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Abstract 

 

The biogeochemical processes of phosphorous (P), carbon (C), and nitrogen (N) in the 

Earth system are fully coupled, which shapes the structure, functioning, and dynamics of terrestrial 

ecosystems. However, incorporating P-related processes into terrestrial biosphere models (TBMs) 

is still in an early stage. Tropical forests store more than half of the world's terrestrial carbon (C) 

pool and account for one-third of global net primary productivity (NPP). With their significant 

contribution to the global C cycle, tropical forests maintain critical negative feedback to climate 

warming through absorbing atmospheric CO2. A few TBMs-based estimates indicate increasing 

productivity in tropical ecosystems throughout the 21st century due to the CO2 fertilization effect. 

However, phosphorus (P) limitation on vegetation photosynthesis and productivity have not been 

considered by most current TBMs. In this dissertation, P impacts on C fluxes and the C-N-P 

interactions were investigated at both site and tropical scales. We examined how P limitation has 

affected C fluxes of tropical rainforests during 1860-2018.  Our model results showed that 

consideration of the P cycle reduced the CO2 fertilization effect on tropical rainforests gross 

primary production (GPP) by 25% and 45%, NPP by 25% and 46%, and net ecosystem production 

(NEP) by 28% and 41% relative to CN-only and C-only models. During the period from the 1860s 

to the 2010s, the DLEM-CNP estimated that for per unit area, the tropical rainforest GPP increased 

by 17 %, plant respiration (Ra) increased by 18%, NPP increased by 16%, heterotrophic respiration 

(Rh) increased by 13%, and NEP increased by 121%, respectively. Additionally, factorial 

experiments with DLEM-CNP showed that the enhanced GPP and NPP benefiting from the CO2 

fertilization effect had been offset by 147% and 135% due to deforestation from the 1860s to the 

2010s. Using future environmental factors, we examined pan-tropic GPP, NPP, and carbon use 

efficiency (CUE) changes during 2020-2100. Results showed that the P limitation on the CO2 



 3 

fertilization effect would reduce future tropical GPP and NPP. Under the SSP585 scenario, the 

CO2 fertilization effect would reach plateaus and the tropical ecosystem’s capability to respond to 

CO2 increase would weaken after 2060. Under future environmental conditions during 2020-2100, 

DLEM-CNP estimated that under the SSP126 scenario, the tropical GPP, NPP, and CUE would 

slightly increase, with a substantially interannual variation. Under the SSP585 scenario, the 

tropical GPP and NPP would increase by 44% and 21% from 2020 to 2100, respectively; the CUE 

shows a decrease of 15% under the SSP585 scenario. The CO2 fertilization effect is the dominant 

factor that would likely increase the future GPP and NPP in the tropics. The climate effect is found 

to be the most significant factor that would decrease the CUE under both SSP126 and SSP585 

scenarios. Our study revealed strong interactions among C, N, P processes, indicating that the 

inclusion of the P cycle in the current TBMs is essential to better understand the impacts of global 

change on terrestrial ecosystems. 
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Chapter 1. Introduction 

 

Phosphorus (P) is fundamental to all living organisms: as an essential element, it is closely 

related to biochemical energy, genetic materials (DNA and RNA), and structural material of 

membranes and bone (Ruttenberg, 2003). Phosphorus, as one of three nutrients (nitrogen, 

potassium, and phosphorus) used in commercial fertilizer, is particularly important for crop yields 

(Cordell et al., 2009). For example, widely applying phosphate as fertilizer has promoted the 

“Green Revolution” in the 20th century, which relieves the severe food demand due to rapid 

population growth by boosting the crop yields dramatically (Elser & Bennett, 2011). However, P 

is a non-renewable resource and the global P cycle has been strongly enhanced by human activities, 

such as mining, since the industrial revolution and will be continued in the future. Given the 

importance of P in controlling vegetation growth and agriculture production, there are increasing 

concerns and attentions on the P cycle and its influence on the carbon (C) cycle (Cordell & White, 

2014; Elser, 2012; Withers et al., 2015). An in-depth understanding of the P cycle and its influence 

on the C cycle will be important for decision-makers to develop feasible policies for managing P 

nutrient sustainability and C emission mitigation in the context of climate changing. However, our 

understanding of the P cycle in terrestrial ecosystems, including some P-specific processes and 

drivers, is far from fully understood (Achat et al., 2016; Reed et al., 2015).  

In terrestrial ecosystems, P mainly resides in three pools: bedrock, soil, and living 

organisms (biomass). The terrestrial P cycle is the biogeochemical exchanges by which P is 

transported and converted among the soil, plants, animals and microbes. Phosphorus comes 

primarily from parent material weathering and is lost through leaching, soil erosion (Filippelli, 

2008; Newman, 1995; Wang et al., 2015). Ecosystems with very old soils can become depleted in 

P. Walker and Syers demonstrated a pattern of lower total P and an increased fraction of 
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recalcitrant P in older substrates; they suggested old sites reach a “terminal steady state” of P 

depletion and biological limitation. Tropical areas have no glaciers existed for hundreds of millions 

of years, and so a larger fraction of tropical sites could approach Walker and Syers' terminal steady 

state of P depletion and limitation (Davidson et al., 2004; Turner et al., 2018; Vitousek et al., 2010). 

The nutrient limitation lies at the heart of ecosystem ecology (Vitousek, 2004). Phosphorus 

is vitally important for plant photosynthesis. It is required for many transformations of phosphorus‐

rich molecules (ATP, NADP and sugar‐phosphates from the Calvin cycle) and the regeneration of 

RuBP (ribulose‐1, 5‐bisphosphate) (Farquhar et al., 1980). Thus, P limitation is expected to reduce 

photosynthetic capacity by decreasing light-use efficiency, electron transport rates, regeneration 

of ribulose bisphosphate (RuBP) (Wang et al., 2018). Phosphorus limitation on plant growth and 

biome productivity has been widely acknowledged, and it is well recognized that there is more P 

limitation in the highly weathered tropical regions than high latitude areas (Vitousek et al., 2010). 

Tropical ecosystems account for 60% terrestrial gross primary production (GPP) (Beer et al., 2010) 

and store about 72% of global forest biomass carbon (C) (Pan et al., 2011), which thereby are 

considered as the most productive and vital component in the global carbon (C) cycle (Melillo et 

al., 1993). Therefore, P limitation on plant productivity in the tropics plays a key role in the global 

C cycle (Elser et al., 2007; Mackenzie et al., 2002; Vitousek et al., 2010).  

The CO2 fertilization effect that increases CO2 concentrations in leaves enhances plants' 

capacity in fixing carbon through photosynthesis has been considered as a primary mechanism that 

maintains a critical negative feedback to climate warming by slowing the rate of increasing CO2 

concentration in the atmosphere (Schimel et al., 2015). Multiple lines of evidence suggest that the 

CO2 fertilization effect is highest in tropical ecosystems (Liu et al., 2019; Lloyd, 1999; Schimel et 

al., 2015). However, studies from field, remote sensing, and process model indicate that tropical 
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forest response to CO2 fertilization effect is heavily dependent on plant P acquisition (Ellsworth et 

al., 2017; Fleischer et al., 2019; Wang et al., 2020). In other words, tropical ecosystem future 

productivity and C storage are limited by P availability.  

Although P limitation (or N/P co-limitation) is widespread throughout the terrestrial 

biosphere and is expected to increase in the future, our understanding of how P controls the tropical 

C cycle remains far from certain (Norby et al., 2016; Townsend et al., 2011). As studies show, 

failing to account for nutrient–C interactions can lead to substantial errors in predicting how 

ecosystems will respond to climate and other environmental changes (Terrer et al., 2019; Thornton 

et al., 2007). Thus, although resolving the complex nature of tropical forest nutrient limitation – 

and then incorporating such knowledge into predictive models – will be difficult, it is a challenge 

that the global change researchers must address. (Reed et al., 2015; Townsend et al., 2011). 

Terrestrial Biosphere Models (TBMs) are an important tool to study terrestrial ecosystem 

activities under climate change and better understanding and simulating C, N, and P interactions. 

Within the past decades, TBMs have evolved from the first-generation C only models (Houghton 

et al., 2001; Lieth, 1975) to CN interactions models (Gerber et al., 2010; Thornton et al., 2007; 

Tian et al., 2010; Yang et al., 2009; Zaehle & Dalmonech, 2011; Zaehle et al., 2010). In recent 

years, the P cycle has been incorporated into several TBMs, such as Community Land Model 

(CLM -CNP) (Yang et al., 2014), CABLE-CNP (Wang et al., 2007), CASA-CNP (Wang et al., 

2010), and Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) (Goll et al., 

2017), etc. There is mounting evidence that the representation of P in TBMs is important for our 

understanding and prediction of ecosystem dynamics, particularly for tropical forests with strong 

P limitation (Fleischer et al., 2019; Goll et al., 2018; Goll et al., 2012). Wang et al. (2010), Goll et 

al. (2012), and Yang et al. (2014) highlighted the importance of incorporating the P cycle in TBMs, 
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particularly in tropical ecosystems. Several studies also demonstrated that coupling P dynamics 

into TBMs could reduce the simulated terrestrial C sink due to increasing atmospheric CO2 

concentrations in the Amazon basin and other areas (Fleischer et al., 2019; Yang et al., 2019; Yang 

et al., 2016; Zhang et al., 2011). However, there are divergences in model structures and the 

simulated ecosystem dynamics. For example, TBMs differ in their assumptions on how nutrient 

limitation controls productivity and C allocation and their representation of soil P acquisition 

mechanisms (Fleischer et al., 2019). 

As projected by IPCC, global atmospheric CO2 concentration and N deposition are 

expected to continue to increase in the future (Pachauri & Reisinger, 2007), which could 

exacerbate P limitation in many regions of the world (Jiang et al., 2019). Many TBMs projected a 

large increase in tropical ecosystem productivity due to CO2 concentration and N deposition 

increase in the 21st century (Hickler et al., 2008; Schimel et al., 2015). However, these model 

results may lead to an overestimation of carbon uptake by the tropical terrestrial biosphere due to 

the missed P cycle representation (Cox et al., 2013; Goll et al., 2012; Huntingford et al., 2013; 

Zhang et al., 2014).  

In order to investigate the P cycling impacts on the C cycling in tropical terrestrial 

ecosystems and the future response of the tropical terrestrial ecosystem to climate change, we 

developed a process-based P module on the platform of the Dynamic Land Ecosystem Model 

(DLEM) by considering P impacts on vegetation and soil biogeochemical processes, which 

upgraded the coupled CN model (DLEM-CN) into the coupled CNP model (DLEM-CNP). The 

DLEM-CNP are then applied on sites, regions, and pan-tropical scales to estimate the P limitation 

induced C fluxes and storage changes. 



 18 

 

2. Dissertation Structure  

This Dissertation is organized according to the structure as below (Figure 1-1), 

 
Figure1- 1 The structure of this dissertation. 

Chapter 1 presents a brief introduction of background, previous P model works, research 

questions, and approaches to solve these questions. 

Chapter 2 describes the detailed processes regarding the DLEM P module, including the 

processes of photosynthesis, allocation, turnover, nutrient uptake, decomposition, and P and N 

co-limitation on various processes.  

Chapter 3 evaluate and validate the DLEM-CNP nutrients coupling feature. Simulated 

GPP, biomass, leaf N: P ratio and plant response to fertilizer addition are validated according to 

benchmark datasets at the site level.  
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Chapter 4 describes the simulation of tropical rainforests C cycle during 1860-2018. P 

limitation on the CO2 fertilization effect in tropical rainforests is examined.  

Chapter 5 investigates the pan tropical GPP, NPP, and CUE trends and changes in future 

“Shared Socioeconomic Pathways” (SSPs) climate scenarios from 2020 to 2100.   

Chapter 6 summarizes the major findings of this study and discusses the possible 

improvement needs for future work. 

 

 

References 

Achat, D. L., Augusto, L., Gallet-Budynek, A., & Loustau, D. (2016). Future challenges in 

coupled C–N–P cycle models for terrestrial ecosystems under global change: a review. 

Biogeochemistry, 131(1), 173-202. https://doi.org/10.1007/s10533-016-0274-9 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al. (2010). 

Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with 

Climate. Science, 329(5993), 834-838. https://doi.org/10.1126/science.1184984 

Cordell, D., Drangert, J.-O., & White, S. (2009). The story of phosphorus: Global food security 

and food for thought. Global Environmental Change, 19(2), 292-305. 

https://doi.org/https://doi.org/10.1016/j.gloenvcha.2008.10.009 

Cordell, D., & White, S. (2014). Life's Bottleneck: Sustaining the World's Phosphorus for a Food 

Secure Future. Annual Review of Environment and Resources, 39(1), 161-188. 

https://doi.org/10.1146/annurev-environ-010213-113300 

Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, 

C. M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon 

dioxide variability. Nature, 494, 341. https://doi.org/10.1038/nature11882 

Davidson, E. A., Reis de Carvalho, C. J., Vieira, I. C. G., Figueiredo, R. d. O., Moutinho, P., 

Yoko Ishida, F., et al. (2004). NITROGEN AND PHOSPHORUS LIMITATION OF 

BIOMASS GROWTH IN A TROPICAL SECONDARY FOREST. Ecological 

applications, 14(sp4), 150-163. https://doi.org/10.1890/01-6006 

Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E., Gherlenda, A. N., et al. 

(2017). Elevated CO 2 does not increase eucalypt forest productivity on a low-phosphorus 

soil. Nature Climate Change, 7(4), 279.  



 20 

Elser, J., & Bennett, E. (2011). Phosphorus cycle: A broken biogeochemical cycle. Nature, 

478(7367), 29-31. https://doi.org/10.1038/478029a 

Elser, J. J. (2012). Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol, 23(6), 

833-838. https://doi.org/10.1016/j.copbio.2012.03.001 

Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., et al. 

(2007). Global analysis of nitrogen and phosphorus limitation of primary producers in 

freshwater, marine and terrestrial ecosystems. Ecology letters, 10(12), 1135-1142.  

Farquhar, G. D., von Caemmerer, S. v., & Berry, J. A. J. P. (1980). A biochemical model of 

photosynthetic CO 2 assimilation in leaves of C 3 species. 149(1), 78-90.  

Filippelli, G. M. (2008). The global phosphorus cycle: past, present, and future. Elements, 4(2), 

89-95.  

Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F., Fuchslueger, L., 

et al. (2019). Amazon forest response to CO2 fertilization dependent on plant phosphorus 

acquisition. Nature Geoscience. https://doi.org/10.1038/s41561-019-0404-9 

Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., & Shevliakova, E. (2010). Nitrogen 

cycling and feedbacks in a global dynamic land model. Global Biogeochemical Cycles, 

24(1). https://doi.org/10.1029/2008GB003336 

Goll, D., Joetzjer, E., Huang, M., & Ciais, P. (2018). Low Phosphorus Availability Decreases 

Susceptibility of Tropical Primary Productivity to Droughts. Geophysical Research Letters, 

45(16), 8231-8240.  

Goll, D., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., et al. (2017). A 

representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geoscientific 

Model Development Discussions, 10(10), 3745-3770.  

Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., et al. (2012). 

Nutrient limitation reduces land carbon uptake in simulations with a model of combined 

carbon, nitrogen and phosphorus cycling. Biogeosciences, 9(9), 3547-3569. 

https://doi.org/10.5194/bg-9-3547-2012 

Hickler, T., Smith, B., Prentice, I. C., Mjöfors, K., Miller, P., Arneth, A., & Sykes, M. T. (2008). 

CO2 fertilization in temperate FACE experiments not representative of boreal and tropical 

forests. Global Change Biology, 14(7), 1531-1542.  

Houghton, J. T., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., et al. (2001). 

Climate Change 2001: The Scientific Basis, Cambridge Uni. In: Press. 

Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., et al. 

(2013). Simulated resilience of tropical rainforests to CO2-induced climate change. Nature 

Geoscience, 6(4), 268-273. https://doi.org/10.1038/ngeo1741 



 21 

Jiang, M., Caldararu, S., Zaehle, S., Ellsworth, D. S., & Medlyn, B. E. (2019). Towards a more 

physiological representation of vegetation phosphorus processes in land surface models. 

