
Evaluation of Cooperative Navigation Strategies with Maneuvering UAVs

by

Jacob Pryor

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 7, 2021

Keywords: Cooperative Navigation, Relative Navigation, Sensor Fusion

Copyright 2021 by Jacob Pryor

Approved by

Scott Martin, Chair, Assistant Research Professor of Mechanical Engineering
David Bevly, Professor of Mechanical Engineering

John Hung, Professor of Electrical and Computer Engineering



Abstract

This thesis presents and evaluates cooperative navigation methods used to reduce nav-

igation solution error growth between members of an unmanned aerial vehicle - unmanned

ground vehicle (UAV-UGV) or all-UAV team when Global Position System (GPS) measure-

ments are partially or completely unavailable to the group. Multiple scenarios with varying

numbers of vehicles were simulated with a centralized navigation algorithm based on the

Extended Kalman Filter (EKF) and with a decentralized navigation algorithm based on the

Covariance Intersection (CI) filter. Measurements including relative range, relative range-

rate, and relative bearing were made available to the vehicles in different simulation runs

to compare their impact on navigation state observability and navigation state estimation

accuracy. The UAVs were also guided along varied trajectories of a “spiral” class during

different simulation runs to investigate whether estimation accuracy can be improved by

varying inter-vehicle dynamics and geometry.

The results of these studies show that cooperative navigation is a promising strategy to

reduce navigation state error growth. To analyze the observability of the studied scenarios,

a condition number test was performed on the observability Gramian matrix. This study

indicates that the navigation state observability in cooperative navigation scenarios where

a kinematic vehicle model is aided with relative measurements can be improved by the

proposed vehicle maneuver. As the rate of the proposed spiral maneuver is increased, this

analysis suggests an improvement in observability. This result is further validated in the

simulated results which show that with relative bearing only, even low rates of inter-vehicle

spiral motion allow for estimates of relative position with less than 3 meters of error. As

the spiral rate increases, accurate relative positioning is shown to be possible with only

relative range measurements. IMU biases are also shown to be estimated for cooperative
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groups with low meter-level relative positioning error but no absolute position reference.

In scenarios where the vehicles can accurately estimate their relative positions and at least

one vehicle in the cooperative group has access to accurate GPS information, all of the

vehicles in the cooperative group benefit equally through communication with that vehicle.

In UAV-UGV scenarios, the cooperative group includes a heterogeneous mixture of vehicles

equipped with high and low quality inertial navigation systems (INS) and/or alternative

navigation methods. In this case, if the vehicles can estimate their relative positions to meter-

level accuracy, all cooperating vehicles benefit with navigation solution error characteristics

matching that of the most accurate navigation system in the group.

Lastly, experimentally collected data was analyzed to validate the simulation results.

This experiment demonstrated similar results to the simulated scenarios. Relative position

error was reduced from over 100 meters to sub-meter accuracy, depending on relative mea-

surement availability. Absolute error was also reduced from over 70 meters (in the IMU-only

case) to meter-level accuracy depending on measurement availability.
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Chapter 1

Introduction

Recent advances in small unmanned aerial vehicle (UAV) technology have provided

opportunities for small-UAV use in many applications. Some common applications of small

UAVs include: search and rescue, package and disaster relief supply delivery, patrol and

surveillance, infrastructure inspection, and three-dimensional mapping. Employing a team

of cooperative UAVs to complete these missions is often more effective than employing a

single UAV, as teams of UAVs have increased robustness, efficiency, and increased sensing

capabilities. A group of UAVs is also less prone to mission failure as there is a single

point of failure in single-UAV missions whereas risk is mitigated across multiple vehicles in

cooperative efforts. Missions involving heterogeneous teams of unmanned ground vehicles

(UGVs) and UAVs are also increasingly common in recent years. In each of these cases,

one key problem that must be solved in order for the mission to be successful is vehicle

navigation.

1.1 Background and Motivation

Typically, UAVs and UGVs navigate independently using an integrated GPS-INS (Global

Positioning System - Inertial Navigation System) navigation solution. GPS-INS navigation

has become a standard method as the combination of these two technologies provides a more

accurate navigation solution than either could generate by itself.

GPS was developed by the US Department of Defense in the 1970s. The system consists

of a constellation of 32 satellites orbiting Earth. The orbits are designed in such a way that

at any given moment, at least 4 satellites are visible in the sky from any point on Earth.

Each satellite broadcasts signals designed in such a way that a GPS receiver on Earth

1



can determine its range to that satellite. Because the measured range is corrupted with

timing errors from the satellite and receiver clocks, it is often referred to as a “pseudorange”

measurement. With a measured range to a least 3 different satellites, a receiver can estimate

its position by trilateration. However, a fourth satellite measurement is typically required for

a receiver to estimate its internal clock bias and accurately estimate its position. Additional

satellite measurements further increase the the position accuracy of the receiver.

An INS system typically consists of an inertial measurement unit (IMU) and can also

contain additional aiding sensors such as magnetometers and altimeters, among others. A

6-DOF IMU consists of 3 accelerometers that measure specific force (acceleration relative to

free-fall) and 3 gyroscopes that measure angular rate. Some cheaper, consumer grade IMUs

measure in fewer than 6-DOF. This thesis will consider 6-DOF IMUs. The accelerometers

and gyroscopes are arranged orthogonally so that they measure values along a 3-dimensional

orthogonal coordinate system. This coordinate system is typically aligned with the body

frame of a vehicle. In this way, the acceleration and angular rate of the vehicle can be

determined by the IMU. These measurements are integrated in time in order to calculate

the attitude, velocity, and position of the vehicle.

GPS and INS measurements are highly complementary. The GPS provides an absolute,

“global” navigation solution that remains very accurate over long periods of time. Stated

another way, GPS navigation solutions are not subject to drift. However, GPS updates

position at a relatively low update rate (usually lower than 10 Hz) and is prone to meter

level “jumps” and intermittent outages. The INS solution updates at a much higher rate (100

Hz or higher) and because the INS is not dependant on outside signals, there are very few

cases where INS measurements are unavailable. However, INS measurements are typically

subject to noise and bias, and when integrated, this noisy, biased measurement results in a

“drifting” navigation solution with errors unbounded in time. Figure 1.1 shows a typical INS

drift in two-dimensions for small-UAVs over a period of 60 seconds. As can be seen in the

figure, the INS navigation solution has drifted over 40 meters from the true position of the
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UAV over the course of 60 seconds. Also, because the INS has no access to outside “global”

information, the INS must be accurately initialized in order to provide a navigation solution.

Integrated together, the GPS provides a navigation solution with error that is bounded in

time that eliminates any “drift” from the integrated INS solution. Additionally, the GPS

solution allows the INS measurement biases to be estimated, further reducing the overall

navigation error. The INS smooths out any “jumps” in the GPS solution and can provide a

sufficient navigation solution during short GPS outages.

Figure 1.1: IMU drift over 60 s

However, a problem develops when accurate GPS navigation is unavailable for periods of

time longer than just a few seconds. This condition is not uncommon and can be caused by

any blockage of a clear view of the sky to the GPS antenna from foliage or urban canyons,

intentional or unintentional jamming or spoofing, or other conditions that corrupt GPS

integrity. Under these conditions, the vehicle navigation is left solely to the INS, which

as previously stated is subject to an unbounded “drift.” Many diverse solutions have been
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suggested to combat this problem. A few of them include: visual navigation, signal-of-

opportunity navigation, magnetic field based navigation, cooperative navigation, and other

multisensor navigation techniques. While each of these solutions offers unique benefits, the

solution that is explored in this thesis is cooperative navigation.

Cooperative navigation is an approach in which two or more cooperating vehicles share

relative measurement information in order to mutually aid their own INS navigation so-

lutions. Relative measurement information can include range, range-rate, and/or bearing.

Additional shared information can include vehicle navigation state estimates and their asso-

ciated uncertainty in the form of a covariance matrix. This information can be communicated

between vehicles through the use of dedicated short range communication (DSRC) channels

and can then be combined in a navigation filter and used to update the navigation states of

each of the cooperating vehicles.

Ideally, all of this information for each vehicle would be sent to a central navigation

filter where the information would be used to update each vehicles’ navigation state and

re-broadcast the vehicles. This type of architecture is referred to as a centralized filter. Two

key limitations in this process are communication bandwidth and computational load. While

this centralized method does offer the best possible fusion of measurement and vehicle state

information, there can be an especially high load on the communication and computational

capabilities of the system. For large groups of cooperating vehicles, this approach may

become impossible as the amount of information that must be processed and communicated

by the central navigator becomes too large. Additionally, this system architecture is not

robust to failure of the central navigator.

Another commonly used architecture in cooperative navigation is decentralized (dis-

tributed) estimation. In this architecture, each vehicle runs its own independent navigation

filter that only keeps track of its own navigation states. Inter-vehicle measurements and vehi-

cle state information are still communicated between members of the group, but the demands
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on computation and communication bandwidth are lower. This is because, as the name im-

plies, the computational and communicational loads are distributed among the members of

the group instead of concentrated at one central node. This type of system can easily accom-

modate vehicles entering and leaving the cooperative group and is more robust as it is not

reliant on a single point of failure. Because of the reduced amount of information available to

each vehicle, however, additional difficulties are encountered when processing relative mea-

surement information with this type of estimation architecture. Additional communication

channels may be required in this architecture to handle the communication between each

vehicle.

One of the goals of this thesis is to explore if decentralized estimation techniques can

provide sufficient navigation solutions when compared to centralized techniques to be used in

UAV-UGV and UAV-only cooperative navigation. While this type of comparison has been

done before [19, 20], these works considered range-only cooperative navigation and did not

consider the possibility of UAV maneuver to aid cooperative navigation or an analysis of

observability.

Because the scenarios in this thesis will be considering the “mid-course” of the vehi-

cle navigation problem (i.e. excluding the initial take-off and final arrival portions of the

trajectory), the primary focus will be on achieving accurate vehicle positioning solutions.

While other vehicle states such as attitude and velocity may become of primary importance

in the initial take-off and final arrival portions of the vehicle paths, positioning is the state

of primary concern during this main part of the vehicle path.

This thesis also aims to further leverage cooperative navigation by applying this tech-

nique to scenarios with a heterogeneous group of vehicles with complimentary characteristics

such as UAV-UGV navigation. Because small UAVs have a limited weight capacity, the INS

used on these vehicles are generally small and relatively inaccurate. However, UAVs can

freely maneuver in 3-D space and can more easily avoid GPS denied areas that result from

occlusions such as dense foliage and urban canyons. Because UGVs operate on the ground,
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they are often more subject to these GPS outages, but because weight is not as critical,

UGVs are often equipped with higher quality, more accurate INS. UGVs can also utilize

information from digital elevation models (DEM) to obtain accurate absolute positioning in-

formation in the vertical direction because they operate on the earth’s surface. Cooperative

navigation between UAVs and UGVs allows the sharing of this complimentary navigation

information in order to provide significant navigation solution improvements for the entire

cooperating group.

1.2 Prior Work

One of the first major applications of cooperative navigation technology was part of

the Joint Tactical Information Distribution System (JTIDS). This system, developed by

the US armed forces in the 1970’s allowed for secure communication and “precision rela-

tive navigation” [39] that relied on time-of-arrival range measurements between vehicles.

The introduction of this technology sparked a new area of research that has been under

investigation ever since.

In [37], a cooperative navigation algorithm for GPS-denied environments was developed

for miniature air vehicles (MAVs). In that paper, MAVs were assumed to be equipped

with IMUs and relative range and bearing sensors. A centralized EKF was used along

with a simplified planar MAV model. The work showed significant navigation accuracy

improvements by utilizing the cooperative navigation system over the navigation solution

calculated with only the IMU. A similar centralized EKF approach was taken in [9], except

a full 6-DOF UAV was used, and UAVs were allowed to take range, range-rate, and bearing

measurements. It was also assumed that landmarks with known locations were located in the

environment. That paper reported the best results when a combination of range and range-

rate was used. However, high levels of noise in the bearing measurement at short ranges

caused an increase in error when this measurement was used. For future work, the authors
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suggested development of a decentralized cooperative navigation algorithm to investigate the

effect of different UAV trajectories without the presence of landmarks.

There are several key challenges noted in the literature facing the future practical imple-

mentation of cooperative navigation. Mokhtarzadeh et. al focused on issues of availability,

solution integrity, and estimator architecture in [19, 20]. Availability refers to the fraction

of time that cooperative navigation can be implemented between nearby vehicles due to

communication and measurement range constraints. Solution integrity refers to the problem

of ensuring that the cooperative navigation algorithm does not give an erroneous navigation

solution without indicating proper uncertainty bounds. Estimator architecture refers to the

type of estimation algorithm and communication architecture that is used in cooperative

navigation.

In [3], Brink discussed the challenge of scalability. To be scalable, the system needs to

minimize the number of bits sent/ received and maximize the value of those bits. To this

end, this thesis seeks to evaluate potential cooperative aiding measurements in conjunction

with available estimation architectures to determine which cooperative data is most ben-

eficial. If certain combinations of cooperative measurements with estimation architecture

and UAV maneuver can be shown to provide adequate navigation solutions, then additional

information exchange beyond this key data can be neglected, resulting in a more scalable

system that requires less information exchange.

The concept of using a vehicle maneuver and formation geometry to improve cooperative

navigation accuracy has been suggested in [6, 7, 29, 31, 34, 38]. Causa investigated the case

where a high flying “father” UAV maneuvers to help improve the navigation solution of

a “son” UAV that operates in an environment where GPS information is occluded from

almost all of the available satellites in [6]. Causa primarily focused on using the father UAV

to improve the dilution of precision (DOP) characteristics of the son UAV to ultimately

improve the son’s navigation solution. In [34], Sharma developed an observability-based

controller intended to improve the cooperative localization accuracy of a team of unmanned
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vehicles in the presence of landmarks of known locations. In [31], a class of vehicle maneuvers

that relied on the placement of vehicle waypoints was investigated. In this work, two vehicles

were assumed to travel alongside each other from nearby start locations to similar, nearby

goal locations. Vehicle position uncertainty was reduced by a factor of 15, when the vehicles

were guided to certain along-route waypoints, as opposed to the case where the two vehicles

traveled parallel to each other, straight to their goals throughout the entire run. Many

simplifying assumptions were made in this study, including that the vehicles traveled only

on a 2-D plane. To the best of this author’s knowledge, no similar study that compares

a class of vehicle maneuvers in 3-D space to improve cooperative navigation performance

exists in the literature.

