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Abstract

Unmanned Aerial Vehicles (UAVs) are an increasing presence around the world; how-

ever, they can pose a threat to secure facilities. Many UAV mitigation techniques require

accurate knowledge of UAV states to successfully intercept an adversarial UAV, but access

to UAV on-board sensors may not be possible. One potential solution to this problem is to

estimate UAV states using only radar measurements. This scenario is examined in simula-

tion and with real world data. A discrete Extended Kalman Filter (EKF) with a constant

acceleration dynamic model provides a baseline estimation performance of simulated UAV

maneuvers and is shown to have consistent error in state estimates during high dynamic

maneuvers. The simulated UAV maneuvers are then modelled as Hidden Markov Models

(HMMs). HMMs are utilized to perform real time classification of maneuvers and to pro-

vide acceleration and jerk estimates of the UAV through the use of a Gaussian Mixture

Regression. HMM classification of simulated maneuvers results in high accuracy classifica-

tion during UAV flight. The HMM acceleration and jerk estimates are then incorporated

into a state estimation framework as inputs to the filter’s dynamic model. This new system

is known as the EKF+HMM. When estimating high dynamic maneuvers, the EKF+HMM

performs better than the baseline EKF, while performing at similar levels when estimating

low dynamic maneuvers. HMM classification and the EKF+HMM are also tested on a real

world data set of maneuvers performed by a Tarot X8 Octacopter. HMMs were trained for

each maneuver, using experimental data or simulated data. HMM classification was success-

ful using both types of HMMs, although models trained with experimental data performed

better. The EKF+HMM was also tested on the real-world data set and performed worse

than the EKF when using simulation data trained HMMs and at the same level as the EKF

when using HMMs trained with experimental data.
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Chapter 1

Introduction

The presence of unmanned aerial vehicles (UAVs) is increasing throughout the United

States. The Federal Aviation Administration has registered over 800,000 UAVs as of March

2021 [2]. While UAVs have many exciting commercial and recreational, they can also pose a

threat to secure facilities. UAVs have been used to smuggle drugs across the border [3] and

to surveil nuclear power plants without authorization [4]. Currently, countermeasures are

being explored in the event of an adversarial UAV, which include nets, projectiles, and laser

beams [5]. However, UAVs are highly dynamic and capable of performing evasive maneuvers

that may make them unpredictable and difficult to track. Accurate state estimates of a UAV

during these high dynamic maneuvers can provide invaluable information when attempting

to enact countermeasures.

State estimation of a UAV is possible with on-board or off-board sensors. Typically,

the problem is evaluated from the perspective of using on-board sensors. Kingston and

Beard estimated position and attitude of a UAV through GPS and IMU measurements

and a cascaded Extended Kalman Filter (EKF) [6]. Marantos et al. utilized an Adaptive

Complementary Filter with GPS, IMU, barometer, and altimeter measurements to estimate

UAV attitude, position, and velocity [7]. However, in some scenarios, such as an adversary

UAV, on-board sensors are inaccessible. Instead sensors such as cameras, radar, or LiDAR

must be used. For example, Hoffman et al. used Micro-Doppler radar measurements and an

EKF to estimate the position and velocity of the UAV [8]. This thesis aims to implement

an EKF that utilizes radar measurements and a constant acceleration dynamic model to

estimate the position, velocity, and acceleration of a maneuvering UAV.
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UAV maneuvers can also be modelled through data driven approaches, in which specific

models are built for known UAV maneuvers. These models can be used to classify maneuvers

as well as provide additional information about them. Martin et al. describes a trajectory as

“a sequence of observed vectors in some measurement space” [9]. Many methodologies have

been used to represent, recognize, and classify trajectories. When performing human gesture

recognition, Martin et al. modelled gestures as “temporal trajectories of parameters” and

used a multi-dimensional histogram to perform gesture recognition. Rao et al. modelled

different human actions as a series of dynamic instances and intervals [10]. The dynamic

instances were detected using the spatio-temporal curvature of the human action’s trajectory.

Human gesture recognition has also been performed using dynamic time warping to align

and compare gestures [11].

Hidden Markov Models (HMMs) remain a popular method of modelling and classify-

ing trajectories because “they offer dynamic time warping, a training algorithm and clear

Bayesian semantics” [12]. HMMs have been utilized to classify time series movements. For

example, HMMs were sued to classify American Sign Language (ASL) through camera data

[13]. The hands of the person signing were modelled as 2D ellipses that changed in position,

eccentricity, and orientation throughout the trajectory of the sign. Similarly, Brand et al.

created coupled HMMs to model interacting processes and used these coupled HMMs to

classify two-handed tai-chi gestures [12].

Bashir et al. (2005) and Bashir et al. (2007) aimed to represent and classify trajectories

in a Euclidean space using not only position of the object, but also velocity [14] [15]. In

Bashir et al. (2005), trajectories were modelled using Principle Component Analysis (PCA)

and Gaussian Mixture Models (GMMs) [14]. However, in Bashir et al. (2007), it was found

that trajectories modelled with PCA and HMMs described the temporal relationship between

variables more accurately when compared to trajectories modelled with PCA and GMMs

[15]. This thesis aims to model known UAV maneuvers with HMMs using the position,
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velocity, and acceleration states of the UAV. These models will also be used for trajectory

generation, which will provide additional estimates to the EKF.

Trajectory generation is often explored in robotics applications – specifically, program-

ming by demonstration, which uses examples of a task being performed (opening a door,

pouring water in a cup, etc.) to generate a desired trajectory for a robot. The concept is

also referred to as trajectory learning, which conceptually “consider[s] the demonstrations

as the observations of one unique intended trajectory” [16].

Abbeel et al. worked to learn helicopter trajectories. Helicopter maneuvers were per-

formed by a pilot, and then a trajectory that maximized the likelihood of the maneuver data

and prior knowledge was generated through a Kalman smoother [17]. Similarly, Choi et

al. learned the desired trajectory of a multirotor UAV using the Expectation-Maximization

algorithm on the demonstrated trajectory [16]. Another method for trajectory generation

is using Gaussian processes to model different states of a trajectory and then performing a

Gaussian process regression to create the trajectory [18].

The works regarding trajectory generation most relevant to this thesis are [19], [20],

and [21], as they use HMMs and GMMs for trajectory modelling and generation. Calinon

and Billard (2005) decomposed gestures from a human demonstrator with PCA and then

modelled the gestures using HMMs [19]. A trajectory is generated from an HMM by finding

the HMM state sequence, using the mean values of each state’s emission probability function

to get a set of points, interpolating, and re-projecting from PCA to the original features.

Calinon et al. (2006) again decomposed gestures with PCA. The decomposed gestures were

then modelled as HMMs with GMMs used as the emission probability function. The HMMs

classified different gestures and generated trajectories through a Gaussian Mixture Regres-

sion (GMR). The GMR was performed using time, t, as the input variable. Finally, Calinon

et al. (2007) represented gestures purely as GMMs, where the state vector included time

and the PCA decomposition of the trajectory’s variables [21]. A GMR was performed about

time, and once re-projected, the output was used as a robot desired trajectory.
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This thesis aims to estimate the linear position, velocity, and acceleration of a UAV

throughout dynamic maneuvers. An EKF that uses radar measurements and a constant

acceleration dynamic model will be used to estimate UAV states; however, EKF estimates

can be subpar during highly dynamic maneuvers. Past information about a maneuver (ei-

ther commands or real world data) can be used to create an HMM, which can be used for

classification and trajectory generation. This thesis will create an EKF+HMM, a system

that utilizes maneuver classification information and estimates generated from an HMM to

improve UAV state estimation during a maneuver.

1.1 Research Contributions

The contributions of this thesis are listed below.

• Modelled UAV maneuvers as HMMs. Created a classification scheme that used HMMs

to provide real-time classification of maneuvers throughout estimation.

• Created HMM estimates of UAV acceleration and jerk using trajectory generation

techniques.

• Combined and EKF and HMM to create an EKF+HMM, which utilizes HMM esti-

mates to supplement original EKF estimates. Applied this method to the estimation

of UAV maneuvers and compared it to baseline EKF performance.

• Applied HMM classification and EKF+HMM to both simulated and real world data

of UAV maneuvers.

1.2 Thesis Outline

The remaining chapters of the thesis are organized as follows. Chapter 2 discusses UAV

modelling, simulation, and maneuver generation, as well as basic EKF estimation of the UAV.

Chapter 3 provides background on HMMs, discusses the process of modelling maneuvers as
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HMMs, and then evaluates the classification and trajectory generation accuracy of these

HMMs. Chapter 4 discusses the formulation of the EKF+HMM and compares results of

the EKF and EKF+HMM when estimating simulated maneuvers. Real world execution of

maneuvers with an octacopter is discussed in Chapter 5. Both real world data and simulated

data are used for HMM creation. Both HMMs are used to classify real world maneuvers and

to compare the EKF and EKF+HMM. Finally, conclusions and future work are presented

in Chapter 6.
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Chapter 2

Unmanned Aerial Vehicle Modelling, Simulation, and Estimation

Simulation provides a controlled environment to implement and test estimation algo-

rithms. Through simulation, true states and disturbances are known perfectly, so error in

state estimation can be fully evaluated. As such, much of this thesis relies on an Unmanned

Aerial Vehicle (UAV) simulation as a way to generate test maneuvers and evaluate estimation

algorithms. This chapter provides the basis for such simulations.

The scenario examined in this thesis involves estimating the states of a UAV with-

out access to any on-board sensors and potentially without knowledge of the UAV beyond

the maneuvers it could potentially perform. One method to estimate UAV motion in this

situation is the use of an Extended Kalman Filter (EKF) and radar measurements to esti-

mate linear position, velocity, and acceleration of the UAV. This method provides a point of

comparison for the EKF+HMM described later.

The following sections will first discuss the UAV model and all of its components, such

as coordinate systems and equations of motion. Then, the UAV maneuvers used in this

thesis for EKF, HMM, and EKF+HMM testing are described and simulated. Finally, the

EKF is explained and used to estimate UAV states during maneuvers to provide baseline

filter performance.

2.1 UAV Model

2.1.1 Coordinate Frames

The two coordinate frames used for the UAV model are the body frame and the North

East Down (NED) frame. Figure 2.1 shows the body frame, where the xB-axis extends from
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UAV center of mass to its top right rotor, the yB-axis extends from center of mass to the

bottom right rotor and the zB-axis points down.

Figure 2.1: Body axes of a UAV

The NED frame and body frame are related through the Euler angles,

ηηη =


φ

θ

ψ

 , (2.1)

where φ is roll, θ is pitch, and ψ is yaw.

A 1-2-3 Euler Angle sequence, also known as the Tait-Bryan angles, is used to rotate

coordinates from the NED frame (x − y − z) to the body frame (xB − yB − zB) [22]. The
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first rotation is about the x-axis,

R1(φ) =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 , (2.2)

the second rotation is about the y′-axis,

R2(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 , (2.3)

and the third rotation is about the z′′-axis,

R3(ψ) =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 . (2.4)

The full rotation matrix is written as

R123(φ, θ, ψ) = R1(φ)R2(θ)R3(ψ). (2.5)

When rotating from body frame back into NED frame, the transpose of the original rotation

matrix is used,

R321(φ, θ, ψ) = R123(φ, θ, ψ)T . (2.6)
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2.1.2 Quadcopter Model Description

The quadcopter states are position (rrr), velocity (vvv), and acceleration (rrr), which are

further expanded to

rrr =


x

y

z

 , vvv =


ẋ

ẏ

ż

 , aaa =


ẍ

ÿ

z̈

 . (2.7)

Each state is specified to be in the NED coordinate frame. The parameters of the quadcopter,

such as mass, moment of inertia, and lift constant are stated in [23].

The inputs to the UAV are

UUU =



U1

U2

U3

U4


, (2.8)

where U1 is the thrust, U2 is the torque inducing roll, U3 is torque inducing pitch, and U4

is torque inducing yaw. The torques are generated by creating a difference in the angular

velocities of the UAV rotors [23]. Figure 2.2 shows the process of inducing roll (left), pitch

(middle), and yaw (right). The bold arrows in the figure represent a higher rotor angular

velocity, while a thin arrow represents a lower rotor angular velocity. U2, U3, and U4 are

used to reach commanded Euler angles. Because the UAV has four inputs, it can control

four out of six degrees of freedom. In this thesis, UUU is used to control z, φ, θ, and ψ.
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Figure 2.2: Changes in rotor angular velocities can create torques that induce roll (left),
pitch (middle) or yaw (left) moments.

2.1.3 Equations of Motion

The forces acting on the UAV are force of gravity (F), air drag (D), and thrust of the

UAV [23] [24]. More intricate models that include aspects of flight such as blade flapping or

effects of angle of attack can be found in [25][26]. The Newton equation for forces acting on

the UAV is ∑
F = mẍxx = −D + FB + T. (2.9)

Force of gravity is represented as,

F =


0

0

mg

 , (2.10)

where m is the mass of the UAV and g is gravity. The force of air resistance acts opposite

the direction of inertial velocity and is directly proportional to it [24], as seen below,

D =


Ax 0 0

0 Ay 0

0 0 Az

vvv. (2.11)
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Values for air resistance constants are found in [24]. Wind is not modelled in the equations

of motion. It is assumed to be part a disturbance acting on the system.

The final force acting on the UAV is thrust, which is exerted in the body frame. Thrust

can be found by summing the square of each rotor’s angular velocity and multiplying it by

the lift constant:

TB =


0

0

k
∑4

i=1 ω
2
i

 =


0

0

U1

 . (2.12)

Thrust is converted to the NED frame through the use of a rotation matrix found in Equation

(2.6),

T = R321(φ, θ, ψ)


0

0

U1

 =


sin(φ) sin(ψ) + cos(φ)cos(ψ) sin(θ)

cos(φ) sin(ψ) sin(θ)− cos(ψ) sin(φ)

cos(φ) cos(θ)

U1. (2.13)

Note that the Euler angles affect the directions in which thrust is enacted.

2.2 UAV Maneuver Simulation

In order to create high dynamic UAV maneuvers, a commanded thrust (TB) and com-

manded Euler angles (φ, θ, and ψ) were created. Euler angles were limited to a magnitude of

50 degrees. Velocity was limited to a magnitude of 40 m/s and acceleration to a magnitude

of 10 m/s2 to remain within the dynamic constraints of a quadrotor [27].

The controller of the UAV was assumed to be perfect and therefore controlled to desired

values without delay or error. Any effects of the controller were assumed to be negligible.

Figure 2.3 shows the five UAV maneuvers simulated. Each maneuver is twenty-five seconds

total and was created to be dynamically distinct from the others. Maneuvers 1, 2, 3, and

4 are later utilized to create HMMs, while Maneuver 5 is utilized as an “unknown” test

trajectory.
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Figure 2.3: Simulated position of the five UAV dynamic maneuvers used within this thesis.

These five maneuvers do not represent all motions that a UAV could perform. Instead,

they are a test case that provide examples of maneuvers that could be used for interception

avoidance or to move towards a target. For real world implementation, common UAV ma-

neuvers in relevant scenarios (urban flight, interception avoidance, trespassing into a sports

stadium, etc.) would be observed. Then, training data for these maneuvers could be devel-

oped in simulation.

To create a data set for training HMMs, each maneuver was simulated 2300 times. The

North and East start and end position for the UAV changed each time the maneuver was

simulated, as well as the direction of flight. Additionally, process noise was added to the

acceleration of the UAV to simulate disturbances in the environment, such as wind or blade

flapping. Throughout the creation of the 2300 trajectory data set, the maneuver commands

remain constant. The only changes to the maneuver are its position relative to an observer

and the disturbances (or process noise) throughout flight. The following sections show an

example flight of each maneuver with no additional process noise.
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2.2.1 Maneuver 1

Figure 2.4 shows the position of the UAV while executing Maneuver 1. It begins at a

a height of approximately 10 m and ends at a height of 55 m. Figure 2.5 shows the NED

position, velocity, and acceleration of the UAV throughout the maneuver. The accelerations

are oscillatory and at times rapidly change direction, which creates a large jerk.

Figure 2.4: UAV position throughout Maneuver 1.

(a) UAV position over time
(NED).

(b) UAV velocity over time
(NED).

(c) UAV acceleration over
time (NED).

Figure 2.5: The nine states of the UAV throughout Maneuver 1.
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2.2.2 Maneuver 2

The position of the UAV while performing Maneuver 2 is shown in Figure 2.6. The

UAV begins at a height of 180 m and descends to 55 m. The maneuver causes the UAV

to circle the target position before reaching it. Figure 2.7 shows the position, velocity, and

acceleration of the UAV throughout Maneuver 2. The majority of the dynamics take place

in the last fifteen seconds of the maneuver. Before this point, only the vertical position of

the UAV is rapidly changing.

Figure 2.6: UAV position throughout Maneuver 2.

(a) UAV position over time
(NED).

(b) UAV velocity over time
(NED).

(c) UAV acceleration over
time (NED).

Figure 2.7: The nine states of the UAV throughout Maneuver 2.
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2.2.3 Maneuver 3

Figure 2.8 shows the position of the UAV throughout Maneuver 3. Trhought this tra-

jectory, the UAV descends towards its target. The NED position, velocity, and acceleration

of the UAV throughout maneuver is displayed in Figure 2.9. While the UAV experiences

high acceleration in the y-direction (East) during the trajectory, the x and z accelerations

are much lower in comparison.

Figure 2.8: UAV position throughout Maneuver 3.

(a) UAV position over time
(NED).

(b) UAV velocity over time
(NED).

(c) UAV acceleration over
time (NED).

Figure 2.9: The nine states of the UAV throughout Maneuver 3.
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2.2.4 Maneuver 4

Figure 2.10 depicts the position of the UAV throughout Maneuver 4, while Figure 2.11

displays the position, velocity, and acceleration of the UAV in the NED frame. This maneuver

is the least dynamic of the five, and primarily has high acceleration in the z direction. Note

that Maneuver 4 has similarities to the z-acceleration of Maneuver 2, which becomes relevant

when classifying the maneuvers.

Figure 2.10: UAV position throughout Maneuver 4.

(a) UAV position over time
(NED).

(b) UAV velocity over time
(NED).

(c) UAV acceleration over
time (NED).

Figure 2.11: The nine states of the UAV throughout Maneuver 4.
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2.2.5 Maneuver 5

The final maneuver is Maneuver 5, shown in Figures 2.12 and 2.13. This maneuver has

an ascension portion of flight for this first 10 seconds of the trajectory before descending

towards the target position. It contains large changes in acceleration for all acceleration

directions.

Figure 2.12: UAV position throughout Maneuver 5.

(a) UAV position over time
(NED).

(b) UAV velocity over time
(NED).

(c) UAV acceleration over
time (NED).

Figure 2.13: The nine states of the UAV throughout Maneuver 5.
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2.3 UAV State Estimation

A nine-state discrete EKF was used to estimate the NED frame position (r̂), velocity

(v̂), and acceleration (â) of the UAV,

x̂ =


r̂

v̂

â

 . (2.14)

A block diagram in Figure 2.14 shows the structure of the EKF. The filter estimates vehicle

states by first propagating the states forward based on a dynamic model in the Dynamic

Update stage. As radar measurements are input to the system, they are used to correct the

states through a Measurement Update.

Figure 2.14: The Extended Kalman Filter utilized to estimate UAV states.

2.3.1 Extended Kalman Filter Dynamic Update

The discrete state dynamic update propagates estimates forward in time and can be

represented generally as

x̂−k+1 = Ax̂+
k +Bûk +Bwwk, (2.15)
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where A is the 9x9 state matrix (or dynamic model), x̂ is the estimated state vector, B is an

input matrix, and ûk is the input vector for known deterministic inputs. Bw is also an input

matrix for wk, an unknown stochastic input. This application has no known deterministic

inputs to the system, so both B and ûk are 0. Jerk is the unknown stochastic input. It is

modelled as zero-mean Gaussian noise and is input into the system through Bw, as seen in

Equation (2.16).

A constant acceleration model is used as the dynamic model of the UAV, as it is not

specific to the vehicle and therefore is generalizable to different UAV types or situations in

which the UAV is unknown. The EKF dynamic update with a constant acceleration model

and noisy jerk is represented as


r̂k+1

v̂k+1

âk+1

 = A


r̂k

v̂k

âk

Bwwk =


1 δt δt2

2

0 1 δt

0 0 1




r̂k

v̂k

âk

+


0

0

1

wk. (2.16)

After the estimates are propagated forward in time, the nine-state covariance matrix is

updated to reflect any uncertainty created from the dynamic update using the equation,

P−k+1 = AP+
k + P+

k A+Q, (2.17)

where A is the same state matrix used in the dynamic update, P is the covariance matrix

and Q is the process noise of the system. The process noise of the UAV was tuned using

Bryon’s trick.

2.3.2 Radar Measurement Model

Throughout its motion, the UAV is measured by a radar. The radar is stationary at

position, Rn, and measures the range, direction cosines, and range rate of the UAV at 5 Hz

19



[28]. The range distance, ρd, of the UAV is found using the equations,

ρρρ = rk −Rn, ρd = |ρρρ|. (2.18)

The final range measurement is a combination of range and range rate,

ρ = ρd + τRDρ̇, (2.19)

where range rate is defined as

ρ̇ =
vTkρρρ

ρ
(2.20)

and τRD is a the range doppler coupling time [29]. The direction cosines (u and v) are found

using equations,

u =
ρρρ(1)

ρ
, v =

ρρρ(2)

ρ
, (2.21)

as seen in [30].

The total radar measurement is defined as

y = h(x) + ν =

[
ρ+ τRDρ̇ u v ρ̇

]T
+ ν, (2.22)

where ν is zero-mean white measurement noise. The standard deviation of the noise is

defined using σρ, σρ̇, σu, and σv. These values were found using a Monte Carlo simulation

in [28] and can be seen in Table 2.1.

Table 2.1: Radar Statistical Parameters

Parameter Distribution function Standard Deviation
Radar Range Measurement Error Gaussian Distribution σρ = 1.5 m
Radar Angle Measurement Error Gaussian Distribution σu and σv = 45 µrad

Radar Range Rate Measurement Error Gaussian Distribution σρ̇ = 0.2 m/s
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2.3.3 Extended Kalman Filter Measurement Update

The radar measurement vector, y, updates the EKF estimates after they have been

propagated by the dynamic model. First, the expected radar measurements are found,

ŷ = h(x̂−). (2.23)

They are calculated with Equations (2.18)-(2.21) using estimated states (x̂) rather than true

states (x). The actual and expected measurement are then compare, and x̂ is updated based

on the difference between the two,

x̂+
k = x̂−k + L(y− ŷ). (2.24)

The factor that determines how the error between actual and expected measurements

changes x̂−k is the Kalman gain, (L), which is defined as

L = P−k H
T (HP−k H

′ +Rn)−1. (2.25)

H is the linearized measurement model, P−k is the state covariance matrix after dynamic

update, and Rn is the measurement noise matrix, which is defined as

Rn = E

[
ννT

]
. (2.26)

The linearized measurement matrix, H, also updates the state covariance matrix using the

equation,

P+
k = (I9x9 − LH)P−k , (2.27)

where I9x9 is an identity matrix.
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The linearized measurement model, H, is found by taking the partial derivative of h(x̂)

with respect to x̂, which is described in [28] and is defined as

H =
δh(x̂k)

δx
=



δρ
δ(xk)

δρ
δ(yk)

δρ
δ(zk)

0 0 0 0 0 0

δu
δ(xk)

δu
δ(yk)

δu
δ(zk)

0 0 0 0 0 0

δv
δ(xk)

δv
δ(yk)

δv
δ(zk)

0 0 0 0 0 0

δρ̇
δ(xk)

δρ̇
δ(yk)

δρ̇
δ(zk)

δρ̇
δ(ẋk)

δρ̇
δ(ẏk)

δρ̇
δ(żk)

0 0 0


. (2.28)

Both range and direction cosine measurements are calculated using only position states, and

therefore the derivative of the measurements are only taken with respect to xk, yk, and zk.

The partial derivative of ρ with respect to each position state is defined as

δρ

δ(xk, yk, zk)
=

1

ρ
ρρρT . (2.29)

The partial derivative of the direction cosines with respect to xk, yk, and zk are defined as

δu

δ(xk, yk, zk)
=

1

ρ3

[
1− ρρρ(1)2 −ρρρ(1)ρρρ(2) −ρρρ(1)ρρρ(3)

]
(2.30)

and

δv

δ(xk, yk, zk)
=

1

ρ3

[
−ρρρ(2)ρρρ(1) 1− ρρρ(2)2 −ρρρ(2)ρρρ(3)

]
. (2.31)

Both position and velocity states are used in finding range rate measurements.The partial

derivative of ρ̇ with respect to xk, yk, and zk is

δρ̇

δ(xk, yk, zk)
=

1

ρ
vTk (I3x3 −

ρρρρρρT

ρ2
), (2.32)

and the partial derivative with respect to ẋk, ẏk, and żk is

δρ̇

δ(ẋk, ẏk, żk)
=
ρρρT

ρ
. (2.33)

22



2.4 Estimation of UAV States During Maneuvers

To analyze the capability of the basic EKF during dynamic UAV maneuvers, a Monte

Carlo simulation was performed for Maneuvers 1, 2, 3, and 4. (More basic results of the

EKF when estimating the states of constant velocity, acceleration, and jerk models can

be found in Appendix A.) The maneuvers were simulated with 15 seconds of low dynamic

movement before the maneuver began and 20 to 25 seconds of low dynamic movement after

the maneuver ends. The low dynamic movement is created through a constant commanded

thrust and pitch angle, and aims to show the convergence of the EKF before and after a

maneuver. In total, each trajectory utilized for a Monte Carlo simulation is for 65 to 70

seconds.