New Phytologist.  

Lieth, H. (1975). Modeling the Primary Productivity of the World. In H. Lieth & R. H. Whittaker 

(Eds.), Primary Productivity of the Biosphere (pp. 237-263). Berlin, Heidelberg: Springer 

Berlin Heidelberg. 

Liu, Y., Piao, S., Gasser, T., Ciais, P., Yang, H., Wang, H., et al. (2019). Field-experiment 

constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature 

Geoscience. https://doi.org/10.1038/s41561-019-0436-1 

Lloyd, J. (1999). The CO2 dependence of photosynthesis, plant growth responses to elevated 

CO2 concentrations and their interaction with soil nutrient status, II. Temperate and boreal 

forest productivity and the combined effects of increasing CO2 concentrations and 

increased nitrogen deposition at a global scale. Functional Ecology, 13(4), 439-459. 

https://doi.org/10.1046/j.1365-2435.1999.00350.x 

Mackenzie, F. T., Ver, L. M., & Lerman, A. (2002). Century-scale nitrogen and phosphorus 

controls of the carbon cycle. Chemical Geology, 190(1), 13-32.  

Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., & Schloss, A. 

L. (1993). Global climate change and terrestrial net primary production. Nature, 

363(6426), 234.  

Newman, E. I. (1995). Phosphorus Inputs to Terrestrial Ecosystems. Journal of Ecology, 83(4), 

713-726. https://doi.org/10.2307/2261638 

Norby, R. J., Gu, L., Haworth, I. C., Jensen, A. M., Turner, B. L., Walker, A. P., et al. (2016). 

Informing models through empirical relationships between foliar phosphorus, nitrogen and 

photosynthesis across diverse woody species in tropical forests of Panama. New 

Phytologist.  

Pachauri, R. K., & Reisinger, A. (2007). IPCC fourth assessment report. IPCC, Geneva, 2007.  

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A 

Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988. 

https://doi.org/10.1126/science.1201609 

Reed, S. C., Yang, X., & Thornton, P. E. (2015). Incorporating phosphorus cycling into global 

modeling efforts: a worthwhile, tractable endeavor. New Phytologist, 208(2), 324-329.  

Ruttenberg, K. (2003). The global phosphorus cycle. Treatise on geochemistry, 8, 682.  

Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing CO2 on the terrestrial 

carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436-441.  



 22 

Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). EXPERIMENTAL INVESTIGATION 

OF NUTRIENT LIMITATION OF FOREST GROWTH ON WET TROPICAL 

MOUNTAINS. Ecology, 79(1), 10-22. https://doi.org/10.1890/0012-

9658(1998)079[0010:EIONLO]2.0.CO;2 

Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., et al. (2019). 

Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature 

Climate Change, 9(9), 684-689. https://doi.org/10.1038/s41558-019-0545-2 

Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., & Mahowald, N. M. (2007). Influence of 

carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate 

variability. Global Biogeochemical Cycles, 21(4). https://doi.org/10.1029/2006GB002868 

Tian, H., Liu, M., Zhang, C., Ren, W., Xu, X., Chen, G., et al. (2010). The dynamic land 

ecosystem model (DLEM) for simulating terrestrial processes and interactions in the 

context of multifactor global change. Acta Geographica Sinica, 65(9), 1027-1047.  

Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B., & White, J. W. C. (2011). 

Multi-element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the 

Environment, 9(1), 9-17. https://doi.org/https://doi.org/10.1890/100047 

Turner, B. L., Brenes-Arguedas, T., & Condit, R. (2018). Pervasive phosphorus limitation of tree 

species but not communities in tropical forests. Nature, 555, 367. 

https://doi.org/10.1038/nature25789 

Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus 

limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological 

applications, 20(1), 5-15.  

Walker, T. W., & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 

15(1), 1-19. https://doi.org/https://doi.org/10.1016/0016-7061(76)90066-5 

Wang, J., Wen, X., Zhang, X., Li, S., & Zhang, D.-Y. (2018). Co-regulation of photosynthetic 

capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. 

Scientific Reports, 8(1), 7406. https://doi.org/10.1038/s41598-018-25839-1 

Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Peñuelas, J., & Tao, S. (2015). Significant 

contribution of combustion-related emissions to the atmospheric phosphorus budget. 

Nature Geoscience, 8(1), 48-54. https://doi.org/10.1038/ngeo2324 

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., et al. (2020). Recent global 

decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522), 

1295-1300. https://doi.org/10.1126/science.abb7772 

Wang, Y. P., Houlton, B. Z., & Field, C. B. (2007). A model of biogeochemical cycles of carbon, 

nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase 

production. Global Biogeochemical Cycles, 21(1). https://doi.org/10.1029/2006GB002797 



 23 

Wang, Y. P., Law, R., & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus 

cycles for the terrestrial biosphere. Biogeosciences, 7(7), 2261-2282.  

Withers, P. J. A., Elser, J. J., Hilton, J., Ohtake, H., Schipper, W. J., & van Dijk, K. C. (2015). 

Greening the global phosphorus cycle: how green chemistry can help achieve planetary P 

sustainability. Green Chem., 17(4), 2087-2099. https://doi.org/10.1039/c4gc02445a 

Yang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F., & Norby, R. J. (2019). 

The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon 

region: a modeling study using ELM v1. Journal of Geophysical Research: 

Biogeosciences, 0(ja). https://doi.org/10.1029/2019JG005082 

Yang, X., Thornton, P., Ricciuto, D., & Post, W. (2014). The role of phosphorus dynamics in 

tropical forests–a modeling study using CLM-CNP. Biogeosciences, 11(6), 1667-1681.  

Yang, X., Thornton, P. E., Ricciuto, D. M., & Hoffman, F. M. (2016). Phosphorus feedbacks 

constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. 

Geophysical Research Letters, 43(13), 7205-7214. https://doi.org/10.1002/2016GL069241 

Yang, X., Wittig, V., Jain, A. K., & Post, W. (2009). Integration of nitrogen cycle dynamics into 

the Integrated Science Assessment Model for the study of terrestrial ecosystem responses 

to global change. Global Biogeochemical Cycles, 23(4). 

https://doi.org/10.1029/2009GB003474 

Zaehle, S., & Dalmonech, D. (2011). Carbon–nitrogen interactions on land at global scales: 

current understanding in modelling climate biosphere feedbacks. Current Opinion in 

Environmental Sustainability, 3(5), 311-320. 

https://doi.org/https://doi.org/10.1016/j.cosust.2011.08.008 

Zaehle, S., Friend, A. D., Friedlingstein, P., Dentener, F., Peylin, P., & Schulz, M. (2010). 

Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the 

nitrogen cycle in the historical terrestrial carbon balance. Global Biogeochemical Cycles, 

24(1). https://doi.org/10.1029/2009gb003522 

Zhang, Q., Wang, Y.-P., Matear, R., Pitman, A., & Dai, Y. (2014). Nitrogen and phosphorous 

limitations significantly reduce future allowable CO2 emissions. Geophysical Research 

Letters, 41(2), 632-637.  

Zhang, Q., Wang, Y. P., Pitman, A. J., & Dai, Y. J. (2011). Limitations of nitrogen and 

phosphorous on the terrestrial carbon uptake in the 20th century. Geophysical Research 

Letters, 38(22). https://doi.org/10.1029/2011GL049244 

 

 

 

 

 

  



 24 

 

Chapter 2. The description of the DLEM phosphorus module 

 

1. The Dynamic Land Ecosystem Model (DLEM)  

The Dynamic Land Ecosystem Model (DLEM) is a highly integrated process-based TBM 

aiming to provide an integrated modeling framework for predictive understanding of how multi-

factor global changes have affected and will affect the structure and functioning of terrestrial 

ecosystems across multiple spatial and temporal scales. DLEM simulates the consequences of 

natural and anthropogenic disturbances on the structure and functions of terrestrial ecosystems and 

their feedbacks to human and natural systems on Earth's land surface and terrestrial-aquatic 

continuum. More specifically, the model has integrated biophysical, hydrological, and 

biogeochemical processes (C, N cycling), vegetation dynamics, disturbances including natural and 

anthropogenic stresses (e.g., changes in climate, atmospheric composition, and land use land cover 

patterns, intensive management on crops and forests, wildfire, etc.), and the synergy effects with 

the human system (Figure 2-1).  
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Figure2- 1 Framework of the Dynamic Land Ecosystem Model, version of DLEM-CN (Tian et al., 

2010c). 

 

In the DLEM, the simulation time step for soil thermal and hydrological processes (e.g., 

evapotranspiration, water interceptions, and water movement between grids) is 30-minute, while 

physiological and biogeochemical processes (such as photosynthesis, plant respiration, organic 

matter decomposition, nitrogen mineralization and immobilization, etc.) is daily.  Land-use/land 

cover change and the associated carbon emissions are simulated annually. Spatial resolution for 

the DLEM is flexible and dependent on the input data.  DLEM is driven by various input datasets 

mainly in four major types: (1) time invariant data (such as topography, soil properties, river 

network, and plant biophysical characteristics), (2) climate (including daily average/minimum/ 

maximum temperature, precipitation, and shortwave radiation), (3) atmospheric chemistry (e.g., 

atmospheric CO2, and nitrogen deposition), and (4) land use history (including land use transitions 
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and land management). Currently, part of the time-series datasets, such as climate, is required as 

daily time step, while the other driving datasets, e.g., atmospheric CO2 concentration, nitrogen 

deposition, land-use history, and land management (irrigation, N fertilizer application) are applied 

with monthly or annual time step.  

As a spatially explicit ecosystem model, the basic simulation unit of DLEM is a single grid 

with a corresponding coverage area. In the DLEM, we use a cohort structure to represent multiple 

plant functional types (PFTs) and land covers in each grid. Totally seven types of land cover and 

water bodies can be specified in each grid, including vegetation cover, impervious surface, lake, 

stream, sea, bare ground, and glacier. DLEM builds on the concept of plant functional types to 

describe vegetation distributions. Many different PFTs who adapt to local climate can coexist in 

the same grid, competing for light, water, and nutrient resources. The vegetation area consists of 

up to five PFTs, among which four types are reserved for natural PFTs and one for crops. All land 

cover types in each grid share a common soil water column, while physiological and soil 

biogeochemical processes for each PFT are simulated independently. In the DLEM, C enters the 

ecosystems mainly through vegetation CO2 uptake during photosynthesis and leaves the 

ecosystems via ecosystem respiration, various land disturbances and harvest, and lateral transport 

to a water body. N enters natural ecosystems through biological N fixation and atmospheric N 

deposition. N leaves ecosystem through different pathways, including NH3 volatilization, 

emissions of N2O, NO, and N2 during nitrification and denitrification, N leaching from root zone 

to groundwater, and lateral N transport with surface runoff. The DLEM model is capable of making 

daily and spatially explicit estimates on fluxes of water, greenhouse gases (including CO2, CH4, 

and N2O), dynamics of soil C, N, and water pools in terrestrial ecosystems, and the associated river 

discharge, riverine export of C and N from land to the ocean (Liu et al., 2013; Lu & Tian, 2013; 
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Lu et al., 2012; Pan et al., 2020; Ren et al., 2007; Tian et al., 2010a; Tian et al., 2011; Tian et al., 

2015). The DLEM simulates the linkage between C, N, and water cycles across the plant-soil-

atmosphere continuum, in which C and N processes had been included. However, P processes have 

not been incorporated.  

2. The development of the DLEM-CNP 

I added the P processes in the DLEM, and the cycles of C, N, and P are fully coupled in 

DLEM-CNP during photosynthesis, allocation, turnover, nutrient uptake, and decomposition 

(Figure 2-2). In DLEM-CNP, organic P transfers into inorganic forms through mineralization in 

the soil, while inorganic P converts to organic form through immobilization and vegetation uptake. 
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Figure2- 2 Structure of (a) CNP cycles in DLEM-CNP: C enters the ecosystems through 

vegetation CO2 uptake during photosynthesis. The plant biomass box consists of six CNP pools: 

(leaf, heartwood, sapwood, fine root, coarse root, and production). Litters are grouped into two 

added organic matter pools (AOM1 and AOM2) with different residence times. Soil organic 

matter has six pools: three microbial pools, namely, soil microbial 1(SMB1), soil microbial 2 

(SMB2), soil microbial residues (SMR), two slow soil organic matter pools, namely, native 

organic matter (NOM), passive soil organic matter (PSOM), one dissolved organic matter 

(DOM). All these pools have corresponding N, P pools with specific C: N: P ratios. Soil 

available N box includes ammonium (NH4
+), nitrate (NO3

-). P in soil includes dissolved 

inorganic P pool, secondary mineral P pool, and occluded P pool. NP limitation has impacts on 

photosynthesis, carbon allocation, soil mineralization and immobilization processes. (b) P 

module: P enters ecosystems in the form of dissolved inorganic P from weathering of minerals, 

atmospheric deposition and fertilizer. Dissolved inorganic P is the sole source for plants and 
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microbes and can be reversibly adsorbed (secondary mineral P) onto soil particles or lost through 

leaching. Secondary mineral P can transform into occluded P, which is irreversibly lost to biota. 

When plants take up P from soils, it enters the plant allocating to growing plant tissues. When 

plant tissue is shed, part of the phosphorus is resorbed, while the rest enters the litter pools, from 

where it is either transformed into soil organic matter or mineralized. 

 

2.1 Vegetation P processes 

In the DLEM-CNP, woody vegetation is composed of six pools (1: leaf, 2: sapwood, 3: 

fine root, 4: coarse root, 5: reproduction pool, 6: heartwood pool), and herbaceous vegetation is 

composed of five pools (leaf, stem, fine root, coarse root, and reproduction). The stoichiometric 

relationship in each pool is determined by P uptake from soil, P allocation, tissue turnover, and 

minimum C: N ratio and C: P ratio (Table 2-1). Here we describe leaf nutrients limitation on 

photosynthesis, P uptake and allocation processes. 

 

Table 2- 1 DLEM-CNP parameter table for P-related processes for tropical evergreen broadleaf 

forests (TrBEF). 
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2.1.1 P and N co-limitation on photosynthesis 

We adopted the N-P co-limitation equation from the MIKE 3 ecohydrodynamic 3-

dimensional model developed by the Danish Hydraulics Institute, which is originally applied to 

modeling N and P limitation on phytoplankton growth (Lessin et al., 2007). Most models which 

incorporate N and P cycles simply describe nutrients limitation by using Liebig's law of minimum 

(e.g., ORCHIDEE, CLM). In comparison, our N and P interactive co-limitation scheme has the 

advantage of simulating the interaction effects of N, P limitation on photosynthesis.  

Photosynthesis 

The gross primary productivity (GPP) calculation method in the DLEM-CNP is the same 

as that in the DLEM (Tian et al., 2010a; Tian et al., 2010b). The DLEM uses a modified Farquhar’s 

model to simulate GPP (Bonan, 1996; Collatz et al., 1991; Farquhar et al., 1980; Sellers et al., 

1996). The canopy is divided into sunlit and shaded layers. GPP (g C m-2 day-1) is calculated by 

scaling leaf assimilation rates (g C m-2 day-1) up to the whole canopy: 

𝐺𝑃𝑃𝑠𝑢𝑛 = 12.01 × 10−6 × 𝐴𝑠𝑢𝑛 × 𝑝𝑙𝑎𝑖𝑠𝑢𝑛 × 𝑑𝑎𝑦𝑙 × 3600 (1) 

𝐺𝑃𝑃𝑠ℎ𝑎𝑑𝑒 = 12.01 × 10−6 × 𝐴𝑠ℎ𝑎𝑑𝑒 × 𝑝𝑙𝑎𝑖𝑠ℎ𝑎𝑑𝑒 × 𝑑𝑎𝑦𝑙 × 3600 (2) 

𝐺𝑃𝑃 = 𝐺𝑃𝑃𝑠𝑢𝑛 + 𝐺𝑃𝑃𝑠ℎ𝑎𝑑𝑒 (3) 

where 𝐺𝑃𝑃𝑠𝑢𝑛  and 𝐺𝑃𝑃𝑠ℎ𝑎𝑑𝑒  are the GPP of sunlit and shaded canopy, respectively; 𝐴𝑠𝑢𝑛  and 

𝐴𝑠ℎ𝑎𝑑𝑒 are assimilation rates of the sunlit and shaded canopy; 𝑝𝑙𝑎𝑖𝑠𝑢𝑚 and 𝑝𝑙𝑎𝑖𝑠ℎ𝑎𝑑𝑒 are sunlit and 

shaded leaf area indices, estimated as equations 4 and 5, respectively; 𝑑𝑎𝑦𝑙 is daytime length 

(second) in a day (h). 12.01× 10−6 is a constant to change the unit from 𝜇𝑚𝑜𝑙 CO2 to gram C. 

