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Abstract

Chemotaxis models are widely used to describe the movements of biological species or

living organisms in response to certain chemicals in their environments. This dissertation is

devoted to the study of various dynamical aspects of a parabolic-elliptic chemotaxis model in

shifting environments and a parabolic-parabolic chemotaxis model with logistic source on the

whole space.

Concerning parabolic-elliptic chemotaxis models in shifting environments, we study per-

sistence, spreading speeds and existence of forced waves in two different shifting environments.

In particular, in the case favorable environment and unfavorable environment are separated, we

prove that if the shifting speed of the environment is large, the biological species with com-

pactly supported initial distribution will die out in the long run; if the shifting speed of the

environment is not large, the species will persist and spread along the shifting habitat at a fixed

asymptotic spreading speed. We also prove that there is a forced wave with speed c which coin-

cides with the shifting speed of the environment connecting two points provided that c is large.

In the case favorable environment is surrounded by unfavorable environment, we show that if

the generalized principle eigenvalue of the linearized system at the trivial solution is positive,

the species will persist surrounding the good habitat; if the generalized principle eigenvalue is

negative and the degradation rate of the chemical substance is large, the species will become

extinct in the habitat. We also show that there is a forced wave connecting (0, 0) and (0, 0)

with the speed agreeing to the shifting speed of the environment provided that the chemotactic

sensitivity is sufficiently small and the generalized principle eigenvalue is positive. Some nu-

merical simulations are also carried out in both cases. The simulations indicate the existence

of forced wave solutions in some parameter regions which are not covered in the theoretical

results, induce several problems to be further studied, and also provide some illustration of the

theoretical results.
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Regarding parabolic-parabolic chemotaxis models with logistic source on the whole space,

we first prove the local existence and uniqueness of classical solutions for given initial func-

tions. We then prove the global existence and boundedness of classical solutions for given

initial functions under the assumption that the logistic damping is large relative to the prod-

uct of the chemotactic sensitivity and the production rate of the chemical substance. Next, we

study the asymptotic behavior of the global classical solutions with strictly positive initial func-

tions. We show that under further conditions on parameters, the nonnegative constant solution

is globally stable in some sense. Finally, we investigate the spreading speeds of global classical

solutions with nonempty compact supported initial functions and front like initial functions.

We prove that the spreading speed of such global classical solutions of the parabolic-parabolic

chemotaxis model with logistic source is the same as that of Fisher-KPP equation under the

same assumption of the existence of global classical solutions. Note that when there is no

chemotaxis, the parabolic-parabolic chemotaxis model reduces to famous Fisher-KPP equa-

tion. Hence, under the same assumption of the existence of global classical solutions, the

chemotaxis neither speeds up nor slows down the spatial spreading in the Fisher-KPP equation.

As a by-product of spreading speeds, we show that persistence phenomena occurs, that is, any

globally defined bounded classical solution with strictly positive initial function is bounded

below by a positive constant independent of its initial function when time is large.
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Chapter 1

Introduction

Chemotaxis is the directed movement of cells and organisms in response to chemical gradients

which can be found in various biological phenomena ranging from microscopic phenomena

to macroscopic phenomena such as cancer growth, embryo development, immune system re-

sponse, wound healing, neuron migration, finding the location for food, avoiding predators,

attracting mates, population dynamics, gravitational collapse, etc [11]. There are two types of

chemotaxis, positive chemotaxis and negative chemotaxis. Positive chemotaxis occurs if the

movement is toward a higher concentration of the chemical substance. Conversely, negative

chemotaxis occurs if the movement is in the opposite direction. The chemical substances that

lead to positive chemotaxis are called chemoattractants and those leading to negative chemo-

taxis are called chemorepellents.

Chemotaxis has been attracting increasing attention of biologists, ecologists, mathemati-

cians, and so on due to its important role in a wide range of biological phenomena such as the

aforementioned process. Mathematical models for chemotaxis date to the pioneering works

of Keller and Segel in the 1970s to describe the aggregation of the slime mold Dyctyostelium

discoideum [25, 26]. Since then, many mathematical models have been established for the

chemotaxis process. Such mathematical models are called chemotaxis models which are also

known for Keller-Segel models. The reader is referred to [3, 18, 19, 44] and the references

therein for some detailed introduction into the mathematics and applications of various chemo-

taxis models. For the recent developments on chemotaxis models, we refer the reader to a

survey paper [2].
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This dissertation is devoted to the study of various dynamical aspects of parabolic-elliptic

chemotaxis models in shifting environments and parabolic-parabolic chemotaxis models with

logistic source on the whole space.

1.1 Parabolic-elliptic chemotaxis models in shifting environments

In reality, the living environments of species may be shifted due to climate change, in partic-

ular, the global warming or the worsening of the environment resulting from industrialization

which lead to the shifting or translating of the habitat ranges [47]. It is of both biological and

mathematical interests to study chemotaxis models in shifting environments.

One of the main objective of this dissertation is to investigate the persistence, spreading

speeds and forced waves of the following parabolic-elliptic chemotaxis model in shifting envi-

ronments,


ut = ∆u− χ∇ · (u∇v) + u(r(x− ct)− bu), x ∈ R, t > 0,

0 = ∆v − λv + µu, x ∈ R, t > 0,

(1.1)

where χ, b, λ, and µ are positive constants, c ∈ R. In (1.1), u(t, x) and v(t, x) denote the

population densities of some biological species and chemical substance at time t and location

x, respectively; The term ∆u describes the movement of the biological species from the places

with higher population density to the places with lower population density following random

walk; the term χ∇ · (u∇v) characterizes the influence of chemical substance, that is, the bi-

ological species moves from the places with lower concentration of chemical substance to the

places with higher concentration of chemical substance when χ is positive measuring the sen-

sitivity effect on the biological species. c 6= 0 is the shifting speed of the environment and r(·)

is a sign changing function modeling the growth rate of the biological species. b is the logistic

damping or the self-limitation rate of the biological species. The second equation indicates that

the chemical substance diffuses via random walk very quickly and is produced over time by the

biological species at a rate of µ. The chemical substance degrades at a rate of λ.
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The shifting environments are incorporated into the sign changing function r(·). In partic-

ular, we will consider the following two different shifting environments:

Case 1. Favorable and unfavorable habitats are separated in the sense that r(x) is Hölder

continuous, the limits r(±∞) := limx→±∞ r(x) exist and are finite, and r(−∞) < 0 < r(∞),

r(−∞) ≤ r(x) ≤ r(∞), ∀x ∈ R.

Case 2. Favorable habitat is surrounded by unfavorable habitat in the sense that r(x) is Hölder

continuous, supx∈R r(x) > 0, the limits r(±∞) := limx→±∞ r(x) exist and are finite, and

r(±∞) < 0, min{r(∞), r(−∞)} ≤ r(x), ∀x ∈ R.

In Case 1, r(x − ct) divides the spatial domain into two regions: the region with good-

quality habitat suitable for growth {x ∈ R: r(x − ct) > 0} and the region with poor-quality

habitat unsuitable for growth {x ∈ R: r(x − ct) < 0}. The edge of the habitat suitable for

species growth is shifting at a speed c. In Case 2, r(x− ct) still divides the spatial domain into

two regions: one favorable for growth {x ∈ R: r(x− ct) > 0} and one unfavorable for growth

{x ∈ R: r(x− ct) < 0}. The favorable habitat is bounded and surrounded by the unfavorable

habitat. The favorable habitat is shifting at a speed c.

Among interesting population dynamical problems in (1.1) are whether the species with

compactly supported initial distribution can persist; whether the system (1.1) has so called

forced wave solutions; whether it spreads into larger and larger regions, if so, how fast it

spreads. A positive solution (u(t, x), v(t, x)) of (1.1) is called a forced wave solution if it

is defined for all t ∈ R, x ∈ R, and (u(t, x), v(t, x)) = (φ(x − ct), ψ(x − ct)) for some one

variable functions φ(·) and ψ(·). Biologically, forced waves describe the propagation of species

as a wave with a fixed shape and a fixed speed which coincides with the shifting speed of the

environment. There are many studies of (1.1) towards these dynamical problems in the case

without chemotaxis (χ = 0), that is,

ut = ∆u+ u(r(x− ct)− bu), x ∈ R, (1.2)

as well as various variants of (1.2).
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For example, in Case 1, Li et al. [34] studied (1.2). They proved that if c > c∗ = 2
√
r(∞),

then the species with compactly supported initial distribution will become extinct in the habitat,

and if 0 < c < c∗, the species will persist and spread along the shifting habitat at the asymptotic

spreading speed c∗. Recently, Hu and Zou [22] demonstrated that in the case b = 1, for any

given speed c > 0 of the shifting habitat edge, (1.2) admits a nondecreasing traveling wave

solution u(t, x) = φ(x− ct) connecting 0 and r(∞) (i.e. φ(−∞) = 0 and φ(∞) = r(∞)) with

the speed c agreeing to the habitat shifting speed, which accounts for an extinction wave. Very

recently, Wang and Zhao [64] obtained the uniqueness of the forced wave of (1.2) by using

the sliding technique and established the global exponential stability of the forced wave via the

monotone semiflows approach combined with the method of super- and subsolutions (see [64,

Theorem 2.3]).

In Case 2, Berestycki et al. [4] proposed to use the following reaction-diffusion equation

with a forced speed c > 0 to study the influence of climate change on the population dynamics

of biological species:

ut = uxx + f(x− ct, u), x ∈ R. (1.3)

A typical f considered in [4] is

f(x, u) =


au(1− u

K
), 0 ≤ x ≤ L,

−ru, x < 0 and x > L

for some positives constants a, r,K, L. They first considered this special case and derived an

explicit condition for the persistence of species by gluing phase portraits. Then they established

a strict qualitative dichotomy for a large class of models by the rigorous PDE methods. More

precisely, they showed that if ζ∞, defined to be the generalized principal eigenvalue of the

operator u→ uxx + cux + fu(x, 0)u on R, is less than or equal to zero, then (1.3) has no forced

wave solution and every positive solution of (1.3) converges to zero as t → ∞, uniformly in

x ∈ R. If ζ∞ > 0, (1.3) has a unique forced wave solution and every nontrivial positive solution

of (1.3) converges to this unique forced wave solution as t → ∞, uniformly in x ∈ R. For

other related works on persistence, spreading speeds and forced waves under different climate
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change for certain reaction-diffusion equations, nonlocal dispersal equations, lattice differential

equations, as well as integro-difference equations, we refer the readers to [5, 12, 21, 31, 32, 33,

35, 48, 62, 64] and the references therein.

In this dissertation, we study the spatial spreading dynamics of (1.1) with the presence of

the chemotaxis and shifting environments and obtain the persistence criteria, spreading speeds

and existence of forced wave solutions theoretically and numerically in both cases. Let r∗ =

supx∈R r(x), c∗ = 2
√
r∗ and ζ∞(r(·), c) be the generalized principle eigenvalue of the operator

u→ uxx + cux + r(x)u. Among others, we prove the following for (1.1).

(1) Persistence and spreading speeds in Case 1. Suppose that r(x) is as in Case 1, b > χµ,

b >
(
1 + 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ, and u0(x) is nonnegative, uniformly continuous, bounded and

has a nonempty compact support.

(i) If c > c∗, then the species will die out in the habitat.

(ii) If −c∗ ≤c < c∗, then the species will persist and spread along the shifting habitat

into larger and larger regions at the asymptotic spreading speed c∗.

(iii) If c < −c∗, then the species will persist and spread at the asymptotic spreading

speed c∗ (see Theorem 2.1 for details).

(2) Persistence and extinction in Case 2. Suppose that r(x) is as in Case 2, b >
(
1 +

1
2

(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ, and u0(x) is nonnegative, uniformly continuous, bounded and has a

nonempty compact support.

(i) If |c| > c∗, then the species will die out in the habitat.

(ii) If ζ∞(r(·), c) < 0 and λ ≥ (
√

8r∗+c2+|c|)2

4
, then the species will also die out in the

habitat.

(iii) If ζ∞(r(·), c) > 0, then the species will persist surrounding the good habitat (see

Theorem 2.3 for details).

(3) Existence of forced wave solutions in Case 1. Suppose that r(x) is as in Case 1, b >

2χµ and c > χµr∗

2
√
λ(b−χµ)

− 2
√

r∗(b−2χµ)
b−χµ , then there is a forced wave solution connecting

( r
∗

b
, µ
λ
r∗

b
) and (0, 0) (see Theorem 2.4 for details).

5



(4) Existence of forced wave solutions in Case 2. Suppose that r(x) is as in Case 2, b ≥
3
2
χµ and ζ∞(r(·), c) > 0. Then there exists a number χ0 = χ0(r(·), c) > 0 such that

for any 0 < χ < χ0, there is a forced wave solution connecting (0, 0) and (0, 0) (see

Theorem 2.5 for details).

We also do some numerical simulations for the existence of forced wave solutions to see

whether forced wave solutions still exist when the conditions in the theoretical results are not

satisfied (see section 2.6 for details).

1.2 Parabolic-parabolic chemotaxis models with logistic source on RN

Another main objective of this dissertation is to study several dynamical aspects of the follow-

ing parabolic-parabolic chemotaxis model with logistic source on RN :


ut = ∆u− χ∇ · (u∇v) + u(a− bu), x ∈ RN , t > 0

vt = ∆v − λv + µu, x ∈ RN , t > 0,

(1.4)

where χ, a, b, λ and µ are positive constants. System (1.4) also describes the evolution of a

biological species “u” in response to a chemical substance “v” in a large living environment.

In comparison with (1.1), the second equation in (1.4) indicates that the chemical substance

diffuses via random walk with a finite diffusion rate.

Among the central dynamical problems are the existence of nonnegative solutions of (1.4)

which are globally defined in time or blow up at a finite time and the asymptotic behavior of

global classical solutions such as persistence, spreading speeds and convergence as time goes

to infinity. These dynamical problems have been well investigated for (1.4) in the case without

chemotaxis (χ = 0). Observe that, in the absence of chemotaxis (i.e. χ = 0), (1.4) reduces to

the following reaction-diffusion equation

ut = ∆u+ u(a− bu), x ∈ RN . (1.5)
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Due to the pioneering works of Fisher [13] and Kolmogorov, Petrowsky, Piskunov [27] on

traveling wave solutions and take-over properties of (1.5), (1.5) is also referred to as the Fisher-

KPP equation. It is known that the dynamics of (1.5) is completely determined by the logistic

term u(a−bu). More precisely, for any given nonnegative initial function u0, (1.5) has a unique

global classical solution. It is known that u ≡ a
b

is the unique positive steady-state solution of

(1.5) and for any given strictly positive initial distribution u0(·), the solution u(t, x;u0) of (1.5)

with u(0, x;u0) = u0(x) converges to a
b
. It is also known that equation (1.5) has traveling wave

solutions u(t, x) = φ(x · ξ − ct)) (ξ ∈ SN−1) connecting a
b

and 0 (φ(−∞) = a
b
, φ(∞) = 0) of

all speeds c ≥ 2
√
a and has no such traveling wave solutions of slower speeds. For any given

bounded initial function u0 with nonempty compact support, the following is well known,

lim
t→∞

sup
|x|≥ct

u(t, x;u0) = 0 ∀ c > 2
√
a

and

lim
t→∞

sup
|x|≤ct

|u(t, x;u0)− a

b
| = 0 ∀ 0 < c < 2

√
a.

In literature, the number c∗0 := 2
√
a is called the spreading speed for (1.5) which was first

introduced by Aronson and Weinberger [1]. Biologically, spreading speeds can be understood

as the asymptotic rate at which a species, initially introduced in a bounded range, expands

its spatial range as time evolves, while traveling waves describe the propagation of species at

certain direction as a wave with a fixed shape and a fixed speed.

Consider chemotaxis models. Considerable progress has been made in the analysis of

various chemotaxis models towards these central dynamical problems on bounded domains.

For example, consider the following counterpart of (1.4) on a bounded domain with Neumann

boundary condition,


ut = ∆u− χ∇ · (u∇v) + u(a− bu), x ∈ Ω, t > 0

vt = ∆v − λv + µu, x ∈ Ω, t > 0

∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω.

(1.6)
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Chemotaxis model (1.6) is the so-called minimal model when a ≡ b ≡ 0. It is known that finite

time blow up may occur for the minimal model. For example, when Ω is a ball in RN with

N ≥ 3, then for all M > 0, there exists positive initial data (u0, v0) ∈ C(Ω̄)×W 1,∞(Ω) with∫
Ω
u0 = M such that the corresponding solution blows up in finite time (see [69]). It is shown

in [70] that, when Ω is a convex bounded domain with smooth boundary and b
χ

is sufficiently

large, for any choice of suitably regular nonnegative initial data (u0, v0) such that u0 6≡ 0, (1.6)

possesses a uniquely determined global classical solution and that the constant solution (a
b
, µa
λb

)

is asymptotically stable in the sense that

lim
t→∞

[
‖u(t, ·;u0, v0)− a

b
‖L∞(Ω) + ‖v(t, ·;u0, v0)− µa

λb
‖L∞(Ω)

]
= 0.

Hence finite time blow-up phenomena in (1.6) can be suppressed to some extent by the logistic

source. The particular requirement on the convexity of the bounded domain Ω was later re-

moved in [23] and [73]. However, when b is not large relative to χ, numerical evidence shows

that even in the spatially one-dimensional setting solutions may exhibit chaotic behavior (see

[45]). Also a phenomenon suggested by the numerical simulations in [45] consists in the ability

of (1.6) to enforce asymptotic smallness of the cell population density, undistinguishable from

extinction, in large spatial regions (see e.g. Fig. 7(d) in [45]). In [60], the authors proved that

any such extinction phenomenon must be localized in space, and that the population as a whole

always persists, which is called persistence of mass in [60]. Recently, Issa and Shen [23] proved

the pointwise persistence phenomena, that is, any globally defined positive solution is bounded

below by a positive constant independent of its initial data, which implies that the cell popu-

lation may become very small at some time and some location, but it persists at any location

eventually. For other related works on (1.6), we refer the readers to [20, 30, 36, 39, 42, 43, 65]

and references therein.
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When the second equation of (1.6) is replaced by 0 = ∆v − λv + µu, x ∈ Ω, it becomes


ut = ∆u− χ∇ · (u∇v) + u(a− bu), x ∈ Ω,

0 = ∆v − λv + µu, x ∈ Ω,

∂u
∂n

= ∂v
∂n

= 0, x ∈ ∂Ω.

(1.7)

The dynamics of (1.7) has been studied in many research papers and very rich dynamical sce-

narios have been observed. For example, when a ≡ b ≡ 0, finite time blow-up may occur

in (1.7) if either N = 2 and the total initial population mass is large enough, or N ≥ 3 (see

[17, 24, 37, 38], etc.). When a and b are positive constants, if either N ≤ 2 or b > N−2
N
χ,

then for any nonnegative initial data u0 ∈ C(Ω̄), (1.7) possesses a unique bounded global

classical solution (u(t, x;u0), v(t, x;u0)) with u(0, x;u0) = u0(x), and hence the finite time

blow-up phenomena in (1.7) is suppressed to some extent. Moreover, if b > 2χ, then (a
b
, µa
λb

)

is the unique positive steady-state solution of (1.7), and for any nonnegative initial distribution

u0 ∈ C(Ω̄) (u0(x) 6≡ 0),

lim
t→∞

[
‖u(t, ·;u0)− a

b
‖L∞(Ω) + ‖v(t, ·;u0)− µa

λb
‖L∞(Ω)

]
= 0

But if b < 2χ, there may be more than one positive steady-state solutions of (1.7) (see [61]).

For other studies of parabolic-elliptic chemotaxis models on bounded domains, we refer the

readers to [9, 14, 29, 63, 66, 68, 71, 74] and the references therein.

There are also some studies of chemotaxis models on the whole space. For example,

consider (1.4) when a = b = 0. It is possible for a non-negative solution in RN (N ≥ 2) to

blow up in finite time (see [8]). It was shown in [40] that the unique solution exists globally

in time and bounded under some conditions for initial data. Moreover, every bounded solution

decays to 0 as t→∞ and behaves like the heat kernel with the self-similarity (see [41] for the

asymptotic profiles of bounded solution in the case N = 1).
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When the second equation in (1.4) being replaced by 0 = ∆v − λv + µu, it becomes


ut = ∆u− χ∇ · (u∇v) + u(a− bu), x ∈ RN ,

0 = ∆v − λv + µu, x ∈ RN .

(1.8)

Some studies of (1.8) are also carried out. For example, in the case of a = b = 0, it is

known that finite time blow-up occurs if either N = 2 and the total initial population mass

is large enough, or N ≥ 3 (see [3], [10] and references therein). When a and b are positive

constants, it is shown for the case λ = µ = 1 in [49] that if b > χ, then there exists a unique

bounded global classical solution for any nonnegative uniformly continuous and bounded initial

function u0, and that if b > 2χ, then for any strictly positive initial infx∈RN u0(x) > 0, the

unique global classical solution (u(t, x;u0), v(t, x;u0)) with u(0, 0;u0) = u0(x) converges

to constant solution (a
b
, a
b
) as time goes to infinity. The spreading speeds and traveling wave

solutions of (1.8) are studied in [49, 50, 54]. Among others, it is proved that if b > χµ and

b ≥
(
1 + 1

2
(
√
a−
√
λ)+

(
√
a+
√
λ)

)
χµ, c∗0 := 2

√
a is the spreading speed of the solutions of (1.8) with

nonnegative continuous initial function u0 with nonempty compact support, that is,

lim
t→∞

sup
|x|≥ct

u(t, x;u0) = 0 ∀ c > c∗0

and

lim
t→∞

inf
|x|≤ct

u(t, x;u0) > 0 ∀ 0 < c < c∗0.

It is also proved that, if b > 2χµ and λ ≥ a, then 2
√
a is the minimal speed of the traveling

wave solutions of (1.8) connecting (0, 0) and (a
b
, µ
λ
a
b
), that is, for any c ≥ 2

√
a, (1.8) has

a traveling wave solution connecting (0, 0) and (a
b
, µ
λ
a
b
) with speed c, and (1.8) has no such

traveling wave solutions with speed less than 2
√
a. In particular, if λ ≥ a and b > χµ, or λ < a

and b ≥
(
1 + 1

2
(
√
a−
√
λ)

(
√
a+
√
λ)

)
χµ, then the chemotaxis neither speeds up nor slows down the spatial

spreading in the Fisher-KPP equation (1.5). For the persistence of globally defined classical

solution with strictly positive initial function, we refer the readers to [52].
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It is interesting to investigate the influence of chemotaxis on the spreading dynamics of

(1.4). The authors of [51], [53] studied the existence of traveling wave solutions of (1.4).

Among others, it is proved that if b > 2χµ and 1 ≥ 1
2
(1 − λ

a
)+, then for every c ≥ 2

√
a,

(1.4) has a traveling wave solution (u, v)(t, x) = (U c(x · ξ − ct), V c(x · ξ − ct)) (ξ ∈ SN−1)

connecting the two constant steady states (0, 0) and (a
b
, µ
λ
a
b
), and there is no such solutions with

speed c less than 2
√
a, which shows that (1.4) has a minimal wave speed c∗0 = 2

√
a, which is

independent of the chemotaxis. Except this, there is little study of dynamics of (1.4).

In this dissertation, we also investigate the local and global existence of classical solutions

with given nonnegative initial functions, asymptotic behavior of global classical solutions of

(1.4) with strictly positive initial functions, spreading speeds of global classical solutions of

(1.4) with compactly supported or front-like initial functions. Among others, we prove the

following.

(1) Global existence of classical solutions. Suppose that b > Nµχ
4

. Then for every nonneg-

ative, bounded, uniformly continuous function u0 and nonnegative, bounded, uniformly

continuous differentiable function v0, (1.4) has a unique bounded global classical solu-

tion (see Theorem 3.2 for details).

(2) Convergence. There exists K = k(a, λ,N) > N
4

such that if b > Kχµ and λ ≥ a
2
,

then the unique bounded global classical solution (u(t, x;u0, v0), v(t, x;u0, v0)) of (1.4)

with infx∈RN u0(x) > 0, v0 ≥ 0 converges to (a
b
, µa
λb

) uniformly in x ∈ RN as t → ∞

exponentially (see Theorem 3.3 for details).

(3) Spreading speeds. If b > Nµχ
4

, 2
√
a is the spreading speed of (1.4) with nonempty

compact supported initial functions, which implies that the chemotaxis neither speeds up

nor slows down the spatial spreading in the Fisher-KPP equation (1.5) (see Theorem 3.4

for details).

The rest of the dissertation is organized as follows. In Chapter 2, we study persistence,

spreading speeds and the existence of forced waves of (1.1). In Chapter 3, we explore the

dynamical issues of (1.4) including the existence and boundedness of global classical solutions,
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asymptotic behavior of global classical solutions with strictly positive initial functions and

spreading speeds. We end the dissertation with concluding remarks and future works.
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Chapter 2

Persistence, spreading speeds and forced waves of parabolic-elliptic chemotaxis models in
shifting environments

In this chapter, we study spatial spreading dynamics of chemotaxis model (1.1) with the pres-

ence of the chemotaxis and shifting environments in one-dimensional setting. In particular, we

identify the circumstances under which persistence or extinction occurs, and in the case that

persistence occurs, we study the existence of forced wave solutions of (1.1) both theoretically

and numerically.

2.1 Notations, Assumptions, Definitions and Main results

2.1.1 Notations, Assumptions and Definitions

In order to state our main results, we first introduce some notations, assumptions and defini-

tions. Let

Cb
unif(R) = {u ∈ C(R) | u is uniformly continuous and bounded on R}.

For every u ∈ Cb
unif(R), we let ‖u‖∞ := supx∈R |u(x)|. For each given u0 ∈ Cb

unif(R)

with u0(x) ≥ 0, we denote by (u(t, x;u0), v(t, x;u0)) the classical solution of (1.1) satisfying

u(0, x;u0) = u0(x) for every x ∈ R. Note that, by the comparison principle for parabolic equa-

tions, for every nonnegative initial function u0 ∈ Cb
unif(R), it always holds that u(t, x;u0) ≥ 0

and v(t, x;u0) ≥ 0 whenever (u(t, x;u0), v(t, x;u0)) is defined. We shall only focus on non-

negative classical solutions of (1.1) since both functions u(t, x) and v(t, x) represent density

functions.
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The following proposition states the existence and uniqueness of classical solutions of

(1.1) with given initial functions.

Proposition 2.1. Suppose that r(x) is globally Hölder continuous and bounded. For every

nonnegative initial function u0 ∈ Cb
unif(R), there is a unique maximal time Tmax > 0, such that

(u(t, x;u0), v(t, x;u0)) is defined for every x ∈ R and 0 ≤ t < Tmax. Moreover if χµ < b then

Tmax =∞ and the solution is globally bounded.

The above proposition can be proved by similar arguments as those in ([49, Theorem 1.1

and Theorem 1.5]).

Throughout this chapter, we assume that r(x) is as in Case 1 or Case 2. We put

r∗ = inf
x∈R

r(x), r∗ = sup
x∈R

r(x), c∗ = 2
√
r∗.

Note that, in Case 1, r∗ = r(−∞) and r∗ = r(+∞), and in Case 2, r∗ = min{r(−∞), r(∞)}

and r∗ = maxx∈R r(x).

Let ζL(r(·), c) be the principal eigenvalue of the eigenvalue problem


φxx + cφx + r(x)φ = ζφ, −L < x < L

φ(−L) = φ(L) = 0.

(2.1)

Note that ζL(r(·), c) is increasing as L increases (See [6, Proposition 4.2]). We also have

ζL(r1(·), c) ≤ ζL(r2(·), c) if r1(·) ≤ r2(·). In particular,

ζL(r(·), c) ≤ ζL(r∗, c) < r∗. (2.2)

Let ζ∞(r(·), c) = limL→∞ ζL(r(·), c). By (2.2),

ζ∞(r(·), c) ≤ r∗.

For convenience, we make the following standing assumptions.

(H1) b > χµ and b ≥
(
1 + 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ.
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(H2) b > 2χµ and c > χµr∗

2
√
λ(b−χµ)

− 2
√

r∗(b−2χµ)
b−χµ .

(H3) b ≥ 3
2
χµ and ζ∞(r(·), c) > 0.

Note that b ≥
(
1 + 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ implies b ≥ χµ; that b > χµ and λ ≥ r∗ imply

b ≥
(
1+ 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ (and hence (H1)); and that b ≥ 3

2
χµ implies b ≥

(
1+ 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ

(and hence (H1)). Biologically, λ ≥ r∗ means that the degradation rate of the chemo-attractant

is greater than or equal to the supremum of the intrinsic growth rate of the biological species

over the whole space, and the condition b ≥
(
1 + 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ indicates that the chemotaxis

sensitivity is small relative to the self-limitation rate of the biological species. Also note that

ζ∞(r(·), c) > 0 implies that −2
√
r∗ < c < 2

√
r∗.

A positive solution (u(t, x), v(t, x)) of (1.1) is called a forced wave solution if it is defined

for all t ∈ R, x ∈ R and (u(t, x), v(t, x)) = (φ(x − ct), ψ(x − ct)) for some one variable

functions φ(·) and ψ(·). It is clear that (u, v) = (φ(x), ψ(x)) is a stationary solution of


ut = uxx + cux − (χuvx)x + u(r(x)− bu), x ∈ R

0 = vxx − λv + µu, x ∈ R.
(2.3)

We say that a positive forced wave solution (u(t, x), v(t, x)) = (φ(x− ct), ψ(x− ct)) of (1.1)

connects (u∗+, v
∗
+) and (u∗−, v

∗
−) if (φ(±∞), ψ(±∞)) = (u∗±, v

∗
±).

