
− is the species accumulated within cytoplasm, regardless of which 

form of inorganic carbon is presented to the cells (HCO3
− or dCO2). One of the differences between 

accumulated HCO3
− and dCO2 in the cell is that HCO3

− is much less permeable to lipid membranes 

due to its ionic structure and leaks much slower than the uncharged dCO2 molecule.  

 

 
Figure A6. Models of two HCO3

− transport systems identified in photoautotrophs. BCT1, the high-

affinity traffic ATPase is shown on the left. SbtA, a potential Na+/HCO3
− symport system 

is shown on the right [204].  

 

The substrate for the carboxysome, HCO3
−, is accumulated in the cytosol by the operation of a 

number of active CO2 and HCO3
− transporters (Figure A6). There are five different inorganic 

carbon uptake systems, including three HCO3
− uptake systems (BCT1, BicA, and SbtA) and two 

CO2 uptake systems (NDH-13 and NDH-14) [203,205]. One of the first identified inorganic carbon 

transporters was BCT1, an inducible high affinity HCO3
− transporter, which needs ATP to function. 

SbtA is a medium affinity inorganic carbon transporter that uptakes HCO3
− and operates using Na+ 

gradient. Some photoautotrophs such as Synechocystis PCC6803 use this transporter under 

inorganic carbon limitation [206]. For example, BicA has a low affinity for bicarbonate but high 
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flux rate, whereas SbtA has a medium affinity but low flux rate. The meaning of the affinity here 

is the desire of the cells in consumption of a specific form of inorganic carbon, indicating that cells 

modify their transport mechanism to more efficiently uptake inorganic carbon after habituation to 

low CO2 environment rather than increasing the number of their transport components [207].  

 

 
Figure A7. A speculative model for the functioning of a specialized NDH-13/4 -type complex to 

hydrate CO2 to HCO3
−. The hydration is coupled to electron flow such as that supported by 

PSI cyclic electron transport. The model is based on the proposal of Price et al. (2002) 

[205]. It is postulated that ChpX and Y subunits are CO2 hydration proteins bound to the 

cytoplasmic face of NDH-13/4 complexes. The NdhF4/F3 and NdhD4/D3 subunits form 

part of the proton translocation channel. This specialized NDH-1 complex is proposed to 

drive the net hydration of CO2 to HCO3
− when coupled to photosynthetic electron transport. 

Here both NADPH and Fdred are depicted as being potential electron donors to the NDH-

13/4 complexes. The energetics of CO2 conversion may be further improved through the 

operation of a Q cycle similar to that operating in the bf complex. Equations 1-3 (in the 

figure A7) describe the reaction sequence proposed to occur in conventional CA enzymes 

(E); the steps are (1) generation of a reactive hydroxyl group combined with spontaneous 

conversion of CO2 to HCO3
−, (2) binding a water molecule to Zn and (3) abstraction of a 

protons to a nearby His residue and then conduction along a proton wire to a buffer 

molecule (B) in the bulk medium. The essential part of this proposal is that the last step 

(3a) be coupled to electron-driven translocation of protons to the thylakoid lumen, making 

hydroxyl-mediated net hydration of CO2 largely irreversible in the light [204]. 
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The thylakoid-located NDH-1 dehydrogenase complex is a key component of the cyclic-electron-

transfer around photosystem I pathway and involved in enabling CO2 uptake by photoautotroph. 

NDH-13 and NDH-14 (NDH-13/4) are two specialized forms of a thylakoid-located NDH-1 

complex. They can directly uptake dCO2 and convert it to HCO3
−. NDH-13 is a constitutive system 

for dCO2 uptake and NDH-14 is inducible at limited inorganic carbon conditions and exhibits a 

higher uptake affinity for dCO2 [208]. This unit uses electron, which takes it from NADPH and 

Fdred (reduced ferredoxin), to operate [205]. A potential reaction sequence for the conversion of 

CO2 to HCO3
− is shown in Figure A7 and explained in the legend [204]. 

It is worth mentioning that even though these transporters are common and general between most 

of photoautotrophs but still the existence of them can be different depending on the species (species 

selection). For example, there are two main groups of cyanobacteria: α-cyanobacterial and β-

cyanobacterial species, and the combination of mentioned transporters is different between them. 

There may be a number of distinct types of NDH-1 complexes (NDH-14 and NDH-13) within the 

cell of β -cyanobacterial species; however, some of α -cyanobacterial are lacking NDH-13. The 

bicarbonate transport systems in α-cyanobacteria also may be quite different from β-cyanobacteria. 

BCT1 and sbtA transporters are absent in Prochlorococcus, which is a marine α-cyanobacteria. 

This suggests that different types of HCO3
− transporters have evolved independently between α and 

β cyanobacteria, since all have at least one type of dCO2 transporter and they diverged in their 

evolution prior to the development of the HCO3
− uptake system [204,209]. The difference between 

CO2 and HCO3
− transport systems in photoautotroph species also can be explained by the 

differences between high and low affinity transport systems.  

Any difference between transport systems makes an inorganic carbon more favorable for growth. 

For example, the ability of chloroplast on taking up dCO2 and HCO3
− at high and low %CO2 for 
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two algae strains C. reinhardtii and D. tertiolecta has been studied [207]. The results provided 

enough evidence that chloroplast from both algal species are able to transport CO2 and HCO3
− 

simultaneously, regardless of the CO2 concentration provided during growth. However, each 

species prefers one inorganic carbon type more depending on its CCM. C. reinhardtii, 

photosynthesis was supported by taking up both dCO2 and HCO3
− at the same percentage over the 

entire range of inorganic carbon concentration. And for D. tertiolecta, HCO3
− seemed to be the 

more dominant substrate, with utilization of dCO2 and HCO3
− with contribution of 20% and 80% 

respectively.  

 

A.4.2 Carbon dioxide uptake mechanism at high and low CO2 percentage  

To answer in detail the question why some cyanobacteria and microalgae cannot tolerate high CO2 

concentration conditions (>50 %CO2), one might look at the CCM. Under high %CO2, and as a 

result low internal pH, rubisco will be inhibited due to hindering the photosynthesis electron 

transport chain [202].  It is believed that high %CO2 tolerance of photoautotrophs is achieved by 

preventing acidification of the cytoplasm to maintain sufficient activity of the Rubisco, the enzyme 

involved in the first major step of carbon fixation. This happens by 1- increasing ATP generation 

which is spent on maintaining a suitable pH by active transport, 2- turning off/on the CCM 

operation rapidly and reversibly, 3- adjusting in lipid metabolism for optimal balance of source 

and sink under stressful conditions, as well as for swift rearrangements of photosynthetic apparatus 

membranes [210]. This can be shown in a mutant version of cyanobacteria where the constitutive 

and inducible CO2 uptake/conversion systems are blocked, and the strain can just uptake HCO3
−. 

Such mutant can grow at high CO2 concentrations but not under CO2-limiting conditions [202]. 

With certain photoautotroph species, the addition of bases such as NaOH to compensate for CO2 
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acidification enhances CO2 tolerance. Photoautotroph growth can be sustained even at 100% CO2, 

suggesting that it is mainly acidification that inhibits photoautotroph growth [199]. At very low 

%CO2 (<50ppm CO2), photoautotrophs activate inducible transport systems (HCO3
− transporter) 

and increase in Rubisco activity and carboxysome content. Furthermore, when there is enough 

dCO2 (high CO2 concentrations), cells preferentially take up inorganic carbon directly using dCO2 

rather than HCO3
−. The conversion of CO2 during transport to cytosol produce H+ that need to be 

neutralized, possibly via export to the medium [202].  

 
Figure A8. Carbon uptake kinetics of Microcystis PCC 7806 acclimated to either low or high 

%CO2. (A and B) Net CO2 uptake rate as function of the dCO2 concentration, after 

acclimation to (A) low %CO2 and (B) high %CO2. (C and D) Bicarbonate uptake rate as 

function of the bicarbonate concentration, after acclimation to (C) low %CO2 and (D) high 

%CO2. Carbon uptake kinetics were measured after ~20 days of acclimation to the steady-

state conditions in the chemostats. Measurements were replicated fourfold at low %CO2 
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and threefold at high %CO2, as indicated by the different colors. Lines are Michaelis-

Menten fits to each of the replicates [203]. 