Several authors have performed observability analyses on various cooperative navigation

scenarios [7, 8, 22, 36, 37]. These analyses have generally focused on simplified vehicle models

with relatively few states, operating in planar environments, sometimes in the presence of

landmarks of known position. The results of these analyses include that if at least one of

the cooperating members has access to absolute position measurements, then the position

states of the entire group become observable assuming that the relative vehicle positions

can be measured [22]. In [37], Sharma et. al. show that in certain cases UAV position and

heading may not be directly observable, but there still may be nonlinear combinations of

these states (modes) that are observable. This work, [37], also shows that when relative

range and bearing measurements are fused with IMU output, the IMU bias, relative position

and relative headings become observable. Additionally, [5, 10, 16, 23, 28, 33, 36] investigate

other elements of cooperative navigation, such as: adaptive cooperative navigation strategies,

map-aided cooperative navigation, robustness issues, bearing-only tracking, multi-vehicle

mapping, interacting multiple model radar tracking, and graph-based analysis of cooperative

navigation observability. This thesis aims to perform an observability analysis that considers

varied measurement availability and vehicle maneuvers to aid observability. To the best of

this author’s knowledge, a study of this type does not currently exist in the literature.
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1.3 Contributions

Applications of centralized, EKF-based algorithms and decentralized, CI-based coop-

erative navigation algorithms do exist in the literature. However, a comparison of these

algorithms in UAV-UGV and UAV-only scenarios with varied measurement availability and

UAV maneuver to improve observability has not been explored. The primary contributions

of this thesis are:

• Analysis and evaluation of both relative and absolute positioning errors for groups of

cooperating vehicles in a variety of scenarios

• Evaluation and comparison of the effect of different measurements on cooperative nav-

igation, including: relative range, relative range-rate, relative bearing, inertial, and

absolute position (from GPS and/or DEM)

• Analysis of a class of UAV maneuvers to improve cooperative navigation observability

and estimation accuracy

• Cooperative navigation observability analysis, considering varied measurement avail-

ability and vehicle maneuver

• Evaluation and comparison of a centralized, EKF-based cooperative navigation algo-

rithm and decentralized, CI-based algorithm

• Simulated and experimental results of UAV-UGV and UAV only scenarios to validate

the algorithms

1.4 Thesis Outline

Chapter 2 provides an introduction and background on the cooperative navigation algo-

rithms and methods used in this thesis. This chapter also discusses the measurement models
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and kinematic vehicle model. In Chapter 3, observability concepts are discussed and sim-

ulations to analyze the observability characteristics of the cooperative navigation scenarios

are presented. Chapter 4 presents the simulation results of various cooperative navigation

scenarios. Comparisons between the results for centralized and decentralized algorithms are

made as well as a comparison of the results produced with different levels of vehicle maneuver

and measurement availability. Next, in Chapter 5, results from the experimental tests are

described. Lastly, in Chapter 6, final conclusions are drawn, major findings are summarized,

and possible areas for future work are discussed.
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Chapter 2

Cooperative Navigation Background

In order for any cooperative navigation scheme to be implemented, a state estimation

algorithm that can suitably fuse sensor measurements with a dynamic system model is

required. Since its invention by R.E. Kalman in 1960 [18], the Kalman filter has formed

the basis of many such algorithms. The Kalman filter is a recursive algorithm, based on

Bayesian estimation theory, that provides state estimates given a system model and a stream

of measurements, along with associated uncertainties. These state estimates are calculated

to be an optimal trade-off between model error and sensor noise. The linear, continuous-time

system to be estimated is assumed to be of the form:

ẋ = Ax+Bu+ w (2.1)

y = Hx+ η (2.2)

where x is the n× 1 system state, u is the m× 1 input, A is the n× n system matrix, B is

the n×m deterministic control input matrix, u is the deterministic control input, w is the

n× 1 stochastic error input which is assumed to be Gaussian and zero-mean, y is the r × 1

output, and H is the r× n measurement matrix, and η is the r× 1 stochastic measurement

error which is also assumed to be Gaussian and zero-mean. An n × n covariance matrix of

the process noise, w, is called Q. An r × r measurement covariance matrix, R, is formed

from η. Note that this model assumes that all of the additive error is contained in w and η

and that there is no error in H or A. If this assumption is violated, as is often the case in

practical application, the performance of the algorithm can begin to break down.
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While Kalman filter algorithms do commonly exist for continuous implementation, this

thesis will focus on the discrete-time Kalman filter. A discrete system is formed by discretiz-

ing the original, continuous-time system. Discrete-time systems are of the form:

xk+1 = Φk,k+1xk +Bkuk +Bwwk (2.3)

yk = Hkxk + ηk (2.4)

where xk is the system state at time k, Φk,k+1 is the state transition matrix from time k to

time k + 1, Bk is the discrete control input matrix, uk is the deterministic control input at

time k, wk is the stochastic error input, Bw is the stochastic input matrix, yk is the output at

time k, and Hk is the measurement matrix at time k, and ηk is the stochastic measurement

error at time k. Similar to the continuous system, a covariance matrix of the process noise,

wk, is called Qd, and a measurement covariance matrix, R, is formed from ηk. The state

transition matrix, Φ can be derived from the original continuous system dynamic matrix by

taking the matrix exponential:

Φk,k+1 = eAdt (2.5)

where dt is the model propagation time step. Note that for linear time-invariant (LTI)

systems, Φ will be the same at every time step, but for time-varying systems, Φ should be

re-calculated at every time-step. The discrete forms of B, H, and Q are calculated by:

Bd =

∫ dt

0

eAτdτB (2.6)

Hk = H (2.7)

Qd = Qdt (2.8)

Note that this calculation of Qd is a commonly used approximation. The discrete-time

Kalman filter algorithm is implemented in two steps, the time update (or prediction) step
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and the measurement update step. In the time update, the estimated state, x̂, and its

associated uncertainty, P , are propagated forward in time by:

x̂−k+1 = Φx̂k +Bduk (2.9)

P−
k+1 = ΦPkΦ

T +BwQdBw (2.10)

where x̂−k+1 and P−
k+1 are the a priori state estimate and covariance at time k+1 respectively.

The propagation (2.9, 2.10) is iteratively repeated until a measurement becomes available.

Then, the measurement update step can be performed. First, the Kalman gain, K, must be

calculated:

K =
P−
k+1H

T
k+1

Hk+1P
−
k+1H

T
k+1 +R

(2.11)

Next, the state estimate can be corrected:

x̂+
k+1 = x̂−k+1 +K(y −Hk+1x̂

−
k+1) (2.12)

Lastly, the state covariance matrix is updated:

P+
k+1 = P−

k+1 −KHk+1P
−
k+1 (2.13)

x̂+
k+1 and P+

k+1 are the a posteriori state estimate and covariance respectively. For a more

detailed review of the Kalman filtering algorithm, see [14, 42].

2.1 6-DOF IMU Mechanization

Now that the Kalman Filter algorithm has been outlined, the specific cooperative nav-

igation implementation can be discussed. As noted in [32], estimation approaches for ve-

hicle dynamics can be broadly categorized as either model -based or kinematic approaches.

Model-based approaches primarily rely on specific properties and dynamic characteristics of
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the vehicle to define the dynamic model to be used in the time-update portion of Kalman

filter-based algorithms. A model-based approach is used in [1] for the problem of small-UAV

navigation. Model-based approaches take advantage of physical relationships between the

vehicle and the surrounding world to predict future vehicle states. This can be a good ap-

proach assuming that the vehicle dynamics are well understood, can be modeled, and are

not subject to change. Specific vehicle inputs such as steering angle and motor torque must

also be measured to use this type of approach.

Instead of using specific vehicle parameters to form a dynamic model, kinematic ap-

proaches rely on the acceleration and angular rate outputs of vehicle-mounted accelerome-

ters and gyroscopes to model the system dynamics used in the Kalman time update. One

of the advantages of the kinematic approach is that it does not depend on specific vehicle

parameters that are subject to change. An IMU can also be mounted to almost any vehicle

to measure these outputs, so detailed dynamic modeling is not typically required for this

approach. Kinematic estimation approaches are also vehicle-agnostic. Therefore, results ob-

tained by using this type of model are more general and can be applied to multiple vehicle

platforms, assuming that similar types of vehicle motion are possible. A kinematic-based

approach will be used in this thesis. Specifically, the 6-DOF IMU equipped to the body-

frame of each vehicle will be mechanized in a North, East, Down (NED) navigation frame.

An arbitrary vehicle with body frame axes along with NED axes can be seen in Figure 2.1.

The vehicle’s attitude is parameterized by its roll (φ), pitch (θ), and yaw (ψ) angles.

Because the 6-DOF IMU is fixed to the body frame and the vehicle is navigating in the

NED frame, a coordinate transformation must be made in order for the acceleration and

angular-rate values measured in the body frame to provide useful NED frame information.

This coordinate transformation will be handled by a 1-2-3 Euler angle rotation. “1-2-3”

refers to the order of rotation. First, a “1” rotation (or rotation about the body frame “x”
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Figure 2.1: Body Frame and NED Frame [41]

or “1” axis) is made by angle φ. This rotation is mathematically represented by:

R1(φ) =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (2.14)

Next, a “2” rotation (or rotation about the rotated frame’s “y” or “2” axis) is made by angle

θ. This rotation is mathematically represented by:

R2(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.15)

Lastly, a “3” rotation (or rotation about the twice rotated frame’s “z” or “3” axis) is made

by angle ψ. This rotation is mathematically represented by:

R3(ψ) =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (2.16)
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This rotation sequence allows acceleration and angular rate measurements made in the body

frame to be re-oriented into the NED navigation frame. Performing the matrix multiplication

results in the final body frame to navigation frame rotation matrix RN
B .

RN
B = R3(ψ)R2(θ)R1(φ)

=


cos(θ) cos(ψ) − cos(φ) sin(ψ) + sin(φ) sin(θ) cos(ψ) sin(φ) sin(ψ) + cos(φ) sin(θ) cos(ψ)

cos(θ) sin(ψ) cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)


(2.17)

Rotating body frame accelerations into the NED frame is given by:


aN

aE

aD

 = RN
B


ax

ay

az

 (2.18)

where aN , aE, and aD are acceleration in the north, east and down directions, respectively,

and ax, ay, and az are the measured body frame x, y, and z direction accelerations, respec-

tively.

One important note is that accelerometers actually measure specific force, not true accel-

eration. Specific force is an acceleration relative to free fall, so a freely falling accelerometer

will ideally have zero output (assuming no other forces are are applied to the accelerometer

body). A stationary accelerometer can measure gravitational acceleration. Once the body

frame accelerations (or specific force) are rotated into the NED frame, the acceleration due

to the earth’s gravitation must be subtracted from the measurement. The earth’s gravitation

is typically taken from a pre-defined gravity model.

The World Geodetic System 1984 (WGS84) datum includes a model for the acceleration

due to gravity at any given latitude that includes considerations for the Earth’s rotation
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rate and ellipsoidal shape. For more information on this model, see [14]. Once the properly

rotated gravitational acceleration has been subtracted from the NED accelerations, they can

be integrated to compute NED velocity, and these velocities can be integrated to get NED

position.

In order to correctly rotate the IMU accelerometer readings into the proper frame, the

gyro measurements must first be processed to obtain an updated vehicle attitude. Body

frame angular rate measurements are rotated into the proper, Euler-rate frame by the fol-

lowing rotation:


φ̇

θ̇

ψ̇

 =
1

cos(θ)


cos(θ) sin(φ) sin(θ) cos(φ) sin(θ)

0 cos(φ) cos(θ) − sin(φ) cos(θ)

0 sin(φ) cos(φ)



gx

gy

gz

 (2.19)

where gx, gy, and gz are the body frame angular rates, and φ̇, θ̇, and ψ̇ are the Euler

rates. These Euler rates are integrated to calculate the Euler angles. The 6-DOF IMU

mechanization algorithm described above, is summarized in Figure 2.2. Note that for this

mechanization to be performed, position, velocity, and attitude must be accurately initialized

by some other navigation technique (eg. GPS). In this work, the 15 × 1 state vector of the

Figure 2.2: IMU Mechanization
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ith vehicle is formulated as:

xi =



PNED

V NED

Ψ

ba

bg


(2.20)

where PNED is the 3× 1 NED-frame position vector of the vehicle, V NED is the 3× 1 NED

velocity vector, Ψ is the 3 × 1 vector of “1-2-3” Euler Angles, and ba and bg are the 3 × 1

accelerometer and gyro biases of the IMU, respectively. These accelerometer and gyro biases

will be discussed in more detail in the next section.

2.2 Measurement Models

In this work, measurements are taken from on-board navigation sensors and then pro-

cessed in order to compute a navigation solution. Each of these measurements is subject to

a variety of sources of error and can be modeled by mathematical equations.

2.2.1 IMU Model

As noted in Chapter 1, IMU measurements are subject to noise and bias. Additional

error sources for IMUs include scale factor errors, cross-coupling errors, errors associated

with temperature, and vibration induced errors [14]. The IMU model used in this thesis

assumes that all of the deterministic sources of IMU error can be removed by calibration, or

are negligible. This leaves the primary error sources as a zero-mean, Gaussian noise and a

“random walk” bias. The accelerometer output for a given body-frame direction is:

ameas = abody + ba + ηa (2.21)
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where ameas is the measured output, abody is the true body-frame acceleration, ba is the

“random walk” bias, and ηa is the zero-mean, Gaussian noise with standard deviation σa.

The “random walk” bias, ba, is not truly a random walk, as it is modeled by a first order

Gauss-Markov process:

ḃa = − 1

τbias
(ba + ηb) (2.22)

where τbias is the time constant associated with the Gauss-Markov process, and ηb is a

zero-mean, Gaussian noise term with standard deviation σb that drives the Gauss-Markov

process.

As can be seen in Equations 2.21 and 2.22, there are three parameters that determine the

“quality” of the IMU measurements (σa, σb, and τbias). These parameters can be determined

by forming an Alan variance plot from static IMU data. For a detailed explanation on this

process, see [41]. Five general “quality” levels or grades of IMUs are defined in [13, 14]. From

least accurate to most accurate, these grades are: consumer, tactical, intermediate, aviation,

and marine. Table 2.1 shows typical biases for each of these IMU grades, as reported in [14].

Table 2.1: Typical accelerometer and gyro biases for different grade IMUs (from:[14])

IMU Grade Accelerometer Bias (m/s2) Gyro Bias (deg/s)
Marine 10−4 0.001

Aviation 3× 10−4 − 10−3 0.01
Intermediate 0.001− 0.01 0.1

Tactical 0.01− 0.1 1− 100
Consumer > 0.03 > 100

In this thesis, UAVs are assumed to be equipped with IMUs that fit into a low quality

tactical grade, and UGVs are equipped with IMUs that fit into either a high quality tactical

or low quality intermediate grade. This is because, as previously mentioned, the higher grade

IMUs are typically also larger in size, and UGVs are not subject to the same size and weight

19



constraints as UAVs. In the simulations, parameters, (σa, σb, and τbias), were set so that the

bias values for the IMUs are characteristic of the IMU grade as defined in Table 2.1.

Using this model, with the states described in Equation 2.20, the process noise covariance

matrix, Q, for each vehicle is defined as in Groves, [14]:

Q =



03 03 03 03 03

03 SaI3 03 03 03

03 03 SgI3 03 03

03 03 03 SbaI3 03

03 03 03 03 SbgI3


(2.23)

where 03 is a 3×3 matrix of zeros and I3 is the 3×3 identity matrix. Scalars, Sa, Sg, Sba, and

Sbg are the power spectral densities (PSDs) of accelerometer noise, gyro noise, accelerometer

bias noise, and gyro bias noise, respectively. While true PSDs vary with frequency, these

approximate values do not include this variation. This assumption is made because the

Kalman filter assumes that all noise sources are white. The values of these parameters as

defined in [14] are:

Sa = σ2
adt Sg = σ2

gdt (2.24)

where dt is the mechanization time-step, σa is the standard deviation of the noise on the

accelerometer measurements and σb is the standard deviation of the noise on the gyro mea-

surements. The spectral densities on the biases are:

Sba =
σ2
ba

τabias
Sbg =

σ2
bg

τgbias
(2.25)

where σba and σbg are the standard deviations of the driving noise on the accelerometer

and gyro biases respectively and τabias and τgbias are the time constants associated with the

Gauss-Markov processes modeling the accelerometer bias and gyro bias respectively. Note
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that this process noise matrix must still be discretized by Equation 2.8 if a discrete algorithm

is being used.

2.2.2 Exteroceptive Sensor Models

The cooperative vehicle-to-vehicle (V2V) measurements used in this thesis include rel-

ative range, range-rate, and bearing. There are various on-board, exteroceptive sensors that

can be equipped to small UAVs that make each of these measurements possible. Range

and range-rate can be measured by radar, laser scanners, ultra-wide-band (UWB) radios,

or other transponder-based techniques [11]. Range and/or range-rate measurements were

used for cooperative navigation in [11, 31, 38]. Relative bearing can be determined by visual

methods, LIDAR, radar, or other multi-antenna, angle-of-arrival estimation algorithms such

as Multiple Signal Classification (MUSIC). Relative bearing measurements have been used

in cooperative navigation in [6, 24, 36].

All three of these relative measurements (range, range-rate, and bearing) are mathemat-

ically modeled by nonlinear functions of the vehicle states. Inter-vehicle range measurements

are modeled by:

ρij =
√

∆P 2
N + ∆P 2

E + ∆P 2
D + ηρ (2.26)

where ρij is the range measurement from vehicle i to vehicle j, ∆PN ,∆PE, and ∆PD represent

the difference in North, East, and Down position respectively between the two vehicles, and

ηρ represents zero mean, Gaussian measurement noise with standard deviation σρ. Inter-

vehicle range-rate measurements are modeled by:

ρ̇ij =
∆PN∆VN + ∆PE∆VE + ∆PD∆VD

ρij
+ ηρ̇ (2.27)

where ρ̇ij is the range-rate measurement and ∆VN ,∆VE, and ∆VD represent the difference in

North, East, and Down velocity respectively between the two vehicles. Inter-vehicle bearing
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is broken into separate azimuth and elevation components [5]. Azimuth is modeled by:

Λij = arctan(
∆PN
∆PE

)− ψi + ηΛ (2.28)

where Λij is the azimuth measurement and ψi is the yaw angle of vehicle i [36]. Elevation is

modeled as:

Eij = arctan(
−∆PD√

∆P 2
N + ∆P 2

E

)− θi + ηE (2.29)

where Eij is the elevation measurement and θi is the pitch angle of vehicle i.