Each trajectory was simulated and estimated 1000 times for the Monte Carlo. The

same start and end position of the UAV was used for each simulation. State estimates were

initialized with a random offset,


r̂rr1

v̂vv1

âaa1

 =


rrr1

vvv1

aaa1

+


1 ∗ randn

0.1 ∗ randn

0.01 ∗ randn

 . (2.34)

Radar measurements were also simulated, using a fixed radar position. The process noise

matrix, Q, was tuned initially using Bryson’s trick and then scaled. Many different scaling

values were used to tune Q in an attempt to mitigate estimation lag during maneuvers while

also not producing overwhelming noise on the EKF estimates. The following results show

the process noise matrix that resulted in the best EKF performance when balancing these

two needs.
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2.4.1 Maneuver 1

An example run of the Monte Carlo for Maneuver 1 is shown in Figure 2.15. The

position (left), velocity (center), and acceleration (right) of the UAV were estimated in the

NED frame. Overall, the EKF was capable of estimating the states throughout the maneuver.

(a) An example of Maneuver 1
position estimates.

(b) An example of Maneuver 1
velocity estimates.

(c) An example of Maneuver 1
acceleration estimates.

Figure 2.15: Estimates of Maneuver 1 using basic EKF.

The commands used to create the total trajectory are shown in Figure 2.16. The blue

dotted line indicates the start of the maneuver, while the black dotted line denotes the end.

There is a transition period from 12 to 14.8 seconds from the low dynamic maneuver to the

initial maneuver thrust, which prevents an immediate rapid increase in UAV acceleration

when the maneuver starts. There is also a transition period at the end of the maneuver (from

40 to 50 seconds) in which the commanded angles are slowly decreased to their original values.
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(a) Commanded UAV thrust (b) Commanded UAV Euler angles.

Figure 2.16: UAV commands used to execute Maneuver 1.

The average errors across the Monte Carlo simulation for position, velocity, and acceler-

ation are shown in Figures 2.17a, 2.17b, and 2.17c. The start and end time of the maneuver

is displayed in each figure, where once again the blue dotted line indicates the maneuver

start and the black dotted line indicated maneuver end.

Before the maneuver begins, acceleration and velocity estimates have zero-mean white

noise error. There is a slight elevation in estimation error in the two seconds prior to

maneuver start. This is consistent with the thrust transition period seen in Figure 2.16a.

Position estimates have some error throughout the 15 seconds leading up to the maneuver,

but the errors are quite low and clearly converging towards 0.

At the beginning of the maneuver, both velocity and acceleration have consistent errors

that are indicative of a lag in the estimation. Even the position estimation has a small

consistent error throughout the maneuver (particularly with x2 and x3). The errors lessen

towards the end of the maneuver as the accelerations decrease – except for the error of x2.

After the maneuver is complete, the velocity estimates return to zero-mean white noise. The

acceleration estimates do not converge towards 0 until the the commanded angle transition

period (see Figure 2.16b) is complete. The error of the position estimates begin to converge
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to non-zero values. Because radar measurements do not give complete observability, this is

likely caused by a less than optimal radar position relative to the UAV.

(a) Monte Carlo mean error of position esti-
mates.

(b) Monte Carlo mean error of velocity esti-
mates.

(c) Monte Carlo mean error of acceleration es-
timates.

Figure 2.17: Monte Carlo mean error when using basic EKF to estimate UAV states during
Maneuver 1.

The error variance of each state estimate during the Monte Carlo simulation (left) is

compared to the EKF variance (right) in Figure 2.18. The variance of the EKF matches the

error variances well. EKF variances are often scaled up when compared to error variances,

but this is to be expected as the process noise of the EKF was tuned to a high value.
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(a) Comparison of Monte Carlo position er-
ror variance (left) and EKF position variance
(right).

(b) Comparison of Monte Carlo velocity er-
ror variance (left) and EKF velocity variance
(right).

(c) Comparison of Monte Carlo acceleration er-
ror variance (left) and EKF acceleration vari-
ance (right).

Figure 2.18: Comparison of Maneuver 1 Monte Carlo error variance to basic EKF error
variance.

2.4.2 Maneuver 2

Figure 2.19 shows an example run of the EKF as it estimates UAV states throughout

Maneuver 2. Although noisy at times, the EKF is generally capable of tracking the true

states.

27



(a) An example of Maneuver 2
position estimates.

(b) An example of Maneuver 2
velocity estimates.

(c) An example of Maneuver 2
acceleration estimates.

Figure 2.19: Estimates of Maneuver 2 using EKF.

The commands used to create the entirety of the trajectory are shown in Figure 2.20,

where the blue and black dotted lines represent the start and end of the trajectory respec-

tively. Unlike Maneuver 1, Maneuver 2 does not require a transition period before the start

of the maneuver as the initial thrust matches the desired initial thrust of the maneuver.

However, Maneuver 2 still requires a transition period at the end of the maneuver in which

both the commanded thrust and Euler angles move to their final values that create low

dynamic motion.

(a) Commanded UAV thrust (b) Commanded UAV Euler angles.

Figure 2.20: UAV commands used to execute Maneuver 2.

The mean Monte Carlo error of EKF position (Figure 2.21a), velocity (Figure 2.21b),

and acceleration (Figure 2.21c) estimates are shown below. Velocity and acceleration have
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zero-mean white noise error for the flight leading up to Maneuver 2. The position estimates

are not entirely without error, but overall it is quite minor.

Once the maneuver begins, a small amount of consistent error can be seen in each state of

the first 10 seconds. Then as the acceleration increases (see Figure 2.19c), the error increases

for all states - indicating a lag in state estimation when there is high acceleration during the

maneuver. After the maneuver ends, small amounts of acceleration and velocity estimate

error continue until the transition period ends. Then, they return to zero-mean white noise.

Once again, the position estimates begin diverging, likely due to radar positioning.

(a) Monte Carlo mean error of position esti-
mates.

(b) Monte Carlo mean error of velocity esti-
mates.

(c) Monte Carlo mean error of acceleration es-
timates.

Figure 2.21: Monte Carlo mean error when using basic EKF to estimate UAV states during
Maneuver 2.

The Monte Carlo estimation error variance is compared to the EKF variance for posi-

tion, velocity, and acceleration in Figures 2.22a, 2.22b, and 2.22c respectively. Each state
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converges to some variance (both in Monte Carlo mean error and EKF variance) before the

maneuver, and then, as the maneuver begins, the state estimates experience changes in the

variance. After both the maneuver and transition period are finished, the variances con-

verge once more. Note that the EKF variance matches the shape of the Monte Carlo error

variance, but scaled to a higher value for velocity and acceleration variances. This is to be

expected with high process noise.

(a) Comparison of Monte Carlo position er-
ror variance (left) and EKF position variance
(right).

(b) Comparison of Monte Carlo velocity er-
ror variance (left) and EKF velocity variance
(right).

(c) Comparison of Monte Carlo acceleration er-
ror variance (left) and EKF acceleration vari-
ance (right).

Figure 2.22: Comparison of Maneuver 2 Monte Carlo error variance to basic EKF error
variance.
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2.4.3 Maneuver 3

Estimates of UAV states throughout Maneuver 3 are shown in Figure 2.23. These

estimates are an example of one of the data runs executed during the Monte Carlo. The

results show EKF estimates following UAV states throughout Maneuver 3.

(a) An example of Maneuver 3
position estimates.

(b) An example of Maneuver 3
velocity estimates.

(c) An example of Maneuver 3
acceleration estimates.

Figure 2.23: Estimates of Maneuver 3 using EKF.

The commands used to create the total trajectory are shown in Figure 2.24. Commands

specifically for Maneuver 3 are executed from 15 seconds to 40 seconds. Before the maneuver,

thrust begins to move towards the initial thrust of the maneuver. After the maneuver, thrust

and the Euler angles transition back to their constant values.

(a) Commanded UAV thrust (b) Commanded UAV Euler angles.

Figure 2.24: UAV commands used to execute Maneuver 3.
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The mean state errors found through the Monte Carlo simulation are shown in Figure

2.25. Each state has zero-mean white noise error for flight before the maneuver. Once the

maneuver begins, consistent errors are introduced in each state. v2 and a2, which represent

motion in the East direction, have the highest errors. After the maneuver is over, consistent

error persists until the transition period ends. Then, acceleration and velocity errors return

to zero-mean error. Once again, position estimates diverges towards the end of the trajectory.

(a) Monte Carlo mean error of position esti-
mates.

(b) Monte Carlo mean error of velocity esti-
mates.

(c) Monte Carlo mean error of acceleration es-
timates.

Figure 2.25: Monte Carlo mean error when using basic EKF to estimate UAV states during
Maneuver 3.

The Monte Carlo state error variance and the variance of each state calculated through

the EKF are compared in Figure 2.26. The variances have similar shape for both the EKF

and the Monte Carlo error, although the EKF is scaled in value for velocity and acceleration.
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(a) Comparison of Monte Carlo position error
variance and EKF position variance.

(b) Comparison of Monte Carlo velocity error
variance and EKF velocity variance.

(c) Comparison of Monte Carlo acceleration er-
ror variance and EKF acceleration variance.

Figure 2.26: Comparison of Maneuver 3 Monte Carlo error variance to basic EKF error
variance.

2.4.4 Maneuver 4

The states of the UAV were estimated during Maneuver 4, as shown in Figure 2.27.

Maneuver 4 is the least dynamic maneuver, which causes some unnecessarily high noise on

the acceleration estimates when using the same process noise values as the other maneuvers.

Nonetheless, the EKF capably estimates the UAV states.
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(a) An example of Maneuver 4
position estimates.

(b) An example of Maneuver 4
velocity estimates.

(c) An example of Maneuver 4
acceleration estimates.

Figure 2.27: Estimates of Maneuver 4 using EKF.

The commands used to make the UAV perform the total trajectory are shown in Figure

2.28. The start and end of Maneuver are denoted with the blue and black dotted line. Before

and after the maneuver, there are small transition periods in order to start at the correct

initial thrust and transition back to small constant Euler angles and the initial thrust.

(a) Commanded UAV thrust (b) Commanded UAV Euler angles.

Figure 2.28: UAV commands used to execute Maneuver 4.

The mean errors of the UAV states over time for Maneuver 4 are shown in Figure

2.29. Position, velocity, and acceleration estimates all reach zero mean error prior to the

maneuver start. Maneuver 4 has less acceleration when compared to the other maneuvers,

and therefore, has generally less consistent state errors throughout the maneuver. The

highest errors are in the down direction. When the maneuver and transition period end,
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velocity and acceleration error return to zero-mean white noise, while position error continues

to diverge slightly.

(a) Monte Carlo mean error of position esti-
mates.

(b) Monte Carlo mean error of velocity esti-
mates.

(c) Monte Carlo mean error of acceleration es-
timates.

Figure 2.29: Monte Carlo mean error when using basic EKF to estimate UAV states during
Maneuver 4.

Figure 2.30 shows the variance of state errors from the Monte Carlo compared to the

variances of states computed by the EKF. The most notable characteristic of this trajectory

is the increase in variance for all states in the down direction (x3, v3, and a3) during the

maneuver. The variance of the EKF and Monte Carlo errors match in trend, although the

EKF variance is higher in magnitude.
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(a) Comparison of Monte Carlo position error
variance and EKF position variance.

(b) Comparison of Monte Carlo velocity error
variance and EKF velocity variance.

(c) Comparison of Monte Carlo acceleration er-
ror variance and EKF acceleration variance.

Figure 2.30: Comparison of Maneuver 4 Monte Carlo error variance to basic EKF error
variance.

2.5 Conclusion

This section described UAV modelling, maneuver creation and simulation. The EKF

formulation to estimation UAV position, velocity, and acceleration in the NED frame using

radar measurements and a constant acceleration dynamic model was also explained. The

EKF was then used to estimate UAV states during simulated flight, wherein the UAV ma-

neuvers were performed. EKF performance was evaluated for each maneuver using a Monte

Carlo simulation. While the EKF capably estimated UAV states throughout low dynamic

portions of flight, the EKF produced consistent estimation error during the high dynamic

maneuvers. The following chapter will explore the use of UAV maneuver simulations to
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create Hidden Markov Models (HMMs), which can be used for classification and to aid in

state estimation.
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Chapter 3

Modelling and Classification of UAV Maneuvers using Hidden Markov Models

3.1 Introduction

In the previous chapter, UAV maneuvers were developed in simulation. The states of

the UAV were estimated using an EKF with a constant acceleration dynamic model. Now,

the focus shifts to modelling the same maneuvers using a data driven approach - Hidden

Markov Models (HMMs). The data created from maneuver simulations is used to create

maneuver specific HMMs. In the following sections, HMMs are defined and the ways they

can provide information about a maneuver through classification, state path tracking, and

trajectory generation are explored.

3.2 Markov Chain

A Markov chain, shown in Figure 3.1, describes a system as Q discrete states [31]. At

any moment in time the system must be in one of Q states, qt. At uniform discrete time

intervals, the system undergoes a transition - either to a different state within the model or

to the same state. Each state corresponds to an output of the system that is some physical,

observable event. An example of a system that could be modelled as a Markov Chains is a

manufacturing systems. Yu and Bricker (1990) modelled a multi-stage manufacturing system

as a Markov Chain, where each state of the system was defined as a separate part of the

manufacturing process, such as machining, inspecting, and packing [32].
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Figure 3.1: An example of a Markov Chain.

To fully describe a Markov chain at time t, the current state as well as all past states

must be known. The probability of a series of states occurring is the joint distribution of

the series of states from t = 1 to t = T [31], which can be found using the chain rule:

p(q1:T ) = p(q1)p(q2|q1)p(q3|q2, q1)p(q4|q1:3)...p(qT |q1:T−1). (3.1)

First, the probability of the state at time t = 1 is found. This is multiplied by the probability

of the state at time t = 2, given the state at t = 1, which is multiplied by the probability

of the state at t = 3, given the states at t = 1 and t = 2, and so on. As t increases, finding

the probability of a state sequence becomes more complicated, as does describing the model

through its potential state series.

The Markov chain is be simplified using the first order Markov assumption, which

assumes that the future is conditionally independent of the present given the past, or

qt+1 ⊥ q1:t−1|qt. (3.2)
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The joint distribution of a series of states can then be written as

p(q1:T ) = p(q1)
T∏
t=1

p(qt|qt−1). (3.3)

A Markov chain that utilizes the first order Markov assumption is known as a first order

Markov chain. When p(qt|qt−1) is assumed to be independent of time, the first order Markov

chain is also time invariant. A time invariant first order Markov chain at time t can be

described using only the current state and p(qt|qt−1) for each state[31].

The state transition matrix denotes p(qt|qt−1) for each state in a compact form. For

example, a Markov chain with four states has the transition matrix

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


, (3.4)

where aii is the probability of remaining on the same state from t − 1 to t and aij is the

probability of the model transitioning to state j at time t given its current state i at t− 1.

3.3 Hidden Markov Models

A Hidden Markov Model (HMM) models a system as a time invariant first order Markov

Chain where the states are not directly observable. Instead, the states are latent variables

[31][33]. The system produces data, Ot, known as an observation – the measurable emission

of the HMM. Ot can be simple, like the result of a dice roll, or more complex, like a vector

of radar measurements. The emission probability (Bi(O) = p(Ot|qt)) relates the emission

to the latent states. Figure 3.2 shows an example of an HMM. The model is obscured with

only Ot, the observations emitted from the model, visible.
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Figure 3.2: An example of a Hidden Markov Model.

The emission probability of a state Si, Bi(O), can be either continuous or discrete,

depending on the characteristics of the observations. For example, Dimitrova et al. (2000)

used discrete observation symbols and a corresponding observation symbol probability matrix

to represent different discrete events occurring on a TV screen [34]. In contrast, Nefian et al.

(2002) used a Gaussian Mixture Model as the emission probability function for audio and

visual features in audio-visual speech recognition system [35].

Overall, a Hidden Markov Model has can be described through 5 elements [33]:

1. The number of states, Q.

2. The observations, Ot, emitted at each time step.

3. The emission probability, Bi(Ot) = p(Ot|qt = Si), of each state.

4. The transition matrix, A, which contains the probabilities, p(qt = Si|qt−1 = Sj), for

each state.

5. The initial state distribution, π, which describes the probability of a state starting the

HMM state sequence, πi = p(q1 = Si).

The structure of HMM excels at modelling long range dependencies across observa-

tion sequences [31]. As a result, HMMs are often used in time-series prediction, time-series

generation, and time-series classification problems. HMMs are utilized in creation of pre-

dictive models of human behavior [36], gene finding in DNA [37], speech recognition [38],

handwriting recognition [39], and stock market forecasting [40].
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3.3.1 Model Training

Hidden Markov Model training is the process through which the parameters (A,B, π)

of an HMM model, λ, are adjusted to maximize the probability of the training data. More

specifically, training adjusts the parameters to maximize P (O|λ), where O is the series

observations used as training data. There is no known analytical solution to this problem.

One method to train an HMM is to describe training as an optimization problem and use

gradient techniques to find the parameters, but this method has generally not produced

satisfactory results [41][33]. The most often used technique, and the technique used in this

thesis, is the Baum-Welch algorithm [42][33].

The Baum-Welch algorithm is a variation of the Expectation-Maximization algorithm.

It is an iterative process that is capable of satisfying the stochastic constraints of an HMM.

Originally, the algorithm was formulated with only discrete emission probability functions

in mind, but the formulation has now expanded to also include some continuous observation

densities as well, including Gaussian Mixture Models [43][44][45]. For further reading on the

implementation of HMM training, as well as how to implement it with continuous observation

densities, [33] is recommended.

The number of states of the HMM (Q) and any hyperparameters required for the emis-

sion probability must be determined before beginning the Baum-Welch algorithm. For ex-

ample, if the emission probability is represented as a GMM, the number of mixtures per

GMM (M) is needed. The algorithm also requires initial values for the model parameters

λinit = (Ainit, Binit, πinit).

The algorithm is divided into two stages: expectation and maximization. First, the

expectation stage defines what “should” happen according to the current model parameters,

λ = (A,B, π), and the observation sequence, O. The expected frequency of visits to each

state, expected number of state transitions, and expected observations for a certain state are

found. Then, in the maximization stage, these expected values are used to re-estimate the

model parameters and produce a new model, λ̄ = (Ā, B̄, π̄).
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It has been show that the newly re-estimated model will either be more likely than the

previous model (P (O|λ̄) > P (O|λ)) or, if λ was already the best model, the two will have

equal likelihood (P (O|λ̄) = P (O|λ)) [46][47]. As the process is iterated, λ will continue to

increase in likelihood for the given training data. Typically, the process is stopped once a

certain number of iterations is reached or the change in model likelihood from iteration to

iteration is considered negligible.

The Baum-Welch algorithm is only capable of finding a local maxima [33]. Therefore,

the training procedure is often performed multiple times with different model parameter

initialization, or strategies are used to ensure the initial model parameters will produce

worthwhile results.

3.3.2 Modelling UAV Maneuvers as HMMs

In this thesis, the UAV Maneuvers 1, 2, 3, and 4 are each modelled as an HMM.

The observations of each model are the UAV position, velocity, and acceleration states. A

Gaussian Mixture Model (GMM) was chosen as the probability density function for each

state’s emission probability. An example of a three dimensional GMM is shown in Figure

3.3.

Figure 3.3: An example of a Gaussian Mixture Model [1].
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The emission probability function is described as

Bi(Ot) =
M∑
i=1

piN(Ot, µi,Σi), (3.5)

where Bi is the emission probability of state i, M is the number of mixtures, pi is the

weighting of each mixture, and N(O, µi,Σi) is the multivariate Gaussian of a given mixture.

The multivariate Gaussian is defined as,

f(x) =
1√

(2π)k|Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ)), (3.6)

where µ is mean vector, Σ is the covariance matrix, and k is the dimension of the data. For

this application, the dimension of the data is nine, as the input to the multivariate Gaussian,

x, is the state vector of the UAV.

3.3.3 Training UAV HMMs

Data for training each maneuver’s HMM was generated using maneuver simulations

detailed in Section 2.2. Diverse training data for each maneuver was created by simulating

the maneuver over 2000 times with different start and end positions and random process noise

added to the acceleration of the vehicle. UAV position, velocity, and acceleration states were

recorded at 5 Hz for each simulation. The true states of the UAV (not the filtered states)

were used as training data.

Maneuvers 1-4 were randomly divided into a training and testing data sets, where 70%

of the data was used for training and 30% was reserved for testing. Maneuver 5 was not used

to create an HMM and instead is used as an unknown trajectory. Before UAV states were

used as observations for the HMM, they were differenced and normalized using the global

minimum and maximum of the training data set [48]. This allowed model observations to be

invariant to UAV position and scaled in a way that is easier to train. The data pre-processing
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is shown as

xn =
[xt+1 − xt]− xmin

xmax − xmin
. (3.7)

To find the initial parameters of the emission probabilities for model training, a random

training set trajectory was chosen for each maneuver. A Gaussian Mixture Model was found

using the Expectation-Maximization algorithm and data points from that trajectory. The

GMM was calculated several times and with varying numbers of mixtures (from three to ten)

and different initial conditions. The GMM with the highest log-likelihood was then selected

to initialize HMM parameter, Binit. Each individual mixture was used to initialize a single

state’s emission probability, making the number of mixtures in each emission probability,

M , one. This procedure is similar to the pre-training procedure of [21].

The transition matrix, A, was initialized simply as

Ainit =
1

Q
IQxQ (3.8)

and π was initialized as

πinit =
1

Q
ones(1, Q). (3.9)

After initialization and training, Maneuver 1 was modelled as a five state HMM (λ1), Ma-

neuver 2 was modelled as a six state HMM (λ2), Maneuver 3 was modelled as a six state

HMM (λ3), and Maneuver 4 was modelled as a six state HMM (λ4). λ1 differs in number of

states when compared to the other HMMs only because its 5 state produced superior results

in training data estimation and classification, while the other models had better results with

6 states.

3.4 Classification of UAV Maneuvers

The Hidden Markov Model of each UAV maneuver can be utilized for maneuver clas-

sification in real time. The fundamental idea behind classification is to determine which
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model is most likely to have produced an observation sequence, O. The following section

describes two classification schemes used to classify UAV maneuvers. Both schemes use the

forward algorithm, a common HMM classification method, as the first step in the classifica-

tion process. Then, either one-class classification or a confidence metric is used to complete

classification and provide additional robustness to the classifier.

The classification schemes were tested using each maneuvers’ HMM. UAV states are

input into the classification schemes and are used to update the current maneuver classifi-

cation. The models are first tested using the training data set of truth data (which they

were originally trained on) to confirm the basic ability of the classification scheme. They are

then tested using the test data set of truth data to ensure that the models are not overfit to

training data.

After these initial results, the classification schemes are tested again using estimated

UAV states generated from the EKF in Section 2.3. Classification ability is first evaluated

using estimates of maneuver trajectories in the original training data set. Then, it is accessed

using estimates of the test data set. These results will aid in examining if the classification

schemes are robust to filtered data when trained on truth data. The estimated UAV states

are often noisy in comparison to truth data and may have some lag in estimating the UAV

states during the maneuver (see Section 2.4). Classification results from using estimated

data are used evaluate whether HMMs can still be used with imperfect estimated data.

3.4.1 Classification Methods

Forward Algorithm [33]

In order to classify a model,the probability of an observation sequence given a model,

P (O|λ), must be determined. This probability is defined as

P (O|λ) =
∑
allQ

P (O|Q, λ)P (Q|λ), (3.10)
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where P (O|Q, λ) is the probability of the observation sequence occurring given the state

sequence Q and the model λ and P (Q|λ) is the probability of the state sequence given

the model. The product of these probabilities is summed over all possible state sequences

produced by the model to account for all possible variations. While accurate, this definition

of P (O|λ) is computationally intensive to calculate.

The forward algorithm is a faster way to find P (O|λ) that uses the variable α. αt(i) is

updated for each state throughout the forward algorithm and is defined as the probability

of the current state at time t and the observation sequence up to time t given the model, or

αt(i) = P (O1, O2, ..., Ot, qt = Si|λ). (3.11)

α is initialized using the first observation of the sequence, O1, the probability of this

observation originating from state Si (also known as the emission probability Bi(O1)), and

the initial probability distribution of Si, πi:

α1(i) = πiBi(O1), 1 ≤ i ≤ Q. (3.12)

Next, α is propagated through the induction step, which is described as

αt+1(j) =

[
Q∑
i=1

αt(i)aij

]
Bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (3.13)

The algorithm uses a trellis structure, seen in Figure 3.4. At each time step, αt+1(j) is up-

dated using the emission probability of the observation (Bj(Ot+1)) and the joint probability

of Sj occurring at time t + 1 and of the entire observation sequences occurring from time

t = 1 to time t, (O1, O2, ..., Ot). This probability is described as
∑Q

i=1 αt(i)Aij.

47



Figure 3.4: An illustration of the trellis structure used in the forward algorithm.