In general, after acclimation to high %CO2, photoautotrophs have achieved a higher maximum 

dCO2 uptake rate and a lower HCO3
− uptake rate and produced more biomass, than before 

habituation. For Microcystis PCC 7806 and Trichodesmium erythraeum IMS101 the maximum 

dCO2 uptake rate was more than five time higher at high %CO2 than at low %CO2 as shown by Ji 

et al. 2020 in Figure A8. Moreover, it produced much higher steady-state biomass at high than at 

low %CO2.  However, the maximum HCO3
− rate was not significantly affected by CO2 percentage. 

A similar phenomenon happened for Microcystis PCC 7941, Synechocystis PCC 6803, and 

Synechococcus PCC 7942 that the maximum dCO2 uptake rate was 1.8 times higher, whereas the 

maximum HCO3
− rate was 40% lower at high percentage of CO2 than at low %CO2. To explain the 

phenomena in more details, at low %CO2, strains relied 100% on HCO3
− uptake and the net dCO2 

uptake rate was negative in the experiments at steady states, since the dCO2 concentration was 

depleted. From the other side, carbon fixation in the high pCO2 experiments relied ~50% on dCO2 

uptake and ~50% on HCO3
− uptake [203]. 

The change of HCO3
− uptake rates of the strains in response to high %CO2 are different which may 

be related to different composition of their HCO3
− uptake system. The photoautotrophs in which 

maximum HCO3
− uptake rates were reduced at high %CO2 all contain the low-flux bicarbonate 

transporter SbtA, whereas photoautotrophs in which maximum HCO3
− uptake rates did not respond 

to changes in %CO2 all contain the high-flux bicarbonate transporter BicA but lack SbtA. This 

absent of the high-affinity HCO3
− uptake system SbtA makes the strain a poor competitor at low 

%CO2 (inorganic carbon-limited) conditions [203]. Previous results have shown the high affinity 

HCO3
− uptake system BCT1 is strongly down regulated at high %CO2 (high dCO2 concentration), 

which is a reasonable response in the view of the energetic costs as the HCO3
−uptake system is an 
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ATP dependent system and energetically quite expensive. This clearly explains the low HCO3
− 

uptake efficiency at high %CO2 when higher dCO2 is accessible.  

Dense cyanobacterial blooms often deplete dCO2 concentration in the surface of water since the 

%CO2 in the air above the surface is only about 0.04%. This dCO2 depletion increase the pH value 

to above 9 or even 10. At these pH values, most of DIC is in bicarbonate and carbonate form. 

Cyanobacteria have developed an efficient way to uptake the remaining bicarbonate as an 

inorganic carbon source at this low %CO2 condition [211]. This preference for different inorganic 

carbon components has been explained by the environmental conditions of past generations such 

as under high or low pH, salinity and HCO3
−:CO2 ratio in the medium. Thus, cells can adapt and 

modify their inorganic carbon transport system after acclimation to the environment for several 

generations.  

A.5 Discussion 

The results presented in this paper indicate that photoautotrophs prefer up-taking dCO2 since it is 

less expensive for cells. However, high amount of dCO2 can inhibit the growth of the cells since 

dCO2 reduces the pH of outside and inside the cells. Therefore, only the habituated species with 

low pH and the species with more efficient transport system for dCO2 can grow at high dCO2 

concentration. 

And finally, by looking into evolution of the cyanobacteria, the mechanism of uptaking of dCO2 

and HCO3
− will be much clearer. Cyanobacteria first just had the ability to consume dCO2. 

However, they evolved to be more efficient and additionally consume HCO3
− in order to take 

enough carbon. Nevertheless, they preferred utilization of dCO2 since there is no cost for the cells 

to uptake it. 
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Figure A9. A speculative pathway for the evolution of the CCM and its components in α and β-

cyanobacteria [204]. 

 

Past atmospheric CO2 levels were 100 times higher than current conditions when cyanobacteria 

first arose. Moreover, O2 level was much lower, which means the original cyanobacteria would 

not need a CCM system to uptake inorganic carbon and achieve effective photosynthesis. This 

changed and triggered cyanobacteria developing a CCM when the concentration of CO2 and O2 in 

the atmosphere had changed and caused CO2 to be a limiting factor for photosynthetic activity and 

accordingly the Rubisco oxygenase reaction to become a main issue. There is no clear record of 

CO2 and O2 level before about 600 million years ago, however it has been inferred that O2 was 

near the same and CO2 level have been 20 times more than present day conditions [209]. 

In the initial stage of declination of CO2 level, the first step for developing a CCM was construction 

of a carboxysome for Rubisco (Figure A9). This structure was the main component of CCM that 

all other additions would have revolved around. A carboxysome carbonic anhydrase was required 

to convert HCO3
− to CO2 at higher rates. The development of the NDH-1 based low and high 

affinity CO2 uptake systems started as the CO2 limitation became more severe. These systems 
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maintained enough HCO3
− inside the cells and provided adequate CO2 levels around Rubisco in the 

carboxysome [204]. The processes for development of these systems have been based on the 

modification of an existing respiratory NDH-1 complex to efficiently recycle the leaked CO2 as 

well as net acquisition of CO2 from outside the cell. And finally, as more extreme CO2 limitation 

happened, the cells evolved the low and high affinity bicarbonate uptake systems. 
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B. Comparative study of oxygen-limited and methane-limited growth phenotypes of 

Methylomicrobium buryatense 5GB1 

Kyle Stone*, Matthew Hilliard, Kiumars Badr, Alisabeth Bradford, Q. Peter He and Jin Wang 

* Currently employed as a Bioprocess Development Scientist at Dupont.   

Highlights 

• O2 partial pressure determines the cell growth rate for batch growth; 

• Cell growth rate has to be controlled to achieve different phenotypes; 

• For continuous culture, cells’ prior growth condition affects current physiology; 

• Carbon-limited growth condition produces more organic compounds; 

• The current GEM lacks key metabolic routes to explain different phenotypes. 

 

Abstract 

Methylomicrobium buryatense 5GB1 has been identified as a promising biocatalyst for industrial 

methane conversion to produce value-added products. However, despite recent advancements in 

understanding the metabolism of 5GB1, existing knowledge on the differences between oxygen-

limited and methane-limited phenotypes is still limited. In this work, both batch and continuous 

experiments were carried out to systematically examine the strain’s oxygen-limited and methane-

limited phenotypes. Total carbon balances were performed to ensure the obtained measurements 

of CH4 and O2 consumption rates and CO2 production rate were accurate. Our results showed that 

the feed gas composition alone does not dictate the strain’s growth phenotype. In order to achieve 

a desired phenotype, both feed gas composition and cell growth rate have to be controlled. In 

addition, contrary to the common belief that oxygen-limited conditions lead to increased 

production of organic compounds, our results suggest that it is the methane-limited condition that 

has higher yield for organic compounds. Knowledge of these differences could provide key 
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understanding into how M. buryatense 5GB1 regulate its carbon flow among different pathways 

under different growth conditions, which will provide the key insights for both mutant design, and 

process design (e.g., culture conditions) for desired outcomes such as increased production of 

organic acids. Finally, using data collected in this work and those published in literature, we further 

validated a published genome-scale model under optimal growth condition. In addition, our results 

suggest that the current model lacks key metabolic routes to explain the surprisingly robust growth 

exhibited by the strain under wide substrate availability conditions. 

Keywords: Methanotroph, Methylomicrobium buryatense, Methane metabolism, Methane- 

limited growth, Oxygen-limited growth, genome-scale metabolic model, carbon balance 

1. Introduction 

Methane (CH4) is the second most abundant greenhouse gas (GHG), whose global warming 

potential is 72 times that of CO2 within a 20 year period [1,2]. At the same time, CH4 is a low-

cost, rich source for carbon and energy, and an essential component of the global carbon cycle. 