Absolute measurements are allowed to certain vehicles in a few of the simulated cooper-

ative navigation scenarios. GPS measurements give absolute position information as opposed

to the relative information given in Equations 2.26-2.29. GPS measurements are modeled

as:

Pmeas = P + ηGPS (2.30)

where P is the 3x1 vector of NED position coordinates of a vehicle, and ηGPS is a 3x1 vector

of zero-mean, Gaussian random variables with standard deviation σGPS. While this is a

simplistic model for GPS measurement information, it is sufficient for this thesis. Addition-

ally, absolute attitude information is allowed to certain vehicles in a few of the simulated

cooperative navigation scenarios. This information is assumed to come from an attitude

heading reference system (AHRS) that combines information from the GPS receiver along

with gyro, accelerometer, and magnetometer sensors to compute absolute vehicle attitude.

An AHRS design of this type is presented in [12, 14]. The measurement model used in this

thesis for this device is:

Ψmeas = Ψ + ηAHRS (2.31)

where Ψ is the 3x1 vector of Euler angles describing the attitude of the given vehicle, and

ηAHRS is a 3x1 vector of zero-mean, Gaussian random variables with standard deviation

σAHRS. Digital elevation models provide the vertical elevation of points on the Earth’s
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surface. The US Geological Survey (USGS) provides free access to various elevation models,

collected from a variety of sources, on their website (www.usgs.gov). Since UGVs operate on

the surface of the Earth, they can use these models to obtain absolute vertical positioning

information for their estimated location. In this work, digital elevation measurements are

modeled as:

PDEM = PDt + ηDEM (2.32)

where PDEM is the measured vertical position from the DEM, PDt is the true position of the

UGV in the down (vertical) direction, and ηDEM is Gaussian random noise with standard

deviation σDEM .

The measurement covariance matrix, R, is formed as a diagonal matrix from the error

characteristics of the individual measurements.

R =


σ2
meas 1

. . .

σ2
meas m

 (2.33)

Where σmeas i is the standard deviation of the noise on the ith measurement.

2.3 Centralized Cooperative Navigation Algorithm (EKF)

The Extended Kalman Filter (EKF) is a modification of the Kalman filter algorithm

(given in Equations 2.9 - 2.13) for nonlinear systems of the form:

ẋ = f(x, u) + w (2.34)

y = h(x) + η (2.35)
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where f(x, u) is a n × 1 set of nonlinear state equations as a function of the states, x, and

inputs, u, w is the n × 1 stochastic error input which is assumed to be Gaussian and zero-

mean, y is the r × 1 output, h(x) is the r × n set of nonlinear measurement equations as

a function of the states, x, and η is the r × 1 stochastic measurement error which is also

assumed to be Gaussian and zero-mean. w and η are again characterised by the covariance

matrices Q and R, respectively.

The centralized cooperative filter state is constructed by combining each individual

vehicle’s state into a single state vector:

xcentralized =



x1

x2

...

xi


(2.36)

For cooperative navigation with two vehicles Equation 2.36 will be a 30× 1 state vector, for

three vehicles this is a 45× 1 state vector, etc.

A block diagram describing the centralized cooperative navigation architecture is shown

in Figure 2.3. Each of the vehicles passes IMU data along with inter-vehicle measurements

Figure 2.3: Centralized Cooperative Navigation Block Diagram
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(as available) to a centralized processor. This centralized navigator could be located on

one of the vehicles or on some type of supporting infrastructure. The centralized navigator

processes and fuses this information from all of the vehicles as described above and re-

transmits each vehicle’s navigation solution back to that vehicle. Note that the centralized

processor must handle receiving, processing, and re-transmitting all of the data for all of the

cooperating vehicles. Depending on the number of vehicles in the cooperative group, this

task could require a high computational and communicational bandwidth.

Both the 6-DOF IMU mechanization (Equations 2.18-2.19) used for the time update

portion of the algorithm and the measurement update equations (Equations 2.26-2.31) are

nonlinear functions of the state and input. Therefore, the EKF will be used as the basis

of the centralized cooperative navigation algorithm. The EKF differs from the standard

Kalman Filter (Equations 2.9-2.13), in that the nonlinear system is linearized in order to

be used in the algorithm. The steps of the time update of this modified algorithm are as

follows:

1. propagate state estimates forward using nonlinear state equations, ẋ = f(x, u).

2. Calculate linearized state matrix, A. Each element of the state matrix is determined by

calculating the Jacobian and evaluating at the current operating point. See Appendix

A for a detailed calculation of matrix A for this system.

Ai,j =
∂fi
∂Xj

(2.37)

3. Discretize the state transition matrix by Equation 2.5.

4. Propagate the state covariance matrix by Equation 2.10.

This time update is repeated until measurements become available. When measurements

become available, the measurement update step can be performed as follows:
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1. Calculate linearized measurement matrix, H. This matrix is the Jacobian of the non-

linear measurement equations evaluated at the current operating point. See Appendix

A for a detailed calculation of matrix H.

Hi,j =
∂hi
∂Xj

(2.38)

2. Calculate the Kalman gain, K, by Equation 2.11, using the linearized H matrix.

3. Calculate the a posteriori state estimate using the nonlinear measurement equations,

h(x):

x+
k+1 = x−k+1 +K(y − h(x−k+1)) (2.39)

4. Calculate the a posteriori covariance matrix, P+
k+1, using Equation 2.13.

As mentioned in Chapter 1, one of the goals of this thesis is to compare centralized

and decentralized estimation architectures for cooperative navigation. The centralized ar-

chitecture is described as being “optimal” from an information theory point of view in [20].

This is because one of the main advantages of this architecture is that all of the inter-vehicle

state cross-covariance values are kept track of in the centralized covariance matrix, P . For

a centralized cooperative navigation scenario with three vehicles, this covariance matrix can

be described as:

Pcentralized =


P11 P12 P13

P21 P22 P23

P31 P32 P33

 (2.40)

where Pii is the 15×15 covariance matrix correlating vehicle i states to themselves and Pij is

the 15× 15 covariance matrix correlating vehicle i states to vehicle j states. In cases where

no inter-vehicle cooperation exists, the off-diagonal covariance values are zero. However,
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the inter-vehicle correlation is non-zero if there is any form of cooperative aiding. The off-

diagonal covariance correlations are important when processing relative measurements that

are functions of multiple vehicle’s states.

Zero inter-vehicle correlation indicates that any measurement made between the two ve-

hicles is completely new information and should be weighted accordingly in the measurement

update step. However, non-zero inter-vehicle correlation indicates that that measurements

made between the two vehicles do not contain new or unique information. Due to the nature

of the cooperative navigation problem, these inter-vehicle correlations grow as more coop-

erative measurements are processed and the vehicle state estimates become more tightly

coupled [19].

Figure 2.4 illustrates the basic problem in cooperative navigation. Cooperative mea-

surements with associated uncertainties, R, are taken between cooperating vehicles whose

states also have an associated uncertainty, P . If a centralized estimation approach is taken,

each of these uncertainties is optimally accounted for so that when the measurement update

occurs, it is optimally weighted taking all uncertainties into consideration. Note that while

for linear systems, this solution can be said to be optimal, for nonlinear systems a globally

optimal solution cannot usually be guaranteed.

Weighting of the measurement based on associated uncertainties can be seen in the

calculation of the Kalman gain in Equation 2.11. The numerator of this equation can be said

to represent the a priori state uncertainty, while the denominator of this equation represents

the total uncertainty associated with the measurement, including both the measurement

uncertainty, R, and the uncertainty of the states about which the measurement is made,

HPHT .

To further understand this weighting, it is useful to look at two edge cases in regard to

these uncertainties. In the case of a perfect measurement, R = 0, Equation 2.11 reduces to

K = H−1. Plugging this Kalman gain into Equation 2.12, the updated state is calculated
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as x̂+ = H−1y. This indicates that the updated state estimate is solely based on the mea-

surement and that the previous estimate is neglected. In the case of a perfect a priori state

estimate, the Kalman gain is calculated as K = 0. Plugging this Kalman gain into the state

update equation results in x̂+ = x̂−. The new measurement is completely ignored because

the already perfect state estimate cannot be improved by adding any further information.

While neither of these two edge cases would ever happen in reality, they do provide insight

into how this algorithm is able to fuse cooperative measurements with state estimates in the

centralized case.

Figure 2.4: Uncertain measurement, ρ12, taken between two UAVs with uncertain estimated
states with covariances P1 and P2

2.4 Decentralized Cooperative Navigation Algorithm (CI)

Now that the centralized algorithm has been outlined, the additional challenges in-

volved in the decentralized implementation can be discussed. For decentralized cooperative

navigation with three vehicles, the covariance matrices that can be tracked are:

Pvehicle1 =

[
P11

]
, Pvehicle2 =

[
P22

]
, Pvehicle3 =

[
P33

]
(2.41)
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Comparing Equations 2.41 and 2.40, it can be seen that a decentralized cooperative naviga-

tion system cannot calculate inter-vehicle state correlations, Pij, that a centralized algorithm

can calculate directly. This is because each vehicle separately estimates its own navigation

state in the decentralized case. Therefore, the convenient mathematical properties that the

centralized EKF uses to fuse inter-vehicle measurements cannot be used in the decentralized

case.

To use an EKF in a decentralized manner would lead to a violation of one of the

key assumptions made in the Kalman Filter derivation, that the a priori state and the

measurement errors are independent. In this case, each relative measurement update would

be counted as completely new information, and the growing inter-state correlation between

cooperating vehicles would be completely neglected. If neglected, this violation can lead to

filter divergence and error loops that can amplify state estimation errors [19]. To combat this

unknown correlation issue, alternative algorithms must be considered for the decentralized

case.

In the literature, the most widely cited algorithm to correct for this problem in coop-

erative navigation is the Covariance Intersection (CI) filter [19, 20, 21, 43]. The Covariance

Intersection filter was first introduced in [17]. This filter is based on the standard Kalman

filter, but contains additional steps to account for unknown inter-state correlations. The

time update step of this algorithm is the exact same as the EKF time update. The differ-

ence in the algorithm is in the measurement update step. The measurement update of the

CI filter is given as follows:

1. Calculate linearized measurement matrix, H, as in Equation 2.38.

2. Inflate measurement covariance elements.

Ri = Ri +HjPjjH
T
j (2.42)
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where Ri is the uncertainty of the measurement from vehicle i to vehicle j, Hj is

vehicle j’s measurement matrix associated with that measurement, and Pjj is vehicle j’s

state covariance matrix. This step should be performed separately for each individual

cooperative measurement, with the vehicle i’s final measurement covariance, R, being

composed of all Ri terms, combined in a block-diagonal fashion.

3. Define a cost function, J .

J(ω) = trace

{(
ω(P−

k+1)−1 + (1− ω)HTR−1H

)−1}
(2.43)

4. Find ω∗ that minimizes J for ω ∈ [0, 1]. The MATLAB function fminbnd() was used

to perform this calculation in this work.

5. Calculate the a posteriori covariance estimate.

P+
k+1 = (ω∗(P−

k+1)−1 + (1− ω∗)HTR−1H)−1 (2.44)

6. Calculate the Kalman Gain.

K = (1− ω∗)P+
k+1H

TR−1 (2.45)

7. Update the state estimate according to Equation 2.39.

Performing this algorithm on a model with more than just a few states can result

in the algorithm greatly under-weighting the effect of the measurement updates. This is

especially true when the values modeled by different states have different units as stated by

Mokhtarzadeh in [19]. This is the case here, as each vehicle has 15 states with five different

types of units among those states. To mitigate this effect, Mokhtarzadeh notes that it may

be necessary to perform a scaling on the states and covariances or use non-“optimal” ω∗

values. These scalings are often done heuristically, based on engineering judgement, and
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may not be robust to various scenarios and applications. This can be a major drawback of

this technique. See [19] for a more detailed discussion of these issues.

When comparing the calculation of the Kalman gain for the centralized and decentralized

algorithms, Equations 2.11 and 2.45, two main differences can be observed. First, for the

centralized algorithm, the HPHT term in Equation 2.11 represents the state uncertainty of

the full system, including all vehicles and all inter-vehicle correlations. For the decentralized

algorithm, the measurement uncertainty is inflated by a similar HjPjjH
T
j term. This term

represents the additional measurement uncertainty due to the fact that the measurement is

made to a vehicle with an uncertain state and does not include any information regarding

inter-vehicle state correlations. In order to account for the unknown covariance information,

an extra term, ω∗, is introduced into the measurement update equations. This term is present

in the calculation of the decentralized Kalman gain in Equation 2.45 and is not seen in the

standard Kalman filter, in Equation 2.11.

To further investigate this, two edge cases for ω∗ in Equation 2.45 will be explored in the

same way that two edge cases were previously explored for Equation 2.11. In the case where

ω∗ = 0 minimizes the cost function in Equation 2.43 and this value is plugged into Equations

2.44 and 2.45, the Kalman gain simplifies to K = H−1. As previously discussed, this Kalman

gain corresponds to perfect trust of the updating measurement. In the case where ω∗ = 1

minimizes the cost function, the Kalman gain simplifies to K = 0, or zero weighting of

the measurement update. This ω∗ term allows the algorithm to fuse measurements where

unknown correlations exist between cooperating vehicle states without the advantage of

the mathematical properties that automatically account for these correlations in centralized

EKF cooperative navigation. In other words, this term provides a method to systematically

“tune” the level at which the measurement is weighted in the state update.

A block diagram describing the decentralized cooperative navigation architecture is

shown in Figure 2.5. Each of the vehicles passes IMU data along with inter-vehicle mea-

surements (as available) to a decentralized processor. This decentralized navigator would
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Figure 2.5: Decentralized Cooperative Navigation Block Diagram

typically be located on the vehicle itself. The navigator processes and fuses this information

as described above and calculates the vehicle’s navigation solution. The fact that this takes

place on each vehicle reduces the amount of information that must be received, processed,

and sent by any single processor, thus “distributing” the estimation process.

2.5 Filter Tuning

One last consideration that should be made concerning the practical application of these

algorithms is filter tuning. In certain cases, especially for nonlinear systems or when process

or sensor error characteristics are not fully known, the filter performance can be improved

by scaling the values of the process and measurement covariance matrices, Q and R. Low Q
R

ratios will result in a slow responding filter with a high amount of lag that easily filters out

noise. In system response terms, this filter has a low bandwidth. High Q
R

ratios will result

in a filter that responds very quickly with very little lag, but is filters out noise poorly. This

filter has a high bandwidth. In practical application, this ratio should be tuned in order to

provide a balance between response speed and filtering. Additionally, for nonlinear systems,

the initialization of the state estimate covariance matrix, P , can have an impact on estimator

performance.
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Figure 2.6 shows the estimation of a gyroscope bias for different filter tuning ratios.

Because the measurement update is weighted more heavily in cases with a high Q
R

, this could

result in a biased or even an unstable filter if the measurement noise has too great of an

effect on the estimation solution.

Figure 2.6: Filter Tuning: Gyro Bias Estimation (a)Q/R too low (stable but slow response)
(b)Reasonable Q/R (c)Q/R too high (fast response but high noise and potential instability)

It is often necessary in practice to inflate the process or measurement noise covariance

matrices above the corresponding error deviations [14]. This is because the filter’s model of

the system is only an approximation of the real system. This is especially true in cooperative

navigation scenarios where the true states are not fully observable and the filter solution
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cannot converge to true values. As the estimated solution drifts from the true solution,

filter instability can result if care is not taken to tune these covariance values. This is also

important for nonlinear systems such as the cooperative navigation algorithms studied in

this work, as the linearization accuracy can begin to break down as the estimate drifts farther

away from the true state. It can become necessary to tune Q
R

much lower than sensor error

parameters indicate to prevent instability. The tuning process is typically done heuristically,

by hand, and care should be taken in simulation to ensure the adequate performance of the

selected tuning parameters.

2.6 Conclusion

This chapter introduced the centralized and decentralized cooperative navigation algo-

rithms that are implemented later in this thesis. The kinematic vehicle model and naviga-

tion frame considerations were also discussed along with the measurement models used here.