When the observation sequence reaches its final observation, the forward algorithm

performs the termination step,

P (O|λ) =

Q∑
i=1

αT (i). (3.14)

Each αT (i) considers all possible paths that could have lead to that final state, Si, as well as

the probability of the entire observation sequence. Therefore, summing αT (i) over all states

produces P (O|λ). If there is a need to know P (O1:t|λ), the probability partial observation

sequence given the model, then αt(i) can be summed each time it is updated with a new

observation in the induction state,

P (O1:t|λ) =

Q∑
i=1

αt(i). (3.15)

When classifying a model, P (O1:t|λ) can be calculate for each model and compared.

The model with the highest P (O1:t|λ) is considered the correct classification. The forward

algorithm can also be modified to utilize logarithms within the algorithm and produce the

log-likelihood of a model. This is the method used for classification in this thesis (and is

further explain in [33]). The model with the highest log likelihood is considered the best

classification for a given observation sequence.
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Although the forward algorithm provides a method to compare HMMs for classification,

an issue arises when classifying an observation sequence from an unknown system. Simple

model comparison in classification guarantees the classification will always be one of the

known models – even when this is incorrect. One-class classification and confidence measures

provide two potential solutions to this problem.

One-Class Classification

One-class classification is typically used in two-class classification problems when data

from only one class is readily available. Typically, the discriminant function for a classi-

fication system evaluates for all classes, but, as the name suggests, one-class classification

evaluates the discriminant function for only one class [49]. For example, detecting an in-

truder in a system is a scenario in which the training data will only consist of the usual

behavior for that system. The classifier must determine if activity is normal or not normal

without having ever experienced an abnormal situation.

HMMs are used for some one-class classification applications [50] [51]. The one-class

classification method used in this thesis is based on [52]. This simple method states that the

log-likelihood of a model must exceed a selected threshold to be considered for classification.

The threshold is determined through finding the log-likelihood of training data observations

sequences (using the forward algorithm) and determining a log-likelihood value that most or

all of the sequences exceed.

The classifier using one-class classification is shown in Figure 3.5. First, the observation

sequence is input into each HMM and the log-likelihood of each model is compared. Initial

classification occurs by finding which model produced the maximum log-likelihood. The

corresponding maneuver is selected as the initial classification. Then, the log-likelihood of

the classified model is input into one-class classification and is compared to the established

threshold. If the log-likelihood exceeds the threshold, then the initial classification becomes
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the final classification. If the log-likelihood does not exceed the set threshold, the final

maneuver classification is unknown.

Figure 3.5: Classifier that uses the forward algorithm and one-class classification to determine
a maneuver given a series of UAV states.

Confidence Measure

Another method to evaluate the forward algorithm’s initial classification is using a

confidence measure [53],

V = log10

∑
i

Pi
PC

, (3.16)

which compares the probability of the classified model, PC , to the sum of the probabilities of

the unclassified models, Pi. The measure shows whether the selected model is distinguished

from the others when encountering a new observation sequence.

High confidence classification occurs when the confidence measure, V , is less than -2.

This indicates a large difference between the log-likelihood of a maneuver’s model and the

log-likelihoods of the other models. When V is between −1 and −2, the classification has

some uncertainty. If −1 < V < 1, then the classification is highly uncertain, because multiple

50



models have similar log-likelihoods for the observation sequence. A score of V > 2 indicates

high confidence that the model is not the correct classification, as the model has a distinctly

lower log-likelihood than some other.

The classification scheme when using the confidence measure is shown in Figure 3.6.

Like in Figure 3.5, after the log-likelihood of each model is calculated using the observations,

the model that produces the maximum log-likelihood is found. The maneuver associated

with this model becomes the initial classification. Then, the confidence measure is used to

evaluate this initial classification by comparing this model’s log-likelihood to the others. If

the model currently classified from the forward algorithm has a confidence score greater than

−1, then the maneuver is classified as unknown. If it’s less than −1, the initial classification

becomes the final classification.

Figure 3.6: Final classifier used to determine a maneuver given a series of UAV states.
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3.4.2 Classification Results: True States

Training Data

Both classifiers were first tested using the UAV truth data that used to train the HMMs.

Table 3.1 shows the classification accuracy of the training data when using the forward

algorithm and one-class classification, while Table 3.2 shows the classification accuracy when

using the forward algorithm and confidence.

There are two accuracy measures shown in each table. The first (final accuracy) shows

the accuracy of classification after the maneuver is complete. In other words, if the classifier

was able to classify the maneuver at the end of the trajectory when it had all available

information. The second accuracy measure (accuracy over time) shows what percent of

time during the maneuver that the maneuver was correctly classified. For example if the

maneuver was classified correctly for 20 out of 25 seconds, the trajectory would have 80%

accuracy over time. The percentages for accuracy over time in Tables 3.1 and 3.2 are the

mean accuracy over time across the data set.

Both classification schemes had 100% final accuracy in correctly identifying known Ma-

neuvers 1 - 4. No maneuver was classified 100% of its flight time for either classification

scheme. However, both classifiers showed very high accuracy over time. High overall accu-

racy is expected when evaluating with training data.

Table 3.1: HMM Classification Using One-Class: Training Truth

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 98.21%
2 100% 97.87%
3 100% 98.81%
4 100% 98.73%

Figure 3.7 shows the average log-likelihood for each of the models throughout the clas-

sification process. The average log-likelihood at each time step is taken across the entire

data set to produce these results. Figure 3.7a shows the log-likelihood of each HMM over
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time when UAV states from Maneuver 1 are input into the classifier. Figure 3.7b shows

log-likelihoods when Maneuver 2 observations are input, Figure 3.7c displays results from

Maneuver 3 observations, and 3.7d shows Maneuver 4 observations. For figures of individual

classification runs rather than the average refer to Appendix B.

Overall, Figure 3.7 shows that each model has a high log-likelihood when presented with

observations from its corresponding maneuver, while the other models generally maintain low

log-likelihoods. In some cases, λ3 has an initial high log-likelihood in the first few instances

of the maneuver, but the likelihood quickly declines. In Figure 3.7d, λ2 has a high likelihood

in the initial stages of Maneuver 4 (although in comparison to λ4 it is still relatively low).

Table 3.2: HMM Classification Using Confidence: Training Truth

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 98.21%
2 100% 97.47%
3 100% 98.81%
4 100% 95.24%
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(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.7: Average log-likelihood of each model over time: training data classification.

Figure 3.8 shows the confidence of each of the models throughout classification. Like

Figure 3.7, Figure 3.8a refers to confidence of classification when observations from Maneuver

1 are presented, while Figure 3.8b uses observations from Maneuver 2, Figure 3.8c uses

observations from Maneuver 3, and Figure 3.8d uses observations from Maneuver 4. As

described in Section 3.4.1, a confidence value of less that −2 shows high confidence in a

classification. As the confidence value of a model becomes more negative, it shows that the

HMM has an even higher ratio of likelihood when compared to its counterparts and therefore,

has higher confidence in its classification. Both λ1 and λ3 maintain high confidence in their

classification throughout the entire maneuver.
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λ2 and λ4, however, both display an initial uncertainty in the classification. These

lower confidence values represent that both models find it likely the observation sequence

could correspond to their respective models. The confusion may be caused by similarities in

the maneuvers during the initial stages of flight. Recall from Sections 2.2.2 and 2.2.4, the

position, velocity, and acceleration for each maneuver were shown. Figures 2.7c and 2.11c

in particular show that Maneuvers 2 and 4 have similar initial accelerations for the first

5 -10 seconds of their maneuvers. As the maneuver is performed and the maneuvers lose

their similarities, the confidence in classification increases to the point that both are highly

confident.

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.8: Average confidence for training data classification.
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Test Data

Tables 3.3 and 3.4 show the classification results for test data using one-class classi-

fication and the confidence measure respectively. This test data originates from the truth

data set of the UAV. Both one-class and confidence classification have 100% final accuracy

and high mean accuracy over time. These results are helpful in ensuring that the trained

models are not overly fit to the training data and that both classification schemes have high

accuracy.

The tables also contain additional results for an unknown maneuver. The unknown

maneuver, Maneuver 5, has a final accuracy of 100% for both classifiers – meaning that both

classifiers identified the maneuver as unknown at the end of its trajectory. Furthermore,

the accuracy over time for each classifier was high (98.12% for one-class and 96.09% for

confidence) indicating that for the majority of the time the UAV was performing Maneuver

5, the classifiers determined it was unknown either because no models exceeded the log-

likelihood threshold for one-class classification or because every model had low confidence in

its classification.

Table 3.3: HMM Classification Using One-Class: Test Truth

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 98.21%
2 100% 97.86%
3 100% 98.81%
4 100% 98.76%

5 (Unknown) 100% 98.12%

Table 3.4: HMM Classification Using Confidence: Test Truth

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 98.21%
2 100% 97.43%
3 100% 98.81%
4 100% 95.38%

5 (Unknown) 100% 96.09%
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Figure 3.9 shows the average log-likelihood of each model throughout the classification

process. Once again, each model has a high likelihood when input observations from its

corresponding maneuver. The overall behavior of each model is very similar to the behavior

when testing the training data. Appendix B displays the log-likelihood of individual test

data maneuvers rather than the average.

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.9: Average log-likelihood of each model: test data.

Figure 3.10 shows the average confidence of each model during classification. Both λ1

and λ3 are highly confident in their classification throughout the maneuver, while λ2 and λ4

are less confident in the initial stages of the maneuver. Later, both are able to find greater

confidence.
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(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.10: Average confidence for testing data classification.

Maneuver 5 is used as an unknown maneuver as a way to test each classifiers’ ability

to discriminate between a known and unknown trajectories. Figure 3.11 shows the average

log-likelihood of each model and the confidence of each model when receiving UAV states

recorded during Maneuver 5. Figure 3.11a shows that although λ3 had a high initial log-

likelihood, it quickly drops off and remains low like the other models. For most of the

maneuver, no model exceeds the threshold log-likelihood set by the one-class classifier, so

the maneuver is classified as unknown.

In Figure 3.11b, there is some initial confidence that λ3 is the the correct classification,

but the metric quickly changes to not confident in the classification. λ4 and λ2 initially

have high confidence that they are not the the correct classification. This is because λ3 and
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λ1 have higher log-likelihoods at the beginning of the trajectory, while λ4’s and λ2’s log-

likelihood remained low in comparison throughout. As the maneuver continues, however, all

model log-likelihoods remain low. This creates a low confidence score for all models, because

their log-likelihoods are similar. Essentially, there is no distinction between models. As a

result, each model’s confidence score is greater than −1, so the maneuver is classified as

unknown.

(a) Maneuver 5 Log-likelihood. (b) Maneuver 5 Confidence.

Figure 3.11: Average log-likelihood and confidence of each maneuver’s HMM when presented
with Maneuver 5 (unknown maneuver).

3.4.3 Classification Results: EKF

The next section discusses the classification results when utilizing Extended Kalman

Filter estimates of UAV states rather than maneuver truth data to test the classifiers. The

section is divided into a training and testing data section, but it should be noted that the

training data section is not testing the true training data of the models. Rather, it is the

original training data set after being estimated using the Extended Kalman Filter from

Section 2.3. Likewise, the test data section shows the results from classification using the

EKF estimates of the original test data set. Note that the models were not re-trained on

estimates of the reference data. Rather, this section serves as an evaluation whether HMMs

trained on truth data can then be used to classify estimated data.
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Training Data

The accuracy of the classifiers when using EKF estimates of the training data is shown

in Tables 3.5 and 3.6. For both classifiers, each maneuver model maintains 100% final

classification accuracy. However, the mean accuracy over time decreases for both classifiers.

The greatest drop in mean classification accuracy over time is when using the one-class

classifier to classify Maneuver 1. There is a decrease in accuracy over time for both classifiers

when classifying Maneuvers 1 and 4.

It is not surprising that accuracy in classification drops as the observations become

more noisy and contain state estimation errors. Both classifiers are capable of correctly

identifying a maneuver for the majority of its flight indicating they are both robust and

capable of classifying estimated data.

Table 3.5: HMM Classification Using One-Class: Training EKF

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 76.45%
2 100% 97.68%
3 100% 94.29%
4 100% 89.40%

Table 3.6: HMM Classification using Confidence: Training EKF

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 86.94%
2 100% 97.64%
3 100% 96.04%
4 100% 80.83%

Figure 3.12 shows the log-likelihood of each model when presented with EKF estimates

of the training data maneuvers. Compared to Figure 3.9, the models have a much lower

log-likelihood. However, the distinction between the correct maneuver’s model is still clear.

Maneuver 4’s HMM has a lower log-likelihood than Maneuvers 2’s HMM for some portions
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of flight. This lead to misclassification as Maneuver 2, which contributed to Maneuver 4’s

lower mean accuracy over time.

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.12: Average log-likelihood of each HMM when classifying training data estimates.

The average confidence of each model is displayed in Figure 3.13. The correct model

takes more time to reach high confidence in its classification and generally has lower confi-

dence when compared to classification with truth data. However, each model still reaches

the “high confidence” score. λ4 takes the longest amount of time to have high confidence,

which coincides with its low accuracy over time when using the confidence measure. Note

that Maneuver 4 is never misclassified as Maneuver 2 when using the confidence measure
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classifier. Both models begin to have confidence between −1 and 1, which leads to an “un-

known” classification. Eventually, Maneuver 4’s confidence decreases to less than −1, and

the maneuver is correctly classified as Maneuver 4.

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.13: Average confidence of each HMM when classifying estimates of training data.

Test Data

Tables 3.7 and 3.8 show the accuracy of the classifiers when using EKF estimates of the

test data. Once again, both classifiers maintain a 100% final accuracy for each maneuver and

also 100% final accuracy for identifying the unknown maneuver. The classification accuracy

over time remains lower for both classification schemes than when using truth, particularly

when classifying Maneuvers 1 and 4.
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The average log-likelihood of each model throughout the classification process when

using EKF estimates of test data is shown in Figure 3.14. Overall, the results are similar to

that of Figure 3.12. The log-likelihood of the models are lower than when using truth data,

but the models are clearly still capable of classification.

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.14: Average log-likelihood of each HMM when classifying estimates of test data.

Table 3.7: HMM Classification Using One-Class: Test EKF

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 77.87%
2 100% 97.70%
3 100% 94.40%
4 100% 89.00%

Unknown 100% 94.21%
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Figure 3.15 displays the confidence of each model in its classification when using EKF

estimates of the original test data. Maneuver 1 has low initial confidence and is confused with

Maneuver 3 before distinguishing itself causing a lower accuracy over time. Initial incorrect

classifications of Maneuver 2 also occurs. Maneuver 4 is initially classified correctly, then

loses confidence and is classified as unknown, before once again being classified as Maneuver

4 for the rest of the trajectory.

Table 3.8: HMM Classification Using Confidence: Test EKF

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 87.88%
2 100% 97.64%
3 100% 96.06%
4 100% 80.60%

Unknown 100% 91.59%
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(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure 3.15: Average confidence of each HMM when classifying estimates of test data.

The average log-likelihood and confidence of each model when presented with EKF

estimates of an unknown maneuver (Maneuver 5) are shown in Figure 3.16. λ3 has a high

log-likelihood in the initial 1 second of the maneuver, but then the likelihood quickly drops

off. λ1 also briefly has a high log-likelihood. For most of the maneuver however, no models

have high log-likelihood. Like in Section 3.4.2, the confidence in each model is low for most

of the maneuver, resulting in an unknown classification.
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(a) Maneuver 5 Log-likelihood. (b) Maneuver 5 Confidence.

Figure 3.16: HMM classification of Maneuver 5 (unknown maneuver) EKF estimates.

Appendix C shows the individual log-likelihood and confidence results for each of the

EKF estimates of training and testing.

3.4.4 Final Classification Scheme

The one-class classifier and confidence classifier had similar levels of accuracy for each

data set they were tested on – likely because both utilized the original model log-likelihood

from the forward algorithm. Overall, the confidence measure classifier was chosen as the

classifier used in this thesis. Because it compares the log-likelihood of each model through

Equation (3.16), it is more likely to acknowledge ambiguities caused when multiple models

have a high log-likelihood (like when classifying Maneuver 4 with EKF data). It also had

slightly better performance when tested using EKF data.

3.4.5 Classification With Maneuver Changes

The confidence measure classifier was then tested on several scenarios in which the UAV

changes from an initial maneuver it’s performing mid-flight to a different final maneuver.

The purpose of this situation is to test if the classifier is robust to attempts to confuse it. The

same HMMs used in previous classification sections are used in this section as well. Ideally,
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Table 3.9: Maneuver Changes

Scenario Initial Maneuver Final Maneuver
A 1 2
B 2 4
C 3 1
D 4 3

the confidence measure classifier would be able to correctly classify the initial maneuver as

it’s performed and then likewise, classify the final maneuver after the transition between the

two.

The maneuver changes are shown in Table 3.9. The maneuver change flight was exe-

cuted in three ways: transitioning maneuvers after the first 3 seconds of initial maneuver,

transitioning 8 into the initial maneuver, and transition after 13 seconds of the initial ma-

neuver. The transition period from the initial to final maneuver is 2 seconds, which allows

for smoother flight and prevents unrealistic changes in acceleration.

An example of scenario A’s maneuver change is shown in Figure 3.17, which shows the

NED position, velocity, and acceleration of the UAV. Maneuver 1 is simulated for the first

8 seconds of flight. Then, from 8 to 10 seconds, the maneuver commands transition to the

start of Maneuver 2. The blue dotted line marks the end of Maneuver 1, and the black

dotted line denotes the beginning of Maneuver 2. Then, Maneuver 2 performed for its flight

time of 25 seconds.

To create test data for the classifier, 243 trajectories of each scenario and transition

time were created (243 trajectories for scenario A with the transition happening at t = 3, for

example). The initial and final position of each of trajectory was varied and process noise

was added to acceleration to simulate real world disturbances. Like before, classification

accuracy of the classifier is tested on both simulated truth data and EKF estimates of that

same truth data.
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(a) Position of UAV during scenario A. (b) Velocity of UAV during scenario A.

(c) Acceleration of UAV during scenario A.

Figure 3.17: UAV states throughout Scenario A when maneuver changes at 8 seconds

Truth Data

The following section describes the classification results for truth data of each scenario

and at each transition time. For both the initial and final maneuver, the final accuracy and

mean accuracy over time are shown. The final accuracy shows the accuracy of classification

when all available information of the maneuver is known. In the case of the initial maneuver,

this means the accuracy of classification at the beginning of the maneuver transition point.

The mean accuracy over time shows the percentage of the total trajectory time that the

maneuver classification was correct.
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Table 3.10: Classification accuracy when maneuver transitions at 3 seconds - Truth Data.

Scenario
Final Accuracy Mean Accuracy Over Time

Initial Maneuver Final Maneuver Initial Maneuver Final Maneuver
a 100% 100% 91.26% 73.93%
b 100% 100% 87.70% 59.88%
c 100% 100% 94.43% 40.21%
d 18.93% 100% 55.92% 49.12%

Table 3.10 shows the accuracy of the confidence measure classifier when a maneuver

transitions 3 seconds into flight. The initial maneuver has 100% final classification accuracy

for every scenario, except scenario D. Scenario D begins with Maneuver 4, which, as seen

before, has an uncertain classification in the initial moments of the trajectory. The final

maneuver has 100% final classification for all scenarios. The mean accuracy over time is high

for the initial maneuver in all scenarios (except scenario D). However, the final maneuver

mean accuracy over time is considerably lower. Figure 3.18 shows the confidence of each

model throughout the scenarios. After the transition point, which is denoted with a dotted

black line, the confidence of the correct model transitions slowly from low confidence to high.
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(a) Scenario A classification – Maneuvers 1 and
2.

(b) Scenario B classification – Maneuvers 2 and
4.

(c) Scenario C classification – Maneuvers 3 and
1.

(d) Scenario D classification – Maneuvers 4 and
3.

Figure 3.18: Average confidence of each HMM when classifying changing maneuvers with
truth data (transition at 3 seconds.)

Recall that the forward algorithm (Section 3.4.1), which is used to find the HMM log-

likelihood that is incorporated into the confidence measure, finds the likelihood of the entire

observation sequence given the model. This means that all past data, including data from

the currently initial maneuver, is incorporated into the log-likelihood of the model having

produced the total trajectory. When there is no data from a different maneuver included in

the observation sequence, the maneuvers are classified quickly. However, with data from a

different maneuver, the observation sequence needs more data associated with the correct

maneuver before model log-likelihood is high enough to result in correct classification. With
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a transition between two maneuvers, there needs to be an excess of “correct” data before

the final maneuver can be correctly classified.

This is reflected in Figure 3.19, which shows the average log-likelihood of each model

throughout scenario A. While the initial maneuver’s model (Maneuver 1) has a high average

log-likelihood, the final maneuver (Maneuver 2) only begins to have a log-likelihood of near

the same magnitude towards the end of the total trajectory. This contributes to the low

confidence in the final maneuver’s model for the majority of its execution, as seen in Figure

3.18.

Figure 3.19: Average log-likelihood of each model throughout scenario A.

The final accuracy and mean accuracy over time for each scenario when the maneuver

transitions at eight seconds is shown in Table 3.11. Both the initial and final trajectory

have a high final accuracy, but the final maneuver’s mean accuracy over time is very low

compared to that of the initial maneuver. The confidence classifier correctly identifies the

correct maneuver in the final moments of the trajectory, if at all.

Figure 3.20 shows the confidence of each maneuver’s model in each scenario. The con-

fidence of the initial maneuver model becomes very negative in the initial stages of the

trajectory – indicating high confidence. After the transition point, the initial model classifi-

cation becomes less confident over time, while the final maneuver model’s confidence grows.

71



Table 3.11: Classification accuracy when maneuver transitions at 8 seconds - Truth Data.

Scenario
Final Accuracy Mean Accuracy Over Time

Initial Maneuver Final Maneuver Initial Maneuver Final Maneuver
a 100% 100% 95.49% 15.75%
b 100% 100% 93.65% 17.10%
c 100% 100% 97.04% 7.84%
d 100% 100% 88.29% 24.09%

However, this process is lengthy. For most of the final maneuver’s time, the maneuver is

either misclassified as the initial maneuver or as “unknown”.

(a) Scenario A classification – Maneuvers 1 and
2.

(b) Scenario B classification – Maneuvers 2 and
4.

(c) Scenario C classification – Maneuvers 3 and
1.

(d) Scenario D classification – Maneuvers 4 and
3.

Figure 3.20: Average confidence of each HMM when classifying changing maneuvers with
truth data (transition at 8 seconds.)
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Table 3.12: Classification accuracy of each scenario when maneuver transitions at 13 seconds
- Truth Data.

Scenario
Final Accuracy Mean Accuracy Over Time

Initial Maneuver Final Maneuver Initial Maneuver Final Maneuver
a 100% 0% 97.07% 0%
b 100% 13.58% 95.68% 4.15%
c 100% 0% 98.05% 0%
d 100% 100% 91.81% 22.14%

The final maneuver transition time took place at thirteen seconds. Table 3.12 shows

the classification accuracy of the initial and final maneuver. All initial maneuvers’ final

accuracy and mean accuracy over time are high. However, the final maneuver has extremely

low accuracy for both criteria. Scenario A and scenario B both have a final accuracy and

mean accuracy over time of 0%.

The average confidence of each HMM in the different scenarios is shown in Figure 3.21.

It can be seen that each initial maneuver reaches a high classification confidence by the

maneuver transition point. From there, the certainty in the model decreases, while the

confidence in the correct model increases. Once again, this change takes place slowly. In

most cases, the confidence in the final maneuver’s model does not reach the classification

point of less than −1 even at the end of the total trajectory.

73



(a) Scenario A classification – Maneuvers 1 and
2.

(b) Scenario B classification – Maneuvers 2 and
4.

(c) Scenario C classification – Maneuvers 3 and
1.

(d) Scenario D classification – Maneuvers 4 and
3.

Figure 3.21: Average confidence of each HMM when classifying changing maneuvers with
truth data (transition at 13 seconds.)

EKF Data

The following section explores the accuracy of the confidence classifier when a maneuver

transitions partially through flight. Instead of classification with truth data, the classifier is

tested with estimates of that truth data to evaluate how these factors affect accuracy.

The classification accuracy of the initial and final maneuver when the maneuvers tran-

sition at three seconds are found in Table 3.13. Like with truth data, the final accuracy is

high for both the initial and final maneuver (except the initial maneuver in scenario D). The
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Table 3.13: Classification accuracy of each scenario when maneuver transitions at 3 seconds
- Estimated Data.

Scenario
Final Accuracy Mean Accuracy Over Time

Initial Maneuver Final Maneuver Initial Maneuver Final Maneuver
a 99.59% 100% 84.30% 77.29%
b 100% 100% 88.00% 39.59%
c 88.48% 100% 80.75% 34.12%
d 8.23% 100% 19.20% 34.34%

mean accuracy over time is relatively high for the initial maneuver. However, it is quite poor

for the final maneuver and slightly lower than when classifying with truth data.

The average confidence of each model is shown in Figure 3.22. The figure shows the slow

transition between initial maneuver model confidence and final maneuver model confidence.

In most cases, the final maneuver does not have a better confidence measure than the initial

maneuver until at least fifteen seconds into it’s own flight.
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(a) Scenario A classification – Maneuvers 1 and
2.

(b) Scenario B classification – Maneuvers 2 and
4.

(c) Scenario C classification – Maneuvers 3 and
1.

(d) Scenario D classification – Maneuvers 4 and
3.

Figure 3.22: Average confidence of each HMM when classifying changing maneuvers with
estimated data (transition at 3 seconds.)