Currently, CH4 is mainly used for heating, cooking and electricity generation. In its compressed 

form, CH4 can be used as a transportation fuel; however, such usage is constrained owing to its 

inherently low volumetric energy density and the lack of infrastructure required for its broader 

adoption. Therefore, it is desirable to convert CH4 into other forms of liquid fuels. The dominant 

route for conversion of CH4 into transportation fuels involves thermochemical gas-to-liquid 

(GTL) conversion technologies and subsequent conversion via the Fischer-Tropsch (FT) 

process. However, the technical complexity of the GTL-FT process results in exceptionally 

large-scale facilities (>$20 billion capital cost per facility) that cannot be economically scaled 

down [3], and therefore are not suitable for smaller, distributed biogas sites and natural gas 

wells. 
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In contrast to the thermochemical processes, microbial conversion of CH4 at ambient 

temperature and pressure is an attractive alternative, particularly for small scale conversions [4–

6]. As a result, methanotrophs that use CH4 as their sole carbon and energy source have drawn 

renewed interest due to their capability of converting CH4 under ambient conditions in an 

environmentally benign fashion. Strong et al. provides a comprehensive review on the array of 

valuable bioproducts that could be produced by methanotrophs using natural gas or biogas as 

feedstock [7]. Among different methanotroph species, Methylomicrobium buryatense 5GB1 has 

been identified as a promising biocatalyst for industrial CH4 conversion due to the following 

reasons. First, it is a fast-growing methanotroph, with a demonstrated growth rate of 0.224-

0.239 h-1 [8]; second, it is not easily susceptible to contamination due to its haloalkaliphile 

nature (i.e., it prefers a high pH, high salt growth condition) [8,9]; third, it is an unusually robust 

strain that can withstand a wide range of growth conditions [8]; finally, a suite of genetic tools 

and a genome-scale model have also been developed for the strain, enabling further metabolic 

engineering [9–11]. Recently, some baseline data of M. buryatense 5GB1 on its bioreactor 

performance as well as transcriptomic and 13C labeling-based analyses have been reported 

[8,12,13]. Specifically, Gilman et al. have reported the strain’s growth performance under both 

fed-batch and continuous bioreactor runs for balanced growth, one oxygen-limited condition, 

and one methane-limited condition [8]. Using a modified 13C tracer approach, Fu et al. provided 

direct evidence that a complete, oxidative TCA cycle operates during methanotrophic growth 

of M. buryatense 5GB1 [13]. Most recently, transcriptomic analysis revealed that M. buryatense 

5GB1 exhibited very limited differential expression for key genes involved in the central carbon 

network between oxygen-limited and methane-limited growths, suggesting M. buryatense 

5GB1 maintains a metabolic state representing a combination of fermentation and respiration 
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metabolism [12]. 

These recent findings represent significant advancements towards a better understanding of the 

type I methanotroph’s cellular metabolism; however, existing understanding on the difference 

of methane metabolism between oxygen-limited and methane-limited growth is still limited. In 

addition, these recent results were obtained at relatively low cell density and were constrained 

to a couple of gas substrate compositions, which provided limited insight into the cellular 

metabolism. In this work, using M. buryatense 5GB1 as the model system, we designed a set of 

experiments to systematically examine the difference between oxygen-limited and methane-

limited phenotypes. This work was made possible by our recently developed analytical protocols 

that enabled us to obtain accurate measurements of cross-membrane fluxes for gas components 

under both batch and 

continuous operations [14]. Using an in-house developed gas mixing system and our gas 

measurement protocol, we were able to quantitatively examine the differences between oxygen- 

limited and methane-limited phenotypes under a wide range of substrate compositions and 

different cell growth rates, as well as at higher cell densities. Finally, with the measured substrate 

uptake rates and product secretion rates, we were able to validate a modified genome-scale 

metabolic model (GEM) under optimal growth conditions. Our experimental data suggest that 

the current model lacks key metabolic routes to explain the surprisingly robust growth exhibited 

by the strain under both oxygen-limited and methane-limited conditions. 

2. Methods 

2.1 Strain handling and cultivation 

Methylomicrobium buryatense 5GB1 was provided by Prof. Mary Lidstrom at the University of 
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Washington and grown in modified nitrate mineral salts (NMS2) medium as described by Puri 

et al. [10]. The inoculum was prepared by first pre-culturing cells in a 250ml serum vial 

containing 50mL medium with saturated gas phase of 35% CH4, 35% O2 and 30% N2. These pre-

culture vials were incubated until mid-exponential growth phase in a Lab-Line Orbit Environ-

shaker with a rotation speed of 200 rpm and temperature controlled at 30oC. The vials that 

exhibited the best growth were harvested, centrifuged and suspended in fresh medium as 

inoculum. 

2.2 Gas mixing system 

In this work, a safe gas mixing system was designed to create various custom mixtures of O2, CH4, 

N2 and He.  By controlling the flow rate of each gas through mass flow controllers (MFCs) and 

funneling them through a static mixer, any feed gas composition can be achieved. Ball valves and 

check valves are used to prevent backflow of gases. The static gas mixer allows for the turbulent 

mixture to become uniform before entering the gas inlet for the vials or continuous reactors. A 

failsafe auto shut-off gas system was installed and consists of a flammable gas detector with a 

relay that is connected to the electronic MFCs and solenoid valves in the gas lines. In the case of 

a power failure or flammable gas leakage, the system will automatically shut off all gas flows. 

2.3 Batch experiments 

All batch growth experiments were conducted in 250 mL serum vials with 50 mL of medium. 

Before inoculation, the vials were bubbled with feed gas corresponding to the compositions listed 

in Table B1 for 10 minutes at 200 smL/min to ensure that the liquid phase is saturated with the gas 

mixture. Then an initial gas sample was taken, and the vials were bubbled with the same gas 

mixture for another 5 minutes. The prepared inoculum was then injected into each of the vials to 

create an initial concentration of 0.05-0.06 gDCW L-1. After inoculation was complete, the first 
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liquid sample was taken, and the time was referred to as t = 0 hrs. After that, liquid samples were 

taken every 2 ~ 3 hours for the first 10 hours then every 4 hours afterwards during daytime for 

biomass concentration, total carbon (TC) and total inorganic carbon (TIC) analysis. At the end of 

the batch, besides the liquid sample, the gas phase is sampled following our recently established 

protocol [14]. 

2.4 Continuous experiments 

All continuous experiments were conducted in a 3 L Eppendorf BioFlo 115 reactor with working 

volume of 1.5 L. The experimental setup is shown in Figure S2 in the Supplementary Information. 

Based on our prior study [4], agitation was kept at 500 rpm to achieve maximum mass transfer 

from gas to liquid, which avoids over-agitation effects while maximizing the rotational bubble 

flow for efficient gas transfer [15]. For different feed gas compositions (with N2 as the balancing 

component), the gas mixing system delivered a constant flow of 300 smL min-1 through a 

microsparger. The temperature of the off-gas was measured via the online probe and software from 

Vernier Software and Technology. The BioFlo unit temperature was maintained at 30oC and pH 

maintained at 9 via addition of 4 M NaOH. Struktol J 660R was used as antifoam. The antifoam 

was pumped in with New Era syinge pump at a flow rate of 18 µL h-1 to 24 µL h-1. The culture 

medium was similar to the standard NMS2 medium, except with a higher concentration of nitrate 

(2×) and trace element solution (2×). The medium did not include carbonate buffer, as the pH 

was maintained via the BioFlo unit. 

After inoculation, the bioreactor was operated under batch mode (with continuous gas feeding) 

to accumulate biomass and switched to continuous mode the next day. For each growth 

condition, once a steady-state was achieved, it was maintained for at least three days to allow 

multiple data points to be collected. If a variation of larger than 10% was observed in the data, 
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the steady-state was maintained for an additional day, after which the culture condition was 

switched to examine a different condition. In total, six steady-state growth conditions were 

examined, which consists of 3 different cell growth rates (controlled via dilution rate), and two 

feed gas compositions. The feed gas that contains 14% CH4 (42sml/min) and 22.3% O2 (70 

sml/min) is denoted as the methane-limited condition; while the feed gas that contains 14% CH4 

(42sml/min) and 11.7% O2 (35 sml/min) is denoted as the oxygen-limited condition. After 

inoculation, samples were taken 4- 5 times a day during daytime every 3 ~ 4 hours. Both off-gas 

and liquid samples were taken and analyzed as described below. 

