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Abstract

The Stochastic Gradient Descent (SGD) method in all its variations has gained popular-

ity with the recent progress in Machine learning. In this dissertation we implement and ana-

lyze two modifications of the SGD method. In the first half of the dissertation we investigate

the adaptive gradient descent (AdaGrad) method in the context to the optimal distributed

control of parabolic partial differential equations with uncertain parameters. This stochastic

optimization method achieves an improved convergence rate through adaptive scaling of the

gradient stepsize. We prove the convergence of the algorithm for this infinite dimensional

problem under suitable regularity, convexity, and finite variance conditions, and relate these

to verifiable properties of the underlying system parameters. Finally, we apply our algo-

rithm to the optimal thermal regulation of lithium battery systems under uncertain loads.

In the second half of the dissertation we look at the design, implementation and analysis of

Stochastic Alternating Least Squares (SALS) as a method that approximates the canonical

decomposition of averages of sampled random tensors. Its simplicity and efficient memory

usage make SALS an ideal tool for decomposing tensors in an online setting. We show, under

mild regularization and readily verifiable assumptions on the boundedness of the data, that

the SALS algorithm is globally convergent. Numerical experiments validate our theoretical

findings and demonstrate the algorithm’s performance and complexity.
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Chapter 1

Introduction

The idea of Artificial Intelligence (AI) began as a philosophical idea even before com-

puters, when philosophers attempted to design human thinking using abstract mathematical

logic [61]. Over the ages, the presence of AI can be found from ancient mythologies, to re-

naissance, to modern day science fictions that talk about humanoids indistinguishable from

humans in intelligence and appearance [4, 50, 61]. With the advent of computers (machines

capable of synthesizing mathematical logic), deep learning (process of computers learning

complex concepts out of simpler concepts) can be traced back to the 1940s [23]. Scientists

started serious consideration of building electronic brains that can imitate a living brain and

human logic [16, 61].

In 1956, a group of scientists met at the Dartmouth Research Project on AI, which is

known to have coined the term of artificial intelligence [42, 50]. The meeting conjectured

the possibility of simulating the process of learning and other aspects of intelligence. Unfor-

tunately in the 1970s AI faced extreme critiques and suffered setbacks in funding and this

led to the first AI winter [16]. The high optimism had led to impossible expectations and

the failure to deliver promised results led to a cut-off in AI funding.

In the 1980s, AI saw a surge of funding [16]. There was a hope for the revival of the field

again. Few initial successes generated a new wave of investment from corporations around

the world who were in pursuit of developing their own ’expert systems’. Things seemed to

be hopeful once again with the renewed interests during the period of 1980-1987, where AI

achieved great success. Regardless of these achievements, the technology was unable to live

up to the unrealistic expectations due to maintenance cost, difficulty in scaling and limited

scope, leading to AI seeing the second winter as funding got pulled back once again.
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With increased computational power and huge amounts of electronic data being gener-

ated all across industry, the third surge of AI was seen in the 1990s [16, 23]. AI started to

achieve great success, some being Google’s search engine, data mining, speech recognition,

medical diagnosis and so on. With Gary Kasparov being defeated in 1997 by Deep Blue from

IBM, it became the first chess-playing computer to achieve such feat [48, 50]. During the

early 21st century access to large amounts of data (big data) and advanced machine learning

techniques, AI-related products have started to take over the market and all the possible big

industries.

1.1 Machine Learning (ML)

This sub-branch of AI was born from the idea that machines can be trained for recogniz-

ing patterns and act independently with minimum human intervention through the analysis

of big data. Statistics and mathematical optimization work together to form the backbone

of machine learning and the easier and cheaper availability of computers along with modern

computational elements like cloud computing and open source software, ML has become

easily accessible to the public.

An AI learns from a given dataset using a ML technique that designs a mathematical

function to fit the dataset. To fit this function accurately, the ML method needs to keep

an account for the difference between the actual value from the observations in the dataset

and the predicted or estimated value given by the designed function. This difference is

formulated as the error function for every algorithm. The ML method is successful when it

has reduced the error to an acceptable level. However, if the error is high, the algorithm

attempts to improve the function until it reaches the level of acceptable error. Optimization

techniques are required for this process of reducing errors and are an integral part of a ML

algorithm. Stochastic gradient descent (SGD) is one of the popular optimization techniques

in the recent times[23]. The SGD method helps an AI to learn rapidly from a dataset as its

performance is dependent on accessing a smaller subset of data points from the given big
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dataset. The original idea for SGD was formulated by Robbins and Monro in 1951 [52]. Since

then SGD has seen large scale applications in ML models like logistic regressions, support

vector machines, natural language procession and image recognition [9]. In this Chapter 1

we look at the fundamental framework of the SGD algorithm and see how it can be modified

to design the adaptive gradient descent method (AdaGrad), treated in Chapter 2, and the

stochastic alternating least squares (SALS) method, discussed in Chapter 3.

Typically an ML problem starts with a dataset {(x1, y1), (x2, y2), · · · , (xN , yN )}, where

the objective is to find a reasonable function h from within a set of admissible functions

that best fits this information. For each i ∈ 1, 2, · · · , N the vector xi represents the input

with the corresponding output yi and we expect h(xi) ≈ yi. The admissible set is chosen

to ensure that the function h not just memorizes the current dataset, but also offers good

approximation for instances that do not appear in the examples. Rote memorization is

avoided by constructing a prediction function h that can generalize the concepts that may

be learned from the dataset, hence predicting the outcome yi accurately for each input xi.

There are multiple choices of h that are used in practice. Most commonly, h is parameterized

by a design parameter vector u ∈ U , where U is a set of admissible parameters. To achieve

a prediction model is to obtain the optimal values of u that give us a model function h that

not just satisfies the training values of the dataset, but can output the estimated value of

y for an un-accessed datapoint x from the dataset. To achieve the desired accuracy of this

prediction, a metric is used to measure how far h is from actual function value yi for each

instance in the dataset, and call it the cost function or loss function. Depending on the

problem, we may have different constructions of the loss function, some examples being the

following:

• Quadratic loss: fi(u) = (h(xi; u)− yi)
2

• Cross entropy loss: fi(u) = −(yi ln(h(xi; u)) + (1− yi) ln(1− h(xi; u))

3



• 0-1 loss: fi(u) = I(h(xi; u) 6= yi) where I(A) =







1, if A is true

0, otherwise

For the low-rank tensor decomposition problem discussed in Chapter 3, the prediction

function h is a low-rank tensor approximation, the parameter u represents its components,

and the loss function fi(u) is the Frobenius distance between h and an observed sample

tensor X (i).

In practice, a regularization term is added to the loss function to keep the norm of

the parameter u in check. A regularization term as the name suggests, makes the objective

function more regular by restricting the fitting parameters, either explicitly or through the

use of a penalty term. While regularization introduces a bias in the parameter estimates, it

adds to the well-posedness of the problem while often also reducing the chance of overfitting.

For example, if we choose the quadratic loss, we can use the L2-norm of the parameters as

the regularization term, thus constructing the loss function,

fi(u) =
1

2
(h(xi; u)− yi)

2 +
α

2
‖u‖2

where the constant α is adjusted to control the effect of regularization.

The objective of learning from the dataset is achieved through minimization of the

expected value of this loss function over all examples, i.e.,

min
u∈U

F (u) =
1

N

N∑

i=1

fi(u). (1.1)

More generally, the loss function may be a random mapping f : U × Ω → R defined

over a complete probability space (Ω,F ,P), where Ω is the sample space, F denotes the

σ-algebra, and P denotes an appropriate probability measure. In Chapter 2 for example, the

loss function f(u, ω) represents the L2-deviation of the trajectory of a sample state from a

desired target trajectory, under a given control function u. In the more general case, the
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optimization problem is formulated as

min
u∈U

F (u) = E[f(u)] =

∫

Ω

f(u, ω)dP(ω).

In practice this expectation E[f(u)] is usually approximated through Monte Carlo sampling,

giving rise to a problem such as (1.1).

1.2 Optimization

The algorithms from ML we discuss in this thesis belong to the class of gradient descent

algorithms. As the name suggests, these algorithms are based on the fact that the steepest

descent of a function at a point in its domain is in the direction of the negative gradient

at that point. Considering vector u in Equation 1.1, starting with an initial guess u0, the

following iteration gets us close to an optimal solution u∗ as minimizer for the function F (u)

:

uj+1 = uj − ηj · ∇F (uj). (1.2)

We hope that with enough iterations we can get uj to be as close to u∗ as we want. A crucial

parameter for the above iteration step is the stepsize ηj which determines the learning rate,

i.e., how far we move in the direction of the steepest descent. A significant amount of research

work always goes towards determining an appropriate value of ηj. It can be a constant value

or a value that evolves as the number of iterations the algorithm has performed. A wrong

choice of the step-size can lead to a very slow convergence of the algorithm or over-shooting,

causing us to miss the optimal solution or oscillating around it. In our discussions we will

consider a convex function and hence assume that it attains an unique minimum.

With our goal of minimizing the risk function given by the Equation 1.1 we apply the

gradient descent method to Equation 1.2, we obtain the following batch gradient descent
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Figure 1.1: Contour plot showing the direction of the steepest descent

iteration step

uj+1 = uj − ηj ·
1

N

N∑

i=1

∇fi(uj). (1.3)

We observe that in order to obtain the gradient of the risk function for each iteration,

we need to find the average of the gradient of the loss function over the entire dataset.

This leads us to an extremely expensive computational process. For every single step of the

iteration calculating the average over the entire dataset seems to be costly. Hence, we need

to modify the algorithm so that it can still obtain accuracy by using a much smaller subset.

In the following section we introduce the stochastic gradient descent method that achieves

the above goal.

1.3 Stochastic Gradient Descent

Optimization methods in ML fall broadly under two categories, stochastic and batch

gradient descent [9]. Discussed so far was the batch method which definitely without doubt

has it’s own merits. Using the batch approach we can utilize the already available determin-

istic gradient-based methods including non-linear optimization techniques that have been

developed in the past decades. Due to the risk function being a sum, a batch process can

easily be subjected to parallel computing over a distributed system. Regardless, stochastic
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gradient descent algorithms have gained a lot of popularity in the recent times. In this thesis

we mainly focus on SGD along with one of its variations, AdaGrad methods.

On large-scale applications involving big data, there are often redundancies, as copies

of the same data in the dataset lead to repetition of information. When working with

batch gradient descent, redundant data that provide no new information are taken into

consideration when calculating the gradient and hence increasing computational cost. In

comparison, the stochastic gradient descent method (SGD), follows the iteration steps with

initital guess u0,

uj+1 = uj − ηj · ∇fij(u) (1.4)

which estimates the true gradient by only one instance fij instead of ∇F and hence earning

its name. The index ij is randomly chosen from i.i.d on the set of indices 1, 2, · · · , N . The

advantage of this process is that for every iteration, the computation of this estimate be-

comes significantly cheaper due to it being just one instance and not an average of gradients

over a large dataset. The learning rate determined by the stepsize ηj is usually chosen as a

constant or a diminishing stepsize ηj =
η

j
, with η > 0. Due to the stochastic nature of this

algorithm we can always expect a speedy convergence as instances of the function picked can

help the iteration jump close to the optimal solution quickly.

In pseudocode, we can observe the SGD method with diminishing stepsize as the fol-

lowing:

Algorithm 1 SGD method

1: Initialize u0, η

2: for j = 0, 1, . . . do

3: Choose an instance given by index ij

4: Compute ∇fij(uj)

5: uj+1 = uj − η

j
∇fij(uj)

6: end for

7



In practice the learning rate has to be adjusted with a suitable choice of η for the

efficient convergence. The diminishing stepsize usually gives a smoother convergence as the

learning rate slows down with the passing of iterations hoping to get closer to the optimal

minimizer. However, this usually does not take into account the amount of descent at the

current point of iteration determined by the gradient. The idea of taking into account the

gradient of the function for the evolution of the stepsize provides us the motivation for

the Adaptive Gradient descent or AdaGrad method that we discuss in Chapter 2. In our

pursuit of minimizing the risk function we are searching for the solution to the gradient

of risk function being zero. The solution to this equation can be obtained using Newton’s

method which provides a fast convergence. Considering Hj = ∇2F (u), the Hessian of the

Risk function, the iteration takes the form,

uj+1 = uj − ηH−1
j ∇F (uj) (1.5)

The computation of this Hessian can be expensive leading to a trade-off between the conver-

gence rate and the cost of computation. We can instead estimate this Hessian by a simpler

preconditioner matrix which usually is a positive semi-definite matrix for convex optimiza-

tion. One idea would be to choose a diagonal matrix Bj = B(uj) to obtain the iteration

step,

uj+1 = uj − ηjB
−1
j ∇F (uj).

However, the normalizing effect of this preconditioner Bj can be further simulated by re-

placing with a scalar bj demonstrated in [60], by the following iteration,

uj+1 = uj − η · 1
√
bj−1 + ‖∇fij(uj)‖2

· ∇fij(uj)

The scalar bj accounts for all the norm of the gradient values for the previous iterations. Thus

bj is a diminishing stepsize keeping into account the degree of descent of the function. To
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obtain the stochastic algorithm once again the gradient of the risk function ∇F is estimated

by the instance fij .

In context to the design of optimal control of a stochastic partial differential equation

(SPDE) in Chapter 2, the objective is to introduce a control function to the system to drive

the solution towards a desired solution. The stochasticity of the SPDE is described by the

random coefficients of the system, i.e. the coefficients are functions of a random state ω ∈ Ω

shown in Equation 2.1. The solution to the SPDE thus depends on the control u and the

random state ω. Each instance of ω corresponds to an observation of the system. For each of

these instances the loss is a function that calculates the difference of the solution of the SPDE

from the desired solution, making it a function of u and ω. We consider the risk function

E[f(u, ω)] that needs to be minimized. We can consider our dataset as different instances

of this system, thus generating the collection of loss functions {f1(u), f2(u), · · · fN(u)} cor-

responding to each instance of ω over N -iterations where fj(u) = f(u, ωj). The gradient of

the risk function E[∇f(u)] is estimated by one single instance ∇f(u, ω) where the iteration

takes the form

uj+1 = uj −
η

bj
︸︷︷︸

learning rate

· ∇fj(uj)
︸ ︷︷ ︸

gradient

where b2j+1 = b2j + ‖∇fj(uj)‖2

and the underbraces show the equivalent learning rate and estimated gradient from the

Equation 1.4.