Lastly, general considerations such as inter-vehicle state correlations and filter tuning were

discussed.
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Chapter 3

Observability Analysis

One of the most important factors for the estimation algorithms introduced in Chapter

2 to obtain accurate estimates of the model states is state observability. Observability can

be described as the phenomenon of being able to estimate the state of a model based on the

measured outputs over a finite time window. In mathematical terms, given a system of the

form Equation 2.1 and Equation 2.2, the system is observable at t0 if the output history,

y(t), t0 ≤ t ≤ tf ≤ ∞, is sufficient to reconstruct x(t0) [40].

3.1 Linear Observability Analysis

Linear system observability analysis is a well studied problem with relatively simple

solutions. For a detailed discussion of these methods, see [4, 40].

3.1.1 Linear Observability Matrix

Perhaps the simplest method to analyze the observability of linear, time-invariant sys-

tems is by constructing the linear observability matrix. As seen in Equation 3.1, this matrix

is a function of the linear state dynamics in the state matrix (A), and the measurement

matrix (H). Here, n is the number of state variables.

O =



H

HA

HA2

...

HAn−1


(3.1)
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The observability matrix, O, has full rank (n), if and only if the the model is observable.

3.1.2 Linear Observability Gramian

The linear observability Gramian can be applied to analyze the observability of linear,

time-varying systems. Stengel [40] gives the observability Gramian matrix as:

OLOG(t0, tf ) =

∫ tf

t0

Φ(t0, τ)TH(τ)TH(τ)Φ(t0, τ)dτ (3.2)

Here, OLOG(t0, tf ) is the linear observability Gramian from time t0 to tf and Φ(t0, τ) is

the state transition matrix from time t0 to τ . The system is observable if and only if the

linear observability Gramian is non-singular. Additionally, if OLOG(t0, tf ) is full rank (n),

then it is also non-singular and the system is fully observable over the time period t0 to tf .

While this matrix is formed for analysis of linear systems, it can also be used to analyze

linearized nonlinear systems.

3.2 Nonlinear Observability Analysis

Determining the observability of a nonlinear system is less straightforward than de-

termining the observability of a linear system. Herman and Krener’s landmark paper [15]

introduced important definitions and methods of analysis for nonlinear observability. In

that paper, nonlinear systems observability is described as either locally observable, weakly

observable or locally weakly observable. Formal definitions of these observability conditions

are given in [15, 44]:

Definition 3.1 A system is locally observable at x0 if for every state in the neighborhood U

of x0 the set of points indistinguishable from x0 by trajectories in U only consists of x0 itself.

Definition 3.2 A system is weakly observable at x0 if there exists an open neighborhood U

of x0 such that the only point in U that is indistinguishable from x0 is x0 itself.
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Definition 3.3 A system is locally weakly observable at x0 if there exists an open neighbor-

hood U of x0 such that for every open neighborhood V of x0 contained in U, the set of points

indistinguishable from x0 by trajectories in V is x0 itself.

While it can be difficult to prove local and weak observability characteristics of a non-

linear system, local weak observability lends itself to an algebraic test based on the Lie

derivative [15] that is shown in Section 3.2.1 of this thesis. Furthermore, even if nonlinear

system states are not observable, they may be partially observable [14]. For example, a

range measurement, represented by Equation 2.26 is a nonlinear combination of 3 states.

Therefore, although all three of these states are not fully observable given a single range

measurement, all three of the states may be partially observed. The degree at which each of

these states is observed by this single measurement depends on the relative geometry of the

two points that the range measurement is being taken between.

A state can be considered well observable if the measurement output changes signifi-

cantly with small perturbations of that state. A state is poorly observable if a large pertur-

bation of the state results in only a small change in measured output [26]. As Groves states

in [14], “the position information along a given axis obtainable from a given ranging signal

is maximized when the angle between that axis and the signal line of sight is minimized.” If

a range measurement is taken from any direction that is not aligned exactly with one of the

coordinate axes or planes all three of the relative distances will be made partially observable.

If a range from any point can be determined to three known points, the full 3-D position of

that point is observable and can be calculated by trilateration.

One nonlinear observability analysis method is to linearize the system and perform a

linear observability analysis [32, 30]. The simplicity of this method makes it an attractive

option. Additionally, the linearized forms of the state matrix (A) and the measurement ma-

trix (H) must already be computed for the estimation algorithm. However, this linearization

makes the observability results local to the trajectory about which the system is linearized,
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and no implications can be made about the observability of the system as a whole. It is im-

portant to note that the linearization should be performed about the true state rather than

the estimated state [32]. This is because the purpose of this analysis is to determine whether

or not a certain UAV maneuver results in an observable (or more observable) system.

3.2.1 Lie Derivative Observability Analysis

The Lie derivative method of determining nonlinear observability was introduced in

[15]. This test is necessary and sufficient to demonstrate that a system is locally weakly

observable. This method is applied to a system of the form described in Equations 2.1 and

2.2. The Lie derivatives of the system are taken as follows:

L 0
f h(x) = h(x) (3.3)

L 1
f h(x) =

∂h(x)

∂x
· f(x) (3.4)

L 2
f h(x) =

∂L 1
f h(x)

∂x
· f(x) (3.5)

Higher order Lie derivatives are computed similarly. From these Lie derivatives, the

observability matrix, O, is constructed.

O =



∇L 0
f h(x)

∇L 1
f h(x)

...

∇L n−1
f h(x)


(3.6)

When applied to linear, time-invariant systems, this method reduces to the linear ob-

servability matrix described in Equation 3.1. Multiple authors have applied this method

to analyze various cooperative navigation scenarios [37, 44, 2, 8]. However, because of the

time-variant nature of the cooperative navigation scenarios to be investigated, an alternative
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formulation of this observability matrix will be used in this work. This alternative observ-

ability matrix is also constructed in discrete time, which is more in line with the discrete

filtering algorithms being used. This alternative formulation is calculated as:

O =



∂h(x(k))
∂x

∂h(x(k+1))
∂x

Φ(k, k + 1))

...

∂h(x(tf ))

∂x
Φ(k, tf ))


(3.7)

where Φ(k, τ) represents the state transition matrix from time k to τ . The same rank con-

dition can be applied to this matrix to test for system observability. This implementation

was used in [7, 8]. Again, the similarity between this implementation and the linear observ-

ability matrix in Equation 3.1 should be noted. This method is also advantageous when the

cooperative network topology is switching and not fixed as in [7, 8]. The network topology

in this paper is assumed to be fixed in a fully connected manner. Another factor that makes

this method attractive is its simplicity of implementation.

3.2.2 Empirical Observability Gramian Analysis

The construction of an empirical observability Gramian has also been suggested as a

way to analyze the observability of nonlinear systems [27, 25, 26]. In this method, each state

value is perturbed by some pre-defined amount, ε, in both a positive and negative direction

and the change in output, ∆y, is calculated.

∆yi = h(x+ εei)− h(x− εei) (3.8)

where ei are the standard basis vectors in IRn, and ∆yi is the change in measurement caused

by perturbing the ith state. The simulated, “ideal” measurements, with no noise or bias, are

used in this analysis. A modified form of the empirical observability Gramian is used in this
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thesis which includes the state transition matrix, Φ. This allows for observability analysis

of states that are not directly observed by the measurements but are coupled to observed

states through the model dynamics. Using these output differences and the state transition

matrix, the empirical local observability Gramian can be calculated :

OEOG =

∫ tf

t0

Φ(t0, τ)T [∆y1...∆yn]T [∆y1...∆yn]Φ(t0, τ)dτ (3.9)

Comparing Equation 3.9 and 3.2, it can be seen that the calculation of this empirical

observability Gramian is very similar to the calculation of the linear observability Gramian.

The empirical observability Gramian, however, eliminates the need to calculate Jacobian of

the nonlinear measurement equations to get the measurement matrix, H. The empirical

calculation of ∆yi using the nonlinear measurement models takes the place of the Jacobian

matrix H. In cases with highly nonlinear measurements, this method can give more accu-

rate results because the nonlinearities in the measurement model are approximated more

accurately using this empirical method than by the linearized (Jacobian) method. The state

transition matrix must still be calculated by linearization when using this method.

3.3 Cooperative Navigation Observability Tests

The concept of observable states and observable modes is discussed in [32]. In the case

of a 30× 30 observability matrix with a rank of rank 26, this rank deficiency indicates that

the system has 26 observable modes and 4 unobservable modes. This is not the same thing

as a system with 26 observable states and 4 unobservable states. Modes may be states or

functions of states. Therefore, even though there may be 26 observable modes, some of these

modes may be combinations of states. It may not be possible for the filter to separate 26

observable, individual states out of 26 observable modes. One major limitation in using the

observability rank test is that this test only gives a binary yes/no answer to the question

of observability [27]. As mentioned earlier, nonlinear observability can be very complex

40



and even if the full system is not completely observable, the system may still be partially

observable. For these reasons, it is desirable to apply a method that indicates some metric

of the quality of observability of each state.

So far, four methods to construct different forms of observability matrices have been

presented:

1. Linear Observability Matrix

2. Linear Observability Gramian

3. Nonlinear Lie derivative Observability Matrix

4. Nonlinear Empirical Observability Gramian

A matrix rank test has been suggested to analyze the observability of each matrix.

This rank test, however, provides little more information than a binary yes or no to system

observability. Since the cooperative navigation problem in question has inherent observability

problems and is not fully observable in most cases, a method to provided further, qualitative

information of state observability is desired. One such method described in [2, 26] is to

consider the condition number of the observability matrices. The condition number, C, of a

matrix is the ratio of its largest singular value to its smallest singular value.

C =
σmax
σmin

(3.10)

Where σmax and σmin are the largest and smallest singular values of a matrix respectively.

The condition number can be calculated in MATLAB using the function cond(). This condi-

tion number also indicates the sensitivity of the matrix inverse operation to small changes in

input. As previously discussed, high sensitivity to small changes in input (i.e. low condition

number) represents good system observability. Matrices with condition numbers that are

close to 1 are considered well conditioned and invertible. Systems with well conditioned

observability matrices are considered more observable than systems with higher condition
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numbers. An unobservable system’s observability Gramian condition number will approach

∞ and will not be invertible.

This qualitative test of observability still does not fully solve the issue of analyzing

the observability of a cooperative navigation scenario with some unobservable states, as the

presence of even one unobservable state will result in a condition number that approaches

∞. To examine the observability of a subset of system states, a sub-matrix of the overall

observability Gramian matrix corresponding to the desired states can be extracted and ana-

lyzed [26]. For example, since the NED position of UAV 1 are the first 3 states in Equation

2.20, the first 3 × 3 block diagonal matrix in the resulting observability Gramian can be

used to analyze the observability of these states. In cases where an absolute position up-

date (eg. GPS) is available to UAV 1, the resulting condition number of this observability

Gramian sub-matrix is 1. This is the expected result, as the GPS measurement makes the

UAV position fully observable.

3.4 Dilution of Precision

Dilution of Precision (DOP) is a concept that is closely related to the observability

concepts discussed thus far. DOP is a parameter that is typically used to quantify the effect

of satellite-receiver geometry on the quality of the GNSS position, velocity, and timing (PVT)

estimates. In this thesis, DOP will be calculated between cooperating vehicles and used to

analyze the quality of cooperative navigation estimation. DOP is calculated by Equation

3.11.

DOP = (HTH)−1 =


D2
x1

. . .

D2
xn

 (3.11)

where H is the measurement matrix and Dxi is the DOP value corresponding to the ith

state. These DOP values are then used to calculate the uncertainty of a given state as a
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function of measurement uncertainty by Equation 3.12.

σxi = Dxiσmeas (3.12)

High DOP values correspond to poor quality state estimates (poor observability) while low

DOP values correspond to high quality state estimates (good observability).

where σxi is the standard deviation of the uncertainty of the ith state and σmeas is the

standard deviation of the measurement uncertainty. Position dilution of precision (PDOP)

can be analyzed as a whole by combining the DOP values from each position direction as in

Equation 3.13.

DP =
√
D2
N +D2

E +D2
D (3.13)

whereDP is the PDOP,DN , DE, andDD are the DOP in the north, east, and down directions

respectively.

3.5 UAV Maneuvers to Improve Observability

As suggested in [6, 7, 29, 31, 34, 38], relative UAV geometry and maneuver can be used

to improve the observability and subsequently the state estimation accuracy in cooperative

navigation systems. A range measurement taken from different relative orientations in 3-

D space can give information on any of the three relative position states. If this relative

orientation is varied in time, then different parts of the relative position can be observed as

the relative orientation changes. This same phenomenon also holds true for range-rate and

relative bearing measurements if the vehicles are equipped with sensors to measure these

parameters. For this reason, a UAV maneuver that allows for a constantly changing relative

orientation is desired. In [2], Arrichiello describes the condition where the relative position

and velocity vectors between two vehicles are orthogonal and have the same magnitude

as having optimal observability characteristics (the condition number of the observability

Gramian is minimized).
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The simplest way to generate this type of motion is a maneuver in which cooperating

UAVs are guided in “spiral” paths around a common center. Similarly, [7] shows that for

small robots operating in a planar environment, circular robot paths result in reduced es-

timation error. Increasing the frequency of this circling resulted in further improvements

in estimation accuracy. Moreover, [31] also states that sinusoidal trajectories improve navi-

gation accuracy over straight trajectories for vehicles navigating with an IMU and camera,

and that further improvements can be made by increasing the frequency and amplitude of

the oscillations. Motivated by these results, “spiral” trajectories of varying frequency will be

investigated to determine their effect on observability and estimation accuracy in cooperative

navigation. Figure 3.1 shows a comparison of straight UAV paths, low frequency spiral UAV

paths, and high frequency spiral UAV paths. To maintain a safe distance between UAVs, a

spiral radius of 20 meters is maintained in this work.

Figure 3.1: UAV Spiral Maneuvers: (a) straight path, (b) low frequency spiral path, and (c)
high frequency spiral path
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3.6 Observability Simulations

Simulations of various cooperative navigation scenarios undergoing a 60 second GPS

outage were performed in order to analyze their observability characteristics. As previously

noted, it is important to perform these observability analyses over the true vehicle trajectory,

not over the estimated trajectory. First, a comparison of multiple analysis methods was

performed to validate the methods for this system. Figure 3.2 shows the results of the

observability rank test and the observability Gramian condition number test performed on a

scenario where 2 UAVs performing a spiral maneuver at 1 revolution per minute had access

to relative range, range-rate, and bearing measurements. As can be seen in the rank test

Figure 3.2: Observability methods validation, including: rank test and condition number
test of linear and empirical observability Gramians

plot, the Lie derivative observability matrix, the linearized observability Gramian, and the

empirical observability Gramian all quickly converge to a rank of 24. This indicates that

the system has 24 observable modes with these measurements and vehicle maneuver. This is
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below full rank (for cooperative navigation with 2 UAVs full rank is 30), indicating that the

system is not fully observable. To determine the level at which each state is observed, the

condition number of selected state block diagonal portions of the observability Gramian is

calculated and plotted in Figure 3.2. As can be seen in the figure, the linearized and empirical

observability Gramian condition numbers are virtually identical. The fact that both of these

analysis methods agree is a good indication that the reported values accurately represent the

system’s observability characteristics. For each of the vehicle states, the Gramian condition

number starts at a relatively high value and decays as measurement information becomes

available and the system observability is benefited by the inter-UAV maneuver.

3.6.1 UAV to UAV Observability

The effect of the UAV maneuver on the position portion of the Gramian condition

number when only relative range is available between 2 UAVs can be seen in Figure 3.3. As

Figure 3.3: Position Gramian condition number with relative range measurement for different
maneuvers
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the figure shows, the condition number of the Gramian is very high at the beginning of the

simulation before settling to a steady-state value. Higher frequency UAV maneuver’s result

in the condition number settling more quickly. It should also be noted that the position

condition number for the straight maneuver (no inter-UAV motion) does not appear on

this plot because it is unobservable, with a condition number on the order of 1018. This is

because the relative range measurement only provides meaningful position information along

its line-of-sight, and when no deviation is made in the inter-UAV geometry, relative position

is completely unobserved in the other two position directions, leaving the overall position

Gramian unobservable. In the cases with the relative UAV maneuver, as the measurements

are taken from different relative orientations, the position Gramian becomes better and

better conditioned. With respect to the vehicle motion, each of the lines shown in Figure

3.3 are approximately equivalent. When the vehicles have completed 1/4 of a revolution,

the condition number is roughly equal to 1900. When the vehicles have completed 1/2 of a

revolution, the condition number is roughly equal to 70.