Table 3.14 shows the classification results for each scenario when the maneuvers tran-

sition at eight seconds. The final maneuver’s final accuracy and mean accuracy over time

is low for each maneuver. Scenario A and B have a mean accuracy over time near 0%.

This effects of a longer period of observation data from a different maneuver, combined with

the noise and estimation errors typically found in estimated data, creates an observation

sequence that is incredibly difficult for the classifier to correctly identify.
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Table 3.14: Classification accuracy of each scenario when maneuver transitions at 8 seconds
- Estimated Data.

Scenario
Final Accuracy Mean Accuracy Over Time

Initial Maneuver Final Maneuver Initial Maneuver Final Maneuver
a 100% 1.23% 90.90% 0.06%
b 100% 11.52% 94.02% 0.52%
c 97.12% 99.17% 88.29% 13.65%
d 99.18% 96.71% 48.94% 13.00%

Figure 3.23 shows the average model confidence during each scenario when using esti-

mated data. The initial maneuver’s model reaches high confidence before maneuver transi-

tion. After the transition, the final maneuver’s model eventually has higher confidence than

that of the initial maneuver’s model, but it takes a considerable amount of time.
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(a) Scenario A classification – Maneuvers 1 and
2.

(b) Scenario B classification – Maneuvers 2 and
4.

(c) Scenario C classification – Maneuvers 3 and
1.

(d) Scenario D classification – Maneuvers 4 and
3.

Figure 3.23: Average confidence of each HMM when classifying changing maneuvers with
estimated data (transition at 8 seconds.)

The final situation considered is that the maneuver transition occurs at thirteen seconds.

Table 3.15 shows the classification results when using estimated data. The final maneuver’s

accuracy is very low for both final accuracy and mean accuracy over time. Figure 3.24 shows

the confidence of each model when using estimated data. Before the maneuver transition,

the initial maneuver’s HMM reaches high confidence. After the transition point, the initial

maneuver’s model does slowly change to low confidence. However, for most of the trajectory

it remains below −1, which means the final maneuver is incorrectly classified as initial

maneuver for most of the time it’s performed. While in scenario C and D, the final maneuver
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Table 3.15: Classification accuracy of each scenario when maneuver transitions at 13 seconds
- Estimated Data.

Scenario
Final Accuracy Mean Accuracy Over Time

Initial Maneuver Final Maneuver Initial Maneuver Final Maneuver
a 100% 0% 93.80% 0%
b 100% 0% 95.87% 0%
c 100% 22.63% 93.67% 1.30%
d 100% 84.77% 66.33% 10.25%

eventually has higher confidence than the initial maneuver, this is not the case for scenario

A and B.

(a) Scenario A classification – Maneuvers 1 and
2.

(b) Scenario B classification – Maneuvers 2 and
4.

(c) Scenario C classification – Maneuvers 3 and
1.

(d) Scenario D classification – Maneuvers 4 and
3.

Figure 3.24: Average confidence of each HMM when classifying changing maneuvers with
estimated data (transition at 13 seconds.)
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Future Improvements For Classification of Maneuver Transitions

Overall, HMM classification performed poorly when classifying the two maneuvers a

trajectory transitions between. If the transition between maneuvers occurred early in the

trajectory, the classifier was eventually able to correctly identify the final maneuver. When

the transition occurred later, often the final maneuver was misclassified as “unknown” or

as the initial maneuver. However, even in these cases, the classifier would slowly become

less confident in the classification of the initial maneuver and more confident in the final

maneuver as more observations of the final maneuver were input into the classifier.

The current classification scheme relies on the forward algorithm to produce the log-

likelihood of each model throughout the observation sequence. The forward algorithm incor-

porates all past data into its log-likelihood output, which can cause a low model log-likelihood

when there is an excess of data that comes from a different. This architecture causes the

classifier to fail when classifying transitioning maneuvers. As it stands, an excellent way to

defeat the current classifier would be for an adversary to change known maneuvers mid-way

through flight and “confuse” the classifier.

However, modifications do exist that could increase the classifier’s accuracy when con-

fronted with changing maneuvers. HMMs are often used to interpret ASL sentences from

videos or to perform speech recognition on sentences. In both of these examples, there is

a transition of models within the observation sequence. With ASL, there is a transition

through different signs, while with speech, the phonemes change when speaking [13]. The

issue is often solved through concatenating individual models or by use of embedded train-

ing. In embedded training, the models are trained using data that contains transitions. The

training process allows the models themselves to find the boundaries of the transition points.

Future iterations of this classifier could incorporate the embedded training process into its

training process to improve results and robustness.

These results also suggest that it may be worthwhile to invest some time in maneuver

detection, rather than using HMMs for detection. The HMMs succeed at classification, but
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detection may be difficult. Copious amounts of non-maneuver data may confuse the classifier

and lead to worse overall classification results. A detection aspect of the classifier should be

added to the architecture in future work.

3.5 HMM State Sequence

The observation sequence produced by an HMM is the result of an unknown HMM state

sequence (where HMM states are referring to the states of the hidden Markov chain). Each

HMM state has an associated emission probability function, which describes the expected

observations of that state. The state sequence cannot be analytically solved, but can be

estimated using some optimality criterion. The Viterbi algorithm is one such method that

finds the best state sequence, Q, for a given model and observation sequence by maximizing

P (Q|O, λ). The following section details the Viterbi algorithm and shows example state

sequences generated by each of the models.

3.5.1 Viterbi Algorithm

The Viterbi Algorithm [33] solves for the state sequence that maximizes the probability

of the state sequence given the observation sequence and model, P (Q|O, λ). The algorithm

solves for δ, which is defined as

δt(i) = max
q1,q2,...qt−1

P [q1, q2, ...qt = i, O1, O2, ...Ot|λ] . (3.17)

δ(i) the path with the highest probability at time t that ends on state Si. As seen in

Equation (3.18), δ1(t) is initialized with the same method as α in the forward algorithm –

using probability of the initial observation in state Si (Bi(O)) and the initial probability of

state Si occurring (πi). ψ1(i), a variable used to keep track of the best state sequence, is
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initialized as 0 for each state. The initialization process can be stated explicitly as,

δ1(i) = πiBi(O1), 1 ≤ i ≤ Q (3.18a)

ψ1(i) = 0. (3.18b)

Next, there is a recursion step, which is defined as,

δt(j) = max
1≤i≤Q

[δt−1aij]Bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ Q (3.19a)

ψt(j) = arg max
1≤i≤Q

[δt−1(i)aij] , 2 ≤ t ≤ T, 1 ≤ j ≤ Q. (3.19b)

The transition probability, the emission probability of the observation at that time step, and

the path that previously produced the highest probability, δt−1, are used to update δt(i).

Meanwhile, ψt(i) keeps track of which state produced the highest probability path (δt−1).

Finally, the termination step occurs when the observation sequence is terminated. This

step is defined as,

P ∗ = max
1≤i≤Q

δT (i) (3.20a)

q∗T = arg max
1≤i≤Q

δT (i). (3.20b)

The final maximum δT (i) and the state associated with that δT is found. The state sequence

that is optimal for the entire series of observations is found through backtracking,

q∗t = ψt+1(q
∗
t+1), t = T − 1, T − 2, ..., 1. (3.21)
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The state with the highest δT (i) initializes the backtrack, and then ψt+1, which stores in-

formation about the states that maximized δt(i) throughout the sequence, determines final

state sequence.

Like the forward algorithm, the Viterbi algorithm can be implemented on a partial state

sequence (O1:t rather than O1:T ). At any point in time, the termination and backtracking

step can occur. However, since the algorithm sequence produced is initialized with the

maximum δt(i) at the current time t and then backtracks, the entire state sequence may

change depending on when the process is terminated. The state path found using only a

partial observation sequence may not be the optimal path for the entirety of the observations.

3.5.2 Example State Paths

Test Data

Figure 3.25 shows the state path for each of the four HMMs when using true UAV

states from the test data set and the Viterbi algorithm. These paths are the result of the

algorithm being terminated once the final observation is reached. Figure 3.25a shows the

state path of each model when receiving observations from Maneuver 1, while Figure 3.25b

shows the state path found when given observations from Maneuver 2, and so on. In each

figure, the state path of the model corresponding to the correct maneuver is the path that

is most dynamic, while the paths of the incorrect model are often stagnant. Each correct

HMM visits every state in its model (except Maneuver 4).
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(a) State path of Maneuver 1. (b) State path of Maneuver 2.

(c) State path of Maneuver 3. (d) State path of Maneuver 4.

Figure 3.25: State path of each maneuver found using the Viterbi algorithm and a test data
run of true UAV states.

EKF Test Data

In Figure 3.26, the model state sequence is shown for EKF estimates of the same ma-

neuvers used in Figure 3.25. The state path does not match one-for-one with the state path

found using true UAV states (Maneuvers 2 and 3 for example), as the duration spent in

each state differs and transitions occur at different time steps. However, the same overall

sequence of states occurs whether using true UAV states or estimated UAV states.
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(a) State path of Maneuver 1. (b) State path of Maneuver 2.

(c) State path of Maneuver 3. (d) State path of Maneuver 4.

Figure 3.26: State path of each maneuver found using the Viterbi algorithm and a test data
run of estimated UAV states.

3.6 HMM Estimates

A HMM models a system so that at each moment in time, the HMM is in one of Q

latent states and, as a result, produces an observation. For a given observations sequence,

the Viterbi algorithm finds the most likely HMM state sequence that would have produced

those observations. In other words, each observation is now assigned to have originated from

an HMM state. This state also has an emission probability function (Bi(O)) that describes

what observations are most probable to be produced by that state. In a scenario where

some elements of an observation (Ot) may be very certain while others are less certain, the
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question then becomes: can the emission probability be used to extract extra information

about the observation at time t given the expected behavior of the HMM state?

In this thesis, the UAV position, velocity, and acceleration are the observations of the

HMM. When UAV states are estimated during a dynamic maneuver, there may be instances

in which some of the state estimates are more accurate than others. For example, Section 2.4

shows that position estimates typically have higher accuracy than velocity or acceleration

estimates. Once the HMM state sequence corresponding to the observation sequence is

found, this thesis aims to use the emission probability corresponding to each observation

and the position estimates in these observations to extract information from the HMM.

The emission probability function used in each maneuver’s HMM is a Gaussian Mixture

Model. A Gaussian Mixture Regression (GMR), a nonlinear regression technique that is

further described in the next section, is used to create HMM estimates of acceleration and

jerk. The position estimate of a UAV is processed and used as an input to the GMR.

Here, “processed” is referring to the data that has been differenced and normalized (as seen

in Equation (3.7)). The GMR then produces expected processed velocity and acceleration

values.

It is important to note that HMM estimates are limited by the ability of the emission

probability to accurately represent observations and the accuracy of the state sequence when

determined by the Viterbi algorithm. In other words, the quality of the HMM training

determines the level of accuracy of the emission probability. Likewise, because the HMM

estimates are updated in real time rather than when the sequence is terminated, the HMM

state path produced by the Viterbi algorithm may not be the optimal path for the full

observation sequence, which could negatively affect the accuracy of HMM estimates.
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3.6.1 Gaussian Mixture Regression

A GMR is a nonlinear regression technique that originates from the definition of a joint

density Gaussian distribution, fX,Y . A joint density function is also described as,

fX,Y = fY |XfX . (3.22)

A property of joint Gaussian distributions states that fY |X and fX are also Gaussian [54].

Moreover, the regression for X|Y is linear and based on components of the original joint

density function. Sung (2004) showed that this property can be applied to a multivariate

Gaussian Model or a multivariate Gaussian Mixture Model and developed the following

process for a Gaussian Mixture Regression [55].

To perform a Gaussian Mixture Regression, µ and Σ are divided into the known values

or inputs, k, and the unknown values or outputs, u:

µm = [µk,mµu,m] (3.23a)

Σm =

Σk,m Σku,m

Σuk,m Σu,m

 . (3.23b)

Then, the conditional expected value, ξ̂u,m, and estimated conditional covaraince matrix,

Σ̂u,m, are found using the following equations,

ξ̂u,m = µu,m + Σuk,m(Σk,m)−1(ξk − µk,m) (3.24a)

Σ̂u,m = Σu,m − Σuk,m(Σk,m)−1Σku,m. (3.24b)
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Each mixture of the GMM is given a weight based on the probability of the known values,

βm =
p(ξk|m)∑M
i=1 p(ξk|i)

. (3.25)

The final conditional expected value, ξ̂u, and conditional covariance, Σ̂u, of the unknown

values are calculated. The process of which is shown as

ξ̂u =
M∑
m=1

βmξ̂u,m (3.26a)

Σ̂u =
M∑
m=1

β2
mΣ̂u,m. (3.26b)

3.6.2 Estimation Generation

For this thesis, the inputs to the regression are the (processed) position states of the

UAV, while the outputs are the conditional expected (processed) velocity and acceleration.

The emission probability function of each HMM state is a multivariate Gaussian rather

than a GMM. Therefore, the GMR process can be simplified. First, the mean vector and

covariance matrix are divided into known and unknown values,

µ = [µrnµvnan ] , Σ =

 Σrn Σrnvnan

Σvnanrn Σvnan

 . (3.27)

The expected value of processed velocity and acceleration given the current position is found

using v̂n,HMM

ân,HMM

 = µvnan + Σvnanrn(Σrn)−1(rn − µrn). (3.28)
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These values are used to produce HMM acceleration and jerk estimates through the equations

âHMM =
(v̂n,HMM + vmin)(vmax − vmin)

δt
, (3.29)

and

ĵHMM =
(ân,HMM + amin)(amax − amin)

δt
. (3.30)

Therefore, the actual HMM estimates produced are acceleration and jerk (âHMM and ĵHMM)

rather than velocity and acceleration.

3.6.3 HMM Estimate Results

Figures 3.27, 3.28, 3.29, and 3.30 show true acceleration and jerk versus the HMM

estimate for Maneuvers 1, 2, 3, and 4 respectively. These estimates were generated using a

sample truth trajectory. Although both true acceleration and true jerk are noisy, the HMM

estimates filter the noise. The noise on the true acceleration and jerk is the result of random

process noise and differs during each simulation of a maneuver. The HMM estimates shows

the ability to recognize trends in data without incorporating unnecessary noise.

Because the GMR is nonlinear, the HMM estimates are capable of following the ac-

celeration and jerk even when there are nonlinearities or non-differentiable behaviors. For

example in Figure 3.30, the HMM estimate of a3 is capable of following the sharp peak at

three seconds.

However, there are some clear errors and biases within the HMM estimates. The HMM

estimate of a3 in Maneuver 2 is clearly erroneous for the first five seconds of the trajectory.

Similarly, the HMM estimate of a1 for Maneuver 1 has difficulty following the initial peak

seen with the true acceleration. These biases indicate less than optimal emission probability

parameters developed during HMM training, and are the fault of the fundamental parameters

of the HMM rather than the GMR process.
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(a) Maneuver 1 acceleration: truth versus
HMM estimates.

(b) Maneuver 1 jerk: truth versus HMM esti-
mates.

Figure 3.27: Example of HMM acceleration and jerk estimates of Maneuver 1.

(a) Maneuver 2 acceleration: truth versus
HMM estimates.

(b) Maneuver 2 jerk: truth versus HMM esti-
mates.

Figure 3.28: Example of HMM acceleration and jerk estimates of Maneuver 2.

90



(a) Maneuver 3 acceleration: truth versus
HMM estimates.

(b) Maneuver 3 jerk: truth versus HMM esti-
mates.

Figure 3.29: Example of HMM acceleration and jerk estimates of Maneuver 3.

(a) Maneuver 4 acceleration: truth versus
HMM estimates.

(b) Maneuver 4 jerk: truth versus HMM esti-
mates.

Figure 3.30: Example of HMM acceleration and jerk estimates of Maneuver 4.

3.6.4 Characteristics of HMM Estimates

Maneuver 1

Figure 3.31a shows the HMM acceleration estimate error averaged over each trajectory

from the test data set. The HMM estimates were generated from true position (left) and

EKF estimated position (right). Figure 3.31b shows the error variance for both of these

scenarios. HMM estimates generated from EKF position have generally the same structure
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of errors from HMM estimates generated from truth position. However, they have higher

errors – particularly in the beginning of the maneuver. This is reflected in the variance

of errors – where HMM estimates generated from EKF position have a much higher error

variance. Both sets of errors, however, have clear biases and trends shown in the mean errors.

(a) Mean acceleration error over time of HMM
estimates using true position (left) and esti-
mated position (right).

(b) Acceleration error variance for HMM esti-
mate when using true position (left) and esti-
mated position (right).

Figure 3.31: Characteristics of HMM acceleration estimates generated from λ1.

The mean error of HMM jerk estimates generated from true position and estimated

position are shown in Figure 3.32a, while the corresponding variances of these errors are

shown in Figure 3.32b. The error of jerk estimates generated from truth do not have as

much error as the HMM jerk estimate generated from EKF position. The areas of higher

error correspond to areas of higher error for HMM acceleration estimates.

(a) Mean jerk error over time of HMM esti-
mates using true position (left) and estimated
position (right).

(b) Jerk error variance for HMM estimate when
using true position (left) and estimated posi-
tion (right).

Figure 3.32: Characteristics of HMM jerk estimates generated from λ1.
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The variance in jerk errors is nearly constant over time for HMM jerk estimates gen-

erated from true position. Moreover, it is reflective of the variance seen in jerk noise. The

error variance of jerk estimates generated from estimated position have large variance at spe-

cific times corresponding to high error in the HMM estimates, but other than that remain

relatively constant like their counterparts.

The state sequence for each of the test truth data maneuvers and estimated test data

maneuvers generated using the Viterbi Algorithm are shown in Figure 3.33. Note that the

figure shows the state path for roughly 700 simulations of Maneuver 1. The change from

state to state does not chatter. These are individual runs.

While the path sequence of the estimates follows the same path as the path sequence

of true data, there is much more variation in the time period in which state transitions

occur. Note the state transitions that have a wide scale of time in which they happen

(zero to three seconds and three to seven seconds) correspond to areas in which jerk and

acceleration estimates generated from position estimates have much higher error than jerk

and acceleration estimates generated from true position. This suggests that some error

incurred is not from a lack of optimal parameters for the emission probability functions but

rather errors in the state sequence.
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Figure 3.33: HMM states as estimated from Viterbi Algorithm using truth (left) and esti-
mates (right)

Maneuver 2

The mean acceleration error over time for HMM estimates generated from true position

and estimated position are shown in Figure 3.34a. Both cases have high error for a3 in the

first ten seconds of the maneuver, which is reflective of the incorrect HMM estimate shown in

Figure 3.28a. The HMM estimates generated from estimated position also produce slightly

higher errors towards the end of the maneuver.

(a) Mean acceleration error over time of HMM
estimates using true position (left) and esti-
mated position (right).

(b) Acceleration error variance for HMM esti-
mate when using true position (left) and esti-
mated position (right).

Figure 3.34: Characteristics of HMM acceleration estimates generated from λ2.
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The jerk HMM estimates generated from true position and estimated position, as well

as their error variances are shown in Figure 3.35. j3 has a high error in the initial and final

stages of the maneuver, much like a3. However the variance of error remains low during this

period suggesting that the HMM estimate is consistent in its error across the data set.

(a) Mean jerk error over time of HMM esti-
mates using true position (left) and estimated
position (right).

(b) Jerk error variance for HMM estimate when
using true position (left) and estimated posi-
tion (right).

Figure 3.35: Characteristics of HMM jerk estimates generated from λ2.

Figure 3.36 shows the HMM state path found for each of the maneuvers using the truth

test set (left) and estimated test set (right). Note that for the first five seconds of the

maneuver, the state consistently stays at two for both data sets, suggesting that the error in

a3 and j3 is an issue with having non-optimal parameters in state two’s emission probability

rather than an issue in finding the correct state sequence.

Another interesting note is there is one instance of “chatter” in which the Viterbi algo-

rithm switches between two states in quick succession. This can be seen when using UAV

state estimates at around 6 seconds. This shows in some cases the noise and error from

the EKF estimates can cause the HMM to diverge (slightly) from the most likely state path

found using true UAV states.
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Figure 3.36: HMM states as estimated from Viterbi Algorithm using truth (left) and esti-
mates (right)

Maneuver 3

The mean error over time and variance of mean error over time for HMM acceleration

estimates generated using true position and estimated position are shown in Figure 3.37.

The error in Maneuver 3 is consistent across both data sets except in the initial few seconds

of flight. The variance in error for acceleration remains low, except for a2. When there is

high mean error for a2, the error variance of a2 is also high.
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(a) Mean acceleration error over time of HMM
estimates using true position (left) and esti-
mated position (right).

(b) Acceleration error variance for HMM esti-
mate when using true position (left) and esti-
mated position (right).

Figure 3.37: Characteristics of HMM acceleration estimates generated from λ3.

Figure 3.38 shows the mean error over time for HMM jerk estimates generated from true

position and estimated position. The variance of these errors are also shown. Error spikes

are found in time periods corresponding to the HMM acceleration estimate errors. Overall,

however, the errors remain low and the error variance consistent.

(a) Mean jerk error over time of HMM esti-
mates using true position (left) and estimated
position (right).

(b) Jerk error variance for HMM estimate when
using true position (left) and estimated posi-
tion (right).

Figure 3.38: Characteristics of HMM jerk estimates generated from λ3.

The states path found using truth as observations and estimates as observations are

shown in Figure 3.39. Like previous models, the state path is mostly consistent in sequence

when using either truth or estimates as observations. However, the time period over which

transitions occur is inconsistent when using estimates. There are some slight “chatter” effects

when using EKF estimates as opposed to truth data. The errors shown for Maneuver 3 do

not correspond heavily with any state transitions, suggesting that most error is incurred

from less than optimal emission probability parameters.
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Figure 3.39: HMM states as estimated from Viterbi Algorithm using truth (left) and esti-
mates (right)

Maneuver 4

The mean acceleration error and error variance for HMM estimates generated using

either true position or estimated position are shown in Figure 3.40. There is consistent error

in acceleration estimates, for both true and estimated position, during the same portions of

the maneuver. This is especially severe with a3. The error variance is much more variable

with HMM estimates generated from EKF position.

(a) Mean acceleration error over time of HMM
estimates using true position (left) and esti-
mated position (right).

(b) Acceleration error variance for HMM esti-
mate when using true position (left) and esti-
mated position (right).

Figure 3.40: Characteristics of HMM acceleration estimates generated from λ4.
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The HMM jerk estimates have generally low error and consistent error variance, as

shown in Figures 3.41a and 3.41b respectively. The spikes in error, particularly for j3, relate

to the error found in HMM acceleration estimates.

(a) Mean acceleration error over time of HMM
estimates using true position (left) and esti-
mated position (right).

(b) Acceleration error variance for HMM esti-
mate when using true position (left) and esti-
mated position (right).

Figure 3.41: Characteristics of HMM jerk estimates generated from λ4.

The state sequence found using truth data and estimated data is shown in Figure 3.42.

The sequence remains the same for both truth and estimated data until the final three

seconds of the maneuver, in which the state sequence from truth remains in state three,

while the state sequence from error transitions back to state six. This relates to a small

increase in error and error variance seen in HMM acceleration estimates generated from

position estimates. The sequence generated from estimated data also has higher variance

in the times that the states transition, which may correspond to higher error in the HMM

acceleration estimates generated from position estimates during the maneuver.
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Figure 3.42: HMM states as estimated from Viterbi Algorithm using truth (left) and esti-
mates (right)

3.7 Conclusion

This chapter summarized basic knowledge of HMMs, and explained modelling individual

UAV maneuvers as HMMs. The HMMs were then used to classify maneuvers and provide

estimates of acceleration and jerk. The following chapter will discuss how HMM classification

and estimates are incorporated into the estimation of UAV states during dynamic maneuvers.
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Chapter 4

EKF+HMM Estimation of UAV States

Previously, UAV maneuvers were estimated using an EKF and modelled with an HMM.

Now, the two are combined into a novel EKF+HMM estimator. The EKF+HMM uses the

benefits of HMMs (their ability to classify maneuvers and to generate estimates) to supply

additional information to an EKF and improve UAV state estimates. The following sections

will establish the EKF+HMM formulation and then show results of the EKF+HMM when

compared to a standard EKF.

4.1 EKF + HMM Formulation

The EKF + HMM, shown below in Figure 4.1, aims to take advantage of a maneuver’s

HMM to aid in state estimation. A standard EKF runs throughout the entirety of the UAV

flight while each HMM is updated. When there is no active maneuver classification, the

EKF+HMM uses the standard EKF estimates. This is shown in Figure 4.1, where if the

classification is unknown, the output of the filter is the EKF estimate. If the confidence of any

HMM crosses the likelihood threshold, maneuver classification takes place. Classifications

with high confidence (less than -1) result in the EKF+HMM incorporating HMM information

into its estimates and instead outputting the EKF+HMM estimate. The following sections

further break down the architecture and concepts of the EKF+HMM.
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Figure 4.1: The complete EKF+HMM scheme

4.1.1 Basic EKF

The EKF described in Section 2.3 remains a crucial part of the total EKF+HMM

structure. This piece, displayed in Figure 4.2, estimates UAV states. These estimates are

then used for HMM classification and HMM estimate generation. After each dynamic update,

x̂−k+1 and x̂+
k are passed to the pre-processing block, which differences the data and normalizes

it with values established from HMM training,

xn =
[x−k+1 − x+

k ]− xmin

xmax − xmin
. (4.1)

These processed estimates are utilized as observation inputs for each HMM.