Chapter 3 demonstrates the stochastic alternative least Square (SALS). The objective

of the SALS algorithm is to decompose a random tensor (tensor with random entries) as

a sum of simpler tensors. Tensors are multidimensional arrays that are higher dimensional

generalizations to vectors and matrices that appear very frequently in ML methods. Current

methods of training neural networks heavily depend on tensors as they can represent the in-

put, output and the transformations within the network as one big array of numbers. Being
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a large array of numbers, a tensor can be computationally expensive to deal with. Decom-

posing a tensor as a sum of simpler tensors can provide us with a form that can accurately

approximate the principle properties of the tensor and simultaneously provide a computa-

tionally cheaper array to deal with. To be more specific, in context to our experiments when

we say simpler tensors, we mean rank-one tensors. A tensor that can be represented as an

outer product of vectors is a rank-one tensor. Our objective is to approximate a random

tensor χ by an approximate tensor χ̃ that is a sum of rank-one tensors where the number of

terms in the sum, r is predetermined and is defined as the rank of χ̃. The loss function in the

context to this problem measures the norm of the difference of χ− χ̃ with the regularization

term as the square of the norm of χ̃. Expected value of this loss function is defined as the

risk function for the problem. To be able to apply the above algorithm to this problem,

we vectorize the tensors in the risk function. If we observe the vectorized form of these

tensors componentwise (that is, the vectors are sub-divided into smaller vectors called the

components), we see that the risk function turns out to be quadratic for each component.

This allows us to apply a least square fit succesively for each component. Specifically, in

Chapter 3 we propose the stochastic iteration of the form

uk+1
i = uk

i − αk,i
(
Hk,i

)−1

︸ ︷︷ ︸

learning rate

· g̃k,i

︸︷︷︸

gradient

where

αk,i =
ck,i

k
, for i = 1, 2, . . . , p, and k = 1, 2, . . . ,

uk
i represents the kth parameter iterate in the ith component, g̃k,i is the associated component-

wise sample gradient, and Hk,i is the componentwise Hessian of the loss. The underbraces

show the equivalent learning rate and estimated gradient from the Equation 1.4. Following

the index i we traverse the components of the vectorized form of the tensor and following

index k we traverse the iteration steps. For each k-th iteration we need to traverse through

10



all the components of the vectorized form, thus exhausting the values of the index i from

the set {1, 2, · · · , p} where p is the number of components.

Remark 1. In Chapter 3, we will denote the parameter representing the rank-one tensor

components by x, in keeping with prevailing conventions in the literature on tensor decom-

position.
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Chapter 2

Optimal Control

The work in this chapter appears in the paper Adaptive Gradient Descent for Optimal

Control of Parabolic Equations with Random Parameters. Cao, Y., Das, S., van Wyk,

H.-W., 2021. [12]

Stochastic optimization algorithms have increasingly found a use in the design of deter-

ministic regulators for uncertain systems. Such problems arise in open loop control systems

exhibiting statistical variations that cannot be observed by the controller. The control must

consequently be designed to be robust in light of predicted uncertainties to ensure a desired

statistical behavior of the system, as encoded by an appropriate risk function. In this chap-

ter we measure risk in terms of the mean squared deviation of the controlled state from a

desired reference state, but other risk functions, such as Conditional Value at Risk [53], are

also possible.

We focus on the use of adaptive stochastic gradient methods in the distributed control

of uncertain parabolic systems. These problems arise naturally in the thermal regulation of

lithium battery systems [59, 25], for example. The variability of operating conditions, of the

manufacturing process, and of the degradation of batteries over their life cycle gives rise to

uncertainties in thermal properties of such systems. Their effect on material properties such

as local resistivity, can be quantified through various methods, including empirical testing,

and the use of battery degradation models [62]. The optimal controller is designed to ensure

a desired average overall temperature over a range of conditions.

In mathematical terms, the design of an optimal control for uncertain systems can be

formulated as a deterministic, infinite dimensional optimization problem whose cost function

takes the form of a stochastic integral. Stochastic gradient (SG) algorithms are line search
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methods in which the gradient of the risk function is replaced by random gradient samples,

resulting in iterations that are much cheaper to compute than those obtained by a full ap-

proximation of the gradient. These stochastic optimization methods, originally conceived in

[52] and fundamental in the development machine learning algorithms, have recently gar-

nered attention in the context of infinite dimensional optimization (see e.g. [41, 21]). They

are particularly well-suited to large scale problems in which the risk function is strongly con-

vex and the underlying uncertainty is sufficiently complex to warrant the use of Monte Carlo

sampling in approximating the stochastic integrals. It can be shown (see e.g. [9]) that for

strongly convex risk functions whose sample gradients are Lipschitz continuous with bounded

variance, the stochastic gradient method with appropriately chosen step-sizes converges at

the rate O(1/j), where j is the number of gradient evaluations. The convergence rate is

optimal among first order methods, according to the complexity bounds established in [2].

In comparison, a gradient-based deterministic optimization scheme, coupled with standard

Monte Carlo approximation, has a convergence rate of O(1/
√
j). The cost-reduction offered

by SG iterations is especially pertinent in the context of optimal control, where the evalua-

tion of the sample gradient involves the numerical approximation of two partial differential

equations, namely the state and the adjoint equations (see Section 2.1).

While the SG iteration converges for a range of predetermined stepsizes, its convergence

rate can vary widely. Moreover, the stepsize rule that guarantees the optimal convergence

rate depends on the gradient’s Lipschitz constant, its variance, and its strong convexity

parameter, all of which are difficult to estimate in general. This practical shortcoming

has led to investigations into adaptive stepsize rules that use information obtained during

the iteration to adjust the stepsizes on the fly. The Adaptive Gradient (AdaGrad) method,

developed concurrently in [17] and [43], scales the stepsize by the cumulative sum of gradients

sampled thus far. Despite the widespread use of AdaGrad and its extensions, such as the

Root Mean Square Propagation (RMSProp), or the Adaptive Moment Estimation (Adam)

algorithms [28, 32], theoretical insight into its robustness and convergence has remained
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elusive until recently [60, 37], even in the finite dimensional case. In [37], the authors prove

the convergence of the AdaGrad method for both strongly convex and general functions over

finite dimensional parameter spaces, obtaining convergence rates in the expected optimality

gap that interpolate between 1/j and 1/
√
j. In their proof the authors require a bound on

the initial stepsize parameter that involves the risk function’s Lipschitz constant. In [60],

the authors prove a weaker form of convergence for a general risk function without imposing

any conditions on the stepsize in terms of the underlying problem parameters.

This chapter aims to extend the AdaGrad method to infinite dimensional distributed

control systems constrained by parabolic PDEs with uncertainties. In Section 2.1 we outline

the optimal control problem and introduce the AdaGrad algorithm. In Section 3.3 we estab-

lish convergence of the AdaGrad algorithm and relate its requirements on the risk function’s

regularity, convexity, and finite variance to verifiable properties of the system’s uncertain

parameters. The numerical experiments in Section 2.3 illustrate the algorithm’s theoreti-

cal properties derived in previous section, as well its appplication to a thermal regulation

problem. In Section 3.5, we offer concluding remarks.

2.1 Problem Setting

We consider the non-homogeneous heat equation [19, 30] to model our system. Consider

(Ω,F ,P) be a complete probability space encoding the uncertainties in our system, D ⊂ R
d,

d = 1, 2, 3, · · · be a physical domain with boundary ∂D, and T > 0 be some terminal time.

The system’s state y : D × [0, T ]× Ω→ R is then defined as the random field satisfying







dy

dt
−∇(a∇y) = g + u, x ∈ D, t ∈ [0, T ],

y = 0, x ∈ ∂D, t ∈ [0, T ],

y(·, 0) = y0, x ∈ D

(2.1)
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almost surely (a.s.) on Ω. For convenience, we define the differential operator L = d
dt
−

∇(a∇·). Uncertainties in the system can arise from the diffusion coefficient a, the forcing

term g, or the initial condition y0. The deterministic function u ∈ U := L2(D × [0, T ])

represents the distributed control to be determined through optimization. To ensure the

state equation’s well-posedness, we make the following assumptions.

Assumption 1. The diffusion coefficient a ∈ L∞([0, T ] × D × Ω) satisfies the coercivity

condition

0 < amin ≤ a(x, t, ω) ≤ amax <∞, x ∈ D, t ∈ [0, T ], ω ∈ Ω. (2.2)

for constants amin, amax ∈ R. The forcing term g is a square integrable mapping g : Ω →

L2([0, T ], H−1(D)), i.e. g ∈ L2(Ω, L2([0, T ], H−1(D)), and the initial condition y0 ∈ L2(D×

Ω).

As a consequence, Equation (2.1) has a unique solution y for every control u [5]. The

assumption on the uniform coercivity can be relaxed somewhat to allow for lognormal diffu-

sion coefficients, see [22]. In the following, we will often find it useful to refer to y in terms

of its dependence on various subsets of x, t, ω, and the control u, e.g. y(u, ω) or y(x, t, ω).

Throughout the paper, we will use 〈·, ·〉 and ‖ · ‖ to refer to the inner product and norm

associated with L2([0, T ]×D), i.e. for v ∈ L2([0, T ]×D),

‖v‖2 =
∫ T

0

∫

D

|v(x, t)|2dx dt.

2.1.1 The Optimal Control Problem

In optimal control we seek a controller u that steers the corresponding state y(u) to

track a desired reference solution yd. This function is often deterministic, but here we need

only require yd ∈ L2([0, T ] × D × Ω), allowing us to encode the state’s desired behavior

on a statistical level. We measure the deviation of y(u) from yd in a mean-squared sense
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over all possible state realizations. Furthermore, we constrain the control u to lie within the

admissible set

Uad = {u ∈ U : ‖u‖ ≤ umax},

for a given constant 0 < umax ≤ ∞. The optimal control problem can thus be stated as

min
u∈Uad

F (u), (2.3)

where the risk function is

F (u) = E[f(u)] =

∫

Ω

f(u, ω)dP(ω),

and

f(u, ω) =
1

2
‖y(u, ω)− yd(ω)‖2 +

α

2
‖u‖2.

To establish well-posedness of Problem (2.3), i.e. the existence and uniqueness of an

optimal control, we note that the risk function F can be readily decomposed into

F (u) = π(u, u)− 2L(u) + C,

where

π(u, v) =
1

2
E [〈y(u)− y0, y(v)− y0〉] +

α

2
E [〈u, v〉]

is a continuous, coercive bilinear form,

L(u) = E [〈yd − y0, y(u)− y0〉] , and

is a bounded linear form, C is constant in u. The result then follows directly from Chapter

1, Theorem 1.1 in [38]. In fact, it will be shown in 2.2.1 that f(u, ω) is strongly convex
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a.s. on Ω, which has strong implications on the convergence rate of the AdaGrad method

introduced in Section 2.1.2.

2.1.2 The AdaGrad Algorithm

While Problem (2.3) is ostensibly deterministic, its risk function F (u) is a statistic as-

sociated with the uncertain system (2.1). For a given initial guess u0, consider the stochastic

gradient iteration

uj+1 = uj − ηj∇fj(uj), (2.4)

where the stochastic gradients {∇fj(uj)}∞j=1 are idependent, identically distributed samples

of ∇f(uj, ω) satisfying E[∇fj(uj)] = ∇F (uj), and {ηj}∞j=1 is a sequence of positive stepsizes.

Remark 2. In cases when the risk function is determined empirically, i.e. by sampling,

when the system’s statistical distribution is determined empirically, through analysis of test

samples, the risk function may take the form

F (u) =
1

N

N∑

i=1

fi(u).

In this case, sample gradients can be obtained as ∇fij(u), where ij is drawn uniformly from

the set {1, . . . , N} (see [9]).

The established convergence analysis of the SGD algorithm for non-convex smooth func-

tions depends on specific conditions on positive step-size ηj (see [52]). A sufficient condition

for convergence is that {ηj}∞j=1 is a deterministic sequence of positive numbers that satisfies:

∞∑

j=1

ηj =∞ and
∞∑

j=1

η2j <∞ (2.5)

The choice of ηj can be a conveniently chosen constant or diminishing function of the

iteration count, i.e., ηj = O(1
j
). As an improvement to this SGD algorithm we apply the
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Adaptive Gradient Descent algorithm that uses the following adaptive step-size,

ηj =
η

√

b20 +
j−1∑

k=1

‖∇fk(uk)‖2
(2.6)

where η > 0 and b0 > 0 are constants. Other versions of AdaGrad scale componentwise.

Other variations include the current gradient value (though this can lead to steps that are

not descent directions in expectation [37]).

For the optimal control problem (2.3), it is a standard result (see [38]) that f(u) is

Fréchet differentiable and that the sample gradients ∇f(u) can be computed as

∇f(u) = p+ αu, (2.7)

where p is the adjoint state, satisfying







−dp

dt
−∇ · (a∇p) = y − yd, x ∈ D, t ∈ [0, T ],

p(x, t) = 0, x ∈ ∂D, t ∈ [0, T ],

p(x, T ) = 0, x ∈ D.

(2.8)

Indeed, the directional derivative D[f(u)](v) of f at u ∈ U in any direction v ∈ U is

given by

D[f(u)](v) = 〈y − yd, s(v)〉+ α〈u, v〉,

where s(v) satisfies the sensitivity equations







ds
dt
−∇ · (a∇s) = v, ∀x ∈ D, t ∈ [0, T ],

s(x, t) = 0, ∀x ∈ ∂D, t ∈ [0, T ],

s(x, 0) = 0, ∀x ∈ D.