𝑝𝑙𝑎𝑖𝑠𝑢𝑛 = 1 − 𝐸𝑋𝑃(−𝑝𝑟𝑜𝑗𝐿𝐴𝐼)  (4) 
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𝑝𝑙𝑎𝑖𝑠ℎ𝑎𝑑𝑒 = 𝑝𝑟𝑜𝑗𝐿𝐴𝐼 − 𝑝𝑙𝑎𝑖𝑠𝑢𝑛 (5) 

where 𝑝𝑟𝑜𝑗𝐿𝐴𝐼 is the projected leaf area index, which is calculated as the product of leaf carbon 

content (g C m-2) and PFT specific leaf area (SLA, m2 g C-1). Using similar methods to Collatz et 

al. (1991), DLEM determines the C assimilation rate (A) as the minimum of three limiting rates, 

𝑤𝑐 ,   𝑤𝑗 , 𝑤𝑒, which are functions that represent the assimilation rates as limited by the efficiency 

of the photosynthetic enzymes system (Rubisco-limited), the amount of photosynthetically active 

radiation (PAR) captured by leaf chlorophyll (light-limited), and the capacity of leaves to export 

or utilize photosynthesis products (export-limited) for C3 species, respectively. For C4 species, 𝑤𝑒 

refer to the phosphoenolpyruvate (PEP) carboxylase limited rate of carboxylation. Sunlit and the 

shaded canopy C assimilation rate can be estimated as: 

𝐴 = min(𝑤𝑐, 𝑤𝑗 , 𝑤𝑒) × 𝐼𝑛𝑑𝑒𝑥𝑔𝑠 (6) 

𝑤𝑐 = {

(𝑐𝑖 − 𝛤∗)𝑉𝑚𝑎𝑥
𝑐𝑖 + 𝐾𝑐(1 + 𝑜𝑖 𝐾0⁄ )

   𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

𝑉𝑚𝑎𝑥                              𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

 (7) 

𝑤𝑗 = {

(𝑐𝑖 − 𝛤∗)4.6∅𝛼

𝑐𝑖 + 2𝛤∗
          𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

4.6∅𝛼                          𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠

(8) 

𝑤𝑗 = {

0.5𝑉𝑚𝑎𝑥                        𝑓𝑜𝑟 𝐶3 𝑝𝑙𝑎𝑛𝑡𝑠

4000𝑉𝑚𝑎𝑥
𝑐𝑖
𝑃𝑎𝑡𝑚

         𝑓𝑜𝑟 𝐶4 𝑝𝑙𝑎𝑛𝑡𝑠
(9) 

where 𝑐𝑖  is internal leaf CO2 concentration (Pa); 𝑜𝑖  is O2 concentration (Pa); 𝛤∗  is CO2 

compensation point (Pa); 𝐾𝑐 and 𝐾0 (Pa) are Michaelis-Menten constants for CO2 and O2 at 25 oC, 

respectively; 𝛼 is quantum efficiency; ∅ is absorbed photosynthetically active radiation (W∙M-2); 
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𝑉𝑚𝑎𝑥  (µmol CO2 m
-2 s-1) is maximum rate of carboxylation varies with temperature, foliage 

nitrogen and phosphorus concentration, and soil moisture (Bonan, 1996), calculated as: 

𝑉𝑚𝑎𝑥 = 𝑉𝑚𝑎𝑥25𝑎𝑣𝑚𝑎𝑥
𝑇𝑎𝑣𝑒−25
10 𝑓(𝑁𝑃)𝑓(𝑇𝑎𝑣𝑒)𝛽𝑡 (10) 

where 𝑉𝑚𝑎𝑥25  is maximum rate of carboxylation at 25 oC (µmol CO2 m-2 s-1) and 𝑎𝑣𝑚𝑎𝑥  is 

maximum temperature sensitivity parameter. 𝑓(𝑁𝑃) adjusts the rate of photosynthesis, calculated 

in equation 25 and 26. The leaf nitrogen limitation coefficients are estimated for sunlit and shaded 

leaves and: 

𝑓𝑠𝑢𝑛(𝑁) =
𝑁𝑐𝑜𝑛𝑠𝑢𝑛𝑙𝑒𝑎𝑓
𝑁𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥

(11) 

 

𝑓𝑠ℎ𝑎𝑑𝑒(𝑁) =
𝑁𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒𝑙𝑒𝑎𝑓
𝑁𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥

(12) 

where 𝑁𝑐𝑜𝑛𝑠𝑢𝑛_𝑙𝑒𝑎𝑓 and 𝑁𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒_𝑙𝑒𝑎𝑓 are N concentration (g N / g dry matter) for the sunlit and 

shaded leaves, and  𝑁𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥 is maximum leaf  N concentration (g N / g dry matter). The 

formulas of the three variables are: 

𝑁𝑐𝑜𝑛𝑠𝑢𝑛𝑙𝑒𝑎𝑓 =

0.45 × 𝑁𝑙𝑒𝑎𝑓
𝐶𝑙𝑒𝑎𝑓

𝐿𝐴𝐼𝑠𝑢𝑛
𝐿𝐴𝐼 +

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑒−0.5𝑘

𝐿𝐴𝐼

(13) 

𝑁𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒𝑙𝑒𝑎𝑓 = 𝑁𝑐𝑜𝑛𝑠𝑢𝑛𝑙𝑒𝑎𝑓 × 𝑒
−0.5𝑘 (14) 
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𝑁𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥 =
0.45

𝐶𝑁𝑚𝑖𝑛,𝑙𝑒𝑎𝑓
(15) 

where 𝐿𝐴𝐼𝑠𝑢𝑛 and 𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒  are leaf area index for sunlit and shaded leaves, LAI is total leaf area 

index of plant canopy, 𝑁𝑙𝑒𝑎𝑓 is leaf N content (g N m-2), 𝐶𝑙𝑒𝑎𝑓 is leaf carbon content (g C m-2), 

0.45 is conversion factor from carbon to dry biomass, k is canopy extinction coefficient, and 

𝐶𝑁𝑚𝑖𝑛,𝑙𝑒𝑎𝑓 is the minimum C : N ratio for leaves.  

𝑓(𝑇𝑎𝑣𝑒) is a function of temperature-related metabolic processes as the following: 

𝑓(𝑇𝑎𝑣𝑒) = [1 + exp (
−220000 + 710(𝑇𝑎𝑣𝑒 + 273.16)

8.314(𝑇𝑎𝑣𝑒 + 273.16)
)]

−1

(16) 

𝛽𝑡 is a function (0-1) that represents the soil moisture and the lower temperature effects on stomatal 

resistance and photosynthesis.  

𝛽𝑡 = 𝛽(𝑇𝑚𝑖𝑛) × 𝛽(𝑤) (17) 

𝛽(𝑇𝑚𝑖𝑛) = {

0    𝑓𝑜𝑟 𝑇𝑚𝑖𝑛 < −8 ℃ 
1 + 0.125𝑇𝑚𝑖𝑛   𝑓𝑜𝑟 − 8 ℃ ≤ 𝑇𝑚𝑖𝑛 ≤ 0 ℃  

1    𝑓𝑜𝑟     𝑇𝑚𝑖𝑛 > 0 ℃
 (18) 

𝛽(𝑤) =∑𝑤𝑖

10

𝑖=1

𝑟𝑖 (19) 

𝑤𝑖 =

{
 

 
0      𝑓𝑜𝑟 𝑝𝑠𝑖 > 𝑝𝑠𝑖𝑐𝑙𝑜𝑠𝑒

𝑝𝑠𝑖𝑐𝑙𝑜𝑠𝑒 − 𝑝𝑠𝑖
𝑝𝑠𝑖𝑐𝑙𝑜𝑠𝑒 − 𝑝𝑠𝑖𝑜𝑝𝑒𝑛

     𝑓𝑜𝑟 𝑝𝑠𝑖𝑜𝑝𝑒𝑛 ≤

1         𝑓𝑜𝑟 𝑝𝑠𝑖 < 𝑝𝑠𝑖𝑐𝑙𝑜𝑠𝑒

𝑝𝑠𝑖 ≤ 𝑝𝑠𝑖𝑐𝑙𝑜𝑠𝑒 (20) 
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where 𝑇𝑚𝑖𝑛 is daily minimum temperature; 𝑤𝑖 is soil water stress of soil layer 𝑖; 𝑝𝑠𝑖 is soil water 

potential of soil layer 𝑖, estimated from Saxton and Rawls (2006). 𝑟𝑖 is root fractions distributed in 

soil layer  𝑖 ;  𝑝𝑠𝑖𝑐𝑙𝑜𝑠𝑒  and 𝑝𝑠𝑖𝑜𝑝𝑒𝑛  are te plant functional specific tolerance of the soil water 

potential for stomata overall close and open. The water stress in plants is a function of soil water 

potential, which ranges from 0 to 1. Under no water limitations, the soil water stress of soil layer 

𝑖 (𝑤𝑖) is equal to 1 where the soil water potential is at its maximum i.e., soil water potential when 

the stomata is opened (𝑝𝑠𝑖𝑜𝑝𝑒𝑛). Under frequent water stress, however, 𝑤𝑖 is calculated based on 

wilting point potential of specific plant functional types and depends on the balance between 

𝑝𝑠𝑖𝑐𝑙𝑜𝑠𝑒 and 𝑝𝑠𝑖𝑜𝑝𝑒𝑛. 

Leaf stomatal resistance and leaf photosynthesis are coupled together through the following 

(Bonan, 1996; Collatz et al., 1991; Sellers et al., 1996). 

1

𝑟𝑠
= m

𝐴

𝐶𝑠

𝑒𝑠
𝑒𝑖
𝑃𝑎𝑡𝑚 + 𝑏 (21) 

where 𝑟𝑠 is leaf stomatal resistance, m is an empirical parameter, 𝐴 is leaf photosynthesis, 𝐶𝑠 is 

leaf surface CO2 concentration, 𝑒𝑠 is leaf surface vapor pressure, 𝑒𝑖 is saturated vapor pressure 

inside leaf, 𝑏 is minimum stomatal conductance with 𝐴 = 0, and 𝑃𝑎𝑡𝑚 is atmospheric pressure. 

Together in the following equations: 

𝐶𝑠 = 𝐶𝑎 − 1.37𝑟𝑏𝑃𝑎𝑡𝑚𝐴 (22) 

𝑒𝑠 =
𝑒𝑎
′ + 𝑒𝑖𝑟𝑏
𝑟𝑏 + 𝑟𝑠

 (23) 
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where 𝐶𝑎 is atmospheric CO2 concentration, 𝑟𝑏 is boundary resistance, 𝑒𝑎 is vapor pressure of air, 

and stomatal resistance is the larger of the two roots of this quadratic (Bonan, 1996). 

(
𝑚𝐴𝑃𝑎𝑡𝑚𝑒𝑎

′

𝐶𝑠𝑒𝑖
+ 𝑏)𝑟𝑠

2 + (
𝑚𝐴𝑃𝑎𝑡𝑚𝑟𝑏

𝐶𝑠
+ 𝑏𝑟𝑏 − 1) 𝑟𝑠 − 𝑟𝑏 = 0 (24) 

P and N co-limitation  

Leaf P concentration is calculated separately for sunlit and shaded leaves to estimate P 

limitation on photosynthesis. To account for the interactive co-limitation effect of N and P, the 

joint nutrient scalar 𝑓(𝑁𝑃)is calculated as (Lessin et al., 2007):   

𝑓𝑠𝑢𝑛(𝑁𝑃) =
2

1
𝑓𝑠𝑢𝑛(𝑁)

+
1

𝑓𝑠𝑢𝑛(𝑃)

(25)
 

𝑓𝑠ℎ𝑎𝑑𝑒(𝑁𝑃) =
2

1
𝑓𝑠ℎ𝑎𝑑𝑒(𝑁)

+
1

𝑓𝑠ℎ𝑎𝑑𝑒(𝑃)

(26)
 

where 𝑓𝑠𝑢𝑛(𝑁) and 𝑓𝑠ℎ𝑎𝑑𝑒(𝑁) are sunlit and shaded leaves N limitation coefficients, and 𝑓𝑠𝑢𝑛(𝑃) 

and 𝑓𝑠ℎ𝑎𝑑𝑒(𝑃)  are sunlit and shaded leaves P limitation coefficients. Leaf nutrient limitation 

coefficients are applied to impact the maximum rate of carboxylation (Vcmax), through which the 

electron transport capacity (Jmax) is also affected.  

Specifically, leaf P limitation coefficients 𝑓𝑠𝑢𝑛(𝑃) and 𝑓𝑠ℎ𝑎𝑑𝑒(𝑃) are estimated in a similar 

way as the leaf N limitation coefficients in the DLEM (Pan et al., 2014a),  

𝑓𝑠𝑢𝑛(𝑃) =
𝑃𝑐𝑜𝑛𝑠𝑢𝑛𝑙𝑒𝑎𝑓
𝑃𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥

(27) 
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𝑓𝑠ℎ𝑎𝑑𝑒(𝑃) =
𝑃𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒𝑙𝑒𝑎𝑓
𝑃𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥

(28) 

where 𝑃𝑐𝑜𝑛𝑠𝑢𝑛_𝑙𝑒𝑎𝑓 and 𝑃𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒_𝑙𝑒𝑎𝑓 are P concentration (g P / g dry matter) for sunlit and 

shaded leaves, and  𝑃𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥  is maximum leaf P concentration (g P / g dry matter). The 

formulas of the three variables are: 

𝑃𝑐𝑜𝑛𝑠𝑢𝑛𝑙𝑒𝑎𝑓 =

0.45 × 𝑃𝑙𝑒𝑎𝑓
𝐶𝑙𝑒𝑎𝑓

𝐿𝐴𝐼𝑠𝑢𝑛
𝐿𝐴𝐼 +

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑒−0.5𝑘

𝐿𝐴𝐼

(29) 

𝑃𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒𝑙𝑒𝑎𝑓 = 𝑃𝑐𝑜𝑛𝑠𝑢𝑛𝑙𝑒𝑎𝑓 × 𝑒
−0.5𝑘 (30) 

𝑃𝑐𝑜𝑛𝑙𝑒𝑎𝑓_𝑚𝑎𝑥 =
0.45

𝐶𝑃𝑚𝑖𝑛,𝑙𝑒𝑎𝑓
(31) 

where 𝐿𝐴𝐼𝑠𝑢𝑛 and 𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒  are leaf area index for sunlit and shaded leaves, LAI is total leaf area 

index of plant canopy, 𝑃𝑙𝑒𝑎𝑓 is leaf P content (g P m-2), 𝐶𝑙𝑒𝑎𝑓 is leaf carbon content (g C m-2), 0.45 

is conversion factor from carbon to dry biomass, k is canopy extinction coefficient, and 𝐶𝑃𝑚𝑖𝑛,𝑙𝑒𝑎𝑓 

is minimum C : P ratio for leaves.  