Considering this important note, each of the spiral maneuvers is approximately equiva-

lent with the time at which certain levels of observability are reached being the only differ-

ence. The speed at which these states become more observable is important because while

they are unobservable from cooperative measurements at the beginning of the simulated 60

second GPS outage, the INS solution has not had time to drift from the true vehicle state.

After a period of time, when the INS solution begins to drift farther from truth, the states

become more observable from the relative measurements. If this measurement observability

occurs sooner, the INS biases will be better estimated sooner, further limiting the amount of

estimation error from INS drift. The condition number for various measurement availability

as a function of spiral maneuver completion is shown in Figure 3.4. As seen in the figure,

the only measurement combinations that do not result in a condition number approaching

infinity at 0 percent maneuver completion are “range + bearing” and “range + range-rate

+ bearing” (these lines are roughly the same). This indicates that without any maneuver,
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Figure 3.4: Position Gramian condition number vs maneuver completion for different mea-
surement availability, UAV to UAV

cooperative navigation with either of these two combinations of measurements will have po-

sition modes that are fairly well observable. Intuitively, this make sense, because a relative

position can be determined with the combination of relative range and bearing information.

The other three measurement combinations shown in this plot (range only, bearing only, and

range + range-rate) have unobservable position modes in the absence of maneuvers. In the

relative bearing only case, this condition number quickly decays to smaller values which in-

dicates that even small amounts of vehicle maneuver result in position observability for this

measurement. In the case where range or range and range-rate are the available cooperative

measurements, the condition number decays more slowly to smaller values indicating that

more vehicle maneuvering is necessary to achieve position state observability.

DOP was also calculated and plotted in time to study cooperative navigation observ-

ability. Figure 3.5 shows the DOP values for the North, East, and Down positions of a UAV

cooperatively navigating with different measurement availabilities. The plots in Figure 3.5
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Figure 3.5: DOP values for 2 UAVs navigating with different measurement availabilities (1
“observation cycle”)

were generated from a scenario in which UAVs performed 1 spiral maneuver per minute.

The plotted DOP values for one full maneuver can be said to represent one “observation

cycle” (i.e. the UAVs have traveled through every relative position that will be achieved

by this maneuver). The periodic nature of the UAV maneuver results in DOP values that

are also periodic in nature. It can be seen in the figure that when range is the only co-

operative measurement available to the UAVs, there is a peak in DOP in both the East

and Down directions that occurs periodically. This peak corresponds to the point in the

maneuver where the line-of-sight is perpendicular to that direction. This demonstrates the

fact that range measurements only provide information along the line-of-sight. In the upper
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right plot showing DOP when range and range-rate are available measurements, it can be

seen that the addition of range-rate measurements provides little difference from the range

only case, except for the peaks are lessened in magnitude. In both of these two cases, the

DOP for the north direction stays relatively constant throughout the run. This is because

there is very little relative motion that changes the line-of-sight in this direction. The plot

showing position DOPs with only relative bearing measurements available demonstrates the

complimentary nature of range and bearing measurements. In the range-only case, DOP

maximums for the East and Down direction occur at the instants where that DOP value

is minimized for cooperative navigation with bearing only measurements. Therefore, when

both relative range and relative bearing measurements are possible, the position DOP values

stay relatively low, regardless of relative positioning, demonstrating this favorable behavior.

3.6.2 UAV to UGV Observability

The observability characteristics of scenarios in which UAVs and UGVs cooperatively

navigate is also considered here. In terms of relative measurement observability, the primary

difference between this case and the UAV to UAV case is the possible relative inter-vehicle

motion for the group. Because the UGV is constrained to operate on the ground, the inter-

vehicle spiral shown in Figure 3.1 is not possible. The same level of maneuverability is

possible for the UAV, but the UGV cannot perform maneuvers because is is constrained to

the roadway surface that it is assumed to be traveling on. Some line-of-sight variation is

possible here, however the variation is much more limited than in the UAV to UAV case in

which a full 360 degrees of variation was achievable.

The condition number for various measurement availability as a function of UAV spiral

maneuver completion is shown in Figure 3.6. Note that when compared to Figure 3.4, these

position Gramian values are much higher, as expected. Again, these results indicate that

the combination of relative range + relative bearing allows observability regardless of inter-

vehicle geometry and maneuver. For the case where relative bearing measurements are the
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Figure 3.6: Position Gramian condition number vs maneuver completion for different mea-
surement availability, UAV to UGV

only available measurement, the observability Gramian becomes better conditioned after a

relatively small amount of vehicle maneuver completion. In the case of range-only or range

+ range-rate measurements, the position Gramian decays only after a much larger amount

of the vehicle maneuver is completed, and even after they reach steady-state, the values

are significantly higher than they are in the case where bearing measurements are available.

This would seem to indicate that it is difficult to observe relative position with range-only

or range + range-rate measurements even in cases with a rapid UAV maneuvers. This result

will be further tested in the next chapter of this thesis.

Figure 3.7 shows the DOP values for the North, East, and Down positions of a UAV

cooperatively navigating with different measurement availabilities to a UGV for one full

maneuver completion. Note that as shown before, the higher DOP values indicate poorer
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Figure 3.7: DOP values for 1 UAV and 1 UGV navigating with different measurement
availabilities (1 “observation cycle”)

observability than in the UAV to UAV cooperative navigation case. This is again due to the

less favorable inter-vehicle geometry between the UAV and the UGV.

3.7 Conclusion

This chapter introduced observability analysis methods and used these methods to ana-

lyze the observability characteristics of a few cooperative navigation scenarios. The observ-

ability resulting from UAV to UAV and from UAV to UGV scenarios was investigated in

terms of the observability Gramian condition number and in terms of DOP. More favorable
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geometry can be achieved through vehicle maneuver between cooperating UAVs than with

a single cooperating UAV and UGV. The analysis here predicts better relative navigation

for cooperative groups involving multiple UAVs than for cooperative groups involving only a

single UAV and UGV. However, ground vehicles also present their own unique benefits which

were not considered in this analysis including the possibility of incorporating more accurate

INS and the use of digital elevation models to constrain their vertical position error to an

absolute reference. Additionally, cooperative groups involving multiple UAVs in addition to

a UGV could potentially take advantage of the favorable inter-UAV geometry as well as the

unique UGV benefits.

For faster spiral rates, the number of “observation cycles” that occur during the 1

minute GPS outage will be increased along with the frequency at which the relative position

between the cooperating UAVs in any given direction is made more observable by favorable

geometry. Stated another way, the intervals of time in which the relative position in a given

direction cannot be observed are decreased. Therefore, the interval of time in which the

drifting INS solution must be depended on in that direction is also decreased. This results

in more accurate relative positioning and more accurate accelerometer bias estimation. In

order to validate these results and test these hypotheses, simulations of various cooperative

navigation scenarios are tested in the next chapter.
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Chapter 4

Evaluation of Cooperative Navigation Methods

The various cooperative navigation scenarios introduced in the previous chapter were

evaluated in a simulation environment developed in MATLAB. In each of the scenarios, var-

ied frequency UAV spiral maneuvers (discussed in Section 3.4) as well as different measure-

ment availability were tested in order to determine the most beneficial maneuver/measurement

combinations that result in the most improvement in state estimation accuracy while limiting

communication and computational loads and maneuver control effort. Estimator architec-

tures (centralized EKF and decentralized CI) were also compared for the 2 UAV scenario.

For each of the following scenarios, Monte Carlo simulations (varying IMU and measurement

errors) were performed to determine estimation accuracy over the course of a simulated 60

second GPS outage for either the entire group or part of the group. Each vehicle was initial-

ized with accurate navigation state estimates with sub-meter level positioning uncertainty.

The UAVs and UGVs traveled with a constant velocity of 1 m/s in the North direction for

the each of the simulation runs. The UAV East and Down direction velocities were varied in

order to perform the spiral maneuver. In every scenario, the cooperative group is assumed to

be traveling together in formation from a common start location to a common goal location.

The dead-reckoned, IMU-only navigation solution is used as the baseline for comparison

to the cooperative navigation solution. The mean IMU-only relative and absolute position

errors for the simulated UAVs and UGVs is shown in Table 4.1.

Table 4.1: IMU-only mean end-of-run absolute and relative position errors (m)

Relative Position Error Absolute Position Error
UAV - UAV 85.3 UAV 55.9
UAV - UGV 59.2 UGV 5.3

54



4.1 Scenario: 2 UAVs

The first scenario involves two UAVs. The maneuver type “Straight Path” is represented

in Figure 4.1 (a) and Figure 4.1 (b) is an example of the “Spiral Path.” The axes shown in

Figure 4.1: 2 UAV simulation scenarios (a) straight path (b) spiral path

the figure are North (X), East (Y), and Up (Z). While the UAVs are operating in an NED

frame, the Up direction is equivalent to the negative Down direction and is shown instead of

negative Down for clarity. The UAVs nominally fly at 50 m altitude with 0 in the Up/Down

direction being considered a flat earth surface.

In many cooperative navigation scenarios, none of the cooperative vehicles have access

to absolute position information from GPS. In this case, the cooperative solution will grow

unbounded in time due to the INS drift. However, there are still benefits from cooperation

in the case where no absolute position information is available. Firstly, the average rate

at which this absolute position error growth occurs is decreased. Figure 4.2 shows a com-

parison between the dead-reckoned (IMU-only) navigation solution position error and the

cooperative navigation position error growth over 60 seconds where no GPS information is
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available for two cooperating UAVs. This specific plot is for cooperation with relative-range

Figure 4.2: Typical cooperative navigation position error growth with no GPS

only measurements and a UAV spiral rate of 1 revolution per minute. The improvement

is consistent to some degree for any type of cooperative measurement with any maneuver

in both centralized and decentralized architectures. This data was generated by averaging

the position error results of a Monte Carlo analysis with the error bars representing the one

standard deviation bound on position error. The reduction in positioning error is in effect a

result of an “averaging” in position error that occurs between cooperating vehicles that are

dead-reckoning drifting INS solutions. Figure 4.3 shows an example of this “averaging” effect

on the position solution for two UAVs that are cooperating via relative range and bearing

measurements. Considering that the IMU errors causing the drift are random variables with

zero mean, an averaging of the resulting dead-reckoned errors results in a reduction in abso-

lute position error. In Figure 4.3, the non-cooperative IMU-only solution for UAV 1 drifts to

the right while UAV 2’s IMU-only navigation solution drifts to the left. When cooperation
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is introduced, the averaging of these two errors results in a fairly accurate positioning result

in the East direction. In the North direction, both IMU solutions predict that the UAVs

travel a greater distance than they actually travel. In this case the “averaging” effect still

occurs, but with a smaller reduction in absolute position estimation error.

Figure 4.3: Absolute position in North-East plane in the case of 2 UAV cooperation with
relative range and bearing but no access to GPS

A second benefit of cooperative navigation in the case where no absolute position infor-

mation is available is that even though the absolute position estimate is drifting unbounded,

the relative position may be accurately estimated. This is also evident in Figure 4.3. It can

clearly be seen that while the cooperative solution absolute positioning estimate has a signif-

icant amount of error, the relative position of the two UAVs is very accurate when compared

to their true relative positions. Figure 4.4 shows both absolute and relative position errors

for two UAVs navigating cooperatively with relative bearing measurements and a UAV spiral

rate of 2 revolutions per minute. Plotted are the Monte Carlo average errors. An important

phenomenon to note from this figure is the cyclic nature of the relative position errors. This
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Figure 4.4: Absolute vs. relative positioning accuracy without absolute position reference

is a result of the UAV spiral maneuver being performed. Relative position is more observable

in certain directions than others as the UAVs have different relative orientations throughout

the maneuver. This effect can be seen mathematically in the position DOP values and as

elements of the measurement matrix (H) change throughout the maneuver. As relative po-

sition become more observable in any given direction, the measurement is able to reduce the

error in that direction. As the maneuver continues and that state becomes less observable,

the error begins to grow again as there is no measurement that can effectively correct the

drifting navigation solution in that direction.

Figure 4.5 shows the absolute position error norm for a case where relative bearing

measurements are the only available cooperative measurement for both the straight UAV

path and the spiral maneuver at 1 revolution per minute. The mean error and error standard

deviation is slightly lower for the case with the maneuver, however the difference is minimal.

The relative position error for this case is shown in Figure 4.6. Here, there is a dramatic

difference in relative position error between the case with no maneuver and the case with
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Figure 4.5: Absolute position error with relative bearing only, straight and spiral maneuver
at 1 rev/min

the 1 spiral per minute maneuver. This is the result that was predicted by the observability

analysis shown in Figure 3.4. It should also be noted that in the case where the UAVs travel

along a straight path, the relative positioning error in the East direction grows much more

quickly than the error in the North or Down directions. This is a result of the bearing-only

measurement characteristics paired with the straight path formation geometry. Relative

bearing measurements provide no positioning information along the line-of-sight of the two

vehicles. As seen in Figure 4.1, the line-of-sight for these two UAVs is almost directly along

the East axis. Therefore, the relative position error along this axis grows much faster than the

error in the other directions as seen in Figure 4.6. Similarly, relative range measurements only

provide useful position information along the inter-vehicle line-of-sight. In the case where

vehicles are able to measure both relative range and relative bearing, the relative position

between two vehicles is well observable in all three directions. When this is the case, further
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vehicle maneuvers will provide little benefit because it is no longer necessary to change the

inter-vehicle geometry to better observe any of the three relative position directions.

Figure 4.6: Relative position error with relative bearing only, straight and spiral maneuver
at 1 rev/min

Figure 4.7 shows the Monte Carlo, mean relative position error for the UAVs using a

centralized EKF at the end of the 60 second run. Each point on this plot represents the

results of one Monte Carlo simulation. In the case where no absolute position is available

to either UAV, the overall, absolute error will continue to grow as in Figure 4.2. In the

case where one UAV is able to obtain absolute position information from either GPS or

an alternative positioning method, the error values shown in Figure 4.7 are relative to a

UAV with known absolute location and can therefore also be considered absolute position

errors for the vehicle without a GPS fix. As can be seen in the figure, relative bearing-only

provides the worst performance when there is no relative UAV maneuver, but dramatically

improves to match the best-performing measurement combinations when there is even a slow

UAV spiral maneuver that changes the relative UAV geometry. This is the same effect that
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Figure 4.7: Monte Carlo end-of-run position errors for varied measurement and UAV ma-
neuver, centralized EKF, 2UAVs

was predicted by the observability analysis and shown in Figure 4.6. These Monte Carlo

analysis results also agree with the observability analysis in that augmenting relative range

measurements with relative range-rate provides little, if any, improvement in relative position

estimation. Cooperative navigation positioning accuracy tends to improve gradually as the

spiral rate is increased when range only and range with range-rate are measured. When

both relative range and bearing measurements are taken, no vehicle maneuver is needed to

achieve less than 3 meters of relative positioning error at the end of run.

Figure 4.8 shows this same data for the decentralized Covariance Intersection algorithm.

The position errors for the decentralized CI algorithm and the centralized EKF algorithm

are almost identical. It was found here that it is possible to tune the measurement weighting

in this algorithm to provide virtually identical results to the centralized filter. However, this

resulted in inconsistent covariance estimates in many cases. Additionally, the tunings and

scalings required to achieve this performance for this algorithm proved to be highly heuristic.
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Figure 4.8: Monte Carlo end-of-run position errors for varied measurement and UAV ma-
neuver, decentralized CI, 2UAVs; CI tuned for accurate positioning, ignoring covariance
bounds

Many of these tuning factors for this algorithm are discussed in [19]. A trade-off between

accurate covariance bounding and estimation accuracy was found to be an issue of primary

concern for this algorithm. To achieve the centralized algorithm’s level of state estimation

accuracy, the covariances had to be tuned below realistic expectations of estimation uncer-

tainty. This can be seen in Figure 4.9, for the case with relative ranging only and no vehicle

maneuver. As shown in the figure, the CI 1 standard deviation position estimates are an

order of magnitude smaller than the Monte Carlo uncertainty while the EKF accurately

estimates this uncertainty bound. In application, this inaccurate uncertainty estimate is un-

desirable because too much confidence is placed in the inaccurate navigation solution. While

the primary purpose of the CI estimation algorithm is to inflate the decentralized covariance

values to account for the unknown correlation terms, in order to achieve estimation accuracy
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Figure 4.9: 1 σ uncertainty bounds for position error, EKF and CI compared to actual
Monte Carlo result, relative ranging only with no UAV maneuver; CI tuned for accurate
positioning, ignoring covariance bounds

comparable to the centralized filter this uncertainty had to be tuned to levels inconsistent

with the Monte Carlo results.