2.1.2 Main results

The main results are from our works [56] and [57]. We first state the results on the persistence

and spreading speeds of the species with r(x) being as in Case 1 or Case 2.

Theorem 2.1. Suppose that r(x) is as in Case 1, (H1) holds, and u0(x) ∈ Cb
unif(R) is nonneg-

ative, bounded and has a nonempty compact support.

(1) If c > c∗, then

lim
t→∞

sup
x∈R

u(t, x;u0) = 0

.
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(2) If −c∗ ≤c < c∗, then for any 0 < ε < c∗−c
2

, there hold

lim
t→∞

sup
x≤(c−ε)t

u(t, x;u0) = lim
t→∞

sup
x≥(c∗+ε)t

u(t, x;u0) = 0,

and

lim inf
t→∞

inf
(c+ε)t≤x≤(c∗−ε)t

u(t, x;u0) > 0.

Moreover, if b > 2χµ, then

lim
t→∞

sup
(c+ε)t≤x≤(c∗−ε)t

|u(t, x;u0)− r∗

b
| = 0.

(3) If c < −c∗, then for any 0 < ε < c∗, there hold

lim
t→∞

sup
x≤(−c∗−ε)t

u(t, x;u0) = lim
t→∞

sup
x≥(c∗+ε)t

u(t, x;u0) = 0,

and

lim inf
t→∞

inf
(−c∗+ε)t≤x≤(c∗−ε)t

u(t, x;u0) > 0.

Moreover, if b > 2χµ, then

lim
t→∞

sup
(−c∗+ε)t≤x≤(c∗−ε)t

|u(t, x;u0)− r∗

b
| = 0.

Theorem 2.2. Suppose that r(x) is as in Cases 1, (H1) holds, and u0(x) ∈ Cb
unif(R) is non-

negative, bounded, and u0(x) = 0 for x� −1 and lim infx→∞ u0(x) > 0 .

(1) If c ≥ −c∗, then for any ε > 0, there hold

lim
t→∞

sup
x≤(c−ε)t

u(t, x;u0) = 0,

and

lim inf
t→∞

inf
x≥(c+ε)t

u(t, x;u0) > 0.
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Moreover, if b > 2χµ, then

lim
t→∞

sup
x≥(c+ε)t

|u(t, x;u0)− r∗

b
| = 0.

(2) If c < −c∗, then for any ε > 0, there hold

lim
t→∞

sup
x≤(−c∗−ε)t

u(t, x;u0) = 0,

and

lim inf
t→∞

inf
x≥(−c∗+ε)t

u(t, x;u0) > 0.

Moreover, if b > 2χµ, then

lim
t→∞

sup
x≥(−c∗+ε)t

|u(t, x;u0)− r∗

b
| = 0.

Theorem 2.3. Suppose that r(x) is as in Case 2, (H1) holds, and u0(x) ∈ Cb
unif(R) is nonneg-

ative, bounded and has a nonempty compact support.

(1) If |c| > c∗, then

lim
t→∞

sup
x∈R

u(t, x;u0) = 0.

(2) If ζ∞(r(·), c) < 0 and λ ≥ λ∗ := (
√

8r∗+c2+|c|)2

4
, then

lim
t→∞

sup
x∈R

u(t, x;u0) = 0.

(3) If |c| < c∗, then

lim
t→∞

sup
|x−ct|≥c′ t

u(t, x;u0) = 0 ∀ c′ > 0.

If, additionally, ζ∞(r(·), c) > 0, then

lim inf
t→∞

inf
|x−ct|≤L

u(t, x;u0) > 0 ∀ L > 0.
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Remark 2.1. (1) Suppose that r(x) is as in Case 1 and the species initially lives in a region

with −M ≤x ≤ M for some M ∈ R. Theorem 2.1 (1) shows that if c > c∗, then the

species will become extinct in the habitat. Theorem 2.1 (2) shows that if −c∗ ≤c < c∗,

then the species will persist and spread along the shifting habitat into larger and larger

region at the asymptotic spreading speed c∗.Theorem 2.1 (3) shows that if c < −c∗, then

the species will persist and spread at the asymptotic spreading speed c∗. When χ = 0,

(H1) becomes b > 0. Hence Theorem 2.1 (1) recovers [34, Theorem 2.1], and Theorem

2.1 (2) recovers [34, Theorem 2.2].

(2) Suppose that r(x) is as in Case 1 and the species initially lives in a region with x ≥ M

for some M ∈ R. Theorem 2.2 (1) shows that for any given c ≥ −c∗, the species

will persist and spread along the shifting habitat at the asymptotic spreading speed c.

Theorem 2.2 (2) shows that for any given c < −c∗, the species will persist and spread at

the asymptotic spreading speed c∗.

(3) It is sufficient to assume that b > χµ for limt→∞ supx≤(c−ε)t u(t, x;u0) = 0 in Theorem

2.1 (2). It is not necessary to assume that b ≥
(
1 + 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ in Theorem 2.1

(2) for proving lim inft→∞ inf(c+ε)t≤x≤(c∗−ε)t u(t, x;u0) > 0 and in Theorem 2.1 (3) for

proving lim inft→∞ inf(−c∗+ε)t≤x≤(c∗−ε)t u(t, x;u0) > 0. In Theorem 2.2, the condition

b ≥
(
1+ 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ is only needed in proving limt→∞ supx≤(−c∗−ε)t u(t, x;u0) = 0.

(4) Suppose that r(x) is as in Case 2 and the species initially lives in a region with−M ≤x ≤

M for some M ∈ R. Theorem 2.3 (1) shows that if |c| > c∗, then the species will die out

in the long run. If ζ∞(r(·), c) < 0 and the degradation rate λ of the chemo-attractant is

greater than or equal to λ∗ = (
√

8r∗+c2+|c|)2

4
, then the species will also die out in the long

run. If ζ∞(r(·), c) > 0, then the species will persist surrounding the good habitat. When

χ = 0, (H1) becomes b > 0. Hence Theorem 2.3 (2) and (3) recovers [4, Theorem 4.11].

The assumption λ ≥ λ∗ indicates that the degradation rate of the chemo-attractant is

large relative to the speed of the shifting environment.

(5) In Theorem 2.3, the condition b ≥
(
1 + 1

2
(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ is only needed in (1).
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(6) It is not easy to prove the persistence and spreading speeds of solutions of (1.1). Several

new techniques are developed to prove the results stated in the above theorems. These

techniques can also be applied to the case χ = 0.

Next, we state our results on the existence of forced wave solutions with r(x) being as in

Case 1 or Case 2.

Theorem 2.4. Suppose that r(x) is as in Case 1, and (H2) holds. Then there is a forced wave

solution (u(t, x), v(t, x)) = (φ(x− ct), ψ(x− ct)) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0).

Theorem 2.5. Suppose that r(x) is as in Case 2, and (H3) holds. Then there exists a num-

ber χ0 = χ0(r(·), c) > 0 such that for any 0 < χ < χ0, there is a forced wave solution

(u(t, x), v(t, x)) = (φ(x− ct), ψ(x− ct)) connecting (0, 0) and (0, 0), that is, φ(x) > 0 for all

x ∈ R and φ(±∞) = 0.

Remark 2.2. (1) When χ = 0, (H2) becomes c > −2
√
r∗. Hence Theorem 2.4 recovers

[22, Theorem 1.1].

(2) In Case 1, for any given c > −2
√
r∗, there is χ0(c) > 0 such that for any 0 < χ < χ0(c),

(H1) holds. Then by Theorem 2.4, for any 0 < χ < χ0(c), there is a forced wave solution

(u(t, x), v(t, x)) = (φ(x− ct), ψ(x− ct)) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0).

(3) When χ = 0, Theorem 2.5 recovers [4, Theorem 4.8].

(4) Thanks to the presence of chemotaxis, the comparison principle for parabolic equations

cannot be applied directly to (1.1) or (2.3), and the techniques used in the study of (1.2)

and (1.3) are difficult to be applied to the study of (1.1). We use Schauder’s fixed point

theorem together with sub- and super-solutions to study the existence of forced wave

solutions of (1.1). We point out that the construction of some appropriate sub-solutions

is highly nontrivial in both cases.

Observe that the conditions in Theorem 2.4 (resp. in Theorem 2.5) are sufficient conditions

for the existence of forced wave solutions. To see whether (1.1) still has forced wave solutions
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when these sufficient conditions are not satisfied, some numerical simulations are carried out

(see section 2.5 for details).

The rest of the chapter is organized as follows. In section 2.2, we present some preliminary

lemmas to be used in the proofs of the main results. In section 2.3, we study persistence and

spreading speeds of (1.1) with r(x) being as in Case 1 or Case 2 and prove Theorems 2.1,

2.2 and 2.3. In section 2.4, we study the existence of forced wave solutions of (1.1) with r(x)

being as in Case 1 or Case 2 and prove Theorems 2.4 and 2.5. In section 2.5, we present some

numerical simulations for the existence of forced wave solutions of (1.1) with r(x) being as in

Case 1 or Case 2.

2.2 Preliminary lemmas

In this section, we present some preliminary lemmas to be used in the proofs of the main

theorems in later sections.

Note that, by the second equation in (1.1),

∆v = λv − µu.

Hence the first equation in (1.1) can be written as

ut = ∆u− χ∇u · ∇v + u
(
r(x− ct)− χλv − (b− χµ)u

)
, x ∈ R.

By the comparison principle for parabolic equations, if b > χµ, then for any u0 ∈ Cb
unif(R)

with u0 ≥ 0,

0 ≤ u(t, x;u0) ≤ max{‖u0‖∞,
r∗

b− χµ
} ∀ t ≥ 0, x ∈ R.

Lemma 2.1. Assume b > χµ. For every R � 1, there are CR � 1 and εR > 0 such that for

any u0 ∈ Cb
unif(R) with u0 ≥ 0, any x0 ∈ R, and any t ≥ 0, we have

‖χvx(t, ·;u0)‖L∞(BR
2

(x0)) + ‖χλv(t, ·;u0)‖L∞(BR
2

(x0)) ≤ CR‖u(t, ·;u0)‖L∞(BR(x0)) + εRM
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with limR→∞ εR = 0, where M := max{‖u0‖∞, r∗

b−χµ}.

Proof. It follows from the arguments of [54, Lemma 2.5].

Lemma 2.2. Assume b > χµ. For every p > 1, t0 > 0, s0 ≥ 0, R > 0, and u0 ∈ Cb
unif(R) with

u0 ≥ 0, there is Ct0,s0,R,M,p such that if s ∈ [0, s0], t ≥ t0, |x− y| ≤ R, then

u(t, x;u0) ≤ Ct0,s0,R,M,p[u(t+ s, y;u0)]
1
p (M + 1), (2.4)

where M := max{‖u0‖∞, r∗

b−χµ}.

Proof. The lemma can be proved by slightly modified arguments of [15, Lemma 2.2].

In fact, first, fix t0 > 0, s0 ≥ 0, R > 0, p ∈ (1,∞) and t ≥ t0 > 0. Let δ = min{ t0
2
, 1}

and

A = bM + sup
t>0

(
‖ |χ∇v(t, ·;u0)| ‖∞ + ‖∇ · χ∇v(t, ·;u0)‖∞

)
.

Note that ‖u(t, ·;u0)‖∞ ≤M for all t ≥ 0. Let ū(s′, x) be the solution of


ūs′ + χ∇v(s′, ·;u0) · ∇ū = ∆ū in (t− δ,∞)× R

ū(t− δ, ·) = u(t− δ, ·;u0) in R.

By the comparison principle for parabolic equations, we have

0 ≤ ū(s′, x) ≤ ‖u(t− δ, ·;u0)‖∞ in (t− δ,∞)× R.

Next, let

u−(s′, x) = min{1, ‖u(t− δ, ·;u0)‖−1
∞ }e(r∗−A)(s′−t+δ)ū(s′, x)

and

u+(s′, x) = e(r∗+A)(s′−t+δ)ū(s′, x).
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Notice that

A > bM +∇ · χ∇v(s′, ·;u0)

> b‖u(t− δ, ·;u0)‖∞ +∇ · χ∇v(s′, ·;u0)

≥ bū(s′, x) +∇ · χ∇v(s′, ·;u0)

≥ bu−(s′, x) +∇ · χ∇v(s′, ·;u0) ∀ s′ > t− δ, x ∈ R.

By a straightforward computation, we have

u−s′ + χ∇v(s′, ·;u0) · ∇u− + u−∇ · χ∇v(s′, ·;u0)

= (r∗ − A)u− + ∆u− + u−∇ · χ∇v(s′, ·;u0)

≤ r(x− cs′)u− + ∆u− + u−(∇ · χ∇v(s′, ·;u0)− A)

≤ ∆u− + u−(r(x− cs′)− bu−) ∀ s′ > t− δ, x ∈ R

and

u+
s′ + χ∇v(s′, ·;u0) · ∇u+ + u+∇ · χ∇v(s′, ·;u0)

= (r∗ + A)u+ + ∆u+ + u+∇ · χ∇v(s′, ·;u0)

≥ ∆u+ + u+(r(x− cs′)− bu+) ∀ s′ > t− δ, x ∈ R.

Hence, u−(s′, x) and u+(s′, x) are, respectively, a sub- and super-solution of the following

equation for (s′, x) ∈ (t− δ,∞)× R,

us′ = ∆u− χ∇v(s′, x;u0) · ∇u− χu∇ · ∇v(s′, x;u0) + u(r(x− cs′)− bu), x ∈ R.

Furthermore,

u−(t− δ, ·) ≤ u(t− δ, ·, u0) = u+(t− δ, ·).
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Then by the comparison principle for parabolic equations, we have that, for all (s′, x) ∈ (t −

δ,∞)× R,

min{1, ‖u(t− δ, ·;u0)‖−1
∞ }e(r∗−A)(s′−t+δ)ū(s′, x) ≤ u(s′, x;u0)

≤ e(r∗+A)(s′−t+δ)ū(s′, x). (2.5)

Now by (2.5),

u(t, x;u0) ≤ e(r∗+A)δū(t, x) ∀x ∈ R.

By the arguments of [15, Lemma 2.2], there is Ct0,s0,R,M,p such that if s ∈ [0, s0], t ≥ t0, |x−

y| ≤ R, then (2.4) holds. The lemma thus follows.

By Lemma 2.1 and Lemma 2.2 with p > 1, s0 = 0 and t0 = 1, we have

|χvx(t, x;u0)|+ χλv(t, x;u0) ≤ CR,p
(
u(t, x;u0)

) 1
p + εRM

= CR,p
(
u(t, x;u0)

) 1
p + εRM ∀ t ≥ 1, x ∈ R, (2.6)

where CR,p = CR · C1,0,R,M,p · (M + 1)(> 0).

Lemma 2.3. Assume that b > χµ. Let cκ = κ2+r∗

κ
with 0 < κ ≤

√
r∗ satisfying

(κ−
√
λ)+

(κ+
√
λ)
≤ 2(b− χµ)

χµ
.

The following hold.

(i) For any u0 ≥ 0 with nonempty compact support and any M � r∗

b−χµ satisfying

max{u0(x), u0(−x)} ≤ U+(x) := min{M,Me−κx}, ∀ x ∈ R,

there holds

u(t, x;u0) ≤Me−κ(|x|−cκt), ∀ x ∈ R, t ≥ 0.
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(ii) For any u0 ∈ Cb
unif(R), u0(x) ≥ 0, and any M � r∗

b−χµ satisfying

u0(x) ≤ U+(x) := min{M,Meκx}, ∀ x ∈ R,

there holds

u(t, x;u0) ≤Meκ(x+cκt), ∀ x ∈ R, t ≥ 0.

Proof. It follows from the arguments of [54, Lemma 2.3].

Consider 
ut = uxx − χ(uvx)x + u(r∗ − bu), x ∈ R

0 = vxx − λv + µu, x ∈ R.
(2.7)

Lemma 2.4. Assume that b > 2χµ.

(1) For any u0 ∈ Cb
unif(R) with infx∈R u0(x) > 0,

lim
t→∞
‖u(t, ·;u0)− r∗

b
‖∞ = 0,

where (u(t, x;u0), v(t, x;u0)) is the solution of (2.7) with u(0, x;u0) = u0(x).

(2) If (u∗(t, x), v∗(t, x)) is an entire solution of (2.7) satisfying that

0 < inf
t∈R,x∈R

u∗(t, x) ≤ sup
t∈R,x∈R

u∗(t, x) <∞,

then

(u∗(t, x), v∗(t, x)) ≡
(r∗
b
,
µ

λ

r∗

b

)
.

Proof. (1) It follows from [49, Theorem 1.8].

(2) It follows from the arguments in [49, Theorem 1.8].

For every u ∈ Cb
unif(R), let

Ψ(x;u) = µ

∫ ∞
0

∫
R

e−λse−
|y−x|2

4s

√
4πs

u(y)dyds. (2.8)
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It is well known that Ψ(x;u) ∈ C2
unif(R) and solves the elliptic equation

d2

dx2
Ψ(x;u)− λΨ(x;u) + µu = 0.

Lemma 2.5.

Ψ(x;u) =
µ

2
√
λ

∫
R
e−
√
λ|x−y|u(y)dy (2.9)

and
d

dx
Ψ(x;u) = −µ

2
e−
√
λx

∫ x

−∞
e
√
λyu(y)dy +

µ

2
e
√
λx

∫ ∞
x

e−
√
λyu(y)dy. (2.10)

Proof. The lemma is proved in [54, Lemma 2.1].

Lemma 2.6. For every u ∈ Cb
unif(R), u(x) ≥ 0, it holds that

∣∣∣∣ ddxΨ(x;u)

∣∣∣∣ ≤ √λΨ(x;u), ∀ x ∈ R.

Proof. The lemma is proved in [54, Lemma 2.2].

Lemma 2.7. Suppose that b > χµ. For every u ∈ Cb
unif(R), 0 ≤ u(x) ≤ r∗

b−χµ , it holds that

Ψ(x;u) ≤ µr∗

λ(b− χµ)
and

d

dx
Ψ(x;u) ≤ µr∗

2
√
λ(b− χµ)

.

Proof. It follows from a direct calculation.

2.3 Persistence and spreading speeds

In this section, we study persistence and spreading speeds of (1.1) with r(x) being as in Case

1 or Case 2.

2.3.1 Case 1

In this subsection, we study persistence and spreading speeds of (1.1) with r(x) being as in

Case 1 and prove Theorems 2.1 and 2.2. Throughout this subsection, we assume that (H1)

holds and r(x) is as in Case 1.
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We first prove two lemmas.

Observe that for any given c̄, let u(t, x) = ũ(t, x − c̄t) and v(t, x) = ṽ(t, x − c̄t). Then

(1.1) becomes


ũt = ∆ũ+ c̄∇ũ−∇ · (χũ∇ṽ) + ũ(r(x− (c− c̄)t)− bũ), x ∈ R

0 = ∆ṽ − λṽ + µũ, x ∈ R.
(2.11)

In the following, (u(t, x;u0), v(t, x;u0)) denotes the solution of (1.1) with u(0, x;u0) = u0(x),

and (ũ(t, x;u0), ṽ(t, x;u0)) denotes the solution of (2.11) with ũ(0, x;u0) = u0(x).

For any given 0 < ε < 2
√
r∗, fix r̄ < r∗ such that

4r̄ − c̄2 ≥ ε
√
r∗ ∀ − 2

√
r∗ + ε ≤ c̄ ≤ 2

√
r∗ − ε. (2.12)

Let

l =
2π

(ε
√
r∗)

1
2

(2.13)

and

λ(c̄, r̄) =
4r̄ − c̄2 − π2

l2

4
. (2.14)

Then λ(c̄, r̄) ≥ 3ε
√
r∗

16
> 0 for any −2

√
r∗ + ε ≤ c̄ ≤ 2

√
r∗ − ε.

Lemma 2.8. For given 0 < ε < 2
√
r∗, let r̄ and l be as in (2.12) and (2.13). Then for any

−2
√
r∗ + ε ≤ c̄ ≤ 2

√
r∗− ε, λ(c̄, r̄) which is defined as in (2.14) is the principal eigenvalue of


φxx + c̄φx + r̄φ = λφ, −l < x < l

φ(−l) = φ(l) = 0,

and φ(x; c̄, r̄) = e−
c̄
2
xcos π

2l
x is a corresponding positive eigenfunction.

Proof. It follows from direct calculations.
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Consider
ut = uxx + c̄ux − A(t, x)ux + u(r∗ − 2εRM − CR,pu

1
p − (b̄− χµ)u), −l < x < l

u(t,−l) = u(t, l) = 0,

(2.15)

where R� 1 is such that r∗ − 2εRM > r̄, and A(t, x) is globally Hölder continuous in t ∈ R

and x ∈ [−l, l] with Hölder exponent 0 < α < 1 and ‖A(·, ·)‖∞ <∞.

Lemma 2.9. For given 0 < ε < 2
√
r∗, let r̄ and l be as in (2.12) and (2.13). There is η > 0 such

that for any A(·, ·) with ‖A(·, ·)‖∞ < η, any c̄ ∈ [−2
√
r∗ + ε, 2

√
r∗− ε], and any b̄ ∈ (χµ,∞),

(2.15) has a unique positive bounded entire solution u(t, x; c̄, b̄, A) satisfying that

inf
−l+δ≤x≤l−δ,t∈R,c̄∈[−2

√
r∗+ε,2

√
r∗−ε]

u(t, x; c̄, b̄, A) > 0 ∀ 0 < δ < l. (2.16)

Proof. First, consider


ũt = ũxx + c̄ũx − A(t, x)ũx + r̄ũ, −l < x < l

ũ(t,−l) = ũ(t, l) = 0.

(2.17)

For given t0 ∈ R, let ũ(t, x; t0, φ(·; c̄, r̄), A) be the solution of (2.17) with ũ(t0, x; t0, φ(·; c̄, r̄), A) =

φ(x; c̄, r̄). By [16, Theorem 3.4.1],

lim
‖A(·,·)‖∞→0

‖ũ(t, ·; t0, φ(·; c̄, r̄), A)− eλ(c̄,r̄)(t−t0)φ(·; c̄, r̄)‖C1([−l,l]) = 0

uniformly in t ∈ [t0, t0 + 1], t0 ∈ R, and c̄ ∈ [−2
√
r∗ + ε, 2

√
r∗ − ε]. This implies that there is

η > 0 such that for any A(·, ·) with ‖A(·, ·)‖∞ < η, and any c̄ ∈ [−2
√
r∗ + ε, 2

√
r∗ − ε],

ũ(t0 + 1, x; t0, φ(·; c̄, r̄), A) ≥ eλ(c̄,r̄)/2φ(x; c̄, r̄) ∀ − l ≤ x ≤ l, t0 ∈ R. (2.18)
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Next, suppose that ‖A(·, ·)‖∞ < η. Let u(t, x; t0, σφ(·; c̄, r̄)) be the solution of (2.15) with

u(t0, x; t0, σφ(·; c̄, r̄)) = σφ(x; c̄, r̄). Note that

lim
σ→0

sup
t∈[t0,t0+1],−l≤x≤l

u(t, x; t0, σφ(·; c̄, r̄)) = 0

uniformly in t0 ∈ R and in c̄ ∈ [−2
√
r∗ + ε, 2

√
r∗ − ε]. Hence there is σ0 > 0 such that for

any 0 < σ ≤ σ0, and c̄ ∈ [−2
√
r∗ + ε, 2

√
r∗ − ε],

r∗−2εRM−CR,pu
1
p (t, x; t0, σφ)−(b̄−χµ)u(t, x; t0, σφ) > r̄ ∀ t ∈ [t0, t0+1], −l ≤ x ≤ l, t0 ∈ R.

This together with the comparison principle for parabolic equations implies that for 0 < σ ≤ σ0

and c̄ ∈ [−2
√
r∗ + ε, 2

√
r∗ − ε],

u(t, x; t0, σφ(·; c̄, r̄)) ≥ σũ(t, x; t0, φ, A) ∀ t ∈ [t0, t0 + 1], −l ≤ x ≤ l, t0 ∈ R.

Then by (2.18), we have

u(t0 + 1, x; t0, σφ(·; c̄, r̄)) ≥ σeλ(c̄,r̄)/2φ(x; c̄, r̄) ∀ − l ≤ x ≤ l, t0 ∈ R (2.19)

for any 0 < σ ≤ σ0 and c̄ ∈ [−2
√
r∗ + ε, 2

√
r∗ − ε].

Now, by (2.19) and the comparison principle for parabolic equations, we have

u(k, x;−n, σφ(·; c̄, r̄)) > σφ(x; c̄, r̄) ∀ k ≥ −n+ 1, −l < x < l (2.20)

and then

u(k, x;−(n+ 1), σφ(·; c̄, r̄)) > u(k, x;−n, σφ(·; c̄, r̄)) ∀ k ≥ −n+ 1, −l < x < l. (2.21)

Let un(t, x) = u(t, x;−n, σφ(·; c̄, r̄)). Then limn→∞ un(t, x) exists and u(t, x) = limn→∞ un(t, x)

is a solution of (2.15). By (2.20) and (2.21), u(t, x) is a positive bounded entire solution of

(2.15) satisfying (2.16).
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Finally, we prove that when ‖A(·, ·)‖∞ < η, (2.15) has a unique positive bounded en-

tire solution satisfying (2.16). Suppose that u(t, x), v(t, x) are two positive bounded entire

solutions of (2.15) satisfying (2.16). By Hopf’s lemma,

ux(t,−l) > 0, ux(t, l) < 0, vx(t,−l) > 0, vx(t, l) < 0 ∀ t ∈ R.

This implies that for any t ∈ R, the following set is not empty,

{γ > 1 | 1
γ
u(t, x) ≤ v(t, x) ≤ γu(t, x) ∀ − l < x < l}.

Hence we can define

ρ(u(t, ·), v(t, ·)) = inf{ln γ | 1
γ
u(t, x) ≤ v(t, x) ≤ γu(t, x) ∀ − l < x < l}.

To prove the uniqueness of positive entire solutions satisfying (2.16), it then suffices to prove

ρ(u(t, ·), v(t, ·)) ≡ 0.

Fix t0 ∈ R. Suppose that γ > 1 is such that

1

γ
u(t0, x) ≤ v(t0, x) ≤ γu(t0, x) ∀ − l < x < l.

By the comparison principle for parabolic equations, we have

1

γ
u(t, x; t0, u(t0, ·)) < v(t, x; t0, v(t0, ·)) < γu(t, x; t0, u(t0, ·)) ∀ t > t0, −l < x < l.

This together with Hopf’s lemma implies that there is 1 < γ(t) < γ such that

1

γ(t)
u(t, x; t0, u(t0, ·)) < v(t, x; t0, v(t0, ·)) < γ(t)u(t, x; t0, u(t0, ·)) ∀ t > t0, −l < x < l.

Hence if ρ(u(t0, ·), v(t0, ·))) 6= 0 for some t0 ∈ R, then ρ(u(t, ·), v(t, ·)) is strictly decreasing

as t increases.
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Assume that ρ(u(t, ·), v(t, ·)) 6≡ 0. Let ρ∗ = limt→−∞ ρ(u(t, ·), v(t, ·)). Then ρ∗ > 0.

Choose a sequence tn → −∞. Without loss of generality, we may assume that

A(tn + t, x)→ A∗(t, x), u(tn + t, x)→ u∗(t, x), v(tn + t, x)→ v∗(t, x)

as n →∞ uniformly in x ∈ [−l, l] and locally uniformly in t ∈ R. We then have that u∗(t, x)

and v∗(t, x) are positive solutions of (2.15) with A(t, x) being replaced by A∗(t, x) and satisfy

(2.16). Moreover,

ρ(u∗(t, ·), v∗(t, ·)) = ρ∗ > 0 ∀ t ∈ R.

But by the arguments in the above, ρ(u∗(t, ·), v∗(t, ·)) is strictly decreasing as t increases, which

is a contradiction.

Therefore, ρ(u(t, ·), v(t, ·)) ≡ 0 and u(t, x) ≡ v(t, x).

Next, we prove Theorem 2.1.

Proof of Theorem 2.1. (1) Suppose c > c∗ = 2
√
r∗. Choose c̄ and 0 < κ ≤

√
r∗ such that

(κ−
√
λ)+

(κ+
√
λ)
≤ 2(b− χµ)

χµ

and

c∗ = 2
√
r∗ < cκ < c̄ < c.

By Lemma 2.3(i),

lim
t→∞

sup
|x|≥c̄t

u(t, x;u0) = 0.

We claim that limt→∞ supx∈R u(t, x;u0) = 0. For otherwise, there are δ0 > 0, tn → ∞

and xn ∈ (−c̄tn, c̄tn) such that u(tn, xn;u0) ≥ δ0 for all n ≥ 1.