Even after a clear classification, the EKF estimates are still used as inputs to the classifier

and HMM estimate generator. This prevents the EKF+HMM from further compounding

error if the classification is incorrect or if the HMM estimates generated are invalid.
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Figure 4.2: EKF+HMM Scheme

Chapter 3 includes analysis of the ability of the classifier when using estimates of states

rather than true states, as well as HMM estimates generated from estimated position. Over-

all, the classification accuracy remained high and the HMM estimates generated had only

slightly more error than those generated from truth, showing that this is a viable method to

use within the EKF+HMM scheme.

4.1.2 HMM Classification and Estimation Generation

The processed estimates from the EKF are then passed to the HMM portion of the

EKF+HMM system, which can be viewed in Figure 4.3. The processed estimates are clas-

sified as either a known maneuver or unknown maneuver. If there is no known maneuver

corresponding to the estimates, the EKF+HMM output will be the EKF output.

If the classifier identifies a known maneuver with high confidence, the HMM for that

maneuver, λc, will be selected to generate estimates. The processed EKF estimates are used

to update the Viterbi algorithm for λc, which finds the current HMM state. A Gaussian

Mixture Regression is performed using the emission probability, Bi, for that state and the

processed position estimates from the EKF. The output of the GMR is passed through

the second data processing block, where it produces λc’s estimates of acceleration and jerk,

âHMM and ĵHMM . These estimates become inputs to the EKF+HMM.
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Figure 4.3: A block diagram of how the HMMs interact with the other components of the
EKF+HMM

During initial implementation of the EKF+HMM, the HMM estimates would occasion-

ally produce high error estimates that were outliers. These outliers are most often the result

of a misclassification. When a HMM is presented with data that is unusual for that model

and its training data set (as would happen in the case of misclassification), abnormal ac-

celeration and jerk estimates occur. The outliers were filtered out of the HMM estimates

by ensuring that δâHMM did not exceed 15 from one time step to the next, as this is an

acceleration change outside of what maneuvers were capable of performing.
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4.1.3 EKF+HMM Structure

Figure 4.4: The new EKF with HMM estimates incorporated into the dynamic update.

Figure 4.4 shows the EKF+HMM portion of the EKF+HMM system. The measurement

update of the EKF+HMM remains the same as the EKF described in Section 2.3. However,

the dynamic update is changed to incorporate the HMM estimates as inputs to the dynamic

model. The new dynamic update is represented as

x̂k+1 = AH x̂k +Bûk, (4.2)

where AH is the new dynamic model, xk is the state vector, B is the input matrix, and u is

the input. The equation is expanded to


r̂k+1

v̂k+1

âk+1

 =


1 δt 0

0 1 0

0 0 0




r̂k

v̂k

âk

+


δt2

2
δt3

6

δt δt2

2

1 δt


âHMM

ĵHMM

 . (4.3)

Note that the estimate for acceleration, âk+1, does not incorporate any states in its dynamic

update. Instead, it only uses the inputs âHMM and ĵHMM .
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The state covariance matrix for the EKF+HMM, C, is updated with the equation

C−1k+1 = AHC
+
k + C+

k AH +Q2, (4.4)

where Q2 is the process noise for the EKF+HMM. Because AH does not incorporate any

state information in its dynamic update of a, the variance of the acceleration states are not

continuously updated for the duration of the EKF+HMM estimation process. Instead, the

acceleration variance is re-initialized during each dynamic update using only values from the

process noise matrix, Q2, which causes the acceleration variances to be constant.

This process noise matrix, Q2, is initially created using Bryson’s trick, where the max-

imum error variance of the training HMM estimates was used as the process noise of the

system. Q2 further tuned to produce the best possible estimates. Q2 is populated both on

the diagonals of the matrix and on the off-diagonals of the matrix. This characteristic means

that there are still some dependencies between the acceleration states and the position and

velocity states. Therefore, although acceleration estimates in the dynamic update incorpo-

rate no state information, the acceleration estimates are updated in the measurement update

step of the filter based on the position and velocity state errors. It’s important to note that

this would not be possible without the correct structure of the Q2 matrix. If the process

noise matrix only contained values on the diagonals of the matrix, the acceleration estimates

could not be updated using radar measurements.

4.2 Results

The EKF+HMM system was implemented on each of the test data set maneuvers. The

total EKF+HMM estimation error of each maneuver was found. The sum of the absolute

value of estimation error was found for each trajectory. The trajectory with the lowest sum

of absolute error (Scenario 1 - “best”) and high sum of absolute error (Scenario 2 - “worst”)
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were used to depict the results. The following section shows a Monte Carlo simulation of

each of these two trajectories.

The Monte Carlo simulation consisted of the maneuver being simulated 1000 times the

same start and end position. Both the EKF and the EKF+HMM estimated the states of

the UAV. The filters were initialized with the true states of the UAV. Process noise of the

EKF and of the EKF+HMM were kept uniform across all maneuvers (although Q and Q2

were different). Radar position and noise parameters remained constant. The mean error of

the Monte Carlo simulation of both filters is compared.

4.2.1 Maneuver 1

Scenario 1

The mean accuracy over time for this Maneuver 1 trajectory was 94.79%. Figure 4.5

shows the average classification confidence of each maneuver HMM over time. There is a

misclassification at the beginning of the trajectory, but the classification is quickly corrected

to a high confidence classification of Maneuver 1. The average confidence of Maneuver 1’s

model quickly becomes less than −1, meaning that HMM estimates begin being incorporated

into the EKF+HMM in about 2.5 seconds.

Figure 4.5: Confidence of classification over time.
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Figure 4.6 presents an example run of the Monte Carlo simulation. Truth, EKF esti-

mates, and EKF+HMM estimates of each UAV state (position, velocity, and acceleration)

are shown. The greatest difference in the EKF and EKF+HMM can be seen in the ac-

celeration estimates. The EKF estimates tend to lag behind the truth more so than the

EKF+HMM estimates. Both filters have similar noise in their estimation.

Note that the EKF+HMM does not have high initial error in its estimation despite the

misclassification shown in Figure 4.5. The HMM estimates that resulted from the misclassi-

fication were filtered out using the fault detection discussed in Section 4.1.2.

(a) Example run of the best position estimates
of Maneuver 1.

(b) Example run of the best velocity estimates
of Maneuver 1.

(c) Example run of the best acceleration esti-
mates of Maneuver 1.

Figure 4.6: Example run of EKF+HMM for Maneuver 1.
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Figures 4.7a, 4.7b, and 4.7c show the mean position, velocity, and acceleration error of

the EKF estimates (left) and the EKF+HMM estimates (right). The EKF has less overall

position estimate error; this is the result of a higher values in the covariance matrix for posi-

tion than the EKF+HMM, which leads to greater correction during the radar measurement

update step of the EKF.

The velocity estimates of the EKF+HMM for v1 and v2 are superior to the EKF. The

EKF has errors that originate from the filter lagging when estimating the UAV states - which

creates enduring errors that build over time. The EKF+HMM does not lag as much as the

EKF and therefore, has lower magnitude of errors. However, error is introduced through

incorrect HMM estimates, which create small consistent error in the EKF+HMM estimates.

These errors are less detrimental than EKF errors when estimating v1 and v2. However,

when estimating v3, the EKF+HMM performs worse than the EKF.

The EKF+HMM has superior performance in estimating acceleration states of the UAV

during Maneuver 1. The acceleration estimate most heavily relies on the dynamic update,

because there are no direct acceleration measurement using the radar. The HMM esti-

mates aid in the EKF+HMM’s dynamic model predicting acceleration with more accuracy.

EKF+HMM acceleration estimation error is not entirely zero-mean; there are clear errors

shown that originate from the HMM estimates. However, these errors are much less than

the errors of the EKF.
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(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error: EKF (left)
and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.7: Comparison of Monte Carlo errors for EKF and EKF+HMM.

To further examine the EKF+HMM, the Monte Carlo error variance for each state of the

EKF+HMM is compared against the variance calculated by the EKF+HMM in Figure 4.8.

The state variances of the EKF+HMM are initially high, because there is no classification

and therefore, the EKF+HMM matches the EKF formulation. Once classification occurs, the

variance of the EKF+HMM states drops drastically. The quick misclassification of Maneuver

3 causes the EKF+HMM variance to drop in two stages. It experiences an initial drop when

classified as Maneuver 3. Then, the variances rises, because the confidence is not at or below

−1 for any model. This causes the EKF+HMM to return to the standard EKF formulation

for a few seconds. The EKF+HMM variances drop for a final time when the maneuver is
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classified as Maneuver 1 with high confidence and the EKF+HMM once again incorporates

HMM estimates.

The position and velocity variance track the general trends of the error variance, while

the acceleration variance of the EKF+HMM stays completely constant despite in spikes in

acceleration error variance. This occurs because the acceleration variance is re-initialized at

each dynamic update in the EKF. Because the EKF+HMM acceleration variance remains

constant, tuning the EKF+HMM process noise matrix is especially important.

(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right)

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.8: Variance of errors versus EKF+HMM variance.

Scenario 2

This section displays the “worst case” Maneuver 1 EKF+HMM. The mean accuracy

over time for the Monte Carlo was 70.27%. Figure 4.9 shows the average confidence in

each model during classification. There is a quick initial misclassification of Maneuver 1 as

Maneuver 3, but it is corrected almost immediately. The maneuver reaches a confidence of

less than −1 slower than Scenario 1 however - indicating that multiple models may have

high log-likelihoods throughout the initial portion of the maneuver.
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Figure 4.9: Confidence of classification over time.

Figure 4.10 shows an example of EKF and EKF+HMM estimates over time when com-

pared to truth for this maneuver. The HMM estimates that could have been incorporated

into the EKF+HMM estimates during the Maneuver 3 misclassification were filtered out

through fault detection, because they created too much of a change in acceleration. Instead,

the EKF+HMM matches the EKF for the first 6 seconds of the trajectory. Then, seen in

Figures 4.10c and 4.10b, from 6 to 10, the EKF+HMM has significant error when estimating

the North and Down position velocity and acceleration. This error is the result of faulty

HMM estimates. The EKF+HMM is able to recover from the error and continues estimating

UAV states with slightly more accuracy than the EKF for the remainder of the maneuver.
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(a) Example run of the worst position estimates
of Maneuver 1.

(b) Example run of the worst velocity estimates
of Maneuver 1.

(c) Example run of the worst acceleration esti-
mates of Maneuver 1.

Figure 4.10: Example run of EKF+HMM for Maneuver 1.

The mean Monte Carlo position error of both the EKF and EKF+HMM are shown in

Figure 4.11a. Overall, the EKF has better position estimates than the EKF+HMM. THe

EKF+HMM position estimates contain some error as the result of incorrect HMM acceler-

ation and jerk estimates that are incorporated into the position state through the dynamic

model. Another factor to this increased error may be that the variances and covariances of

the covariance matrix are typically lower for the EKF+HMM than the EKF, which causes

the radar measurements to weight less heavily in correcting the states.
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The mean Monte Carlo velocity estimate errors are shown in Figure 4.11b. The EKF+HMM

has similar or increased error for its estimates of v1 and v3 for the first 12 seconds of flight.

The estimate error of v2 is less with the EKF+HMM than the EKF for the entirety of the

maneuver, but both estimates have very clear non-zero trends in their data. The acceler-

ation estimates of the EKF+HMM, in contrast, are almost entirely better than the EKF

estimates, as seen in Figure 4.11c. There are similar errors in the early stages of flight, but

after 12 seconds, the errors of the EKF+HMM are lower than the EKF.

(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error:
EKF (left) and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.11: Comparison of Monte Carlo errors for EKF and EKF+HMM.

The average error of HMM estimates of acceleration and jerk are shown in Figure 4.12.

HMM estimates serve as inputs to the dynamic model of the EKF+HMM. The errors shown

are before any incorporation into the EKF+HMM or any correction from measurements.
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The effects of these errors, particularly the HMM acceleration estimate error, are reflected

in Figure 4.11. Figure 4.13 shows the variance of these HMM estimate errors. The areas of

high variance show times at which the HMM estimates were especially erroneous.

(a) Mean error of HMM acceleration estimate
for the worst run.

(b) Mean error of HMM jerk estimate for the
worst run.

Figure 4.12: Mean error of HMM estimates.

(a) Variance of HMM acceleration estimate er-
ror for the worst run.

(b) Variance HMM jerk estimate error for the
worst run..

Figure 4.13: Error variance of HMM estimates.

The Monte Carlo error variance of the EKF+HMM is compared to the EKF+HMM

calculated variance in Figure 4.14. Areas of high EKF+HMM state variance correspond to

times that the EKF+HMM uses the EKF dynamic update instead of incorporating HMM

115



estimates. This reflects times of uncertain classifications, where models have a low confidence

(or no confidence) in the current classification. Once the maneuver is fully classified, both

the experimental and calculated variance drop dramatically.

Note that the HMM acceleration estimate error variance (Figure 4.13a) is much greater

than the Monte Carlo acceleration error variance (Figure 4.14c) before the maneuver is classi-

fied correctly. However, after correct classification the graphs are nearly identical – indicating

that the current measurement correction does not have much affect on the EKF+HMM ac-

celeration estimate. This could be changed depending on the tuning of the process noise

matrix.

(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right).

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.14: Variance of errors versus EKF+HMM variance.

4.2.2 Maneuver 2

Scenario 1

The confidence in each model’s classification is shown in Figure 4.15. There is an initial

high confidence classification of Maneuver 3, before the system quickly corrects to a high
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confidence classification of Maneuver 2. This misclassification of Maneuver 3 is a common

trend in the maneuver classification and may suggest λ3 is overfit to a similar start data

point on all maneuvers.

The mean classification accuracy over time for the Monte Carlo simulation was 96.83%.

The high confidence classification of Maneuver 2 is almost immediate. Therefore, the

EKF+HMM begins using HMM estimates early in the trajectory.

Figure 4.15: Confidence of classification over time.

Figure 4.16 shows an example run of the Monte Carlo - with the position, velocity, and

acceleration shown for true states as well as EKF and EKF+HMM estimates. It is difficult

to distinguish the position and velocity estimates of the EKF+HMM and EKF. However,

differences in the acceleration estimates are more easy to determine from this figure. Both

estimates have a similar amount of noise, but the EKF lags behind truth and the EKF+HMM

when estimating acceleration states.
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(a) Example run of the best position estimates
of Maneuver 2.

(b) Example run of the best velocity estimates
of Maneuver 2.

(c) Example run of the best acceleration esti-
mates of Maneuver 2.

Figure 4.16: Example run of EKF+HMM for Maneuver 2.

The position error of the EKF and EKF+HMM for the Monte Carlo simulation is

compared in Figure 4.17a. The errors of the EKF+HMM are slightly higher compared to

the EKF. The EKF+HMM clearly improves estimates for v1 and v2, as seen in Figure 4.17b.

The EKF+HMM increases error in v3 estimates, while the EKF (although not zero-mean)

has much lower error. The increased EKF+HMM error for v3 is the result of incorporating

incorrect HMM estimates.

Finally, the EKF and EKF+HMM mean acceleration errors are compared (Figure 4.17c).

The EKF+HMM greatly improves all estimates of acceleration in comparison to the EKF.
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Although some error trends seen in the EKF estimates are still present in the EKF+HMM

errors, they are greatly reduced. Note the similar error in the two filters for a1 and a2 at

18 seconds. Both experience a sharp error, but the EKF+HMM greatly reduces the overall

effects of this error. The EKF+HMM acceleration estimate with the most error is a3. Once

again, this is a reflection of incorrect HMM estimates of acceleration that are not fully

corrected through radar measurements.

(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error: EKF (left)
and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.17: Comparison of Monte Carlo errors for EKF and EKF+HMM.

The variance of the EKF+HMM was evaluated using the EKF+HMM error variance of

the Monte Carlo simulation and the filter state variance in Figure 4.18. The position vari-

ance follows the position error variance almost exactly, while the velocity variance remains

constant for most of the maneuver and slightly greater than the velocity error variance. The
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acceleration variance remains completely constant once the maneuver has been classified

with high confidence.

(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right).

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.18: Variance of errors versus EKF+HMM variance.

Scenario 2

The maneuver’s Monte Carlo simulation had a mean classification accuracy over time of

96.82%. The confidence in Maneuver 2’s HMM reached less than −1 early in the maneuver,

as seen in Figure 4.19. An example of estimating this test run of Maneuver 2 is shown in

Figure 4.20. Overall, the EKF+HMM still performed well in comparison to the EKF. This

is perhaps the most clear when comparing the estimation of a3 in Figure 4.20c.
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Figure 4.19: Confidence of classification over time.

(a) Example run of the worst position estimates
of Maneuver 2.

(b) Example run of the worst velocity estimates
of Maneuver 2.

(c) Example run of the worst acceleration esti-
mates of Maneuver 2.

Figure 4.20: Example run of EKF+HMM for Maneuver 2.
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Figure 4.21a shows the Monte Carlo position mean error of both the EKF and the

EKF+HMM. The position estimation error of both filters remained relatively low. The EKF

had close to zero-mean position error throughout most of the maneuver, before additional

error was introduced in the final 8 seconds. This increase is because acceleration is more

dynamic in the final portions of Maneuver 2. In contrast to the EKF, the EKF+HMM

position estimation errors were not at or near zero-mean for any portion of the trajectory.

The velocity errors of the EKF+HMM (Figure 4.21b) exhibit similar error trends seen

in the position estimates. In the case of v1 and v2, these estimation errors are less than

the EKF errors. The EKF+HMM estimation error of v3 still exceeds that of the EKF. The

acceleration error of the EKF+HMM once again displays similar trends to the EKF, but

these errors are much smaller than those of the EKF, as seen in Figure 4.21c. Note, also, a

sharp increase in EKF+HMM acceleration error as a result of Maneuver 3 misclassification,

which caused incorrect HMM estimates to be used as inputs.
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(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error: EKF (left)
and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.21: Comparison of Monte Carlo errors for EKF and EKF+HMM.

The mean error of acceleration and jerk HMM estimates are shown in Figure 4.22. Both

jerk and acceleration have a high initial error that is the result of the incorrect Maneuver

3 classification. The error trends exhibited in the mean acceleration very closely align with

the mean EKF+HMM acceleration error found in Figure 4.21. The variances of the HMM

estimates’ error are displayed in Figure 4.23.
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(a) Mean error of HMM acceleration estimate
for the worst run.

(b) Mean error of HMM jerk estimate for the
worst run.

Figure 4.22: Mean error for HMM estimates.

(a) Variance of HMM acceleration estimate er-
ror for the worst run.

(b) Variance HMM jerk estimate error for the
worst run.

Figure 4.23: Error variance for HMM estimates.

The states’ variances calculated from the EKF+HMM is compared to the Monte Carlo

error variance in Figure 4.24. The results follow a similar pattern to the previous Maneuver

2 Monte Carlo simulation. Both position and velocity variance match well with the error

variance, while the acceleration variance remains constant and greater than its error variance.
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(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right).

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.24: Variance of errors versus EKF+HMM variance.

4.2.3 Maneuver 3

Scenario 1

The “best” test trajectory of Maneuver 3 (in terms of the EKF+HMM) is discussed in

this section. Throughout the Monte Carlo simulation, the maneuver had a mean classification

accuracy over time of 96.14%. The average confidence in Maneuver 3’s HMM (shown in

Figure 4.25) is initially quite high, but then drops below the “confident” threshold for a

period of about 2 seconds, because the other maneuvers produce high log-likelihoods for

Maneuver 3’s observations. Maneuver 3 is occasionally misclassified as Maneuver 2 during

this time period, which is likely due to similarities between the maneuvers’ initial few seconds.

After the 3 seconds of confusion, the confidence in Maneuver 3 increases and remains there

for the rest of UAV flight.
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Figure 4.25: Confidence of classification over time.

An example of one of the runs used in the Monte Carlo is shown in Figure 4.26. The

EKF and EKF+HMM estimates are difficult to distinguish. Notice that the EKF lags the

EKF+HMM acceleration estimates slightly.
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(a) Example run of the best position estimates
of Maneuver 3.

(b) Example run of the best velocity estimates
of Maneuver 3.

(c) Example run of the best acceleration esti-
mates of Maneuver 3.

Figure 4.26: Example run of EKF+HMM for Maneuver 3.

The Monte Carlo position error of both the EKF and EKF+HMM is compared in

Figure 4.27a. Both filters have low error throughout the maneuver. The position error of

the EKF+HMM has a brief increase during the first 5 seconds of flight, which is a result of

an occasional misclassification as Maneuver 2.

Likewise, in Figure 4.27b, the EKF and EKF+HMM estimation error are relatively low

for velocity. The biggest difference in these two filters occurs when estimating v2. The EKF

has an error from estimation offset throughout UAV flight, but the EKF+HMM is capable

of mitigating most of this error. In estimation of v1, the EKF+HMM also decreases the error
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seen in the EKF. Only v3, which is less dynamic, has better EKF estimates than EKF+HMM

estimates.

Figure 4.27c shows the acceleration error for both the EKF and EKF+HMM. Here it

is most clear the improvements of the EKF+HMM compared to the EKF. EKF error in

estimating a1 and a2 are decreased (and in the case of a2 are almost completely mitigated),

while both filters have comparable errors when estimating a3.

(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error: EKF (left)
and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.27: Comparison of Monte Carlo errors for EKF and EKF+HMM.

A comparison of Monte Carlo EKF+HMM error variance to the EKF+HMM state

variance can be seen in Figure 4.28. Overall, the EKF+HMM state variance followed the

trends of the EKF+HMM Monte Carlo error variance, while typically being an order of

magnitude greater (or more) in value.
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(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right).

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.28: Variance of errors versus EKF+HMM variance.

Scenario 2

The “worst case” EKF+HMM estimation results for Maneuver 3 are explored in this

section. Maneuver 3 had a mean classification accuracy over time of 96%. The average con-

fidence in each HMM for classification over time (Figure 4.29) shows initial high confidence

in Maneuver 3; this confidence drops briefly from time t = 1 to t = 3 before increasing once

more. The results are similar to the confidence of the “best case” Maneuver 3 run.
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Figure 4.29: Confidence of classification over time.

Figure 4.30 shows an example data run during the Monte Carlo. Both the EKF+HMM

and EKF estimate the maneuver well and with low noise. Some initial error in the EKF+HMM

can be seen when estimating a1 and a3. During this example run, the EKF+HMM began

using HMM estimate inputs, then returned to a simple EKF model, and finally switched

back to the EKF+HMM model all within the first 3 seconds. This switching is a result in

the fluctuations in the confidence of the Maneuver 3 classification and causes an increase in

error for some EKF+HMM estimates.
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(a) Example run of the worst position estimates
of Maneuver 3.

(b) Example run of the worst velocity estimates
of Maneuver 3.

(c) Example run of the worst acceleration esti-
mates of Maneuver 3.

Figure 4.30: Example run of EKF+HMM for Maneuver 3.

The mean Monte Carlo state estimation error for both the EKF and EKF+HMM are

compared in Figure 4.31. The position estimates for both filters have similar error charac-

teristics except in the initial phases of flight. During this time, the EKF+HMM has similar

or increased error compared to the EKF when estimating velocity and acceleration. How-

ever, for the remaining portion of flight, the EKF+HMM has lower error in velocity and

acceleration.
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(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error: EKF (left)
and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.31: Comparison of Monte Carlo errors for EKF and EKF+HMM.

The average HMM acceleration and jerk estimate error are shown in Figure 4.32. Al-

though both graphs shown high initial estimate error, most of this error is not incorporated

into the filter. During this time period the confidence in Maneuver 3’s HMM was low enough

that its HMM estimates were not used as EKF+HMM inputs. The variance of these errors

(Figure 4.33) show high variance in estimation errors during the first 5 seconds of flight.

This corresponds to the uncertainty shown in the confidence measure of Maneuver 3.
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(a) Mean error of HMM acceleration estimate
for the worst run.

(b) Mean error of HMM jerk estimate for the
worst run..

Figure 4.32: Mean error for HMM estimates.

(a) Variance of HMM acceleration estimate er-
ror for the worst run.

(b) Variance HMM jerk estimate error for the
worst run.

Figure 4.33: Error variance for HMM estimates.

Finally, the EKF+HMM Monte Carlo state error variance is compared to the EKF+HMM

state variance in Figure 4.34. Like with the “best case” of Maneuver 3, the EKF+HMM vari-

ances follow the trend of the error variances while remaining an order of magnitude greater

(or more) in value.
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(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right).

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.34: Variance of errors versus EKF+HMM variance.

4.2.4 Maneuver 4

Scenario 1

The “best case” scenario of Maneuver 4 EKF+HMM estimation is discussed in this

section. Maneuver 4 had an accuracy over time, on average, of 89.30%. The confidence

in each maneuver’s HMM is shown in Figure 4.35, which shows some confusion between

Maneuver 2 and Maneuver 4 in the first 5 seconds of flight before Maneuver 4 is established

as the correct classification.
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Figure 4.35: Confidence of classification over time.

Figure 4.36 shows an example Maneuver 4 trajectory when estimated by the EKF and

EKF+HMM. The EKF+HMM is noisier than the EKF, but both filters are capable of

estimating the UAV states. It’s important to note that Maneuver 4 is the least dynamic of

the maneuvers, so it is expected that the EKF should be capable of estimating the UAV

states without any additional HMM estimate input, as established in Section 2.4.4.
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(a) Example run of the best position estimates
of Maneuver 4.

(b) Example run of the best velocity estimates
of Maneuver 4.