To compensate for this issue, the CI algorithm was also tuned to allow the estimated

covariance to accurately bound the Monte Carlo predicted uncertainty. The covariance

estimate for this tuning of the decentralized CI algorithm and the centralized EKF covariance

estimate are shown in Figure 4.10 along with the Monte Carlo uncertainties for the case with

relative range only and no vehicle maneuver. Note that the Monte Carlo uncertainty for the

CI algorithm is now larger than the Monte Carlo uncertainty for the centralized EKF because

the CI tuning required to bound this error causes a reduction in positioning accuracy (i.e.

there is more uncertainty). Figure 4.11 shows the mean end-of-run position error values

for this case. This figure shows a decrease in positioning performance resulting from the

use of decentralized estimation while maintaining covariance bounding. As shown in the
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Figure 4.10: 1 σ uncertainty bounds for position error, EKF and CI compared to actual
Monte Carlo result, relative ranging only with no UAV maneuver; CI tuned to maintain
accurate covariance bounds

Figure 4.11: Monte Carlo end-of-run position errors for varied measurement and UAV ma-
neuver, decentralized CI, 2UAVs; CI tuned to maintain accurate covariance bounds
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figure, the relative position estimates for this tuning are only slightly worse when relative

bearing measurements are available. When relative range or relative range and range-rate

are the only inter-vehicle measurements, there is a significant decrease in relative positioning

accuracy when maintaining accurate covariance estimates.

In other works, [19, 20, 21], that demonstrate consistent covariance estimation of the

CI filter for decentralized cooperative navigation, a similar reduction in positioning accuracy

from 15% to over 100% was shown depending on the scenario, tuning factors, and mea-

surement availability. For these reasons, only the centralized result will be shown for the

remaining cases. A potential avenue for future work would be to determine if similar posi-

tioning accuracies for the decentralized algorithm are possible while maintaining consistent

covariance estimates, with either the CI algorithm or an alternative decentralized algorithm.

When accurate relative position estimates are possible (errors are kept within 1 to 2

meters, see Figures 4.7 and 4.8), the accelerometer and gyro biases are partially observable.

The degree to which these states can be estimated depends on the level of excitation provided

from the accelerometer and gyro biases (these biases must differ between the two vehicles)

as well as the relative positioning accuracy. Figure 4.12 shows a representative example of

accelerometer and gyro bias estimates for the case with two UAVs with accurate relative

positioning estimates (i.e. only 1 to 2 meters of relative error). As can be seen in the figure,

these states are not completely observable in this case, as the estimates do not always fully

converge to the true values. This is especially apparent in the gyro bias 1 and gyro bias 3

directions.
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Figure 4.12: Accelerometer and gyro bias estimation for case with two cooperating UAVs
and accurate relative position estimates
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4.2 Scenario: 3 UAVs

The second simulated scenario involves three UAVs navigating cooperatively. This sce-

nario is shown in Figure 4.13. This scenario is intended to show the effect of adding an

Figure 4.13: 3 UAV simulation scenarios (a) straight path (b) spiral path

additional vehicle to the cooperative group when compared to the first scenario.

Sharma introduced the concept of a relative position measurement graph (RPMG) in

[34]. In this graph, the nodes represent vehicles while the edges between nodes represent

relative measurements between those vehicles. Figure 4.14 compares the RPMG between

the cooperative navigation scenario with two vehicles versus the scenario with three vehicles.

The additional UAV in this scenario allows for more relative measurement information to be

available to the group. Three relative measurements may now be taken between vehicles as

opposed to only one relative measurement in the scenario with two UAVs. Abstracting this

phenomenon to a case with n vehicles gives Equation 4.1.

number relative measurements =
n(n− 1)

2
(4.1)
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Figure 4.14: RPMG for both 2 and 3 vehicle scenarios

It should be noted that this equation assumes a fully connected graph (i.e. each node is

connected to every other node in the group). These additional relative measurements result

in improved relative positioning. The additional information from the extra IMU also slightly

improves the absolute positioning accuracy of the group, as an additional measurement with

random bias and noise is effectively being averaged into the cooperative solution (as seen in

Figure 4.3).

Figure 4.15 demonstrates the added benefit of the additional UAV to the average ab-

solute cooperative positioning solution resulting from this “averaging” effect. The two plots

on the left half of the figure represent the absolute position error norm for a cooperative

group of two UAVs, assuming relative positioning with less than roughly 3 m of error. As

shown in the figure, the mean absolute position error for the dead-reckoned IMU solution

is around 55 m while the mean absolute position error for the cooperative solution is about

36 m. The three plots on the right half of the figure represent the absolute position error

norm for a cooperative group of three UAVs with the same relative positioning accuracy.

The mean absolute position error for the dead-reckoned IMU solution here is also about 55

m, as expected since this error is for the uncooperative case. The mean absolute position

error for the cooperative navigation solution for this case is 29 m. This is almost a 20 %

reduction in absolute position error compared to the case with only two vehicles. A similar

reduction in absolute position error growth was seen across all 3 UAV simulation runs with
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Figure 4.15: Comparison of absolute position growth (assuming accurate relative positioning)
for a group of 2 UAVs vs 3 UAVs with no absolute reference

low relative positioning error. Assuming that all IMU biases are randomly distributed with

zero mean, continued reductions in absolute position error are expected as the size of the co-

operative group increases. An investigation into the absolute positioning of larger “swarms”

of cooperating vehicles would be another interesting avenue of future work.

This phenomena also allows the accelerometer and gyro biases to be estimated, even

without any form of absolute reference. A representative example of accelerometer and gyro

bias estimates for a case with 3 UAVs that are accurately able to estimate their relative

positions is shown in Figure 4.16.
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Figure 4.16: Accelerometer and gyro bias estimates with accurate relative positioning but
no absolute reference, 3 UAVs

As shown in the figure, each of the accelerometer bias estimates (initialized at 0), con-

verge to the true bias values relatively well. There are some observability issues, especially

in the gyro bias estimates, as can be seen in the lack of convergence in the gyro bias 1 and

gyro bias 3 direction estimates. Comparing this figure to Figure 4.12 again illustrates the

additional benefit of the extra inertial sensor in the cooperative group. These bias estimates

are better than the 2 UAV case because this additional sensor (with assumed random bias)

provides additional excitation for the observability of these states.
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Figure 4.17 shows the Monte Carlo, mean end-of-run position error for UAV 2 relative

to UAV 1 for this scenario for the centralized filter. Comparing this figure to Figure 4.7, this

Figure 4.17: Monte Carlo end-of-run position errors for varied measurement and UAV ma-
neuver, centralized EKF, 3 UAVs

scenario demonstrates the improvement in relative positioning accuracy resulting from an

additional UAV in the cooperative group. Note that the relative positioning error is smaller

for cases with no vehicle maneuver and converges to zero more quickly as the UAV spiral is

added. Results with range and bearing are similar to the 2 UAV scenario.

4.3 Scenario: 1 UAV - 1 UGV

The third scenario involves 1 UGV operating on a flat ground below a single UAV.

This scenario is intended to show the potential synergistic effects of cooperative navigation

between UAVs and UGVs that result from their heterogeneous navigation capabilities. As
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mentioned in Chapter 2, because of the different size and weight constraints on the UGV,

this thesis assumes that the UGV is equipped with a higher quality, “intermediate” grade

IMU as opposed to the lower quality “tactical” grade IMU equipped to the UAVs. Whereas

dead reckoning the tactical grade IMU resulted in about 60 meters of error on average at

the end of a 60 second run, dead reckoning the intermediate grade IMU resulted in roughly

5 meters of error on average at the end of a 60 second run. The UGV is also able to update

its absolute position in the vertical direction by the use of digital elevation models.

The scenario is shown in Figure 4.18. Because of the physical limitations of the maneu-

Figure 4.18: 1 UAV 1 UGV Simulation Scenarios (a) straight path (b) spiral path

verability of the vehicles in this scenario, the same levels of inter-vehicle relative motion are

not possible with this type of cooperative group.

The mean, end-of-run relative positioning error between the two vehicles is shown in

Figure 4.19. As in the previously simulated scenarios, UAV maneuver improves relative
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positioning accuracy. However, because of the lower level of inter-vehicle position excitation

that is possible with a group consisting of one ground vehicle and one air vehicle, the error

reduction is not as dramatic as in the all UAV simulation cases. This further validates the

analysis shown in Figure 3.6. Again, there is no improvement due to UAV maneuver when

both range and bearing measurements are available.

Figure 4.19: Monte Carlo end-of-run position errors for varied measurement and UAV ma-
neuver, centralized EKF, 1 UAV 1 UGV

While it is more difficult to accurately estimate the relative position of the two vehicles

in this scenario, if the relative position can be accurately estimated, the UAV’s absolute

position estimate and accelerometer and gyro estimates benefit greatly from this coupling

with the UGV. This is because, as discussed earlier, the UGV is equipped with a more

accurate IMU, with smaller biases. This accurate IMU will allow the less accurate UAV

IMU to estimate its biases better than in the previous cases where all IMUs had similar

73



error characteristics. An example of this more accurate bias estimation is shown in Figure

4.20.

Figure 4.20: Accelerometer and gyro bias estimates with accurate relative positioning but
no absolute reference, 1 UAV & 1 UGV case
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4.4 Additional IMU Bias Estimation Analysis

To further investigate the IMU bias estimation errors, the IMUs were also modeled

with constant biases. This was done to more clearly show the bias estimate convergence

to truth (or lack thereof) in the three cases described above. Figure 4.21 shows the IMU

bias estimates for the case with two cooperating UAVs with relative range and bearing

measurements. As shown in the figure, the IMU bias estimates begin to converge to the true

Figure 4.21: Static IMU bias estimation for 2 UAVs with relative range and bearing mea-
surements

bias in almost every direction. However, there is steady-state error in every case. There is

also a significant amount of noise in the estimates. Additionally, the “gyro bias 1” direction

(roll) is completely unobservable. This is a result of a lack of measurement observability and

limited excitation in the roll direction. Figure 4.22 shows the effect of adding an additional

UAV to the cooperative group on the IMU bias estimates (the 3 UAV case). Comparing

Figure 4.22 to 4.21 demonstrates the improvement in bias estimation from the additional
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Figure 4.22: Static IMU bias estimation for 3 UAVs with relative range and bearing mea-
surements

Figure 4.23: Static IMU bias estimation for 1 UAV + 1 UGV with relative range and bearing
measurements
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UAV in the cooperative group. Here, the bias estimates have slightly less steady-state error

and includes less noise.

Figure 4.23 shows the UAV IMU bias estimation for cooperation between one UAV and

one UGV with relative range and bearing measurements. Here, the IMU bias estimation

contains very little steady state error in every axis except for the unobservable “gyro bias

1.” Again, this is the result of cooperation with the higher quality UGV IMU.

In order to examine the average bias estimation error over a large number of runs,

a Monte Carlo analysis was performed for static bias estimation in these three scenarios.

Figure 4.24 shows the Monte Carlo average bias estimation error for all three cooperative

group types over the 60 second simulation. These results further confirm the bias estimation

Figure 4.24: Monte Carlo mean IMU bias estimation error

results discussed earlier. The addition of a third UAV equipped with the same low quality

tactical IMU as the first two UAVs provides improvement in the bias estimation. The

addition of the higher quality IMU to the cooperative group allows for even more significant

reductions in bias estimation error.
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4.5 Scenario: 2 UAVs - 1 UGV

The last scenario involves 1 UGV operating on a flat ground below 2 UAVs. This

scenario is intended to investigate whether adding an additional cooperating UAV will allow

for improved relative positioning between the UAVs and the UGV to improve upon the results

of the 1 UAV, 1 UGV scenario. This scenario is also intended to investigate the potential

synergistic effects of cooperative navigation between UAVs and UGVs when compared to

the the first scenario with only 2 UAVs. This scenario is shown in Figure 4.25.

Figure 4.25: 2 UAV 1 UGV Simulation Scenarios (a) straight path (b) spiral path

The relative positioning error between UAV 1 and UAV 2 for this scenario is shown in

Figure 4.26. The relative positioning error between UAV 1 and the UGV for this scenario

is shown in Figure 4.27. These two figures demonstrate very similar results within this

type of cooperative group with the UAV-to-UAV relative positioning having slightly less

error than the UAV-to-UGV relative positioning. This is due to the difference in relative
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Figure 4.26: Monte Carlo end-of-run position errors between UAV 1 and UAV 2 for varied
measurement and UAV maneuver, centralized EKF, 2 UAVs 1 UGV

Figure 4.27: Monte Carlo end-of-run position errors between UAV 1 and UGV for varied
measurement and UAV maneuver, centralized EKF, 2 UAVs 1 UGV
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position observability between these two vehicle types as discussed earlier as a result of the

inter-vehicle relative position excitation. Comparing these results to the single UAV - UGV

results shown in Figure 4.19 demonstrates the increased relative positioning accuracy that

the additional UAV adds to the cooperative group.

While the relative positioning accuracy for this group is slightly worse than the relative

positioning for the 3 UAV cooperative group as a result of the reduced inter-vehicle position

excitation, additional benefits are seen through cooperation with the UGV. As previously

discussed, the UGV simulated here is assumed to be equipped with a higher quality INS and

to have access to digital elevation map information. This results in the UGV having a much

more accurate absolute position estimate than the UAVs. The UGV absolute position in the

vertical direction is bounded by the digital elevation map while the INS drift in the North

and East direction increases at a slower rate than the UAV INS solution. Figure 4.28 shows

Figure 4.28: Absolute position error for 2 UAV and UGV cooperative group with accurate
relative positioning, relying on UGV positioning (IMU & DEM)
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the absolute position error growth of an entire cooperative group consisting of 2 UAVs and

1 UGV in a case where accurate relative positioning is able to be obtained. Note that the

position error growth characteristics of all three vehicles in the group match those of the

UGV. In the absence of this cooperation, the absolute position growth of the UAVs would

grow to 55 meters on average, as shown in Table 4.1.

In the case where GPS signals to the ground vehicle are obstructed, but at least one

of the UAVs are able to obtain an accurate GPS fix, the UAV can act similar to a GPS

“pseudolite” and provide accurate GPS positioning to all other vehicles in the group through

cooperative navigation. The absolute positioning errors for this scenario are shown in Figure

4.29. Note that all three vehicles have the same absolute position error characteristics of the

most accurate vehicle in the group (i.e. the UAV with the GPS fix).

Figure 4.29: Absolute position error for 2 UAV and UGV cooperative group with accurate
relative positioning, relying on GPS fix of single UAV
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4.6 Conclusions

In this chapter, four scenarios of cooperative navigation were simulated in an environ-

ment developed in MATLAB. Each scenario provided results that demonstrated different

aspects and potential use cases for cooperative navigation.

The first scenario demonstrated the performance of both centralized and decentralized

cooperative navigation algorithms for a small team of two UAVs performing varied levels

of a spiral maneuver. Both algorithms produced similar results, with almost no difference

in the relative positioning accuracy of the centralized algorithm over the decentralized al-

gorithm. The main drawback of the decentralized algorithm here is that the filter tuning

and uncertainty scaling required to obtain sufficient weighting of the measurement update

caused the predicted uncertainty (covariance) from the CI algorithm to not be representative

of the actual uncertainty. This tuning was also highly heuristic in many cases. Tuning the

decentralized algorithm to allow for covariance consistence resulted in decreased positioning

accuracy. As a result, for the small vehicle groups traveling in close proximity studied in this

work, a centralized approach is recommended. As the size of the cooperative group increases

and/or communication distances increase the centralized approach may become less feasible.

Decentralized estimation approaches merit future work for these types of scenarios.

It was shown that the increase in observability provided by the spiral maneuver allowed

for significant improvements in relative positioning accuracy, depending on the rate of the

spiral maneuver and the available cooperative measurements. With both relative range and

bearing measurements, the cooperative maneuver was not necessary, as the vehicles were

able to accurately estimate relative positions without any vehicle maneuver.