2.1.2 P uptake 

Plant P uptake rate (𝑃𝑢𝑝, g P m-2 day-1) is determined by the potential uptake rate (𝑃𝑝𝑜𝑡, g 

P m-2 day-1), vegetation P demand (𝑃𝑑𝑒𝑚𝑎𝑛𝑑, g P m-2 day-1), and available dissolved soil inorganic 

P (𝑃𝑑𝑖𝑝, g P m-2 day-1): 
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𝑃𝑢𝑝 = min(𝑃𝑢𝑝_𝑝𝑜𝑡 , 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 , 𝑃𝑑𝑖𝑝) (32) 

𝑃𝑢𝑝_𝑝𝑜𝑡  is maximum vegetation P uptake rate (𝑃𝑢𝑝_𝑚𝑎𝑥 , g P m-2 day-1) down-regulated by 

volumetric water content (𝑊𝑠𝑜𝑖𝑙, %), and 𝑃𝑑𝑖𝑝 : 

𝑃𝑢𝑝_𝑝𝑜𝑡 = 𝑃𝑢𝑝_𝑚𝑎𝑥𝑓𝑢𝑝(𝑊𝑠𝑜𝑖𝑙, 𝑃𝑑𝑖𝑝) (33) 

 

𝑓𝑢𝑝(𝑊𝑠𝑜𝑖𝑙, 𝑃𝑑𝑖𝑝) =
𝑓𝑢𝑝(𝑊𝑠𝑜𝑖𝑙) × 𝑃𝑑𝑖𝑝

𝑓𝑢𝑝(𝑊𝑠𝑜𝑖𝑙) × 𝑃𝑑𝑖𝑝 + 𝑘𝑢𝑝
 (34) 

 

𝑓𝑢𝑝(𝑊𝑠𝑜𝑖𝑙) = 0.9 (
𝑊𝑠𝑜𝑖𝑙

𝜃𝑓𝑐
)

3

+ 0.1 (35) 

where 𝑘𝑢𝑝  (g P m-2 day-1) is 𝑃𝑑𝑖𝑝  concentration at which vegetation P uptake is half of its 

maximum rate; and 𝜃𝑓𝑐 is volumetric water content at field capacity (%).  The demanded P for 

vegetation to keep the minimum C:P ratio, 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 (g P m-2 day-1), is estimated as 

𝑃𝑑𝑒𝑚𝑎𝑛𝑑 =∑
𝐶𝑖

𝐶𝑃𝑚𝑖𝑛,𝑖

5

𝑖=1

−∑𝑃𝑖

5

𝑖=1

(36) 

where  𝑖  denotes vegetation living pools (1: leaf, 2: sapwood, 3: fine root, 4: coarse root, 5: 

reproduction root); 𝐶𝑖 and 𝑃𝑖 are organic C and P pool of vegetation (g C m-2, g P m-2); 𝐶𝑃𝑚𝑖𝑛,𝑖 is 

a prescribed parameter representing minimum C : P ratio in each plant pool.  
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2.1.3 P allocation 

The P uptaken by vegetation from soil is allocated to vegetation pools. The total allocable 

vegetation P (𝑃𝑎𝑙𝑙𝑜𝑐 g P m-2) is calculated as the sum of P in each pool after resorbing from shed 

leaf and P uptaken from soil. Part of vegetation P is transferred to litter organic P pools according 

to leaf litter C:P ratio (Table 2-1) during vegetation turnover processes (such as leaf shedding, and 

tree mortality, etc.). The nutrient resorption from leaf is simulated based on the difference in C:P 

ratio between leaf and leaf litter. For simplification purposes, we assumed that the P in plant is 

redistributed at daily allocation time step after P resorbing from shed tissue and being uptaken 

from soil. 

𝑃𝑟𝑒𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 =
𝐶𝑙𝑒𝑎𝑓𝑙𝑖𝑡𝑡𝑒𝑟

𝐶: 𝑃leaf
−
𝐶𝑙𝑒𝑎𝑓𝑙𝑖𝑡𝑡𝑒𝑟

𝐶: 𝑃leaflitter
 (37) 

𝑃𝑎𝑙𝑙𝑜𝑐 =∑𝑃𝑖

5

𝑖=1

+ 𝑃𝑢𝑝 (38) 

𝑃𝑎𝑙𝑙𝑜𝑐 is allocated to vegetation living pools (leaf, sapwood, coarseroot, fineroot, and reproduction) 

according to the stoichiometric relationship of C and P in each vegetation pool. P content in each 

vegetation pool after P allocation (𝑃𝑖
∗, g P m-2) is calculated as:  

𝑃𝑖
∗ = 𝑃𝑎𝑙𝑙𝑜𝑐 × (

𝐶𝑖
𝐶𝑃𝑚𝑖𝑛,𝑖

∑
𝐶𝑖

𝐶𝑃𝑚𝑖𝑛,𝑖
5
𝑖=1

) (39) 

where 𝐶𝑃𝑚𝑖𝑛,𝑖 is the minimum C:P ratio and i represents the ith vegetation pool.  
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2.2 Soil P processes 

In soil, we define three inorganic P pools, including dissolved inorganic P (𝑃𝑑𝑖𝑝, g P m-2), 

secondary mineral P (𝑃𝑠𝑚, g P m-2), and occluded P (𝑃𝑜𝑐, g P m-2) (Figure 2-2). We assume that 

soil 𝑃𝑑𝑖𝑝 is the only readily available P for plant uptake: 

𝑑𝑃𝑑𝑖𝑝

𝑑𝑡
= 𝑃𝑤 + 𝑃𝑑𝑒𝑝 + 𝑃𝑓𝑒𝑟 + 𝑃𝑑𝑒𝑠 + 𝑃𝑚𝑖𝑛 − 𝑃𝑢𝑝 − 𝑃𝑖𝑚𝑏 − 𝑃𝑎𝑑𝑠 − 𝑃𝑜𝑐𝑙 − 𝑃𝑙𝑜𝑠𝑒_𝑝 (40) 

𝑃𝑑𝑖𝑝 is replenished by apatite rock weathering (𝑃𝑤, g P m-2 day-1), atmospheric deposition (𝑃𝑑𝑒𝑝 , 

g P m-2 day-1), fertilizer application (𝑃𝑓𝑒𝑟 , g P m-2 day-1), desorption of phosphorus from secondary 

mineral P pool (𝑃𝑑𝑒𝑠 , g P m-2 day-1), and mineralization of organic phosphorus (𝑃𝑚𝑖𝑛, g P m-2 day-

1). Meanwhile, 𝑃𝑑𝑖𝑝  is consumed by plant root uptake ( 𝑃𝑢𝑝 , g P m-2 day-1), microbial 

immobilization (𝑃𝑖𝑚𝑏, g P m-2 day-1), adsorbed by fine soil partials or cations (𝑃𝑎𝑑𝑠, g P m-2 day-

1), occluded (𝑃𝑜𝑐𝑙, g P m-2 day-1), and lost by leaching and erosion (𝑃𝑙𝑜𝑠𝑒_𝑝, g P m-2 day-1).  

For the soil organic matter (SOM), DLEM includes three microbial pools (SMB1, SMB2, 

and SMR), one dissolved organic matter pool (DOM), one native organic matter pool (NOM), and 

one passive organic matter pool (PSOM) (Figure 2-2a).  Each soil organic pool has a prescribed 

stoichiometric relationship for C, N, and P (Table 2-1). Soil organic P comes from litter P; it 

transfers to soil inorganic P through mineralization processes and leaves soil column through 

leaching and erosion processes.  

2.2.1 Weathering 

Parent material weathering is the primary source of soil inorganic P, which is controlled 

by the quantity of apatite rock substrate and physical soil conditions (Guidry & Mackenzie, 2003). 

In DLEM-CNP, the P weathering algorithm is adopted from the Century model (Parton et al., 
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1988), which considers the influences of phosphate rock availability, soil temperature and moisture, 

and soil texture: 

𝑃𝑤 = 𝑃𝑝𝑎𝑟𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑇𝑠𝑜𝑖𝑙, 𝛩𝑠𝑜𝑖𝑙)𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑐𝑙𝑎𝑦 + 𝑠𝑖𝑙𝑡) (41) 

where 𝑃𝑝𝑎𝑟 is parent P in a soil column (g P m-2), which is input data for DLEM-CNP and from 

soil P synthesis data (Yang et al., 2014), 𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑇𝑠𝑜𝑖𝑙, 𝛩𝑠𝑜𝑖𝑙) represents effect of soil temperature 

and moisture on weathering, 𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑐𝑙𝑎𝑦 + 𝑠𝑖𝑙𝑡) is soil texture factor on weathering, 𝑐𝑙𝑎𝑦 and 

𝑠𝑖𝑙𝑡 are fractions of clay and silt in soil. The effect of soil temperature and moisture is estimated 

as: 

𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑇𝑠𝑜𝑖𝑙, 𝛩𝑠𝑜𝑖𝑙) = 𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝛩𝑠𝑜𝑖𝑙) 𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑇𝑠𝑜𝑖𝑙) (42) 

𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝛩𝑠𝑜𝑖𝑙) =

{
 
 

 
                       1                       ,          

𝛩 − 𝛩𝑤𝑖𝑙𝑡
𝛩𝑓𝑐 − 𝛩𝑤𝑖𝑙𝑡

> 13

1

1 + 10 × 𝑒
−6 

𝛩−𝛩𝑤𝑖𝑙𝑡
𝛩𝑓𝑐−𝛩𝑤𝑖𝑙𝑡

,           
𝛩 − 𝛩𝑤𝑖𝑙𝑡
𝛩𝑓𝑐 − 𝛩𝑤𝑖𝑙𝑡

≤ 13
(43) 

𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑇𝑠𝑜𝑖𝑙) = max(
11.75 + (

29.7
3.14) × tan(3.14 × 0.031 ×

(𝑇𝑠𝑜𝑖𝑙 − 15.4))

11.75 + (
29.7
3.14) × tan(3.14 × 0.031 ×

(30 − 15.4))
, 0.01) (44) 

where 𝛩𝑤𝑖𝑙𝑡 is volumetric water content at wilting point (%), 𝛩𝑓𝑐 is volumetric water content at 

field capacity, 𝛩 is volumetric water content.   

𝑓𝑤𝑒𝑎𝑡ℎ𝑒𝑟(𝑐𝑙𝑎𝑦 + 𝑠𝑖𝑙𝑡) =
0.1 + (

0.1
3.14) × tan(3.14 × 2 ×

(𝑐𝑙𝑎𝑦 + 𝑠𝑖𝑙𝑡 − 0.7))

365
(45) 
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2.2.2 P exchange between dissolved inorganic P and secondary mineral P 

The dissolved inorganic P can be adsorbed by fine soil particles and cations to form 

secondary mineral P (McGechan & Lewis, 2002; Smeck, 1985). Meanwhile, adsorbed P can be 

released to the dissolve inorganic P pool when the balance of adsorption and desorption is 

disturbed (Lewis & McGechan, 2002; Williams et al., 1980). DLEM-CNP simulates the 

bidirectional P fluxes (𝑅𝑑𝑒𝑠−𝑎𝑑𝑠 , g P m-2 day-1) between soil dissolve inorganic P pool and 

secondary mineral P pool using the algorithm in Knisel (1993), 

𝑃𝑑𝑒𝑠−𝑎𝑑𝑠 = 0.1𝑓𝑎𝑑−𝑑𝑒(𝑇𝑠𝑜𝑖𝑙)𝑓𝑎𝑑−𝑑𝑒(𝑊𝑠𝑜𝑖𝑙) (𝑃𝑑𝑖𝑝 − 𝑃𝑠𝑚 (
𝑃𝐴𝐼

1 − 𝑃𝐴𝐼
)) , (46) 

𝑓𝑎𝑑−𝑑𝑒(𝑇𝑠𝑜𝑖𝑙) = 𝑒0.115×𝑇𝑠𝑜𝑖𝑙−2.88 (47) 

 

𝑓𝑎𝑑−𝑑𝑒(𝑊𝑠𝑜𝑖𝑙) = {

          0        ,         𝑊𝑠𝑜𝑖𝑙 ≥ 𝛩𝑓𝑐
𝛩 − 𝛩𝑤𝑖𝑙𝑡
𝛩𝑓𝑐 − 𝛩𝑤𝑖𝑙𝑡

,        𝑊𝑠𝑜𝑖𝑙 < 𝛩𝑓𝑐
(48) 

The secondary mineral P pool is initialized as: 

𝑃𝑠𝑚 = 𝑃𝑑𝑖𝑝 (
1 − 𝑃𝐴𝐼

𝑃𝐴𝐼
) (49) 

                                     

𝑃𝐴𝐼 = {
0.0054 × (22 × 𝑝𝐻 + 10 × 𝑐𝑙𝑎𝑦 − 53) + 0.116 × 𝑝𝐻 − 0.73,         𝑃𝑝𝑎𝑟 > 100

0.46 − 0.0916 × ln(100 × 𝑐𝑙𝑎𝑦) ,                                                              𝑃𝑝𝑎𝑟 < 100 
(50) 



 42 

where positive values of 𝑃𝑑𝑒𝑠−𝑎𝑑𝑠  represent adsorption (𝑃𝑎𝑑𝑠 ) and negative values represent 

desorption ( 𝑃𝑑𝑒𝑠 ), 𝑓𝑎𝑑−𝑑𝑒(𝑇𝑠𝑜𝑖𝑙)  and 𝑓𝑎𝑑−𝑑𝑒(𝑊𝑠𝑜𝑖𝑙)  are soil temperature and soil moisture 

coefficients for inorganic P adsorption and desorption processes, and 𝑃𝐴𝐼  is soil chemical 

coefficient as a function of soil pH and clay fraction. 

2.2.3 P occlusion  

In soil, iron (Fe), aluminum (Al), and calcium (Ca) compounds have a large binding 

capacity for P adsorption (Filippelli, 2008). The occluded P by these compounds is unavailable for 

plant uptake. In DLEM-CNP, occlusion of P sources from 𝑃𝑠𝑚, and P occlusion rate (𝑃𝑜𝑐𝑙 ) is 

calculated following Knisel (1993) and Chaubey et al. (2006): 

𝑃𝑜𝑐𝑙 = {
𝐾𝑎𝑠 × (𝑟𝑎𝑠 × 𝑃𝑠𝑚 − 𝑃𝑜𝑐);                        𝑟𝑎𝑠 × 𝑃𝑠𝑚 ≥ 𝑃𝑜𝑐
                    0                        ;                        𝑟𝑎𝑠 × 𝑃𝑠𝑚 < 𝑃𝑜𝑐

, (51) 

where 𝑟𝑎𝑠 is ratio between occluded P pool and secondary mineral P pool, and 𝐾𝑎𝑠  is a flow 

coefficient parameterized as: 

𝐾𝑎𝑠 = {
𝑒−1.77× 𝑃𝐴𝐼−7.08           ,         𝑛𝑜𝑛 − 𝑐𝑎𝑙𝑐𝑎𝑟𝑒𝑜𝑢𝑠 𝑠𝑜𝑖𝑙𝑠 
0.00076                  ,                  𝑐𝑎𝑙𝑐𝑎𝑟𝑒𝑜𝑢𝑠 𝑠𝑜𝑖𝑙𝑠

(52) 

2.2.4 P mineralization and immobilization 

The competition between microbes and plants for dissolved inorganic P is handled 

analogously to the competition for soil mineral N in DLEM. Gross P immobilization, gross P 

mineralization, as well as plant P uptake are calculated daily. In each timestep, microbes are given 

a higher priority in accessing nutrients than plants. 
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Soil P can either be mineralized (organic P to inorganic P) or immobilized (inorganic P to 

organic P), depending on carbon decomposition rate (𝐶𝑑𝑒𝑐) and C: P ratios of the source and 

destination organic carbon pools (𝐶: 𝑃source and 𝐶: 𝑃destination):  

𝑃𝑚𝑖𝑛−𝑖𝑚𝑚 =
𝐶dec

𝐶: 𝑃source
−
𝐶𝑑𝑒𝑐(1 − 𝑓𝐶𝑂2)