Two independent continuous runs were performed. In continuous experiment #1 (CE1), the 6 

steady-state conditions were examined in sequence according to the order given in Figure 4 (a) 

(Sec. 3.2.1). In continuous experiment #2 (CE2), 6 conditions were examined again in a 

different order: 2→3→6→5→4→1 (Supplementary Figure S3).The conditions tested in 

different runs are the same 6 conditions, but these conditions were carried out in different orders 

in order to test the hypothesis that the cells’ prior growth condition has a noticeable effect on 

their current physiological state. 

2.5 Measuring the amounts and rates of gas component consumption and production 

The total amount of consumption/production (for batch culture) or consumption/production rates 

(for continuous culture) of the gas components (i.e., CH4, O2 and CO2) were determined following 

the developed protocols [14]. For batch experiments, a repressurization procedure was 

implemented to obtain accurate gas compositions, and the mass balances between the beginning 

and end of the batch experiment were conducted to calculate the gas consumption and production 

amounts. For continuous experiments, helium gas was used as an internal standard to accurately 

estimate the off-gas flow rate. Mass balances between different sample points were conducted to 
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calculate the gas component uptake rates and excretion rates. Due to the high pH condition, the 

majority of CO2 is dissolved in the liquid phase, therefore, TIC was included in the calculation of 

the CO2 production rate. Details of the developed protocol can be found in our previous work [14]. 

Gas samples (for batch experiment) and off-gas samples (for continuous experiment) were 

analyzed by a customized Agilent Technologies 7890B GC system equipped with a FID/TCD at 

250oC for CH4, O2, He and CO2 concentrations. 

2.6 Analysis of liquid samples 

For liquid samples, biomass concentration, total organic carbon (TOC) and total inorganic carbon 

(TIC) were measured to track cell growth and production of organic compounds and CO2. Total 

carbon (TC) and TIC of the liquid samples were analyzed via a Shimadzu TOC-VCSN analyzer. 

TOC was obtained by subtracting TIC from TC. Cell biomass was measured via a Beckman Coulter 

DU Life Science UV/Vis spectrophotometer. It is worth noting that it would be useful to determine 

the constituents of the TOC (e.g., acetate, formate, etc.) using HPLC. However, the acetate amount 

was very small and its peak was crowded with the formate peak; therefore, it was not possible to 

determine the individual concentrations of acetate and formate. In addition, there were a large peak 

and a few smaller peaks that we could not associate with known metabolites. However, our results 

suggest that extracellular polysaccharides (more likely some kind of glycoprotein) represent the 

majority of the excreted organic compounds (M. Lidstrom, personal communication). For these 

reasons, we decided to report the TOC to account for the variety of organic carbon sources. 

2.7 Metabolic network modeling and flux balance analysis 

The metabolic network model of M. buryatense 5GB1 used in this study was derived based on a 

published GEM, iMb5G(B1) [9]. The stoichiometric matrix for the model was reduced by Prof. 

Marina Kalyuzhnaya’s group at San Diego State University, with futile cycles and non-expressed 



 210 

reactions removed. Further modifications made in this work include the following: the production 

of various organic acids were decoupled from biomass production, so that they can be freely 

excreted by the model, and the fermentation reactions reported in [12] were added to the model. 

After these modifications, the modified GEM consists of 442 reactions, 403 metabolites, 313 

genes, 3 compartments (extracellular, periplasm, cytosol).  

For the model used in this work, similar to iMb5G(B1), aerobic respiration was represented by a 

single summarization reaction where the ATP/NADH yield was assumed to remain at 3 as shown 

in Eqn. (B1).  

2NADH/H+ + O2 + 6 ADP +6 Pi + 8H+ ↔ 2NAD+ + 8H2O + 6ATP                                                 (B1) 

Only direct coupling methane oxidation, i.e., electrons produced in methanol dehydrogenase 

(MDH) reaction are supplied to methane monooxygenase (MMO), was evaluated in this study as 

redox arm and uphill transfer are far less efficient and the model prediction did not match 

experimentally measured growth rates [9]. The ratio of flux through the Embden–Meyerhof–

Parnas (EMP) and Entner-Doudoroff (ED) pathways was left at the default 0.75/0.25 ratio. 

Flux balance analysis (FBA) [16]was performed using the modified GEM to compare the model 

predictions with experimental measurements. In FBA, cellular metabolism is assumed to be in a 

quasi-steady state, as the dynamics of gene-regulations are considered to be significantly faster 

than that of the bioreactor. Therefore, mass balance equations can be established for all 

intracellular metabolites in the GEM, yielding a linear system of equations. In most applications 

of FBA, a biomass growth equation is developed to represent the production of metabolic 

constituents of the cellular biomass, and most often, this biomass growth equation is set as the 

objective function for the linear program. Finally, FBA uses linear optimization to identify solution 

sets that maximize the objective function (e.g., biomass growth rate) subject to the constraints 
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imposed on the model. In this work, the objective function for all in silico simulations using FBA 

was biomass production. Constraints imposed on the model include: methane uptake rate, oxygen 

uptake rate, non-growth associated ATP maintenance (NGAM), and growth associated ATP 

maintenance (set to 23.3 [9] unless otherwise noted). The GEM predicted cell growth rate and CO2 

production rate were compared with experimental measurements to validate the GEM. 

2.8 Determining the non-growth associated ATP maintenance energy (NGAM):  

In this work, we use the following relationship given in [17] to estimate the NGAM value. 

𝑞𝐶𝐻4 = 𝑚𝐶𝐻4 +
𝜇

𝑌𝑚𝑎𝑥
  (B2) 

where 𝑞𝐶𝐻4 is the methane uptake rate; 𝑚𝐶𝐻4 is the methane requirement for non-growth associated 

maintenance activity; 𝑌𝑚𝑎𝑥 is the maximum biomass yield including NGAM, and 𝜇 is the cell 

growth rate. The result clearly shows that the six conditions separate into 2 groups, corresponding 

to oxygen-limited and methane-limited conditions, respectively. Assuming an ATP yield of 6 mol 

ATP per mole of CH4 consumed, NGAM can be calculated based on estimated 𝑚𝐶𝐻4. It is 

interesting to note that the NGAM obtained from different continuous runs are slightly different, 

especially for methane-limited growth. For CE1 the NGAM were estimated to be 15.53 and 10.60 

mmolATP/(gDCW·hr) for methane-limited and oxygen-limited phenotypes respectively, while 

the values changed to 10.93 and 9.88 mmolATP/(gDCW·hr) for CE2.  

3. Results and discussions 

3.1 Batch culture 

3.1.1 The effect of oxygen concentration on cell growth 

In the literature it has been suggested that there exists an optimal feed gas composition, i.e., O2:CH4 

ratio, which enables the maximum growth rate for methanotrophs; however, our previous 

experiments have suggested that it is the concentration or partial pressure of O2, not the ratio of 
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O2:CH4 in the feed gas, that plays a dominant role in determining cells’ growth rate [78]. To 

confirm this, we designed two sets of vial experiments to examine M. buryatense 5GB1 growth 

under different headspace compositions.  The initial pressure of the headspace was 1 atm for all 

vials, and the headspace compositions (in terms of partial pressures in atm) are listed in the top 

part of Table B1 (i.e., Sets 1 & 2). N2 was used as the balancing gas making up to 100% of mole 

fraction and 1 atm total pressure. For each condition, batch growth experiments were carried out 

with triplicate vials. 

Table B1 Experimental conditions for Sets 1-4 (pO2 and pCH4 are partial pressures of O2 and CH4 

in atm respectively). For vials that have pCH4 + pO2 <1,  N2 was added to achieve a total pressure 

of 1 atm.  