Let un(t, x) = u(t+tn, x+xn;u0) and vn(t, x) = v(t+tn, x+xn;u0). Note that xn−ctn →

−∞ as n → ∞. Without loss of generality, we may assume that there is (u∗(t, x), v∗(t, x))

such that

lim
n→∞

(un(t, x), vn(t, x)) = (u∗(t, x), v∗(t, x))
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locally uniformly in (t, x) ∈ R× R, and (u∗(t, x), v∗(t, x)) satisfies


u∗t = ∆u∗ −∇ · (χu∗∇v∗) + u∗(r(−∞)− bu∗), t ∈ R, x ∈ R

0 = ∆v∗ − λv∗ + µu∗, t ∈ R, x ∈ R.
(2.22)

By r(−∞) < 0, it can be proved that u∗(t, x) ≡ 0, which contradicts to

u∗(0, 0) = lim
n→∞

u(tn, xn;u0) ≥ δ0.

Therefore, limt→∞ supx∈R u(t, x;u0) = 0.

(2) Suppose −c∗ ≤ c < c∗ = 2
√
r∗. We first prove

lim
t→∞

sup
x≤(c−ε)t

u(t, x;u0) = 0.

Assume that the result does not hold. Then there are constants δ0 > 0, ε0 > 0, and a sequence

{(tn, xn)}n∈N, tn →∞, xn ∈ (−∞, (c− ε0)tn] such that u(tn, xn;u0) ≥ δ0 for all n ≥ 1.

Let un(t, x) = u(t + tn, x + xn;u0) and vn(t, x) = v(t + tn, x + xn;u0). Note that

xn − ctn → −∞ as n→∞. Similarly, without loss of generality, we may assume that there is

(u∗(t, x), v∗(t, x)) such that

lim
n→∞

(un(t, x), vn(t, x)) = (u∗(t, x), v∗(t, x))

locally uniformly in (t, x) ∈ R×R, and (u∗(t, x), v∗(t, x)) satisfies (2.22). Again, by r(−∞) <

0, it can be proved that u∗(t, x) ≡ 0, which contradicts to

u∗(0, 0) = lim
n→∞

u(tn, xn;u0) ≥ δ0.

Therefore, limt→∞ supx≤(c−ε)t u(t, x;u0) = 0.

Next, we prove

lim
t→∞

sup
x≥(c∗+ε)t

u(t, x;u0) = 0.
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For any ε > 0, let κ =
√
r∗, then cκ = 2

√
r∗ < c∗ + ε. Since 0 < χµ < b,

(
1 +

1
2

(
√
r∗−
√
λ)+

(
√
r∗+
√
λ)

)
χµ≤b, by Lemma 2.3 (i), we have

sup
x≥(c∗+ε)t

u(t, x;u0) ≤Me−κ(c∗+ε−cκ)t → 0 as t→∞.

Therefore, limt→∞ supx≥(c∗+ε)t u(t, x;u0) = 0.

We now prove

lim inf
t→∞

inf
(c+ε)t≤x≤(c∗−ε)t

u(t, x;u0) > 0. (2.23)

To this end, for any 0 < ε < c∗−c
2

, let r̄ and l be as in (2.12) and (2.13). Fix a c̄ satisfying

−c∗ + ε ≤c+ ε ≤ c̄ ≤ c∗− ε and set M = max{‖u0‖∞, r∗

b−χµ}. Let λ(c̄, r̄) be as in (2.14). By

(2.6), for any R� 1, p > 1, (ũ(t, x;u0), ṽ(t, x;u0)) satisfies

ũt ≥ ũxx + c̄ũx−χṽxũx + ũ(r(x− (c− c̄)t)− εRM −CR,pũ
1
p − (b−χµ)ũ), t ≥ 1, x ∈ R.

Let p = 2 and η be as in Lemma 2.9. Choose R� 1 such that εRM < η
4
,

|χṽx| ≤ CR
√
ũ(t, x;u0) +

η

4
, t ≥ 1, x ∈ R.

Define

A(t, x) =


χṽx(1,x;u0)

max{1,|χṽx(1,x;u0)|η−1} , if t < 1, x ∈ R

χṽx(t,x;u0)
max{1,|χṽx(t,x;u0)|η−1} , if t ≥ 1, x ∈ R.

Note that ṽx(t, x;u0) is globally Hölder continuous in t ≥ 1 and x ∈ R. We then have that

A(t, x) is globally Hölder continuous in t ∈ R and x ∈ R. It is clear that ‖A(·, ·)‖∞ < η.

Let T > 1 be such that r(x− (c− c̄)t) ≥ r∗ − εRM for x ≥ −l and t ≥ T . Choose b̄ > b

and also b̄� 1 such that

CR

√
r∗

b̄− χµ
+

r∗

b̄− χµ
<
η

4
,

and u(T, x; c̄, b̄, A) < r∗

b̄−χµ < ũ(T, x;u0) for −l ≤ x ≤ l and c̄ ∈ [c + ε, c∗ − ε], where

u(t, x; c̄, b̄, A) is the unique positive bounded entire solution of (2.15).
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Fix such b̄. We first claim that for any c+ ε ≤ c̄ ≤ c∗ − ε,

ũ(t, x;u0) ≥ u(t, x; c̄, b̄, A) ∀ t ≥ T, −l ≤ x ≤ l. (2.24)

Suppose, by contradiction that (2.24) does not hold. Then there are c + ε ≤ c̄ ≤ c∗ − ε

and tinf ∈ [T,∞) satisfying

tinf := inf{t ∈ (T,∞) | ∃xt ∈ R, satisfying u(t, xt; c̄, b̄, A) > ũ(t, xt;u0), |xt| ≤ l}.

Note that

u(T, x; c̄, b̄, A) < ũ(T, x;u0) ∀ − l ≤ x ≤ l

Hence

tinf > T.

Moreover, note that u(t,−l; c̄, b̄, A) = u(t, l; c̄, b̄, A) = 0 for any t ∈ R, there is xinf ∈ R such

that |xinf | < l,
r∗

b̄− χµ
> u(tinf , xinf ; c̄, b̄, A) = ũ(tinf , xinf ;u0), (2.25)

and

u(t, x; c̄, b̄, A) < ũ(t, x;u0), |x| ≤ l, T ≤ t < tinf .

Hence there is 0 < δ � 1 such that [tinf − δ, tinf ]× [xinf − δ, xinf + δ] ⊂ {(t, y) | |y| < l} and

A(t, x) = χṽx(t, x;u0), ∀ tinf − δ ≤ t ≤ tinf , xinf − δ ≤ x ≤ xinf + δ.

Note that

u(tinf − δ, x; c̄, b̄, A) < ũ(tinf − δ, x;u0) ∀x ∈ [xinf − δ, xinf + δ]

and

u(t, xinf ± δ; c̄, b̄, A) ≤ ũ(t, xinf ± δ;u0) ∀ tinf − δ ≤ t ≤ tinf .
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Thus, by the comparison principle for parabolic equations, we have

u(t, x; c̄, b̄, A) < ũ(t, x;u0) ∀ tinf − δ < t ≤ tinf , xinf − δ < x < xinf + δ.

In particular,

u(tinf , xinf ; c̄, b̄, A) < ũ(tinf , xinf ;u0).

Which contradicts to (2.25).

By Lemma 2.9,

inf
−l+δ≤x≤l−δ,c+ε≤c̄≤c∗−ε,t≥1

u(t, x; c̄, b̄, A) > 0, ∀ 0 < δ < l.

This together with (2.24) implies that

lim inf
t→∞

inf
−l+δ≤x≤l−δ,c+ε≤c̄≤c∗−ε

ũ(t, x;u0) > 0, ∀ 0 < δ < l.

Hence

lim inf
t→∞

inf
−l+c̄t+δ≤x≤l+c̄t−δ,c+ε≤c̄≤c∗−ε

u(t, x;u0) > 0, ∀ 0 < δ < l.

It then follows that

lim inf
t→∞

inf
−l+(c+ε)t+δ≤x≤l+(c∗−ε)t−δ

u(t, x;u0) > 0, ∀ 0 < δ < l.

and

lim inf
t→∞

inf
(c+ε)t≤x≤(c∗−ε)t

u(t, x;u0) > 0.

Finally, suppose that 2χµ < b. We prove

lim
t→∞

sup
(c+ε)t≤x≤(c∗−ε)t

|u(t, x;u0)− r∗

b
| = 0. (2.26)
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Suppose by contraction that the result does not hold. Then there are constants 0 < ε < c∗−c
2

,

δ > 0, and a sequence {(xn, tn)}n∈N such that tn →∞, tn(c+ ε) ≤ xn ≤ tn(c∗ − ε), and

|u(tn, xn;u0)− r∗

b
| ≥ δ ∀n ≥ 1. (2.27)

For every n ≥ 1, define (un(t, x), vn(t, x)) = (u(t + tn, x + xn;u0), v(t + tn, x + xn;u0)).

By a priori estimates for parabolic equations, without loss of generality, we may suppose

that (un(t, x), vn(t, x)) → (u∗(t, x), v∗(t, x)) locally uniformly in C1,2(R × R). Furthermore,

(u∗(t, x), v∗(t, x)) is an entire solution of (2.7).

Choose 0 < ε̃ < ε < c∗−c
2

. For every x ∈ R and t ∈ R, we have

x+ xn ≤ x+ tn(c∗ − ε)

= (c∗ − ε̃)(tn + t)− (ε− ε̃)(tn −
x− (c∗ − ε̃)t

ε− ε̃
)

≤ (t+ tn)(c∗ − ε̃)

whenever tn ≥ ‖x‖+(c∗−ε̃)|t|
ε−ε̃ . On the other hand, For every x ∈ R and t ∈ R, we have

x+ xn ≥ x+ tn(c+ ε)

= (c+ ε̃)(tn + t) + (ε− ε̃)(tn −
(c+ ε̃)t− x

ε− ε̃
)

≥ (t+ tn)(c+ ε̃)

whenever tn ≥ ‖x‖+(c+ε̃)|t|
ε−ε̃ . Thus, it follows that

(t+ tn)(c+ ε̃) ≤ x+ xn ≤ (t+ tn)(c∗ − ε̃)

whenever tn ≥ max{‖x‖+(c∗−ε̃)|t|
ε−ε̃ , ‖x‖+(c+ε̃)|t|

ε−ε̃ }. Note that

u∗(t, x) = lim
n→∞

u(t+ tn, x+ xn;u0) ≥ lim inf
s→∞

inf
s(c+ε̃)≤y≤s(c∗−ε̃)

u(s, y;u0) > 0
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for every (t, x) ∈ R × R. Hence inf(t,x)∈R×R u
∗(t, x) > 0. By Lemma 2.4 (ii), we must have

u∗(t, x) = r∗

b
for every (t, x) ∈ R×R. In particular, u∗(0, 0) = r∗

b
, which contradicts to (2.27).

(3) First, let κ =
√
r∗, for any c̄ satisfies

c∗ = 2
√
r∗ = cκ < c̄ < |c|.

By Lemma 2.3 (i),

lim
t→∞

sup
|x|≥c̄t

u(t, x;u0) = 0.

This implies that for any ε > 0,

lim
t→∞

sup
|x|≥(c∗+ε)t

u(t, x;u0) = 0.

Next, for any 0 < ε < c∗, let r̄ and l be as in (2.12) and (2.13). Fix a c̄ satisfying

−c∗ + ε ≤c̄ ≤ c∗−ε. Let λ(c̄, r̄) be as in (2.14). By the similar arguments as those in the proof

of (2.23), it can be proved that

lim inf
t→∞

inf
−l+c̄t+δ≤x≤l+c̄t−δ,−c∗+ε≤c̄≤c∗−ε

u(t, x;u0) > 0, ∀ 0 < δ < l.

Hence

lim inf
t→∞

inf
−l+(−c∗+ε)t+δ≤x≤l+(c∗−ε)t−δ

u(t, x;u0) > 0, ∀ 0 < δ < l

and then

lim inf
t→∞

inf
(−c∗+ε)t≤x≤(c∗−ε)t

u(t, x;u0) > 0.

Moreover, using the similar arguments as those in the proof of (2.26), we can prove if 2χµ < b,

then

lim
t→∞

sup
(−c∗+ε)t≤x≤(c∗−ε)t

|u(t, x;u0)− r∗

b
| = 0.

Now we prove Theorem 2.2.
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Proof of Theorem 2.2. (1) Suppose c ≥ −c∗ = −2
√
r∗. By the same arguments as those in

Theorem 2.1 (2), it can be proved that

lim
t→∞

sup
x≤(c−ε)t

u(t, x;u0) = 0.

Next, we prove that

lim inf
t→∞

inf
x≥(c+ε)t

u(t, x;u0) > 0 ∀ ε > 0. (2.28)

To this end, for any ε̃ > 0, let u(t, x;u0) = ũ(t, x − (c + ε̃)t;u0), v(t, x;u0) = ṽ(t, x −

(c + ε̃)t;u0) in (1.1) and set M = max{‖u0‖∞, r∗

b−χµ}. By (2.6), it follows that, for any

R� 1, p > 1, (ũ(t, x;u0), ṽ(t, x;u0)) satisfies

ũt ≥ ũxx+(c+ε̃)ũx−χṽxũx+ũ(r(x+ε̃t)−εRM−CR,pũ
1
p−(b−χµ)ũ), t ≥ 1, x ∈ R. (2.29)

Let p = 2. Choose R� 1, 0 < ξ � 1 and 0 < ε� min{1, 2
√
r∗} such that εRM < ξ

4
,

|χṽx| ≤ CR
√
ũ(t, x;u0) +

ξ

4
, t ≥ 1, x ∈ R,

and

−c∗ + ε = −2
√
r∗ + ε ≤ c+ ε̃− ξ.

Define

B(t, x) =
χṽx

max{1, |χṽx|ξ−1}
, t ≥ 1, x ∈ R.

From this point, the remaining part of the proof is completed in four steps.

Step 1. In this step we construct some sub-solution for (2.29).

First, choose 0 < ξ1 � 1 satisfying

CR
√
ξ1 + ξ1 <

ξ

4
.
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Next, let l be chosen as in (2.13). Let T > 1 be such that r(x + ε̃t) ≥ r∗ − εRM for x ≥ −l

and t ≥ T . Let u1(·) ∈ Cb
unif([−l,∞)) \ {0} be such that

u1(−l) = 0, u
′

1(x) > 0, and u1(x) < ũ(T, x;u0), ∀ x ≥ −l

Choose −2
√
r∗ + ε ≤ c̄ ≤ min{2

√
r∗ − ε, (c+ ε̃)− ξ}. Let u(t, x) be the solution of


ut = uxx + c̄ux + u(r∗ − 2εRM − CR,pu

1
p − ( r

∗

ξ1
+ (b− χµ))u), t > T, x > −l

u(t,−l) = 0

u(T, x) = ξ1
M+ξ1

u1(x).

(2.30)

Note that u(t, x) ≡ ξ1 is a super-solution of (2.30) and ‖u(T, ·)‖∞ < ξ1. Thus, by the

comparison principle for parabolic equations that

u(t, x) < ξ1, ∀ t ≥ T, x ≥ −l.

Since u′1(x) > 0, we have ux(t, x) > 0 for any t ≥ T , x ≥ −l. Note that |B(t, x)| < ξ for all

t ≥ 1, x ∈ R. Thus u(t, x) satisfies

ut =uxx + c̄ux + u(r∗ − 2εRM − CR,pu
1
p − (

r∗

ξ1

+ (b− χµ))u)

≤uxx + (c+ ε̃−B(t, x))ux + u(r∗ − 2εRM − CR,pu
1
p − (b− χµ)u) ∀ t > T, x > −l.

Step 2. In this step, we show that

lim inf
t→∞

inf
x≥−l+δ

u(t, x) > 0, ∀ δ > 0. (2.31)

Choose b̄ > r∗

ξ1
+ b and also b̄� 1 such that u(T+1, x; c̄, b̄) < u(T+1, x) for −l ≤ x ≤ l,

where u(t, x; c̄, b̄) is the unique positive entire solution of (2.15) with A(t, x) = 0. Fix such b̄.
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It follows from the comparison principle for parabolic equations that

u(t, x; c̄, b̄) < u(t, x), t > T+1, −l < x < l.

Repeating the same procedure, by induction, we get

u(t, x− kl; c̄, b̄) < u(t, x), t > T+1, (k − 1)l < x < (k + 1)l, k = 0, 1, 2, · · ·

There exists δ0 > 0, such that

inf
(k−1)l+δ≤x≤(k+1)l−δ,t∈R

u(t, x− kl; c̄, b̄) > δ0,

for any 0 < δ < l, k = 0, 1, 2, · · ·

Therefore, we have

lim inf
t→∞

inf
x≥−l+δ

u(t, x) > 0, ∀ δ > 0.

Step 3. In this step we show that

u(t, x) ≤ ũ(t, x;u0), ∀ x ≥ −l, t ≥ T. (2.32)

First, note that

u(t,−l) = 0 < ũ(t,−l;u0) ∀ t ≥ T

and

u(T, x) < ũ(T, x;u0) ∀x ≥ −l.

Note also that

ũ∞(T ) := lim inf
x→∞

ũ(T, x;u0) > u∞(T ) := lim
x→∞

u(T, x).
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For given t ≥ T , let

ũ∞(t) = lim inf
x→∞

ũ(t, x;u0), u∞(t) = lim
x→∞

u(t, x).

We claim that

ũ∞(t) > u∞(t) ∀ t > T.

In fact, for any given t0 > T , there is xn →∞ such that

ũ(t0, xn;u0)→ ũ∞(t0), u(t0, xn)→ u∞(t0)

as n→∞. Without loss of generality, we may assume that

ũ(t, x+ xn;u0)→ ũ∗(t, x), u(t, x+ xn)→ u∗(t)

as n→∞ locally uniformly in (t, x) ∈ (T,∞)×R. By ũ∞(T ) > u∞(T ) and the comparison

principle for parabolic equations, we have

ũ∗(t, x) > u∗(t) ∀ t > T, x ∈ R.

In particular, we have

ũ∞(t0) = ũ∗(t0, 0) > u∞(t0).

Hence the claim holds true.

Next, assume that there are t > T and x > −l such that ũ(t, x;u0) < u(t, x). Then there

is tinf > T such that

ũ(t, x;u0) > u(t, x) ∀T ≤ t < tinf , x ≥ −l

and

inf
x≥−l

(
ũ(tinf , x;u0)− u(tinf , x)

)
= 0.
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By the above claim, there is xinf ∈ (−l,∞) such that

ũ(tinf , xinf ;u0) = u(tinf , xinf).

Then the similar arguments as those in the proof of (2.24), we have

ũ(tinf , xinf ;u0) > u(tinf , xinf),

which is a contradiction. Hence (2.32) holds.

Step 4. In this step, we prove (2.28).

By (2.31) and (2.32), we deduce that

lim inf
t→∞

inf
x≥−l+δ

ũ(t, x;u0) > 0, ∀ δ > 0.

Since u(t, x;u0) = ũ(t, x− (c+ ε̃)t), we have

lim inf
t→∞

inf
x≥−l+(c+ε̃)t+δ

u(t, x;u0) > 0 ∀ ε̃ > 0, ∀ δ > 0.

Hence,

lim inf
t→∞

inf
x≥(c+ε)t

u(t, x;u0) > 0 ∀ ε > 0.

Finally, we prove that

lim
t→∞

sup
x≥(c+ε)t

|u(t, x;u0)− r∗

b
| = 0.

It can be proved by similar arguments as those in the proof of (2.26).

(2) Suppose c < −c∗ = −2
√
r∗. First, let κ =

√
r∗, for any c̄ satisfies

c < c̄ < −c∗ = −2
√
r∗ = −cκ.
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By Lemma 2.3 (ii),

lim
t→∞

sup
x≤c̄t

u(t, x;u0) = 0.

This implies that for any ε > 0,

lim
t→∞

sup
x≤(−c∗−ε)t

u(t, x;u0) = 0.

Next, we prove

lim inf
t→∞

inf
x≥(−c∗+ε)t

u(t, x;u0) > 0 ∀ ε > 0. (2.33)

It suffices to prove that for any 0 < ε < 2
√
r∗, (2.33) holds.

Let 0 < ε < 2
√
r∗ be given , let u(t, x;u0) = ũ(t, x − (−c∗ + ε)t;u0), v(t, x;u0) =

ṽ(t, x− (−c∗ + ε)t;u0) in (1.1) and set M = max{‖u0‖∞, r∗

b−χµ}. By (2.6), it follows that, for

any R� 1, p > 1, (ũ(t, x;u0), ṽ(t, x;u0)) satisfies

ũt ≥ ũxx+(−c∗+ε)ũx−χṽxũx+ũ(r(x+(−c∗+ε−c)t)−εRM−CR,pũ
1
p−(b−χµ)ũ), t ≥ 1, x ∈ R.

Choose 0 < ξ � min{1, ε
2
}. Fix a c̄ satisfying −c∗ + ε

2
≤ c̄ ≤ −c∗ + ε − ξ. By the similar

arguments as those in the proof of (2.28), it can be proved that

lim inf
t→∞

inf
x≥−l+δ

ũ(t, x;u0) > 0, ∀ δ > 0.

Since u(t, x;u0) = ũ(t, x− (−c∗ + ε)t), we have

lim inf
t→∞

inf
x≥−l+(−c∗+ε)t+δ

u(t, x;u0) > 0, ∀ δ > 0.

Hence,

lim inf
t→∞

inf
x≥(−c∗+ε)t

u(t, x;u0) > 0.

Finally, we prove

lim
t→∞

sup
x≥(−c∗+ε)t

|u(t, x;u0)− r∗

b
| = 0.
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It can be proved using similar arguments as those in the proof of (2.26).

2.3.2 Case 2

In this subsection, we study persistence and extinction of solutions of (1.1) with r(x) being as

in Case 2, and prove Theorem 2.3. Throughout this subsection, we assume that (H1) holds and

r(x) is as in Case 2.

We first prove some lemmas.

Consider
ut = uxx + cux − A(t, x)ux + u(r(x)− εRM − CR,pu

1
p − (b̄− χµ)u), −L < x < L

u(t,−L) = u(t, L) = 0.

(2.34)

Observe that εR → 0 as R→∞ and

ζL(r(·)− 2εRM, c) = ζL(r(·), c)− 2εRM,

where ζL(·, c) is defined as in (2.1). Hence

lim
R→∞

ζL(r(·)− 2εRM, c) = ζL(r(·), c).

Lemma 2.10. Suppose that ζ∞(r(·), c) > 0. Then there are L∗ > 0, R∗ > 0, and ε∗ > 0 such

that for any L ≥ L∗ and R ≥ R∗, ‖A(·, ·)‖∞ < ε∗, (2.34) has a unique positive bounded entire

solution u∗(t, x;L,R,A(·, ·)) with

inf
t∈R,|x|≤L−δ

u∗(t, x;L,R,A(·, ·)) > 0 ∀ 0 < δ < L. (2.35)

Proof. First of all, there are L∗ > 0 and R∗ > 0 such that

ζL(r(·)− 2εRM, c) > 0 ∀ L ≥ L∗, R ≥ R∗.

43



It then follows from similar arguments as those in Lemma 2.9 that there is ε∗ > 0 such

that for any A(·, ·) with ‖A‖∞ ≤ ε∗, (2.34) has a unique positive bounded entire solution

u∗(t, x;L,R,A(·, ·)) satisfying (2.35).

Let φL(x) be the positive principal eigenfunction of (2.1) corresponding to the principal

eigenvalue ζL(r(·), c) with φL(0) = 1. By a priori estimates and Harnack’s inequality for

elliptic equations, there exist Ln →∞ and φ∞(x) > 0 such that

lim
n→∞

φLn(x) = φ∞(x)

locally uniformly, and

(φ∞)xx + c(φ∞)x + r(x)φ∞ = ζ∞(r(·), c)φ∞, x ∈ R. (2.36)

Lemma 2.11.

| d
dx
φ∞(x)| ≤

√
8r∗ + c2 + |c|

2
φ∞(x) ∀x ∈ R.

Proof. It follows from [53, Lemma 2.1, Lemma 2.2].

We now prove Theorem 2.3.

Proof of Theorem 2.3. (1) If c > c∗, using the same arguments as those in the proof of Theorem

2.1 (1), we can prove limt→∞ u(t, x;u0) = 0 uniformly for x ∈ R.

If c < −c∗, let κ =
√
r∗, for any c̄ satisfies c < c̄ < −c∗ = −2

√
r∗ = −cκ. By Lemma

2.3 (ii), limt→∞ supx≤c̄t u(t, x;u0) = 0. We claim that limt→∞ supx∈R u(t, x;u0) = 0.

For otherwise, there are δ0 > 0, tn →∞ and xn ∈ (c̄tn,∞) such that

u(tn, xn;u0) ≥ δ0 ∀n ≥ 1.

Let un(t, x) = u(t+tn, x+xn;u0) and vn(t, x) = v(t+tn, x+xn;u0). Note that xn−ctn →∞

as n → ∞. Without loss of generality, we may assume that there is (u∗(t, x), v∗(t, x)) such
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that

lim
n→∞

(un(t, x), vn(t, x)) = (u∗(t, x), v∗(t, x))

locally uniformly in (t, x) ∈ R× R, and (u∗(t, x), v∗(t, x)) satisfies


u∗t = ∆u∗ −∇ · (χu∗∇v∗) + u∗(r(∞)− bu∗), t ∈ R, x ∈ R

0 = ∆v∗ − λv∗ + µu∗, t ∈ R, x ∈ R.
(2.37)

By r(∞) < 0, it can be proved that u∗(t, x) ≡ 0, which contradicts to u∗(0, 0) ≥ δ0. Therefore,

limt→∞ supx∈R u(t, x;u0) = 0.

Proof of Theorem 2.3. (2) First, fix u0 with nonempty compact support. Let M be such that

M ≥ max{ r∗

b−χµ , supx∈R u0(x)}. Note that

u(t, x;u0) ≤M ∀ t ≥ 0, x ∈ R.

Next, let φ∞(x) be as in Lemma 2.11. Without loss of generality, we may suppose that

u0(x) ≤ φ∞(x) for any x ∈ R.

Let u∞(t, x) = eζ∞(r(·),c)tφ∞(x). Then u∞(t, x) satisfies the following parabolic equation

(u∞)t ≥ (u∞)xx + c(u∞)x + (r(x)− (b− χµ)u∞)u∞, ∀ t > 0, x ∈ R. (2.38)

Hence, if λ ≥ λ∗ := (
√

8r∗+c2+|c|)2

4
, then by Lemma 2.6 and Lemma 2.11, we get

− χ(u∞)xΨx(x;u(t, ·;u0))− χλΨ(x;u(t, ·;u0))u∞

≤ χ
√
λΨ(|(u∞)x| −

√
λu∞)

= χ
√
λΨeζ∞(r(·),c)t(|(φ∞)x| −

√
λφ∞

)
≤ χ
√
λΨeζ∞(r(·),c)t(√λ∗ −√λ)φ∞

≤ 0, ∀x ∈ R. (2.39)
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By (2.38), we have

(u∞)t ≥(u∞)xx + c(u∞)x − χ(u∞)xΨx(x+ ct;u(t, ·;u0))

+ (r(x)− χλΨ(x+ ct;u(t, ·;u0))− (b− χµ)u∞)u∞, ∀x ∈ R.

Let ũ(t, x;u0) = u(t, x+ ct;u0), then ũ(t, x;u0) satisfies

ũt = ũxx+cũx−χũxΨx(x+ct;u(t, ·;u0))+(r(x)−χλΨ(x+ct;u(t, ·;u0))−(b−χµ)ũ)ũ, ∀ t > 0, x ∈ R.

By the comparison principle for parabolic equations, we have

ũ(t, x;u0) ≤ u∞(t, x) = eζ∞(r(·),c)tφ∞(x), ∀ t ≥ 0, x ∈ R.

Since φ∞(x) is bounded on any compact set and ζ∞(r(·), c) < 0, we then have limt→∞ ũ(t, x;u0) =

0 locally uniformly in x ∈ R.

We now prove that limt→∞ ũ(t, x;u0) = 0 uniformly in x ∈ R. Assume by contradiction

that this is not true. Then there is ε0 > 0, tn →∞, and |xn| → ∞ such that

ũ(tn, xn;u0) ≥ ε0.

Without loss of generality, we assume that xn → ∞, and limn→∞ ũ(t + tn, x + xn;u0) =

U∗(t, x), limn→∞Ψ(x+ xn + c(t+ tn);u(t+ tn, ·;u0)) = Ψ∗(t, x) locally uniformly. Then

U∗t = U∗xx + cU∗x − χΨ∗xU
∗
x + U∗(r(∞)− χλΨ∗ − (b− χµ)U∗), t ∈ R, x ∈ R.

Note that U∗(t, x) is bounded and nonnegative and r(∞) < 0. We must have

U∗(t, x) ≡ 0,

which contradicts to U∗(0, 0) ≥ ε0. Therefore, limt→∞ ũ(t, x;u0) = 0 uniformly in x ∈ R,

which implies that limt→∞ u(t, x;u0) = 0 uniformly in x ∈ R.
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Proof of Theorem 2.3. (3) Suppose |c| < c∗. We first prove

lim
t→∞

sup
|x−ct|≥c′ t

u(t, x;u0) = 0 ∀ c′ > 0.

Assume that the result does not hold. Then there are constants δ0 > 0, and a sequence

{(tn, xn)}n∈N, tn →∞, |xn − ctn| ≥ c
′
tn such that u(tn, xn;u0) ≥ δ0 for any n ≥ 1.