(2.9)
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Denoting by L∗ = − d
dt
− ∇(a∇·) the formal adjoint of L, we can use Equation (2.8), inte-

gration by parts, and Equation (2.9) to write

D[f(u)](v) = 〈y − yd, s(v)〉+ α〈u, v〉 = 〈L∗p, s(v)〉+ α〈u, v〉

= 〈p,Ls(v)〉+ α〈u, v〉 = 〈p, v〉+ α〈u, v〉,

from which Formula (2.7) follows.

The AdaGrad algorithm for Problem (2.3) can thus be summarized as follows.

Algorithm 2 AdaGrad for Problem (2.3)

1: Initialize u0, b0, η

2: for j = 0, 1, . . . do

3: yj ← solution of sample primal system (2.1)

4: pj ← solution of sample adjoint system (2.8)

5: ∇fj(uj) = pj + αuj

6: uj+1 = uj − η

bj
∇fj(uj)

7: b2j+1 = b2j + ‖∇fj(uj)‖2

8: end for

2.2 Convergence Analysis

In this section we establish theoretical properties of the AdaGrad algorithm in the

context of the optimal control problem (2.3). Theorem 2.1 proves AdaGrad’s convergence

under suitable conditions. To this end we show that the problem’s risk function is strongly

convex (Proposition 2.2.1) and Lipschitz continuous (Proposition 2.2.2). Moreover, in Section

2.2.2 we relate the algorithm’s finite variance requirement to the statistical properties of

the underlying uncertain inputs. Our convergence analysis is based on that of [37] whose

authors establish convergence for convex risk functions over finite-dimensional parameter
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space, whose sample gradient functions∇f are Lipschitz continuous, unbiased, and uniformly

bounded over u and ω ∈ Ω.

2.2.1 Convexity and Smoothness

Proposition 2.2.1. The mapping f(·, ω) : U → R is strongly convex a.s. on Ω. Specifically,

〈∇f(v, ω)−∇f(u, ω), v − u〉 ≥ α‖v − u‖2 a.s. on Ω. (2.10)

Proof. Since we will show that the result holds a.s. on Ω, we find it notationally convenient

not to write ω explicitly in this proof. Specifically, let ω ∈ Ω be a fixed system realization

and let y(u), p(u), and f(u) be respectively the associated state, adjoint variable, and sample

cost when subjected to control u ∈ U . Using the form of the gradient given by Equation

(2.7), we have that for u, v ∈ U ,

〈∇f(v)−∇f(u), v − u〉 = α‖v − u‖2 + 〈p(v)− p(u), v − u〉. (2.11)

To prove the proposition, it therefore suffices to show 〈p(v)− p(u), v − u〉 ≥ 0. To this end,

note that subtracting Equation (2.1) with control u from that with control v gives

L(y(v)− y(u)) = v − u. (2.12)

Similarly,

L∗(p(v)− p(u)) = y(v)− y(u). (2.13)

Multiplying Equation (2.12) by p(v)− p(u) and integrating over D and [0, T ] gives

〈L(y(v)− y(u)), p(v)− p(u)〉 = 〈v − u, p(v)− p(u)〉,
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which, through integration by parts and Equation (2.13), takes the form

〈p(v)− p(u), v − u〉 = 〈L(y(v)− y(u)), p(v)− p(u)〉

= 〈y(v)− y(u),L∗(p(v)− p(u))〉 = ‖y(v)− y(u)‖2 ≥ 0.

This proves Inequality (2.10), by virtue of Equation (2.11).

Proposition 2.2.2. For f defined in (2.7), u, v ∈ U , and for ω ∈ Ω, we have

‖∇f(v)−∇f(u)‖ ≤M‖v − u‖, (2.14)

where M = α +
C4

p

a2
min

.

Proof. As before we refrain from writing f, y, and p explicitly in terms of the random state

ω ∈ Ω. Recall Equation (2.11)

∇f(v)−∇f(u) = α(v − u) + p(v)− p(u),

for a given ω ∈ Ω, and controls u, v ∈ U . To bound the difference in sample gradients, it

therefore suffices to bound the difference in adjoint variables. Multiplying Equation (2.13)

by p(v) − p(u), integrating over D and [0, T ], and using Green’s theorem for the diffusion

term, as well as the chain rule for the time derivative yields

〈y(v)− y(u), p(v)− p(u)〉 = 〈L∗(p(v)− p(u)), p(v)− p(u)〉

=−
∫ T

0

∫

D

d

dt
‖p(v)− p(u)‖2dx dt+

∫ T

0

∫

D

a(∇p(v)−∇(p(u))2dx dt. (2.15)

The fundamental theorem of calculus and the terminal condition for the adjoint Equation

(2.8) together imply

−
∫ T

0

∫

D

d

dt
‖p(x, t, v)− p(x, t, u)‖2dx dt =

∫

D

‖p(x, 0, v)− p(x, 0, u)‖2dx ≥ 0.
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Moreover, the coercivity condition (2.2), used in conjunction with the Poincaré inequality,

implies

∫ T

0

∫

D

a(∇p(v)−∇(p(u))2dx dt ≥ amin‖∇p(v)−∇p(u)‖2 ≥
amin

C2
p

‖p(v)− p(u)‖2,

where Cp is the appropriate Poincaré constant. Equation (2.15) and the Cauchy-Schwartz

inequality thus lead to

amin

C2
p

‖p(v)− p(u)‖2 ≤ 〈y(v)− y(u), p(v)− p(u)〉 ≤ ‖y(v)− y(u)‖‖p(v)− p(u)‖,

and hence

‖p(v)− p(u)‖ ≤
C2

p

amin

‖y(v)− y(u)‖. (2.16)

By applying analogous arguments to the state Equation (2.1), we can similarly bound

‖y(v)− y(u)‖ ≤
C2

p

amin

‖v − u‖,

so that

‖p(v)− p(u)‖ ≤
C4

p

a2min

‖v − u‖.

Therefore

‖∇f(v)−∇f(u)‖ ≤ ‖p(v)− p(u)‖+ α‖v − u‖ ≤
C4

p

a2min

‖v − u‖+ α‖v − u‖,

yielding the bound (2.14).

2.2.2 Finite Variance

In addition to strong convexity and Lipschitz continuity, shown in Propositions 2.2.1 and

2.2.2 respectively, our convergence proof of the AdaGrad algorithm requires a strengthened

finite variance condition on the sample gradients. It is commonly enforced [46, 37] by
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assuming there is a constant σ2 > 0 so that

E

[

exp

(‖∇f(u)−∇F (u)‖2
σ2

)]

≤ exp(1), for all u ∈ U. (2.17)

Through the use of Jensen’s inequality and conditional expectation, Inequality (2.17) can be

readily shown (see e.g. [37]) to imply

E

[

max
1≤k≤j

‖∇fk(uk)−∇F (uk)‖2
]

≤ σ2(1 + ln(j)), j = 1, 2, . . . , (2.18)

in addition to the standard variance bound

E
[
‖∇fj(uj)−∇F (uj)‖2

]
≤ σ2, j = 1, 2, . . . . (2.19)

Finite variance assumptions, such as Inequality (2.17), are commonly made in convergence

analyses of stochastic optimization methods and are, strictly speaking, only required to hold

for the iterations uj. Nevertheless, they are generally not verifiable independently of the

iteration. The following proposition helps frame requirement (2.17) in terms of statistical

paramaters underlying the control problem (2.3).

Proposition 2.2.3. For any ω ∈ Ω and any fixed u ∈ U ,

‖∇f(u, ω)‖ ≤
(

α +
C4

p

a2min

)

‖u‖ +
C4

p

a2min

‖g(ω)‖ +
C4

p

2a2min

‖y0(ω)‖ +
C2

p

amin

‖yd(ω)‖. (2.20)

Proof. Recall from Equation (2.7) that

‖∇f(u, ω)‖ = ‖αu+ p(u, ω)‖ ≤ α‖u‖+ ‖p(u, ω)‖,

for any ω ∈ Ω, where p = p(u, ω) satisfies the adjoint system given by Equation (2.8). To

bound ‖p‖, we multiply on both sides of Equation (2.8) by p and integrate over [0, T ] and
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D, leading to

−
∫ T

0

∫

D

ptp dx dt−
∫ T

0

∫

D

∇ · (a∇p)p dx dt =

∫ T

0

∫

D

(y − yd)p dx dt. (2.21)

Using the chain rule, the fundamental theorem of calculus, and the terminal condition

for p, we obtain

−
∫ T

0

∫

D

ptp dx dt = −
∫ T

0

∫

D

1

2

d

dt
p2 dx dt = −1

2

∫

D

p(x, 0)2dx dt ≤ 0. (2.22)

Moreover, by Green’s theorem

−
∫ T

0

∫

D

∇ · (a∇p)p dx dt =

∫ T

0

∫

D

a∇p · ∇p dx dt ≥ amin‖∇p‖2. (2.23)

Substituting Equations (2.22) and (2.23) into (2.21), rearranging terms, and using the

Poincaré inequality then results in

‖p‖ ≤
C2

p

amin

‖y − yd‖ ≤
C2

p

amin

(‖y‖+ ‖yd‖) . (2.24)

To bound ‖y‖, we multiply the state Equation (2.1) by y on both sides and use analogous

arguments to those above to obtain

amin‖∇y‖2 ≤ (‖g‖+ ‖u‖)‖y‖+ 1

2
‖y0‖2.

Since

‖y0‖ =
√
∫

D

y0(x)2 dx ≤

√
∫ T

0

∫

D

y(x, t)2dx dt = ‖y‖,

we have, by virtue of Poincaré’s inequality, that

‖y‖ ≤
C2

p

amin

(

‖g‖+ ‖u‖+ 1

2
‖y0‖

)

.
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Substituting this inequality into (2.24) establishes the estimate in (2.20).

Note that the upper bound (2.20) involves the norm ‖u‖ of the control. In fact, a

derivation similar to that used to establish Proposition 2.2.3 leads to an upper bound for

‖∇f(u, ω) − ∇F (u)‖, for ω ∈ Ω, that also depends on ‖u‖, as long as the diffusivity a is

stochastic. We therefore find it necessary to restrict the admissible set Uad to be bounded,

i.e. umax < ∞. To ensure that AdaGrad iterations remain feasible, we make the following

assumption.

Assumption 2. Assume that the samples and stepsizes in the AdaGrad iteration are chosen

so that uj ∈ Uad for j = 1, 2, . . ..

This condition can be enforced for example by rejecting steps that lie outside Uad. To

be sure, umax may be chosen large enough to make such interventions unlikely as well as to

ensure that the optimal control u∗ lies in the interior of Uad. In fact, by the optimality of u∗

and form of the risk function F (u), we have

α

2
‖u∗‖2 ≤ F (u∗) ≤ F (u0),

so that ‖u∗‖ < umax whenever umax >
√

2
α
F (u0) for any initial condition u0.

We will use the estimates of Proposition 2.2.3 to establish conditions on the uncertain

parameters that ensure the strengthened bounded variance condition (2.17). To simplify

the bound (2.20), we estimate ‖u‖ by umax and bound the constants by their upper bound

K = max
{

α +
C4

p

a2
min

,
C2

p

amin

}

, yielding

‖∇f‖ ≤ K(umax + ‖g‖+ ‖yd‖+ ‖y0‖). (2.25)
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For any ω ∈ Ω, repeated use of Jensen’s inequality gives

E

[

exp

(‖∇f(u, ω)−∇F (u)‖2
σ2

)]

≤ E

[

exp

(
2

σ2

(
‖∇f(u, ω)‖2 + E

[
‖∇f(u)‖2

])
)]

,

where (2.25) and Assumption (1) imply

E
[
‖∇f(u)‖2

]
≤ 4K2

E
[
u2
max + ‖g‖2 + ‖yd‖2 + ‖y0‖2

]
<∞.

In light of these bounds, we can now formulate an assumption on the system parameters

g, yd, and y0 that, together with Assumptions 1 and 2, implies the strengthened bounded

variance condition (2.17).

Assumption 3. Assume that there exists a σ2 > 0, so that

E

[

exp

(
8K2

σ2

(
‖g‖2 + ‖yd‖2 + ‖y0‖2 + E

[
‖g‖2 + ‖yd‖2 + ‖y0‖2

])
)]

≤ exp

(

1− 16K2

σ2
u2
max

)

. (2.26)

With the cost function f satisfying Propositions 2.1-2.4 and from Theorem 3 in [37]

we can state that:

Theorem 2.1. For stepsizes given by (2.6), where η, b0 > 0 and 4ηM <
√
b0, and under

Assumptions 1–3, the iterates of the AdaGrad algorithm satisfy the following bound

E

[√

F (ūn)− F (u∗)
]

≤ 1√
n
max

(

γ
√
M, (b0 + nσ2)

1

4

√
γ
)

, (2.27)

where

ūn =
1

n

n∑

j=1

uj, and γ = O

(

1 + η2 lnn

η(1− 4ηM√
b0
)

)

.
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Remark 3. The convergence bound ensures, via Markov’s inequality, that the optimality gap

F (ūn)− F (u∗) will satisfy

F (ūn)− F (u∗) ≤ 1

δ

(
1

n
max

{

γ2M, (b0 + σ2n)
1

2γ
})

with a probability of at least 1 − δ. This bound highlights the effect of the variance on the

method’s convergence rate, reducing it from O
(

1√
n

)

to O
(
1
n

)
.

Remark 4. Note that, while the stepsize rule {ηj}∞j=1 does not depend on the variance

parameter σ2, it is constrained by the Lipschitz constant M . In [60] the authors provide a

proof for a weaker form of convergence without any such dependence.