(c) Example run of the best acceleration esti-
mates of Maneuver 4.

Figure 4.36: Example run of EKF+HMM for Maneuver 4.

The mean Monte Carlo state error for the EKF and EKF+HMM estimates are shown

in Figure 4.37. Position error is low for both filters, but the EKF+HMM does have some

initial error from initial HMM estimates. The velocity error is low for both filters as well,

but the EKF+HMM does introduce some additional errors from 10 to 15 seconds. The

acceleration error is minimal for both the EKF and EKF+HMM. Both of these systems

struggle to estimate acceleration from 10 to 15 seconds.
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(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error: EKF (left)
and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.37: Comparison of Monte Carlo errors for EKF and EKF+HMM.

The variance of each EKF+HMM state estimate’s error is compared to the EKF+HMM

state variance in Figure 4.38. Instances in which the EKF+HMM switches from using HMM

inputs to using the typical EKF formulation cause in increase in the EKF+HMM state

variance. These points of increase mirror the average confidence shown in Figure 4.35.
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(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right).

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.38: Variance of errors versus EKF+HMM variance.

Scenario 2

The results of the “worst case” EKF+HMM estimation during Maneuver 4 is shown

in this section. The maneuver had a mean classification accuracy over time of 76.80%.

The maneuver was first correctly classified as Maneuver 4, but then incorrectly classified

(with relatively high confidence – sometimes so much so that HMM estimates were used)

as Maneuver 2, before being re-classified as Maneuver 4. The average confidence in each

maneuver’s HMM is shown in Figure 4.39.
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Figure 4.39: Confidence of classification over time.

An example of this worst case estimation event (Figure 4.40) shows high error in the

EKF+HMM estimates of acceleration (particularly for a3) in the first ten seconds of flight.

After this period of high error, the EKF and EKF+HMM have comparable state estimates.
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(a) Example run of the worst position estimates
of Maneuver 4.

(b) Example run of the worst velocity estimates
of Maneuver 4.

(c) Example run of the worst acceleration esti-
mates of Maneuver 4.

Figure 4.40: Example run of EKF+HMM for Maneuver 4.

The EKF and EKF+HMM are compared through their mean Monte Carlo error in

Figure 4.41. For all position, velocity, and acceleration estimation, the EKF+HMM performs

worse than the EKF. The first 10 seconds of the maneuver involve a (high confidence)

misclassification of Maneuver 2, which prompts Maneuver 2 to provide HMM estimates for

acceleration and jerk that are not suitable for Maneuver 4 estimation. This causes the

majority of EKF+HMM errors at the start of the trajectory.
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Still, once the maneuver is correctly identified, the EKF+HMM performs worse. There

are consistent errors in the Maneuver 4 HMM estimates of acceleration and jerk that neg-

atively affect EKF+HMM estimation. In the case of other maneuvers, which are more

dynamic than Maneuver 4, the HMM estimate errors may still be better than the EKF’s

constant acceleration model. However, because the EKF is already capable of estimating

UAV states throughout Maneuver 4, there is little reason to use the EKF+HMM and risk

additional error.

(a) Mean Monte Carlo position error: EKF (left)
and EKF+HMM (right)

(b) Mean Monte Carlo velocity error: EKF (left)
and EKF+HMM (right)

(c) Mean Monte Carlo acceleration error: EKF
(left) and EKF+HMM (right)

Figure 4.41: Comparison of Monte Carlo errors for EKF and EKF+HMM.

The mean and variance of the HMM estimation errors are shown in Figures 4.42 and

4.43. The high error and error variance in the initial stages of flight correspond to the

incorrect classification and use of the incorrect HMM to generate estimates. These errors

were not always incorporated into the EKF+HMM estimation. If confidence was greater

141



than −1, then a standard EKF was used instead. After about 7 seconds, the error and error

variance decrease greatly.

(a) Mean error of HMM acceleration estimate
for the worst run.

(b) Mean error of HMM jerk estimate for the
worst run..

Figure 4.42: Mean error for HMM estimates.

(a) Variance of HMM acceleration estimate er-
ror for the worst run.

(b) Variance HMM jerk estimate error for the
worst run..

Figure 4.43: Error variance for HMM estimates.

A comparison between EKF+HMM state Monte Carlo error variance and the EKF+HMM

state variance is shown in Figure 4.44. The high error variance during the initial 10 seconds

of flight is reflected in the EKF+HMM state variance. This high EKF+HMM state variance
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is the result of switching between using HMM estimates when the confidence of the maneu-

ver’s HMM is in flux. After 10 seconds, both the EKF+HMM Monte Carlo error variance

and the state variance settle to lower values.

(a) Monte Carlo position error variance (left)
and EKF+HMM position variance (right).

(b) Monte Carlo velocity error variance (left)
and EKF+HMM velocity variance (right).

(c) Monte Carlo acceleration error variance
(left) and EKF+HMM acceleration variance
(right).

Figure 4.44: Variance of errors versus EKF+HMM variance.

4.3 Conclusion

This chapter summarized the formulation of the EKF+HMM and showed results of the

EKF+HMM when estimating simulated UAV maneuvers. The EKF+HMM takes advantage

of a maneuver’s HMM and the information it can provide. If a classification with high

confidence can be made, the HMM for that maneuver is selected to supplement estimation

efforts. The HMM generates estimates of acceleration and jerk based on EKF estimated

position. The HMM estimates are used as inputs into the EKF+HMM dynamic model.

For each maneuver, the sum of the absolute value of the estimation error was found for

each trajectory in the test data set. From this information, a “best case” (lowest sum of ab-

solute error) and “worst case” trajectory (highest sum of absolute error) was found. A Monte
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Carlo simulation was performed with each case and was used to compare the EKF+HMM

to a standard EKF. Overall, it was found that the EKF+HMM aids in estimation of high

dynamic maneuvers (like Maneuver 1, Maneuver 2, and Maneuver 3). Even in the “worst

case” scenarios, the EKF+HMM performed at the same level as or better than the EKF.

The EKF+HMM is not perfect. Biased or incorrect HMM estimates can create consis-

tent error in the state estimates, so true zero-mean error is rarely reached. But in situations

where the EKF struggles to perform, the EKF+HMM has much lower error overall. However,

in the case of less dynamic maneuvers (like Maneuver 4), where the EKF already is capable

of good performance, the EKF+HMM was detrimental. Errors introduced from HMM esti-

mates were much more consequential for this maneuver and created a worse performance of

the EKF+HMM when compared to the EKF.

The EKF+HMM can be a valuable tool for increasing estimation accuracy when ma-

neuvers are highly dynamic and the EKF suffers in performance. However, its addition in

estimating a maneuver the EKF does not struggle with is more harmful than helpful.
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Chapter 5

Experimental Results

The capabilities of HMM classification and the EKF+HMM system were also evaluated

using real-world data. A UAV was used to perform several maneuvers, and an HMM was

created for each maneuver - using either experimental data or simulated data as the training

set. The maneuvers were classified using each type of HMM and their performance was

compared. Finally, the estimation results of the EKF and EKF+HMM were compared when

using real-world data. The performance of the EKF+HMM was compared when using HMMs

trained on simulated data and HMMs trained on experimental data.

The following chapter describes the experimental set up, data processing, and maneuvers

performed by the UAV, as well as how those manevuers were simulated. The data sets used

to train the HMMs are described. Classification performance and EKF+HMM performance

is evaluated.

5.1 UAV Maneuvers

UAV maneuvers were both simulated and performed experimentally. Both of these data

sets were used as training data for HMMs that are later used to classify the experimental data.

The following section describes the data collection process, as well as maneuver simulation.

The maneuvers are shown, and the experimental and simulated data compared.

5.1.1 Experimental Set Up and Data Collection

A Tarot X8 Octacopter, shown in Figure 5.1, was used to execute four maneuvers. Al-

though the Tarot X8 is a different type of UAV than used previously in the thesis (octacopter
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Figure 5.1: The Tarot X8 Octacopter used to perform maneuvers.

versus quadrotor), both the EKF and HMMs are general in their formulation and can easily

change applications.

The octacopter used a Hex Cube flight computer and was equipped with a HEX Tech-

nology Here+ Rover for GNSS positioning. Throughout each maneuver, local GPS position

and velocity were recorded at a 10 Hz rate. When processing the data, the measurements

were interpolated to have a 5 Hz update rate consistent with the simulated maneuvers in

previous chapters. UAV acceleration throughout a maneuver was found by numerically dif-

ferentiating the GPS velocity. These measurements are used as the reference states of the

UAV.

The maneuvers executed by the UAV are shown in Figure 5.2. During data collection,

each maneuver was executed fifteen times, except for Maneuver 2, which was performed 11

times. As a result, Maneuver 2 was used as an “unknown” trajectory to test the classification

system. Note that these maneuvers are not the same as those used in previous chapters. The

previous simulated maneuvers were more dynamic and would not be safe for the octacopter.
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Figure 5.2: Maneuvers performed by the octacopter.

5.1.2 UAV Control

Text files of commanded velocities were created in the local ENU frame for each ma-

neuver and converted to NED in post-process. The UAV was remote controlled into a start

position, then the UAV mode was switched to follow text file velocity commands. Each

maneuver began with five seconds of constant velocity commands and ended with another

five seconds of constant velocity commands. Once in command velocity mode, the update

rate of the UAV was 10 Hz.

The velocity control of the UAV was open loop and therefor unable to correct errors.

At times, this resulted in high error or offset (or both) between the actual and commanded

velocity. Initially, there was an attempt to characterize these errors. Figures 5.3 and 5.4

show the difference between commanded and actual NED velocity for Maneuvers 1 and

3 respectively. These two maneuvers were chosen because they illustrate the difficulty in

consistently characterizing error between commanded and actual velocity.

The maneuvers were performed by the UAV at different orientations, different times

of day, and sometimes on different days altogether. Because of this, environmental effects
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changed, which changed the UAV’s response to commanded velocity as well. Figure 5.3

shows that both v1 and v2 are slightly delayed, and that v1 has a higher magnitude than

the commanded velocity. However, Figure 5.4 shows that v1 has high error though relatively

low delay, while v2 and v3 are capable of following commanded velocity well. The only

consistency between the two data sets is seen with v3.

These results suggest disturbances from the environment (wind) greatly affected UAV

performance when following velocity commands. A strategy for future experimentation could

be to only collect data on still days, which would result in the UAV more consistently

and accurately following the commanded velocities. However, this would not allow the

opportunity to properly access how HMM classification and EKF+HMM estimation responds

to environmental disturbances.

(a) Commanded versus actual
North velocity of the UAV
during Maneuver 1.

(b) Commanded versus actual
East velocity of the UAV dur-
ing Maneuver 1.

(c) Commanded versus actual
Down velocity of the UAV
during Maneuver 1.

Figure 5.3: Comparison of commanded versus actual velocity of the UAV during Maneuver
1.
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(a) Commanded versus actual
North velocity of the UAV
during Maneuver 3.

(b) Commanded versus actual
East velocity of the UAV dur-
ing Maneuver 3.

(c) Commanded versus actual
Down velocity of the UAV
during Maneuver 3.

Figure 5.4: Comparison of commanded versus actual velocity of the UAV during Maneuver
3.

5.1.3 Simulation of UAV Maneuvers

The UAV maneuvers were simulated in MATLAB. Any specific attributes of the UAV or

the environment (such as command velocity delay time) were not included in the simulation.

This mimics a situation in which, while certain maneuvers may be previously known, the

characteristics of the specific UAV and its environment are not.

Simulated data was created by differentiating the command velocity of the UAV to

obtain a command acceleration. Zero mean white noise was added to the command acceler-

ation before integrating to obtain velocity and position. To create training data, the North,

East, and Down start and end positions of each data run was also varied. Heading was con-

sidered inconsequential as the data pre-processing procedure in Chapter 3 creates a position

invariant data set. In total, 405 simulated trajectories were created for each maneuver.

5.1.4 Simulated and Experimental Maneuvers

An example of each of the four maneuvers is shown in the following sections using both

simulated and experimental data. Each maneuver is 35 seconds total, with 5 seconds of con-

stant commanded velocity at the beginning and end of the trajectory. For each maneuver,
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the UAV is ascending from an initial height of approximately 10 m. This method of per-

forming maneuvers (beginning at a low altitude and ascending towards some target point)

was the simplest way to carry out maneuvers in an experimental setting.

Maneuver 1

An example of the UAV executing Maneuver 1 is shown in Figure 5.5. The blue line

shows simulated UAV position while the red shows an experimental run of the maneuver.

Both begin at the same initial position. The simulated position, velocity, and acceleration

of the UAV in the NED frame are displayed in Figure 5.6, while the experimental position,

velocity, and acceleration are shown in Figure 5.7. The experimental data has greater noise

in acceleration and velocity. Moreover, note the octacopter is unable to produce the quick

change in a2 near 10 seconds – unlike the simulated UAV. This creates a slightly wider turn

for the experimental maneuver that can be seen in Figure 5.5.

Figure 5.5: Simulated versus experimental position of UAV throughout Maneuver 1.
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(a) Maneuver 1 simulated po-
sition over time (NED).

(b) Maneuver 1 simulated ve-
locity over time (NED).

(c) Maneuver 1 simulated ac-
celeration over time (NED).

Figure 5.6: The nine states of the UAV simulated throughout Maneuver 1.

(a) Maneuver 1 experimental
position over time (NED).

(b) Maneuver 1 experimental
velocity over time (NED).

(c) Maneuver 1 experimental
acceleration over time (NED).

Figure 5.7: The nine states of the UAV throughout Maneuver 1.

Maneuver 2

Figure 5.8 illustrates simulated and experimental UAV flight for Maneuver 2. Once

again, both runs begin from the same position, but the two paths have slightly different

heading values. The simulated and experimental UAV position, velocity, and acceleration

are shown in Figures 5.9 and 5.10. The greatest difference in the simulated and experimental

data set is seen again with a2. Unlike the simulated acceleration, the experimental a2 changes

little over time, which results in a great difference between simulated and experimental v2

and x2.
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Figure 5.8: Simulated versus experimental position of UAV throughout Maneuver 2.

(a) Maneuver 2 simulated po-
sition over time (NED).

(b) Maneuver 2 simulated ve-
locity over time (NED).

(c) Maneuver 2 simulated ac-
celeration over time (NED).

Figure 5.9: The nine states of the UAV simulated throughout Maneuver 2.

(a) Maneuver 2 experimental
position over time (NED).

(b) Maneuver 2 experimental
velocity over time (NED).

(c) Maneuver 2 experimental
acceleration over time (NED).

Figure 5.10: The nine states of the UAV throughout Maneuver 2.
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Maneuver 3

The UAV path created from Maneuver 3 is displayed in Figure 5.11, which shows both

the simulated and experimental UAV path. The simulated UAV states in the NED frame are

shown in Figure 5.12, while the experimental UAV states are shown in Figure 5.13. Overall,

the simulated and experimental states are similar, although experimental a3 experiences

much higher noise than simulated a3.

Figure 5.11: Simulated versus experimental position of UAV throughout Maneuver 3.

(a) Maneuver 3 simulated po-
sition over time (NED).

(b) Maneuver 3 simulated ve-
locity over time (NED).

(c) Maneuver 3 simulated ac-
celeration over time (NED).

Figure 5.12: The nine states of the UAV simulated throughout Maneuver 3.
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(a) Maneuver 3 experimental
position over time (NED).

(b) Maneuver 3 experimental
velocity over time (NED).

(c) Maneuver 3 experimental
acceleration over time (NED).

Figure 5.13: The nine states of the UAV throughout Maneuver 3.

Maneuver 4

The final maneuver carried out by the octacopter is Maneuver 4. Figure 5.14 shows

the position of the UAV during the maneuver – both simulated and experimentally. The

simulated and experimental states of the UAV in the NED frame can be viewed in Figures

5.15 and 5.16. The greatest difference between simulated and experimental data can be seen

in a1, v1, and x1. Initial commanded v1 is relatively low, which the simulation is able to

capture, but is not executed well by the UAV experimentally. This leads to a difference in

v1 between the two data sets that is so great it initially looks as if the velocity has been

inverted.
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Figure 5.14: Simulated versus experimental position of Maneuver 4.

(a) Maneuver 4 simulated po-
sition over time (NED).

(b) Maneuver 4 simulated ve-
locity over time (NED).

(c) Maneuver 4 simulated ac-
celeration over time (NED).

Figure 5.15: The nine states of the UAV simulated throughout Maneuver 4.

(a) Maneuver 4 experimental
position over time (NED).

(b) Maneuver 4 experimental
velocity over time (NED).

(c) Maneuver 4 experimental
acceleration over time (NED).

Figure 5.16: The nine states of the UAV throughout Maneuver 4.
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5.2 Maneuver Classification

The purpose of this section is to evaluate the classification accuracy of two different

types of HMM. The first set of HMMs were trained on experimental data (also known as

reference data). Ten data runs of each maneuver were randomly selected and used as the

training data set, while the remaining five runs were used as test data. This is similar to

a scenario in which there is a sparse data set from real world data collection and a lack of

knowledge of the underlying commands of the UAV.

The second set of HMMs were trained on simulated data and tested on experimental

data. All simulated data was used as the training data, while all experimental data was used

as the test data. This mimics a scenario in which information about a maneuver may be

known, but experimental data of it has never been collected.

For both types of HMMs, Maneuvers 1, 3, and 4 were selected to be the known ma-

neuvers, while Maneuver 2 was used as the unknown trajectory. The following sections first

discuss the classification results of HMMs trained with reference (experimental) data and

then the classification results of HMMs trained with simulated data.

The classification accuracy of both reference data and estimated reference data are

shown for both sets of HMMs. Accuracy is characterized in two ways: final accuracy, whether

the maneuver was classified correctly at the end of its flight, and mean accuracy over time,

which shows what percentage of the trajectory the maneuver was correctly classified. For

example, if the maneuver was correctly classified for 25 out of 30 total seconds, the accuracy

over time would be 83.33%. Accuracy over time is found for each trajectory in the data set

and then the average is taken to produce mean accuracy over time.

Technically each maneuver is 35 seconds in total. However, it should be noted that

for the first five seconds of flight, each maneuver has the same commanded velocity and is

identical. This makes classification impossible during these moments. Therefore, these five

seconds are not included in the mean accuracy over time calculation, but are shown in the

figures.

156



More information about the training process of HMMs can be found in Section 3.3.1.

Maneuver classification with HMMs is discussed in detail in Section 3.4. The classification

scheme used to classify maneuvers is the confidence measure classifier, which is discussed in

Section 3.4.4.

5.2.1 Classification Accuracy of HMMs Trained on Experimental Data

The following section shows classification results when the confidence measure classifier

uses HMMs trained with experimental data.

Reference Training Data

Classification accuracy was first tested on the training data; the results of this are

shown in Table 5.1. Each maneuver had a 100% final accuracy, which is to be expected with

a training data set. The mean accuracy over time is much lower for experimental training

data when compared to classification of simulated training data in Section 3.4.2. However,

all maneuvers are correctly identified for more than half of their flight time. Maneuver 1 has

the greatest mean accuracy over time, while Maneuver 4 has the lowest.

Table 5.1: HMM Classification: Training Reference

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 91.27%
3 100% 82.86%
4 100% 68.67%

Figure 5.17 the average confidence of each maneuver during classification. As noted

above, the first five seconds of each maneuver is identical. The confidence in classification

for each model remains low and constant for the first five seconds of each maneuver –

demonstrating how classification is impossible during this time. Then, the maneuvers begin

to distinguish themselves. Note that Maneuver 1 almost immediately distinguishes itself,
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while Maneuvers 3 and 4 require more observations over time for a correct and confident

classification.

(a) Classification of Maneuver 1
reference training data.

(b) Classification of Maneuver 3
reference training data.

(c) Classification of Maneuver 4
reference training data.

Figure 5.17: Average confidence over time for each HMM during the classification process -
reference training data.

Reference Test Data

The classifier then tested by classifying the test data set of maneuvers. The results of

this test is shown in Table 5.2. This table also contains results for classifying an unknown

maneuver, Maneuver 2. In this case, a correct classification for Maneuver 2 means the

classifier identifies it as unknown. Maneuver 2 is classified as unknown 90% of the time, but

is occasionally mistaken for a known trajectory (Maneuver 4).

Table 5.2: HMM Classification: Test Reference

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 91.47%
3 100% 81.47%
4 100% 69.47%

Unknown (2) 90.00% 80.14%

Figure 5.18 displays the average confidence of each model during the classification of

Maneuver 1, Maneuver 3, and Maneuver 4 for the reference test data set. Like before,

Maneuver 1 is quickly classified correctly, while Maneuvers 3 and 4 require more time and

observations to drop below a confidence measure of −1.
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(a) Classification of Maneuver 1
reference testing data.

(b) Classification of Maneuver 3
reference testing data.

(c) Classification of Maneuver 4
reference testing data.

Figure 5.18: Average confidence over time for each HMM during the classification process -
reference test data.

The average confidence of each maneuver HMM when receiving observations from Ma-

neuver 2 (unknown) is displayed in Figure 5.19. The confidence of each maneuver’s classi-

fication remains low throughout the flight. However, Maneuver 4 does show a confidence

score that occasionally results in a misclassification.

Figure 5.19: Average confidence of each HMM when given an unknown maneuver - reference
data.

Estimated Training Data

The classifier was also tested using the EKF’s estimates of reference data as observations.

This section will cover the classification results when the HMM classifier was tested using

estimates of the original training data and test data. Overall, the final accuracy of the
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classifier remained at 100% for each maneuver when given estimated data as observations,

as seen in Table 5.3. The accuracy over time was slightly lower than when using reference

data, but overall the decrease was nearly negligible. The average confidence of each model

is shown in Figure 5.20 respectively. The confidence measure remains similar to that of

reference training data.

Table 5.3: HMM Classification: Training EKF

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 87.47%
3 100% 77.67%
4 100% 66.27%

(a) Classification of Maneuver 1
estimated training data.

(b) Classification of Maneuver 3
estimated training data.

(c) Classification of Maneuver 4
estimated training data.

Figure 5.20: Average confidence over time for each HMM during the classification process -
estimated training data.

Estimated Test Data

Estimates of test data were also used to test classification accuracy. Once again, the

final accuracy of the known trajectories was 100%. The the unknown trajectory was only

given the correct “unknown” classification 80% of the time, which is a lower accuracy than

when using reference data as observations. The accuracy over time of each maneuver was

similar to the results when using reference test data. These results can be viewed in Table

5.4. The average confidence of each model during classification of known trajectories is

shown in Figure 5.21.
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(a) Classification of Maneuver 1
estimated testing data.

(b) Classification of Maneuver 3
estimated testing data.

(c) Classification of Maneuver 4
estimated testing data.

Figure 5.21: Average confidence over time for each HMM during the classification process -
estimated test data.

Maneuver 2, the unknown maneuver, was also estimated using the EKF and used to test

the classification scheme’s ability to classify a maneuver as unknown. The average confidence

of each model when presented with estimated UAV states of Maneuver 2 is shown in Figure

5.22. The confidence of each model remains low, but Maneuver 4’s model has a confidence

score that reaches below −1, meaning there were some misclassifications. This is reflected

in the lower final accuracy and mean accuracy over time of the unknown maneuver in Table

5.4.

Table 5.4: HMM Classification: Test EKF

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 87.61%
3 100% 78.00%
4 100% 66.54%

Unknown (2) 80.00% 72.87%
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Figure 5.22: Average confidence over time of each HMM when given an unknown maneuver
- estimated data.

5.2.2 Classification Accuracy of HMMs Trained on Simulated Data

The following section shows the classification results when using simulation trained

HMMs in the confidence measure classifier rather than HMMs trained with experimental

reference data.

Simulated Training Data

The classification accuracy of HMMs trained on simulated data was first evaluated using

the simulated training data set to understand the baseline accuracy. Table 5.5 shows the

classification accuracy. Each maneuver had a final classification accuracy 100%, including

Maneuver 2 which was successfully classified as unknown 100% of the time. Maneuver 1 had

the highest mean accuracy over time of the known trajectories. Both Maneuvers 3 and 4

were correctly classified for a little over 60% of their trajectory.

The average confidence of each model over time is shown in Figure 5.23. In Figure 5.23a,

it can be noted that Maneuver 1 is correctly classified almost immediately after the first 5

seconds of similar flight. Figures 5.23b and 5.23c show that both Maneuvers 3 and 4 remain

“unknown” for a period at the beginning of their trajectory, which is similar to results when

using HMMs trained with experimental data. There is similarity in these two maneuvers’
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acceleration for the first fifteen seconds of flight (as seen in Figures 5.12c and 5.15c), which

may contribute to their initial low confidences.

(a) Classification of Maneuver 1
simulated training data.

(b) Classification of Maneuver 3
simulated training data.

(c) Classification of Maneuver 4
simulated training data.

Figure 5.23: Average confidence over time for each model - simulated training data.

The average confidence of each model when shown an unknown maneuver (Maneuver

2) is displayed in Figure 5.24. Almost immediately, each model has low confidence. After

five seconds, there is a change in each model’s confidence as Maneuver 2 transitions from

constant commanded velocity to the beginning of the maneuver. However, all the models

quickly settle to a confidence measure near zero soon after.