Let un(t, x) = u(t + tn, x + xn;u0) and vn(t, x) = v(t + tn, x + xn;u0). Note that

|xn − ctn| → ∞ as n → ∞. Thus, either xn − ctn → ∞ as n → ∞ or xn − ctn → −∞ as

n→∞.

In the case xn − ctn → ∞ as n → ∞. Following similar arguments as those in the proof

of Theorem 2.3 (1), we can get a contradiction.

In the case xn − ctn → −∞ as n → ∞. Also using similar arguments as those in the

proof of Theorem 2.3 (1) and the fact r(−∞) < 0, we also can get a contradiction.

Next, we prove that, if ζ∞(r(·), c) > 0, then

lim inf
t→∞

inf
|x−ct|≤L

u(t, x;u0) > 0 ∀ L > 0.

To this end, let u(t, x;u0) = ũ(t, x− ct;u0), v(t, x;u0) = ṽ(t, x− ct;u0) in (1.1) and set M =

max{‖u0‖∞, r∗

b−χµ}. By (2.6), it follows that, for any R � 1, p > 1, (ũ(t, x;u0), ṽ(t, x;u0))

satisfies

ũt ≥ ũxx + cũx − χṽxũx + ũ(r(x)− εRM − CR,pũ
1
p − (b− χµ)ũ), t ≥ 1, x ∈ R. (2.40)

Let p = 2 and ε∗ be as in Lemma 2.10. By the similar arguments as those in the proof of (2.23),

it can be proved that

u∗(t, x;L,R,A(·, ·)) ≤ ũ(t, x;u0) ∀ t ≥ 1, −L ≤ x ≤ L. (2.41)
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By Lemma 2.10, there are L∗ > 0, and R∗ > 0 such that for any L ≥ L∗, R ≥ R∗, and

‖A(·, ·)‖∞ < ε∗,

inf
t∈R,|x|≤L−δ

u∗(t, x;L,R,A(·, ·)) > 0 ∀ 0 < δ < L.

This together with (2.41) implies that

lim inf
t→∞

inf
|x|≤L−δ

ũ(t, x;u0) > 0, ∀ 0 < δ < L.

Since u(t, x;u0) = ũ(t, x− ct;u0), we then have

lim inf
t→∞

inf
|x−ct|≤L−δ

u(t, x;u0) > 0, ∀ 0 < δ < L,

which implies that

lim inf
t→∞

inf
|x−ct|≤L

u(t, x;u0) > 0 ∀ L > 0.

2.4 Forced wave solutions

In this section, we study the existence of forced wave solutions of (1.1) with r(x) being as in

Case 1 or Case 2.

2.4.1 Case 1

In this subsection, we study the existence of forced wave solutions of (1.1) with r(x) being as

in Case 1 and prove Theorem 2.4. Throughout this subsection, we assume that r(x) is as in

Case 1.

We first present some lemmas. Suppose that b > χµ. Fix r1 with r(−∞) < r1 < 0. Let

x1 be given satisfying that r(x) ≤ r1 for any x ≤ x1. Let θ1 be the positive root of the equation
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θ2 + cθ + r1 = 0. Define

U+
1 (x) = min{ r∗

b− χµ
,

r∗

b− χµ
eθ1(x−x1)}, (2.42)

and consider the set

E+
1 = {u ∈ Cb

unif(R) : 0 ≤ u(x) ≤ U+
1 (x), ∀ x ∈ R}. (2.43)

For every u ∈ E+
1 , consider the operator

Au(U)(x) = Uxx(x)+(c−χΨx(x;u))Ux(x)+(r(x)−χλΨ(x;u)−(b−χµ)U(x))U(x), (2.44)

where Ψ(x;u) is given by (2.8).

Lemma 2.12. Suppose that b ≥ 3
2
χµ. For every u ∈ E+

1 , it holds that Au( r∗

b−χµ)(x) ≤ 0 for

x ∈ R and Au( r∗

b−χµe
θ1(·−x1))(x) ≤ 0 for x ∈ (−∞, x1).

Proof. Let u ∈ E+
1 be given. First, we have

Au(
r∗

b− χµ
)(x) =

r∗

b− χµ
(r(x)− χλΨ(x;u)− r∗) ≤ 0 ∀x ∈ R.

Next, for x ∈ (−∞, x1), we have r(x) ≤ r1, and hence

Au(
r∗

b− χµ
eθ1(·−x1))(x)

= θ2
1

r∗

b− χµ
eθ1(x−x1) + (c− χΨx(x;u))θ1

r∗

b− χµ
eθ1(x−x1)

+
r∗

b− χµ
eθ1(x−x1)(r(x)− χλΨ(x;u)− (b− χµ)

r∗

b− χµ
eθ1(x−x1))

=
r∗

b− χµ
eθ1(x−x1)

(
θ2

1 + cθ1 + r(x)− χθ1Ψx(x;u)− χλΨ(x;u)− r∗eθ1(x−x1)
)

≤ r∗

b− χµ
eθ1(x−x1)

(
θ2

1 + cθ1 + r1 − χθ1Ψx(x;u)− χλΨ(x;u)− r∗eθ1(x−x1)
)

=
r∗

b− χµ
eθ1(x−x1)

(
−χθ1Ψx(x;u)− χλΨ(x;u)− r∗eθ1(x−x1)

)
. (2.45)

49



It then follows from Lemma 2.5 and (2.45) that

Au(
r∗

b− χµ
eθ1(·−x1))(x) ≤ r∗

b− χµ
eθ1(x−x1)

(
χµ

2
(θ1 −

√
λ)e−

√
λx

∫ x

−∞
e
√
λyu(y)dy − r∗eθ1(x−x1)

)
.

If θ1 ≤
√
λ, we then have

Au(
r∗

b− χµ
eθ1(·−x1))(x) ≤ 0 ∀x ∈ (−∞, x1).

If θ1 >
√
λ, we then have

Au(
r∗

b− χµ
eθ1(·−x1))(x)

≤ r∗

b− χµ
eθ1(x−x1)

(
χµr∗

2(b− χµ)
(θ1 −

√
λ)e−

√
λx

∫ x

−∞
e
√
λyeθ1(y−x1)dy − r∗eθ1(x−x1)

)
=

r∗2

b− χµ
e2θ1(x−x1)

(
χµ(θ1 −

√
λ)

2(b− χµ)(θ1 +
√
λ)
− 1

)

≤ 0 ∀x < x1.

The lemma thus follows.

Suppose b > 2χµ. For any 0 < ε� 1, define an ignition nonlinearity by

fε(u) =


u
(
r∗ − ε− χµr∗

b−χµ − (b− χµ)u
)
, if u ≥ 0,

0 if − ε ≤ u < 0.

Consider the equation

ut = uxx + fε(u), x ∈ R. (2.46)

Equation (2.46) has a decreasing traveling wave solution φε(x−c̃εt) connecting (r∗−ε)(b−χµ)−χµr∗
(b−χµ)2

and −ε with speed 0 < c̃ε < 2
√

r∗(b−2χµ)
b−χµ and limε→0+ c̃ε = 2

√
r∗(b−2χµ)
b−χµ (see [7]), that is,
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(φε, c̃ε) satisfies


−c̃εφ

′
ε = φ

′′
ε + fε(φε),

φε(−∞) = (r∗−ε)(b−χµ)−χµr∗
(b−χµ)2 , φε(∞) = −ε, φ′ε < 0.

(2.47)

Let ψε(x) = φε(−x) for any x ∈ R. It then follows from (2.47) that


c̃εψ

′
ε = ψ

′′
ε + fε(ψε),

ψε(∞) = (r∗−ε)(b−χµ)−χµr∗
(b−χµ)2 , ψε(−∞) = −ε, ψ′ε > 0.

(2.48)

Without loss of generality, we can assume that ψε(x0) = 0, r(x) ≥ r∗ − ε if x > x0, and

x0 > x1. This can be realized by some appropriate translation of ψε(x) if necessary.

Lemma 2.13. Suppose that (H2) holds. For every u ∈ E+
1 and 0 < ε � 1, U−1 (x) =

max{ψε(x), 0} satisfies that Au(U−1 (·))(x) ≥ 0 for any x 6= x0. Moreover, U−1 (x) < U+
1 (x)

for all x ∈ R.

Proof. Let δ = c− χµr∗

2
√
λ(b−χµ)

+2
√

r∗(b−2χµ)
b−χµ . By (H2), δ > 0. Since limε→0+ c̃ε = 2

√
r∗(b−2χµ)
b−χµ ,

it then follows that for 0 < ε� 1, we have c̃ε > 2
√

r∗(b−2χµ)
b−χµ − δ

2
.

Fix such ε. For every u ∈ E+
1 . If x > x0, U−1 (x) = ψε(x) > 0 and U−1x(x) > 0. By

Lemma 2.7 and (2.48), we have

Au(ψε(·))(x) = ψ
′′

ε + (c− χΨx(x;u))ψ
′

ε + ψε(r(x)− χλΨ(x;u)− (b− χµ)ψε)

≥ ψ
′′

ε − c̃εψ
′

ε + (c− χΨx(x;u) + c̃ε)ψ
′

ε + ψε(r
∗ − ε− χλΨ(x;u)− (b− χµ)ψε)

≥ ψ
′′

ε − c̃εψ
′

ε + (c− χµr∗

2
√
λ(b− χµ)

+ 2

√
r∗(b− 2χµ)

b− χµ
− δ

2
)ψ
′

ε

+ ψε(r
∗ − ε− χµr∗

b− χµ
− (b− χµ)ψε)

= (c− χµr∗

2
√
λ(b− χµ)

+ 2

√
r∗(b− 2χµ)

b− χµ
− δ

2
)ψ
′

ε

≥ 0.

If x < x0, U−1 (x) = 0. Then Au(U−1 )(x) = 0.
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Since x1 < x0, it is clear that U−1 (x) < U+
1 (x) for all x ∈ R. The lemma is thus

proved.

Let

E1 = {u ∈ Cb
unif(R) : U−1 (x) ≤ u(x) ≤ U+

1 (x), ∀ x ∈ R}.

For any u ∈ E1, let U(t, x;u) be the solution of the following parabolic equation


Ut = Au(U), t > 0, x ∈ R

U(0, x;u) = U+
1 (x).

(2.49)

Lemma 2.14. Suppose that (H2) holds. For any u ∈ E1, U∗1 (x;u) = limt→∞ U(t, x;u) exists

and satisfies the elliptic equation

0 = Uxx + (c− χΨx(x;u))Ux + (r(x)− χλΨ(x;u)− (b− χµ)U)U ∀ x ∈ R. (2.50)

Moreover, U∗1 (·;u) ∈ E1.

Proof. First, thanks to Lemma 2.12, it follows from the comparison principle for parabolic

equations that

U(t2, x;u) ≤ U(t1, x;u) ≤ U+
1 (x), ∀ x ∈ R, 0 < t1 < t2, u ∈ E1.

Thus the function

U∗1 (x;u) = lim
t→∞

U(t, x;u), ∀ u ∈ E1 (2.51)

is well defined. Moreover, by a priori estimates for parabolic equations, it is not difficult to see

that U∗1 (·;u) ∈ E+
1 and U∗1 (x;u) satisfies (2.50).

Next, it follows from Lemma 2.13 and the comparison principle for parabolic equations

that

U−1 (x) ≤ U(t, x;u), ∀ x ∈ R, t > 0, u ∈ E1. (2.52)
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Hence,

U−1 (x) ≤ U∗1 (x;u), ∀ x ∈ R, ∀ u ∈ E1. (2.53)

Therefore, U∗1 (·;u) ∈ E1. The lemma is thus proved.

Lemma 2.15. Suppose that (H2) holds. For any u ∈ E1, suppose that U1∗(x;u) is also a

solution of (2.50) in E1. Then

lim
x→∞

U1∗(x;u)

U∗1 (x;u)
= 1.

Proof. First of all, by Lemma 2.7, supx∈R |Ψ(x;u)| < ∞ and supx∈R | ∂∂xΨ(x;u)| < ∞. By

Ψxx(x;u) = λΨ(x;u) − µu, we have supx∈R |Ψxx(x;u)| < ∞. This implies that for any

{xn}∞n=1 ⊂ R, there is {xnk}∞k=1 ⊂ {xn}∞n=1 such that limk→∞Ψ(x+xnk ;u) and limk→∞Ψx(x+

xnk ;u) exist locally uniformly on R.

Next, note that U1∗(x;u)
U∗1 (x;u)

≤ 1 for all x ∈ R. It then suffices to prove lim infx→∞
U1∗(x;u)
U∗1 (x;u)

≥ 1.

Assume by contraction that lim infx→∞
U1∗(x;u)
U∗1 (x;u)

< 1. Then there are 0 < δ < 1 and xn → ∞

such that U1∗(xn;u)
U∗1 (xn;u)

≤ 1− δ for n = 1, 2, · · · . Let

Un,1∗(x;u) = U1∗(x+ xn;u), U∗n,1(x;u) = U∗1 (x+ xn;u), Ψn(x;u) = Ψ(x+ xn;u).

Without loss of generality, we assume that there are U∗(x;u), U
∗
(x;u), and Ψ∗(x;u) such that

lim
n→∞

Un,1∗(x;u) = U∗(x;u), lim
n→∞

U∗n,1(x;u) = U
∗
(x;u), and lim

n→∞
Ψn(x;u) = Ψ∗(x;u)

locally uniformly on R. This implies that both U∗(x;u) and U
∗
(x;u) are solutions of

0 = Uxx + (c− χΨ∗x(x;u))Ux + (r∗ − χλΨ∗(x;u)− (b− χµ)U)U.

We now claim that U∗(x;u) ≡ U
∗
(x;u). Indeed, note that

0 < inf
x∈R

U∗(x;u) ≤ inf
x∈R

U
∗
(x;u), and sup

x∈R
U∗(x;u) ≤ sup

x∈R
U
∗
(x;u) <∞.
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This implies that the following set is not empty,

{γ ≥ 1 | 1
γ
U
∗
(x;u) ≤ U∗(x;u) ≤ γU

∗
(x;u) ∀ x ∈ R}.

Hence we can define

ρ(U∗, U
∗
) = inf{ln γ | 1

γ
U
∗
(x;u) ≤ U∗(x;u) ≤ γU

∗
(x;u) ∀ x ∈ R}.

Note that ρ(U∗, U
∗
) is the so called part metric between U∗ and U

∗
. Assume that ρ(U∗, U

∗
) >

0. Then by the arguments of [28, Proposition 3.4], there is δ0 > 0 such that

ρ(U∗, U
∗
) ≤ ρ(U∗, U

∗
)− δ0,

which is a contradiction. Hence ρ(U∗, U
∗
) = 0, and then U∗(x;u) = U

∗
(x;u) for all x ∈

R. But, by the assumption, U∗(0;u) 6= U
∗
(0;u), which is a contradiction. The lemma thus

follows.

Lemma 2.16. Suppose that (H2) holds. For any u ∈ E1, U∗1 (x;u) is the unique positive solution

of (2.50) in E1.

Proof. Suppose that U1∗(x;u) is any positive solution of (2.50) in E1. It suffices to prove that

U1∗(x;u) ≡ U∗1 (x;u). For any ε > 0, let

Kε = {k ≥ 1 | kU1∗(x;u) ≥ U∗1 (x;u)− ε ∀x ∈ R}.

By Lemma 2.15 and the fact limx→−∞ U1∗(x;u) = limx→−∞ U
∗
1 (x;u) = 0, Kε 6= ∅. Let

kε = inf Kε.

Then kε ≥ 1 and

kεU1∗(x;u) ≥ U∗1 (x;u)− ε ∀x ∈ R. (2.54)
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For any 0 < ε1 < ε2, since kε1U1∗(x;u) ≥ U∗1 (x;u) − ε1 > U∗1 (x;u) − ε2 for any x ∈ R, it

then follows that kε1 ≥ kε2 . Thus, kε is nonincreasing in ε > 0. If kε = 1 for any ε > 0, clearly,

we have that U∗1 (x;u) ≡ U1∗(x;u).

Assume that there exists ε0 > 0 such that kε0 > 1. Then kε ≥ kε0 > 1 for any 0 < ε ≤ ε0.

For any given 0 < ε ≤ ε0, since kε > 1, there exists δ > 0, such that kε − δ > 1. By lemma

2.15, we have that for such given ε > 0, U1∗(x;u)
U∗1 (x;u)

≥ 1− ε
U∗1 (x;u)

for x� 1. Hence,

(kε − δ)U1∗(x;u) ≥ U∗1 (x;u)− ε x� 1. (2.55)

Since limx→−∞
U∗1 (x;u)−ε
U1∗(x;u)

= −∞, it is then clear that

(kε − δ)U1∗(x;u) ≥ U∗1 (x;u)− ε x� −1. (2.56)

It then follows from (2.55), (2.56) and the definition of kε that there is xε ∈ R such that

kεU1∗(xε;u) = U∗1 (xε;u)− ε. (2.57)

By Lemma 2.15, xε is bounded above.

We claim that xε is bounded from below. In fact, at xε, we have

∂xx(kεU1∗(xε;u)− U∗1 (xε;u)) ≥ 0 and ∂x(kεU1∗(xε;u)− U∗1 (xε;u)) = 0.

Hence,

0 ≥ kεU1∗(xε)(r(xε)− χλΨ(xε;u)− (b− χµ)U1∗(xε))− U∗1 (xε)(r(xε)− χλΨ(xε;u)− (b− χµ)U∗1 (xε))

≥ kεU1∗(xε)(r(xε)− χλΨ(xε;u)− (b− χµ)U∗1 (xε))− U∗1 (xε)(r(xε)− χλΨ(xε;u)− (b− χµ)U∗1 (xε))

= −ε(r(xε)− χλΨ(xε;u)− (b− χµ)U∗1 (xε)).

This implies that r(xε) ≥ 0 and hence xε is bounded from below.
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Therefore, xε is bounded both from below and above. By (2.57), kε =
U∗1 (xε;u)−ε
U1∗(xε;u)

. Hence kε

is bounded, and there is εn → 0 such that xεn → x∗ and kεn → k∗(≥ kε0 > 1) as n→∞. This

together with (2.57) implies that k∗U1∗(x
∗;u) = U∗1 (x∗;u). By (2.54), k∗U1∗(x;u) ≥ U∗1 (x;u)

for all x ∈ R. Since k∗ > 1, by Lemma 2.15, k∗U1∗(x;u) 6≡ U∗1 (x;u). Then by the comparison

principle for parabolic equations, we must have U∗1 (x;u) < k∗U1∗(x;u) for all x ∈ R, which

is a contraction. Therefore, kε = 1 for 0 < ε� 1 and then U1∗(x;u) ≡ U∗1 (x;u).

We now prove Theorem 2.4.

Proof of Theorem 2.4. Consider the mapping U∗1 (·; ·) : E1 3 u 7→ U∗1 (x;u) ∈ E1 as defined

by (2.51). It follows from the arguments of the proof of [50, Theorem 3.1] and the Lemma

2.16 that this function is continuous and compact in the compact open topology. Hence it has a

fixed point u∗ by the Schauder’s fixed point Theorem. Taking v∗(x) = Ψ(x;u∗), we have from

(2.50), that (u(t, x), v(t, x)) = (u∗(x− ct), v∗(x− ct)) is an entire solution of (1.1). Moreover,

since U−1 (x) ≤ u∗(x) ≤ U+
1 (x), it follows that limx→−∞ u

∗(x) = 0.

In the following we show that

lim
x→∞

u∗(x) =
r∗

b
. (2.58)

Suppose on the contrary that this is false. Then, there is a constant δ > 0 and a sequence

{xn}n∈N such that xn → ∞ and |u∗(xn) − r∗

b
| ≥ δ for any n ≥ 1. Consider the sequence of

functions

un(t, x) = u(t, x+ xn) and vn(t, x) = v(t, x+ xn).

By a priori estimate for parabolic equations, without loss of generality, we may assume that

there is (u∗∗(t, x), v∗∗(t, x)) ∈ C1,2(R × R) such that (un, vn)(t, x) → (u∗∗(t, x), v∗∗(t, x))

locally uniformly in C1,2(R×R) as n→∞. Furthermore, the function (u∗∗(t, x), v∗∗(t, x)) is

an entire solution of (2.7). Note that

u∗∗(t, x) = lim
n→∞

un(t, x) ≥ lim
n→∞

U−1 (x+ xn − ct) = U−1 (∞) > 0, ∀ x ∈ R, t ∈ R.
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So inf(t,x)∈R×R u
∗∗(t, x) > 0. Therefore, since χµ < b

2
, it follows from Lemma 2.4 (2) that

u∗∗(t, x) = r∗

b
for every (t, x) ∈ R × R. In particular, r∗

b
= u∗∗(0, 0) = limn→∞ u

n(0, 0) =

limn→∞ u(0, xn) = limn→∞ u
∗(xn), which is a contradiction. Therefore, (2.58) must hold.

2.4.2 Case 2

In this subsection, we study the existence of forced wave solutions of (1.1) with r(x) being as

in Case 2 and prove Theorem 2.5. Throughout this subsection, we assume that r(x) is as in

Case 2 and (H3) holds.

We first present some lemmas.

Fix a r̄ with max{r(−∞), r(∞)} < r̄ < 0. Choose x̄ such that the inequality r(x) < r̄

holds for all x < x̄. Let θ̄ be the positive solution of θ̄2 + cθ̄ + r̄ = 0. Choose x̃ such that the

inequality r(x) < r̄ holds for all x > x̃. Let θ̃ be the positive solution of θ̃2 − cθ̃ + r̄ = 0.

Define

U+
2 (x) =



r∗

b−χµe
θ̄(x−x̄) if x < x̄,

r∗

b−χµ if x̄ ≤ x ≤ x̃,

r∗

b−χµe
−θ̃(x−x̃) if x > x̃,

and consider the set

E+
2 = {u ∈ Cb

unif(R) : 0 ≤ u(x) ≤ U+
2 (x), ∀ x ∈ R}.

For every u ∈ E+
2 , consider the operator

Au(U)(x) = Uxx(x) + (c− χΨx(x;u))Ux(x) + (r(x)− χλΨ(x;u)− (b− χµ)U(x))U(x),

where Ψ(x;u) is given by (2.8).

Lemma 2.17. Suppose that b ≥ 3χµ
2

. For every u ∈ E+
2 , it holds that Au( r∗

b−χµe
θ̄(·−x̄))(x) ≤ 0

for x ∈ (−∞, x̄), Au( r∗

b−χµ)(x) ≤ 0 for x ∈ R and Au( r∗

b−χµe
−θ̃(·−x̃))(x) ≤ 0 for x ∈ (x̃,∞).

Proof. It can be proved by the similar arguments as those used in the proof of Lemma 2.12.
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Consider
ut = uxx + cux − A(t, x)ux + u(r(x)−B(t, x)− (b̄− χµ)u), −L < x < L

u(t,−L) = u(t, L) = 0,

(2.59)

where both A(t, x) and B(t, x) are globally Hölder continuous in t ∈ R and x ∈ [−L,L] with

Hölder exponent 0 < α < 1 and ‖A(·, ·)‖∞ <∞, ‖B(·, ·)‖∞ <∞.

Lemma 2.18. Suppose that (H3) holds. Then there are L∗ > 0 and η = η(r(·), c) > 0 such

that for any L ≥ L∗, any A(·, ·), B(·, ·) with ‖A(·, ·)‖∞ < η, ‖B(·, ·)‖∞ < η, and any b̄ > χµ,

(2.59) has a unique positive bounded entire solution u∗(t, x; b̄, A(·, ·), B(·, ·)) with

inf
t∈R,−L+δ≤x≤L−δ,‖A(·,·)‖∞<η,‖B(·,·)‖∞<η

u∗(t, x; b̄, A(·, ·), B(·, ·)) > 0 ∀ 0 < δ < L.

Proof. It can be proved by the similar arguments as those used in the proof of Lemma 2.9.

Let L = L∗ and η be fixed. For every u ∈ E+
2 , let A(t, x) = χΨx(x;u), B(t, x) =

χλΨ(x;u). By Lemma 2.7, both Ψx(x;u) and Ψxx(x;u) are bounded for any u ∈ E+
2 , we then

have both A(t, x) and B(t, x) are globally Hölder continuous in x ∈ [−L,L].

In the following, we assume that

0 < χ < χ0 = χ0(r(·), c) := min{ 2
√
ληb

µr∗ + 2
√
ληµ

,
bη

µr∗ + µη
}. (2.60)

Then by Lemma 2.7, we have

‖A(·, ·)‖∞ ≤
χµr∗

2
√
λ(b− χµ)

< η and ‖B(·, ·)‖∞ ≤
χµr∗

b− χµ
< η.

It then follows from Lemma 2.18 that (2.59) withA(t, x) = χΨx(x;u) andB(t, x) = χλΨ(x;u)

has a unique positive bounded entire solution u∗(t, x; b̄, u):= u∗(t, x; b̄, χΨx(·;u), χλΨ(·;u))

with

inf
t∈R,−L+δ≤x≤L−δ

u∗(t, x; b̄, u) > 0 ∀ 0 < δ < L.
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Note that, by the comparison principle for parabolic equations,

u∗(t, x; b̄, u) ≤ r∗

b̄− χµ
∀ t ∈ R, −L ≤ x ≤ L.

Fix b̄ � b such that u∗(t, x; b̄, u) < U+
2 (x) for any −L ≤ x ≤ L, any t ∈ R, any u ∈ E+

2 . By

the proof of Lemma 2.9, we have that

inf
t∈R,−L+δ≤x≤L−δ,u∈E+

2

u∗(t, x; b̄, u) > 0 ∀ 0 < δ < L. (2.61)

Define

U−2 (x) =


inft∈R,u∈E+

2
u∗(t, x; b̄, u) if − L < x < L,

0 if x ≥ L, x ≤ −L

Then, U−2 (x) 6≡ 0 and inf−L+δ≤x≤L−δ U
−
2 (x) > 0, and U−2 (x) < U+

2 (x) for any x ∈ R.

Lemma 2.19. For any u ∈ E+
2 ,

U−2 (x) < U(t, x;u) ∀ x ∈ R, t > 0,

where U(t, x;u) is the solution of the following parabolic equation


Ut = Au(U), t > 0, x ∈ R

U(0, x;u) = U+
2 (x), x ∈ R.

(2.62)

Proof. Observe that

u∗xx + (c− χΨx(x;u))u∗x + (r(x)− χλΨ(x;u)− (b− χµ)u∗)u∗ − u∗t = (b̄− b)u∗2 > 0

for any −L < x < L. Hence, by the comparison principle for parabolic equations, we have

u∗(t, x; b̄, u) < U(t, x;u), ∀ − L < x < L, t > 0, u ∈ E+
2 .
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This implies that

inf
t∈R,u∈E+

2

u∗(t, x; b̄, u) < U(t, x;u), ∀ − L < x < L, t > 0, u ∈ E+
2 .

The lemma then follows.

Note that, by Lemma 2.17 and the comparison principle for parabolic equations,

U(t2, x;u) ≤ U(t1, x;u) ≤ U+
2 (x), ∀ x ∈ R, 0 < t1 < t2, u ∈ E+

2 .

Thus the function

U∗2 (x;u) = lim
t→∞

U(t, x;u), ∀ u ∈ E+
2 (2.63)

is well defined, and

U−2 (x) ≤ U∗2 (x;u) ≤ U+
2 (x), ∀ x ∈ R, u ∈ E+

2 . (2.64)

Let

E2 = {u ∈ Cb
unif(R) : U−2 (x) ≤ u(x) ≤ U+

2 (x), ∀ x ∈ R}.

For any u ∈ E2, it follows from (2.64) that U∗2 (·;u) ∈ E2. Moreover, by a priori estimates for

parabolic equation, we have that U∗2 (x;u) satisfies

0 = Uxx + (c− χΨx(x;u))Ux + (r(x)− χλΨ(x;u)− (b− χµ)U)U ∀ x ∈ R. (2.65)

Since U−2 (x) ≥ 0 for any x ∈ R and U−2 (x) 6≡ 0 for any x ∈ R, it follows from the comparison

principle for parabolic equations that

U∗2 (x;u) > 0 ∀ x ∈ R, u ∈ E+
2 . (2.66)

Lemma 2.20. For any given u ∈ E2, (2.65) has a unique solution U∗2 (·;u) ∈ E2.
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Proof. Let U1(x;u), U2(x;u) be two solutions of (2.65) in E2. Note that Ui(x;u) > 0 for x ∈ R

and every i = 1, 2. For any ε > 0, let

Kε = {k ≥ 1 | kU2(x;u) ≥ U1(x;u)− ε ∀x ∈ R}.

Kε is not empty because limx→±∞
U1(x;u)−ε
U2(x;u)

= −∞. Let kε = inf Kε. Following the similar

arguments as those used in the proof of Lemma 2.16, we have kε = 1 for 0 < ε� 1. Therefore,

U2(x;u) ≥ U1(x, u) for any x ∈ R. Similarly, we have U1(x;u) ≥ U2(x, u) for any x ∈ R.

The lemma thus follows.

We now prove Theorem 2.5.