Set Fixed pCH4 O2:CH4 

1 

pO2=0.4 

0.20 2:1 

0.30 1.33:1 

0.40 1:1 

0.60 0.67:1 

pO2=0.6 

0.20 3:1 

0.30 2:1 

0.40 1.5:1 

2 

pO2=0.3 

0.28 1.07:1 

0.36 0.83:1 

0.45 0.67:1 

pO2=0.55 

0.28 2:1 

0.36 1.53:1 

0.45 1.22:1 

 

Set Fixed pO2 O2:CH4 

3 pCH4=0.35 

0.35 1:1 

0.42 1.2:1 

0.56 1.6:1 

0.63 1.8:1 

4 pCH4=0.2 

0.20 1:1 

0.40 2:1 

0.60 3:1 

0.80 4:1 
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(a) 

 
(b) 

Figure B1. Growth curves for experiments from Set 1 (a) and Set 2 (b). Red and blue lines in (a) 

denote experiments with pO2=0.4 atm and pO2=0.6 atm respectively, while different 

symbols correspond to conditions with different pCH4, which does not make a significant 

difference in cell growth. Similarly, red and blue lines in (b) represent growth curves with 

pO2=0.3 atm and pO2=0.55 atm respectively, while different symbols correspond to 

different pCH4. 

 

 

Figure B2. Overall growth rates vs oxygen partial pressure from additional experiments. The overall 

growth rates determined for each vial in the duplicate sets are represented as black dots while 

the trend line illustrates the overall behavior observed. 
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As shown in Table B1, experiments in Sets 1 and 2 consist of pair-wise headspace compositions 

with subgroups where each subgroup shares the same O2 partial pressure but different CH4 partial 

pressures. The headspace composition in these experiments covered a wide range of O2:CH4 ratios, 

from 0.67:1 to 3:1. The biomass accumulations for the first 12 hours, while cells were still in the 

exponential growth phase, are plotted in Figure B1(a) and 1(b) for Set 1 and Set 2 respectively. 

The results clearly indicate that the oxygen concentration (or partial pressure) in the feed gas is the 

dominant factor that dictated how fast cells grew during the exponential growth phase, and the 

slower cell growth rates at higher oxygen concentrations were most likely due to oxygen inhibition 

[7, 18]. In addition, compared to the oxygen concentration, the methane concentration or O2:CH4 

ratio of the feed gas, had a much smaller effect on cell growth rate. Additional experiments were 

conducted to determine the range of oxygen partial pressures that would deliver optimal cell 

growth. The results are given in Figure B2, where pCH4=0.2 for all conditions. From the conditions 

tested, pO2=0.2~0.4 atm enabled optimal cell growth (pO2 less than 0.2 atm was not tested). 

3.1.2 The effect of feed gas composition on cell growth phenotype 

Regarding the effect of feed gas composition on the cell’s growth phenotype, it is commonly 

assumed that different feed gas compositions would result in different growth phenotypes, which 

would be distinguished by different product distributions. To confirm this, two additional sets of 

experiments (Sets 3 & 4 in Table B1) were designed with each set sharing the same CH4 partial 

pressure but different O2 partial pressure. After cell growth ceased, the yields of three major 

product groups (biomass, CO2 and excreted organic compounds) were measured to determine 

whether the carbon distribution (or phenotype) was affected by the feed gas composition.  
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In this work, total carbon balances were conducted to confirm the accuracy and reliability of the 

measurements as well as the validity of the experimental results. Based on the mass balance, it is 

expected that the amount of carbon consumed (𝑁𝐶,𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑) should equal to the amount of carbon 

produced (𝑁𝐶,𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑). In other words, the total amount of CH4 assimilated during cell growth 

should equal to the carbon distributed in different products (i.e., biomass, CO2 and excreted 

organic carbon compounds).  Therefore, by comparing total moles of carbon consumed with total 

moles of carbon produced, the accuracy of different measurements can be gauged. Details of the 

total carbon balance calculation can be found in our recent work [78], and a brief description of 

the protocol is provide in the Supplementary material.  

Across all conditions tested in Sets 3 and 4, total carbon balances were 95.3 + 1.8% and 98.9 + 

1.8% respectively, confirming the accuracy and reliability of the measurements for both batch 

experiments. For these results, the small deviations from 100% carbon accounted for were 

attributed to measurement error from the different sample measurements including headspace gas 

concentrations, biomass concentration, and total (in)organic carbon concentrations. The yields of 

biomass, CO2 and organic compounds are shown in Figure B3 (a) for Set 3 experiments (pCH4 = 

0.45 atm), and Figure B3 (b) for Set 4 experiments (pCH4 = 0.2 atm). As shown in these figures, 

under all headspace compositions, the yields of biomass, CO2 and organic compounds remained 

relatively stable, with 44.96±1.33% for biomass, 49.01±2.00% for CO2 and 3.23±1.49% for 

organic compounds.  
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(a) (b) 

(c) (d) 

Figure B3: Yields of biomass, carbon dioxide, and organic carbon of the vials under various 

conditions listed in Table B1 for (a) Set 3 and (b) Set 4. Yields are in mmolC/(mmolCH4 

consumed). (c) & (d) O2:CH4 consumption ratios observed for vials in Set 3 and Set 4 

respectively. 

It should be noted that at the beginning of each batch growth, both methane and oxygen were 

unlimited due to low cell density. However, about 8 hours after inoculation cell growth rates started 

to drop, suggesting cell growth became mass transfer limited. Therefore, during the rest of the 

batch growth (about 27 hours), the availability of CH4 and O2 were determined by gas phase 

composition, and the majority of cell growth occurred under either oxygen-limited or methane-

limited conditions. One-way multivariate analysis of variance (MANOVA) was performed to 

determine whether the O2:CH4 ratio in the headspace affects the yields of different products for all 

experiments in Sets 3 and 4 using Matlab® function manova1. In this work, we compare three 
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oxygen-limited gas compositions (i.e., pO2 = 0.35 and 0.42 in Set 3, and pO2=0.2 in Set 4) vs. four 

carbon-limited gas compositions (i.e., pO2=0.56 and 0.63 in Set 3, and pO2=0.4 and 0.6 in Set 4). 

MANOVA tests the hypothesis that the 3-dimensional mean vectors (i.e., the three product yields) 

are equal for all experimental conditions versus the alternative hypothesis that one experimental 

condition (i.e., oxygen-limited or carbon-limited gas composition) resulted in a yield profile that 

is different from the other in at least one dimension. The returning dimension variable d = 0 and 

p-value of 0.3956 from manova1 both indicate that the differences among the yield profiles from 

the two groups of gas compositions are statistically insignificant at a 99% confidence level.  

Further analysis revealed that the largely similar yield distributions from the tested conditions were 

possibly due to the similar O2:CH4 consumption ratios, as shown in Figure B3 (c) and (d), which 

were also obtained at the end of each batch experiment. In other words, under batch culture 

conditions, the headspace composition had little effect on the uptake ratio of O2:CH4. In addition, 

it is interesting to note that these uptake ratios were within the range of the optimal uptake ratio 

predicted by the modified GEM as discussed in section 3.3.1.  

The results from all the batch experiments suggest that although the different pO2 has a dominant 

role in determining the cell growth rate, it does not appear to dictate the cells growth phenotype; 

instead, cells grow optimally under batch conditions, regardless of methane-limited or oxygen-

limited headspace. This is most likely the primary reason for the stable yield distribution across a 

wide range of headspace compositions. In order to obtain methane-limited and oxygen-limited 

growth phenotypes, we hypothesize that the cell growth rate must be controlled, in addition to 

manipulating feed gas compositions. 

3.2 Continuous culture 
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In this section, we use continuous cultures to achieve oxygen-limited and methane-limited growth 

phenotypes by controlling both the cell growth rate and the feed gas composition. In addition, we 

compare the differences between the two phenotypes through yield distribution. In this section, we 

provide the details of the results obtained from CE1, as the conclusions obtained from CE2 are 

consistent with CE1. The results from CE2 are provided in Supplementary Information.   

3.2.1 Experimental design and outcome 

For CE1, the order of the six conditions is shown in Figure B4 (a) with CH4 fixed at 42 smL/min 

while O2 varied between two conditions (i.e., 35 smL/min for oxygen-limited and 70 smL/min for 

methane-limited) at three different dilution rates. Examining cell growth under three different 

growth rates (through manipulating dilution rates) for each phenotype enabled a better 

understanding of methane metabolism and validation of the GEM under much broader conditions. 

In addition, an estimate of the non-growth associated maintenance energy was obtained with better 

accuracy.  