Proof. For completeness, we give a brief outline of the proof. A more detailed discussion can

be found in [37]. Let δFj = F (uj) − F (u∗) ≥ 0 for j = 0, 1, 2, . . . be the optimality gap at

the jth iteration. The convexity of F implies, by virtue of Jensen’s inequality, that

E

[√

F (ūn)− F (u∗)
]

= E





√
√
√
√F

(

1

n

n∑

j=1

uj

)

− F (u∗)





≤ E





√
√
√
√

1

n

n∑

j=1

F (uj)− F (u∗)



 =
1√
n
E





√
√
√
√

n∑

j=1

δFj





Moreover, the fact that η0 ≥ η1 . . . ≥ ηn > 0, together with Hölder’s inequality, justify

E





√
√
√
√

n∑

j=1

δFj



 ≤ E





√
√
√
√

1

ηn

n∑

j=1

ηjδFj



 ≤
(

E

[
1

ηn

]) 1

2

(

E

[
n∑

j=1

ηjδFj

]) 1

2

. (2.28)
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To complete the proof, it now remains to bound E

[
1
ηn

]

and E

[
∑n

j=1 ηjδFj

]

. From the

definition of the stepsize, we have

1

ηn
=

1

η

√
√
√
√b20 +

n−1∑

j=1

‖∇fj(uj)‖2

≤ 1

η

√
√
√
√b20 + 2

n−1∑

j=1

(‖∇fj(uj)−∇F (uj)‖2 + ‖∇F (uj)‖2).

By Lipschitz continuity, ‖∇F (uj)‖2 ≤ 2MδFj, while the finite variance condition (2.17)

implies, via (2.19), that E
[
∑n−1

j=1 ‖∇fj(uj)−∇F (uj)‖2
]

≤ (n−1)σ2. Hence, since
√
a+ b ≤

√
a+
√
b for a, b ≥ 0,

E

[
1

ηn

]

≤ 1

η





√

b20 + 2(n− 1)σ2 + 2
√
ME





√
√
√
√

n∑

j=1

δFj







 (2.29)

The bound on E

[
∑n

j=1 ηjδFj

]

can be established, based on the relation

ηj〈∇fj, uj − u∗〉 = 1

2
‖uj+1 − u∗‖2 − 1

2
‖uj − u∗‖2 + η2j‖∇fj‖2,

which can be readily derived using the AdaGrad update uj+1 = uj − ηj∇fj. Let Ej denote

the conditional expectation with respect to ξj, given ξ1, . . . , ξj−1. Strong convexity and the

fact that uj and ηj are independent of ξj now imply

Ej [ηjδFj] ≤ ηj〈∇Fj(uj), uj − u∗〉 = Ej [〈ηj∇fj, uj − u∗〉]

= Ej

[
1

2
‖uj+1 − u∗‖2 − 1

2
‖uj − u∗‖2 + η2j‖∇fj‖2

]

,
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which, by summing over j = 1, . . . , n, taking total expectation and recognizing a telescoping

sum, yields

E

[
n∑

j=1

ηjδFj

]

= E

[
n∑

j=1

Ej [ηjδFj]

]

≤ E

[
n∑

j=1

(
1

2
‖uj − u∗‖2 − 1

2
‖uj+1 − u∗‖2 + 1

2
η2j‖∇fj‖2

)]

≤ 1

2
‖u1 − u∗‖2 + 1

2
E

[
n∑

j=1

η2j‖∇fj‖2
]

. (2.30)

An upper bound E

[
∑n

j=1 η
2
j‖∇fj‖2

]

can be obtained from the strong finite variance condi-

tion (2.17), as well as Lipschitz continuity, giving

1

2
E

[
n∑

j=1

η2j‖∇fj‖2
]

≤ 1

1− 4ηM√
b0

2η2

b0
(1 + lnn)σ2

+
η2

1− 4ηM√
b0

ln




√

b0 + 2nσ2 + 2
√
ME





√
√
√
√

n∑

j=1

δFj







 .

Substituing this inequality into (2.30) and then inequalities (2.30) and (2.29) into (2.28), one

obtains an inequality in E

[√∑n

j=1 δFj

]

, which can be solved (see [37], Lemmas 5 and 6),

yielding the result.

2.3 Numerical Experiments

In this section we perform two numerical experiments to illustrate and showcase the

properties of the AdaGrad method for the parabolic optimal control problem (2.3). Exam-

ple 1 explores the convergence behavior of the algorithm and compares it with that of the

traditional SGD method, focusing specifically on the effects of stepsize and convexity. Ex-

ample 2 applies the method to a simplified thermal regulator problem aimed at maintaining

a safe overall temperature
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Example 1. We first consider the parabolic problem given by Equation (2.1) with spatial

domain [0, 1] and terminal time T = 0.2. Let the initial condition be given by y0(x) =

x(1−x), the forcing term be g(x) = 0, and the diffusion coefficient be the lognormal random

field,

a(x, ω) = amin + exp(ã(x, ω)), x ∈ [0, 1], ω ∈ Ω,

where amin = 0.1 and ã(x, ω) is a zero-mean Gaussian random field with a Gaussian covari-

ance kernel k(x1, x2) = σ2 exp
(

− |x1−x2|2
2l2

)

with variance σ2 > 0 and correlation length l > 0.

In our experiments, the field is approximated by the truncated Karhunen-Loève expansion

with 40 terms. The optimal control problem seeks to steer the state y to the zero state

yd(x, t) = 0 through distributed forcing with a regularization parameter α = 0.1. Both the

state and adjoint equations are approximated by piecewise linear finite elements with 50

sub-intervals in space, and the implicit Euler timestepping scheme with 100 sub-intervals in

time.

To verify that the AdaGrad method outlined by Algorithm 2 converges to an optimal

control in mean square, we plot the sampled cost function f(uj, ω) as well as its gradient

∇f(uj, ω) against the iteration count j = 1, . . . 50 in Figure 2.1. We use an initial guess

of u0(x, t) = 2 and optimization parameters b0 = 0.1 and η = 1. As is usual in stochastic

optimization, the cost initially decreases much variation during its transient phase (roughly

10 iteration steps here), after which it settles down into a stationary phase. Moreover, the

linear decrease in f in the log-log scale during the transient phase suggests a convergence

rate of O(1
j
). In light of Remark 3, this is to be expected due to the small variance, as shown

in Figure 2.2b.

In Figure 2.2 we plot the sample mean and variance of the state y under the optimal

control u to verify that the desired state yd(x, t) = 0 is tracked.

Next we compare the AdaGrad algorithm’s convergence behavior with that of the SGD

method. Figure 2.3 shows the effect of the stepsize on the algorithms’ performances. The

stepsize rule for the SGD method is chosen as ηj =
η0
j+1

for j = 0, 1, ...200, while that of the
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(a) Convergence of the cost and gradient norm
on a log-log scale.
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Figure 2.1: Convergence of the AdaGrad Method
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(a) The sample mean of the optimal state y. (b) The sample variance of the optimal state y.

Figure 2.2: Sample statistics of the optimal state using a sample size of 100.

AdaGrad algorithm was chosen according to Equation (2.6), with b0 = 1 to ensure a fair

comparison. Evidently, the stepsize affects the convergence behavior of both algorithms for

this problem, with a decrease in η0 leading to a deterioration in convergence. However, the

AdaGrad method (in black) seems to be less adversely affected than the SGD method (in

red).

Figure 2.4 shows how the regularization parameter α, which determines the problem’s

strong convexity, plays a role in the algorithms’ convergence behaviors. For both algorithms

we set the stepsize parameters to ensure an initial stepsize of η0 = 10 and vary the regular-

ization parameter α. The plot suggests that, while a reduction in the strong convexity of the
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Figure 2.3: Convergence of the gradient norm ‖∇f(uj)‖ for different initial stepsizes, using
either the SGD (red) or AdaGrad (black) method.

problem reduces the convergence rates of both algorithms, the AdaGrad method (in black)

is more robust to the loss in convexity than the SGD method (in red), whose convergence

breaks down for α = 0.01.
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Figure 2.4: Convergence of the gradient norm ‖∇f(uj)‖ for different regularization parame-
ters in the first 200 iterations of either the SGD (red) or the AdaGrad (black) method with
an initial stepsize of η0 = 10.
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Example 2. In this example we consider a simple two-dimensional model of a lithium cell

whose forcing term represents the heat generation rate associated with a power load resulting

from two successive charge or discharge cycles.

The computational domain D, shown in Figure 2.5, represents a cross-section of a

cylindrical cell with inner radius of 4mm, an outer radius of 32mm, and a length of 198mm.

For simplicity, the surrounding temperature, as well as that in the axial center is assumed

to be constant at To = 18◦C.

0 0.05 0.1 0.15

-0.02

0

0.02

Figure 2.5: Diagram of the computational mesh for the two-dimensional model of the lithium
cell.

The material is treated as a homogeneous solid with density ρ = 2118 kg m−3, specific

heat cp = 765 J kg−1 K−1, and anisotropic thermal conductivities in the horizontal and

vertical directions given by kx1
= 66 W m K−1 and kx2

= 0.66 W m K−1 respectively (see

[51]). The equation governing the temperature evolution inside the battery is therefore given

by







ρcp
∂y

∂t
− kx1

∂2y

∂x2

1

− kx2

∂2y

∂x2

1

= g + u, x ∈ D, t > 0

y(x, 0) = To, x ∈ D

y(x, t) = To, x ∈ ∂D, t > 0.

(2.31)

Heat is generated uniformly over the entire domain, but the timing, duration, and

intensity of the power load are assumed to be independently and uniformly distributed

uncertain quantities. Specifically, we take the onset time of the first charge pulse to range

between 40 and 60 min and that of the second pulse between 200 and 220 min. The duration
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of each pulse varies between 30 and 60 min, and their intensity lies between 200 and 400

W m−3. Figure 2.6a shows 20 sample realizations of the resulting heat generation rate,

while Figure 2.6b shows the associated uncontrolled temperature profiles at the fixed spatial

location x̃ = (0.097, 0.098), indicated on Figure 2.5 by a blue dot.
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(a) Samples of the heat generation rate, scaled
by ρ, cp.
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(b) Sample paths of the associated temperature
with u = 0 at the point x̃.

Figure 2.6: Sample paths of the uncontrolled system.

We ran 50 iterations of the AdaGrad method with stepsize parameters η = 0.1 and

b0 = 1, an initial guess of u0 = 0, and a target state of yd = 18◦C. Figures 2.7a and

2.7b show the convergence of the cost functional and of the gradient norm respectively.

The persistence of significant random perturbations in the cost indicates far higher levels of

variance in this system than were observed in Example 1.
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(a) Convergence of the cost.
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(b) Convergence of the gradient norm.

Figure 2.7: Convergence of the AdaGrad Method for Example 2 over 50 iterations.
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Figure 2.8: Iterates of the control function generated by the AdaGrad method, evaluated at
the sample point x̃.

Figure 2.8 depicts the time evolution of the control iterates, evaluated at the sample

point x̃, and shows how these converge to an optimal control counteracting the heat effect

of the two uncertain pulses.

To show that the deterministic controller obtained by this stochastic optimization algo-

rithm leads to a cooling of the system under a variety of conditions, we compare the time

evolution of the system’s heat energy E(t) =
∫

D
y(x, t)2dx for the initial control (Figure 2.9a)

and for the optimal control (Figure 2.9b). Evidently the addition of the optimal control leads

to a significant reduction in heat energy over the entire time period.

2.4 Conclusion

This chapter shows the extension of the AdaGrad method to an infinite dimensional

optimal control problem for the distributed control of a linear parabolic system. We related

smoothness and finite variance requirements to the statistical distributions of the underlying

model parameters and demonstrated how these can be used in thermal regulation of a simple

model for an uncertain lithium battery system. It remains to explore how optimal control

can be extended to more complex uncertain systems, how this approach can be incorporated
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(a) Evolution of the heat energy with no control.
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(b) Evolution of the heat energy with optimal
control.

Figure 2.9: Comparison of the heat energy over time for the uncontrolled system (left) with
that of the controlled one (right).

into existing battery management systems, and how existing battery degradation models

and real-time observers can be used in designing such controls.
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Chapter 3

Stochastic Alternating Least Squares method for Tensors

The work in this chapter appears in the paper Analysis of the Stochastic Alternating Least

Squares Method for the Decomposition of Random Tensors, Y. Cao, S. Das, L. Oeding, and

H.-W. van Wyk, 2021. [13]

3.1 Introduction

Multi-modal data is represented by a tensor, or a multidimensional matrix. Tensor

data is present in areas such as Natural Language Processing (NLP) [10], Blind Source

Separation (BSS) [11, 54], and Phylogenetic Tree Reconstruction (PTR) [18, 3, 29]. In

each of these areas, canonical decomposition (CANDECOMP)/parallel factors (PARAFAC),

also known as CP tensor decomposition (representing a given tensor as a sum of rank-

one tensors), provides important insights since the components of the rank-one terms, the

factors, represent meaning in the data. For NLP given a tensor constructed from large text

databases, the rank-one terms could represent topics, and the factors could represent words.

For BSS given a tensor constructed from signals arriving at a single receiver from unknown

sources, the rank-one terms could represent sources, and the factors could be used to locate

the sources. For PTR given a tensor constructed as a contingency table for instances of

nucleotide combinations from aligned DNA from several species, the factors represent model

parameters for the phylogenetic tree.

In many applications, tensor observations exhibit statistical variations that naturally

suggest modeling them as samples from an underlying tensor-valued random variable, re-

ferred to herein as a random tensor. For example, the word co-occurence frequencies used in

NLP may come from a sample of a collection of documents. Here fast, reliable algorithms are
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desired for the CP decomposition of the tensor’s expected value, obtained primarily through

statistical sampling. Because CP decomposition is known to be NP hard in general [26] we

investigate approximate decompositions based on stochastic optimization. These methods

have also been used [57, 34] in conjunction with statistical subsampling for the decomposition

of high dimensional deterministic tensors, expressible as expectations of their independent

subsamples. In [39], Maehara et al. propose a stochastic version of the widely-used alter-

nating least squares (ALS) method, the stochastic alternating least squares (SALS) method,

and show the algorithm’s efficiency by means of numerical experiments. A similar approach

was discussed earlier in the context of the block-subsampling method proposed in [57]. In

both these papers, the authors make convincing arguments for the use of stochastic opti-

mization in tensor decomposition, both in terms storage and computational efficiency. In

this work we provide a detailed analysis of the algorithm, showing under mild regularization

and a minimal set of verifiable assumptions that it is convergent to a local stationary point

for any initial guess. In 3.4, we also include a discussion of the algorithm’s complexity and

efficiency.