Proof of Theorem 2.5. Consider the mapping U∗2 (·; ·) : E2 3 u 7→ U∗2 (x;u) ∈ E2 as defined

by (2.63). It follows from the arguments of [50, Theorem 3.1 ] and Lemma 2.20 that this

function is continuous and compact in the compact open topology. Hence it has a fixed point

u∗ by the Schauder’s fixed point Theorem. Taking v∗(x) = Ψ(x;u∗), we have from (2.65), that

(u(t, x), v(t, x)) = (u∗(x− ct), v∗(x− ct)) is an entire solution of (1.1). Moreover, by (2.66),

u∗(x) > 0 for all x ∈ R. Since U−2 (x) ≤ u∗(x) ≤ U+
2 (x), it follows that limx→±∞ u

∗(x) = 0.

The theorem is thus proved.

2.5 Numerical Simulations

In this section, we present some numerical simulations by the finite difference method with

r(x) being as in Case 1 or Case 2. All the numerical simulations were conducted using pro-

gramming software MATLAB. It should be pointed out that the authors in [72] provided some

numerical study for the vanishing and spreading dynamics of chemotaxis systems with logistic

source and a free boundary by the finite difference method.

2.5.1 Case 1

In this subsection, we present some numerical simulations for the existence of forced wave

solutions with r(x) being as in Case 1. To this end, we use the finite difference method to
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numerically compute the solution of



ut = uxx + cux − (χuvx)x + u(r(x)− bu), −L < x < L

0 = vxx − λv + µu, −L < x < L

u(0, x) = u0(x), −L ≤ x ≤ L

u(t,−L) = v(t,−L) = 0

∂u
∂x

(t, L) = ∂v
∂x

(t, L) = 0

(2.67)

for reasonable large L > 1, where

u0(x) =


0 if x ≤ −1,

r∗

2b
x+ r∗

2b
if − 1 < x < 1,

r∗

b
if x ≥ 1.

Let (uL(t, x;u0), vL(t, x;u0)) be the solution of (2.67) with uL(0, x;u0) = u0(x). Ob-

serve that if (uL(x), vL(x)) := limt→∞(uL(t, x;u0), vL(t, x;u0)) exists, then (uL(x), vL(x))

is a stationary solution of (2.67). If (u∞(x), v∞(x)) := limL→∞(uL(x), vL(x)) exists, and

u∞(−∞) = 0 and u∞(∞) = r∗

b
, then (u∞(x), v∞(x)) is a forced wave solution of (1.1) con-

necting ( r
∗

b
, µr

∗

λb
) and (0, 0). We compute the numerical solution of (2.67) on a reasonable large

time interval [0, T ] for some choices of L. The detail of numerical scheme can be found in [57].

We fix χ = 0.1, µ = 1, λ = 0.05, and choose r(x) to be

r(x) =


−1 if x ≤ −8,

11x+ 87 if − 8 < x < −7,

10 if x ≥ −7.

For this choice of r(x), r∗ = 10 and −c∗ = −2
√
r∗ ≈ −6.325. We do four numerical

experiments for different values of b and c. In these four numerical experiments, we use the

same space step size h = 0.1 and the same time step size τ = 0.002.
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Numerical Experiment 1. Let b = 1 and c = 1. In this case, c > χµr∗

2
√
λ(b−χµ)

− 2
√

r∗(b−2χµ)
b−χµ

becomes c > 5
9
√

0.05
− 2
√

8
0.9
≈ −3.478. So for these choices of b and c, the assumption (H1)

holds.

We compute the numerical solution of (2.67) with L = 15, 20, 25, 30, and 40 on the time

interval [0, 10]. For all the choices of L, we observe that the numerical solution of (2.67)

changes very little after t = 3, which indicates that the numerical solution converges to a

stationary solution of (2.67) as t → ∞. We also observe that the numerical solution u(t, x) at

t = 10 changes very little and u(10, L) is very close to r∗

b
= 10 as L increases, which indicates

the stationary solution of (2.67) converges to a stationary solution of (2.3) connecting ( r
∗

b
, µ
λ
r∗

b
)

and (0, 0) or a forced wave solution of (1.1) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0) as L→∞, whose

existence is proved in Theorem 2.4. Hence the numerical results for the choices b = 1 and

c = 1 match the theoretical results.

We demonstrate the numerical solutions of (2.67) for the cases L = 20 in Figure 2.1.

Figure 2.1(a) is the surface plot of the numerical solution of the system (2.67) on the interval

[−20, 20] as time evolves. Figure 2.1(b) is the profile of the numerical solution at time t =

0, 1, 2, 3, 7, 10.
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Figure 2.1: (a) Evolution of numerical solution of (2.67) on the interval [−20, 20] with b = 1
and c = 1. (b) numerical solution of (2.67) on the interval [−20, 20] at time t = 0, 1, 2, 3, 7, 10
with b = 1 and c = 1.

Numerical Experiment 2. Let b = 1, c = −6. For these choices of b and c, b and c satisfy

b > 2χµ and c > −c∗, but the assumption c > χµr∗

2
√
λ(b−χµ)

− 2
√

r∗(b−2χµ)
b−χµ does not hold. We

compute the numerical solution of (2.67) with L = 15, 20, 25, 30, and 40 on the time interval
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[0, 15]. For all the choices of L, we observe that the numerical solution of (2.67) changes very

little after t = 7, which indicates that the numerical solution converges to a stationary solution

of (2.67) as t → ∞. We also observe that the numerical solution u(t, x) at t = 15 changes

very little and u(15, L) is very close to r∗

b
= 10 as L increases, which indicates the stationary

solution of (2.67) converges to a stationary solution of (2.3) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0)

or a forced wave solution of (1.1) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0) as L → ∞. The numerical

results indicate that when c > −c∗ and b > 2χµ, (1.1) also has a forced wave solution. We

demonstrate the numerical solutions of (2.67) for the case L = 20 in Figure 2.2.
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Figure 2.2: (a) Evolution of numerical solution of (2.67) on the interval [−20, 20] with
b = 1 and c = −6. (b) numerical solution of (2.67) on the interval [−20, 20] at time
t = 0, 1, 3, 7, 13, 15 with b = 1 and c = −6.

Numerical Experiment 3. Let b = 0.15, c = −6. For these choices of b and c, b and c satisfy

b > χµ and c > −c∗. We compute the numerical solution of (2.67) with L = 35, 40, 45, 50,

and 60 on the time interval [0, 60]. For all the choices of L, we observe that the numerical

solution of (2.67) changes very little after t = 50, which indicates that the numerical solution

converges to a stationary solution of (2.67) as t → ∞. We also observe that the numerical

solution u(t, x) at t = 60 changes very little and u(60, L) is very close to r∗

b
= 10

0.15
≈ 66.67 as

L increases, which indicates the stationary solution of (2.67) converges to a stationary solution

of (2.3) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0) or a forced wave solution of (1.1) connecting ( r

∗

b
, µ
λ
r∗

b
)

and (0, 0) as L → ∞. The numerical results indicate that when c > −c∗ and b > χµ, (1.1)

also has a forced wave solution. We demonstrate the numerical solutions of (2.67) for the case

L = 40 in Figure 2.3.
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Figure 2.3: (a) Evolution of numerical solution of (2.67) on the interval [−40, 40] with b =
0.15 and c = −6. (b) numerical solution of (2.67) on the interval [−40, 40] at time t =
0, 5, 10, 20, 30, 40, 50, 60 with b = 0.15 and c = −6.

Numerical Experiment 4. Let b = 1, c = −6.5. For these choices of b and c, b and c satisfy

b > 2χµ and c < −c∗. We compute the numerical solution of (2.67) with L = 15 on the

time interval [0, 50], with L = 20 on the time interval [0, 60], with L = 25 on the time interval

[0, 70], with L = 30 on the time interval [0, 90], and with L = 40 on the time interval [0, 140].

For all the choices of L, we observe that the numerical solution of (2.67) becomes very small

after certain time, which indicates that the numerical solution converges to zero as t → ∞,

and also indicates that (2.3) has no positive stationary solutions or (1.1) has no forced wave

solutions in the case that c < −c∗. We demonstrate the numerical solutions of (2.67) for the

case L = 20 in Figure 2.4.
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Figure 2.4: (a) Evolution of numerical solution of (2.67) on the interval [−20, 20] with
b = 1 and c = −6.5. (b) numerical solution of (2.67) on the interval [−20, 20] at time
t = 0, 20, 30, 40, 50, 60 with b = 1 and c = −6.5.
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Remark 2.3. (1) The numerical simulations above illustrate our Theorem 2.4 and also shows

that the assumptions in Theorem 2.4 can be weakened. Based on these numerical sim-

ulations, we conjecture that if b > χµ, and c > −2
√
r∗, there is a forced wave solu-

tion (u(t, x), v(t, x)) = (φ(x − ct), ψ(x − ct)) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0), that is,

φ(∞) = r∗

b
and φ(−∞) = 0. If b > χµ and c < −2

√
r∗, there is no forced wave

solution (u(t, x), v(t, x)) = (φ(x− ct), ψ(x− ct)) connecting ( r
∗

b
, µ
λ
r∗

b
) and (0, 0), that

is, φ(∞) = r∗

b
and φ(−∞) = 0.

(2) In the above four numerical experiments, we used the same space step size h = 0.1 and

the same time step size τ = 0.002. They satisfy the numerical stable condition τ
h2 <

1
2
.

We do not give the accuracy analysis of the simulations in this paper. To see the reliability

of the numerical results, we also tried different values of h and τ to simulate the existence

of forced wave solutions. For the above four experiments, let h = 0.1 be fixed, choose

τ = 0.001, 0.002, 0.004 respectively, the graphs we got do not have a big difference. Fix

h = 0.05, let τ = 0.001, 0.0005, 0.00025 respectively, the graphs we got also do not have

a big difference.

(3) We also tried to use different initial conditions to simulate the forced wave. For example,

let

u0(x) =


0 if x < −1,

x+ 1 if − 1 ≤ x ≤ 1,

2 if x > 1.

We see similar dynamical scenarios. We then conjecture that the forced wave solution of

(1.1) is unique and stable in certain parameter regions.
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2.5.2 Case 2

In this subsection, we study the numerical simulations of the forced wave solutions in Case 2

by the finite difference method. To this end, we consider



ut = uxx + cux − (χuvx)x + u(r(x)− bu), −L < x < L

0 = vxx − λv + µu, −L < x < L

u(0, x) = u0(x), −L ≤ x ≤ L,

u(t,−L) = v(t,−L) = 0

u(t, L) = v(t, L) = 0

(2.68)

for reasonable large L > 1, where

u0(x) =


0 if |x| > 1,

(x+ 1)(1− x) if − 1 ≤ x ≤ 1.

Choose µ = 1, λ = 1 and

r(x) =



−1 if |x| ≥ 8,

11x+ 87 if − 8 < x < −7,

10 if − 7 ≤ x ≤ 7,

−11x+ 87 if 7 < x < 8.

For this choice of r(x), r∗ = 10 and c∗ := 2
√
r∗ ≈ 6.325. We do three numerical experiments

for different values of b, c and χ. In these three numerical experiments, we use the same space

step size h = 0.1 and the same time step size τ = 0.002.

Numerical Experiment 1. Choose c = 1, then ζ−7(r(·), c) =
40−1−π

2

49

4
> 0. Since ζL(r(·), c) >

ζ−7(r(·), c) for L > −7, we have ζ∞(r(·), c) ≥ ζ−7(r(·), c) > 0. Choose b = 1 and χ = 0.6.

Then b ≥ 3χµ
2

.
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We compute the numerical solution of (2.68) with L = 15, 20, 25, 30, and 40 on the time

interval [0, 10]. In all the cases, we observe that the numerical solution changes very little after

t = 3 and stays away from 0 on some fixed interval, which indicates that the numerical solution

converges to a positive stationary solution of (2.68) as t → ∞. We also observe that the

numerical solution u(t, x) at t = 10 changes very little as L increases, which indicates that the

stationary solution of (2.68) converges as L → ∞ to a stationary solution of (2.3) or a forced

wave solution of (1.1) connecting (0, 0) and (0, 0). We demonstrate the numerical solutions of

(2.68) for the cases L = 20 in Figure 2.5.
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Figure 2.5: (a) Evolution of numerical solution of (2.68) on the interval [−20, 20] with c = 1,
b = 1 and χ = 0.6. (b) numerical solution of (2.68) on the interval [−20, 20] at time t =
0, 1, 2, 3, 7, 10 with c = 1, b = 1 and χ = 0.6.

Numerical Experiment 2. Choose c = 1 (then ζ∞(r(·), c) > 0). Choose b = 0.7 and χ = 0.6

(then χµ < b < 3χµ
2

).

We compute the numerical solution of (2.68) with L = 15, 20, 25, 30, and 40 on the time

interval [0, 10]. In all the cases, we observe that the numerical solution changes very little after

t = 3 and stays away from 0 on some fixed interval, which indicates that the numerical solution

converges to a positive stationary solution of (2.68) as t → ∞. We also observe that the

numerical solution u(t, x) at t = 10 changes very little as L increases, which indicates that the

stationary solution of (2.68) converges as L → ∞ to a stationary solution of (2.3) or a forced

wave solution of (1.1) connecting (0, 0) and (0, 0). We demonstrate the numerical solutions of

(2.68) for the cases L = 20 in Figure 2.6.
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Figure 2.6: (a) Evolution of numerical solution of (2.68) on the interval [−20, 20] with c = 1,
b = 0.7 and χ = 0.6. (b) numerical solution of (2.68) on the interval [−20, 20] at time t =
0, 1, 2, 3, 7, 10 with c = 1, b = 0.7 and χ = 0.6.

Numerical Experiment 3. Let c = 6.5 (hence c > c∗). Let b = 1 and χ = 0.6 (hence b > 3χµ
2

).

We compute the numerical solution of (2.68) with L = 15, 20, 25, 30, 40 on the time interval

[0, 30]. For all the choices of L, we observe that the numerical solution of (2.68) becomes very

small after t = 20, which indicates that the numerical solution converges to zero as t → ∞,

and also indicates that (2.3) has no positive stationary solutions or (1.1) has no forced wave

solutions in the case that c > c∗ and b > 3
2
χµ which matches the theoretical result Theorem 2.3

(1). We demonstrate the numerical solutions of (2.68) for the case L = 20 in Figure 2.7.
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Figure 2.7: (a) Evolution of numerical solution of (2.68) on the interval [−20, 20] with c = 6.5,
b = 1 and χ = 0.6. (b) numerical solution of (2.68) on the interval [−20, 20] at time t =
0, 5, 10, 15, 20, 30 with c = 6.5, b = 1 and χ = 0.6.

Similarly, if c = −6.5, b = 1 and χ = 0.6, we observe that the numerical solution of (2.68)

becomes very small after certain time, which indicates that the numerical solution converges to
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zero as t → ∞, and also indicates that (2.3) has no positive stationary solutions or (1.1) has

no forced wave solutions in the case that c < −c∗ and b > 3
2
χµ which matches the theoretical

result Theorem 2.3 (1).

Remark 2.4. (1) The numerical simulations above supports our Theorem 2.5 and also tells

us that the assumptions in Theorem 2.5 may be weakened. Based on these numerical

simulations, we conjecture that if b > χµ and ζ∞(r(·), c) > 0, there is a forced wave

solution (u(t, x), v(t, x)) = (φ(x − ct), ψ(x − ct)) connecting (0, 0) and (0, 0), that is,

φ(x) > 0 for all x ∈ R and φ(±∞) = 0. If b > χµ and |c| > c∗, there is no forced wave

solution (u(t, x), v(t, x)) = (φ(x − ct), ψ(x − ct)) connecting (0, 0) and (0, 0), that is,

φ(x) > 0 for all x ∈ R and φ(±∞) = 0.

(2) In these three numerical simulations, we used the same space step size h = 0.1 and the

same time step size τ = 0.002, which satisfy the numerical stable condition τ
h2 < 1

2
.

Again, we do not give the accuracy analysis of the simulations in this paper. To see the

reliability of the numerical results, we also tried different values of h and τ . For example,

let h = 0.1 be fixed, let τ = 0.001, 0.002, 0.004 respectively; let h = 0.2 be fixed, let τ =

0.01, 0.005, 0.0025 respectively; let h = 0.05 be fixed, let τ = 0.001, 0.0005, 0.00025

respectively. All the graphs we got do not change much.

(3) We also tried to use different initial conditions to simulate the existence of forced wave

solutions. For example, let

u0(x) =


0 if x ≤ −1,

sin(x+ 1) if − 1 < x < π − 1,

0 if x ≥ π − 1.

We see similar dynamical scenarios. We then also conjecture that the forced wave solu-

tion of (1.1) is unique and stable in certain parameter regions.
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Chapter 3

Global existence, asymptotic behavior and spreading speeds of parabolic-parabolic
chemotaxis models with logistic source on RN

This chapter is devoted to the study of the asymptotic dynamics of the parabolic-parabolic

chemotaxis model (1.4) with logistic source on RN . We first investigate the local existence and

uniqueness of classical solutions with given initial functions. We then study the global existence

and boundedness of classical solutions with given initial functions. Under the conditions that

global classical solutions exist and some other further conditions, we study the asymptotic

behavior of global classical solutions with strictly positive initial functions. Finally, we explore

the spreading speeds of global classical solutions with compact supported initial functions and

front like initial functions. As a by-product of spreading speeds, we get the persistence of

global classical solutions with strictly positive initial functions (see Theorem 3.7).

3.1 Notations and statements of the main results

To state our main results, we first introduce some notations. Let

X1 = Cb
unif(RN) = {u ∈ C(RN) |u(x) is uniformly continuous in x ∈ RN and sup

x∈RN
|u(x)| <∞}

equipped with the norm ‖u‖∞ = supx∈RN |u(x)|, and

X2 = Cb,1
unif = {u ∈ Cb

unif(RN) | ∂xiu ∈ Cb
unif(RN), i = 1, 2, · · · , N}

equipped with the norm ‖u‖Cb,1unif
= ‖u‖∞ +

∑N
i=1 ‖∂xiu‖∞ and

Cb,2
unif = {u ∈ Cb,1

unif(R
N) | ∂xixju ∈ Cb

unif(RN), i, j = 1, 2, · · · , N}.
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Let

X+
1 = {u ∈ X1 |u ≥ 0}, X+

2 = {v ∈ X2 | v ≥ 0}.

For given 0 < ν < 1, let

Cb,ν
unif(R

N) = {u ∈ Cb
unif(RN) | sup

x,y∈RN ,x 6=y

|u(x)− u(y)|
|x− y|ν

<∞}

with the norm ‖u‖∞,ν = supx∈RN |u(x)|+ supx,y∈RN ,x 6=y
|u(x)−u(y)|
|x−y|ν .

For 0 < θ < 1, let

Cθ((t1, t2), Cb,ν
unif(R

N))

= {u(·) ∈ C((t1, t2), Cb,ν
unif(R

N)) |u(t) is locally Hölder continuous with exponent θ}.

We call (u(x, t), v(x, t)) a classical solution of (1.4) on [0, T ) if u, v ∈ C(RN × [0, T )) ∩

C2,1(RN × (0, T )) and satisfies (1.4) for (x, t) ∈ RN × (0, T ) in the classical sense. A classical

solution (u(x, t), v(x, t)) of (1.4) on [0, T ) is called non-negative if u(x, t) ≥ 0 and v(x, t) ≥ 0

for all (x, t) ∈ RN× [0, T ). A global classical solution of (1.4) is a classical solution on [0,∞).

Note that, due to the biological interpretations, only non-negative classical solutions will be of

interest.

The main results are from our works [58] and [59]. We first state the result on the local

existence and uniqueness of classical solution with initial function (u0, v0) ∈ Cb
unif(RN) ×

Cb,1
unif(RN).

Theorem 3.1. For any u0 ∈ Cb
unif(RN), v0 ∈ Cb,1

unif(RN) with u0 ≥ 0, v0 ≥ 0, there exists

Tmax := Tmax(u0, v0) ∈ (0,∞] such that (1.4) has a unique non-negative classical solution

(u(x, t;u0, v0), v(x, t;u0, v0)) on [0, Tmax) satisfying that limt→0+ u(·, t;u0, v0) = u0 in the

Cb
unif(RN)-norm and limt→0+ v(·, t;u0, v0) = v0 in the Cb,1

unif(RN)-norm,

u(·, ·;u0, v0) ∈ C([0, Tmax), Cb
unif(RN)) ∩ C1((0, Tmax), Cb

unif(RN)), (3.1)

v(·, ·;u0, v0) ∈ C([0, Tmax), Cb,1
unif(R

N)) ∩ C1((0, Tmax), Cb,1
unif(R

N)), (3.2)

72



u(·, ·;u0, v0), ∂xiu(·, ·;u0, v0), ∂2
xixj

u(·, ·;u0, v0), ∂tu(·, ·;u0, v0) ∈ Cθ((0, Tmax), Cb,ν
unif(R

N)),

(3.3)

v(·, ·;u0, v0), ∂xiv(·, ·;u0, v0), ∂2
xixj

v(·, ·;u0, v0), ∂tv(·, ·;u0, v0) ∈ Cθ((0, Tmax), Cb,ν
unif(R

N))

(3.4)

for all i, j = 1, 2, · · · , N , 0 < θ � 1, and 0 < ν � 1. Moreover, if Tmax < ∞, then

limt→Tmax

(
‖u(·, t;u0, v0)‖∞ + ‖v(·, t;u0, v0)‖Cb,1unif(RN )

)
=∞.

We then state the result on the global existence and boundedness of the classical solution

with initial function (u0, v0) ∈ Cb
unif(RN)× Cb,1

unif(RN).

Theorem 3.2. Suppose that b > Nµχ
4

. Then for every u0 ∈ Cb
unif(RN), v0 ∈ Cb,1

unif(RN)

with u0 ≥ 0, v0 ≥ 0, (1.4) has a unique bounded global classical solution (u(x, t;u0, v0),

v(x, t;u0, v0)) and

lim sup
t→∞

‖u(·, t;u0, v0)‖∞ ≤
(2λ+ a)2

2λ(4b−Nµχ)
. (3.5)

Moreover, if λ ≥ a
2
, then

lim sup
t→∞

‖u(·, t;u0, v0)‖∞ ≤
4a

4b−Nµχ
. (3.6)

We next state the result on the asymptotic behavior of the global classical solution with

strictly positive initial function.

Theorem 3.3. There exists K = k(a, λ,N) > N
4

such that if b > Kχµ and λ ≥ a
2
, then

the unique bounded global classical solution (u(x, t;u0, v0), v(x, t;u0, v0)) of (1.4) with u0 ∈

Cb
unif(RN), v0 ∈ Cb,1

unif(RN) and infx∈RN u0(x) > 0, v0 ≥ 0, satisfies that

‖u(·, t;u0, v0)− a

b
‖∞ + ‖v(·, t;u0, v0)− µa

λb
‖∞ → 0 as t→∞ exponentially. (3.7)

Remark 3.1. (1) Theorem 3.1 is on the local existence of a unique classical solution with

nonnegative initial function (u0, v0) ∈ Cb
unif(RN) × Cb,1

unif(RN). We point out the local

existence of a unique classical solution with (u0, v0) in some other spaces can also be

proved. For example, following the similar arguments used in the proof of Theorem

73



3.1, the local existence of a unique classical solution with nonnegative initial function

(u0, v0) ∈ Lp(RN)×W 1,p(RN) for p > N and p ≥ 2 can be proved.

(2) As it is mentioned in the above, consider chemotaxis model (1.6) on convex bounded

domain with Neumann boundary condition and b
χ

being sufficiently large, Winkler [70]

proved the global existence of classical solution for every nonnegative initial function

(u0, v0) ∈ C0(Ω) × W 1,∞(Ω) and the global asymptotic stability of the constant so-

lution (a
b
, µa
λb

). Theorem 3.2 and Theorem 3.3 stated in the above extend the results in

[70] on the global existence and global asymptotical stability of the constant solution for

parabolic-parabolic chemotaxis systems on bounded domains to the whole space. Bio-

logically, the conditions b > Nχµ
4

and b > Kχµ in Theorems 3.2 and 3.3 indicate that

the logistic damping b is large relative to the product of the chemotaxis sensitivity χ and

the production rate µ at which the biological species produces the chemical substance.

The condition λ ≥ a
2

in Theorem 3.3 indicates that the degradation rate of the chemical

substance is large relative to the intrinsic growth rate of the biological species.

(3) Theorem 3.3 does not give an explicit expression on K, but it has the following property.

According to the proof of Theorem 3.3, K = N
4θ0

, where θ0 ∈ (0, 1) is the largest number

such that
2C2θ0

(1− θ0)2a
≤ 1

6
and

8Cλ−
1
2a

1
2πθ0

N(1− θ0)
≤ 1

12
(3.8)

hold simultaneously with C2 = max{Cλγ−β− 3
2aβ+ 3

2
√
πN−2 +Cλγ−β−1aβ+1N−1, a}, C

here as well as in (3.8) is a generic constant and β and γ are such that γ ∈ (1, 3
2
) and

γ − 1 < β < 1
2
. It can then be verified directly that for fixed a and N , K is bounded in

λ ≥ a
2

and K → N
0.28

as λ→∞.

To state our main results on the spreading speeds of (1.4). We make the following nota-

tions.

For given x = (x1, x2, · · ·, xN) ∈ RN , let |x| =
√
x2

1 + x2
2 + · · ·+ x2

N . Let

SN−1 = {x ∈ RN | |x| = 1}.
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For x = (x1, x2, · · ·, xN) ∈ RN , y = (y1, y2, · · ·, yN) ∈ RN , define x · y =
∑N

i=1 xiyi.

Let

C+
cp = {u ∈ X+

1 | supp(u) is non-empty and compact},

and

C+,1
cp = {v ∈ X+

2 | supp(v) is non-empty and compact}.

For any given ξ ∈ SN−1, we define

C+
fl(ξ) = {u ∈ X+

1 | lim inf
x·ξ→−∞

u(x) > 0, u(x) = 0 for x ∈ RN with x · ξ � 1},

C+,1
fl (ξ) = {v ∈ X+

2 | lim inf
x·ξ→−∞

v(x) > 0, v(x) = 0 for x ∈ RN with x · ξ � 1},

C+(ξ) = {u ∈ X+
1 | inf

|x·ξ|<r
u(x) > 0 for some r > 0, u(x) = 0 for x ∈ RN with |x·ξ| � 1},

and

C+,1(ξ) = {v ∈ X+
2 | inf

|x·ξ|<r
v(x) > 0 for some r > 0, v(x) = 0 for x ∈ RN with |x·ξ| � 1}.

The main results on the spreading speeds are stated in the following theorems.

Theorem 3.4. Suppose that b > Nµχ
4

. For any (u0, v0) ∈ C+
cp × C+,1

cp , the following hold.

(1) For any 0 < ε < 2
√
a,

lim inf
t→∞

inf
|x|≤(2

√
a−ε)t

u(x, t;u0, v0) > 0,

and

lim inf
t→∞

inf
|x|≤(2

√
a−ε)t

v(x, t;u0, v0) > 0.

(2) For any ε > 0,

lim
t→∞

sup
|x|≥(2

√
a+ε)t

u(x, t;u0, v0) = 0,
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and

lim
t→∞

sup
|x|≥(2

√
a+ε)t

v(x, t;u0, v0) = 0.

Theorem 3.5. Suppose that b > Nµχ
4

. For any given ξ ∈ SN−1, (u0, v0) ∈ C+
fl(ξ) × C

+,1
fl (ξ),

the following hold.

(1) For any 0 < ε < 2
√
a,

lim inf
t→∞

inf
x·ξ≤(2

√
a−ε)t

u(x, t;u0, v0) > 0,

and

lim inf
t→∞

inf
x·ξ≤(2

√
a−ε)t

v(x, t;u0, v0) > 0.

(2) For any ε > 0,

lim
t→∞

sup
x·ξ≥(2

√
a+ε)t

u(x, t;u0, v0) = 0,

and

lim
t→∞

sup
x·ξ≥(2

√
a+ε)t

v(x, t;u0, v0) = 0.

Theorem 3.6. Suppose that b > Nµχ
4

. For any given ξ ∈ SN−1, (u0, v0) ∈ C+(ξ) × C+,1(ξ),

the following hold.

(1) For any 0 < ε < 2
√
a,

lim inf
t→∞

inf
|x·ξ|≤(2

√
a−ε)t

u(x, t;u0, v0) > 0,

and

lim inf
t→∞

inf
|x·ξ|≤(2

√
a−ε)t

v(x, t;u0, v0) > 0.

(2) For any ε > 0,

lim
t→∞

sup
|x·ξ|≥(2

√
a+ε)t

u(x, t;u0, v0) = 0,
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and

lim
t→∞

sup
|x·ξ|≥(2

√
a+ε)t

v(x, t;u0, v0) = 0.

Remark 3.2. (1) As it is recalled in the above, in the absence of chemotaxis (i.e. χ = 0),

2
√
a is the spreading speed of (1.5). Theorems 3.4, 3.5, and 3.6 provide some new

approach to prove that 2
√
a is the spreading speed of the Fisher-KPP equation (1.5).

The new approach can also be applied to the study of the spreading speeds of general

Fisher-KPP equation with time and space dependence.

(2) Assume b > Nµχ
4

. Theorem 3.4 (1), Theorem 3.5 (1) and Theorem 3.6 (1) show that the

chemotaxis does not slow down the spreading speed in the Fisher-KPP equation (1.5).

Theorem 3.4 (2), Theorem 3.5 (2) and Theorem 3.6 (2) show that the chemotaxis does not

speed up the spreading speed in the Fisher-KPP equation (1.5). Hence, when b > Nµχ
4

,

the chemotaxis neither speeds up nor slows down the spreading speed in the Fisher-KPP

equation (1.5). Biologically, the condition b > Nµχ
4

means that the logistic damping is

large relative to the product of the chemotaxis sensitivity and the production rate of the

chemical substance.