Table 5.5: Simulation Trained HMM Classification: Training Data

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 95.80%
3 100% 63.46%
4 100% 67.54%

Unknown (2) 100% 100%
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Figure 5.24: Average confidence of each HMM when given an unknown maneuver - simulated
training data

Experimental Test Data

After being tested on the original training set of simulated data, the classifier was

tested on real world data. It was tested first on the reference data and then on the estimated

reference data. Table 5.6 shows the accuracy of the simulation trained HMM classifier on

the experimental reference data of all the maneuvers. Maneuvers 1 and 3 have a 100%

final classification accuracy, and Maneuver 2 is correctly identified as unknown with 100%

accuracy (both final accuracy and mean accuracy over time). However, Maneuver 4 has a

final accuracy of only 73.33%. Most maneuvers are correctly classified for 50% or more of

their flight time – except Maneuver 4.

The simulation trained HMM classifier had worse performance in final accuracy for

Maneuver 4 and mean accuracy over time for all known maneuvers when compared to the

experimental data trained HMM classifier. However, the simulation trained HMM does im-

prove the classification accuracy of Maneuver 2 – both for final accuracy and mean accuracy

over time.

Figure 5.25 shows the average classification confidence of each model for each known

maneuver. Maneuver 1’s model once again almost immediately has a confidence measure of

less than −1, indicating high confidence in its classification. However, the model of Maneuver
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3 and 4 require more time to become confident in their own classification. Maneuver 4’s

model, at times, lingers in the “unknown” confidence level. For some Maneuver 4 trajectories,

the confidence of Maneuver 4’s model was so low at the end of the trajectory, it resulted in

an “unknown” classification (see Appendix E.2).

(a) Classification of Maneuver 1
reference data.

(b) Classification of Maneuver 3
reference data.

(c) Classification of Maneuver 4
reference data.

Figure 5.25: Average confidence over time using HMMs trained with simulated data - refer-
ence data.

The simulation trained models’ average confidence when given reference data of an

unknown trajectory (Maneuver 2) is shown in Figure 5.26. After an initial misclassification

as Maneuver 3, Maneuver 2 is steadily classified as unknown for all models.

Table 5.6: Simulation Trained HMM Classification: Test Reference

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 86.76%
3 100% 45.22%
4 73.33% 35.73%

Unknown (2) 100% 100%
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Figure 5.26: Average confidence of each simulation trained HMM when given an unknown
maneuver - reference data.

The simulation trained models were then used to classify EKF estimates of the reference

data. These results are shown in Table 5.7. The final classification accuracy stayed roughly

the same as the reference data for Maneuvers 1 and 3, while decreasing for the unknown

maneuver. The final accuracy of Maneuver 4 increased, as well as the mean accuracy over

time for Maneuver 3 and Maneuver 4. Estimated data has less noise than reference data,

which may have lead to the increases in mean accuracy over time.

Table 5.7: HMM Classification: Test Estimate

Maneuver Final Accuracy Mean Accuracy Over Time
1 100% 68.80%
3 100% 52.23%
4 80% 40.46%

Unknown (2) 81.82% 41.66%

Figure 5.27 shows the average confidence over time for each simulation trained model

when classifying estimates of the reference data. The results are similar to that of Figure

5.25.
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(a) Classification of Maneuver 1
estimated data.

(b) Classification of Maneuver 3
estimated data.

(c) Classification of Maneuver 4
estimated data.

Figure 5.27: Average confidence over time using simulation trained HMMs - estimated ref-
erence data.

Figure 5.28 displays the average classification confidence of each model, as the model

reacts to an unknown maneuver. The classification scheme fails at times to correctly identify

the maneuver as unknown. Note that the average classification confidence of Maneuver 1

falls below −1, meaning the unknown maneuver is misclassified as Maneuver 1 at times.

Figure 5.28: Average confidence of each model when classifying an unknown maneuver -
estimated data.

5.2.3 Classification Accuracy During Maneuver-less Flight

The process by which experimental data was generated means there is data before each

maneuver in which the UAV is operated via teleop control rather than through commanded

velocities for specific maneuvers. Ideally, the confidence measure classification scheme would
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be capable of distinguishing these sections of flight as unknown maneuvers. The following

two sections show results of simulation trained and experimentally trained HMM classifiers

when presented with completely unknown data. Because these random segments of data

often varied in length, individual results rather than average results are presented.

Experimental Data Trained HMM

The classifier using HMMs trained on experimental data was also tested on the random

unknown trajectories. Both the reference data and estimated reference data of the unknown

trajectories had high final accuracy for correctly classifying the trajectories as unknown.

Note that they also both had high mean accuracy over time, meaning the trajectories were

classified as unknown in the early portions of flight.

Table 5.8: Classification of unknown experimental data using HMMs trained on real world
data.

Data Type Final Accuracy Mean Accuracy Over Time
Reference 98.21% 99.49%
Estimate 96.43% 98.40%

The confidence of each model when presented with unknown data is shown below in

Figure 5.29. Both the reference and estimated data have a few instances in which the

unknown trajectory is misclassified as Maneuver 3. For the majority of data, the models have

low confidence (indicating they are unknown) or high confidence of incorrect classification.
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(a) Confidence of each model when no maneu-
vers are performed - Reference Data.

(b) Confidence of each model when no maneu-
vers are performed - Estimated Data.

Figure 5.29: Confidence over time for each reference trained HMM when there is no maneu-
ver.

Simulation Data Trained HMM

Table 5.9 shows the classification results when the classifier (using simulation trained

HMMs) was given completely unknown data. For both reference and estimated reference

data, the classifier had high final accuracy – meaning the trajectories were successfully

classified as “unknown”. The mean accuracy over time for reference data remained high,

while estimated data did not perform as well.

Table 5.9: Classification of unknown experimental data using simulation trained HMMs.

Data Type Final Accuracy Mean Accuracy Over Time
Reference 100% 92.87%
Estimate 92.86% 79.60%

Figure 5.30 shows the confidence of each model as classification occurred on the random

segments of data. Maneuver 3 had a tendency, for both simulated and experimental data, to

be initially misclassified as the maneuver. Figure 5.30b shows an occasional misclassification

of the unknown trajectories as Maneuver 1 or Maneuver 3, but overall the models seemed

capable of correctly identifying he trajectory as unknown.
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(a) Confidence of each model when no maneu-
vers are performed - Reference Data.

(b) Confidence of each model when no maneu-
vers are performed - Estimated Data.

Figure 5.30: Confidence over time for each simulation trained HMM when there is no ma-
neuver.

5.2.4 Classification with Simulation versus Experimental Data Trained HMMs

Compared to HMMs trained with experimental data, simulation trained HMMs per-

formed worse in classification of real-world data (both reference and estimated) by almost

all metrics. The confidence measure classifier using simulation trained HMMs typically had

the same or lower final accuracy and mean accuracy over time. The only instance in which the

simulation trained HMMs performed better was when classifying Maneuver 2 as unknown.

While generally worse than the experimental data trained HMMs, simulation data

trained HMMs were still adequate at classification of real world data. These results show

that it is preferred to have some experimental data when training HMMs. However, if ex-

perimental data is not available, simulated data can still provide valuable information for

classification. Future work could explore if a combined simulation and experimental data

set could further improve the accuracy of classification with real world data.
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5.3 HMM Estimates

The HMMs of each maneuver can be utilized to generate acceleration and jerk estimates.

This process is further discussed in Chapter 3. The following section shows HMM estimates of

acceleration and jerk when produced from experimental data trained HMMs and simulation

data trained HMMs. It also compares these estimates using mean error and error variance.

5.3.1 Estimates Generated From Experimental Data Trained HMM

An example of the acceleration and jerk estimates produced for Maneuver 1, 3, 4 are

show in Figures 5.31, 5.32, and 5.33. These estimates were produced using reference position

data. In each instance the reference (in blue) has much higher noise than the estimates

produced by the HMMs. The acceleration estimates are capable of following the general

trend of the true acceleration. The accuracy of the jerk estimates, however, are more difficult

to gauge because of the extremely high noise.

(a) Example acceleration HMM estimates com-
pared to reference acceleration.

(b) Example jerk HMM estimates compared to
reference jerk.

Figure 5.31: Acceleration and jerk estimates generated from Maneuver 1’s HMM.
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(a) Example acceleration HMM estimates com-
pared to reference acceleration.

(b) Example jerk HMM estimates compared to
reference jerk.

Figure 5.32: Acceleration and jerk estimates generated from Maneuver 3’s HMM.

(a) Example acceleration HMM estimates com-
pared to reference acceleration.

(b) Example jerk HMM estimates compared to
reference jerk.

Figure 5.33: Acceleration and jerk estimates generated from Maneuver 4’s HMM.

Maneuver 1

The mean acceleration error and error variance of the HMM estimates generated using

either reference (test set) UAV position or estimated (test set) UAV position are shown in

Figure 5.34. The mean errors follow a similar trend in both cases. The HMM estimate of

a1 has slightly more error towards the end of the maneuver when generated from estimated

position. The variance of these errors are also similar, with an increase in error variance

occurring towards the end of the maneuver for both scenarios.

Figure 5.35 displays the mean jerk error and error variance for HMM estimates generated

using reference UAV position and estimated UAV position. There is a slight bias in the error

in the final ten seconds of the maneuver. The error variance also increases during this portion

of the maneuver.
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(a) Mean error of HMM acceleration estimates
generated using reference position (left) and es-
timated position (right).

(b) Mean error variance of HMM acceleration
estimates generated using reference position
(left) and estimated position (right).

Figure 5.34: Mean error and error variance of HMM acceleration estimates generated for
Maneuver 1.

(a) Mean error of HMM jerk estimates gener-
ated using true position (left) and estimated
position (right).

(b) Mean error variance of HMM jerk estimates
generated using true position (left) and esti-
mated position (right).

Figure 5.35: Mean error and error variance of HMM jerk estimates generated for Maneuver
1.

Maneuver 3

Maneuver 3 HMM acceleration estimation error is seen in Figure 5.36. The acceleration

estimates produced have similar error, regardless if they were generated using true position or

estimated position. The variance of these errors remain the same for both types of estimates

as well. Figure 5.37 shows the jerk mean error and error variance for jerk estimates produced

either by reference position or estimated position. The errors are similar for both estimates

produced. They are close to zero-mean with high noise. The variances of these errors are

consistent throughout the trajectory.
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(a) Mean error of HMM acceleration estimates
generated using true position (left) and esti-
mated position (right).

(b) Mean error variance of HMM acceleration
estimates generated using true position (left)
and estimated position (right).

Figure 5.36: Mean error and error variance of HMM acceleration estimates generated for
Maneuver 3.

(a) Mean error of HMM jerk estimates gener-
ated using true position (left) and estimated
position (right).

(b) Mean error variance of HMM jerk estimates
generated using true position (left) and esti-
mated position (right).

Figure 5.37: Mean error and error variance of HMM jerk estimates generated for Maneuver
3.

Maneuver 4

The mean error of the HMM acceleration estimates produced from Maneuver 4, as

well as the error variance, is shown in Figure 5.38. The estimates generated from reference

position or estimated position are indistinguishable in their mean error and error variance

plots. Likewise the error of HMM jerk estimates are similar whether generated from reference

or EKF position, as seen in Figure 5.39.
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(a) Mean error of HMM acceleration estimates
generated using true position (left) and esti-
mated position (right).

(b) Mean error variance of HMM acceleration
estimates generated using true position (left)
and estimated position (right).

Figure 5.38: Mean error and error variance of HMM acceleration estimates generated for
Maneuver 4.

(a) Mean error of HMM jerk estimates gener-
ated using true position (left) and estimated
position (right).

(b) Mean error variance of HMM jerk estimates
generated using true position (left) and esti-
mated position (right).

Figure 5.39: Mean error and error variance of HMM jerk estimates generated for Maneuver
4.

5.3.2 Estimates Generated From Simulation Data Trained HMM

Figure 5.40 shows an example of simulation trained HMM acceleration and jerk esti-

mates for Maneuver 1. These estimates were generated using position reference data – not

simulated data. The estimates are in orange while the reference data is in blue. The HMM

estimates clearly filter much of the data, but are able to capture the general shape of the

acceleration and jerk. Note that the HMM estimate of a3 lags behind the reference, unlike

estimates of a1 and a2. This could be the result of an inherent bias of the HMM’s emission

probability or an inconsistency resulting from the use of noisy and highly variable data.
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(a) Example simulation trained HMM acceler-
ation estimates compared to reference.

(b) Example simulation trained HMM jerk es-
timates compared to reference.

Figure 5.40: Acceleration and jerk estimates generated from Maneuver 1’s simulation trained
HMM.

Figure 5.41 shows the acceleration and jerk estimates of Maneuver 3’s simulation trained

HMM when given reference positions of Maneuver 3. The estimates are once again capable

of filtering most noise from the reference data. Some information seems to be lost in the

estimates, such as the spike in a1 near eight seconds or the oscillations in a2 at the end of

the trajectory. It’s difficult to evaluate whether the jerk estimates capture the trends of the

reference jerk, as the reference is noisy. There is some offset between estimate and reference,

particularly for j2, but overall the estimates are reasonable.

(a) Example simulation trained HMM acceler-
ation estimates compared to reference.

(b) Example simulation trained HMM jerk es-
timates compared to reference.

Figure 5.41: Acceleration and jerk estimates generated from Maneuver 3’s simulation trained
HMM.

The acceleration and jerk estimates of Maneuver 4’s simulation trained HMM is shown

in Figure 5.42. These estimates were generated using reference position and are compared
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to the reference jerk and acceleration for the given maneuver. Maneuver 4’s HMM estimates

follow the reference well. In the case of a1 and a3, the magnitude of the estimates is less

than that of the reference, but the general movement is still captured.

(a) Example simulation trained HMM acceler-
ation estimates compared to reference.

(b) Example simulation trained HMM jerk es-
timates compared to jerk.

Figure 5.42: Acceleration and jerk estimates generated from Maneuver 4’s simulation trained
HMM.

Maneuver 1

The mean error and error variance of acceleration estimates generated by the simulation

trained Maneuver 1 HMM are shown in Figure 5.43. The figure displays the mean error and

error variance for estimates created using reference position and estimated position. The

difference in error little difference in the two types of estimates. In both cases, there is error

in acceleration estimates throughout the trajectory indicative of estimation lag. The error

variance is small in the beginning of the trajectory, but at twenty to twenty-five seconds, the

variance begins to grow.
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(a) Mean error of simulation trained HMM ac-
celeration estimates generated using reference
position (left) and estimated position (right).

(b) Mean error variance of simulation trained
HMM acceleration estimates generated using
reference position (left) and estimated position
(right).

Figure 5.43: Mean error and error variance of simulation trained HMM acceleration estimates
generated for Maneuver 1.

Figure 5.44 shows the mean error and error variance of jerk estimates from Maneuver

1’s simulation trained HMM. j3 maintains a mean error near zero, while j1 and j2 estimates

produce error in the initial moments of the maneuver. All of the jerk estimates’ error

variances are consistent throughout the trajectory. j3 has the highest error variance overall.

(a) Mean error of simulation trained HMM
jerk estimates generated using reference posi-
tion (left) and estimated position (right).

(b) Mean error variance of HMM jerk estimates
generated using reference position (left) and es-
timated position (right).

Figure 5.44: Mean error and error variance of simulation trained HMM jerk estimates gen-
erated for Maneuver 1.

Maneuver 3

Figure 5.45 shows the mean error and error variance of HMM acceleration estimates. A

simulation trained HMM was used to generate these estimates using real world reference data

or estimated reference data. The mean error and error variance is consistent for estimates

generated from reference or estimated data. Throughout the maneuver, the acceleration
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estimates have high error. The error variance remains consistent for the first half of the

trajectory before slowly increasing throughout the second half of the trajectory.

(a) Mean error of simulation trained HMM ac-
celeration estimates generated using reference
position (left) and estimated position (right).

(b) Mean error variance of simulation trained
HMM acceleration estimates generated using
reference position (left) and estimated position
(right).

Figure 5.45: Mean error and error variance of simulation trained HMM acceleration estimates
generated for Maneuver 3.

Mean error and error variance of HMM jerk estimates are shown in Figure 5.46. Both

j2 and j3 have a mean error near zero – although the error is noisy. The mean error of

j1 contains some biases, but remains low. Jerk estimate error variances remain consistent

until the final stages of flight, much like the acceleration error variances. Once again, there

is little difference between estimates generated from reference position and those generated

from estimated reference position.

(a) Mean error of simulation trained HMM
jerk estimates generated using reference posi-
tion (left) and estimated position (right).

(b) Mean error variance of simulation trained
HMM jerk estimates generated using reference
position (left) and estimated position (right).

Figure 5.46: Mean error and error variance of simulation trained HMM jerk estimates gen-
erated for Maneuver 3.
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Maneuver 4

Maneuver 4’s simulation trained HMM was used to generate estimated acceleration and

jerk from reference position and estimated reference position. The mean error and error

variance of the acceleration estimates are shown in Figure 5.47. The error variance remains

consistent for most of the maneuver.

(a) Mean error of simulation trained HMM ac-
celeration estimates generated using reference
position (left) and estimated position (right).

(b) Mean error variance of simulation trained
HMM acceleration estimates generated using
reference position (left) and estimated position
(right).

Figure 5.47: Mean error and error variance of simulation trained HMM acceleration estimates
generated for Maneuver 4.

The mean error and error variance of Maneuver 4’s jerk estimates are shown in Figure

5.48. The mean error for all jerk directions remains near zero, while the jerk variance is

consistent throughout the trajectory.

(a) Mean error of simulation trained HMM
jerk estimates generated using reference posi-
tion (left) and estimated position (right).

(b) Mean error variance of simulation trained
HMM jerk estimates generated using reference
position (left) and estimated position (right).

Figure 5.48: Mean error and error variance of simulation trained HMM jerk estimates gen-
erated for Maneuver 4.
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5.4 EKF + HMM Results

The following section presents results of the EKF+HMM when using experimental data

as an input to the system. The section will compared EKF+HMM performance when using

simulation data trained HMMs and experimental data trained HMMs. Process noise for each

filter and radar position were kept constant for each run.

For each maneuver, each of the five test trajectories were estimated with the EKF+HMM

that uses HMMs trained from experimental reference data. The sum of state estimation error

over each run was found and used as the total state estimation error. Scenario 1A represents

the trajectory that had the lowest total state estimation error, while Scenario 2A shows the

trajectory that had the highest total state estimation error for the EKF+HMM. The results

of both scenarios are shown and compared to a standard EKF. The same trajectories are

used to test the EKF+HMM that uses HMMs trained from simulated data. These results are

referred to as Scenario 1B and 2B. Once again these results will be compared to a standard

EKF.

5.4.1 Maneuver 1

Scenario 1A - Experimental Data Trained HMM

In Scenario 1, the EKF+HMM had a classification accuracy over time of 80%. The

confidence in each HMM throughout classification is shown in Figure 5.49. Each maneuver

HMM has a low initial confidence. Maneuver 1 begins to fully distinguish itself at about 11

seconds.
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Figure 5.49: Maneuver 1: Confidence of classification over time.

The results of the EKF and EKF+HMM estimating UAV states throughout Maneuver 1

is shown in Figure 5.50. At 11 seconds, when the EKF+HMM begins to use HMM estimates,

the clear distinction between EKF and EKF+HMM estimation can be seen. Both the EKF

and EKF+HMM have lag in their estimation. This is especially evident in Figure 5.50b.

When estimating acceleration, both filter noise in the reference data.
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(a) Position estimation of Maneuver 1 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 1 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 1 with
EKF and EKF+HMM.

Figure 5.50: Maneuver 1 UAV state estimation - Scenario 1A.

The EKF and EKF+HMM state errors are compared in Figure 5.51. Although the

EKF+HMM provides HMM estimates to the EKF+HMM for over half of the maneuver,

little difference is seen between the EKF and EKF+HMM. It could be that Maneuver 1 is

not dynamic enough to need the additional information from HMM estimates of acceleration

and jerk. The state errors show that, at the least, the HMM estimates are not detrimental

to the UAV state estimation.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.51: Comparison of state errors for EKF and EKF+HMM.

The variance over time for each state in the EKF+HMM is displayed in Figure 5.52.

When the EKF switches to the EKF+HMM, the acceleration variances become constant as

they are no longer updated with acceleration state information.
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Figure 5.52: Variance of EKF+HMM states over time

Scenario 1B - Simulation Data Trained HMM

The same trajectory was then estimated with an EKF+HMM that used HMMs trained

with simulated data. The classification accuracy over time of the classifier was 72.47%. This

is slightly less that seen in Scenario 1A. Figure 5.53 shows the classification confidence over

time for the trajectory.

Figure 5.53: Maneuver 1: Confidence of classification over time using simulation trained
HMM.

Estimation of the trajectory is shown in Figure 5.54. The EKF+HMM begins using

HMM estimates around 13 seconds. In comparison to Scenario 1A, there is more offset error

in acceleration estimation of a3. Compared the standard EKF, the EKF+HMM filters more
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noise and disturbances, particularly in the acceleration estimation, but has roughly the same

amount of lag as the EKF.

(a) Position estimation of Maneuver 1 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 1 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 1 with
EKF and EKF+HMM.

Figure 5.54: Maneuver 1 UAV state estimation - Scenario 1B.

The state error of both the EKF and EKF+HMM are displayed in Figure 5.55. The

EKF and EKF+HMM have similar error over time for most states. However, state error is

greater for the EKF+HMM than the EKF when estimating acceleration states and v1. The

state variances of the EKF+HMM are shown in Figure 5.56.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.55: Comparison of state errors for EKF and EKF+HMM using simulation trained
HMM.
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Figure 5.56: Variance of EKF+HMM states over time

Scenario 2A - Experimental Data Trained HMM

Scenario 2 shows the results of the Maneuver 1 test trajectory that had the greatest

state error for the EKF+HMM. This maneuver had a classification accuracy over time of

91.33%. Confidence in each maneuver HMM throughout classification is shown in Figure

5.57.

Figure 5.57: Maneuver 1: Confidence of classification over time.

Estimation of each state by the EKF and EKF+HMM is shown in Figure 5.58. This

trajectory has reference states that are noisier than Scenario 1. An interesting difference is

created between the EKF and EKF+HMM, where the EKF primarily attempts to follow

the noise and disturbances when estimating a1 and a2, while the EKF+HMM filters most
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of the noise. Because the reference states are found from sensor measurements, it is difficult

to know which filter is making the “right choice”. Note also that both filters still have lag

when estimating UAV states.

(a) Position estimation of Maneuver 1 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 1 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 1 with
EKF and EKF+HMM.

Figure 5.58: Maneuver 1 UAV state estimation - Scenario 2A.

The state error over time of both filters (Figure 5.59) remains similar for each state.

The EKF+HMM has slightly less noisy estimates of a1 and a2, while having increased error

for v1 and v2. Still, these differences are small and do not make a discernible difference.

Figure 5.60 shows the variance of each EKF+HMM state, which follows similar trends to

Figure 5.52.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.59: Comparison of state errors for EKF and EKF+HMM.

Figure 5.60: Variance of EKF+HMM states over time
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Scenario 2B - Simulation Data Trained HMM

In Scenario 2B, the maneuver had a classification accuracy over time of 74.47%. The

confidence of each simulation trained HMM over time is shown in Figure 5.61. The maneuver

is classified early in its trajectory – meaning HMM estimates are used for much of the

estimation process.

Figure 5.61: Maneuver 1: Confidence of classification over time using simulation trained
HMM.

Figure 5.62 shows the EKF and EKF+HMM estimation of a Maneuver 1 trajectory.

The EKF+HMM filters more noise and disturbance than the EKF. EKF+HMM estimation

results are very similar to those seen in Scenario 2A when using experimental data trained

HMMs. The greatest difference between EKF+HMM estimates in Scenario 2A and 2B is

the increase of a3 estimation error in Scenario 2B.
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(a) Position estimation of Maneuver 1 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 1 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 1 with
EKF and EKF+HMM.

Figure 5.62: Maneuver 1 UAV state estimation - Scenario 2B.

The state errors over time of the EKF and EKF+HMM are compared in Figure 5.63.

The EKF and EKF+HMM are overall quite similar. However, EKF+HMM acceleration and

velocity errors are slightly more than that of the EKF – likely because of erroneous HMM

estimates. The state variance of the EKF+HMM is shown in Figure 5.64. They are similar

to that of Scenario 2B.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.63: Comparison of state errors for EKF and EKF+HMM using simulation trained
HMM.
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Figure 5.64: Variance of EKF+HMM states over time

5.4.2 Maneuver 3

Scenario 1A - Experimental Data Trained HMM

The “best case” EKF+HMM estimation of Maneuver 3 is discussed in this section. The

classification accuracy over time was 66.67%. As shown in Figure 5.65, high confidence in

the maneuver was not found until after 10 seconds.

Figure 5.65: Maneuver 3: Confidence of classification over time.

Figure 5.66 shows the EKF and EKF+HMM state estimation of the UAV throughout

Maneuver 3. The position and velocity estimates of both filters are quite similar, although
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the EKF is noisier at times. Like Scenario 2A in Maneuver 1, the EKF+HMM attenuates

more noise than the EKF.

(a) Position estimation of Maneuver 3 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 3 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 3 with
EKF and EKF+HMM.

Figure 5.66: Maneuver 3 UAV state estimation - Scenario 1A.

The errors of each filter state estimate is shown in Figure 5.67. Position estimation

errors are nearly identical for both filters. When estimating velocity, the EKF+HMM has

more error in the estimation of v2, but comparable error for v1 and v3. When estimating

acceleration, the EKF+HMM estimates are less noisy, but overall follow very closely with

the EKF errors. The variance of each EKF+HMM state throughout the UAV maneuver is

depicted in Figure 5.68.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.67: Comparison of state errors for EKF and EKF+HMM.