The second scenario, which included a cooperative team of three UAVs, demonstrated

the increase in relative positioning performance that adding an additional UAV provided to

the overall solution. The additional relative measurement information along with the addi-

tional IMU data allowed for improvements in the relative and absolute positioning accuracy

of the cooperative team.
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The third scenario introduced cooperation between a UAV and a UGV. This sce-

nario demonstrated the complementary nature of cooperative navigation between UAVs and

UGVs. The UGV’s more accurate IMU information along with its ability to maintain accu-

rate positioning in the vertical direction through the use of digital elevation models greatly

improved the absolute positioning accuracy of the UAV when the two vehicles were able to

accurately estimate their relative positions. However, relative positioning was more difficult

in this case because the relative geometry could not be varied as in the case with multiple

UAVs.

The last scenario, which included two UAVs and a UGV, demonstrated the effect of

adding an additional UAV when compared to the third scenario (1 UAV, 1 UGV) and the

effect of adding a UGV when compared to the first scenario (2 UAVs). The overall relative

positioning accuracy between vehicles in this type of group was better than either of the

other scenarios with only two vehicles and only slightly worse than the best case with three

UAVs. The main benefit with this type of group was the heterogeneous mixture of navigation

capabilities of the vehicles in the group. In the case where no vehicles obtained an accurate

GPS fix, the absolute position error of the group was limited to the error growth of the UGV

which had a more accurate IMU and access to DEM information. In the case where at least

one of the UAVs was able to obtain a GPS fix, all vehicles in the group benefited with the

same absolute positioning error as the UAV with GPS, assuming that the vehicles were able

to accurately estimate their relative positions.
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Chapter 5

Experimental Results

In addition to the simulated studies shown in Chapter 4, an experimental data set was

collected and post processed in MATLAB in order to validate the simulation results with

experimental data.

5.1 Experimental Set-up and Hardware

Two Tarrot X8 octocopters were used to collect experimental data. These UAVs were

equipped with Vectornav VN-100 IMUs and Here + GPS receivers along with Time Domain

P440 UWB modules to measure inter-vehicle ranges. One of these UAVs is shown in Figure

5.1.

Figure 5.1: Tarrot X8 octocopter with UWB modules and GPS antenna
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An Autonomous Stuff Lincoln MKZ was used as the ground vehicle for data collections.

The MKZ was equipped with a high quality IMU and GPS receiver as well as a Time Domain

P440 UWB module for inter-vehicle ranging. All three of the vehicles used for data collection

are shown in Figure 5.2.

Figure 5.2: Vehicles used for data collection

Data was collected at the National Center for Asphalt Technology (NCAT) facility

located near Auburn, Alabama. Data, including IMU outputs for all vehicles (100 Hz),

GPS positions for all vehicles (2 Hz), and inter-vehicle ranges (10 Hz) were collected and

post-processed in MATLAB to analyze the algorithm results. The GPS measurements were

primarily used as truth data, but were also assumed to be known for select vehicles in certain

data-processing runs to demonstrate the effect of a single vehicle in the cooperative group

obtaining an absolute position fix. Relative bearing measurements were simulated based on

the GPS truth positions of the vehicles at 2 Hz. These measurements could be taken from

camera-based techniques as in [6] or from a UWB antenna array. The data was collected

in real-time by a centralized processor (located on the ground vehicle) running a Robot

Operating System (ROS) network. The fact that this data collection was performed in

a centralized manner without encountering communication problems related to bandwidth
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limits provides validation of the feasibility of centralized cooperative navigation for vehicle

groups of this size. Therefore, the centralized EKF estimation architecture was used for this

experimental study. The processor clocks were synchronized at the beginning of the data

collection to minimize timing and latency issues when processing the data. Figure 5.3 was

captured during one of the data collection runs on the NCAT skid pad.

Figure 5.3: Data Collection on NCAT skid pad with 2 UAVs and 1 UGV

5.2 Results

Figure 5.4 shows the NED GPS truth positions of the vehicles during the experiment.

As shown in the figure, the vehicles began their path on the near side of the skid pad with

the UAVs taking off in the vertical direction. The UAVs then began a dynamic maneuver

similar to the simulated spiral maneuvers. The rate of this maneuver was slower than the

simulated spirals due to maneuverability and control limits on these UAVs. The UGV

traveled a straight path, similar to the simulated scenarios. The total horizontal distance

traveled by the vehicles in the experiment was about 75 meters, similar to the simulations.
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Figure 5.4: GPS truth positions for data collection trajectories

The experiment lasted 145 seconds, including two 20 second periods of static data collection,

at the beginning and end of the run.

5.2.1 IMU Measurement Errors

Due to the fact that the UAVs used in this work operate by spinning 8 rotor blades

at high speeds, there was a relatively large amount of vibration present on the octocopters

during the experiment. This vibration added a significant amount of error and noise to the

IMU measurements taken from these vehicles. The raw IMU specific force measurements

for a portion of the run is shown in Figure 5.5. Note that there is only a small amount of

measurement noise at the beginning of this data since this portion of the data was collected

in static conditions. The high noise begins when the octocopter blades start spinning at the

33 second mark. This noise spans from +20 m/s2 to -40 m/s2 at certain points in the data

run.
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Figure 5.5: IMU noise due to UAV vibration

Mechanizing this noisy data produced a position solution with over 1 km of error after

less than 100 seconds. A variety of methods were attempted to compensate for this noise is-

sue. First, rubber isolators were installed to mechanically dampen some of these vibrations.

Next, low-pass filtering of the raw data was performed. Neither of these methods, how-

ever, produced IMU data that would give a reasonable positioning solution. In [14], Groves

discusses various aspects of vibration-induced IMU errors and notes that MEMS (Micro-

ElectroMechanical) IMUs (such as the VN-100 IMU used here) are particularly vulnerable

to these vibrational errors.

To further attempt to compensate for these errors, a Kalman filter was also implemented

to estimate the body frame angular velocities and accelerations using the raw IMU measure-

ments aided with GPS velocity and flight computer attitude. The idea here was to produce

better “semi-simulated” IMU measurements that would mimic a slightly more accurate IMU
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than the actual raw measurements but still produce realistic mechanization error character-

istics in the navigation solution. Unfortunately, this method also failed to produce sufficient

estimates of the IMU measurements to produce a reasonable positioning solution.

Ultimately, IMU measurements for the UAVs were simulated by numerically differen-

tiating the GPS velocity measurements, rotating these values into the body frame (using

the flight computer attitude solution), and adding bias and noise from the IMU error model

in Equation 2.21. These simulated IMU measurements produced reasonable mechanized,

IMU-only navigation solutions with 50 to 80 meters of positioning error at the end of run,

similar to those simulated in the previous chapter. Another potential avenue for future work

could be to investigate IMU mechanization methods in high vibration environments.

Due to much less vibratory nature of a ground vehicle rolling across a smooth surface and

the fact that the UGV IMU was of a higher quality than the UAV IMUs, the mechanized,

IMU-only solution for the ground vehicle was produced by mechanizing the actual IMU

measurements. This solution resulted in about 6 meters of end-of-run positioning error,

similar to the simulated case.

5.2.2 Positioning Results

The relative position error for different combinations of relative measurements for all

three vehicles is shown in Figure 5.6. The absolute position error is shown in Figure 5.7.

Overall, these experimental positioning errors show similar results to the simulation studies.

The relative aiding measurements were able to slow the rate of growth of both absolute and

relative positions. Relative position became completely observable given a relative range and

bearing measurement. With the addition of an absolute reference to only one of the vehicles

in this case, all vehicles were able to accurately estimate their absolute positions. Given the

UAV maneuver performed during this test, the relative positioning error reduction rate for

each combination of relative measurements is similar to the simulated results. The absolute

positioning results also demonstrate similar error characteristics to the simulations.
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Figure 5.6: Relative Position errors during experimental run

Table 5.1 shows the end-of-run relative position errors from Figure 5.6, and Table 5.2

shows the end-of-run absolute position errors from Figure 5.7. The results from these

tables show similar results to the Monte Carlo simulation analysis shown in Figures 4.26 and

4.27. Aiding the IMU-only navigation solution with relative range measurements resulted

in a significant reduction in relative position error that matches the simulated results very

closely. The results here show a 50 to 70 % reduction in relative positioning error when

only cooperative ranging is used for a cooperative group of this type. This is almost exactly

the rate of relative position error reduction seen in the simulated scenario for a “spiral

rate” between 0 and 1 revolution per minute which is roughly the rate of the experimental

maneuver in this test.
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Figure 5.7: Absolute Position errors during experimental run

Aiding the IMU with relative bearing measurements and the UAV maneuver performed

in this experimental test provided even more of an improvement in relative positioning.

The relative positioning error by the end of the run with this measurement was below 3

meters. This result agrees very closely with the simulation study. Even small amounts of

relative position excitation result in accurate relative position estimates with relative bearing

measurements. As in simulation, measurements of both relative range and relative bearing

resulted in the relative positions becoming fully observable.

With its more accurate IMU solution, the UGV’s absolute position received little benefit

from the cooperative measurements in every case except for when one of the UAVs was

provided absolute position updates from GPS. This result also matches the simulations.
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Table 5.1: Experimental end-of-run relative position errors (m)

Navigation Measurements UAV 1 - UAV 2 UAV 1 - UGV UAV 2 - UGV
IMU-only 108.7 80.2 63.3

IMU + range 29.6 23.0 10.3
IMU + bearing 1.9 2.7 1.4

IMU + range + bearing 0.2 0.1 0.2

Table 5.2: Experimental end-of-run absolute position errors (m)

Navigation Measurements UAV 1 UAV 2 UGV
IMU-only 76.3 64.7 6.8

IMU + range 30.0 16.2 6.8
IMU + bearing 6.6 5.9 6.8

IMU + range + bearing 6.9 6.8 6.8
IMU + range + bearing + GPS (UAV 2) 1.0 0.9 1.1

This more accurate position reference did, however, provide significant improvements in the

absolute positioning of the UAVs when GPS was unavailable. When the relative positioning

error to the UGV was held under 2 meters, the absolute positioning of both of the UAVs

were held at the level of the UGV plus or minus the 2 meters of relative position error. A

similar effect was seen when relative range and bearing measurements were provided along

with GPS measurements to UAV 2. With meter-level positioning provided to UAV 2 and

sub-meter relative positioning to this vehicle, the absolute positions of the other two vehicles

were held to meter-level accuracy.

By the end of the experimental run, as seen in Tables 5.1 and 5.2, the absolute and

relative position error of UAV 1 was slightly larger than the error of UAV 2 in the “IMU

+ range” and “IMU + bearing” cases. The positioning of UAV 1 was likely less accurate

as a result of a combination of a slightly poorer IMU-only positioning solution and reduced

position observably experienced by this vehicle from its relative position to the other two

vehicles during the experiment.
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5.2.3 Observability Analysis

To further investigate UAV 1’s slightly poorer positioning accuracy when compared to

UAV 2, the observability characteristics discussed in Chapter 3 were analyzed for these runs.

Figure 5.8 shows the position Gramian condition number for the relative range measurement

only case. As shown in the figure, the condition number for UAV 1 starts much higher than

the condition number for the other vehicles, and in the zoomed view, UAV 1’s condition

number remained the highest during the majority of the dynamic portion of the test.

Figure 5.8: Position Gramian condition numbers - relative range only, with zoomed view

Figure 5.9 shows the same position condition number but for the case with relative

bearing measurements only. It can be seen here that the condition number for UAV 1

remains the highest for the majority of the test. Additionally, comparing the condition

numbers shown for the range aiding measurement in Figure 5.8 and for the bearing aiding

measurement in Figure 5.9, the condition number values for the case with relative bearing

measurements are significantly lower. This analysis agrees with the positioning error analysis

that the relative bearing measurement provides better position observability and estimation

accuracy.
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Figure 5.9: Position Gramian condition numbers - relative bearing only

5.3 Conclusions

The experimental results presented in this chapter provide validation of the simulated

results presented in Chapter 4. Similar levels of error reduction in both relative and absolute

positioning error were seen in both simulation and real-world experiment. This experiment

also provided further validation for the use of a centralized cooperative navigation algo-

rithm for small vehicle groups. Furthermore, the observability analysis techniques shown in

Chapter 3 were used to analyze the experimental results, showing a similar correlation to

estimation error as demonstrated in Chapters 3 and 4.
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Chapter 6

Conclusions and Future Work

6.1 Summary

Chapter 1 began this thesis by introducing background information and the motiva-

tion for investigating the cooperative navigation problem. Various applications of small

autonomous vehicles and their navigation systems were described. The concepts of GPS

denied navigation and INS drift were also introduced. Cooperative navigation was chosen as

a solution to these problems because of the increasingly wide usage of groups of cooperating

autonomous vehicles to complete various missions. Cooperative navigation also requires lit-

tle additional hardware other than relative measurement sensors and some form of dedicated

short range communication (which may already be in place in many applications). This

chapter also introduced centralized vs. decentralized estimation architectures, a few ideas to

further leverage cooperative navigation, prior work, and thesis contributions.

Chapter 2 introduced the models, algorithms, and other concepts that were heavily re-

lied on for the remainder of the thesis. Namely, a brief overview of the Kalman Filter and

Extended Kalman Filter was given along with the NED IMU mechanization used for the

time update portion of the algorithm and the measurement models used for the measurement

update portion of the algorithm. Where the Extended Kalman Filter was used for cooper-

ative navigation in the centralized case, the Covariance Intersection algorithm was used in

the decentralized case. This algorithm was also introduced along with other considerations

such as filter tuning.

Chapter 3 discussed observability concepts, observability issues in cooperative naviga-

tion, and showed results from some observability simulations. A high degree of similarity
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between the linear and empirical forms of the observability Gramian was shown, and per-

forming a condition number test on block-diagonal elements of this Gramian was suggested

as a method to analyze the effects of vehicle maneuver and varying measurement availability

on cooperative navigation observability. Position dilution of precision calculations were also

shown as a method to analyze the quality of observability.

Chapter 4 detailed the simulations performed to evaluate various cooperative naviga-

tion methods. Simulations of four types of cooperative groups were considered (2 UAVs, 3

UAVs, 1UAV & 1UGV, 2 UAVs & 1UGV). Each scenario demonstrated distinct aspects of

cooperative navigation. First, the case with 2 UAVs was simulated to demonstrate many

of the basic characteristics of a simple application of cooperative navigation. For example,

the “averaging” of random inertial sensor errors through the knowledge of relative position

was shown to reduce the rate of absolute position error growth even in the absence of any

absolute position reference. Relative positioning accuracy for varied relative measurements

and varied vehicle maneuvers for this case was also shown for both centralized and decentral-

ized algorithms. It was shown that virtually equivalent mean error results are achievable for

both the centralized and decentralized algorithms. However, to obtain decentralized results

that match the results of the centralized filter, tuning of the measurement covariance was

performed that caused the filter’s estimated uncertainty not to accurately match the actual

uncertainty. For the decentralized case, this introduced a trade-off between accurate covari-

ance estimation and accurate mean error estimation. Decentralized results that maintained

accurate covariance bounding were also shown, but these results demonstrated an increase

in positioning error compared to the centralized results. The 2 UAV case was also used as

a basis for comparison for the other simulation scenarios. The 3 UAV case demonstrated

improvements in absolute positioning estimation resulting from the “averaging” of a third

randomly biased inertial sensor, assuming that the vehicles were able to accurately estimate

their relative positions. This case also demonstrated an improvement in relative position-

ing accuracy that results from additional measurements shown in the RPMG. The scenario
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involving 1 UAV and 1 UGV began to illustrate the advantages of having a heterogeneous

mixture of navigation capabilities within a cooperative group. However in this case, as pre-

dicted by the observability analysis in chapter 3, the lack of relative maneuverability between

the UAV and the UGV caused difficulties in estimating the relative positions of the vehicles

in certain cases. The scenario with 2 UAVs and 1 UGV demonstrated the advantages of a

heterogeneous cooperative group along with the added relative position observability pro-

vided by the second UAV. In this case, the error growth of the entire group was constrained

to the level of the best available INS, assuming that the vehicles were able to accurately

estimate their relative positions. Additionally, through the UGV’s use of digital elevation

models, the error in the vertical direction for all vehicles was constrained through this ab-

solute reference. In the case where accurate GPS measurements were available to at least

one vehicle in the group, all vehicles were able to constrain their position error to the GPS

error, assuming accurate relative positioning.