The alternating least squares (ALS) method, first proposed by Carroll and Chang [14],

remains the most widely used algorithm for computing the CP decomposition of a tensor

[20]. This block-nonlinear Gauss-Seidel method [8, 49] exploits the componentwise quadratic

structure of the cost functional to compute iterates efficiently and with a low memory foot-

print. It has been modified [15] to exploit sparsity structure in data, which typically occurs

in tensors representing co-occurence frequencies such as in the tree reconstruction above.

Regularized versions of the ALS method, as well as the associated proximal minimization

iterations considered in [36], help mitigate the potential ill-posedness of the CP problem to

within sample noise. Although one may compute the tensor’s expectation a priori and de-

compose it by means of the standard ALS method (see 5), such an approach results in a loss

of sparsity and cannot seamlessly accommodate the arrival of new samples. In [39], Maehara
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et al. proposed the Stochastic Alternating Least Squares method, a block-stochastic mini-

mization method that preserves the salient features of the ALS method, while also efficiently

incorporating tensor samples in the optimization procedure. Recent work (see [6, 34, 57]) has

considered the related problem of using randomized (or stochastic) methods to decompose

existing large-scale tensors. In particular, in [6], a variant of the ALS method is developed

that approximates the component least squares problem efficiently by randomized/sketching

methods. In [34], a dense tensor is expressed as the expectation of a sequence of sparse ones,

thereby allowing the use of stochastic gradient descent (SGD) methods.

The convergence analysis of the SALS algorithm applied to the CP decomposition of a

random tensor is complicated by the fact that the underlying cost functional is not convex.

Moreover, the algorithm itself is a stochastic, block-iterative method, whose successive iter-

ates do not have the Markovian dependence structure present in classical stochastic gradient

descent (SGD) methods. The convergence of the ALS method was studied in various works

(see [36, 58, 56] and references therein). Block-coordinate techniques for the unconstrained

optimization of general, possibly nonconvex, deterministic functionals were treated in [24]

(see also [47, 7, 63] and references therein). Xu and Yin [64] discuss the convergence of block

stochastic gradient methods for averages of convex and nonconvex functionals. They rely

on assumptions (such as the uniformly bounded variance of gradient iterates) that, while

standard in the literature (see e.g. [9]), are difficult to verify in practice since they pertain

to iterates of the algorithm itself. The objectives of this chapter are to prove the conver-

gence of the SALS algorithm, a block-stochastic Newton method, for the CP decomposition

of the average of a random tensor, subject to a single verifiable assumption relating to the

boundedness of the observed data.

This chapter is structured as follows. In 3.2, we introduce the CP decomposition problem

for random tensors and describe the stochastic alternating least squares algorithm (4). 3.3

contains our main theoretical contributions. In 3.3.2, we exploit the special multinomial

structure of the cost functional to quantify the regularity of its componentwise gradient and
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Hessian in terms of the size of the algorithm’s iterate vectors (see 4 and its corollaries). In

3.3.1 we show that the iterates themselves can be bounded in terms of the random tensor

to be decomposed (2), which naturally leads to our single, verifiable assumption on the

latter’s statistical properties (4). In 3.3.3, we show that the iterates generated by the SALS

algorithm converge to a local minimizer. We validate the SALS method numerically via a

few computational examples in 3.4 and offer concluding remarks in 3.5.

3.2 Notation and Problem Description

We follow notational conventions that are closely aligned with the literature on the CP

decomposition (see [33]), as well as on stochastic optimization (see [9, 64]). We use lower

case letters to denote scalars, bold letters for vectors, uppercase letters for matrices, and

uppercase calligraphic letters for tensors. The (possibly subscripted) letters C and M are

reserved for generic constants. We use superscripts to indicate iteration (or sub-iteration)

indices and subscripts for components, i.e. xk
i is the i-th component at the k-th iteration.

Multi-indices are denoted by bold letters and sums, products, and integrals over these should

be interpreted to be in iterated form. For the block coordinate minimization method in 4,

it is convenient to express the vector x = (x1, ...,xp) in terms of its i-th block component

xi and the remaining components, denoted xi∗ := (x1, . . . ,xi−1,xi+1, . . . ,xp). Using this

notation, we write x = (xi,xi∗) with the implicit understanding that the block components

are in the correct order. The Frobenius norm of a vector, matrix, or tensor, i.e. the root

mean square of its entries, is denoted by ‖ · ‖. For 1 ≤ p ≤ ∞, ‖ · ‖p denotes the standard

Euclidean p-norm for vectors and the induced matrix p-norm for matrices. We use ‘◦’ to

denote the outer product, ‘∗’ for the componentwise (or Hadamard) product, ‘⊙’ for the

column-wise Khatri-Rao product, and ‘⊗’ for the Kronecker product.

Let (Ω,F , dµ) be a complete probability space and let X : Ω → R
n1×n2...×np be a

measurable map, also known as a p-th order random tensor. In practice the underlying

probability space is rarely known explicitly. Instead, its law can often be observed indirectly
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through sample realizations X 1,X 2, . . . ,X n of X that are assumed to be independent and

identically distributed (iid). We use E to denote expectation:

E [f ] =

∫

Ω

f(X )dµX

for any integrable function f : Rn1×...×np → R
m.

The rank-r decomposition problem for X (or its sample realizations) amounts to finding

a set of r rank-one deterministic tensors {X̂j}rj=1, so that the quantity

X̂ :=
r∑

j=1

X̂j (3.1)

is a good overall representation of X . Each rank-one tensor X̂j, j = 1, . . . , r, is formed by the

outer product X̂j = a1,j ◦ . . . ◦ ap,j where ai,j = (ai,j,1, . . . , ai,j,ni
) ∈ R

ni for each i = 1, . . . p,

i.e. X̂j ∈ R
n1×...×np is defined componentwise by

X̂j,i1,...,ip =

p
∏

l=1

al,j,il .

We use the mean squared error E

[

‖X − X̂‖2
]

to measure the quality of the representa-

tion. Other risk measures may be more appropriate, depending on the application, possibly

requiring a different analysis and approximation technique.

For analysis and computation, it is convenient to consider two other representations of

the design variable. We define the i-th factor matrix Ai = [ai,1, . . . ,ai,r] in R
ni×r to consist of

the i-th component vectors of each term in decomposition (3.1). Let x = vec([A1, . . . , Ap]) ∈

R
nr, with n =

∑p

i=1 ni, be the vectorization of the factor matrices, i.e. the concatenation of

their column vectors. We also write x in block component form as x = (x1, . . . ,xp), where

xi = vec(Ai) ∈ R
rni for i = 1, . . . , p. To emphasize dependence of X̂ on x, we write the
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following (which also defines J·K)

X̂ = JxK = JA1, . . . , ApK :=
r∑

j=1

a1,j ◦ . . . ◦ ap,j.

No efficient closed form solution of the factorization problem exists (even for deterministic

tensors) [26]. So it is commonly reformulated as the optimization problem

min
x∈Rnr

E
[
‖X − JxK ‖2

]
. (3.2)

Remark 5. Letting i = (i1, . . . , ip) and n = (n1, . . . , np), it follows readily that

E
[
‖X − JxK‖2

]
= E

[
n∑

i=1

(Xi − JxKi)
2

]

=
n∑

i=1

E
[
X 2

i

]
− 2E [Xi] JxKi + JxK2

i

=
n∑

i=1

var(Xi) +
n∑

i=1

(E(Xi)− JxKi)
2 .

Since the variance var(Xi) of Xi is constant in the design variable x, the minimization

Problem 3.2 is equivalent to the decomposition of the expected tensor, i.e.

min
x∈Rnr

1

2
‖E[X ]− JxK‖2.

This formulation suggests that the cost function’s partial Hessian is independent of X and

hence deterministic, a result we confirm in (3.8) and will use repeatedly in our analysis.

Tensor decompositions have scale ambiguity. Indeed, for any direction i = 1, .., p and

any scalars βi,1, . . . , βi,r−1 > 0, let βi,r = 1/
∏r−1

j=1 βi,j . Then

r∑

j=1

(β1,ja1,j) ◦ . . . ◦ (βp,jap,j) =
r∑

j=1

a1,j ◦ . . . ◦ ap,j.
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The optimizer of (3.2) therefore lies on a simply connected manifold (see [56]), which can

lead to difficulties in the convergence of optimization algorithms. To ensure isolated minima

that can be readily located, it is common to enforce bounds on the size of the factors, either

directly through an appropriate normalization (see [56]), or indirectly through the addition

of a regularization term (see e.g. [45, 36]). We pursue the latter strategy, leading to the

problem

min
x∈Rnr

F (x) = min
x∈Rnr

E [f(x)] , with

f(x;X ) = 1

2
‖X − JxK‖2 + λ

2
‖x‖2, x ∈ R

nr, λ > 0. (3.3)

While the regularization term biases the minimizers of Problem (3.2) its inclusion is

key to guaranteeing well-posedness in the presence of noise. It plays a pivotal role in (i)

proving the existence of a minimizer (1), (ii) ensuring that the partial Hessians with respect

to each block variable remain positive definite (5), and (iii) guaranteeing the boundedness of

iterates in terms of random tensor X (2). Heuristic methods are typically used to choose the

value of λ that balances the bias of the optimizers against stability considerations, the most

well-known of which is the Morozov discrepancy principle [44]. The cost function in (3.3)

is continuous. Moreover, the regularization term ensures that it has bounded sublevel sets.

The existence of a minimizer, as stated in the following lemma, is an immediate consequence

thereof.

Lemma 1 (Existence of Minimizers). Problem 3.3 has at least one minimizer.

Proof. Let F ∗ = infx∈Rnr F (x). So there exists a sequence {xk}∞k=1 in R
nr with

limk→∞F (xk) = F ∗,
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from which it follows that F (xk) is bounded. The inequality

‖x‖2 ≤ 2

λ
F (x) for all x ∈ R

rn, (3.4)

allows us to establish the boundedness of {xk}∞k=1. By compactness, there exists a convergent

subsequence xki → x∗ as i→∞. The continuity of F then implies

F (x∗) = lim
i→∞

F (xki) = F ∗.

Remark 6. For the sample realizations f(x;X ) we have a bound similar to (3.4):

for all x ∈ R
nr, ‖x‖2 ≤ 2

λ
f(x;X ), a.s. on Ω. (3.5)

3.2.1 The Deterministic Alternating Least Squares Method

Although the stochastic integrand f(x;X ), and hence the cost functional F (x), is a

high degree polynomial in general, it is quadratic in each component factor matrix Ai. This

is apparent from the matricized form of (3.3). Recall [31] that the columnwise Khatri-Rao

product ⊙ : Rni×r × R
nj×r → R

ninj×r of matrices A = [a1, ...,ar] and B = [b1, ..., br] is

defined as their columnwise Kronecker product, i.e. A ⊙ B = [a1 ⊗ b1, ...,ar ⊗ br]. The

matricization JA1, . . . , ApK(i) of the rank r tensor JA1, . . . , ApK along the i-th fiber takes the

form (see [1])

JA1, . . . , ApK(i) = Ai (Ap ⊙ . . .⊙ Ai+1 ⊙ Ai−1 ⊙ . . .⊙ A1)
T =: AiΘ

T
i , (3.6)

where Θi is defined to be the iterated Khatri-Rao product on the right. Note that Θi does

not depend on Ai, and hence the matricized tensor decomposition is linear in Ai. Since the

Frobenius norm is invariant under matricization, the sample objective function f(x;X ) can
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then be rewritten as a quadratic function in Ai, i.e.

f(A1, . . . , Ap;X ) :=
1

2

∥
∥X(i) − AiΘ

T
i

∥
∥
2
+

λ

2

p
∑

j=1

‖Aj‖2.

Vectorizing this form yields a linear least squares objective function in xi, namely

f(x1, . . . ,xp;X ) =
1

2

∥
∥vec(X(i))− (Θi ⊗ Ini

)xi

∥
∥
2
+

λ

2

p
∑

j=1

‖xj‖2,

whose componentwise gradient and Hessian are given respectively by

∇xi
f(x;X ) = −(ΘT

i ⊗ Ini
)vec(X(i)) +

(
(ΘT

i Θi + λIr)⊗ Ini

)
xi, and (3.7)

∇2
xi
f(x) = (ΘT

i Θi + λIr)⊗ Ini
, (3.8)

where Ir ∈ R
r×r and Ini

∈ R
ni×ni are identity matrices. In the presence of regularization,

the partial Hessian ∇2
xi
f(x) is strictly positive definite with lower bound that is indepen-

dent of both X and of the remaining components xi∗ (see 5). Consequently, each sampled

componentwise problem

min
xi∈Rrni

f(x;X )

has a unique solution given by the stationary point xi satisfying ∇xi
f(x,X ) = 0. It is more

efficient to use the matricized form of the stationarity condition, i.e.

0 = −X(i)Θi + Ai(Θ
T
i Θi + λIr), (3.9)

yielding the stationary point

Ai = X(i)Θi(Θ
T
i Θi + λIr)

−1. (3.10)
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For any A ∈ R
ni×r, B ∈ R

nj×r, it can be shown [55] that

(A⊙ B)T (A⊙B) = (ATA) ∗ (BTB),

where ∗ denotes the Hadamard product. Repeatedly using this identity, we have

ΘT
i Θi := (AT

1A1) ∗ . . . ∗ (AT
i−1Ai−1) ∗ (AT

i+1Ai+1) ∗ . . . ∗ (AT
pAp), (3.11)

so the partial Hessian can be computed as the entry-wise product of p matrices in R
r×r.