The following theorem is on the persistence of strictly positive solutions.

Theorem 3.7. Suppose that b > Nµχ
4

, then there exist m > 0 and M > 0 such that for any

u0 ∈ Cb
unif(RN), v0 ∈ Cb,1

unif(RN) with infx∈RN u0 > 0 and v0 ≥ 0, there is T (u0, v0) such that

m ≤ u(x, t;u0, v0) ≤M ∀x ∈ RN , t ≥ T (u0, v0).

The rest of the chapter is organized as follows. In section 3.2, we present some preliminary

materials that will be needed in the proofs of our main results. In section 3.3, we study the

local existence and uniqueness of the classical solutions of (1.4) with given initial functions

and prove Theorem 3.1. In section 3.4, we study the global existence and boundedness of the

classical solutions of (1.4) with given initial functions and prove Theorem 3.2. In section 3.5,

we discuss the asymptotic behavior of global classical solutions with strictly positive initial

functions and prove Theorem 3.3. In section 3.6, we investigate the lower bounds of spreading
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speeds of (1.4) and prove Theorems 3.4 (1), 3.5 (1) 3.6 (1), and Theorem 3.7. In section 3.7,

we study the upper bounds of spreading speeds of (1.4) and prove Theorems 3.4 (2), 3.5 (2)

and 3.6 (2).

3.2 Preliminaries

In this section, we present several lemmas which will be used often in the later sections. The

reader is referred to [16], [46] for the details.

Throughout this paper, {et(∆−σI)}t>0, where σ > 0, denotes the analytic semigroup gen-

erated by ∆− σI on X := Cb
unif(RN), unless specified otherwise. Then we have

‖et(∆−σI)u‖∞ ≤ e−σt‖u‖∞, (3.9)

‖∇et(∆−σI)u‖∞ ≤ CN t
− 1

2 e−σt‖u‖∞, (3.10)

‖(σI −∆)αet(∆−σI)u‖∞ ≤ Cαt
−αe−σt‖u‖∞ (3.11)

for every t > 0 and α ≥ 0. In fact, (3.9) and (3.10) follow directly from the following equation,

(et(∆−σI)u)(x) =

∫
RN
e−σt

1

(4πt)
N
2

e−
|x−y|2

4t u(y)dy

for every u ∈ Cb
unif(RN), t > 0, x ∈ RN . (3.11) is a result of the combination of Theorem

1.4.3 in [16] and (3.9).

Lemma 3.1. For every t > 0, the operator et(∆−σI)∇· has a unique bounded extension on(
Cb

unif(RN)
)N satisfying

‖et(∆−σI)∇ · u‖∞ ≤
N√
π
t−

1
2 e−σt‖u‖∞ ∀ u ∈

(
Cb

unif(RN)
)N
, ∀ t > 0.

Proof. It follows from [49, Lemma 3.2].

Note that Dom(∆ − σI) = Cb,2
unif(RN). Let Xα = Dom((σI − ∆)α) be the fractional

power space of σI−∆ onX (α ∈ [0, 1]) equipped with graph norm ‖u‖Xα = ‖(σI−∆)αu‖X .
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We have the following continuous imbedding

Xα ↪→ Cν if 0 ≤ ν < 2α (3.12)

(see [16, Exercise 9, page 40]). Furthermore, there is a constant Cα such that

‖(et(∆−σI) − I)u‖X ≤ Cαt
α‖u‖Xα for all u ∈ Xα. (3.13)

Inequality (3.13) comes from [16, Theorem 1.4.3]. Note thatX0 = X andX1 = Dom(σI−∆).

We end this section by stating an important result that will be used in the proof of the local

existence and uniqueness of classical solutions.

Lemma 3.2. ([16, Exercise 4∗, page 190]) Assume that a1, a2, α, β are non-negative constants,

with 0 ≤ α, β < 1, and 0 < T <∞. There exists a constant M(a2, β, T ) <∞ so that for any

integrable function u : [0, T ]→ R satisfying that

0 ≤ u(t) ≤ a1t
−α + a2

∫ t

0

(t− s)−βu(s)ds

for a.e t in [0, T ], we have

0 ≤ u(t) ≤ a1M

1− α
t−α, a.e. on 0 < t < T.

3.3 Local existence and uniqueness of classical solutions

In this section, we investigate the local existence and uniqueness of classical solutions of (1.4)

with given initial functions and prove Theorem 3.1. Throughout this section, unless specified

otherwise, C denotes a generic constant independent of u, v and may be different at different

places. The main tools for the proof of this theorem are based on the contraction mapping

theorem and the existence of classical solutions for linear parabolic equations with Hölder

continuous coefficients. Throughout this subsection, X1 = Cb
unif(RN), X2 = Cb,1

unif(RN), and

Xα
i is the fractional power space of λI −∆ acting on Xi, i = 1, 2 (α ∈ (0, 1)).
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Proof of Theorem 3.1. It can be proved by properly modifying arguments of [49, Theorem 1.1].

For self-completeness, we provide the outline of the proof.

(i) Existence of a mild solution. We first prove the existence of a mild solution of (1.4) with

given initial function u0 ∈ Cb
unif(RN), v0 ∈ Cb,1

unif(RN), that is, the existence of (u(t), v(t))

satisfying 
u(t) = et(∆−λI)u0 − χ

∫ t
0
e(t−s)(∆−λI)∇ · (u(s)∇v(s))ds

+
∫ t

0
e(t−s)(∆−λI)u(s)(a+ λ− bu(s))ds

v(t) = et(∆−λI)v0 + µ
∫ t

0
e(t−s)(∆−λI)u(s)ds.

(3.14)

To this end, let X = X1 ×X2. Fix (u0, v0) ∈ X . For every T > 0 and R > 0 satisfying

‖u0‖∞ ≤ R and ‖v0‖Cb,1unif(RN ) ≤ R, let

SR,T :=
{

(u, v) ∈ C([0, T ], Cb
unif(RN))× C([0, T ], Cb,1

unif(R
N)) | ‖u‖∞ ≤ R and ‖v‖Cb,1unif(RN ) ≤ R

}
.

Note that SR,T is a closed subset of the Banach spaceC([0, T ], Cb
unif(RN))×C([0, T ], Cb,1

unif(RN))

with the norm ‖(u, v)‖SR,T = sup0≤t≤T ‖u(t)‖∞ + sup0≤t≤T ‖v‖Cb,1unif(RN ).

First, it is not difficult to prove that for any (u, v) ∈ SR,T and t ∈ [0, T ], Φ(u, v)(t) =

(Φ1(u, v)(t),Φ2(u, v)(t)) is well defined in X , where

Φ1(u, v)(t) = et(∆−λI)u0−χ
∫ t

0

e(t−s)(∆−λI)∇·(u(s)∇v(s))ds+

∫ t

0

e(t−s)(∆−λI)u(s)(a+λ−bu(s))ds,

and

Φ2(u, v)(t) = et(∆−λI)v0 + µ

∫ t

0

e(t−s)(∆−λI)u(s)ds.

Second, we claim that For every (u, v) ∈ SR,T , choose 0 < β < 1
4

and 1
2
< γ < 1 such

that γ+2β < 1. Then the function (0, T ] 3 t→ Φ(u, v)(t) ∈ Xβ is locally Hölder continuous,

and Φ maps SR,T into C([0, T ], Cb
unif(RN))× C([0, T ], Cb,1

unif(RN)).

Indeed, first, by the similar arguments to those in Claim 2 of [49, Theorem 1.1], the func-

tion (0, T ] 3 t→ Φ1(u, v)(t) ∈ Xβ
1 is locally Hölder continuous.
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Next, observe that

Φ2(u, v)(t) = et(∆−λI)v0︸ ︷︷ ︸
J0(t)

+µ

∫ t

0

e(t−s)(∆−λI)u(s)ds︸ ︷︷ ︸
J1(t)

For every t > 0, it is clear that J0(t) = et(∆−λI)v0 ∈ Xβ
2 because the semigroup {et(∆−λI)}t≥0

is analytic. Furthermore, since Xγ
1 ↪→ C1, we have that

‖J1(t)‖Xβ
2
≤
∫ t

0

‖(λI −∆)βe(t−s)(∆−λI)u(s)‖Cb,1unif(RN )ds

≤ C

∫ t

0

‖(λI −∆)γ+βe(t−s)(∆−λI)u(s)‖∞ds

≤ C

∫ t

0

(t− s)−γ−βe−λ(t−s)‖u(s)‖∞ds ≤ CR.

Since the operator (λI − ∆)β is closed, we have J1(t) ∈ Xβ
2 . Hence, Φ2(u, v)(t) ∈ Xβ

2 for

every t > 0. Therefore, Φ(u, v)(t) ∈ Xβ for every t > 0.

By (3.13), we have

‖J0(t+ h)− J0(t)‖Xβ
2

= ‖(eh(∆−λI) − I)et(∆−λI)v0‖Xβ
2
≤ Chβ‖(λI −∆)βet(∆−λI)v0‖Xβ

2

≤ Chβ‖(λI −∆)2βet(∆−λI)v0‖Xγ
1
≤ CRt−2β−γhβ.

Hence, (0, T ] 3 t→ J0(t) ∈ Xβ
2 is locally Hölder continuous. We also have

‖J1(t+ h)− J1(t)‖Xβ
2

≤
∫ t

0

‖(eh(∆−λI) − I)e(t−s)(∆−λI)u(s)‖Xβ
2
ds+

∫ t+h

t

‖e(t+h−s)(∆−λI)u(s)‖Xβ
2
ds

≤ Chβ
∫ t

0

‖(λI −∆)2βe(t−s)(∆−λI)u(s)‖X2ds+

∫ t+h

t

‖(λI −∆)βe(t+h−s)(∆−λI)u(s)‖X2ds

≤ Chβ
∫ t

0

(t− s)−2β−γe−λ(t−s)‖u(s)‖∞ds+ C

∫ t+h

t

(t+ h− s)−β−γe−λ(t+h−s)‖u(s)‖∞ds

≤ CR(hβ + h1−γ−β).
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Hence, (0, T ] 3 t → Φ2(u, v)(t) ∈ Xβ
2 is locally Hölder continuous. Thus, (0, T ] 3 t →

Φ(u, v)(t) ∈ Xβ is locally Hölder continuous. It is clear that t→ Φ(u, v)(t) ∈ X is continuous

in t at t = 0. The claim thus follows.

Third, it can be proved without much difficulty that for anyR > max{‖u0‖∞, ‖v0‖Cb,1unif(RN )},

there exists T := T (R) such that Φ maps SR,T into itself. Furthermore, Φ is a contraction map

for T small and hence has a fixed point (u(·), v(·)) ∈ SR,T . This implies that (1.4) has a mild

solution (u(·), v(·)) on a small time interval. By the standard extension arguments, this small

interval can be extended to a maximal interval. That is, there is Tmax ∈ (0,∞] such that (1.4)

has a mild solution (u(·), v(·)) on [0, Tmax) and if Tmax <∞, then

lim sup
t→Tmax

(
‖u(·, t;u0, v0)‖∞ + ‖v(·, t;u0, v0)‖Cb,1unif(RN )

)
=∞.

Moreover, for every 0 < β < 1
4
, 1

2
< γ < 1 such that γ+ 2β < 1, the function (0, Tmax) 3 t 7→

(u(·), v(·)) ∈ Xβ is locally Hölder continuous.

(ii) Regularity and non-negativity. We next prove that the mild solution (u(·), v(·)) of (1.4)

on [0, Tmax) obtained in (i) is a non-negative classical solution of (1.4) on [0, Tmax) and satisfies

(3.1), (3.2), (3.3) and (3.4).

In fact, it follows from the claim in (i) and the fact Xβ
1 is continuously embedded into

Cb,ν
unif(RN) for 0 < ν � 1 that the mappings t → u(·, t) := u(t)(·) ∈ Cb,ν

unif(RN), t 7→

v(·, t) := v(t)(·) ∈ Cb,ν
unif(RN) are locally Hölder continuous in X for t ∈ (0, Tmax). By [16,

Lemma 3.3.2], v(x, t) is a classical solution of

vt = (∆− λI)v + µu(x, t), x ∈ RN , 0 < t < Tmax,

and

t 7→ vt(·, t) ∈ Cb,ν
unif(R

N), t 7→ ∂v(·, t)
∂xi

∈ Cb,ν
unif(R

N), t 7→ ∂2v(·, t)
∂xi∂xj

∈ Cb,ν
unif(R

N)

are also locally Hölder continuous in t ∈ (0, Tmax). Then by the similar arguments to those

in the proof of [49, Theorem 1.1], (u(x, t), v(x, t)) is a classical solution of (1.4) on (0, Tmax)
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satisfying (3.1), (3.2), (3.3) and (3.4). Moreover, since u0 ≥ 0 and v0 ≥ 0, by comparison

principle for parabolic equations, we get u(x, t;u0, v0) ≥ 0 and v(x, t;u0, v0) ≥ 0 for all

x ∈ R, 0 ≤ t < Tmax.

(iii) Uniqueness. We now prove that for given u0 ∈ Cb
unif(RN), v0 ∈ Cb,1

unif(RN) , (1.4) has a

unique classical solution (u(·, ·;u0, v0), v(·, ·;u0, v0)) satisfying (3.1), (3.2), (3.3) and (3.4).

Any classical solution of (1.4) satisfying the properties of Theorem 3.1 clearly satisfies

the integral equation (3.14). Suppose that for given u0 ∈ Cb
unif(RN), v0 ∈ Cb,1

unif(RN) with

u0 ≥ 0, v0 ≥ 0, (u1(x, t;u0, v0), v1(x, t;u0, v0)) and (u2(x, t;u0, v0), v2(x, t;u0, v0)) are two

classical solutions of (1.4) on RN × [0, Tmax) satisfying the properties of Theorem 3.1. Let

0 < T < Tmax be fixed. Thus sup0≤t≤T (‖u1(·, t;u0, v0)‖∞ + ‖u2(·, t;u0, v0)‖∞) < ∞ and

sup0≤t≤T (‖v1(·, t;u0, v0)‖Cb,1unif(RN )+‖v2(·, t;u0, v0)‖Cb,1unif(RN )) <∞. Let ui(t) = ui(·, t;u0, v0)

and vi(t) = vi(·, t;u0, v0) (i = 1, 2). For every t ∈ [0, T ], we have that

‖u1(t)− u2(t)‖∞ ≤ χC sup
0≤τ≤T

(‖∇v1(τ)‖∞)

∫ t

0

(t− s)−
1
2 e−λ(t−s)‖u1(s)− u2(s)‖∞ds

+ χC sup
0≤τ≤T

(‖u2(τ)‖∞)

∫ t

0

(t− s)−
1
2 e−λ(t−s)‖∇(v2(s)− v1(s))‖∞ds

+ (a+ λ+ b sup
0≤τ≤T

(‖u1(τ)‖∞ + ‖u2(τ)‖∞))

∫ t

0

e−λ(t−s)‖u1(s)− u2(s)‖∞ds,

and

‖∇(v1(t)− v2(t))‖∞ ≤ µ

∫ t

0

‖∇e(t−s)(∆−λI)(u1(s)− u2(s))‖∞ds

≤ µC

∫ t

0

(t− s)−
1
2 e−λ(t−s)‖u1(s)− u2(s)‖∞ds.

Let u(t) = u1(t)− u2(t), v(t) = v1(t)− v2(t). We then have

‖u(t)‖∞ + ‖∇v(t)‖∞ ≤M

∫ t

0

(t− s)−
1
2 (‖u(s)‖∞ + ‖∇v(s)‖∞) ds,
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where

M =χC sup
0≤τ≤T

(‖∇v1(τ)‖∞) + χC sup
0≤τ≤T

(‖u2(τ)‖∞)

+

(
a+ λ+ b sup

0≤τ≤T
(‖u1(τ)‖∞ + ‖u2(τ)‖∞)

)√
T + µC <∞.

By Lemma 3.2, we get ‖u(t)‖∞ ≡ 0. Thus, u1(t) ≡ u2(t) for all 0 ≤ t ≤ T . Since v(t) =

µ
∫ t

0
e(t−s)(∆−λI)u(s)ds, then v(t) ≡ 0. Hence, v1(t) ≡ v2(t) for all 0 ≤ t ≤ T . Since

T < Tmax was arbitrary chosen, then u1(t) ≡ u2(t), v1(t) ≡ v2(t) for all 0 ≤ t < Tmax. The

theorem is thus proved.

3.4 Global existence and boundedness of classical solutions

This section is devoted to the study of the global existence and boundedness of classical so-

lutions of (1.4) with given initial functions and prove Theorem 3.2. Again, throughout this

section, unless specified otherwise, C denotes a generic constant independent of u, v and may

be different at different places.

Proof of Theorem 3.2. Assume b > Nµχ
4

. It can be proved by properly modifying the argu-

ments in [70, Lemma 3.1].

First, we have
1

2

d

dt
|∇v|2 =

N∑
i=1

vxi(vt)xi .

From the second equation of (1.4), we have

1

2

d

dt
|∇v|2 =

N∑
i=1

vxi(∆v − λv + µu)xi = ∇v · ∇(∆v)− λ |∇v|2 + µ∇v · ∇u. (3.15)

Note that∇v · ∇(∆v) = 1
2
∆ |∇v|2 − |D2v|2, (3.15) becomes

χ

2µ

d

dt
|∇v|2 =

χ

2µ
∆ |∇v|2 − χ

µ

∣∣D2v
∣∣2 − χλ

µ
|∇v|2 + χ∇v · ∇u. (3.16)
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Next, by the first equation of (1.4) and (3.16), we get

d

dt

[
u+

χ

2µ
|∇v|2

]
= ∆

[
u+

χ

2µ
|∇v|2

]
− χ
µ

∣∣D2v
∣∣2− χλ

µ
|∇v|2−χu∆v+u(a− bu). (3.17)

By Young’s inequality, we have

|u∆v| ≤ Nµ

4
u2 +

1

µ

∣∣D2v
∣∣2 .

Combining this with (3.17), we have

d

dt

[
u+

χ

2µ
|∇v|2

]
≤ ∆

[
u+

χ

2µ
|∇v|2

]
− χ

µ

∣∣D2v
∣∣2 − χλ

µ
|∇v|2 + χ |u∆v|+ u(a− bu)

≤ ∆
[
u+

χ

2µ
|∇v|2

]
− χλ

µ
|∇v|2 +

Nµχ

4
u2 + u(a− bu)

= ∆
[
u+

χ

2µ
|∇v|2

]
− 2λ

[
u+

χ

2µ
|∇v|2

]
− (b− Nµχ

4
)
(
u− 2(2λ+ a)

4b−Nµχ
)2

+ (b− Nµχ

4
)

4(2λ+ a)2

(4b−Nµχ)2
.

Since b > Nµχ
4

, then for 0 < t < Tmax, we have

d

dt

[
u+

χ

2µ
|∇v|2

]
≤ ∆

[
u+

χ

2µ
|∇v|2

]
− 2λ

[
u+

χ

2µ
|∇v|2

]
+

(2λ+ a)2

(4b−Nµχ)
. (3.18)

By the comparison principle for parabolic equations, we have

u+
χ

2µ
|∇v|2 ≤ max{‖u0‖∞ +

χ

2µ
‖∇v0‖2

∞,
(2λ+ a)2

2λ(4b−Nµχ)
} ∀ 0 ≤ t < Tmax, x ∈ RN .

Let M = max{‖u0‖∞ + χ
2µ
‖∇v0‖2

∞,
(2λ+a)2

2λ(4b−Nµχ)
}, then

u(x, t;u0, v0) ≤M ∀ 0 ≤ t < Tmax, x ∈ RN , (3.19)

and

|∇v(x, t;u0, v0)| ≤

√
2µM

χ
∀ 0 ≤ t < Tmax, x ∈ RN . (3.20)
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From the second equation of (1.4), by the variation of constant formula,

v(·, t;u0, v0) = et(∆−λI)v0 + µ

∫ t

0

e(t−s)(∆−λI)u(s)ds.

Thus,

‖v(·, t;u0, v0)‖∞ ≤ e−λt‖v0‖∞ + µ

∫ t

0

e−λ(t−s)‖u(s)‖∞ds

≤ ‖v0‖∞ +
µM

λ
∀ 0 ≤ t < Tmax, x ∈ RN . (3.21)

In view of (3.19), (3.20) and (3.21), we obtain that lim supt→Tmax
‖u(·, t;u0, v0)‖∞ is finite

and that lim supt→Tmax
‖v(·, t;u0, v0)‖Cb,1unif(RN ) is also finite. Therefore, it follows from the

blow-up criterion that Tmax =∞ and the solution (u(x, t;u0, v0), v(x, t;u0, v0)) is bounded for

(x, t) ∈ RN × (0,∞). By (3.18) and the comparison principle for parabolic equations,

lim sup
t→∞

sup
x∈RN

u(·, t;u0, v0) ≤ (2λ+ a)2

2λ(4b−Nµχ)
(3.22)

and

lim sup
t→∞

sup
x∈RN

|∇v(·, t;u0, v0)| ≤

√
µ(2λ+ a)2

χλ(4b−Nµχ)
. (3.23)

Finally, we prove (3.6). To this end, let

U(x, t) = u(x, t;u0, v0)− a

b
and V (x, t) = v(x, t;u0, v0)− µ

λ

a

b
.

Then (U, V ) solves



Ut = ∆U − χ∇ · (u(x, t;u0, v0)∇V )− aU − bU2, x ∈ RN , t > 0,

Vt = ∆V − λV + µU, x ∈ RN , t > 0,

U(x, 0) = u0(x)− a
b
, x ∈ RN ,

V (x, 0) = v0(x)− µ
λ
a
b
, x ∈ RN .

(3.24)
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By (3.24) and the similar arguments as those used at the beginning of the proof, we have

d

dt

[
U +

χ

2µ
|∇V |2

]
= ∆

[
U +

χ

2µ
|∇V |2

]
− χu∆V − aU − bU2 − χ

µ

∣∣D2V
∣∣2 − χλ

µ
|∇V |2 .

It follows from Young’s inequality and U = u− a
b

that

|u∆V | ≤ Nµ

4
u2 +

1

µ

∣∣D2V
∣∣2 =

Nµ

4
U2 +

Nµa

2b
U +

a2Nµ

4b2
+

1

µ

∣∣D2V
∣∣2 .

Combining these and b > Nχµ
4

, and λ ≥ a
2
, we have

d

dt

[
U +

χ

2µ
|∇V |2

]
≤ ∆

[
U +

χ

2µ
|∇V |2

]
− a
(
U +

χ

2µ
|∇V |2

)
+

a2Nµχ

b(4b−Nµχ)
.

This together with the comparison principle for parabolic equations and 4b > Nχµ implies

lim sup
t→∞

sup
x∈RN

(
U(·, t) +

χ

2µ
|∇V (·, t)|2

)
≤ aNµχ

b(4b−Nµχ)
.

We then have

lim sup
t→∞

‖U+(·, t)‖∞ ≤
aNµχ

b(4b−Nµχ)
. (3.25)

and

lim sup
t→∞

‖u(·, t;u0, v0)‖∞ ≤
a

b
+

aNµχ

b(4b−Nµχ)
=

4a

4b−Nµχ
.

Hence (3.6) holds and the theorem is thus proved.

3.5 Asymptotic behavior of global classical solutions

In this section, we discuss the asymptotic behavior of global bounded classical solutions of

(1.4) with strictly positive initial functions and prove Theorem 3.3. The proof of Theorem

3.3 can be done by following the ideas given in [70]. Throughout this section, We assume

that infx∈RN u0(x) > 0 for u0 ∈ Cb
unif(RN) and v0(x) ≥ 0 for v0 ∈ Cb,1

unif(RN). We also

assume that b > Nχµ
4

and λ ≥ a
2
, and θ = Nµχ

4b
. Hence 0 < θ < 1. We denote by
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(u(x, t;u0, v0), v(x, t;u0, v0)) the global bounded classical solution of (1.4) associated with

initial function (u0, v0). Again, throughout this section, unless specified otherwise, C denotes

a generic constant independent of u, v and may be different at different places.

Recall that U(x, t) = u(x, t;u0, v0)− a
b
, V (x, t) = v(x, t;u0, v0)− µ

λ
a
b
. Then (U, V ) solves

(3.24). We first present some lemmas on the estimates of U and V . The first lemma provides

an estimate of ‖∇V (·, t)‖∞.

Lemma 3.3. There exists C0 = C0(a, µ, λ) > 0 such that

lim sup
t→∞

‖∇V (·, t)‖∞ ≤
C0

b(1− θ)
.

Proof. By (3.6), we can fix a sufficiently large t1 such that

‖u(·, t;u0, v0)‖∞ ≤
2a

b(1− θ)
∀ t > t1. (3.26)

By the variation of constant formula, we have that

v(·, t;u0, v0) = e(t−t1)(∆−λI)v(·, t1;u0, v0) + µ

∫ t

t1

e(t−s)(∆−λI)u(·, s;u0, v0)ds ∀ t ≥ t1.

Note that∇V (x, t) = ∇v(x, t;u0, v0). Thus, we have

‖∇V (·, t)‖∞ ≤‖∇e(t−t1)(∆−λI)v(·, t1;u0, v0)‖∞

+ µ

∫ t

t1

‖∇e(t−s)(∆−λI)u(·, s;u0, v0)‖∞ds ∀ t ≥ t1. (3.27)

By (3.10) and (3.26), we have

‖∇e(t−t1)(∆−λI)v(·, t1;u0, v0)‖∞ ≤ C(t− t1)−
1
2 e−λ(t−t1)‖v(·, t1;u0, v0)‖∞ ∀ t ≥ t1, (3.28)
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and

µ

∫ t

t1

‖∇e(t−s)(∆−λI)u(·, s;u0, v0)‖∞ds ≤ µC

∫ t

t1

(t− s)−
1
2 e−λ(t−s)‖u(·, s;u0, v0)‖∞ds

≤ 2aµC
√
π

b(1− θ)
√
λ
∀ t ≥ t1.

(3.29)

The lemma with C0 = C0(a, µ, λ) = 2aµC
√
π√

λ
then follows from (3.27), (3.28) and (3.29).

The second lemma provides an estimate of ‖∆V (·, t)‖∞.

Lemma 3.4. There exists C1 = C1(λ, a,N) > 0 such that the following holds

lim sup
t→∞

‖∆V (·, t)‖∞ ≤
µC1

b(1− θ)2
.

Proof. Fix β and γ such that γ ∈ (1, 3
2
) and γ − 1 < β < 1

2
. We first prove that there exists

C̃1 = C̃1(λ, a,N) > 0 such that

lim sup
t→∞

‖AβU(·, t)‖∞ ≤
C̃1

b(1− θ)2
, (3.30)

where Aβ = (λI −∆)β . To this end, let t1 > 0 be such that (3.26) holds, then

‖U(·, t)‖∞ ≤ ‖U(·, t)− a

b
‖∞ +

a

b
≤ 2a

b(1− θ)
+
a

b
≤ 3a

b(1− θ)
∀ t > t1. (3.31)

By lemma 3.3, we can fix t2 ≥ t1 sufficiently large such that

‖∇v(·, t;u0, v0)‖∞ = ‖∇V (·, t)‖∞ ≤
2C0

b(1− θ)
∀ t > t2. (3.32)
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It follows from the variation of constant formula that

U(·, t) = e(t−t2)(∆−aI)U(·, t2)︸ ︷︷ ︸
I1

−χ
∫ t

t2

e(t−s)(∆−aI)∇ · (u(·, s;u0, v0)∇V (·, s))ds︸ ︷︷ ︸
I2

− b
∫ t

t2

e(t−s)(∆−aI)U(·, s)2ds︸ ︷︷ ︸
I3

.

By (3.11), Lemma 3.1, (3.26), (3.31) and (3.32), we have

‖AβI1‖∞ = ‖Aβe(t−t2)(∆−aI)U(·, t2)‖∞ ≤ C(t− t2)−βe−a(t−t2)‖U(·, t2)‖∞ ∀ t ≥ t2,

‖AβI2‖∞ ≤ χ

∫ t

t2

‖Aβe(t−s)(∆−aI)∇ · (u(·, s)∇V (·, s))ds‖∞ds

≤ χC

∫ t

t2

(t− s)−β−
1
2 e−a(t−s)‖u(·, s)‖∞‖∇V (·, s)‖∞ds

≤ χCaβ+ 1
2

4C0

b2(1− θ)2
∀ t ≥ t2,

and

‖AβI3‖∞ ≤ b

∫ t

t2

‖Aβe(t−s)(∆−aI)U(·, s)2‖∞ds

≤ bC

∫ t

t2

(t− s)−βe−a(t−s)‖U(·, s)‖2
∞ds

≤ 9C

b(1− θ)2
aβ+1 ∀ t ≥ t2.

We then obtain that

‖AβU(·, t)‖∞ ≤ C(t− t2)−βe−a(t−t2)‖U(·, t2)‖∞ + χCaβ+ 1
2

4C0

b2(1− θ)2
+

9C

b(1− θ)2
aβ+1.