Figure 5.68: Variance of EKF+HMM states over time
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Scenario 1B - Simulation Data Trained HMM

When using simulation trained HMMs, the classification accuracy over time of the same

trajectory for Maneuver 3 was 49.56%. Figure 5.69 shows the confidence of each model

over time for the maneuver. The classifier required more time and observations to have a

confident classification.

Figure 5.69: Maneuver 3: Confidence of classification over time using simulation trained
HMM.

State estimation of the trajectory using the EKF and EKF+HMM is shown in Figure

5.70. The EKF+HMM estimates are extremely similar to the EKF+HMM estimates in

Scenario 1A. The greatest difference between the two is the time taken for HMM estimates

to be used. Because the simulation trained HMMs have such a low classification accuracy

over time, HMM estimates are not incorporated into the EKF+HMM until later in the

trajectory.
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(a) Position estimation of Maneuver 3 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 3 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 3 with
EKF and EKF+HMM.

Figure 5.70: Maneuver 3 UAV state estimation - Scenario 1B.

The state error over time for the EKF and EKF+HMM is shown in Figure 5.71. Once

again, the EKF+HMM has greater error than the EKF for estimates of v2 and a2, but all

other estimates remain comparable to the EKF. The state variance of the EKF+HMM over

time is shown in Figure 5.72.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.71: Comparison of state errors for EKF and EKF+HMM using simulation trained
HMM.
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Figure 5.72: Variance of EKF+HMM states over time

Scenario 2A - Experimental Data Trained HMM

The “worst case” Maneuver 3 trajectory had a classification accuracy over time of

63.33%. The confidence in each maneuvers’ HMM is shown in Figure 5.73.

Figure 5.73: Maneuver 3: Confidence of classification over time.

The UAV states were estimated with the EKF and the EKF+HMM, as seen in Figure

5.74. Both filters have high error when estimating the velocity components v1 and v3.

The acceleration estimates of the EKF and EKF+HMM are similar, but the EKF+HMM

attenuates more changes in acceleration than the EKF.
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(a) Position estimation of Maneuver 3 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 3 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 3 with
EKF and EKF+HMM.

Figure 5.74: Maneuver 3 UAV state estimation - Scenario 2A.

The comparison of EKF and EKF+HMM errors (Figure 5.75) shows similar errors

for both filters. There is high error in position and velocity estimates, while acceleration

estimate errors are noisy but near zero-mean. The EKF+HMM acceleration estimate error

is less noisy than that of the EKF. Figure 5.76 shows the variance of each state for the

EKF+HMM.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.75: Comparison of state errors for EKF and EKF+HMM.

Figure 5.76: Variance of EKF+HMM states over time
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Scenario 2B - Simulation Data Trained HMM

The confidence over time when classifying this maneuver with simulation trained HMMs

is shown in Figure 5.77. The classification accuracy over time of the trajectory was 51.07%,

which is less than that of the experimental data trained HMM.

Figure 5.77: Maneuver 3: Confidence of classification over time using simulation trained
HMM.

The EKF and EKF+HMM estimation results are shown in Figure 5.78. Like in Scenario

2A, both the EKF and EKF+HMM have high error in estimating v1 and v3. The EKF+HMM

results of Scenario 2B is similar to those of 2A except that the incorporation of HMM

estimates begins later in Scenario 2B.
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(a) Position estimation of Maneuver 3 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 3 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 3 with
EKF and EKF+HMM.

Figure 5.78: Maneuver 3 UAV state estimation using simulation trained HMM in
EKF+HMM.

The EKF and EKF+HMM estimation results are further shown in their state errors

over time (Figure 5.79). The EKF+HMM has slightly less noisy acceleration estimate error,

while having slightly higher or similar velocity error. The state variances of the EKF+HMM

are displayed in Figure 5.80.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.79: Maneuver 3 UAV state estimation - Scenario 2B.
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Figure 5.80: Variance of EKF+HMM states over time

5.4.3 Maneuver 4

Scenario 1A - Experimental Data Trained HMM

The results for the Maneuver 4 trajectory that produces the best EKF+HMM estimates

(when using an experimental data trained HMM) are shown in this section. Figure 5.81

depicts the confidence of each maneuver’s HMM throughout UAV flight. The maneuver had

a classification accuracy over time of 82%.

Figure 5.81: Maneuver 4: Confidence of classification over time.

Figure 5.82 shows UAV state estimation using the EKF and EKF+HMM. Both fil-

ters have lag when estimating the velocity states. However, the EKF+HMM more clearly
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differs from the EKF in estimating the acceleration states. The EKF follows many of the

disturbances seen in the acceleration reference states, while the EKF+HMM filters most out.

(a) Position estimation of Maneuver 4 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 4 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 4 with
EKF and EKF+HMM.

Figure 5.82: Maneuver 4 UAV state estimation - Scenario 1A.

The estimation error of the EKF and EKF+HMM are compared in Figure 5.83. For the

most part, the EKF and EKF+HMM errors are almost indistinguishable. However, some

slight improvements in estimating a1 can be seen towards the end of the maneuver when

using the EKF+HMM. The EKF+HMM state variances are shown in Figure 5.84.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.83: Comparison of state errors for EKF and EKF+HMM.

Figure 5.84: Variance of EKF+HMM states over time
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Scenario 1B - Simulation Data Trained HMM

The same trajectory was then estimated using an EKF+HMM that utilizes simulation

data trained HMMs. The maneuver was correctly classified as Maneuver 4 with a classifi-

cation accuracy over time of 48.74%. The confidence of each HMM over time is shown in

Figure 5.85.

Figure 5.85: Maneuver 4: Confidence of classification over time using simulation trained
HMM.

Figure 5.86 shows the EKF and EKF+HMM state estimates throughout the maneuver.

HMM estimates are not used in the EKF+HMM until t = 25 seconds. When the HMM

estimates are used, v3 and a3 EKF+HMM estimates become more offset than that of the

EKF, while a2 is more able to follow the reference.
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(a) Position estimation of Maneuver 4 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 4 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 4 with
EKF and EKF+HMM.

Figure 5.86: Maneuver 4 UAV state estimation - Scenario 1B.

The state error of the EKF and EKF+HMM are shown in Figure 5.87. Position estimate

errors are similar between the two filters. However, the EKF+HMM performs worse than the

EKF for all velocity and acceleration estimates except v1 and a2. Note that this EKF+HMM

is using estimates generated from a simulation trained HMM. The state variances of the

EKF+HMM are shown in Figure 5.88.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.87: Comparison of state errors for EKF and EKF+HMM using simulation trained
HMM.
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Figure 5.88: Variance of EKF+HMM states over time

Scenario 2A - Experimental Data Trained HMM

This trajectory of Maneuver 4 had a classification accuracy over time of 83.33%. The

confidence of each HMM during this classification is shown in Figure 5.89. EKF and

EKF+HMM estimation of the UAV states throughout this maneuver is shown in Figure

5.90. Both the EKF and EKF+HMM show ineffective estimation of velocity state. When

estimating acceleration, the filters produce similar results for a1 and a2. When estimating

a3, the EKF+HMM underestimates the state while the EKF does not.

Figure 5.89: Maneuver 4: Confidence of classification over time.
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(a) Example run of the worst position estimates
of Maneuver 4.

(b) Example run of the worst velocity estimates
of Maneuver 4.

(c) Example run of the worst acceleration esti-
mates of Maneuver 4.

Figure 5.90: Maneuver 4 UAV state estimation - Scenario 2A.

The state estimation errors of the EKF and EKF+HMM are displayed in Figure 5.91.

The position and velocity estimates of the filters remain near identical. Acceleration esti-

mates differ slightly, particularly when estimating a1 and a3. The EKF+HMM has lower

estimation error for a1 than the EKF. However, EKF+HMM a3 error is increased for the

final 10 seconds of the maneuver. The variance of the EKF+HMM states over time is shown

in Figure 5.92.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.91: Comparison of state errors for EKF and EKF+HMM.

Figure 5.92: Variance of EKF+HMM states over time
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Scenario 2B - Simulation Data Trained HMM

The same trajectory as Scenario 2A was estimated using an EKF+HMM with simulation

trained HMMs. The classification accuracy over time of the trajectory was 40%, and the

confidence over time of each model is seen in Figure 5.93. Note that there is an initial

misclassification of the trajectory as Maneuver 3.

Figure 5.93: Maneuver 4: Confidence of classification over time using simulation trained
HMM.

EKF and EKF+HMM estimation of the maneuver is shown in Figure 5.94. The

EKF+HMM performs considerably worse than the EKF for all states. From thirty to

thirty-five seconds, the EKF+HMM estimates are all offset from the reference. This in-

dicates erroneous HMM estimates are worsening the EKF+HMM’s ability to estimate the

trajectory.
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(a) Position estimation of Maneuver 4 with
EKF and EKF+HMM.

(b) Velocity estimation of Maneuver 4 with
EKF and EKF+HMM.

(c) Acceleration estimation of Maneuver 4 with
EKF and EKF+HMM.

Figure 5.94: Maneuver 4 UAV state estimation - Scenario 2B.

Figure 5.95 shows the state errors of the EKF and EKF+HMM. Towards the end of

the trajectory when the EKF+HMM begins using HMM estimates, the EKF+HMM errors

become much greater than that of the EKF for velocity and acceleration. This was not the

case in Scenario 2A – suggesting that these errors are the result of incorrect acceleration and

jerk estimates from the simulation trained HMM only. Figure 5.96 shows the state variance

over time of the EKF+HMM.
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(a) Position error: EKF (left) and EKF+HMM
(right)

(b) Velocity error: EKF (left) and EKF+HMM
(right)

(c) Acceleration error: EKF (left) and
EKF+HMM (right)

Figure 5.95: Comparison of state errors for EKF and EKF+HMM using simulation trained
HMM.
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Figure 5.96: Variance of EKF+HMM states over time

5.5 Conclusion

An octacopter was used to perform four maneuvers and create an experimental data

set of 15 maneuvers each. Despite having a much smaller training data set than used in

simulation (10 trajectories versus 1700), HMMs were trained for 3 of the 4 maneuvers using

experimental data. One maneuver, Maneuver 2, was not modelled and instead used as an

unknown. The maneuvers were also modelled in simulation. The simulated data set was

used to train another set of HMMs. The experimental data trained HMMs and simulation

data trained HMMs were compared.

For classification, both sets of HMMs were capable of classifying real-world reference

data and estimates of the reference data. The experimental data trained HMMs had superior

final classification accuracy and mean accuracy over time for known maneuvers, but the

simulation data trained HMMs maintained adequate classification accuracy results. Overall,

both experimental data trained and simulation data trained HMMs proved to be viable

options for classification of real world maneuvers.

Both types of maneuver HMMs were also used to generate HMM estimates of acceler-

ation and jerk. These estimates were capable of filtering process noise out and finding the
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general trend of the reference data. The estimation performance of the experimental data

trained HMMs was found to be superior to that of the simulation trained HMMs.

Then, an EKF+HMM estimated UAV states as the vehicle performed each maneu-

ver – once using the experimental data trained HMM and once using the simulation data

trained HMM. These estimates were compared to a standard EKF. For the experimental

data trained HMM, the EKF+HMM generally did not make state estimates worse than the

EKF, but it also did not make them better. When using the EKF+HMM with simulation

data trained HMMs, the EKF+HMM performed at the same level as the EKF or worse

than the EKF. Often estimates from the simulation trained HMM decreased the accuracy

of the EKF+HMM. These results suggest that future work should focus primarily on the

EKF+HMM using HMMs that have been trained with experimental data.

Because the reference data was created from less than perfect measurements, it is diffi-

cult to truly gauge the effectiveness of the EKF+HMM filter when compared to a standard

EKF. Both experienced lag when estimating UAV states and had difficulty producing zero-

mean estimation error. The greatest difference in the two filters is that the EKF+HMM

often attenuated process noise and disturbances in the acceleration states, while the EKF

was more likely to attempt to estimate these aspects of the acceleration. Future work

should focus on creating better experimental reference data to better compare the EKF and

EKF+HMM. Furthermore, performing more dynamic maneuvers with the octacopter could

create a dataset where a standard EKF is insufficient, allowing for greater ability to view

the improvements or failures of the EKF+HMM by comparison.

219



Chapter 6

Conclusion

This thesis presented a system that utilizes HMM estimates to supplement EKF estima-

tion during a maneuver. Chapter 2 describes UAV modelling and simulation and establishes

a baseline EKF to estimate the linear position, velocity, and acceleration of the UAV. The

EKF was evaluated when estimating several UAV maneuvers. Chapter 3 explains how UAV

maneuvers can be modelled as HMMs and describes the additional information HMMs can

provide through classification and the generation of HMM estimates. Chapter 4 provides the

architecture of the EKF+HMM and uses simulation to evaluate the EKF+HMM when com-

pared to the baseline EKF. Finally, Chapter 5 implements the EKF, HMMs, and EKF+HMM

on real world data and compares the effectiveness of an experimental data training set and

a simulation data training set.

HMMs were shown to be an effective way to model UAV maneuvers. In both simulation

and with real-world data, HMMs were capable of being trained using true UAV states (even

when there was minimal data in the case of the real world maneuvers). HMMs were then

utilized for classification by determining the maneuver model most likely to produce a series

of UAV states and finding the confidence measure of the classification. HMM classification

remained accurate even when using UAV state estimates as observations rather than true

states. Classification was also accurate when HMMs were trained on simulated data, but

tested on real world data.

HMMs also provided estimates of the UAV acceleration and jerk during a maneu-

ver. This process involves finding the HMM state path and emission probability, and then

performing a Gaussian Mixture Regression with the UAV position. HMM estimates did
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have some error, but overall they were able to follow the non-linear and sometimes non-

differentiable true acceleration and jerk.

The HMM was then combined with an EKF to create the EKF+HMM. This system

classifies maneuvers using EKF estimates of UAV states and the HMM confidence measure

classifier. The HMM of the classified maneuver was then used to generate acceleration and

jerk estimates that were input into the dynamic model of the EKF+HMM. The EKF+HMM

aimed to create a better predictive model than the constant acceleration model used in the

baseline EKF.

In simulation, the EKF+HMM was capable of improving UAV state estimation during

high dynamic maneuvers when compared to the EKF. Although some error is introduced

in the EKF+HMM through HMM estimates, these errors are much less than that of the

EKF. During a maneuver with lower dynamics (Maneuver 4), the EKF is capable of more

accurate estimation. For this maneuver, the EKF+HMM performed similar to the EKF and

at times worse. Errors created from HMM estimates were greater than the EKF errors and

caused degraded performance of the EKF. Overall, the EKF+HMM is an effective tool in

estimating high dynamic maneuvers, but it is limited by the quality of the maneuver HMM

parameters.

When using experimental data, the EKF+HMM was tested using HMMs trained with

experimental data and HMMs trained with simulation data. When using experimental data

trained HMMs, the EKF+HMM typically performed on par with the EKF. The EKF was

more likely to estimate disturbances and noise – particularly when estimating acceleration.

In contrast, the EKF+HMM often attenuated these disturbances. When simulation data

trained HMMs were used in the EKF+HMM, the EKF+HMM tended to perform at the same

level or worse than the EKF. Because the experimental data was quite noisy, UAV reference

states are not necessarily the most accurate states. Therefore, it is difficult to evaluate which

approach was more effective. Future experimentation should focus on ensuring accurate and

precise UAV reference data.
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6.1 Future Work

There are several interesting directions this work could be taken in in the future. A few

possibilities are listed below.

• The most concrete need is better experimental data of the UAV maneuvers through

improved sensors and experimentation techniques. Better reference data could provide

a more comprehensive comparison between the EKF and EKF+HMM when estimating

real-world data.

• Real world performance of more dynamic maneuvers would provide additional oppor-

tunities to assess the effectiveness of the EKF+HMM. In cases with highly variable

acceleration and jerk, the EKF+HMM is expected to perform better than a constant

acceleration EKF. Using a more maneuverable UAV for experimental data collection

and designing more complex maneuvers would create a better data set for EKF+HMM

evaluation.

• The EKF+HMM could also be improved through a process noise matrix that adapts to

the quality of HMM estimates. Creation of a system to better predict whether or not

an HMM estimate is valid and incorporating that information into the EKF+HMM

could greatly increase the accuracy of the EKF+HMM.

• UAV modelling and estimation is a fairly structured problem. HMMs could be eval-

uated for systems with less structure and incorporated into something like a particle

filter. An interesting application that comes to mind is navigation with a magnetome-

ter.

• The HMM classification system already identifies unknown maneuvers. An interesting

next step would be to save the data of each unknown maneuver, group like maneuvers

together, and attempt to create HMMs of unknown maneuvers when “in the field.”
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K-fold cross validation could be used to evaluate the number of trajectories needed to

train a robust HMM for an unknown trajectory.

• Currently, HMM estimates are generated using position estimates of the maneuver.

Potential future work could explore generating estimates about time in order to aid in

trajectory prediction, as seen in [21].
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Appendix A

Basic EKF Results

The following chapter provides initial results of the basic EKF used in this thesis, as

seen in Section 2.3. A constant velocity (A.1), constant acceleration (A.2), and constant jerk

(A.3) model were used to simulate a vehicle. Then, the vehicle’s linear position, velocity,

and acceleration is estimated with the EKF. A Monte Carlo simulation was performed for

each scenario. The resulting mean error and error variance were found.
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A.1 Constant Velocity Model

(a) EKF position estimates of the constant ve-
locity model.

(b) EKF velocity estimates of the constant ve-
locity model.

(c) EKF acceleration estimates of the constant
velocity model.

Figure A.1: An example of the EKF estimating the states of a vehicle with a constant
velocity dynamic model.
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(a) Mean error of position estimates from
Monte Carlo

(b) Mean error of velocity estimates from
Monte Carlo

(c) Mean error of velocity estimates from Monte
Carlo

Figure A.2: Mean Monte Carlo state errors over time when estimating the states of a vehicle
with a constant velocity dynamic model.
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(a) Comparison of Monte Carlo position error
variance (left) and EKF variance (right)

(b) Comparison of Monte Carlo velocity error
variance (left) and EKF variance (right)

(c) Comparison of Monte Carlo acceleration er-
ror variance (left) and EKF variance (right)

Figure A.3: Comparison of Monte Carlo state error variance and calculated EKF variance.
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A.2 Constant Acceleration Model

(a) Position estimates of constant acceleration
model.

(b) Comparison Velocity estimates of constant
acceleration model.

(c) Acceleration estimates of constant acceler-
ation model.

Figure A.4: An example of the EKF estimating the states of a vehicle with a constant
acceleration dynamic model.
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(a) Mean error of position estimates from
Monte Carlo

(b) Mean error of velocity estimates from
Monte Carlo

(c) Mean error of velocity estimates from Monte
Carlo

Figure A.5: Mean Monte Carlo state errors over time when estimating the states of a vehicle
with a constant acceleration dynamic model.
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(a) Comparison of Monte Carlo position error
variance (left) and EKF variance (right)

(b) Comparison of Monte Carlo velocity error
variance (left) and EKF variance (right)

(c) Comparison of Monte Carlo acceleration er-
ror variance (left) and EKF variance (right)

Figure A.6: Comparison of Monte Carlo state error variance and calculated EKF variance.
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A.3 Constant Jerk Model

(a) Position estimates of constant jerk model.
(b) Comparison Velocity estimates of constant
jerk model.

(c) Acceleration estimates of constant jerk
model.

Figure A.7: An example of the EKF estimating the states of a vehicle with a constant jerk
dynamic model.
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(a) Mean error of position estimates from
Monte Carlo

(b) Mean error of velocity estimates from
Monte Carlo

(c) Mean error of velocity estimates from Monte
Carlo

Figure A.8: Mean Monte Carlo state errors over time when estimating the states of a vehicle
with a constant jerk dynamic model.
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(a) Comparison of Monte Carlo position error
variance (left) and EKF variance (right)

(b) Comparison of Monte Carlo velocity error
variance (left) and EKF variance (right)

(c) Comparison of Monte Carlo acceleration er-
ror variance (left) and EKF variance (right)

Figure A.9: Comparison of Monte Carlo state error variance and calculated EKF variance.
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Appendix B

HMM Classification of UAV Maneuvers - Truth data

The following sections shows individual trajectory classifications for simulated truth

data of UAV maneuvers.

B.1 Training Data

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure B.1: Log-likelihood for training data classification.
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(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure B.2: Confidence for training data classification.
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B.2 Test Data

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure B.3: Log-likelihood for testing data classification.
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(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure B.4: Confidence for training data classification.

(a) Maneuver 5 Log-likelihood. (b) Maneuver 5 Confidence.

Figure B.5: Maneuver 5 (unknown maneuver).
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Appendix C

HMM Classification of UAV Maneuvers - EKF data

The following sections shows individual trajectory classifications for simulated estimated

data of UAV maneuvers.

C.1 Training Data

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure C.1: Log-likelihood for train data classification (EKF sim).
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(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure C.2: Confidence for training data classification (EKF sim).
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C.2 Test Data

(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure C.3: Log-likelihood for testing data classification (EKF sim).
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(a) Maneuver 1 classification. (b) Maneuver 2 classification.

(c) Maneuver 3 classification. (d) Maneuver 4 classification.

Figure C.4: Confidence for test data classification (EKF sim).

(a) Maneuver 5 Log-likelihood. (b) Maneuver 5 Confidence.

Figure C.5: Maneuver 5 (unknown maneuver) (EKF sim).
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Appendix D

HMM Classification with Simulated Changing Maneuvers

The following section shows individual classification results of a scenario in which ma-

neuvers transition throughout flight.

D.1 Truth Data

(a) Scenario A classification. (b) Scenario B classification.

(c) Scenario C classification. (d) Scenario D classification.

Figure D.1: Average confidence of each HMM when classifying a maneuver switch at 3
seconds - truth data.

247



(a) Scenario A classification. (b) Scenario B classification.

(c) Scenario C classification. (d) Scenario D classification.

Figure D.2: Confidence of each HMM when classifying a maneuver switch at 8 seconds -
truth data.
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(a) Scenario A classification. (b) Scenario B classification.

(c) Scenario C classification. (d) Scenario D classification.

Figure D.3: Confidence of each HMM when classifying a maneuver switch at 13 seconds -
truth data.

249



D.2 EKF Data

(a) Scenario A classification. (b) Scenario B classification.

(c) Scenario C classification. (d) Scenario D classification.

Figure D.4: Confidence of each HMM when classifying a maneuver switch at 3 seconds -
estimated data.
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(a) Scenario A classification. (b) Scenario B classification.

(c) Scenario C classification. (d) Scenario D classification.

Figure D.5: Confidence of each HMM when classifying a maneuver switch at 8 seconds -
estimated data.
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(a) Scenario A classification. (b) Scenario B classification.

(c) Scenario C classification. (d) Scenario D classification.

Figure D.6: Confidence of each HMM when classifying a maneuver switch at 13 seconds -
estimated data.
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Appendix E

HMM Classification of Real World Data

The following sections shows classification results of individual trajectories for classifi-

cation of real-world data.

E.1 Experimental Data Trained HMM

E.1.1 Reference Data

Training Data

(a) Classification of Maneuver 1
reference training data.

(b) Classification of Maneuver 3
reference training data.

(c) Classification of Maneuver 4
reference training data.

Figure E.1: Confidence over time for each HMM during the classification process - reference
training data.
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Test Data

(a) Classification of Maneuver 1
reference testing data.

(b) Classification of Maneuver 3
reference testing data.

(c) Classification of Maneuver 4
reference testing data.

Figure E.2: Confidence over time for each HMM during the classification process - reference
test data.

Figure E.3: Confidence of each HMM when given an unknown maneuver - reference data.
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E.1.2 Estimated Data

Training Data

(a) Classification of Maneuver 1
estimated training data.

(b) Classification of Maneuver 3
estimated training data.

(c) Classification of Maneuver 4
estimated training data.

Figure E.4: Confidence over time for each HMM during the classification process - estimated
training data.

Test Data

(a) Classification of Maneuver 1
estimated testing data.

(b) Classification of Maneuver 3
estimated testing data.

(c) Classification of Maneuver 4
estimated testing data.

Figure E.5: Confidence over time for each HMM during the classification process - estimated
test data.
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Figure E.6: Confidence over time of each HMM when given an unknown maneuver - estimated
data.

E.2 Simulation Data Trained HMM

E.2.1 Training Data

(a) Classification of Maneuver 1
simulated training data.

(b) Classification of Maneuver 3
simulated training data.

(c) Classification of Maneuver 4
simulated training data.

Figure E.7: Confidence over time for each model - simulated training data.
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Figure E.8: Confidence of each HMM when given an unknown maneuver - Simulated Training
Data

E.2.2 Test Data

Reference Data

(a) Classification of Maneuver 1
reference data.

(b) Classification of Maneuver 3
reference data.

(c) Classification of Maneuver 4
reference data.

Figure E.9: Confidence over time using HMMs trained with simulated data - reference data.
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Figure E.10: Confidence of each HMM when given an unknown maneuver - reference data

Estimated Data

(a) Classification of Maneuver 1
estimated data.

(b) Classification of Maneuver 3
estimated data.

(c) Classification of Maneuver 4
estimated data.

Figure E.11: Confidence over time using simulation trained HMMs - estimated reference
data.
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Figure E.12: Confidence of each model when classifying an unknown maneuver - estimated
reference data.
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