(a) (b) 
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(c) 

  

(d) 

Figure B4: (a) Overview of experimental design for CE1 with 6 operating conditions: three growth 

rates (dilution rates) and two gas compositions (oxygen-limited and methane-limited) were 

tested.  (b) Feed gas flow rate and off-gas flow rate for conditions 3 and 4 in CE1. N2 was 

added and its flow rate was adjusted to make sure the feed gas flow rate was maintained at 

a constant rate for all conditions. (c) Biomass density, growth rate and dilution rate for all 

conditions tested during CE1. (d) Specific gas uptake rates for methane and oxygen, as 

well as the specific CO2 production for all six conditions in CE1.  

 

For continuous operation, the off-gas flow rates can be (significantly) different from that of the 

feed gas due to the consumption of gaseous substrates. To accurately measure the off-gas flow 
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rate, we have developed a protocol using helium (He) as an internal standard in the feed gas. 

Further details can be found in our recent work [14]. Figure B4 (b) compares the measured off-gas 

flow rate with feed gas flow rate for conditions 3 and 4. Figure B4 (b) shows that, as cells transition 

from methane-limited condition (condition 3) to oxygen-limited condition (condition 4), the off-

gas flow rate increased noticeably, indicating less amount of the gas substrates were consumed 

under condition 4. In addition, the significant differences between the feed and off-gas flow rates 

for both conditions demonstrate the importance of accurate off-gas flow rate measurements, which 

play a critical role in computing substrate uptake rates and CO2 production rates. To ensure that 

the measurements obtained through the developed protocols are reliable, total carbon balances 

across different chemostat conditions were conducted, and the carbon accounted for was 

consistently between 98% ~ 104%, again indicating accurate and reliable measurements of the 

cross-membrane fluxes.  

In Figure B4 (c), the biomass concentration, dilution rate as well as calculated cell growth rate 

over the course of CE1 are plotted, and in Figure B4 (d) the estimated specific gas uptake or 

production rates are plotted. The vertical lines in Figure B4 (c) and (d) indicate when the switch 

of conditions was introduced. In CE1, several unexpected disturbances occurred during 850 – 1050 

hours caused by a disruption due to severe weather, so the data for this period was omitted. As 

shown in Figure B4 (c), there were significant changes in biomass concentration upon transition 

into different oxygen conditions and/or dilution rates, which is how different cell growth rates 

could be achieved. For bioconversion with gas substrate(s), mass transfer from gas to liquid is 

usually the rate limiting step. When the dilution rate is increased or oxygen supply is reduced, cell 

growth rate would become smaller than the dilution rate and the cell density would decrease due 

to cell wash-out. As the total amount of CH4 and O2 transferred from the gas phase to the liquid 
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phase remains relatively stable, the specific methane and oxygen uptake rates would increase due 

to the reduced cell density, which would result in increased cell growth rate. Therefore, as biomass 

density keeps decreasing, cell growth rate would keep increasing until it matches the dilution rate 

and reaches the new steady-state. In this way, by adjusting dilution rate and feed gas composition, 

different cell growth rates can be obtained with different methane and oxygen uptake rates, 

enabling further examination of the differences between the methane-limited and the oxygen-

limited growth phenotypes. As confirmed by Figure B4 (d), a wide range of specific CH4 and O2 

uptake rates were achieved, which also resulted in changes in the specific CO2 production rates. 

3.2.2 Cells produce more organic compounds under carbon-limited phenotype 

Biomass and CO2 yields for the 6 different conditions are plotted in Figure B5 (a), with yield of 

organic compounds given in Figure B5 (b).  The data is organized according to the feed gas 

composition: oxygen-limited conditions vs methane-limited conditions. As detailed in Section 

3.3.3, phenotype phase plane analysis confirmed that cells under conditions 2 & 3 exhibited a 

carbon-limited phenotype, cells under conditions 4 & 5 exhibited an oxygen-limited phenotype, 

while cells under conditions 1 & 6 deviated from their expected phenotypes. In addition, Figure 

B5 (a) and (b) clearly show that the yield distribution varied within the same phenotype, depending 

on the carbon (CH4) uptake rate. To determine whether different growth phenotypes result in 

different yield distributions pair-wise ANOVA was performed. Based on their carbon uptake rates, 

condition 2 is paired with condition 4, while condition 3 is paired with condition 5. Note that each 

pair has very similar CH4 uptake rates. Separate ANOVA and multiple comparison tests were 

performed on the yields of biomass (𝑌𝑋 𝑆⁄ ), CO2 (𝑌𝑋 𝑆⁄ and organic compounds (𝑌𝑂𝐶 𝑆⁄ ). The tests 

indicate that there are statistically significant differences between conditions 2 and 4 as well as 



 222 

between conditions 3 and 5, for all three product yields, as all p-values were less than 0.001 as 

indicated on Figure B5 (a) and (b).  

The yield difference caused by the transitions from condition 1 to 2, condition 5 to 6, as well as 

condition 3 to 4 were also investigated. It is interesting to see that despite the different yield 

distributions obtained under the same feed gas conditions (oxygen-limited vs methane-limited), 

the changes in yield distribution caused by the same environmental perturbation appear to be 

relatively consistent. During the switch from methane-rich to methane-limited feed gas 

composition, both transitions (i.e., 1→2 and 5→6) resulted in a decrease of biomass yield (-

5.5±0.8% and -4.2±0.7%), increase of CO2 yield (2.6±1.1% and 2.2±0.8%) and increase of organic 

compounds yield (2.6±1.2% and 1.6±0.6%). In the reverse direction, the switch from a methane-

limited condition to an oxygen-limited condition (i.e., 3→4) resulted in an increase of biomass 

yield (6.6±0.8%) and decrease of CO2 and organic compounds yields (-3.2±1.1% and -3.1±1.3% 

respectively). 

 

The effect of feed gas composition on the consumption ratio between O2 and CH4 is plotted in 

Figure B5 (c). Different from the batch experiments, when cell growth rate is controlled, the feed 

gas composition had a clear effect on the O2:CH4 consumption ratio (Figure B5 c), which decreased 

from about 1.38 for the two methane-limited conditions (2 and 3) to about 1.13 for the two oxygen-

limited conditions (4 and 5). ANOVA and multiple comparison tests were performed to compare 

the O2:CH4 consumption ratio under the different conditions. As shown in Figure B5 (c), the 

difference between conditions 2 and 3 is not statistically significant at 95% confidence, and neither 

is the difference between conditions 4 and 5. On the other hand, the difference between methane-
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limited conditions (i.e., conditions 2 and 3 combined) and oxygen-limited conditions (i.e., 

conditions 4 and 5 combined) is statistically significant at 99.9% confidence. 

 (a)  (b) 

 (c) (d) 

Figure B5: (a) Yields of biomass and CO2 for conditions 1-6. Note that the order of the conditions 

does not match the chronological order as they are grouped by the feed gas composition. 

(b) Yield of organic compounds. (c) O2:CH4 consumption ratio. (d) Trends in carbon 

distribution correlated to the O2:CH4 consumption ratio. Biomass yield decreases as the 

O2:CH4 uptake ratio increases as indicated by the trend line. On the other hand, the CO2 

and organic carbon yields increase with the increase in O2:CH4 uptake ratio. ANOVA and 

multiple comparison tests p-values are denoted as: ns (not significant): P>0.05; *: P≤0.05; 

**: P≤0.01; ***: P≤0.001. 

 

Finally, it is important to note that these results suggest that it is the methane-limited condition, 

not the oxygen-limited condition, that pushes carbon toward the production of organic compounds. 

Under oxygen-limited conditions, lower yields for organic compounds and CO2, and a higher yield 
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for biomass were observed when compared to the methane-limited conditions. This is consistent 

with Figure B5 (d) where the yields of different products are correlated with the O2:CH4 

consumption ratios. These finding are confirmed by results obtained from CE2. Clearly the results 

from CE1 and CE2 indicate that it is the methane-limited phenotype that produces more organic 

compounds.  

Currently, it is not clear why methane-limited phenotype produces more organic compounds and 

CO2. It is possibly a result of natural selection, as the natural environment of M. buryatense 5GB1 

is oxygen-limited and cells have been adapted to process methane more efficiently under oxygen-

limited conditions. When excess amount of oxygen becomes available (e.g. transition from 

condition 1 to condition 2), cells are able to pick up more methane (~12% more when condition 2 

is compared to condition 1) while maintaining the same growth rate. This suggests that the extra 

methane consumed by the cells was directed to CO2 and organic compound production. Such 

metabolic shift is likely driven by a perturbation to the redox and energy balance as processing 

more oxygen requires more reducing power and generates more ATP. Further experiments are 

required to validate this explanation. 