This together with χ
b

= 4θ
Nµ

and 0 < θ < 1 implies (3.30) with C̃1 = C̃1(λ, a,N) =

32Caβ+ 3
2
√
π

N
√
λ

+ 9Caβ+1.
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Next, by (3.30), we can fix t3 ≥ t2 sufficiently large such that

‖AβU(·, t)‖∞ ≤
2C̃1

b(1− θ)2
∀ t > t3. (3.33)

By the variation of constant formula, we have

V (·, t) = e(t−t3)(∆−λI)V (·, t3) + µ

∫ t

t3

e(t−s)(∆−λI)U(·, s)ds ∀ t > t3.

Note that

‖∆V (·, t)‖∞ ≤ C‖AγV (·, t)‖∞.

By (3.11),

‖Aγe(t−t3)(∆−λI)V (·, t3)‖∞ ≤ Cγ(t− t3)−γe−λ(t−t3)‖V (·, t3)‖∞ → 0 as t→∞.

By (3.11) and (3.33), we have

µ

∫ t

t3

‖Aγe(t−s)(∆−λI)U(·, s)‖∞ds = µ

∫ t

t3

‖Aγ−βe(t−s)(∆−λI)AβU(·, s)‖∞ds

≤ µC
2C̃1

b(1− θ)2

∫ t

t3

(t− s)−(γ−β)e−λ(t−s)ds

= µC
2C̃1

b(1− θ)2
λγ−β−1 ∀ t ≥ t3.

It then follows that the Lemma holds with C1 = C1(λ, a,N) = 2CC̃1λ
γ−β−1.

Observe that, by (3.31),

lim sup
t→∞

‖U(·, t)‖∞ ≤
3a

b(1− θ)
.

In the following lemma, we provide a better estimate of ‖U(·, t)‖∞.

Lemma 3.5. There exists C2 = C2(λ, a,N) > 0 such that

lim sup
t→∞

‖U(·, t)‖∞ ≤
C2θ

b(1− θ)2
.
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Proof. We first prove that there exists C̃2 = C̃2(λ, a,N) > 0 such that

lim inf
t→∞

(
inf
x∈RN

u(x, t;u0, v0)
)
≥ a

b
− C̃2θ

b(1− θ)2
. (3.34)

By Lemma 3.4, we can choose t4 large enough such that

‖∆v(·, t;u0, v0)‖∞ = ‖∆V (·, t)‖∞ ≤
2µC1

b(1− θ)2
∀ t ≥ t4.

Therefore,

ut ≥ ∆u− χ∇v · ∇u+ u(a− 2µC1χ

b(1− θ)2
)− bu2 ∀ x ∈ R, t > t4.

By the comparison principle for parabolic equations, we have

lim inf
t→∞

(
inf
x∈RN

u(x, t;u0, v0)
)
≥
a− 2µC1χ

b(1−θ)2

b
.

This together with χ
b

= 4θ
Nµ

implies that (3.34) holds with C̃2 = C̃2(λ, a,N) = 8C1

N
.

Next, by (3.34),

lim sup
t→∞

‖U−(·, t)‖∞ ≤
C̃2θ

b(1− θ)2
.

By (3.25),

lim sup
t→∞

‖U+(·, t)‖∞ ≤
aθ

b(1− θ)
.

Thus, the Lemma holds if we let C2 = C2(λ, a,N) = max{C̃2, a}.

We now prove Theorem 3.3.

Proof of Theorem 3.3. First of all, let θ0 ∈ (0, 1) be defined

θ0 = sup{θ ∈ (0, 1) | 2C2θ

(1− θ)2a
≤ 1

6
and

8Cλ−
1
2a

1
2πθ

N(1− θ)
≤ 1

12
}.

Then
2C2θ0

(1− θ0)2a
≤ 1

6
and

8Cλ−
1
2a

1
2πθ0

N(1− θ0)
≤ 1

12
. (3.35)
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Let K = N
4θ0

> N
4

. We prove that for any b > Kχµ, there are C > 0 and α > 0 such that

‖U(·, t)‖∞ ≤ Ce−αt ∀ t > 0. (3.36)

To this end, first fix b > Kχµ. Note that θ = Nµχ
4b

< θ0. Then by (3.35), there is

0 < α < min{λ, a} such that

2C2θ

(1− θ)2(a− α)
≤ 1

6
and

8aC(λ− α)−
1
2 (a− α)−

1
2πθ

N(1− θ)
≤ 1

12
. (3.37)

Fix 0 < α < min{λ, a} such that (3.37) holds and fix B > 0 large enough such that

2C2θ

b(1− θ)2
≤ B

6
and

16aC0(a− α)−
1
2
√
πθ

Nµb(1− θ)2
≤ B

12
. (3.38)

By Lemma 3.5, there exists t0 ≥ t4(≥ t3 ≥ t2 ≥ t1) such that

‖U(·, t)‖∞ ≤
2C2θ

b(1− θ)2
∀ t ≥ t0. (3.39)

Consider the set

S = {T0 ≥ t0 | ‖U(·, t)‖∞ ≤ Be−α(t−t0), ∀ t ∈ [t0, T0]}.

By (3.38) and (3.39), we have ‖U(·, t0)‖∞ ≤ B
6

. Thus, S is not empty and T := supS ∈

(t0,∞] is well-defined. Hence, to prove (3.36), it is sufficient to prove that

T =∞. (3.40)

Next, by the variation of constant formula,

‖∇V (·, t)‖∞ = ‖∇e(t−t0)(∆−λI)V (·, t0) + µ

∫ t

t0

∇e(t−s)(∆−λI)U(·, s)ds‖∞ ∀ t ≥ t0.

93



By (3.9), (3.32), we have

‖∇e(t−t0)(∆−λI)V (·, t0)‖∞ = ‖e(t−t0)(∆−λI)∇V (·, t0)‖∞ ≤ e−λ(t−t0)‖∇V (·, t0)‖∞

≤ e−λ(t−t0) 2C0

b(1− θ)
≤ 2C0

b(1− θ)
e−α(t−t0) ∀ t ≥ t0. (3.41)

Furthermore, (3.10) along with the definition of T gives us that

µ

∫ t

t0

‖∇e(t−s)(∆−λI)U(·, s)‖∞ds

≤ µC

∫ t

t0

(t− s)−
1
2 e−λ(t−s)‖U(·, s)‖∞ds

≤ µBCλ−
1
2

( ∫ λ(t−t0)

0

σ−
1
2 e−(1−α

λ
)σdσ

)
e−α(t−t0)

≤ µBCλ−
1
2 (1− α

λ
)−

1
2
√
πe−α(t−t0) ∀ t ∈ (t0, T ). (3.42)

Combing (3.41) and (3.42), we get that

‖∇V (·, t)‖∞ ≤
{ 2C0

b(1− θ)
+ µBCλ−

1
2 (1− α

λ
)−

1
2
√
π
}
e−α(t−t0) ∀ t ∈ (t0, T ). (3.43)

By the variation of constant formula again, we have

‖U(·, t)‖∞ ≤ ‖e(t−t0)(∆−aI)U(·, t0)‖∞ + χ

∫ t

t0

‖e(t−s)(∆−aI)∇ · (u(·, s;u0, v0)∇V (·, s))‖∞ds

+ b

∫ t

t0

‖e(t−s)(∆−aI)U2(·, s)‖∞ds ∀ t > t0.

It follows from (3.38) and (3.39) that

‖e(t−t0)(∆−aI)U(·, t0)‖∞ ≤ e−a(t−t0)‖U(·, t0)‖∞ ≤ e−a(t−t0) 2C2θ

b(1− θ)2

≤ e−α(t−t0) 2C2θ

b(1− θ)2
≤ B

6
e−α(t−t0) ∀ t > t0. (3.44)
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By Lemma 3.1, (3.26), (3.37), (3.38), (3.43), and χ
b

= 4θ
Nµ

, we have

χ

∫ t

t0

‖e(t−s)(∆−aI)∇ · (u(·, s;u0, v0)∇V (·, s))‖∞ds

≤ χC

∫ t

t0

e−a(t−s)(t− s)−
1
2

2a

b(1− θ)
{ 2C0

b(1− θ)
+ µBCλ−

1
2 (1− α

λ
)−

1
2
√
π
}
e−α(s−t0)ds

≤
{ 16θaC0

bNµ(1− θ)2
+

8θaBC(λ− α)−
1
2
√
π

N(1− θ)
}

(a− α)−
1
2
√
πe−α(t−t0)

≤ B

6
e−α(t−t0) ∀ t ∈ (t0, T ). (3.45)

By (3.37), (3.39), and the definition of T , we have

b

∫ t

t0

‖e(t−s)(∆−aI)U2(·, s))‖∞ds ≤ b

∫ t

t0

e−a(t−s)‖U(·, s)‖∞‖U(·, s)‖∞ds

≤ b

∫ t

t0

e−a(t−s) 2C2θ

b(1− θ)2
Be−α(s−t0)ds

≤ 2C2θ

(1− θ)2
·B · 1

a− α
· e−α(t−t0)

≤ 1

6
Be−α(t−t0) ∀ t ∈ (t0, T ). (3.46)

Combing (3.44), (3.45) and (3.46), we can obtain that

‖U(·, t)‖∞ ≤ 3 · 1

6
Be−α(t−t0) =

B

2
e−α(t−t0) ∀ t ∈ (t0, T ),

which together with the continuity of U implies that T cannot be finite. This shows (3.40), and

(3.36) then follows.

We now prove that there is C > 0 such that

‖V (·, t)‖∞ ≤ Ce−αt ∀ t > 0. (3.47)

By variation of constants formula associated with the second equation in (3.24), we get that

V (·, t) = et(∆−λI)
(
v0 −

µ

λ

a

b

)
+ µ

∫ t

0

e(t−s)(∆−λI)U(·, s)ds ∀ t > 0.
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By (3.36), we have

‖V (·, t)‖∞ ≤ ‖et(∆−λI)
(
v0 −

µ

λ

a

b

)
‖∞ + µ

∫ t

0

‖e(t−s)(∆−λI)U(·, s)‖∞ds

≤ e−λt‖v0 −
µ

λ

a

b
‖∞ + Cµ

∫ t

0

e−λ(t−s)e−αsds

= e−λt‖v0 −
µ

λ

a

b
‖∞ +

Cµ

λ− α
(e−αt − e−λt) ∀ t > 0.

(3.47) then follows, and (3.36) and (3.47) establish (3.7).

3.6 Lower bounds of spreading speeds

In this section, we investigate lower bounds of spreading speeds of global classical solutions

of (1.4) with different initial functions and prove Theorems 3.4 (1), 3.5 (1) and 3.6 (1), and

Theorem 3.7. Throughout this section, we assume that b > Nµχ
4

.

We first prove some lemmas.

For any given ξ ∈ SN−1 and c ∈ R, let ũ(x, t) = u(x+ ctξ, t) and ṽ(x, t) = v(x+ ctξ, t).

Then (1.4) becomes


ũt = ∆ũ+ cξ · ∇ũ− χ∇ · (ũ∇ṽ) + ũ(a− bũ) x ∈ RN ,

ṽt = ∆ṽ + cξ · ∇ṽ − λṽ + µũ, x ∈ RN .

(3.48)

In the following, (ũ(x, t; ξ, c, u0, v0), ṽ(x, t; ξ, c, u0, v0)) denotes the classical solution of (3.48)

with ũ(x, 0; ξ, c, u0, v0) = u0 ∈ X+
1 and ṽ(x, 0; ξ, c, u0, v0)) = v0 ∈ X+

2 .

For any given 0 < ε < 2
√
a, fix 0 < ā < a such that

4ā− c2 ≥ ε
√
a ∀ − 2

√
a+ ε ≤ c ≤ 2

√
a− ε. (3.49)

Let

l =
2π
√
N

(ε
√
a)

1
2

(3.50)
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and

ζ(c, ā) =
4ā− c2 − Nπ2

l2

4
. (3.51)

Then ζ(c, ā) ≥ 3ε
√
a

16
> 0 for any −2

√
a+ ε ≤ c ≤ 2

√
a− ε. Let

Dl = {x ∈ RN | |xi| < l for i = 1, 2, · · ·N}.

For every x ∈ RN , and r > 0, we define

Br(x) := {y ∈ RN | |y − x| < r}.

Lemma 3.6. For any given 0 < ε < 2
√
a, let ā and l be as in (3.49) and (3.50). Then for any

−2
√
a+ ε ≤ c ≤ 2

√
a− ε and ξ ∈ SN−1, ζ(c, ā) which is defined as in (3.51) is the principal

eigenvalue of 
∆φ+ cξ · ∇φ+ āφ = ζφ, x ∈ Dl

φ(x) = 0, x ∈ ∂Dl,

(3.52)

and φ(x; ξ, c, ā) = e−
c
2
ξ·x∏N

i=1 cos π
2l
xi is a corresponding positive eigenfunction.

Proof. It follows from direct calculations.

Lemma 3.7. There areM > 0, M1 > 0, and 0 < θ < 1
2

such that for any (u0, v0) ∈ X+
1 ×X+

2 ,

there is T0(u0, v0) > 1 such that for any c ∈ R, any ξ ∈ SN−1, it holds that



‖ũ(·, t; ξ, c, u0, v0)‖∞ ≤M ∀ t ≥ T0(u0, v0)

‖ṽ(·, t; ξ, c, u0, v0)‖∞ ≤M ∀ t ≥ T0(u0, v0)

‖∇ṽ(·, t; ξ, c, u0, v0)‖∞ ≤M ∀ t ≥ T0(u0, v0)

‖∆ṽ(·, t; ξ, c, u0, v0)‖∞ ≤M ∀ t ≥ T0(u0, v0)

(3.53)

and

sup
t,s≥T0(u0,v0)+1,t6=s

‖∇ṽ(·, t; c, u0, v0)−∇ṽ(·, s; c, u0, v0)‖∞
|t− s|θ

≤MM1. (3.54)
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Proof. It suffices to prove (3.53) holds with ũ(·, t; ξ, c, u0, v0), ṽ(·, t; ξ, c, u0, v0),∇ṽ(·, t; ξ, c, u0, v0),

and ∆ṽ(·, t; ξ, c, u0, v0) being replaced by u(·, t;u0, v0), v(·, t;u0, v0),∇v(·, t;u0, v0), ∆v(·, t;u0, v0)

respectively, where(u(x, t;u0, v0), v(x, t;u0, v0)) is the classical solution of (1.4) with u(x, 0;u0, v0) =

u0 and v(x, 0;u0, v0)) = v0.

First, we obtain the upper bound for ‖u(·, t;u0, v0)‖∞ and ‖∇v(·, t;u0, v0)‖∞. It follows

from (3.22) and (3.23) that there exists T1 = T1(u0, v0) such that

‖u(·, t;u0, v0)‖∞ ≤
(2λ+ a)2

λ(4b−Nµχ)
∀ t ≥ T1 (3.55)

and

‖∇v(·, t;u0, v0)‖∞ ≤ 2

√
µ(2λ+ a)2

λχ(4b−Nµχ)
∀ t ≥ T1. (3.56)

Next, we obtain the upper bound for ‖v(·, t;u0, v0)‖∞. By the variation of constant for-

mula, we have that

v(·, t;u0, v0) = e(t−T1)(∆−λI)v(·, T1;u0, v0) + µ

∫ t

T1

e(t−s)(∆−λI)u(·, s;u0, v0)ds ∀ t ≥ T1.

Then by (3.9) and (3.55),

‖v(·, t;u0, v0)‖∞ ≤ e−λ(t−T1)‖v(·, T1;u0, v0)‖∞ + µ

∫ t

T1

e−λ(t−s)‖u(·, s;u0, v0)‖∞ds

≤ e−λ(t−T1)‖v(·, T1;u0, v0)‖∞ +
µ(2λ+ a)2

λ2(4b−Nµχ)
∀ t ≥ T1.

This implies that

lim sup
t→∞

‖v(·, t;u0, v0)‖∞ ≤
µ(2λ+ a)2

λ2(4b−Nµχ)
.

It thus follows that there exists T2 = T2(u0, v0) > T1 such that

‖v(·, t;u0, v0)‖∞ ≤
2µ(2λ+ a)2

λ2(4b−Nµχ)
∀ t ≥ T2. (3.57)

98



Now, we obtain the upper bound for‖∆v(·, t;u0, v0)‖∞. Similar arguments to those used

in Lemma 3.4 yield that

lim sup
t→∞

‖∆v(·, t;u0, v0)‖∞ ≤ µCλγ−β−1

(
χλβ−

1
2

(2λ+ a)2

λ(4b−Nµχ)

√
µ(2λ+ a)2

λχ(4b−Nµχ)

+
(
(a+ λ)

(2λ+ a)2

λ(4b−Nµχ)
+ b

(2λ+ a)4

λ2(4b−Nµχ)2

)
λβ−1

)
. (3.58)

By (3.55), (3.56), (3.57), and (3.58), there areM > 0 and T0(u0, v0) > 1 such that (3.53) holds.

Finally, (3.54) follows form the arguments in the Claim of Theorem 3.1.

In the following, M > 0 is as in Lemma 3.7, and for given ε > 0, l > 0 is as in (3.50). For

given η > 0, let T = T (η) ≥ 1 be such that

e−λTM ≤ η, (3.59)

and L = L(η) ≥ l be such that BL(0) ⊃ Dl and

max{
∫
RN\BL−4T

√
a

2
√

2T

(0)

e−|z|
2

dz,

∫
RN\BL−4T

√
a

2
√

2T

(0)

|z|e−|z|2dz} ≤ η. (3.60)

Lemma 3.8. For any given 0 < ε < 2
√
a, let ā and l be as in (3.49) and (3.50). Let 0 < ã <

a − ā be fixed. There is ε0 > 0 such that for any 0 < η ≤ ε0, any (u0, v0) ∈ X+
1 × X+

2 , any

ξ ∈ SN−1, any −2
√
a+ ε ≤ c ≤ 2

√
a− ε, any t1, t2 satisfying T0(u0, v0) ≤ t1 < t2 ≤ ∞, and

any ball B2L(η) with radius 2L(η) in RN , if

sup
x∈B2L(η)

ũ(x, t; ξ, c, u0, v0) ≤ η ∀ t1 ≤ t < t2,

then

sup
x∈BL(η)

max{ṽ(x, t; ξ, c, u0, v0), |∂xi ṽ(x, t; ξ, c, u0, v0)|} ≤ M̃η ∀ t1 + T (η) ≤ t < t2 (3.61)
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and

χ sup
x∈BL(η)

N∑
i,j=1

|∂xixj ṽ(x, t; ξ, c, u0, v0)| ≤ ã ∀ t1 + T (η) + 1 ≤ t < t2, (3.62)

where

M̃ = max
{

1 +
µM

λπ
N
2

+
µ

λ
, 1 +

µ

π
N
2

λ−
1
2 Γ(

1

2
)M +

µ

π
N
2

λ−
1
2 Γ(

1

2
)
}
.

Proof. It suffices to prove the lemma for the ball centered at the origin with radius 2L(η). If not,

we can make appropriate translation of (ũ(x, t; ξ, c, u0, v0), ṽ(x, t; ξ, c, u0, v0)) for the space

variable x to achieve this. We first prove that (3.61) holds for any η > 0. Fix t1 ≥ T0(u0, v0).

Note that

ṽ(x, t; ξ, c, u0, v0)

=

∫
RN

e−λ(t−t1)

(4π(t− t1))
N
2

e
− |x+c(t−t1)ξ−y|2

4(t−t1) ṽ(y, t1; ξ, c, u0, v0)dy

+ µ

∫ t

t1

∫
RN

e−λ(t−s)

(4π(t− s))N2
e−
|x+c(t−s)ξ−y|2

4(t−s) ũ(y, s; ξ, c, u0, v0)dyds

=
1

π
N
2

∫
RN
e−λ(t−t1)e−|z|

2

ṽ(x+ c(t− t1)ξ + 2
√
t− t1y, t1; ξ, c, u0, v0)dz

+
µ

π
N
2

∫ t

t1

∫
RN
e−λ(t−s)e−|z|

2

ũ(x+ c(t− s)ξ + 2
√
t− sz, s; ξ, c, u0, v0)dzds,

and

∂xi ṽ(x, t; ξ, c, u0, v0)

=

∫
RN

(yi − xi − c(t− t1)ξ)e−λ(t−t1)

2(t− t1)(4π(t− t1))
N
2

e
− |x+c(t−t1)ξ−y|2

4(t−t1) ṽ(y, t1; ξ, c, u0, v0)dy

+ µ

∫ t

t1

∫
RN

(yi − xi − c(t− s)ξ)e−λ(t−s)

2(t− s)(4π(t− s))N2
e−
|x+c(t−s)ξ−y|2

4(t−s) ũ(y, s; ξ, c, u0, v0)dyds

=
1

π
N
2

(t− t1)−
1
2 e−λ(t−t1)

∫
RN
ze−z

2

ṽ(x+ c(t− t1)ξ + 2
√
t− t1z, t1; ξ, c, u0, v0)dz

+
µ

π
N
2

∫ t

t1

∫
RN

(t− s)−
1
2 e−λ(t−s)ze−z

2

ũ(x+ c(t− s)ξ + 2
√
t− sz, s; ξ, c, u0, v0)dzds.
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Hence, for x ∈ BL(0) and t1 + T ≤ t ≤ min{t1 + 2T, t2}, we have

ṽ(x, t; ξ, c, u0, v0) ≤ e−λTM +
µ

π
N
2

∫ t

t1

∫
RN\BL−4T

√
a

2
√

2T

(0)

e−λ(t−s)e−|z|
2

dzds

M
+

µ

π
N
2

∫ t

t1

∫
BL−4T

√
a

2
√

2T

(0)

e−λ(t−s)e−|z|
2

dzds

 sup
t1≤t<t2,|z|≤2L

ũ(z, t; ξ, c, u0, v0).

By (3.59) and (3.60), if supx∈B2L(0) ũ(x, t; ξ, c, u0, v0) ≤ η for any t1 ≤ t < t2, then

ṽ(x, t; ξ, c, u0, v0) ≤ (1 +
µM

λπ
N
2

+
µ

λ
)η ∀ t1 + T ≤ t ≤ min{t1 + 2T, t2}, |x| ≤ L. (3.63)

For t1 + T ≤ t ≤ min{t1 + 2T, t2}, and x ∈ BL(0), we have

|∂xi ṽ(x, t; ξ, c, u0, v0)|

≤ 1

π
N
2

T−
1
2 e−λTM +

µ

π
N
2

∫ t

t1

∫
RN\BL−4T

√
a

2
√

2T

(0)

(t− s)−
1
2 e−λ(t−s)|z|e−|z|2dzds

M
+

µ

π
N
2

∫ t

t1

∫
BL−4T

√
a

2
√

2T

(0)

(t− s)−
1
2 e−λ(t−s)|z|e−|z|2dzds

 sup
t1≤t<t2,|z|≤2L

ũ(z, t; ξ, c, u0, v0).

By (3.59) and (3.60), if supx∈B2L(0) ũ(x, t; ξ, c, u0, v0) ≤ η for any t1 ≤ t < t2, then

|∂xi ṽ(x, t; ξ, c, u0, v0)| ≤ (1 +
µ

π
N
2

λ−
1
2 Γ(

1

2
)M +

µ

π
N
2

λ−
1
2 Γ(

1

2
))η (3.64)

for t1 + T ≤ t ≤ min{t1 + 2T, t2} and x ∈ BL(0).

In the above arguments, replace t1 by t1 + T . We have (3.63) and (3.64) for t1 + 2T ≤

t ≤ min{t1 + 3T, t2}. Repeating this process, we have (3.63) and (3.64) for t1 + T ≤ t < t2.

It then follows that (3.61) holds for any η > 0.

Next, we prove that there is ε0 > 0 such that (3.62) holds for 0 < η ≤ ε0. Assume

this is not true. Then there are ηn → 0 as n → ∞, (un, vn) ∈ X+
1 × X+

2 , ξn ∈ SN−1,
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−2
√
a+ ε ≤ cn ≤ 2

√
a− ε, T0(un, vn) ≤ t1n < t1n + T (ηn) + 1 ≤ tn < t2n such that

sup
|x|≤2L(ηn)

ũ(x, t; ξn, cn, un, vn) ≤ ηn, ∀ t1n ≤ t < t2n

and

χ sup
|x|≤L(ηn)

N∑
i,j=1

|∂xixj ṽ(x, tn; ξn, cn, un, vn)| > ã.

Let

(ũn(x, t), ṽn(x, t)) = (ũ(x, t+ tn; ξn, cn, un, vn), ṽ(x, t+ tn; ξn, cn, un, vn)).

Without loss of generality, we may assume that

(ũn(x, t), ṽn(x, t))→ (u∗(x, t), v∗(x, t))

as n→∞ locally uniformly on (x, t) ∈ RN × [−1,∞), ξn → ξ∗, cn → c∗ as n→∞ for some

ξ∗ ∈ SN−1, −2
√
a+ ε ≤ c∗ ≤ 2

√
a− ε. Note that v∗(x, t) satisfies

v∗t = ∆v∗ + c∗ξ∗ · ∇v∗ − λv∗ + µu∗, ∀ x ∈ RN , t ≥ −1

and

χ sup
x∈RN

N∑
i,j=1

|∂xixjv∗(x, 0)| ≥ ã.

By (3.61), we have

u∗(x, t) = 0, v∗(x, t) = 0 ∀ x ∈ RN , −1 ≤ t ≤ 0.

Then by the comparison principle for parabolic equations,

v∗(x, t) = 0 ∀x ∈ RN , t ≥ −1,

which is a contradiction. Hence (3.62) holds.
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Lemma 3.9. For any given 0 < ε < 2
√
a, let ā and l be as in (3.49) and (3.50). Let ζ0 =

min−2
√
a+ε≤c≤2

√
a−ε ζ(c, ā) > 0, where ζ(c, ā) is as in Lemma 3.6. Let T̃0 ≥ 1 be such that

eζ0T̃0 ≥ 4. Let ε0 be as in Lemma 3.8. For any 0 < η ≤ ε0, there is 0 < δη ≤ ε0 such that for

any (u0, v0) ∈ X+
1 ×X+

2 , any ξ ∈ SN−1, any−2
√
a+ε ≤ c ≤ 2

√
a−ε, any t0 ≥ T0(u0, v0)+2,

and any ball B2L ⊂ RN with radius 2L, if

sup
x∈B2L

ũ(x, t0; ξ, c, u0, v0) ≥ η,

then

inf
x∈B2L

ũ(x, t; ξ, c, u0, v0) ≥ δη ∀ t0 ≤ t ≤ t0 + T + T̃0,

where L = L(η) and T = T (η).

Proof. Suppose on the contrary that the conclusion fails. Then there exist 0 < η0 ≤ ε0,

(u0n, v0n) ∈ X+
1 × X+

2 , ξn ∈ SN−1, −2
√
a + ε ≤ cn ≤ 2

√
a − ε, t0n ≥ T0(u0n, v0n) + 2,

a sequence of ball Bn
2L(η0) ⊂ RN with radius 2L(η0), xn, x∗n ∈ R with xn ∈ Bn

2L(η0), x
∗
n ∈

Bn
2L(η0), tn ∈ R with t0n ≤ tn ≤ t0n + T (η0) + T̃0 such that

lim
n→∞

ũ(xn, t0n; ξn, cn, u0n, v0n) ≥ η0 (3.65)

and

lim
n→∞

ũ(x∗n, tn; ξn, cn, u0n, v0n) = 0. (3.66)

Let ũn(x, t) = ũ(x+xn, t+t0n−1; ξn, cn, u0n, v0n), ṽn(x, t) = ṽ(x+xn, t+t0n−1; ξn, cn, u0n, v0n),

and T = T (η0) + T̃0, L = L(η0). Without loss of generality, we may assume that

x∗n − xn → x∗, tn − t0n + 1→ t∗ ≥ 1 as n→∞ (3.67)

and

(ũn(x, t), ṽn(x, t))→ (u∗(x, t), v∗(x, t)) (3.68)
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as n → ∞ locally uniformly in (x, t) ∈ RN × [0,∞), ξn → ξ∗ and cn → c∗ as n → ∞ for

some ξ∗ ∈ SN−1,−2
√
a+ ε ≤ c∗ ≤ 2

√
a− ε. Then (u∗, v∗) is a solution of (3.48) with ξ being

replaced by ξ∗ and c being replaced by c∗ for t ≥ 0.

By (3.65), u∗(0, 1) ≥ η0, it follows from comparison principle for parabolic equations that

u∗(x, t) > 0 for x ∈ RN , t > 0. But by (3.66), u∗(x∗, t∗) = 0. This is a contraction.

Lemma 3.10. For any given 0 < ε < 2
√
a, let ā and l be as in (3.49) and (3.50). There is

0 < ε̃0 ≤ ε0 such that for any 0 < η ≤ ε̃0, there is δ̃η > 0 such that for any (u0, v0) ∈ X+
1 ×X+

2 ,

any ξ ∈ SN−1, any −2
√
a + ε ≤ c ≤ 2

√
a − ε, any t1, t2 satisfying that T0(u0, v0)+2 ≤ t1 <

t2 ≤ ∞, and any ball B2L ⊂ RN with radius 2L, if

sup
x∈B2L

ũ(x, t1; ξ, c, u0, v0) = η, sup
x∈B2L

ũ(x, t; ξ, c, u0, v0) ≤ η, ∀ t1 < t < t2,

then

inf
x∈B2L

ũ(x, t; ξ, c, u0, v0) ≥ δ̃η ∀ t1 ≤ t < t2,

where L = L(η).