We relate the sample componentwise minimizer satisfying (3.9) to that of F (x) by noting

that according to (3.8) the partial Hessian matrix ∇2
xi
f(x) is independent of X and that

∇2
xi
F (x) = ∇2

xi
f(x) is positive definite. Moreover, the partial gradient ∇fxi

(x;X ) in (3.7)

is linear in X and hence ∇xi
F (x) = E [∇xi

f(x;X )] = ∇xi
f (x;E[X ]). The componentwise

minimizer of F (x) therefore takes the form

Ai = E[X(i)]Θi(Θ
T
i Θi + λI)−1, (3.12)

which resembles Equation (3.9) with X(i) replaced by E[X(i)]. The (deterministic) ALS

method (algorithm 3) exploits this componentwise quadratic structure of the objective func-

tional F . In the k-th block iteration, the ALS algorithm cycles through the p components

x1, . . . ,xp of x, updating each component in turn in the direction of the componentwise min-

imizer. The function is also updated at each subiteration to reflect this change. Specifically,

the iterate at the beginning of the k-th block is denoted by

xk = xk,0 = (xk
1,x

k
2, ...,x

k
p).

The ALS algorithm then generates a sequence of sub-iterates xk,1, ...,xk,p, where

xk,i = (xk+1
1 , . . . ,xk+1

i−1 ,x
k+1
i ,xk

i+1, . . . ,x
k
p).
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Note that, under this convention, xk,p = xk+1 = xk+1,0.

Algorithm 3 The Alternating Least Squares Algorithm

1: Initial guess x1

2: for k = 1, 2, . . . do
3: for i = 1, . . . , p do
4: xk+1

i = argmin
xi∈Rrni

F (xk+1
1 , . . . ,xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
p)

5: xk,i = (xk+1
1 , . . . ,xk+1

i ,xk
i+1, . . . ,x

k
p)

6: end for
7: end for

Although the descent achieved by the ALS method during k-th block iteration is most

likely not as large as a descent would be for a monolithic descent direction for F over the

entire space R
nr, the ALS updates can be obtained at a significantly lower computational

cost and with a lower memory footprint.

In anticipation of the stochastic-optimization-based SALS algorithm introduced in the

following section, we express the componentwise update xk
i → xk+1

i in terms of a descent

step. To this end we form the second order componentwise Taylor expansion of F about xi

at the current iterate xk,i−1, i.e.

F (xk+1
1 , . . .xk+1

i−1 ,xi + p,xk
i+1, . . . ,x

k
p) = F k,i + (gk,i)Tp+

1

2
pTHk,ip, (3.13)

with F k,i = F (xk,i−1) = E
[
f(xk,i−1)

]
,

gk,i = ∇xi
F (xk,i−1) = ∇xi

f(xk,i−1;E [X ]), and

Hk,i = ∇2
xi
F (xk,i−1) = (ΘT

i Θi + λIr)⊗ Ini

The componentwise minimizer xk+1
i of F can be calculated explicitly as the Newton update

xk+1
i = xk

i − (Hk,i)−1gk,i.
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3.2.2 The Stochastic Alternating Least Squares Method

The ALS method described above approximates the expectation E[X ] and uses it to

generate the componentwise minimizers Ai via Formula 3.12. For a high dimensional tensor

X with a dense expectation E[X ] the associated computational cost can be considerable.

Indeed, recall that r is the specified rank, p the tensor’s dimension, and n =
∑p

i=1 ni where

ni is the size of the i-th vector component of each outer product in the expansion. Further,

let nnz(E[X ]) be the number of non-zero entries in E[X ]. It can then readily be seen that

the cost of forming the coefficient matrix ΘT
i Θi + λIr is O(pr2n), that of computing the

matricized tensor times Khatri-Rao product (MTTKRP) E[X(i)]Θi is O(pr · nnz(E[X(i)])),

and that of solving the resulting dense symmetric system is O(pr3). If r ≪ nnz(E[X ]), the

computational cost of the MTTKRP dominates, especially as nnz(E[X(i)]) →
∏p

i=1 ni, the

total number of entries in E[X ].

In cases where the sample realizations of X are sparse despite the density of E[X ], the

computation of sample componentwise minimizers by means of Equation 3.10 is considerably

cheaper. This suggests the use of stochastic gradient sampling algorithms that efficiently

incorporate the sampling procedure into the optimization iteration, thereby exploiting the

inherent sparsity in the data. The stochastic gradient descent method [52] addresses the

cost of approximating the expectation by computing descent directions from small sampled

batches of function values and gradients at each step of the iteration. To accommodate

the noisy gradients, the stepsize is reduced at a predetermined rate. For the stochastic

alternating least squares (SALS) method (4), we determine the sample at the beginning of

the k-th block iteration. For a batch X = (X 1, . . . ,Xm) of m iid random samples of X , we

define the batch averages X̃ = 1
m

∑m

l=1X l and f̃(x;X ) = 1
m

∑m

l=1 f(x;X l). As before, we

can compute the componentwise minimizer

x̂k+1
i = argmin

xi∈Rni

f̃(xk+1
1 , . . .xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
p;X ) (3.14)
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at the i-th subiteration by means of the Newton step. To this end we express f̃ in terms of

its second order Taylor expansion about the current iterate xk,i−1, i.e.

f̃(xk+1
1 , . . . ,xk+1

i−1 ,xi + p,xk
i+1, . . . ,x

k
p;X ) = f̃k,i + (g̃k,i)Tp+

1

2
pTHk,ip,

with

f̃k,i(X ) =
1

m

m∑

l=1

f(xk,i−1;X l),

g̃k,i(X ) =
1

m

m∑

l=1

∇xi
f(xk,i−1;X l) = ∇xi

f(xk,i−1; X̃ k),

and Hk,i as defined in 3.13. The sample minimizer is thus

x̂k+1
i = xk

i −
(
Hk,i

)−1
g̃k,i.

To mitigate the effects of noise on the estimate, especially during later iterations, we

modify the update by introducing a variable stepsize parameter αk,i > 0, so that

xk+1
i = xk

i − αk,i
(
Hk,i

)−1
g̃k,i. (3.15)

It is well known (see e.g. [9]) that a stepsize αk,i that decreases at the rate of O
(
1
k

)

as k → ∞ leads to an optimal convergence rate for stochastic gradient methods. Here, we

specify that the stepsize takes the form

αk,i =
ck,i

k
, for i = 1, 2, . . . , p, and k = 1, 2, . . . , (3.16)
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where ck,i is required to be uniformly positive and bounded above, i.e. there are constants

cmin, cmax ∈ (0, 2] so that

0 < cmin ≤ ck,i ≤ cmax ≤ 2, for all k = 1, 2, . . . , i = 1, 2, . . . , p.

The SALS algorithm is outlined in 4 below.

Algorithm 4 Stochastic Alternating Least Squares Algorithm

1: Initial guess x1

2: for k = 1, 2, . . . do
3: Generate a random sample X

k = [X k,1, . . . ,X k,mk ]
4: for i = 1, . . . , p do
5: Compute sample gradient g̃k,i and Hessian Hk,i

6: Compute stepsize αk,i = ck,i

k

7: Update i-th block xk+1
i = xk

i − αk,i
(
Hk,i

)−1
g̃k,i so that

xk,i = (xk+1
1 , . . . ,xk+1

i ,xk
i+1, . . . ,x

k
p)

8: end for
9: xk+1 = xk,p

10: end for

In practice, Step 7 in 4 is computed similarly to the update in 3. Specifically, x̂k+1
i can

be written in matricized form as

Âk+1
i = X̃ k

(i)Θi(Θ
T
i Θi + λI)−1,

where X̃ k = 1
mk

∑mk

l=1X k,l is the k-th batch average. Using the update rule 3.15, the matri-

cized component update Ak+1
i can be computed in terms of Âk+1

i as

Ak+1
i = αk,iÂk+1

i + (1− αk,i)Ak
i .

One of the difficulties in analyzing the convergence behavior of stochastic sampling

methods arises from the fact that the iterates xk,i constitute a stochastic process gen-

erated by a stochastic algorithm that depends on the realizations of the sample batches

X
1,X 2, . . .X k−1. Consequently, even deterministic functions, such as F , become stochastic
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when evaluated at these points, e.g. F (xk,i) is a random quantity. Moreover, successive

iterates are statistically dependent, since later iterates are updates of earlier ones. Specifi-

cally, let Fk = σ(X 1, . . . ,X k) be the σ-algebra generated by the first k sample batches , i.e.

Fk = {(X 1)−1(A)× . . .× (X k)−1(A) : A ∈ B((Rn1×...×np)k)}, where B denotes the collection

of Borel sets. Simply put, Fk represents the information contained in the first k tensor sam-

ple batches. At the end of the i-th subiteration in the k-th block, the first i components of

xk,i = (xk+1
1 , ...,xk+1

i ,xk
i+1, ...,x

k
p) have been updated using X

k and are thus Fk-measurable,

whereas the remaining components xk
i+1, ...,x

k
p depend only on X

1, ...,X k−1 and are there-

fore only Fk−1-measurable. To separate the effect of X k from that of X 1, . . . ,X k−1 on an

Fk-measurable random variable h, it is often useful to invoke the law of total expectation,

i.e.

E
X

1,...,X k−1,Xk [h] = E
X

1,...,Xk−1

[
E

X
k

[
h|Fk−1

]]
.

3.3 Convergence Analysis

Here we discuss the convergence of Algorithm 4. Since Problem (3.3) is nonconvex, there

can in general be no unique global minimizer. 3.1 establishes the mean squared convergence

of the SALS iterates xk,i to a set of stationary points. Yet, the special structure of the CP

problem allows us to forego most of the standard assumptions made in the SGD framework.

In fact, we only assume boundedness of the sampled data X . Indeed, we show in 3.3.1

that the norm of the iterates xk,i are bounded by ‖X‖ in (2). Since the regularity estimates

derived in 3.3.2 all involve powers of ‖x‖ and of ‖X k‖, this suggests that a bound on the data

X is sufficient to guarantee the regularity of the cost functional, gradient, and componentwise

Newton steps that are necessary to show convergence.

3.3.1 Boundedness of the Data

In this section we bound the norm of the component iterates xk
i in terms of the norm of

the initial guess and maximum value of the sequence of sample averages of the norms of X .
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Lemma 2. The iterates xk,i generated by Algorithm 4 satisfy

‖xk+1
i ‖ ≤ max

{
‖x1

i ‖, R(X k), . . . , R(X 1)
}

for each k = 1, 2 . . ., and i = 1, . . . , p, where R(X k) is given by (3.17).

Proof. Note that the componentwise minimizer x̂k+1
i given in (3.14) satisfies

‖x̂k+1
i ‖2 +

i−1∑

j=1

‖xk+1
j ‖2 +

p
∑

j=i+1

‖xk
j‖2

≤ 2

λ
f̃(xk+1

1 , . . . ,xk+1
i−1 , x̂

k+1
i ,xk

i+1, . . . ,x
k
p;X

k) (by 3.3)

≤ 2

λ
f̃(xk+1

1 , . . . ,xk+1
i−1 ,0,x

k
i+1, . . . ,x

k
p;X

k) (by optimality)

=
1

λ

(

1

mk

mk∑

l=1

‖X k,l‖2
)

+
i−1∑

j=1

‖xk+1
j ‖2 +

p
∑

j=i+1

‖xk
j‖2,

so that

‖x̂k+1
i ‖ ≤

√
√
√
√

1

λ

(

1

mk

mk∑

l=1

‖X k,l‖2
)

=: R(X k). (3.17)

To bound the iterates xk+1
i note that Equation (3.15) can be rewritten as the convex com-

bination

xk+1
i = αk,ix̂k+1

i + (1− αk,i)xk
i ,

which, by virtue of the stepsize bounds 0 ≤ αk,i ≤ 2, implies

‖xk+1
i ‖ ≤ |αk,i|‖x̂k+1

i ‖+ |1− ak,i|‖xk
i ‖ ≤ max{‖xk

i ‖, R(X k)}(|αk,i|+ |1− αk,i|)

≤ max{‖xk
i ‖, R(X k)} ≤ max

{
‖xk−1

i ‖, R(X k), R(X k−1)
}
≤ . . .

≤ max
{
‖x1

i ‖, R(X k), R(X k−1), . . . , R(X 1)
}
.
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In light of 2, the following assumption guarantees the uniform boundedness of the iter-

ates xk,i.

Assumption 4 (Bounded data). There is a constant 0 < M <∞ so that

‖X‖ ≤M, a.s. on Ω. (3.18)

Remark 7. This assumption might conceivably be weakened to one pertaining to the sta-

tistical distribution of the maxima R(X 1), R(X 2), . . . , R(X k). Specifically, letting rk =

max
l=1,...,k

R(X l), it can be shown under appropriate conditions on the density of R(X k), that

rk converges in distribution to a random variable with known extreme value density. The

analysis below will hold if it can be guaranteed that the limiting distribution has bounded

moments of sufficiently high order. This possibility will be pursued in future work.

An immediate consequence of Assumption 4 is the existence of a uniform bound on the

radius R(X ) and hence on the iterates xk,i.

Corollary 1. Given Assumption 4, there exist finite, non-negative constants M1,M2, and

M3 independent of xk and of X k, so that for all k = 1, 2, . . .,

R(X k) ≤M1 a.s. on Ω (3.19)

‖xk
i ‖ ≤M2 a.s. on Ω (3.20)

‖xk‖ ≤M3 a.s. on Ω (3.21)

Proof. By (3.17) and 4,

R(X k) =

√
√
√
√

1

λ

(

1

mk

mk∑

l=1

‖X k,l‖2
)

≤ M√
λ
=: M1.

Lemma 2 then implies

‖xk
i ‖ ≤ max{‖x1

i ‖,MR} =: M2
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and hence

‖xk‖ =

√
√
√
√

p
∑

i=1

‖xk
i ‖2 ≤

√
pMxi

=: M3.

3.3.2 Regularity Estimates

In the following we exploit the multinomial structure of the cost functional to establish

componentwise regularity estimates, such as local Lipschitz continuity of the sampled gra-

dient ∇xi
f(x,X ) and of the Newton step −

(
∇2

xi
f(x)

)−1∇xi
f(x;X ), as well as bounded

invertibility of the Hessian ∇2
xi
f(x). Note that since the mapping X 7→ ∇xi

f(x;X ) is linear

and the Hessian matrix deterministic, these estimates also hold when f(x;X ) is replaced by

the sample average f̃(x;X ).