3.3 In silico analysis using a reduced genome-scale metabolic model (GEM) 

To better understand the differences between the oxygen-limited and methane-limited growth 

phenotypes of M. buryatense 5GB1, a modified GEM was used to conduct in silico analysis by 

incorporating the measurements obtained from the continuous culture. One major application of 

metabolic network models, particularly GEMs, is to predict different growth phenotypes (e.g., how 

fast cells grow, what products are excreted) in various genetic and environmental conditions. 

Developed by the Palsson Lab, phenotype phase plane (PhPP) analysis is a powerful tool that uses 

FBA with the model to provide a global perspective on the genotype-phenotype relationship, and 
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to help characterize different metabolic phenotypes [19]. In PhPP analysis, FBA is performed 

along two flux constraint dimensions (for this paper methane uptake rate and oxygen uptake rate), 

and the FBA results generated are used to construct a 2D or 3D (if growth rate is also considered) 

phase diagram. In order to conduct FBA with the reduced model, growth and non-growth 

associated ATP maintenance values are needed. The growth associated ATP maintenance value 

within the biomass equation was set at 23 ATP g DCW -1 [9], which is considered as the low mode. 

The non-growth associated ATP maintenance (NGAM) was estimated using experimental data as 

shown in Section 2.8. It is worth noting that methane-limited phenotype requires higher NGAM, 

indicating higher metabolic burden to the cells. This is consistent with the experimental results of 

increased production of organic compounds under methane-limited conditions. 

3.3.1 Phenotype phase plane analysis  

PhPP analysis was performed using the modified GEM with custom scripts developed within the 

COBRA toolbox [16] framework. The objective function utilized in all in silico simulations was 

to maximize biomass production. For PhPP analysis, the oxygen and methane uptake rates were 

varied from 0 to 15 mmol/gCDW/hr. In addition to setting substrate uptake rate constraints, the 

NGAM was set to 10.6 mmolATP/(gDCW·hr) (obtained from CE1 for the oxygen-limited 

conditions), and the 3D PhPP plot is shown in Figure B6 (a). PhPP analysis reveals only two 

phenotypes are predicted by the model, which correspond to the two slanted surfaces: the blue 

surface represents the methane-limited phenotype and the yellow surface represents the oxygen-

limited phenotype. The boundary between the two phenotypes (i.e., the black line in the figure) is 

the line of optimality (LO), which represents the optimal relation between methane and oxygen 

uptake rates that allow for the maximal growth rate. In other words, along the LO, the optimal 
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amount of oxygen will be consumed to enable complete oxidation of CH4 and achieve maximum 

cell growth.  

In Figure B6 (a), methane and oxygen uptake rates corresponding to condition 1 in CE1 are 

marked. It is interesting to see that condition 1 is located on the LO, indicating that the cells 

maintained optimal growth under the oxygen-limited feed gas composition. One potential 

explanation for this unexpected optimal growth is that the cells’ prior growth condition may have 

a significant impact on the new steady-state. Prior to condition 1, cells were cultured under batch 

mode to accumulate biomass. As discussed in the previous section, under batch operation, the gas 

phase composition has little effect on O2:CH4 consumption ratio, as cells tend to uptake the amount 

of O2 and CH4 to achieve optimal growth. Indeed, as shown later (Figure B8 a) the model predicted 

optimal cell growth rate and CO2 production rate for condition 1 also show excellent agreement 

with experimental data. To further validate the impact of the previous growth condition on the 

current physiological state of the cells, continuous experiment CE2 was performed. The results of 

CE2 are further discussed in 3.3.3.  



 227 

(a) (b) 

Figure B6: (a) 3D PhPP diagram with NGAM set to 10.6 mmolATP/(gDCW·hr). The black line 

separating the blue and yellow phenotype phases represents the line of optimality (LO). The 

experimental methane and oxygen uptake rates as well as the growth rate for CE1-1 are plotted on 

the diagram (red circle), which lies on the LO. (b) Model predicted fluxes for the model’s central 

carbon network (CCN) for CE1-1. 

 

To further examine the distribution of the intracellular fluxes and validate the modified GEM, 

Figure B6 (b) plots the model predicted fluxes in the central carbon network (CCN) for condition 

1. Figure B6 (b) shows that under optimal aerobic growth, M. buryatense 5GB1 operates a 

complete oxidative TCA cycle, which agrees with the experimental findings obtained through 13C 

tracer analysis [13]. In addition, the model predictions suggest that about 85% of malate was 

produced from fumarate through the TCA cycle, while about 15% was produced from pyruvate 

through the malic enzyme. This trend in general agrees with the experimental finding which 

reported that about 46% of malate was produced from fumarate [13]. Finally, as shown in Figure 
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B6(b), the model prediction shows that the entry step of the serine cycle, i.e., converting glyoxylate 

into glycine, and serine into hydroxypyruvate, are not active, which again agrees with experimental 

findings through 13C tracer analysis [13]. Together, these results suggest that the modified GEM 

can capture the optimal aerobic growth of M. buryatense 5GB1 reasonably well, which offers 

confidence in the PhPP analysis results, and enables us to use the model to examine further 

intracellular details. 

3.3.2 Analysis of the 6 growth conditions using PhPP  

The 2D PhPP results, obtained by projecting the 3D PhPP plot onto the 2D plane defined by the 

CH4 and O2 uptake fluxes, are plotted in Figure B7 (a) - (d), corresponding to the oxygen-limited 

and methane-limited conditions for CE1 and CE2. The results plotted in Figure B7 (a) were 

generated with NGAM=10.60 mmolATP/(gDCW·hr), Figure B7 (b) with NGAM=15.53 

mmolATP/(gDCW·hr), Figure B7 (c) with NGAM=9.88 mmolATP/(gDCW·hr) and Figure B7 (d) 

with NGAM=10.93 mmolATP/(gDCW·hr). The NGAM values used for modeling were derived 

from experimental data as described in section 2.8. It is worth noting that the NGAM value used 

in the model only affects the intercept of the LO without changing the slope of the LO, so the LO 

in Figure B7 (a) – (d) are parallel to each other. Specifically, the LO obtained for methane-limited 

conditions has a larger intercept than that of oxygen-limited conditions, as more ATP is needed to 

maintain the cellular functionality, therefore more O2 is required to achieve optimal growth. At the 

same time, because neither LO crosses the origin, the O2:CH4 uptake ratio along the LO is not a 

constant. Instead, it decreases as the CH4 uptake increases, and the optimal O2:CH4 uptake ratio 

ranges from 1.25 to 1.31 for the tested experimental conditions. This range agrees with the O2:CH4 

uptake ratio observed in the batch experiments as well (1.23-1.35).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure B7: (a) 2D PhPP diagram for NGAM set to 10.6 mmolATP/(gDCW·hr). Experimental data 

for oxygen-limited conditions CE1-1, CE1-4, CE1-5 are plotted in red circles (b) 2D PhPP 

diagram for NGAM set to 15.53 mmolATP/(gDCW·hr). Experimental data for methane-

limited conditions CE1-2, CE1-3, CE1-6 are plotted in red circles. (c) 2D PhPP diagram 

for NGAM set to 9.88 mmolATP/(gDCW·hr). Experimental data for oxygen-limited 

conditions CE2-1, CE2-4, CE2-5 are plotted in red squares. (d) 2D PhPP diagram for 

NGAM set to 10.93 mmolATP/(gDCW·hr). Experimental data for methane-limited 

conditions CE2-2, CE2-3, CE2-6 are plotted in red squares. 