Proof. It suffices to prove the lemma for the ball B2L(0) centered at the origin with the radius

2L. If the ball with the radius 2L is not centered at the origin, we can make an appropriate

translation of (ũ(x, t; ξ, c, u0, v0), ṽ(x, t; ξ, c, u0, v0)) for the space variable x to shift the ball

into the ball centered at the origin.

First, consider


ut = ∆u+ cξ · ∇u+ q(x, t) · ∇u+ āu, x ∈ Dl, t > 0

u(x, t) = 0, x ∈ ∂Dl, t > 0,

u(x, 0) = φ̄(x; ξ, c, ā), x ∈ Dl,

(3.69)

where φ̄(x; ξ, c, ā) = φ(x;ξ,c,ā)
‖φ‖∞ and φ(x; ξ, c, ā) is as in Lemma 3.6. Let ū(x, t; ξ, c, q) be the

solution of (3.69). Let T̃0 ≥ 1 be as in lemma 3.9. We claim that there is ε̃0 > 0 such that for

any−2
√
a+ ε ≤ c ≤ 2

√
a− ε, any ξ ∈ SN−1, any function q(x, t) which is C1 in x and Hölder
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continuous in t with exponent 0 < θ < 1
2
,

sup
t≥0
‖q(·, t)‖C(D̄l) ≤ χ

√
NM̃ε̃0 (3.70)

(M̃ is as in Lemma 3.8), and

sup
t,s≥0,t 6=s

‖q(·, t)− q(·, s)‖C(D̄l)

|t− s|θ
≤ χMM1 (3.71)

(M and M1 are as in Lemma 3.7), there holds

ū(x, T̃0; ξ, c, q) ≥ 2φ̄(x; ξ, c, ā) ∀ x ∈ Dl. (3.72)

In fact, assume this is not true. Then there are εn → 0 as n → ∞, xn ∈ Dl, ξn ∈ SN−1,

−2
√
a+ ε ≤ cn ≤ 2

√
a− ε, and qn(x, t) satisfying (3.71) and

sup
t≥0
‖qn(·, t)‖C(D̄l) ≤ χ

√
NM̃εn

such that

ū(xn, T̃0; ξn, cn, qn) < 2φ̄(xn; ξn, cn, ā) ∀ n ≥ 1. (3.73)

Let un(x, t) = ū(x, t; ξn, cn, qn). Without loss of generality, we may assume that

un(x, t)→ u∗(x, t), ∂xjun(x, t)→ ∂xju
∗(x, t) as n→∞

locally uniformly in (x, t) ∈ D̄l×[0,∞), ξn → ξ∗ and cn → c∗ as n→∞ for some ξ∗ ∈ SN−1,

−2
√
a + ε ≤ c∗ ≤ 2

√
a − ε. Note that u∗(x, t) = ū(x, t; ξ∗, c∗, 0) = eζ(c

∗,ā)tφ̄(x; ξ∗, c∗, ā).

Hence

u∗(x, T̃0) ≥ eζ0T̃0φ̄(x; ξ∗, c∗, ā) ≥ 4φ̄(x; ξ∗, c∗, ā), ∀ x ∈ Dl.

This together with the Hopf’s Lemma implies that

un(x, T̃0) ≥ 2φ̄(x; ξn, cn, ā) ∀ x ∈ Dl, n� 1,
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which is a contradiction. Hence the claim holds true.

Next, without loss of generality, we may assume that

a− ã− bε̃0 ≥ ā.

Let T = T (η). By Lemma 3.8, for any given 0 < η ≤ ε̃0, ξ ∈ SN−1,−2
√
a+ε ≤ c ≤ 2

√
a−ε,

t1 + T + 1 ≤ t < t2 ≤ ∞, and x ∈ BL(0),

ũt = ∆ũ+ cξ · ∇ũ− χ∇ṽ · ∇ũ+ ũ(a− χ∆ṽ − bũ)

≥ ∆ũ+ cξ · ∇ũ+ q(x, t) · ∇ũ+ āũ, (3.74)

where q(x, t) = −χ∇ṽ(x, t; ξ, c, u0, v0). By Lemma 3.7 and Lemma 3.8, q(·, ·+t1 + T + 1)

satisfies (3.70) and (3.71). Let n0 ≥ 0 be such that

t1 + T + 1 + n0T̃0 < t2 and t1 + T + 1 + (n0 + 1)T̃0 ≥ t2.

By Lemma 3.9,

inf
x∈B2L(0)

ũ(x, t; ξ, c, u0, v0) ≥ δη ∀ t1 ≤ t ≤ t1 + T + 1.

This together with the comparison principle for parabolic equations and (3.72) implies that for

any −2
√
a+ ε ≤ c ≤ 2

√
a− ε, any ξ ∈ SN−1,

ũ(x, t1 + T + 1 + kT̃0; ξ, c, u0, v0) ≥ 2k−1δηū(x, T̃0; ξ, c, q(·, ·+ t1 + T + 1 + (k − 1)T̃0))

≥ 2kδηφ̄(x; ξ, c, ā) ∀ x ∈ Dl

for k = 1, 2, · · · , n0, where δη is as in Lemma 3.9. By Lemma 3.9 again, we then have for any

−2
√
a+ ε ≤ c ≤ 2

√
a− ε, any ξ ∈ SN−1,

inf
x∈B2L(0)

ũ(x, t; ξ, c, u0, v0) ≥ δ̃η := min{δη, δδη} ∀ t1 ≤ t < t2.
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We now prove Theorem 3.4 (1).

Proof of Theorem 3.4 (1). let (u0, v0) ∈ C+
cp × C+,1

cp be fixed. We first prove that for any 0 <

ε < 2
√
a,

lim inf
t→∞

inf
|x|≤(2

√
a−ε)t

u(x, t;u0, v0) > 0. (3.75)

For any 0 < ε < 2
√
a, let ā and l be as in (3.49) and (3.50). Let T0 = T0(u0, v0) and ε̃0 be

as in Lemma 3.7 and Lemma 3.10, respectively. Let T (ε̃0) be such that (3.59) holds. For any

−2
√
a+ ε ≤ c ≤ 2

√
a− ε, any ξ ∈ SN−1, let

δ̃ := δ̃(ξ, c) = inf
x∈D̄l

ũ(x, T0 + T (ε̃0) + 3; ξ, c, u0, v0).

By the assumption u0(x) ≥ 0 and u0(x) 6≡ 0, δ̃ > 0. Let

k0 = inf{k ∈ Z+ | 2kδ̃ ≥ ε̃0} and T00 = T0 + T (ε̃0)+3 + k0T̃0.

where T̃0 ≥ 1 is as in lemma 3.9. We claim that for any −2
√
a + ε ≤ c ≤ 2

√
a − ε, any

ξ ∈ SN−1,

inf
|x|≤2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00. (3.76)

To prove the claim, for any given −2
√
a+ ε ≤ c ≤ 2

√
a− ε, ξ ∈ SN−1, let

I = {t > T0+2 | sup
|x|≤2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) < ε̃0}.

Note that I is an open set. By Lemma 3.9,

inf
|x|≤2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) ≥ δε̃0 ∀ t 6∈ I for t > T0 + 2. (3.77)

Hence, if I = ∅, then

inf
|x|≤2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) ≥ δε̃0 ∀ t ≥ T0 + 2. (3.78)
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If I 6= ∅, then I = ∪(ai, bi). If ai 6= T0 + 2, then

sup
|x|≤2L(ε̃0)

ũ(x, ai; ξ, c, u0, v0) = ε̃0 and sup
|x|≤2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) < ε̃0 ∀ t ∈ (ai, bi).

By the statement in Lemma 3.10,

inf
|x|≤2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) ≥ δ̃ε̃0 ∀ t ∈ (ai, bi) for ai 6= T0 + 2. (3.79)

If ai = T0 + 2, by the arguments in Lemma 3.10, there holds

ũ(x, T0 + T (ε̃0) + 3 + kT̃0; ξ, c, u0, v0) ≥ 2kδ̃φ(x; ξ, c, ā) ∀ x ∈ Dl

for k = 0, 1, 2, · · · , k0. This implies that bi ≤ T00. This together with (3.77), (3.78), and (3.79)

implies (3.76).

By (3.76) and ũ(x, t; ξ, c, u0, v0) = u(x+ ctξ, t;u0, v0), we have for any−2
√
a+ ε ≤ c ≤

2
√
a− ε, any ξ ∈ SN−1,

inf
|x−ctξ|≤2L(ε̃0)

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00. (3.80)

Thus for any t ≥ T00, any |x| ≤ (2
√
a − ε)t, there exist c = |x|

t
and ξ = x

|x| such that

|x− ctξ| ≤ 2L(ε̃0), it then holds that

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0},

which implies that

inf
|x|≤(2

√
a−ε)t

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00.

Hence,

lim inf
t→∞

inf
|x|≤(2

√
a−ε)t

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0}.
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(3.75) is thus proved.

Finally, we prove that for any 0 < ε < 2
√
a,

lim inf
t→∞

inf
|x|≤(2

√
a−ε)t

v(x, t;u0, v0) > 0. (3.81)

Suppose by contraction that the result does not hold. Then there are constant 0 < ε < 2
√
a

and a sequence {(xn, tn)}n∈N such that tn →∞ as n→∞, |xn| ≤ (2
√
a− ε)tn, and

v(xn, tn;u0, v0)→ 0 as n→∞. (3.82)

For every n ≥ 1, let us define

un(x, t) = u(x+ xn, t+ tn;u0, v0), and vn(x, t) = v(x+ xn, t+ tn;u0, v0)

for every x ∈ RN , t ≥ −tn. By a prior estimates for parabolic equations, without loss of

generality, we may assume that (un(x, t), vn(x, t)) → (u∗(x, t), v∗(x, t)) locally uniformly in

C2,1(RN × R). Furthermore, (u∗(t, x), v∗(t, x)) is an entire solution of


ut = ∆u− χ∇ · (u∇v) + u(a− bu), x ∈ RN , t ∈ R

vt = ∆v − λv + µu, x ∈ RN , t ∈ R,

Choose 0 < ε̃ < ε. For every x ∈ RN and t ∈ R, we have

|x+ xn| ≤ |x|+ |xn| ≤ |x|+ (2
√
a− ε)tn

= (2
√
a− ε̃)(tn + t)− (ε− ε̃)(tn −

|x| − (2
√
a− ε̃)t

ε− ε̃
)

≤ (2
√
a− ε̃)(tn + t)

whenever tn ≥ |x|+(2
√
a−ε̃)t

ε−ε̃ . By (3.75),

u∗(x, t) = lim
n→∞

u(x+ xn, t+ tn;u0, v0) ≥ lim inf
s→∞

inf
|y|≤(2

√
a−ε̃)s

u(y, s;u0, v0) > 0

109



for every (x, t) ∈ RN × R. It follows from comparison principle for parabolic equations that

v∗(x, t) > 0 for every (x, t) ∈ RN × R. In particular, v∗(0, 0) > 0, which contradicts to

(3.82).

We then prove Theorem 3.5 (1).

Proof of Theorem 3.5 (1). Let ξ ∈ SN−1 and (u0, v0) ∈ C+
fl(ξ) × C+,1

fl (ξ) be fixed. We first

prove that for any 0 < ε < 2
√
a,

lim inf
t→∞

inf
x·ξ≤(2

√
a−ε)t

u(x, t;u0, v0) > 0. (3.83)

Let ũ(x, t) = u(x+(2
√
a− ε)tξ, t) and ṽ(x, t) = v(x+(2

√
a− ε)tξ, t). Then (ũ(x, t), ṽ(x, t))

solves (3.48) with c being replaced by 2
√
a− ε. (ũ(x, t; ξ, u0, v0), ṽ(x, t; ξ, u0, v0)) denotes the

solution of (3.48) with c being replaced by 2
√
a− ε and (ũ(x, 0; ξ, u0, v0), ṽ(x, 0; ξ, u0, v0)) =

(u0, v0). Let T0 = T0(u0, v0) and ε̃0 be as in Lemma 3.7 and Lemma 3.10, respectively. Let

T (ε̃0) be such that (3.59) holds. Let

δ̃ = inf
x·ξ≤2L(ε̃0)

ũ(x, T0 + T (ε̃0) + 3; ξ, u0, v0).

Since lim infx·ξ→−∞ u0(x) > 0, δ̃ > 0. Let

k0 = inf{k ∈ Z+ | 2kδ̃ ≥ ε̃0} and T00 = T0 + T (ε̃0)+3 + k0T̃0.

where T̃0 ≥ 1 is as in Lemma 3.9. By the similar arguments used in the proof of (3.76), we can

prove for any ball B2L(ε̃0) ⊂ {x | x · ξ < 2L(ε̃0)} with radius 2L(ε̃0), it holds that

inf
x∈B2L(ε̃0)

ũ(x, t; ξ, u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00.
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For any x ∈ {x | x · ξ < 2L(ε̃0)}, there exists a ball B2L(ε̃0) ⊂ {x | x · ξ < 2L(ε̃0)} such

that x ∈ B2L(ε̃0), we then obtain that

ũ(x, t; ξ, u0, v0) ≥ inf
x∈B2L(ε̃0)

ũ(x, t; ξ, u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00,

which implies that

inf
x·ξ<2L(ε̃0)

ũ(x, t; ξ, u0, v0) ≥ min{δε̃0 , δ̃ε̃0} > 0 ∀ t ≥ T00. (3.84)

By (3.84) and ũ(x, t; ξ, u0, v0) = u(x+ (2
√
a− ε)tξ, t;u0, v0), we have

inf
x·ξ<(2

√
a−ε)t+2L(ε̃0)

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00. (3.85)

Hence,

lim inf
t→∞

inf
x·ξ≤(2

√
a−ε)t

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0}.

(3.83) is thus proved.

Finally, it can be proved by the similar arguments used in proving (3.81) that for any

0 < ε < 2
√
a,

lim inf
t→∞

inf
x·ξ≤(2

√
a−ε)t

v(x, t;u0, v0) > 0.

We now prove Theorem 3.6 (1).

Proof of Theorem 3.6 (1). Let ξ ∈ SN−1 and (u0, v0) ∈ C+(ξ) × C+,1(ξ) be fixed. We first

prove that for any 0 < ε < 2
√
a,

lim inf
t→∞

inf
|x·ξ|≤(2

√
a−ε)t

u(x, t;u0, v0) > 0. (3.86)
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Let T0 = T0(u0, v0) and ε̃0 be as in Lemma 3.7 and Lemma 3.10, respectively. Let T (ε̃0)

be such that (3.59) holds. For any −2
√
a+ ε ≤ c ≤ 2

√
a− ε, let

δ̃ := δ̃(ξ, c) = inf
|x·ξ|≤2L(ε̃0)

ũ(x, T0 + T (ε̃0) + 3; ξ, c, u0, v0).

Since there exists r > 0 such that inf |x·ξ|<r u0(x) > 0, δ̃ > 0. Let

k0 = inf{k ∈ Z+ | 2kδ̃ ≥ ε̃0} and T00 = T0 + T (ε̃0)+3 + k0T̃0.

where T̃0 ≥ 1 is as in Lemma 3.9. By the similar arguments used in the proof of (3.76), we can

prove that for any −2
√
a + ε ≤ c ≤ 2

√
a − ε, any ball B2L(ε̃0) ⊂ {x | |x · ξ| < 2L(ε̃0)} with

radius 2L(ε̃0), it holds that

inf
x∈B2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00.

For any x ∈ {x | |x · ξ| < 2L(ε̃0)}, there exists a ball B2L(ε̃0) ⊂ {x | |x · ξ| < 2L(ε̃0)}

such that x ∈ B2L(ε̃0), we then obtain that for any −2
√
a+ ε ≤ c ≤ 2

√
a− ε,

ũ(x, t; ξ, c, u0, v0) ≥ inf
x∈B2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00,

which implies that for any −2
√
a+ ε ≤ c ≤ 2

√
a− ε,

inf
|x·ξ|<2L(ε̃0)

ũ(x, t; ξ, c, u0, v0) ≥ min{δε̃0 , δ̃ε̃0} > 0 ∀ t ≥ T00. (3.87)

By (3.87) and ũ(x, t; ξ, c, u0, v0) = u(x+ ctξ, t;u0, v0), we have for any−2
√
a+ ε ≤ c ≤

2
√
a− ε,

inf
|x·ξ−ct|<2L(ε̃0)

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00.
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For any t ≥ T00, any x ∈ {x | |x · ξ| ≤ (2
√
a − ε)t}, there exists c = x·ξ

t
such that x ∈

{x | |x · ξ − ct| < 2L(ε̃0)}, it then holds that

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0},

which implies that

inf
|x·ξ|≤(2

√
a−ε)t

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0} ∀ t ≥ T00.

Hence,

lim inf
t→∞

inf
|x·ξ|≤(2

√
a−ε)t

u(x, t;u0, v0) ≥ min{δε̃0 , δ̃ε̃0}.

(3.86) is thus proved.

Finally, it can be proved by the similar arguments used in proving (3.81) that

lim inf
t→∞

inf
|x·ξ|≤(2

√
a−ε)t

v(x, t;u0, v0) > 0.

Finally, we prove Theorem 3.7.

Proof of Theorem 3.7. It follows from the arguments similar to those in the proof of (3.75) with

c = 0 and the ball B2L(ε̃0)(x0) for any x0 ∈ R.

3.7 Upper bounds of spreading speeds

This section is devoted to the study of upper bounds of spreading speeds of global classical

solutions of (1.4) with different initial functions and prove Theorems 3.4 (2), 3.5 (2) and 3.6

(2). Throughout this section, we assume that b > Nµχ
4

.

First, we present a lemma.

Lemma 3.11. Let w = u+ χ
2µ
|∇v|2. Then

wt ≤ ∆w + aw.
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Proof. By the proof of Theorem 3.2, we have

d

dt

[
u+

χ

2µ
|∇v|2

]
≤ ∆

[
u+

χ

2µ
|∇v|2

]
− χλ

µ
|∇v|2 −

(
b− Nµχ

4

)
u2 + au.

Since b > Nµχ
4

, then

d

dt

[
u+

χ

2µ
|∇v|2

]
≤ ∆

[
u+

χ

2µ
|∇v|2

]
+ a
[
u+

χ

2µ
|∇v|2

]
.

The lemma then follows.

We now prove Theorem 3.4 (2).

Proof of Theorem 3.4 (2). First of all, for any given (u0, v0) ∈ C+
cp × C+,1

cp and 0 < k <
√
a,

let M > 0 be such that

u0(x) +
χ

2µ
|∇v0(x)|2 ≤ min{Me−kx·ξ, ξ ∈ SN−1} ∀x ∈ RN .

Let

c =
k2 + a

k
,

and

U(x, t, ξ) = Me−k(x·ξ−ct).

Write u = u(x, t;u0, v0), v = v(x, t;u0, v0). Let w = u+ χ
2µ
|∇v|2. By Lemma 3.11,

wt ≤ ∆w + aw.

It follows from the comparison principle for parabolic equations that

u(x, t;u0, v0) ≤ U(x, t, ξ) ∀x ∈ RN , t > 0, ξ ∈ SN−1. (3.88)

Let ξ = x
|x| , then

u(x, t;u0, v0) ≤Me−k(|x|−ct) ∀x ∈ RN , t > 0.
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For any ε > 0, there exists 0 < k <
√
a such that 2

√
a+ ε > c, it then holds that

lim
t→∞

sup
|x|≥(2

√
a+ε)t

u(x, t;u0, v0) = 0. (3.89)

Next, we prove that for any ε > 0,

lim
t→∞

sup
|x|≥(2

√
a+ε)t

v(x, t;u0, v0) = 0. (3.90)

Let d ≥ µM
a+λ

be such that

v0(x) ≤ min{de−kx·ξ, ξ ∈ SN−1} ∀x ∈ RN .

By the second equation of (1.4) and (3.88),

vt = ∆v − λv + µu ≤ ∆v − λv + µMe−k(x·ξ−ct).

Direct computation yields that de−k(x·ξ−ct) satisfies

∂

∂t
(de−k(x·ξ−ct)) ≥ ∆(de−k(x·ξ−ct))− λ(de−k(x·ξ−ct)) + µMe−k(x·ξ−ct).

It follows from the comparison principle for parabolic equations again that

v(x, t;u0, v0) ≤ de−k(x·ξ−ct) ∀x ∈ RN , t > 0, ξ ∈ SN−1.

Similar arguments as in deriving (3.89) yield that (3.90) holds.

Next, we prove Theorem 3.5 (2).

Proof of Theorem 3.5 (2). For any given ξ ∈ SN−1, (u0, v0) ∈ C+
fl(ξ) × C

+,1
fl (ξ) and 0 < k <

√
a, let

c =
k2 + a

k
,
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and M > 0 be such that

u0(x) +
χ

2µ
|∇v0(x)|2 ≤Me−kx·ξ ∀ x ∈ RN .

Let d ≥ µM
a+λ

be such that

v0(x) ≤ de−kx·ξ ∀ x ∈ RN .

By similar arguments as those in Theorem 3.4 (2), we can prove that

u(x, t;u0, v0) ≤Me−k(x·ξ−ct) ∀x ∈ RN , t > 0

and

v(x, t;u0, v0) ≤ de−k(x·ξ−ct) ∀x ∈ RN , t > 0.

For any ε > 0, there exists 0 < k <
√
a such that 2

√
a + ε > c, Theorem 3.5 (2) thus

follows.

Finally, we prove Theorem 3.6 (2).

Proof of Theorem 3.6 (2). For any given ξ ∈ SN−1, (u0, v0) ∈ C+(ξ) × C+,1(ξ) and 0 < k <

√
a, let

c =
k2 + a

k
,

and M > 0 be such that

u0(x) +
χ

2µ
|∇v0(x)|2 ≤ min{Me−kx·ξ, Mekx·ξ} ∀ x ∈ RN .

Let d ≥ µM
a+λ

be such that

v0(x) ≤ min{de−kx·ξ, dekx·ξ} ∀ x ∈ RN .
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By the similar arguments as those in Theorem 3.4 (2), we can prove that

u(x, t;u0, v0) ≤Me−k(x·ξ−ct) ∀x ∈ RN , t > 0,

u(x, t;u0, v0) ≤Mek(x·ξ+ct) ∀x ∈ RN , t > 0,

v(x, t;u0, v0) ≤ de−k(x·ξ−ct) ∀x ∈ RN , t > 0,

and

v(x, t;u0, v0) ≤ dek(x·ξ+ct) ∀x ∈ RN , t > 0.

It then follows that

u(x, t;u0, v0) ≤Me−k(|x·ξ|−ct) ∀x ∈ RN , t > 0,

and

v(x, t;u0, v0) ≤ de−k(|x·ξ|−ct) ∀x ∈ RN , t > 0.

For any ε > 0, there exists 0 < k <
√
a such that 2

√
a + ε > c, Theorem 3.6 (2) thus

follows.
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Chapter 4

Concluding remarks and future works

In this chapter, we make some remarks about our main results obtained in this dissertation and

present some possible future works.

In chapter 2, we incorporated the climate change into the parabolic-elliptic chemotaxis

model (1.1) and studied persistence, spreading speeds and the existence of forced waves in

one-dimensional setting. We obtained some conditions under which the species can survive or

become extinct. But there are some critical cases which are still open. For example, in case

1, can species keep up with the shifting environment if c = 2
√
r∗ and the species initially

lives in a bounded region? In case 2, can species keep up with the shifting environment if

ζ∞(r(·), c) = 0? We leave these problems as future works.

We also studied forced waves of (1.1). We proved forced waves exist in certain param-

eter ranges. Some numerical simulations are carried out to illustrate our theoretical results.

In addition, numerical simulations indicate that forced waves can exist in a larger parameter

ranges which are not covered in theoretical results. Numerical simulations also indicate that

forced waves are unique and stable. But there is no theoretical results for the uniqueness and

stability of forced waves in (1.1). It is interesting to study these findings indicated by numerical

simulations theoretically.

As mentioned before, we studied (1.1) in one-dimensional setting. The natural question

arise: consider chemotaxis model (1.1) in high-dimensional shifting environments, that is,


ut = ∆u− χ∇ · (u∇v) + u(r(x · ξ − ct)− bu), x ∈ RN

0 = ∆v − λv + µu, x ∈ RN ,

(4.1)
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where ξ ∈ RN is a unit vector, can the results obtained in chapter 2 be extended to (4.1)? We

believe that the results obtained in chapter 2 can be extended to (4.1). For example, for given

u0 ∈ Cb
unif(RN) with u0 ≥ 0 and {x : |x · ξ| < r} ⊂ supp(u0) ⊂ {x : |x · ξ| < R} for some

0 < r < R, we believe that the statements in Theorem 2.1 hold with x ≤ c̃t (resp. x ≥ c̃t)

being replaced by x · ξ ≤ c̃t (resp. x · ξ ≥ c̃t), where c̃ = c − ε, c∗ − ε, or −c∗ − ε (resp.

c + ε, c∗ + ε, or −c∗ + ε). But due to the lack of comparison principle for chemotaxis models,

more new techniques may need to be developed to prove such results. We leave the study of

the extension of the results obtained in chapter 2 to high-dimensional space case for further

investigation.

we studied parabolic-elliptic chemotaxis model (1.1) in two different shifting environ-

ments in chapter 2. The shifting speed of the environments is a constant in both cases. This

motivates us to think if the shifting speed of the environments is not a constant, say a periodic

or almost periodic function, what will happen? More precisely, it is interesting to study (1.1)

in shifting environments with time-dependent shifting speed. That is the following model.


ut = uxx − χ(uvx)x + u(r(x−

∫ t
0
c(s)ds)− bu), x ∈ R,

0 = vxx − λv + µu, x ∈ R.
(4.2)

where c : R → R is a periodic or almost-periodic function. In a recent joint work [55] with

Drs. W. Shen, Z. Shen and D. Zhou, we studied (4.2) for the case χ = 0 (In fact, we studied

more general reaction term). We established the persistence criterion in terms of the sign of the

approximate top Lyapunov exponent and, in the case of persistence, proved the existence of a

unique forced wave solution that dominates the population profile of species in the long run.

We also studied the effects of fluctuation and yielded that fluctuations in the shifting speed or

location have negative impacts on the persistence of species. As one of future works, we can

study the persistence of species, the existence of forced waves and the effects of fluctuation in

(4.2) with the presence of chemotaxis.
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Consider the following general parabolic-parabolic chemotaxis model on the whole space


ut = ∆u− χ∇ · (u∇v) + u(a− bu), x ∈ RN

τvt = ∆v − λv + µu, x ∈ RN ,

(4.3)

where τ > 0 is a positive constant related to the diffusion rate of the chemical substance. In

chapter 3, we studied the dynamical aspects of (4.3) with τ = 1. The natural questions arise:

can the results obtained in chapter 3 be extended to (4.3) with τ > 0 (τ is not necessarily 1)?

Most existing works concerning (4.3) are on bounded domains. For example, Winkler [67]

studied the system (4.3) in a smooth bounded convex domain Ω ⊂ RN with Neumann bound-

ary condition ∂u
∂n

= ∂v
∂n

= 0 for x ∈ ∂Ω and established the global existence and boundedness of

non-negative classical solutions of system (4.3) provided that b is large enough. In [73], Zheng,

Li, Bao and Zou extended Winkler’s global existence result to bounded domains (not necessar-

ily convex) of RN for χ > 0 and proved that if the logistic dampening b > (N−2)+

N
χ[CN

2
+1]

1
N
2 +1 ,

where CN
2

+1 is a positive constant which is corresponding to the maximal Sobolev regularity,

then (4.3) admits a unique, smooth,and bounded global non-negative solution. Recently, Issa

and Shen [23] extended the global existence results obtained in both [67] and [73] to the general

full chemotaxis model (4.3) with u(a− bu) being replaced by a local as well as nonlocal time

and space dependent logistic source. We point out that the methods used in [23, 67, 73] can

not be adapted to study the global existence of classical solutions of (4.3) on the whole space

because those methods are based on the finite measure of the domain. It is also very difficult

to adapt the method used in our result Theorem 3.2 to study the global existence of classical

solutions of (4.3) due to the different diffusion rates of the biological species and the chemi-

cal substance. We leave these interesting and challenging problems as our future works. We

also leave the study of (4.3) in shifting environments with time-independent or time-dependent

shifting speed as possible future works.

In addition to the aforementioned problems associated with chemotaxis models (1.1) and

(4.3), in the future, I also plan to study dynamics of other chemotaxis models or other mathe-

matical models arising from biology such as epidemic models. For example, I want to study
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the dynamics of two species chemotaxis model with Lotka-Volterra type competition term on

the whole space


ut = ∆u− χ1∇ · (u∇w) + u(a0 − a1u− a2v), x ∈ RN ,

vt = ∆v − χ2∇ · (v∇w) + v(b0 − b1u− b2v), x ∈ RN ,

wt = ∆w − λw + d1u+ d2v, x ∈ RN .

(4.4)

In model (4.4), the first two parabolic equations describe the evolution of two biological species

“u” and “v”. The third parabolic equation models the evolution of a chemical substance “w”

which is produced over time by these two biological species. For model (4.4), I plan to study

the global existence and boundedness of classical solutions with given nonnegative initial func-

tions in some spaces, the persistence, coexistence and extinction dynamics, the traveling wave

solutions, etc.
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