𝐶: 𝑃destination
(53) 

where 𝑃𝑚𝑖𝑛−𝑖𝑚𝑚  is P mineralization or immobilization rate (g P m-2) with a positive value 

representing mineralization (𝑃𝑚𝑖𝑛) and a negative value representing immobilization (𝑃𝑖𝑚𝑏), 𝑓𝐶𝑂2 

is fraction of the decomposed carbon emitted from soil as CO2. The decomposition rate of organic 

pools is simulated following the classic first-order decay algorithm (Parton et al., 1987; Parton et 

al., 1988): 

𝐶𝑑𝑒𝑐 = 𝐶𝑝𝑜𝑜𝑙𝐾𝑑𝑒𝑐 (54) 

where C𝑑𝑒𝑐 is decomposed carbon (g C m-2 day-1), C𝑝𝑜𝑜𝑙 is the size of carbon pool (g C m-2), and 

𝐾𝑑𝑒𝑐is decomposition rate (day-1) of each pool regulated by soil temperature, soil moisture, nutrient 

availability, and soil texture: 

𝐾𝑑𝑒𝑐 =
𝐾𝑚𝑎𝑥
365

× 𝑓(𝑇) × 𝑓(𝑊) × 𝑓(𝑁𝑃)𝑓(𝑐𝑙𝑎𝑦) (55) 

𝑓(𝑁𝑃) is nutrient scalar which is controlled by N limitation and P limitation: 

 

𝑓(𝑁𝑃) =
2

1
𝑓(𝑁)

+
1

𝑓(𝑃)

(56)
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𝑓(𝑃𝐼) =
𝑎𝑣𝑝

𝑃𝑖𝑚𝑚
(57) 

 

𝑓(𝑃𝑀) =

{
  
 

  
 1 −

𝑎𝑣𝑝 − 𝑎𝑣𝑝𝑜𝑝𝑡

𝑎𝑣𝑝𝑜𝑝𝑡
                                       𝑎𝑣𝑝 > 𝑎𝑣𝑝𝑜𝑝𝑡

1                                               
𝑎𝑣𝑝𝑜𝑝𝑡

2
≤ 𝑎𝑣𝑝 ≤ 𝑎𝑣𝑝𝑜𝑝𝑡

1 +
0.5𝑎𝑣𝑝𝑜𝑝𝑡 − 𝑎𝑣𝑝

𝑎𝑣𝑝𝑜𝑝𝑡
                            𝑎𝑣𝑝 ≤

𝑎𝑣𝑝𝑜𝑝𝑡

2

 (58) 

 

where 𝐾𝑚𝑎𝑥 is maximum decay rate (day-1); 𝑓(𝑃𝑀)and 𝑓(𝑃𝐼) are P scalars in mobilization and 

immobilization, respectively; 𝑃𝑖𝑚𝑚 is potential P immobilization rate; 𝑎𝑣𝑝  is available soil 

inorganic P (g P m-2); and 𝑎𝑣𝑝𝑜𝑝𝑡 is optimum available soil P (g P m-2). The N related equations 

and detailed equations in soil decomposition can be found in Appendix 1. 

2.2.5 P loss 

The loss of P in dissolved forms may occur with surface runoff or leaching. And the loss 

of P in particulate forms is usually associated with erosion of soil mineral or organic particles 

(McDowell et al., 2004). Dissolved inorganic P leaching (𝑃𝑙𝑐ℎ_𝑑𝑖𝑝, g P m-2 day-1) is calculated as: 

𝑃𝑙𝑐ℎ𝑑𝑖𝑝 = 𝑃𝑑𝑖𝑝 × 𝑓𝑓𝑙𝑜𝑤 ×
𝑃𝑑𝑖𝑝𝑐

𝑃𝑑𝑖𝑝𝑐 + 𝑙𝑐ℎ𝑏𝑑𝑖𝑝
(59) 

where 𝑓𝑓𝑙𝑜𝑤 is runoff and drainage coefficient for leaching, 𝑃𝑑𝑖𝑝𝑐 is total inorganic P content in 

soil (g P g-1 soil), and 𝑙𝑐ℎ𝑏𝑑𝑖𝑝 is desorption coefficient for inorganic P. 𝑓𝑓𝑙𝑜𝑤is calculated as: 
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𝑓𝑓𝑙𝑜𝑤 =
𝑞𝑠𝑟𝑢𝑛 + 𝑞𝑑𝑟𝑎𝑖𝑛

𝜃 + 𝑞𝑠𝑟𝑢𝑛 + 𝑞𝑑𝑟𝑎𝑖𝑛
(60) 

𝑃𝑑𝑖𝑝𝑐 =
𝑃𝑑𝑖𝑝

𝑊𝑡𝑠𝑜𝑖𝑙
(61) 

where 𝑞𝑠𝑟𝑢𝑛 is surface runoff (mm); 𝑞𝑑𝑟𝑎𝑖𝑛 is  subsurface runoff (mm); 𝜃 is soil water content 

(mm); 𝑞𝑠𝑟𝑢𝑛 , 𝑞𝑑𝑟𝑎𝑖𝑛 , and 𝜃 are simulated by the DLEM soil hydrology procedures (Liu et al., 

2013). 𝑊𝑡𝑠𝑜𝑖𝑙  is soil mass in the top 50 cm (g m-2). 

Similarly, dissolved organic P leaching (𝑃𝑙𝑐ℎ_𝑑𝑜𝑝, g P m-2 day-1) is simulated as: 

𝑃𝑙𝑐ℎ𝑑𝑜𝑝 = 𝑃𝑑𝑜𝑝  × 𝑓𝑓𝑙𝑜𝑤 ×
𝑃𝑑𝑜𝑝𝑐

𝑃𝑑𝑜𝑝𝑐 + 𝑙𝑐ℎ𝑏𝑑𝑜𝑝
(62) 

where 𝑃𝑑𝑜𝑝 is total amount of soil dissolved organic P (g P m-2); 𝑙𝑐ℎ𝑏𝑑𝑜𝑝 is desorption coefficient 

for dissolved organic P (DOP, g P g-1soil); 𝑃𝑑𝑜𝑝𝑐 is concentration of DOP concentration in the soil 

column (g P g-1 soil): 

𝑃𝑑𝑜𝑝𝑐 =
𝑃𝑑𝑜𝑝

𝑊𝑡𝑠𝑜𝑖𝑙
(63) 

Export of particular organic P ( 𝑃𝑙𝑐ℎ_𝑝𝑜𝑝, g P m-2 day-1) is assumed to occur with soil erosion 

(𝑅𝑒𝑟𝑜𝑠𝑖𝑜𝑛, g soil m-2 day-1), which is calculated using the Modified Universal Soil Loss Equation 

in DLEM (Liu et al., 2013; Yang et al., 2015): 

𝑃𝑙𝑐ℎ𝑝𝑜𝑝 = 𝑃𝑜𝑝𝑐 × 𝑅𝑒𝑟𝑜𝑠𝑖𝑜𝑛 (64) 

𝑃𝑜𝑝𝑐 =
𝑃𝑜𝑝

𝑊𝑡𝑠𝑜𝑖𝑙
(65) 
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where 𝑃𝑜𝑝𝑐 is total organic P content in soil column (g P g-1 soil), and 𝑃𝑜𝑝 (g P m-2) is total organic 

P in soil P pools at a depth of 1m. 

 

 

3. Summary  

In this study, we developed a process-based P module on the platform of the Dynamic Land 

Ecosystem Model (DLEM) by considering P impacts on vegetation and soil biogeochemical 

processes, which upgraded the coupled CN model (DLEM-CN) into the coupled CNP model 

(DLEM-CNP). Phosphorus cycle has been successfully coupled with C and N cycles in the DLEM. 

The DLEM-CNP fully incorporates CNP cycles in all pools (plant, litter, and soil organic/inorganic 

pools) and key biogeochemical processes. The DLEM-CNP model had an outstanding innovation 

point that it first time introduces the interactive co-limitation of N and P on vegetation C 

assimilation in the TBMs, overcoming the shortcoming of using Liebig's law of minimum.  
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Chapter 3. The Coupling of Carbon, Nitrogen and Phosphorus in the Terrestrial 

Biosphere: Model Validation, Parameterization, Sensitivity and Evaluation in Tropical 

Forests 

Abstract  

The biological processes of phosphorous (P), carbon (C), and nitrogen (N) in the Earth 

system are fully coupled, which shapes the structure, functioning, and dynamics of terrestrial 

ecosystems. However, incorporating P-related processes into terrestrial biosphere models (TBMs) 

is still in an early stage. Through incorporating P processes and C-N-P interactions into the 

Dynamic Land Ecosystem Model (DLEM), DLEM was upgraded from a coupled C-N model into 

a coupled C-N-P model (DLEM-CNP), with a major advantage of representing the interactive co-

limitation of N and P on vegetation C assimilation. DLEM-CNP was calibrated and validated at 

four eddy covariance flux sites, two Hawaii sites along a chronosequence of soils, and another 13 

tropical forest sites at daily to annual time scale. The results indicated that DLEM-CNP was 

capable of reproducing the forest productivity (eddy covariance flux sites daily GPP Root Mean 

Square Error (RMSE) range from 1.1-1.5 g C m-2 yr-1; 13 tropical forest sites annual NPP R2 = 

0.92, RMSE = 176.7 g C m-2 yr-1 ), biomass, leaf N: P ratio, and plant response to fertilizer addition. 

A sensitivity analysis suggested that these results were reasonably robust against uncertainties in 

model parameter estimates and the model was most sensitive to parameters on P uptake. These 

results suggest that the inclusion of P processes in DLEM-CNP is important for accurately 

representing C dynamics in tropical forests, avoiding overestimation of tropical forest productivity 

by CN models. Additionally, N and P fertilizer addition experiment demonstrate that the feature 

of interactive co-limitation of N and P on vegetation C assimilation in DLEM-CNP is an important 

innovation for TBMs. 
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1. Introduction 

In many terrestrial ecosystems, the availability of soil nutrients shapes their structure and 

functions, including productivity, diversity, dynamics, and interactions of plant, animal, and 

microbial communities (Vitousek, 2004). Phosphorus comes primarily from parent material 

weathering and atmospheric deposition and is lost through nutrient leaching, soil erosion, and fire 

(Filippelli, 2008; Newman, 1995; Wang et al., 2015). Ecosystems with longtime development can 

reach a final steady-state with P limitation, in which the ecosystem becomes depleted in parent P 

and a large fraction of the P should be bound up in occluded fraction (Buendía et al., 2010; Porder 

et al., 2007; Walker & Syers, 1976). P limitation on primary productivity at the level of individual 

species is recognized to be widespread in tropical forests because of the absence of glaciation and 

the relatively rapid weathering of parent material P as a result of warmer and wetter climate 

(Davidson et al., 2004; Tanner et al., 1998; Turner et al., 2018; Vitousek et al., 2010). Research on 

soil P fractions and fertilization addition experiments also demonstrates P limitation on plant 

productivity widely exists in tropical areas (Vitousek, 2004; Yang et al., 2013). P limitation on 

primary productivity, therefore, plays a key role in the global carbon (C) cycle (Lloyd et al., 2001; 

Wieder et al., 2015). Moreover, P limitation on primary productivity may intensify in the future as 

a result of rising atmospheric CO2 and nitrogen (N) deposition, which can weaken the carbon 

sequestration capability of terrestrial ecosystems (Goll et al., 2012; Zhang et al., 2014). 

The interactions of C, N, and P play critical roles in regulating carbon uptake and storage 

and N, P biogeochemical processes in terrestrial ecosystems (Ågren et al., 2012; Guignard et al., 

2017; Wang et al., 2017). P and N are both involved in critical C processes such as photosynthesis 

and decomposition. Leaf N and P can determine leaf photosynthetic capacity by regulating the 
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maximum rate of carboxylation (Vcmax) and the electron transport capacity (Jmax) (Domingues et 

al., 2010). N limitation could limit carboxylation capacity and electron transport rates (Hikosaka, 

2004; Wang et al., 2018). P is required for many transformations of P-rich molecules (ATP, NADP, 

and sugar phosphates from the Calvin cycle) and the regeneration of ribulose-1,5-bisphosphate 

(RUBP) (Farquhar et al., 1980). P limitation could reduce light-use efficiency, electron transport 

rates, regeneration of ribulose bisphosphate, and the allocation of leaf N to photosynthetic 

processes (Wang et al., 2018). Field experiments demonstrate N and P fertilizer addition can 

increase forest trunk growth and biomass increment (Harrington et al., 2001; Newbery et al., 1999; 

Tanner et al., 1990; Vitousek et al., 1993). Additionally, multiple lines of evidence show that N 

and P interactions play important roles in affecting available N and P in soil (Marklein & Houlton, 

2012; Reed et al., 2007; Treseder & Vitousek, 2001). The supply of P can influence N fixation 

rates, such that more supply of P can increase the N inputs and N availability in terrestrial 

ecosystems (Reed et al., 2007). Additionally, extra N is required by plants and microbes to produce 

more N-rich extracellular phosphatase enzymes that cleave ester-P bonds in soil organic matter 

increasing availability of P (Mcgill & Cole, 1981; Olander & Vitousek, 2000; Wang et al., 2007). 

Since the industrial revolution in the 1850s, the global P cycle has been substantially 

disturbed and altered by anthropogenic activities (Cordell et al., 2009). Humans have 

unprecedentedly accelerated the P cycle by fertilizer production and application in the agricultural 

lands to increase food production (Elser & Bennett, 2011). The P scarcity was exacerbated because 

of the increased P demand in the context of increasing atmospheric CO2 concentration and N 

deposition indirectly induced by human activities (Jiang et al., 2019). Thus, there is an important 

need to represent P processes in the terrestrial biosphere models (TBMs) for better understanding 

and simulating C, N, and P interactions. This endeavor can help to improve the predictions of the 
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C cycle in terrestrial ecosystems under a changing global environment. Meanwhile, a more in 

depth understanding of the P cycle will be important for decision-makers to develop feasible 

policies to manage P nutrient sustainability in the context of the enhanced anthropogenic 

disturbances. 

The incorporation of the P cycle is an important task in the development of terrestrial 

biosphere models, particularly in tropical forests where P availability is often presumed to limit 

ecosystem primary production (Reed et al., 2015). Within the past decades, TBMs have evolved 

from the first-generation C only models (Houghton et al., 2001; Lieth, 1975) to CN interactions 

models (Gerber et al., 2010; Thornton et al., 2007; Tian et al., 2010; Yang et al., 2009; Zaehle & 

Dalmonech, 2011; Zaehle et al., 2010). In recent years, the P cycle has been incorporated into 

several TBMs, such as Community Land Model (CLM -CNP) (Yang et al., 2014b), CABLE-CNP 

(Wang et al., 2007), CASA-CNP (Wang et al., 2010), and Organizing Carbon and Hydrology In 

Dynamic Ecosystems (ORCHIDEE) (Goll et al., 2017), etc. There is mounting evidence that the 

representation of P in TBMs is important for our understanding and prediction of ecosystem 

dynamics, particularly for tropical forests with strong P limitation (Fleischer et al., 2019; Goll et 

al., 2018; Goll et al., 2012). Wang et al. (2010), Goll et al. (2012), and Yang et al. (2014) 

highlighted the importance of incorporating the P cycle in TBMs, particularly in tropical 

ecosystems. Several studies also demonstrated that coupling P dynamics into TBMs could reduce 

the simulated terrestrial C sink due to increasing atmospheric CO2 concentrations in the Amazon 

basin and other areas (Fleischer et al., 2019; Yang et al., 2019; Yang et al., 2016; Zhang et al., 

2011). However, it is still challenging for terrestrial ecosystem modelers to provide more realistic 

CNP models because some P processes and their interactions on C and N processes are still not 

well understood (Achat et al., 2016; Jiang et al., 2019; Reed et al., 2015).  
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Here, we first describe the major advantage of representing the interactive co-limitation of 

N and P on vegetation C assimilation of the P module in the DLEM-CNP. Then we evaluate the 

performance of the model to reproduce daily and seasonal C fluxes at four eddy covariance flux 

sites. After that, we evaluate model performance against field data collected from long-term 

fertilization experiments in a soil formation chronosequence in Hawaii (Harrington et al., 2001; 

Ostertag, 2001). Finally, we test the robustness of the model by systematically varying key 

parameters related to P processes.  