 

In Figure B7 (a), it can be seen that condition CE1-1 falls on the LO not in the oxygen-limited 

phenotype as expected, while in Figure B7 (b) CE1-6 falls in the oxygen-limited phenotype. As 

discussed previously, we believe such “mis-registered” phenotypes for conditions CE-1 and CE-6 

could be attributed to the cells’ prior growth conditions. For condition CE1-1 which followed batch 
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mode where cells grew optimally, cells exhibited optimal growth under the oxygen-limited feed 

gas composition; for condition CE1-6, which followed two oxygen-limited phenotypes (conditions 

4 &5), cells did not pick up the extra oxygen provided in the feed gas and remained in the oxygen-

limited phenotype while under methane-limited gas composition. It is important to note that the 

dissolved oxygen for condition CE1-6 was higher than 8%, which was consistent with conditions 

CE1-2 & CE1-3 where dissolved oxygen was about 7%, indicating that excessive amount of 

oxygen was available but the cells did not pick it up.  

To confirm that the cells’ prior growth condition has a noticeable effect on their current 

physiological state, we conducted an additional continuous run to test all 6 conditions in a different 

order, 2→3→6→5→4→1. The 6 conditions tested in CE2 are denoted CE2-1, CE2-2, CE2-3, 

CE2-4, CE2-5, and CE2-6. The results from this experiment are plotted in Fig. 7 (c) and (d) which 

further supports our hypothesis that the previous condition affects the growth phenotype of the 

current condition. More specifically, if we compare CE1-6 with CE2-6, we note that since CE1-6 

followed CE1-5 (oxygen-limited), CE1-6 actually falls in the oxygen-limited phenotype; however, 

CE2-6 which followed CE2-3 (methane-limited) falls in the methane-limited phenotype as 

expected. It is worth noting that as each growth condition was only maintained for 3 to 4 days in 

this work, it is possible that the substrate uptake rates could change after prolonged culture under 

each condition. 

3.3.5 The current GEM lacks key metabolic routes to maintain near-optimal growth under 

oxygen-limited and methane-limited phenotypes  

 

To further examine the validity of the modified GEM, as well as to gain a better understanding of 

the methane-limited and oxygen-limited phenotypes, we compared the model predicted cell 

growth rate and CO2 production rates for all six conditions with experimental measurements from 

CE1. Two in silico experimental setups were considered. In Setup I, only the measured CH4 uptake 
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rate was used as the model input, while the O2 uptake rate was determined via FBA by maximizing 

cell growth rate. In other words, simulation Setup I would result in a point located on the LO 

corresponding to the given CH4 uptake on the 2D PhPP plot. In Setup II, both measured CH4 and 

O2 uptake rates were used as the model inputs. Figure B8 compares the in silico results (Setup I 

and II) with the experimental measurements for all six conditions, with cell growth rate in Figure 

B8 (a) and CO2 production in Figure B8 (b). For FBA, the NGAM value was set to 10.6 and 15.53 

mmolATP/(gDCW·hr) for the oxygen-limited and methane-limited phenotypes, respectively.  

 

                  (a) 

 
                  (b) 

 

Figure B8: (a) Growth rate comparison for all six conditions using three different modeling 

approaches. NGAM set to 10.6 and 15.53 mmolATP/(gDCW·hr) for oxygen-limited and 
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methane-limited conditions, respectively. (b) Model predicted vs measured CO2 

production. 

 

The in silico results show that across all six conditions, cells’ actual growth rates were very close 

to the model predictions obtained in Setup I, i.e., the maximum growth rate predicted by the LO 

for the given experimental CH4 uptake rates. This result suggests that M. buryatense 5GB1 is 

extremely robust and capable of maintaining near-optimal growth under a wide range of oxygen 

availabilities.  

However, under Setup II, where both measured CH4 and O2 uptake rates were used as model 

inputs, the model predicted cell growth rates are slightly lower than the experimental 

measurements for methane-limited phenotypes (condition 2 and 3), but significantly lower for 

oxygen-limited phenotypes (conditions 4, 5 and 6). For methane-limited growth phenotypes 

(conditions 2 and 3), the reduced cell growth rate predicted in Setup II is coupled with increased 

CO2 production. Further analysis showed the model processes the increasing amount of O2 through 

oxidative phosphorylation, and the increasing amount of electrons needed for phosphorylation is 

produced by increasing flux through TCA cycle. Such changes cause decreased flux to biomass 

and increased flux to CO2. In addition, the model dissipates the excess amount of ATP produced 

through oxidative phosphorylation by uptaking and excreting metal ions (Cu2+) because metal ion 

uptake consumes ATP while excretion does not. For the oxygen-limited phenotype, the reduced 

growth rate predicted by the model is coupled with significantly reduced CO2 production as well. 

Further analysis shows that the GEM handles the reduced O2 uptake by reducing flux through 

oxidative phosphorylation, which in turn causes the reduced flux through TCA cycle driven by the 

reduced demand of electrons. To cope with the reduced ATP production due to reduced oxidative 

phosphorylation, the model uses acetate production as the major route for ATP generation to 

support cell growth. The diversion of carbon leads to reduced biomass production as well as 
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significantly reduced CO2 production. For example, the predicted acetate production accounted 

for about 40% of the CH4 consumed by the model for condition CE1-4. It is worth mentioning that 

although acetate production was not observed in our experiments, it has been reported that under 

prolonged O2-starvation in a closed vial, 10-fold increase of excreted acetate was observed [12]. 

However, even a 10-fold increase in acetate production is still far less than the flux predicted by 

the model.   

This discrepancy between model prediction (Setup II) and experimental measurement suggests 

that the current model lacks key metabolic routes that the cells possess to handle a wide range of 

oxygen availability. As a result, the model predicts significantly reduced cell growth when the 

cells uptake excess or insufficient amounts of O2 required for aerobic respiration, and the model 

cannot predict the near-optimal growth observed in the experiments. 

Conclusion 

To successfully deploy methanotrophs for industrial scale methane conversions, additional genetic 

and environmental manipulations are needed to significantly improve the conversion, yield and 

throughput. It has been well-recognized that a clear understanding on the strain’s cellular 

metabolism and different growth phenotypes would offer insight and guidance for such 

manipulations. In this work, using M. buryatense 5GB1, a promising industrial methanotroph, as 

the model system, we use both batch and continuous cultures to investigate the differences between 

methane-limited growth vs oxygen-limited growth phenotypes. In addition, a reduced genome-

scale metabolic model (GEM) is utilized to help understand the intracellular details of the two 

different phenotypes and for testing a hypothesis that could explain the experimental observations.  

As most obligate and facultative aerobic microbes produce various bio-products under oxygen-

limited conditions, it is natural to expect that M. buryatense 5GB1 would produce more organic 
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compounds under oxygen-limited conditions. Indeed, among all published research on M. 

buryatense 5GB1, reducing oxygen supply in the feed gas has been used to induce an oxygen-

limited, fermentative phenotype with the aim to shift carbon flux away from biomass production 

to desired organic compound production.  In this work, using designed batch experiments with 

accurate gas phase measurements and control, we show that the cell growth rate is primarily 

determined by the concentration or partial pressure of oxygen in the gas phase, instead of the 

CH4:O2 ratio. In addition, cell growth rate must be controlled in order to drive the cells into 

different growth phenotypes. Using continuous culture, we were able to achieve both methane-

limited and oxygen-limited growth phenotypes through manipulating feed gas composition while 

controlling cell growth rate; however, we found that even feed gas composition combined with 

cell growth rate cannot fully determine cells’ growth phenotype, as their prior growth phenotype 

also has a significant impact on their current physiology. In addition, our results indicate that 

contrary to the common belief, it is the methane-limited condition, instead of oxygen-limited 

condition, that diverts more carbon flow towards organic compounds from biomass production. 

Additional research is needed to examine methane-limited conditions for potential chemical 

production through methane bioconversion. 

To better understand the difference between methane-limited and oxygen-limited phenotypes, we 

use a modified GEM of M. buryatense 5GB1 to further examine our experimental findings. We 

first investigated the model performance along the line of optimality (LO) using our experiments, 

as well as the flux and transcriptomic data published in the literature. Next, using continuous 

experiments, we confirmed that M. buryatense 5GB1 exhibits surprisingly robust, near-optimal 

growth under a wide range of CH4:O2 uptake ratios. Such behavior cannot be predicted by the 
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modified GEM, suggesting that the strain has other routes not captured by the GEM to handle 

excess or insufficient amounts of oxygen to maintain near-optimal growth.  
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