The estimates established in this section all follow from the local Lipschitz continuity

of the mapping x∗
i 7→ Θi, shown in 3 below.

Lemma 3. Let Θi and Θ̃i be matrices defined in terms of xi∗ and x̃i∗ respectively via (3.6),

where xi∗ , x̃i∗ satisfy eq. (3.20). Then there exists a constant C, independent of xi∗, x̃i∗, and

X , so that

‖Θi − Θ̃i‖ ≤ C‖xi∗ − x̃i∗‖. (3.22)

Proof. This result follows directly from the observation that the mapping xi∗ 7→ Θi is multi-

linear and hence smooth in xi∗ . As a consequence, it is Lipschitz continuous over the closed

convex set specified in eq. (3.20), with possible Lipschitz constant being the maximum of its

gradient norm.

Corollary 2. Let xi∗ and x̃i∗ satisfy 3.20 with associated matrices Θi and Θ̃i given by (3.6).

Then there is a constant C ≥ 0 independent of x, x̃, and X so that

‖ΘT
i Θi − Θ̃T

i Θ̃i‖ ≤ C‖xi∗ − x̃i∗‖. (3.23)
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Proof. By the equivalence of the induced Euclidean and the Frobenius norms, there are

constants C1 and C2 so that

‖ΘT
i Θi − Θ̃T

i Θ̃i‖ ≤ C1‖ΘT
i Θi − Θ̃T

i Θ̃i‖2 = C1‖ΘT
i (Θi − Θ̃i) + (Θi − Θ̃i)

T Θ̃i‖2

≤ C2

(

‖ΘT
i ‖‖Θi − Θ̃i‖+ ‖Θi − Θ̃i‖‖Θ̃i‖

)

.

The result now follows from 3 and the bound 3.20.

Letting Θ̃i = 0 in (3.23), yields the bound

‖ΘT
i Θi‖ ≤ CΘTΘ‖xi∗‖2(p−1). (3.24)

As a first consequence of lemma 3 and corollary 2, we can obtain an explicit form for

the componentwise Lipschitz constant of ∇xi
f(x;X ).

Lemma 4. For any x, x̃ ∈ R
rn satisfying 3.21, there exists a constant C ≥ 0, independent

of x, x̃, and X , so that

‖∇xi
f(x;X )−∇xi

f(x̃;X )‖ ≤ C‖x− x̃‖. (3.25)

Proof. Let Θi and Θ̃i be constructed from xi∗ and x̃i∗ respectively via 3.6. Using 3.7, the

difference in sampled componentwise gradients is given by

∇xi
f(x;X )−∇xi

f(x̃;X )

=
(

(ΘT
i − Θ̃T

i )⊗ Ini

)

vec(X(i)) + (ΘT
i Θi + λIr)⊗ Ini

xi − (Θ̃T
i Θ̃i + λIr)⊗ Ini

x̃i

=
(

(ΘT
i − Θ̃T

i )⊗ Ini

)

vec(X(i)) + (Θ̃T
i Θ̃i + λIr)⊗ Ini

(xi − x̃i)

+ (ΘT
i Θi − Θ̃T

i Θ̃i)⊗ Ini
xi.
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Since the singular values of a Kronecker product are formed from products of singular

values of the constituent matrices, the matrix norm ‖B⊗ I‖2 = ‖B‖2 ≤ ‖B‖ for any matrix

B. We therefore have

∥
∥
∥

(

(ΘT
i − Θ̃T

i )⊗ Ini

)

vec(X(i)) + (ΘT
i Θi − Θ̃T

i Θ̃i)⊗ Ini
xi

∥
∥
∥

≤ ‖Θi − Θ̃i‖2‖X‖+ ‖ΘT
i Θi − Θ̃T

i Θ̃i‖2‖xi‖

and

‖(Θ̃T
i Θ̃i + λIr)⊗ Ini

(xi − x̃i)‖ ≤ ‖Θ̃T
i Θ̃i + λIr‖2‖xi − x̃i‖.

The result now follows from Assumption 4, Lemma 3, and Corollary 2.

Corollary 2 also implies the following uniform bounds on the componentwise Hessian.

Lemma 5. For any x = (xi,xi∗) ∈ R
rn satisfying the bound in (3.21) and any vi ∈ R

rni,

there is a constant λmax independent of x,v, and X , so that 0 < λ < λmax <∞ and

λ‖vi‖2 ≤ vT
i ∇2

xi
f(x)vi ≤ λmax‖vi‖2. (3.26)

Proof. This follows directly from Corollary 2 and the fact that

λ ≤ ‖∇2
xi
f(x)‖2 ≤ ‖ΘT

i Θi‖+ λ.

Finally, we establish the local Lipschitz continuity of the map from the current iterate

to the Newton step, i.e x 7→ (∇2
xi
f(x))−1∇xi

f(x;X ).

56



Lemma 6. For any x, x̃ ∈ R
rn satisfying (3.21), there is a constant C independent of x, x̃

and X so that

‖(∇2
xi
f(x))−1∇xi

f(x;X )− (∇2
xi
f(x̃))−1∇xi

f(x̃;X )‖ ≤ C‖x− x̃‖. (3.27)

Proof. Let x, x̃ ∈ R
rn. By adding and subtracting a cross-term, we obtain

‖(∇2
xi
f(x))−1∇xi

f(x;X )− (∇2
xi
f(x̃i))

−1∇xi
f(x̃;X )‖

≤ ‖(∇2
xi
f(x))−1 − (∇2

x̃i
f(x̃))−1‖2‖∇xi

f(x;X )‖

+ ‖(∇2
xi
f(x̃))−1‖2‖∇xi

f(x;X )−∇xi
f(x̃;X )‖.

By the second resolvent identity (see e.g. Theorem 4.8.2. in [27]), we have

(∇2
xi
f(x))−1 − (∇2

x̃i
f(x̃))−1 = (ΘT

i Θi + λIr)
−1 − (Θ̃T

i Θ̃i + λIr)
−1

= (ΘT
i Θi + λIr)

−1(Θ̃iΘ̃i −ΘT
i Θi)(Θ̃

T
i Θ̃i + λIr)

−1,

so that, by virtue of Corollary 2 and lemmas 4 and 6, there is a constant C1 for which

‖(∇2
xi
f(x))−1 − (∇2

x̃i
f(x̃))−1‖2‖∇xi

f(x;X )‖ ≤ C1

λ
‖xi∗ − x̃i∗‖.

Moreover, Lemmas 4 and 5 imply

‖(∇2
xi
f(x̃))−1‖2‖∇xi

f(x;X )−∇xi
f(x̃;X )‖ ≤ C2

λ
‖xi − x̃i‖.

Combining these estimates gives the bound in eq. (3.27).
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3.3.3 Convergence

We now consider the difference δk = g̃k − gk between the sampled and expected search

directions. For the standard stochastic gradient descent algorithm, this stochastic quantity

vanishes in expectation, given past information Fk−1 = σ(X 1, ...,X k−1), i.e. E
[
δk|Fk−1

]
=

0, since g̃k is an unbiased estimator of gk. For the stochastic alternating least squares

method, this is no longer the case. Lemma 7 however uses the regularity of the gradient and

the Hessian to establish an upper bound that decreases on the order O( 1
k
) as k →∞.

Lemma 7. There is a constant C ≥ 0 such that

∥
∥E
[
(Hk,i)−1δk,i|Fk−1

]∥
∥ ≤ C

k
, for i = 1, ..., p, k = 1, 2, .... (3.28)

Proof. Recall that the current iterate xk,i is statistically dependent on sampled tensors

X
1, . . . ,X k−1, while its first i components also depend on X

k. For the purpose of com-

puting E
[
(Hk,i)−1δk,i|Fk−1

]
, we suppose that X 1, . . . ,X k−1 are known and write xk,i−1 =

xk,i−1(X k) = (xk+1
1 (X k), . . . ,xk+1

i−1 (X
k),xk

i , . . . ,x
k
p) to emphasize its dependence on X

k.

Thus

E
[
(Hk,i)−1δk,i|Fk−1

]
=

∫

Ωmk

(
∇2

xi
f(xk,i−1(X k))

)−1
(

∇xi
f̃(xk,i−1(X k);X k)−∇xi

F (xk,i−1(X k))
)

dµ
X

k .

By definition, and since ∇xi
f̃ is an unbiased estimator of ∇xi

F , we have

∇xi
F (xk,i−1(X k)) =

∫

Ω

∇xi
f(xk,i−1(X k);X )dµX

=

∫

Ωmk

∇xi
f̃(xk,i−1(X k);X )dµX .
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Moreover, since X and X
k are identically distributed,

∫

Ωmk

(
∇2

xi
f(xk,i−1(X k))

)−1∇xi
F (xk,i−1(X k))dµ

X
k

=

∫

Ωmk

∫

Ωmk

(
∇2

xi
f(xk,i−1(X k))

)−1∇xi
f̃(xk,i−1(X k);X )dµXdµ

X
k

=

∫

Ωmk

∫

Ωmk

(
∇2

xi
f(xk,i−1(X ))

)−1∇xi
f̃(xk,i−1(X );X k)dµXdµ

X
k .

Therefore

E
[
(Hk,i)−1δk,i|Fk−1

]

=

∫

Ωmk

∫

Ωmk

(
∇2

xi
f(xk,i−1(X k))

)−1∇xi
f̃(xk,i−1(X k);X k)dµXdµ

X
k

−
∫

Ωmk

∫

Ωmk

(
∇2

xi
f(xk,i−1(X ))

)−1∇xi
f̃(xk,i−1(X );X k)dµXdµ

X
k . (3.29)

In the special case i = 1, the iterate xk,0 = xk−1, and hence xk,1 does not depend on X
k.

Since ∇x1
f̃(xk−1;X k) is an unbiased estimator of ∇x1

F (xk−1), we have

E
[
(Hk,1)−1δk,1|Fk−1

]
= 0.

We now consider the case i = 2, ..., p. Using the Lipschitz continuity of the mapping x 7→
(
∇2

xi
f(x)

)−1∇xi
f(x;X k) (lemma 6), the bounds in Corollary 1, and Jensen’s inequality,

∥
∥E
[
(Hk,i)−1δk,i|Fk−1

]∥
∥ ≤ C1

∫

Ωmk

∫

Ωmk

‖xk,i−1(X k)− xk,i−1(X )‖dµXdµ
X

k ,
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for some constant C1. The integrand above can be bounded by

‖xk,i−1(X k)− xk,i−1(X )‖ ≤
i−1∑

j=1

‖xk+1
j (X k)− xk+1

j (X )‖

=
i−1∑

j=1

αk,j‖(Hk,j(X k))−1g̃k,j(X k)− (Hk,j(X ))−1g̃k,j(X )‖

≤ cmax

k

(
‖(Hk,j(X k))−1g̃k,j(X k)‖+ ‖(Hk,j(X ))−1g̃k,j(X )‖

)
.

The result now follows from taking expectations and using (3.27) with x̃ = 0, in conjunction

with (3.19), and (3.21).

Lemma 8. If h is Fk−1-measurable and E[‖h‖] <∞ then there is a constant 0 ≤ C <∞

E
[〈
h, (Hk,i)−1δk,i

〉]
≤ C

k
E [‖h‖] . (3.30)

Proof. Using the law of total expectation, the Fk−1-measurability of h, and lemma 7, we

have

E
[〈
h, (Hk,i)−1δk,i

〉]
= E

X
1,...,Xk−1

[
E
[〈
h, (Hk,i)−1δk,i

〉∣
∣Fk−1

]]

= E
X

1,...,Xk−1

[〈
E
[
h
∣
∣Fk−1

]
,E
[
(Hk,i)−1δk,i

∣
∣Fk−1

]〉]

≤ E
X

1,...,Xk−1

[
‖E [h]‖

∥
∥E
[
(Hk,i)−1δk,i

∣
∣Fk−1

]∥
∥
]

≤ E
X

1,...,Xk−1

[
C

k
E

X
k [‖h‖]

]

=
C

k
E[‖h‖].

The main convergence theorem is based on the following lemma (for a proof, see e.g.

Lemma A.5, [40])

Lemma 9. Let {ak}∞k=1 and {bk}∞k=1 be any two nonnegative, real sequences so that (i)
∑∞

k=1 ak =∞, (ii)
∑∞

k=1 akbk <∞, and (iii) there is a constant K > 0 so that |bk+1− bk| ≤

Kak for k ≥ 1. Then limk→∞ bk = 0.
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Theorem 3.1. *

Proof. We base the proof on lemma 9 with ak = 1
k
and bk = ‖gk,i‖2. Clearly, Condition (i)

in lemma 9 is satisfied. To show that Condition (ii) holds, i.e. that
∑∞

k=1
1
k
E
[
‖gk,i‖2

]
<∞

for i = 1, . . . , p, we use the componentwise Taylor expansion (3.13) of the expected cost

centered at the iterate xk,i−1 and the SALS update given in (3.15) to express the expected

decrease as

F (xk,i)− F (xk,i−1)

=∇xi
F (xk,i)T (xk,i+1 − xk,i) +

1

2
(xk,i+1 − xk,i)T∇2

xi
F (xk,i)(xk,i+1 − xk,i)

=− αk,i(gk,i)T (Hk,i)−1g̃k,i +
1

2
(αk,i)2((Hk,i)−1g̃k,i)THk,i(Hk,i)−1g̃k,i

=− αk,igk,iT (Hk,i)−1gk,i − αk,i(gk,i)T (Hk,i)−1δk,i +
1

2
(αk,i)2(g̃k,i)T (Hk,i)−1g̃k,i.