Chapter 5 showed the experimental validation of the simulated cooperative navigation

studies. The experimental hardware setup and data collection methodology was described.

The experimental results demonstrated similar characteristics to the simulated results. Rel-

ative and absolute errors were reduced by similar amounts in the experiment when compared

to the simulation. Relative position error was reduced from over 100 meters to sub-meter

accuracy, depending on relative measurement availability. Absolute error was also reduced

from over 70 meters to meter-level accuracy depending on measurement availability. Addi-

tionally, further validation for the recommendation of a centralized navigation filter for small

vehicle groups was provided.

6.2 Conclusions

This thesis investigated a variety of cooperative navigation scenarios from which a few

primary conclusions can be drawn. First, this thesis demonstrated a few methods to analyze

the observability of cooperative navigation scenarios. An observability Gramian condition
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number test was suggested to examine observability characteristics of the scenarios studied

here.

Next, combinations of cooperative measurement availability and a spiral class of UAV

maneuver with varied frequency were studied to determine the conditions in which accurate

relative positioning is possible between four different types of cooperative groups (2 UAVs,

3 UAVs, 1UAV & 1UGV, 2 UAVs & 1UGV). It was shown that accurate relative positioning

is possible with only relative range measurements, if sufficient vehicle maneuvers are per-

formed. Relative range-rate measurements added little to the relative positioning accuracy

of the vehicles in most cases. With relative bearing measurements only, accurate relative

positioning was shown for even slow rates of the inter-vehicle spiral maneuver. If range and

bearing measurements were both available to the vehicles, then no maneuver was necessary

to observe the relative positions of the vehicles.

In the case where the cooperative vehicles were able to accurately estimate their relative

positions, a few implications on the absolute positioning of the vehicles were drawn. First, if

any vehicle in the group was able to accurately localize itself to an absolute reference, then all

vehicles in the group benefited with those same error characteristics. This absolute reference

could include GPS positioning in all three coordinate directions or DEM positioning in only

the vertical direction in the case where a UGV was present. The vehicles also benefited

with the error characteristics of the most accurate INS in the group (assuming that one INS

was known to be of a higher accuracy than others in the group). The vehicles were also

able to estimate inertial measurement biases even without an absolute reference. This bias

estimation was improved as additional vehicles were added to the group and if a high quality

IMU was present in the group. Absolute positioning was also significantly improved in these

cases even in the absence of any absolute reference.

Centralized and decentralized estimation architectures for cooperative navigation were

also examined and compared. While the centralized architecture has been suggested because

of the fact that it retains more uncertainty information within the filter, this method can
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place a high computational and communicational load on the centralized processor. The

decentralized architecture can reduce this load. It was found that nearly equivalent mean

error results could be achieved for both architectures if the navigation filters were properly

tuned. However, to achieve these mean error results with the decentralized algorithm, the

error covariance had to be tuned in such a way that resulted in estimated state covariance

that did not accurately represent the actual navigation state uncertainty. An alternative

tuning approach that resulted in better uncertainty bounding was also shown. This approach

resulted in significant increases in relative positioning error when relative range was the only

available measurement and only a slight increase in error if relative bearing measurements

were taken.

Ultimately, based on the results shown in this work, this thesis recommends the use

of both relative range and relative bearing measurements to obtain accurate relative posi-

tioning if possible or a combination of either range-only or bearing-only measurements and

sufficient vehicle maneuver to achieve accurate relative positioning of cooperative vehicles.

This thesis also recommends the combination of vehicles equipped with heterogeneous nav-

igation capabilities in cooperative groups. This strategy would allow the entire group to

reap the benefits of a wide variety of navigation capabilities that are spread throughout the

group. If any one vehicle is able to accurately localize itself to an absolute reference, by any

means, then the entire group could share that accurate navigation capability. Finally, based

on these results, a centralized architecture is suggested for small cooperative groups of this

type. This is primarily due to the fact that this architecture allowed for accurate uncertainty

estimates in a variety of conditions that was not achieved with the same accuracy with the

decentralized architecture. This recommendation for these applications of small cooperative

groups is further prompted by ever-improving communication utilities such as DSRC that

have been shown to handle the communication bandwidth requirements for the cooperative

navigation of these types of small groups [19].
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6.3 Future Work

Many avenues of future work could be taken to build on the work in this thesis. The fol-

lowing list contains a few of these avenues including both continuations of the work presented

here and related alternative areas of cooperative navigation research.

• Create a full “closed loop” cooperative navigation - cooperative guidance algorithm

that commands specific vehicle maneuvers, takes additional measurements, or includes

a path planning strategy when necessary to limit relative position estimation error

growth.

• Additional research into more “optimal” vehicle maneuvers to improve observability.

Potentially through the use of a search algorithm or machine learning techniques.

• Additional investigation into the correlation between the condition number observabil-

ity tests and the resulting estimation errors.

• Further consideration of switching or non-fully connected communication topology, as

in [7]. This could include an examination of data outages and cooperative navigation

integrity during these outages.

• Further refine the tuning methods used for the Covariance Intersection algorithm to

improve the covariance bounding of the estimate errors.

• Investigate alternative decentralized cooperative navigation algorithms such as Bounded

Covariance Inflation or others.

• Improve upon experimental studies done here by including a UWB antenna array (or

another method) to measure relative bearing.

• Perform real-time implementation of the cooperative navigation algorithms described

here to further validate their real-world practicality.
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• Investigate IMU mechanization methods on highly vibratory platforms.

• Investigate the effects of larger “swarms” of cooperating vehicles to determine the limits

of absolute positioning accuracy due to IMU error “averaging,” without an absolute

reference.

• Investigate cooperative navigation using alternative cooperative guidance laws designed

to complete specific missions.

• Further investigate model-aided cooperative navigation strategies as in [1].

• Combine cooperative navigation methods shown here with other alternative naviga-

tion methods (i.e. visual, signal-of-opportunity, map-aided [10], magnetic field based

methods, etc.) for a more comprehensive GPS denied navigation strategy.
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Appendix A

State Matrix, A, and Measurement Matrix, H, Elements

As described in Equation 2.20, and repeated here, the 15 × 1 state vector of the ith

vehicle is formulated as:

xi =



PNED

V NED

Ψ

ba

bg


(A.1)

where PNED is the 3× 1 NED-frame position vector of the vehicle, V NED is the 3× 1 NED

velocity vector, Ψ is the 3 × 1 vector of “1-2-3” Euler Angles, and ba and bg are the 3 × 1

accelerometer and gyro biases of the vehicle’s IMU, respectively.

Each element of the state matrix, A, is determined by taking the partial derivatives of

the nonlinear state equations with respect to each state.

Ai,j =
∂fi
∂Xj

(A.2)

The nonlinear state equations (see Section 2.1) are repeated here:

ṖNED = V NED (A.3)
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RN
B = R3(ψ)R2(θ)R1(φ)

=


cos(θ) cos(ψ) − cos(φ) sin(ψ) + sin(φ) sin(θ) cos(ψ) sin(φ) sin(ψ) + cos(φ) sin(θ) cos(ψ)

cos(θ) sin(ψ) cos(φ) cos(ψ) + sin(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)


(A.4)


˙VN

V̇E

V̇D

 = RN
B


a1 − ba1

a2 − ba2

a3 − ba3

 (A.5)


φ̇

θ̇

ψ̇

 =
1

cos(θ)


cos(θ) sin(φ) sin(θ) cos(φ) sin(θ)

0 cos(φ) cos(θ) − sin(φ) cos(θ)

0 sin(φ) cos(φ)



g1 − bg1

g2 − bg2

g3 − bg3

 (A.6)

The bias states are estimated as first order processes (from first order Markov process,

Equation 2.22):

ḃ =
−1

τbias
b (A.7)

A.1 System Matrix, A, Elements

∂f ˙Pos

∂V NED

terms:

A1,4 = 1 (A.8)

A2,5 = 1 (A.9)

A3,6 = 1 (A.10)
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∂f ˙vel

∂Ψ
terms:

A4,7 = (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))(a2 − ba2)

+ (cos(φ) sin(ψ)− sin(φ) sin(θ) cos(ψ))(a3 − ba3) (A.11)

A4,8 = − sin(θ) cos(ψ)(a1−ba1)+cos(θ) sin(φ) cos(ψ)(a2−ba2)+cos(φ) cos(θ) cos(ψ)(a3−ba3)

(A.12)

A4,9 = − cos(θ) sin(ψ)(a1 − ba1) + (− sin(φ) sin(θ) sin(ψ)− cos(φ) cos(ψ))(a2 − ba2)

+ (sin(φ) cos(ψ)− cos(φ) sin(φ) sin(ψ))(a3 − ba3) (A.13)

A5,7 = (− sin(φ) cos(ψ) + cos(φ) sin(θ) sin(ψ))(a2 − ba2)

+ (− sin(φ) sin(θ) sin(ψ)− cos(φ) cos(ψ))(a3 − ba3) (A.14)

A5,8 = − sin(θ) sin(ψ)(a1− ba1)+sin(φ) cos(θ) sin(ψ)(a2− ba2)+cos(φ) cos(θ) sin(ψ)(a3− ba3)

(A.15)

A5,9 = cos(θ) cos(ψ)(a1 − ba1) + (− cos(φ) sin(ψ) + sin(φ) sin(θ) cos(ψ))(a2 − ba2)

+ (cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))(a3 − ba3) (A.16)

A6,7 = cos(φ) cos(θ)(a2 − ba2)− sin(φ) cos(θ)(a3 − ba3) (A.17)

A6,8 = − cos(θ)(a1 − ba1)− sin(φ) sin(θ)(a2 − ba2)− cos(φ) sin(θ)(a3 − ba3) (A.18)

∂f ˙vel

∂ba
terms:

A4,10 = − cos(θ) cos(ψ) (A.19)

A4,11 = − sin(φ) sin(θ) cos(ψ) + cos(φ) sin(ψ) (A.20)
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A4,12 = − sin(φ) sin(ψ)− cos(φ) sin(θ) cos(ψ) (A.21)

A5,10 = − cos(θ) sin(ψ) (A.22)

A5,11 = − cos(φ) cos(ψ)− sin(φ) sin(θ) sin(ψ) (A.23)

A5,12 = − cos(φ) sin(θ) sin(ψ) + sin(φ) cos(ψ) (A.24)

A6,10 = sin(θ) (A.25)

A6,11 = − sin(φ) cos(θ) (A.26)

A6,12 = − cos(φ) cos(θ) (A.27)

∂fΨ̇

∂Ψ
terms:

A7,7 = cos(φ) tan(θ)(g2 − bg2)− sin(φ) tan(θ)(g3 − bg3) (A.28)

A7,8 = sin(φ) sec(θ)2(g2 − bg2) + cos(φ) sec(θ)2(g3 − bg3) (A.29)

A8,7 = − sin(φ)(g2 − bg2)− cos(φ)(g3 − bg3) (A.30)

A9,7 = cos(φ)/ cos(θ)(g2 − bg2)− sin(φ)/ cos(θ)(g3 − bg3) (A.31)

A9,8 = sin(φ) tan(θ)/ cos(θ)(g2 − bg2) + cos(φ) tan(θ)/ cos(θ)(g3 − bg3) (A.32)

∂fΨ̇

∂bg
terms:

A7,13 = −1 (A.33)

A7,14 = − sin(φ) tan(θ) (A.34)

A7,15 = − cos(φ) tan(θ) (A.35)

A8,14 = − cos(φ) (A.36)

A8,15 = sin(φ) (A.37)
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A9,14 = − sin(φ)/ cos(θ) (A.38)

A9,15 = − cos(φ)/ cos(θ) (A.39)

∂f ˙bias

∂ba,g
terms:

A10...15,10...15 = −1/τbias (A.40)

A.2 Measurement Matrix, H, Elements

Each element of the measurement matrix, H, is determined by taking the partial deriva-

tives of the nonlinear measurement equations with respect to each state.

Hi,j =
∂hi
∂Xj

(A.41)

The nonlinear measurement equations are repeated here (see Section 2.2) along with

the corresponding measurement matrix elements for each measurement type. Note that the

H matrices shown assume that cooperative measurements are taken from vehicle i to vehicle

j. For centralized implementations the H matrices below are appended as:

Hcentralized = [Hvehicle 1 Hvehicle 2 Hvehicle 3 . . .] (A.42)

The H matrix row corresponding to additional vehicles (not directly involved in the cooper-

ative measurement) is represented by 01×15.

Inter-Vehicle Range Measurement:

ρij =
√

∆P 2
N + ∆P 2

E + ∆P 2
D + ηρ (A.43)

∂h

∂PNi
= H1 =

∆PN√
∆P 2

N + ∆P 2
E + ∆P 2

D

(A.44)

∂h

∂PEi
= H2 =

∆PE√
∆P 2

N + ∆P 2
E + ∆P 2

D

(A.45)
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∂h

∂PDi
= H3 =

∆PD√
∆P 2

N + ∆P 2
E + ∆P 2

D

(A.46)

Hρ vehicle i = [H1 H2 H3 01×12]

Hρ vehicle j = [-H1 -H2 -H3 01×12]

(A.47)

Inter-Vehicle Range-Rate Measurement:

ρ̇ij =
∆PN∆VN + ∆PE∆VE + ∆PD∆VD

ρij
+ ηρ̇ (A.48)

∂h

∂PNi
= H4 =

∆VN√
∆P 2

N + ∆P 2
E + ∆P 2

D

− ∆PN(∆PN∆VN + ∆PE∆VE + ∆PD∆VD)

(∆P 2
N + ∆P 2

E + ∆P 2
D)3/2

(A.49)

∂h

∂PEi
= H5 =

∆VE√
∆P 2

N + ∆P 2
E + ∆P 2

D

− ∆PE(∆PN∆VN + ∆PE∆VE + ∆PD∆VD)

(∆P 2
N + ∆P 2

E + ∆P 2
D)3/2

(A.50)

∂h

∂PDi
= H6 =

∆VD√
∆P 2

N + ∆P 2
E + ∆P 2

D

− ∆PD(∆PN∆VN + ∆PE∆VE + ∆PD∆VD)

(∆P 2
N + ∆P 2

E + ∆P 2
D)3/2

(A.51)

Hρ̇ vehicle i = [H4 H5 H6 H1 H2 H3 01×9]

Hρ̇ vehicle j = [-H4 -H5 -H6 -H1 -H2 -H3 01×9]

(A.52)

Inter-Vehicle Relative Bearing (Azimuth):

Λij = arctan(
∆PN
∆PE

)− ψi + ηΛ (A.53)

∂h

∂PNi
= H7 =

∆PE
∆P 2

N + ∆P 2
E

(A.54)

∂h

∂PEi
= H8 =

−∆PN
∆P 2

N + ∆P 2
E

(A.55)

∂h

∂ψi
= H9 = −1 (A.56)

HΛ vehicle i = [H7 H8 01×6 H9 01×6]

HΛ vehicle j = [-H7 -H8 01×13]

(A.57)
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Inter-Vehicle Relative Bearing (Elevation):

Eij = arctan(
−∆PD√

∆P 2
N + ∆P 2

E

)− θi + ηE (A.58)

∂h

∂PNi
= H10 =

∆PN∆PD√
∆P 2

N + ∆P 2
E(∆P 2

N + ∆P 2
E + ∆P 2

D)
(A.59)

∂h

∂PEi
= H11 =

∆PE∆PD√
∆P 2

N + ∆P 2
E(∆P 2

N + ∆P 2
E + ∆P 2

D)
(A.60)

∂h

∂PDi
= H12 =

√
∆P 2

N + ∆P 2
E

(∆P 2
N + ∆P 2

E + ∆P 2
D)

(A.61)

∂h

∂θi
= H13 = −1 (A.62)

HE vehicle i = [H10 H11 H12 01×4 H13 01×7]

HE vehicle j = [-H10 -H11 -H12 01×12]

(A.63)

Absolute Position (GPS):

Pmeas = P + ηGPS (A.64)

HGPS = [I3×3 03×12] (A.65)

Absolute Attitude (AHRS):

Ψmeas = Ψ + ηAHRS (A.66)

HAHRS = [03×6 I3×3 03×6] (A.67)

Absolute Vertical Position (DEM):

PDEM = PDt + ηDEM (A.68)

HDEM = [01×2 1 01×12] (A.69)

113