2. Materials and Methods 

2.1 The Dynamic Land Ecosystem Model with C-N-P coupled (DLEM-CNP)  

The DLEM-CNP is detailed described in chapter 2. Phosphorus processes were coupled 

into the DLEM, and the cycles of C, N, and P are fully coupled in DLEM-CNP during 

photosynthesis, allocation, turnover, nutrient uptake, and decomposition. In DLEM-CNP, organic 

P transfers into inorganic forms through mineralization in the soil, while inorganic P converts to 

organic form through immobilization and vegetation uptake.  

2.2 P and N co-limitation on photosynthesis in DLEM-CNP 

We adopted the NP co-limitation equation from the MIKE 3 ecohydrodynamic 3-

dimensional model developed by the Danish Hydraulics Institute, which is originally applied to 

modeling N and P limitation on phytoplankton growth (Lessin et al., 2007). Most models which 

incorporate N and P cycles simply describe nutrients limitation by using Liebig's law of minimum 

(e.g., ORCHIDEE, CLM). In comparison, our N and P interactive co-limitation scheme has the 

advantage of simulating the interaction effects of N, P limitation on photosynthesis. The detailed 

processes and equations are described in chapter 2. 
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2.3 Model implementation  

2.3.1 Site information 

FLUXNET sites 

FLUXNET data are a standard terrestrial biosphere model benchmark (Friend et al., 2007), 

and the effects of N-P limitation on the daily and seasonal cycles of C fluxes are analyzed for these 

four sites. We selected four FLUXNET sites located in tropical areas with the vegetation type of 

tropical forests (BR-Sa3, BR-Sa1, MY-PSO, PA-SPn, Figure 3-1, Table 3-1). 

Table 3- 1 FLUXNET sites information 

 

Hawaii sites 

The two forest sites (Thurston and Kokee) at Hawaiian Islands (Figure 3-1, Table 3-2) 

provide an excellent chance for nutrient cycle research as they have similar climate but different 

soil development stages (Vitousek, 2004). The soil at the Thurston site (latitude = 19.41 °N, 

Sites BR-Sa3 BR-Sa1 MY-PSO PA-SPn 

latitude  -3.0180 -2.8567 2.9730 9.3181 

longitude  -54.9714 -54.9589 102.3062 -79.6346 

altitude (m) 100 88   192 78 

Mean annual 

temperature (oC) 

26.12 26.13 25.3 26.5 

mean annual 

precipitation 

(mmyr -1) 

2043.77 2074.79 

 

1864.8 2350 

Dominant 

vegetation 

Evergreen 

Broadleaf 

Forests 

Evergreen 

Broadleaf Forests 

Evergreen Broadleaf 

Forests 

Deciduous 

Broadleaf Forests 

soil pH 3.85 3.85 4.7 4.8 

soil bulk density 

(kg m-2) 

1.3 1.3 1.36 1.49 

soil texture (clay: 

silt: sand) 
0.49 ，
0.1,0.41 

0.49，0.1,0.41 0.3，0.25，0.45 0.19，0.07，0.75 

Parent P(gP/m2) 0.57 1.12 10.24 0.62 

Data DOIs FLUXNET

2015 

DOI: 10.18

140/FLX/1

440033 

FLUXNET2015 

DOI: 10.18140/F

LX/1440032 

FLUXNET2015 

DOI: 10.18140/FLX/14

40240 

FLUXNET2015 

DOI: 10.18140/FLX

/1440180 

https://doi.org/10.18140/FLX/1440033
https://doi.org/10.18140/FLX/1440033
https://doi.org/10.18140/FLX/1440033
https://doi.org/10.18140/FLX/1440032
https://doi.org/10.18140/FLX/1440032
https://doi.org/10.18140/FLX/1440240
https://doi.org/10.18140/FLX/1440240
https://doi.org/10.18140/FLX/1440180
https://doi.org/10.18140/FLX/1440180


 57 

longitude = 155.24 °W) is 300 years old (0.3 ky), and vegetation growth is limited mainly by N, 

while soil at the Kokee site (latitude = 22.14 °N, longitude = 159.62 °W) is 4 million years old 

(4100 ky) and vegetation growth is limited mainly by P (Harrington et al., 2001; Ostertag, 2001). 

The annual mean temperature at the two sites is around 16 o C, and the mean annual precipitation 

is about 2500 mm. Both sites have similar parent material, and Metrosideros polymorpha is the 

major tree species (Crews et al., 1995). Field observations, including plant production, vegetation 

biomass, soil organic matters, and leaf N: P ratio, are available (Goll et al., 2017; Harrington et al., 

2001; Ostertag, 2001).  In addition, long-term (6–11 years) factorial fertilization experiments were 

conducted at the two sites (at the Thurston site since 1985 for 12 years fertilization addition and at 

the Kokee site since 1991 for six years fertilization addition) (Harrington et al., 2001; Ostertag, 

2001; Vitousek, 2004). The fertilization experiments used a factorial design that consisted of all 

four combinations of zero or 100 kg ha-1 yr-1 N (half as urea, half as ammonium nitrate) and zero 

or 100 kg ha-1 yr-1 P (as triple superphosphate) (Harrington et al., 2001). These fertilization 

experiments can help validate model performance in representing the N and P limitation interactive 

effects.  

 

Table 3- 2 Hawaiian Islands sites information 

 Thurston Kokee Source 

latitude (o N) 19.4 22.1 Vitousek (2004) 

longitude (o W) 155.2 59.6 Vitousek (2004) 

altitude (m) 1176  1134  Crews et al. (1995) 

age (years) 300 4.1×106 Vitousek (2004) 

mean annual temperature (oC) 16 16 Crews et al. (1995) 

mean annual precipitation (mmyr -

1) 

2500 2500 Crews et al. (1995) 

soil pH 5.0 3.8 Chorover et al. (2004) 

soil bulk density (kg m-2) 300 575 Olander and Vitousek (2004) 

soil texture (clay: silt: sand)  0.25, 0.25, 0.5 0.17, 0.79, 0.4 Olander and Vitousek (2004) 
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Clark Tropical sites 

Clark et al. (2001) synthesized the data in the literature on NPP in old-growth tropical 

forests to produce a consistent dataset on NPP. They developed consistent, documented estimates 

of the upper and lower bounds around total NPP for 39 diverse tropical forest sites to serve as 

benchmarks for calibrating and evaluating biogeochemical models. These estimates are based on 

existing field measurements and judgment that belowground production is bounded by the range 

of 0.2–1.2 ANPP (aboveground NPP) (Clark et al., 2001). As total NPP has frequently been 

estimated by assuming that aboveground NPP (BNPP) equals ANPP (Esser et al., 1997), we used 

the upper bound for BNPP in Clark et al. (2001) (1.2 * estimated ANPP). We extracted site data 

from Clark et al. (2001) based on longitude and latitude information. For the sites with the same 

longitude and latitude, we averaged the NPP value. We excluded sites without longitude and 

latitude information. As we evaluate more detailed NPP and C cycle features at the Hawaii 

fertilization section, so we excluded the Hawaii sites here. A summary of site information can be 

found in Table 3-3 (site name, location, rainfall, temperature).  

 

N deposition (g m-2 yr-1) 0.6 0.6 Chadwick et al. (1999) 

P deposition (mg m-2 yr-1) 0.9 0.9 Chadwick et al. (1999) 
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Figure 3- 1 Location of tropical forest sites for model validation. 



Table 3- 3 Compiled Clark tropical sites information 1 

 Site Latitude Longitude Elevation(m) Mean annual 

temperature(oC) 

Mean annual 

precipitation(mm) 

Estimated 

NPP 

(gC/m2yr-1) 

Reference 

1 Brazil: 

Fazenda 

Dimona 

2.5 S 

 

60 W 

 

… 26.7 

 

2300 

 

1462.5 ±210.5 

 

 

Chambers (1998), 
Sizer (1992) 

2 Brazil: 

Paragominas 

 

2.98 S 

 

47.52 W 

 

… … 1750 

 

1440.0 ± 42.4 

 

Trumbore et al. 
(1995) 

3 Colombia: 

Magdalena  

 

6.5 N  

 

73.8 W 

 

… 27.5 

 

3150 

 

1885 ± 332.3 

 

Folster et al. (1976) 

4 French 

Guiana: Piste 

de Saint-Elie 

 

5.25 N 

 

55.75 W 

 

… 26 

 

3450 

 

1470 ± 0 

 

Lescure et al. (1983)  

5 India: 

Bannadpare 

 

12.08 N 

 

75.7 E 

 

200 27 

 

5310 

 

865 ± 7.1 

 

Rai and Procto 

(1986a,b) 

6 India: 

Agumbe 

 

13.5 N 

 

75.1 E 

 

575 22.2 

 

7670 

 

790 ± 99.0 

 

Rai and Proctor 

(1986a,b) 

7 Ivory Coast: 

Banco 

 

5.28 N 

 

4.03 W 

 

100 26.2 

 

2095 

 

2326.7 ± 73401 

 

Bernhard (1970),  

8 Jamaica: Blue 

Mt.  

 

18 N 

 

77 W 

 

1600 15.8 

 

2230 

 

1177.5 ± 90.3 

 

Tanner (1980a, 
1980b, 1985) 

9 Malaysia: 

Pasoh 

 

2.98 N 

 

102.3 E 

 

… 25 

 

1807 

 

1940 ± 0 

 

Kira (1978.) 

10 Mexico: 

Chamela  

19.5 N 

 

105.05 W 

 

110 24.9 

 

707 

 

773.3 ± 92.9 

 

Martinez-Yrizar et al. 

(1996); Martinez-
Yrizar et al. (1992) 
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11 Papua New 

Guinea: Mt. 

Kerigomma 

 

6 S 

 

145.18 E 

 

2450 13 

 

3985 

 

1350 ± 0 

 

Edwards and Grubb 
(1977) 

12 Puerto Rico: 

palm fl forest 

18.42 N 

 

66 W 

 

750 19.7 

 

3725 

 

1410 ± 240.4 

 

Lugo and Murphy 

(1986) 

13 Venezuela: 

San Carlos  

1.9 N 

 

67.05 W 

 

119 26 

 

3550 

 

1250 ± 91.7 

 

Jordan and Escalante 

(1980) 

2 
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2.3.2 Input data  

Input data for FLUXNET sites 

At the four FLUXNET sites, climate variables (daily precipitation, daily shortwave 

radiation, daily maximum temperature, daily average temperature, and daily minimum temperature) 

and elevation were extracted from the site observation (https://fluxnet.fluxdata.org/). Atmospheric 

CO2 concentration data was obtained from NOAA 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html). Soil property data, including soil texture, 

pH, and bulk density, was extracted from the Global Soil Data Task (https://daac.ornl.gov/). Soil 

parent P data was from Global Gridded Soil Phosphorus Distribution Maps at a half-degree 

resolution (Yang et al., 2014a).  

Input data for Hawaii chronosequence sites 

At the two Hawaii sites, climate variables (daily precipitation, daily shortwave radiation, 

daily maximum temperature, daily average temperature, and daily minimum temperature) were 

extracted from the Daily Surface Weather Data on a 1-km Grid for North America, Version 3 

(Thornton et al., 2017). Atmospheric CO2 concentration data was obtained from NOAA 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html). The elevation, slope, and aspect were 

extracted from the USGS 10-meter DEM product 

(https://gis.ess.washington.edu/data/raster/tenmeter/hawaii/). The other input data, such as soil 

bulk density, soil texture, soil pH, was obtained from Goll et al. (2017). (Table 3-2)  

Clark tropical sites forcing data 

For these tropical sites, climate data was obtained from the National Centers for Environmental 

Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) product 

https://fluxnet.fluxdata.org/
https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
https://daac.ornl.gov/
https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
https://gis.ess.washington.edu/data/raster/tenmeter/hawaii/
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(https://globalweather.tamu.edu/), which has 0.3° resolution and has been widely used in 

watershed modeling research (Dile & Srinivasan, 2014; Fuka et al., 2014). Other data use the same 

data source as FLUXNET and Hawaii sites.  

2.3.3 Simulation set-up 

Model simulation at each site followed a three-step procedure: an equilibrium run, a spin-

up run, and a transient run. The equilibrium run was carried out to obtain an equilibrium state with 

cycled average climate data, which is assumed to be reached when the plant and soil C pool with 

atmosphere C pool net carbon exchange is less than 0.1 g C m-2 yr-1, the change in soil water pool 

is less than 0.1 mm yr-1, the change in total plant and soil N content is less than 0.1 g N m-2 yr-1 

and the change in total plant and soil P content is less than 0.01 g P m-2 between two consecutive 

20-year periods. The aim of the model spin-up is to smooth the transition between the equilibrium 

run and transient run. After the spin-up run, we conducted the transient run with all the driving 

forces changed year by year. 

At the two Hawaii sites, we designed the fertilizer addition experiments using the DLEM-

CNP, including adding 100 kg ha-1 yr-1 N fertilizer only, adding 100 kg ha-1 yr-1 P fertilizer only, 

and adding 100 kg ha-1 yr-1 N and 100 kg ha-1 yr-1 P fertilizer together. The fertilizer was applied 

on every day with 1/365 of the annual rate. 

A one-at-a-time (OAT) sensitivity analysis was performed for the 4 FLUXNET sites. In 

one simulation, we only modified one parameter by ± 10% with respect to the reference value and 

held other parameters constantly. Phosphorus related model parameters (Table 2-1, definition of 

the parameters) included the maximum vegetation P uptake rate (𝑃𝑢𝑝_𝑚𝑎𝑥 ); the C:P ratio in 

leaflitter (𝐶𝑃𝑙𝑒𝑎𝑓𝑙𝑖𝑡𝑡𝑒𝑟); concentration of 𝑃𝑑𝑖𝑝 at which vegetation P uptake is half of the maximum 

https://globalweather.tamu.edu/
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rate (𝑘𝑢𝑝); the minimum C:P ratio in sapwood (𝐶𝑃𝑚𝑖𝑛,𝑠𝑎𝑝𝑤𝑜𝑜𝑑); the minimum C:P ratio in leaf 

(𝐶𝑃𝑚𝑖𝑛,𝑙𝑒𝑎𝑓 ); the desorption coefficient for inorganic P (𝑙𝑐ℎ𝑏𝑑𝑖𝑝).  

2.4 Statistical Analysis 

Nutrient use efficiency is a measurement of how well plants use the available mineral 

nutrients. The N and P use efficiency (NUE and PUE) are calculated based on Goll et al. (2017) 

as: 

𝑁𝑈𝐸 =
𝑁𝑃𝑃

𝑁𝑢𝑝
 (1) 

𝑃𝑈𝐸 =
𝑁𝑃𝑃

𝑃𝑢𝑝
(2) 

where NPP is annual plant net primary production, 𝑁𝑢𝑝 is annual plant nitrogen uptake, 𝑃𝑢𝑝 is 

annual plant phosphorus uptake. 

Response ratio (RR) represents the measured or modeled plant production in the fertilizer 

treatment divided by its value under unfertilized conditions (Yang et al., 2014b). We use RR to 

evaluate the response of vegetation to fertilizer addition. The NPP with fertilizer and without 

fertilizer used here as a multiple year average during the experiment period.  