Recall from eq. (3.16) that αk,i = ck,i

k
, with 0 < cmin ≤ ck,i ≤ cmax ≤ 2. Since, by (3.20) and

lemma 5,

αk,i(gk,i)T (Hk,i)−1gk,i ≥ cmin

k

1

λmax

‖gk,i‖2,

the above expression can be rearranged as

1

k
‖gk,i‖2 ≤ λmax

cmin

(

Ek,i
1 + Ek,i

2 + Ek,i
3

)

, with (3.31)

Ek,i
1 = F (xk,i−1)− F (xk,i),

Ek,i
2 = −αk,i(gk,i)T (H̃k,i)−1δk,i, and

Ek,i
3 =

1

k2

cmax

2
(g̃k,i)T (Hk,i)−1g̃k,i.
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Evidently, Condition (ii) of lemma 9 holds as long as
∑∞

k=1 E

[

Ek,i
j

]

<∞ for j = 1, 2, 3. For

a fixed K > 0, the first term Ek,i
1 generates a telescoping sum so that

K∑

k=1

p
∑

i=1

E

[

Ek,i
1

]

=
K∑

k=1

E
[
F (xk)

]
− E

[
F (xk+1)

]

= E
[
F (x1)

]
− E

[
F (xK+1)

]
≤ E

[
F (x1)

]
<∞ ∀K > 0, (3.32)

since F (xK+1) ≥ 0. Consider

Ek,i
2 = −αk,i(gk,i)T (Hk,i)−1δk,i

= −αk,i(gk,i −∇xi
F (xk))T (Hk,i)−1δk,i + αk,i∇xi

F (xk)T (Hk,i)−1δk,i.

Since ∇xi
F (xk) is Fk−1-measurable, lemma 8 implies that the expectation of the second

term can be bounded as follows

E
[
αk,i∇xi

F (xk)T (Hk,i)−1δk,i
]
≤ C1

k2
,

for an appropriate constant C1 ≥ 0 guaranteed by the regularity of the gradient and bound-

edness of the iterates, i.e. lemma 4 and corollary 1. The first term satisfies

− αk,i(∇xi
F (xk,i)−∇xi

F (xk))T (Hk,i)−1δk,i

≤ αk,i‖∇xi
F (xk,i)−∇xi

F (xk)‖‖(Hk,i)−1δk,i‖

≤ C2α
k,i‖xk,i − xk‖

= C2α
k,i

√
√
√
√

i∑

j=1

(αk,j)2‖(Hk,j)−1g̃k,j‖2 ≤ C3

k2
,
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where C2 and C3 are constants given by the regularity of the gradient (Lemma 4) and that

of the Newton step (Lemma 6) respectively. Combining these two bounds yields,

∞∑

k=1

p
∑

i=1

E

[

Ek,i
2

]

≤ C4

∞∑

k=1

1

k2
<∞, (3.33)

for an appropriate constant C4 ≥ 0. Finally, we use the regularity of the Newton step and

of the gradient, together with the iterate bound, i.e. Lemmas 4 and 6 and corollary 1, to

bound

E
[
(g̃k,i)T (Hk,i)−1g̃k,i

]
≤ C5,

for some constant C5 so that

∞∑

k=1

p
∑

i=1

E

[

Ek,i
3

]

≤ cmax

2

∞∑

k=1

p
∑

i=1

C5

k2
<∞. (3.34)

By virtue of Inequality (3.31), the upper bounds (3.32), (3.33), and (3.34) now imply that

Condition (ii) of lemma 9 holds. It now remains to show that Condition (iii) of lemma 9

holds, i.e. that
∣
∣E
[
‖gk+1,i‖2

]
− E

[
‖gk,i‖2

]∣
∣ = O(1/k) as k →∞ for all i = 1, . . . , p. By the

reverse triangle inequality, the Lipschitz continuity of the gradient and the Newton step and

the boundedness of the iterates, there are constants C6, C7 ≥ 0 so that

‖gk+1,i‖2 − ‖gk,i‖2 ≤ (‖gk+1,i‖+ ‖gk,i‖)(‖gk+1,i − gk,i‖) ≤ C6‖xk+1,i − xk,i‖

= C6

√
√
√
√

i∑

j=1

‖xk+2
j − xk+1

j ‖2 +
p
∑

j=i+1

‖xk+1
j − xk

j‖2

= C6

√
√
√
√

i∑

j=1

(αk+1,j)2 ‖(Hk+1,j)−1g̃k+1,j‖2 +
p
∑

j=i+1

(αk,j)2 ‖(Hk,j)−1g̃k,j‖2

≤ C6
cmax

k

√
√
√
√

i∑

j=1

‖(Hk+1,j)−1g̃k+1,j‖2 +
p
∑

j=i+1

‖(Hk,j)−1g̃k,j‖2 ≤ C7

k
.
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Theorem 3.1 implies directly that the full gradient

∇F (xk,i) = [∇x1
F (xk,i), ...,∇xp

F (xk,i)]T

converges to zero in mean square. Indeed, for any tolerance ε > 0, choose k0 large enough

so that E[‖∇xi
F (xk,i)‖2] < ε/p for all i = 1, ..., p, whenever k ≥ k0. For these values of k,

E[‖∇F (xk,i)‖2] =
p
∑

i=1

E[‖∇xi
F (xk,i)‖2] < ε.

Moreover, Jensen’s inequality implies that E[∇F (xk,i)] → 0 as k → ∞. Our result does,

however, not guarantee the convergence of the iterates themselves. At most, we can con-

clude that the limits of all convergent subsequences of iterates xk,i, which exist by virtue of

assumption 4, converge to stationary points.

3.4 Numerical Experiments

In this section we detail the implementation of the SALS algorithm, discuss its com-

putational complexity, and perform two numerical experiments to validate our theoretical

results.

We invoke the matricized form (3.9) of the componentwise minimization problem for

the sake of computational and storage efficiency. In particular, at the k-th block iterate, we

cycle through each component i = 1, . . . , p, computing the componentwise minimizer as the

stationary matrix Âk+1
i satisfying the matrix equation

X̃ k
(i)Θi = Âk+1

i (ΘT
i Θi + λIr), (3.35)

where X̃ k = 1
mk

∑mk

l=1X k,l is the sample/batch tensor average. Note that the product X̃ k
(i)Θi

can be computed in parallel as the average of sample products X k,l

(i)Θi. Finally, we update
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the i-th component factor matrix Ak
i using the relaxation step

Ak+1
i = αk,iÂk+1

i + (1− αk,i)Ak
i .

In our numerical experiments we use stepsizes of the form αk,i = τ
k
for i = 1, . . . , p and

k = 1, 2, . . ., where τ ∈ (0, 2]. We have also found that using a constant stepsize τ = 1

during the initial iterations (a burn-in period) can lead to a significant reduction in the

residual. We compare the performance of the SALS method with that of the stochastic

gradient descent (SGD) method, which was investigated in [34] for a broad class of loss

functions and shown to offer significant speedup over its deterministic counterparts. In the

case of Problem 3.2, these algorithms use the update step

Ak+1
i = Ak

i − αkgi(A
k
1, . . . , A

k
p), i = 1, ..., p,

where gi denotes the partial gradient

gi(A
k
1, . . . , A

k
p) = −X̃ k

(i)Θi + Ak
i (Θ

T
i Θi + λIr)

and αk is an appropriate stepsize sequence. To make a fair comparison, we use either the

Robbins-Monro [52] stepsize rule αk = τ
k
or a constant stepsize, whichever gives better

results. The SGD update is very sensitive to the stepsize parameter τ , which must therefore

be callibrated to each problem. While there are many variations of stochastic optimization

methods in the use of stepsize rules, such as adaptive moment estimation (Adam [32]),

convergence criteria [57], sub-sampling strategies [34], the use of sketching methods [6] to

solve Equation (3.35), and parallelization, a detailed study and comparison of these is beyond

the scope of the current work.

We implementated our method in Matlab using the Tensor Toolbox [35]. For each of the

numerical examples, we constructed a random tensor whose expectation E[X ] has a known
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decomposition and assessed the accuracy of the reconstruction by means of the relative

error ‖E[X ]− JxK ‖/‖E[X ]‖ and the cosine similarity score of the factor matrices (see [34]),

computed as

1

r

r∑

j=1

p
∏

i=1

âj,i · aj,i

‖âj,i‖‖aj,i‖
,

where Ai = [a1,i, ...,ap,i] and Âi = [â1,i, ..., âp,i] are the true and factor matrices respectively,

with columns permuted to ensure the highest possible similarity. We consider a factor matrix

recovered if the similarity score is above 0.9.

Example 3 (Random Tensor). In our first example, we consider truly random tensors

whose statistics are not known a priori, i.e. for which we cannot simply apply the ALS

method to their expectation. We apply the SALS algorithm to a 4-dimensional dense ran-

dom tensor of size (30, 30, 30, 30) constructed from a deterministic tensor X ∗ with known

decomposition of rank 10. The factor matrices A1, ..., A4 are initialized randomly with entries

drawn independently from a N(5, 1) distribution. During the iteration, we generate random

samples X by perturbing each entry of X ∗ independently by a uniformly distributed noise

U ∼ UNIF(−10, 10), so that E[X ] = X ∗. This ensures sample tensors that are uniformly

bounded, as required by Assumption 4. Both the SALS and SGD algorithms were run for

200 iterations with a regularization parameter of λ = 10−10. The constant stepsize τ = 1

was used in the SALS method, while the decreasing stepsize of 2.5×10−9

k
was found to yield

optimal convergence for the SGD method. Example 3 compares the convergence of the two

methods for 10 runs with different initial conditions and tensor sample realizations. The

entries of the factor matrices where initialized randomly and independently from uniform

distributions UNIF(0,1). For each run the SALS method achieves a better convergence rate

and exhibits fewer oscillations than the SGD method.

We observe a strong initial decrease in the residual for the SALS method, followed by a

flattening out.
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Figure 3.1: Convergence plots of the SALS and SGD methods applied to Example 3, for 10
independent runs differing in initial guess and tensor samples.

Example 4 (Sub-Sampled Deterministic Tensor). To test the SALS algorithm’s convergence

properties in the context of sub-sampling, we decompose a 50×50×50×50-dimensional dense

tensor X with N = 6.25× 106 entries and a known decomposition of rank 10. The reference

factor matrices A1, A2, A3, and A4 were initialized randomly with entries drawn from a

N(1, 1) distribution. To obtain tensor samples X k,l we sub-sample 5% of X uniformly, i.e we

choose s = 312′000 entries randomly with replacement. The number of times si the index

i is chosen follows the binomial distribution, specifically si ∼ BIN
(
s, 1

N

)
, and the resulting

tensor entry X k,l
i

= siN
s
Xi has mean E[X k,l

i
] = Xi and variance E

[

(X k,l
i
−Xi)

2
]

= X 2
i

(N−1)
s

(see [34]). Note that Assumption 4 is automatically satisfied in this case. Both the SALS

and SGD algorithms were run 10 times for 1000 iterations with a regularization parameter

of λ = 10−8. The stepsize rule αk,i = 1.8
k

was used in the SALS method, while the decreasing

stepsize of αk = 10−8

k
was found to yield optimal convergence for the SGD method. Example 4

compares the convergence of the two methods for 10 runs with different initial conditions and

tensor sample realizations. The entries of the factor matrices where initialized randomly and

independently from a UNIF(0,1) distritbution, as before. For each run the SALS method

again achieves a better convergence rate than the SGD method, recovering the true factor

matrix after 100 iterations, whereas SGD does so only after 1000 iterations. Again, the

SALS method yields a strong initial decrease in the residual.
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Figure 3.2: Convergence plots for 10 independent runs of the SALS and SGD algorithms,
differing in initial guess and sampling.

Computational Complexity

As mentioned earlier, the computational effort of each block iteration of the SALS algo-

rithm is determined by the cost of forming and solving Equation (3.35) for each component.

Recall that r is the specified rank, p the tensor’s dimension, and n =
∑p

i=1 ni where ni is

the size of the i-th vector component of each outer product in the expansion. Further, let

N =
∏p

i=1 ni be the total number of entries in X and nnz(X ) be the number of non-zero

entries in X . It can then readily be seen that the cost of forming the coefficient matrix

ΘT
i Θi + λIr is O(pr2n), that of computing the matricized tensor times Khatri-Rao product

(MTTKRP) X̃ k
(i)Θi is O(pr · nnz(X̃ k

(i))), and that of solving the resulting dense symmetric

system is O(pr3). If r ≪ N , the computational cost of the MTTKRP dominates, especially

as the density of X̃ k
(i) increases and hence nnz(X̃ k

(i)) → N . In comparison, the per-iteration

cost for the SGD method is the same as that for the SALS method, except that it does not

require p linear system solve, so that these methods differ in cost by O(kpr3), where k is the

block iteration count.
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3.5 Conclusion

Stochastic-gradient-based optimization approaches offer an efficient means of decompos-

ing random or large sub-sampled tensors. In this work, we developed a convergence theory

for the SALS method, showing that all accumulation points converge to stationary points

in expectation. In our numerical experiments, the SALS method exhibited a strong initial

decrease in relative residual, suggesting its potential to be used as an initial preconditioner

in conjunction with other optimization approaches. In our analysis we focused on regular-

ization in the Frobenius norm, and have not included a discussion on related proximal point

algorithms or other regularization approaches (see e.g. [36, 56, 64]). Another interesting

avenue of exploration relates to the choice of cost functional in tensor decomposition. Even

though the quadratic structure afforded by the Frobenius norm is essential to the effective-

ness of the ALS method, the standard statistical basis of comparison, namely expectation,

could potentially be extended to other statistical metrics, such as those used in risk averse

optimization methods. Finally, we foresee the application and extension of the SALS in the

analysis and decomposition of other real datasets.
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Chapter 4

Conclusion

In this dissertation, we see the AdaGrad method being applied to cost/loss function

with strong convexity, Lipschitz continuity and regularity. A similar observation can be

made to the application of the SALS method where the loss function is componentwise

convex (quadratic to be specific) and regular in the Frobenius norm. Both methods have

exhibited fast descent in the initial iterations of the algorithm. It needs to be seen if these

methods can be applied to more complex problems with uncertainty.

The future projects would be to find applications of other stochastic-gradient-based

algorithms to optimal control. With these tools in hand, it seems promising to be able to

find applications of neural network to design control, being an optimization problem. Since

neural networks rely on the use of tensors, we can combine the above two methods together

where the design of the optimal control can be made cheaper using tensors made simpler

through tensor decomposition.
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