𝑅𝑅 =
𝑁𝑃𝑃𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑑

𝑁𝑃𝑃𝑢𝑛𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑑
(3) 

The coefficient of determination (R2), root mean square error (RMSE) are used to evaluate the 

model performance. 
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3.  Results 

3.1 Simulated and observed GPP at FLUXNET sites 

The capacity of DLEM-CNP to reproduce observed daily and seasonal cycles of GPP was 

tested at the 4 FLUXNET sites. To compare the effects of the representation of P-related processes 

with DLEM-CN, a reference simulation was performed using the DLEM-CN model. Generally, 

DLEM-CNP performed well with respect to R2 and RMSE at all sites.  For all four sites, the 

DLEM-CNP reduced the RMSE (g C m-2 d-1) with respect to DLEM-CN (BR-Sa1:1.49 vs. 4.15; 

BR-Sa3: 1.1 vs. 1.67; MY-PSO: 1.14 vs. 1.29; PA-SPn: 1.23 vs. 1.48). Figure 3-2 demonstrates 

this for the daily step GPP stimulation. Explicitly accounting for the effects of P limitation on 

photosynthesis does not change the shape of either the simulated daily or seasonal cycle of carbon 

fluxes. The simulated leaf nutrient limitation factor at the four sites shows that, including P 

limitation, the leaf NP limitation factor is stronger than the leaf N limitation factor in DLEM-CN, 

thus lowering the simulated GPP. At these sites, we output daily average foliar N content, foliar P 

content, and Vcmax, P mineralization, P weathering rate, plant P uptake rate, available PO4 to show 

more information about P pools and fluxes (Table 3-4). The Vcmax ranges from 39.1 to 43.3 µmol 

CO2 m
-2 s-1. Walker (2014) compiled global data set of photosynthetic rates and leaf nutrient traits 

include estimates of Vcmax, leaf nitrogen content, leaf phosphorus content data from both 

experimental and ambient field conditions. We filtered Walker's dataset to get tropical forests Vcmax, 

leaf N, leaf P, then compared with our results at FLUXNET sites with daily output. Walker's 

dataset indicates the Vcmax of tropical forests ranges from 33.66 to 140.88 µmol/m2 s-1, the leaf N 

range from 1.10 to 2.81 g/m2, and the leaf P range from 0.06 to 0.18 g/m2. Our simulation results 

of Vcmax and leaf nutrient concentration fell within their ranges (Table 3-4). 

Table 3- 4 Vegetation characteristics and P pools, fluxes at the 4 FLUXNET sites 
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sites BR-Sa1 BR-Sa3 MY-PSO PA-SPn 

Vcmax (µmol CO2m
-2s-1) 39.1 43.0 43.3 42.5 

Leaf P content (g N/m2
) 0.083 0.129 0.086 0.103 

Leaf N content (g P/m2
) 2.12 2.62 2.42 2.66 

Leaf N:P ratio 25.6 20.3 28.2 25.9 

P mineralization (g P/m2yr-1) 0.30 0.35 0.19 0.10 

P weathering (g P/m2yr-1) 0.063 0.087 0.164 0.304 

P uptake (g P/m2yr-1) 0.20 0.32 0.20 0.24 

available PO4 (g P/m2) 0.67 0.94 1.00 1.01 

 

Figure 3- 2 Comparison of daily GPP between DLEM-CNP, DLEM-CN simulations, and 

FLUXNET observations (a, b, c, d). The leaf nutrient limitation factor of DLEM-CN, DLEM-

CNP (e, f, g, h, i, j, k, l). The DLEM-CN model corresponds to performances given within 

parenthesis. 
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3.2 Carbon stocks and fertilizer addition experiments at Hawaiian sites 

The NPP and carbon stocks simulated by the DLEM-CNP at Thurston and Kokee sites are 

consistent with observations for both sites (Table 3-5; Figure 3-3). The average NPP from the 

model simulation is 785.8 ± 14.8 g C m-2 y-1 at Thurston and 725.7 ± 40.1 g C m-2 y-1 at Kokee, 

the observed NPP is 789 ± 63.0 g C m-2 y-1 and 757 ± 73.0 g C m-2 y-1 at corresponding sites. The 

woody biomass (8535.2 ± 37.9 g C m-2) was reasonably reproduced by the model with a slightly 

higher value (4.6%) than observation at the Thurston site. While the simulated woody biomass 

(8875.9 ± 74.4 g C m-2) showed a 9.4% lower value than observation at the Kokee site (Figure 3-

3). The soil organic carbon simulated by the DLEM-CNP is 13301.6 g C m-2 at Thurston and 

18075.1 g C m-2 at Kokee, which is 12.9% and 24.5% lower than field measurements, respectively.  

Nutrient use efficiencies (NPP divided by plant nutrient uptake) is an implicit plant 

property that depends on the tissue stoichiometry (Goll et al., 2017). The DLEM-CNP simulated 

NUE is 184.8 ± 8.8 g C g-1 N at Thurston site and 124.5 ± 20.5 g C g-1 N at Kokee site, which is 

underestimated by 19.6% and 44.6%, respectively, implying lower carbon productivity per plant 

nitrogen simulated by our model. The N uptake (4.26 ± 0.22 g N m-2 y-1 at Thurston site and 5.94 

± 0.90 g N m-2 y-1 at Kokee site) is overestimated by the model at both sites. The simulated PUE 

was comparable to observations (2.07 ± 0.04 g C mg-1 P vs. 3.22 ± 0.23 g C mg-1 P; 3.47 ± 0.08 g 

C mg-1 P vs. 3.86 ± 0.53 g C mg-1 P). The simulations of DLEM-CNP captured the pattern of 

higher NUE at N limited site and higher PUE at P limited site, which is consistent with Vitousek 

(2004) reporting that forests could acquire and use nutrients more efficiently at nutrient scarcity 

sites. Besides, the simulated P uptake (0.38 ± 0.01 g P m-2 y-1 at Thurston and 0.21 ± 0.02 g P m-2 

y-1 at Kokee) is consistent with observations across two sites (Table 3-5). 
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Figure 3- 3 Comparison between model simulations and observations at (a) Thurston and (b) 

Kokee Hawaiian sites. DLEM-CNP data indicates annual mean ± SD. Ky = 1000 years. 

Table 3- 5 Vegetation characteristics at the two Hawaiian Islands sites 

  Thurston  Kokee  

  simulated observed simulated observed 

NPP (g C m-2 yr-1) 785.8 ± 14.8 789 ± 63.0 725.7 ± 40.1 757 ± 73.0 

N uptake (g N m-2 yr-

1) 4.26 ± 0.22 3.43 5.94 ± 0.90 3.21 

P uptake (g P m-2 yr-1) 0.38 ± 0.01 0.24 0.21 ± 0.02 0.19 

NUE (g C g-1 N) 184.8 ± 8.8 229.9 ± 17.9 124.5 ± 20.5 224.8 ±32.7 

PUE (g C mg-1 P) 2.07 ± 0.04 3.22 ± 0.23 3.47 ± 0.08 3.86 ± 0.53 

Leaf N:P ratio  13.3 ± 0.2 12.6 ± 1.6 17.9 ± 0.4 17.3 ±2.7 

 Note: NPP is Net Primary Production; N uptake is plant nitrogen uptake rate; P uptake is plant 

phosphorus uptake rate; NUE is nitrogen use efficiency; PUE is phosphorus use efficiency; Leaf 

N:P ratio with g/g.  

 

 

The simulated leaf N: P ratio at Thurston and Kokee is 13.3 ± 0.17 g N g-1 P and 17.9 ± 

0.44 g N g-1 P, respectively. The values are close to the field observations, which are 12.6 ± 1.6 g 
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N g-1 P, 17.3 ± 2.7 g N g-1 P, indicating a good simulation regarding leaf nutrient condition. Tissue 

N: P ratios are widely used as an indicator of nutrient availability (Koerselman & Meuleman, 1996; 

McGroddy et al., 2004). Commonly, foliage N: P ratio of less than 14 indicates N limitation and 

above 16 indicates P limitation (Koerselman & Meuleman, 1996). The modeled leaf N: P ratio 

shows that N limits plant growth at the 0.3 ky site (leaf N: P ratio < 14), and P limits plant growth 

at the 4100 ky site (leaf N:P ratio > 16).  

 
Figure 3- 4 Fertilizer addition experiments response ratio (RR) of net primary production (NPP) 

at (a) Thurston and (b) Kokee. Ky = 1000 years. 

 

 
Figure 3- 5 (a) Leaf N content and (b) leaf P content during fertilizer addition experiments at 

Thurston and Kokee. 
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For fertilizer addition experiments, at Thurston site, which is N-limited, adding N 

significantly increased plant production (RR = 1.34), meanwhile adding P also increased plant 

production with a much smaller amount than adding N (RR = 1.15) (Figure 3-4). At the Kokee 

site, which is P limited, adding P resulted in a greater increase in plant production (RR = 1.46) and 

adding N slightly enhanced the plant production (RR = 1.10). At both sites, the simultaneous N 

and P addition resulted in the maximum increase of plant production, with RR being 1.48 at 

Thurston site and 1.45 at Kokee site. 

Leaf N content and leaf P content can reflect the nutrient status of the plant and can have 

direct effects on leaf photosynthesis and vegetation productivity. At both sites, model simulations 

show leaf N content increase when the N fertilizer added and leaf P content increase when the P 

fertilizer added, which agrees with the observation. Overall, leaf N, P contents are realistically 

simulated by the DLEM-CNP. The variation of Leaf N content and leaf P content is roughly 

captured by the DLEM-CNP under all nutrient treatment conditions (add N, add P, and add NP). 

However, the model cannot catch the amplitude of leaf P content increment when P and NP 

fertilizers were added to P limited site (Figure 3-5). At the P limited Kokee site, after P and NP 

fertilizers were added the observation of leaf P content was 0.260 ± 0.1000 (%, dry weight) and 

0.190 ± 0.040 (%, dry weight), but model results are only 0.062 ± 0.008 and 0.058 ± 0.004 (%, dry 

weight).  

3.3 Simulations at tropical sites by DLEM-CNP and DLEM-CN 

We expanded the model validation to more tropical forest sites and examined model 

performance on the multi-year average NPP. We compiled NPP records at 13 tropical forest sites 

in Clark et al. (2001), ranging from 800 g C yr-1 to 1600 g C yr-1 (Figure 3-6).  The NPP simulated 
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by the DLEM-CNP is consistent with the observational datasets (R2= 0.92). The introduction of 

the P module improved NPP simulation at the tropical forest sites, decreasing the overestimated 

NPP by the DLEM-CN model across all the 13 sites. The R2 is 0.92 for DLEM-CNP and 0.87 for 

DLEM-CN. Root Mean Square Error is 176.7 g C m-2 yr-1 for DLEM-CNP and 364.1.5 g C m-2 yr-

1 for DLEM-CN. All three statistical indicators (R2, RMSE) demonstrate the DLEM-CNP has 

better performance in modeling tropical forest NPP by including P processes and considering CNP 

interactions. 

 

Figure 3- 6 Comparisons of net primary production (NPP) from the DLEM-CN, DLEM-CNP, 

and observations at tropical sites. 

 

3.4 Model sensitivity to parameters  

A one-at-a-time (OAT) sensitivity analysis was performed for the 4 FLUXNET sites. In 

one simulation, we only modified one parameter by ± 10% with respect to the reference value and 

held other parameters constantly. Sensitivity of different variables to parameters calculated as 

difference between output from modified parameters and default parameter divided by output from 

default parameters. Figure 3-7 shows the sensitivity of simulated GPP, foliage P, available PO4, 

leaf N：P ratio to P-related parameters, and potential uncertainties in model parameterization. 
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Simulated GPP varies between -2.7% and 2.5% in relative to the simulated values in the default 

model parameterization, (Figure 3-7a). GPP is most sensitive to the P uptake (𝑃𝑢𝑝_𝑚𝑎𝑥 , 𝑘𝑢𝑝), 

reflecting the important role of plant P uptake on P limitation and GPP. Leaf P content (Figure 3-

7b) is predominantly controlled by the P uptake (𝑃𝑢𝑝_𝑚𝑎𝑥, 𝑘𝑢𝑝) and P allocation (𝐶𝑃𝑚𝑖𝑛,𝑠𝑎𝑝𝑤𝑜𝑜𝑑, 

𝐶𝑃𝑚𝑖𝑛,𝑙𝑒𝑎𝑓) processes. 𝑃𝑢𝑝_𝑚𝑎𝑥 lead to -5.4% to 5.1% changes in Leaf P content. And leaf P content 

varies with change of -5.3% ~ 6.2% and -5.0% ~ 5.9% for parameter 𝑘𝑢𝑝  and 𝐶𝑃𝑚𝑖𝑛,𝑙𝑒𝑎𝑓 

respectively. Available PO4 shows a slight response to the different parameter set. Sensitivity of 

available PO4  to parameters shows the biggest differences between sites. The potential reason may 

be that available PO4  is impacted by every processes in soil and plant uptake. Thus, different sites 

with different properties can have different impacts on the available PO4. Notably, 𝑙𝑐ℎ𝑏𝑑𝑖𝑝  is 

among the most sensitivity for available PO4 leading to a relatively small change -1.1% ~ 0.7%. 

Leaf N：P ratio shows a similar pattern with leaf P content of sensitivity to parameters. The 

sensitivity analysis demonstrates that changes in parameters result in small changes in model 

outcomes, and model is most sensitive to parameters on P uptake. 
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Figure 3- 7 Sensitivity analysis at 4 FLUXNET sites. 
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4. Discussion 

4.1 Model Evaluation at the Site Scale 

The results presented here demonstrate the incorporation of key P dynamics within the 

DLEM. The model simulations are consistent with the observed ranges of GPP, NPP, P tissue 

concentrations, NUE, net N mineralization, and the response to the fertilizer addition experiments 

at the FLUXNET sites, Hawaii sites, and other tropical sites.   

Some TBMs with coupled CNP cycles have been reported before (Goll et al., 2012; Goll 

et al., 2017; Wang et al., 2010; Yang et al., 2014). The DLEM-CNP model distinguishes itself 

from these models in that there is an explicit consideration of the NP co-limitation (Equation 1 and 

2) on photosynthesis. With this NP co-limitation scheme, DLEM-CNP has better potential for 

simulating NP interaction effects on C assimilation in contrast to models without considering P 

effects on photosynthesis, only considering leaf P to calculate GPP, or describing nutrients 

limitation on plant growth by using the Liebig's law of minimum (e.g., CLM-CNP, ORCHIDEE). 

In the Hawaii site fertilizer addition experiments, the addition of P at the N limited Thurston site 

alleviated N limitation on vegetation growth. Also, the N addition at P limited site slightly 

increased NPP. These responses demonstrated the innovative improvements of introducing the N 

and P interactive co-limitation effect. Field experiments support this N and P interactive co-

limitation and therefore it needs to be considered in models (Domingues et al., 2010; Jiang et al., 

2019; Walker et al., 2017; Wang et al., 2018). Considering N, P co-limitation may increase the 

capability of models to predict future conditions in P‐limited tropical forests, especially when 

combined with other environmental drivers (Domingues et al., 2010; Jiang et al., 2019). However, 

the mechanisms are not fully clear. Therefore, more data and experiments on foliar N, P 
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concentrations and photosynthetic parameters are needed to help molders develop more robust 

relationships. 

In DLEM-CNP, GPP is regulated through the NP limitation on Vcmax. Our simulation 

results of daily Vcmax is at the lower end of the observation range. However, there are a range of 

Vcmax values from different studies indicating our simulated Vcmax is reasonable. Kattge et al. (2009) 

reported the observed Vcmax for tropical broadleaf evergreen trees at 41 µmol CO2 m
-2 s-1 (Bonan 

et al., 2012). Some modeling studies for Amazonia also reported various Vcmax values: 43 µmol 

CO2 m
-2 s-1 (Carswell et al., 2000); 58 µmol CO2 m

-2 s-1 (Mercado et al., 2006); 64 µmol CO2 m
-2 

s-1, based on the Lloyd et al. (2010) analysis of Domingues et al. (2005); and 68 µmol CO2 m
-2 s-1  

(Lloyd et al., 1995). Mercado et al. (2009) used values of 32, 40, 47, 52, and 52 µmol CO2 m
-2 s-1 

for five Amazonian sites. Fisher et al. (2007) used values of 24–44 µmol CO2 m
-2 s-1 for simulations 

in eastern Amazonia.  

At the Hawaii sites, the underestimated NUE could be due to the overestimation of N 

uptake, which is related to C: N ratio of biomass and biological N fixation rate. The C: N ratio of 

biomass is a species dependent parameter; thus, it may tend to introduce bias at site level. Moreover, 

the biological N fixation rate is described as a plant-type-specific parameter in DLEM, which may 

not reflect the reality at Hawaii sites. 

Our model underestimated the absolute value of RR in fertilization experiments. Also, the 

model didn't catch the amplitude of leaf P content increase when P or NP fertilizer was added to P 

limited site (Figure 3-4b). Leaf N and P concentrations determine the leaf NP limitation on GPP. 

Hence, the smaller increase in leaf P content than observation resulted in the underestimated RR. 

Two reasons explain the underestimated of leaf P content increase. DLEM-CNP simulated 
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fertilizer application by assuming that annual fertilizer input was applied evenly each day. 

Specifically, in our simulation, the N and P fertilizers were added at a rate of 0.027 (10/365) gN/gP 

m-2 per day. These fertilizers directly entered soil available N pool and soil dissolve inorganic P 

pool. The 0.027 gN/gP m-2 per day fertilizers did not lead to a substantial increase in soil available 

N and dissolve inorganic P pool, which impeded the nutrient uptake by plant. In addition, 

Harrington et al. (2001) observed P limitation results in disproportionally significant increases in 

P uptake after fertilization during the fertilization experiment. However, this mechanism strongly 

depends on species, it has not been included in our model. In the future, we will improve our model 

to simulate fertilizer with monthly or daily data to more accurately capture the fertilization effect.  

The mismatch between the modeled SOM and observed values at Hawaii can be attributed 

to the uncertainties in modeling decomposition process. In contrast to first-order decomposition 

models (Parton et al., 1987), SOC decomposition rates should depend not only on the SOC stock 

size but also on the size and composition of the decomposer microbial pool (Schimel & Weintraub, 

2003) as well as carbon nutrients interactions (Six et al., 2002). Therefore, the SOC stocks are still 

far from certain in TBMs. Some research demonstrated P could have impacts on the microbial 

decomposition rate, e.g., Qualls and Richardson (2000) suggested P enrichment influences the 

litter decomposition rate in the Everglades. Tian et al. (2015) also emphasized that nutrient 

limitation on microbial activities are important structural uncertainties but being ignored or poorly 

represented by most models leading to uncertainties in the modeled SOC. All these studies 

implying a more realistic decomposition process is needed.  

4.2 Uncertainty and Future Research 

Although DLEM-CNP could well reproduce the observed forest productivity and biomass, 

several issues need to be addressed in the future. First, our model does not consider biochemical 
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mineralization, a process that plants and microbes can produce phosphatase enzymes to mineralize 

P in soil organic matter but without mineralizing C and N (Mcgill & Cole, 1981). Wang et al. 

(2007) showed that neglecting biochemical P mineralization tended to overestimate the fraction of 

soil organic P and underestimated the fractions of the labile P. Neglect of biochemical 

mineralization may underestimate available P, causing stronger P limitation on plant productivity. 

Second, DLEM-CNP did not consider P effects on some N processes, such as the biological N 

fixation process. Several studies indicate that P availability may impact N fixation (Edwards et al., 

2006; Reed et al., 2007). Edwards et al. (2006) examined biological N fixation of swards response 

to elevated CO2 under both high and low P availability, showing high P increased biological N 

fixation. Reed et al. (2007) suggested that P availability, possibly via regulation of N fixation, 

strongly influence N availability in recovering prairie soils. However, the mechanisms of P 

influence on N fixation have not yet been fully understood. Third, plants' adaptation to P limitation 

can change vegetation physiological characteristics (Vance et al., 2003). Plants evolve strategies 

for P acquisition and use in P‐limiting environments, including decreased growth rate, increased 

growth per unit of P uptake, remobilization of internal P, modifications in carbon metabolism that 

bypass P‐requiring steps, and alternative respiratory pathways (Vance et al., 2003). All these 

adaption strategies are supposed to lead to vegetation parameters change (e.g., Vcmax, minimum 

leaf C: N ratio, and minimum leaf C: P ratio). Last, in model we didn’t consider trace elements, 

such as Potassium (K), Calcium (Ca), Magnesium (Mg). However, trace elements also have 

impacts on plant productivity.  

In tropical areas, forests in different places have different P limitation levels and highly 

variable NPP (Castanho et al., 2013; Fyllas et al., 2009; Tanner et al., 1998). Our results at various 

tropical forest sites demonstrated that using a uniform value for key ecological parameters of 



 78 

tropical forests would decrease the simulation accuracy. In future work, a more detailed forest 

classification scheme could be developed to represent the spatial heterogeneity of tropical forests. 

As P limitation on productivity is recognized to be widespread in tropical forests, at this 

stage, we only focus our model development in tropical forest areas. In the future, we will expand 

the model application to other terrestrial ecosystems. 

5. Conclusions  

P cycle has been successfully coupled with C and N cycles in the DLEM. The DLEM-CNP 

fully incorporates CNP cycles in all pools (plant, litter, and soil organic/inorganic pools) and key 

biogeochemical processes. Evaluation of model performance at FLUXNET sites, Hawaii sites, and 

comparison of NPP simulated by the DLEM-CNP and DLEM-CN with benchmarks at tropical 

forests demonstrate the improvement of the model's performance. Furthermore, we simulated the 

response of plants to fertilizer addition for evaluating the mechanisms of nutrient limitation on 

plants. Results imply a significant P impact on ecosystem C dynamics and highlight the innovative 

improvements of introducing the N and P interactive co-limitation effect. Our results reveal 

interactions between C, N, P processes, indicating that the inclusion of the P cycle in the current 

TBMs is essential to better understand the impacts of global change on terrestrial ecosystems. With 

adequate parameterization, the DLEM-CNP model can be applied to simulate and predict the 

productivity of terrestrial ecosystems and C, N, P dynamics across the global land surface. 
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Chapter 4 Phosphorus limitation on the CO2 fertilization effect in tropical forests as 

informed by a coupled biogeochemical model 

Abstract 

Tropical forests store more than half of the world's terrestrial carbon (C) pool and account 

for one-third of global net primary productivity (NPP). With their significant contribution to the 

global C cycle, tropical forests maintain a critical negative feedback to climate warming through 

the CO2 fertilization effect. Many terrestrial biosphere models (TBMs) estimate increased 

productivity in tropical forests throughout the 21st century due to the CO2 fertilization. However, 

phosphorus (P) limitation on vegetation photosynthesis and productivity have not been considered 

by most current TBMs. Here, we used a process-based Dynamic Land Ecosystem Model with 

coupled C-N-P dynamics (DLEM-CNP) to examine how P limitation has affected C fluxes of 

tropical rainforests during 1860-2018. Our model results showed that consideration of the P cycle 

reduced the CO2 fertilization effect on tropical rainforests gross primary production (GPP) by 25% 

and 45%, NPP by 25% and 46%, and net ecosystem production (NEP) by 28% and 41% relative 

to CN-only and C-only models. During the period from the 1860s to the 2010s, the DLEM-CNP 

estimated that for per unit area, the tropical rainforest GPP increased by 17 %, Ra increased by 

18%, NPP increased by 16 %, Rh increased by 13%, and NEP increased by 121%, respectively. 

Additionally, factorial experiments with DLEM-CNP showed that the enhanced GPP and NPP 

benefiting from the CO2 fertilization effect (1.9 and 1.0 Pg C year-1) had been offset by 

deforestation (-2.9 and -1.4 Pg C year-1) from the 1860s to the 2010s. Our study highlights the 

importance of P limitation on the C cycle and the weakened CO2 fertilization effect as a result of 

the P limitation in tropical forests. 
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1. Introduction 

Tropical forests store about 72% of global forest biomass carbon (C) (Pan et al., 2011) and 

account for about one-third of global net primary productivity (NPP) (Field et al., 1998). As 

essential C reservoirs in the Earth system, tropical forests maintain a critical negative feedback to 

climate warming by slowing the rate of increasing CO2 concentration in the atmosphere. The CO2 

fertilization effect that increases CO2 concentrations in leaves enhances plants' capacity in fixing 

carbon through photosynthesis and has been considered as a primary mechanism that maintains 

and enhances tropical forest productivity (Schimel et al., 2015). In recent decades, however, 

tropical forests are suffering from the combination of deforestation (Pan et al., 2011), increases in 

temperature and frequent droughts as well as nutrient limitation (Liu et al., 2017; Yang et al., 2018), 

which have reduced their ability to respond to the rising CO2 concentration (Cox et al., 2013; 

Mitchard, 2018). Given their importance in mitigating climate warming, an accurate estimation of 

C uptake in the tropical forests and its temporal variations is critical for designing effective climate 

mitigation policies or implementing management activities.  

Both field and satellite observations (De Kauwe et al., 2016; Kolby Smith et al., 2016; 

Norby et al., 2005; Norby et al., 1999) and model simulations (Friedlingstein et al., 2019; Thornton 

et al., 2007) have shown the CO2 fertilization effect supports a critical negative feedback to climate 

change, particularly in the tropics (Ciais et al., 2013; Schimel et al., 2015). Multiple lines of 

evidence suggest that the CO2 fertilization effect on the global land ecosystems has substantial 

contributions from tropical forests (Liu et al., 2019; Lloyd, 1999; Schimel et al., 2015). However, 

uncertainties of this effect still exist, which limit our capacity to understand and predict tropical 

forest response to climate changes. For example, Free-air CO2 enrichment (FACE) experiments 

that observe the CO2 fertilization effect have been primarily conducted in temperate forests (Norby 
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& Zak, 2011) but have not been conducted in tropical forests so far (Cernusak et al., 2013; 

Hofhansl et al., 2016; Jiang et al., 2020). Tropical forests are subject to very different 

environmental conditions from temperate forests, especially soil nutrient availability, leading to 

potentially different responses to rising atmospheric CO2. FACE experiments in temperate areas 

indicated that soil nutrient availability, particularly nitrogen (N), limits the magnitude of forest 

productivity increase (Norby et al., 2010). It is noteworthy that N limitation on productivity mostly 

occurs in temperate and boreal forests, whereas phosphorus (P) limitation has been primarily 

observed in tropical forests (Hofhansl et al., 2016; Vitousek et al., 2010; Walker & Syers, 1976; 

Wang et al., 2020a). The increasing CO2 fertilization effect on the tropical forests simulated by 

terrestrial biosphere models (TBMs) has been questioned due to the missed P cycle representation 

(Cox et al., 2013; Huntingford et al., 2013). Meanwhile, the CO2 fertilization effect on vegetation 

photosynthesis has been weakened in recent decades, partially attributable to nutrient limitations 

(Wang et al., 2020b). 

Available P is crucial to maintain tropical forest structure and functions, affecting many 

key processes, including photosynthesis, respiration, decomposition, etc., (Vitousek, 2004). 

Phosphorus limitation on primary productivity is recognized to be widespread in tropical forests 

because of the long-term weathering of parent material P in the warm and humid climate conditions 

(Davidson et al., 2004; Tanner et al., 1998; Turner et al., 2018; Vitousek et al., 2010). Due to the 

importance of the P cycle to tropical forests, an increasing number of TBMs have started to include 

P dynamics and impacts on vegetation growth (Thornton et al., 2007; Zaehle & Friend, 2010). 

Recent progress in developing the quantitative frameworks in TBMs to represent the P cycle has 

been achieved, such as the Community Land Model (CLM -CNP) (Yang et al., 2014b), CABLE-

CNP (Wang et al., 2007), Organizing Carbon and Hydrology In Dynamic Ecosystems 
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(ORCHIDEE) (Goll et al., 2017), and DLEM-CNP (Wang et al., 2020c). However, there are 

divergences in model structures and the simulated ecosystem dynamics. For example, TBMs differ 

in their assumptions on how nutrient limitation controls productivity and C allocation and their 

representation of soil P acquisition mechanisms (Fleischer et al., 2019). 

Most TBMs represent tropical rainforests as one plant function type (PFT), i.e., the tropical 

broadleaf evergreen forest. This single PFT has a uniform set of parameters, which do not account 

for variations in space and, thus, inadequately represent its spatial heterogeneity (Castanho et al., 

2013). In most TBMs, the parameter of Vcmax25 (the maximum carboxylation rate at 25˚C), one of 

the most important parameters controlling photosynthesis processes (Bonan et al., 2012; Farquhar 

et al., 1980; Pan et al., 2014), is usually prescribed as a constant for a specific PFT based on field 

measurements or empirical relationships with plant properties (Bonan et al., 2012; Kattge et al., 

2009; Walker et al., 2014). However, field data showed that Vcmax25 is highly variable even for the 

same PFT (He et al., 2019; Kattge et al., 2009; Walker et al., 2014). This is particularly true for 

tropical rainforests because there are significant differences in soil properties and species 

composition (Fyllas et al., 2009; Quesada et al., 2010). Castanho et al. (2013) demonstrated that 

using single values for Vcmax in the tropical forests constrained the simulation accuracy in a 

dynamic vegetation model. Vcmax was found to be the most important property determining the 

modeled spatial variation of aboveground NPP. Therefore, it is necessary to represent the spatial 

variations of this critical parameter in tropical rainforests in TBMs for improving the accuracy of 

the simulated C cycle.  

Building upon a previous study (Chapter 3 in this study), we partitioned the tropical 

rainforests into four tropical rainforest groups assigned with different Vcmax25. We used the 

improved Dynamic Land Ecosystem Model (DLEM-CNP) to 1) examine the P limitation on CO2 
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fertilization effect in tropical forests comparing with C, C-N model; 2) estimate the spatial and 

temporal patterns of C fluxes in tropical rainforests with integrated C-N-P cycles during 1860 to 

2018; and 3) explore the different factors' impacts with the CO2 fertilization effect in the tropical 

rainforests, including climate, atmospheric N deposition, deforestation, and soil P during the 

historical period from 1860 to 2018.  

2. Methods 

2.1. Tropical Rainforests Subdivision 

In this study, tropical forests were defined as the tropical evergreen broadleaf forests 

residing between the Tropic of Cancer and the Tropic of Capricorn (Fu et al., 2018). The Amazon 

rainforests are the most extensive tropical rainforests, while other tropical rainforests reside in 

western and central Africa, western India, Southeast Asia and the Pacific Islands, and Australia. 

We obtained site-level tropical forest NPP from the synthesized data of primary forests compiled 

by Clark et al. (2003). We excluded sites without longitude and latitude information. NPP values 

were averaged for the sites with the same longitude and latitude information. Finally, we obtained 

13 tropical rainforest sites with NPP data and geographic coordinates. We calibrated the Vcmax25 

parameter at each site for the DLEM-CNP model based on their NPP values. A summary of site 

information can be found in Appendix 2, Table S2-1. 

K-means clustering (MacQueen, 1967) is a method commonly used to automatically 

partition a data set into k groups. It proceeds by selecting k initial cluster centers and then iteratively 

refining them. The algorithm converges when there is no further change in assignment of instances 

to clusters. We selected five types of environmental factors to conduct the K-means clustering, 

including climate conditions (annual precipitation, the standard deviation of inter-annual 

precipitation, annual mean temperature, annual maximum temperature, annual minimum 
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temperature, and solar radiation), geospatial information (longitude, latitude), soil texture 

information from Harmonized World Soil Database (Wieder, 2014), parent P content from Global 

Gridded Soil Phosphorus Distribution Maps (Yang et al., 2014a), and elevation data from Global 

30 Arc‐Second Elevation product (GTOPO30, https://lta.cr.usgs.gov/GTOPO30). We used k-

means clustering to partition the 13 tropical rainforest sites into four groups (Figure S2-1, S2-2). 

Finally, we calculated the Euclidean distance of these environmental factors of each grid of 

tropical evergreen broadleaf forest (TrEBF) to the four groups centers, grouping TrEBF into four 

subdivisions based on the closest group center (Figure 4-1). 

https://lta.cr.usgs.gov/GTOPO30
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Figure 4- 1 Map of global tropical rainforests with four subdivisions (TrBEF1-4) and the location of 13 tropical forest sites from Clark 

et al. (2001) and six FLUXNET sites used in this study.  
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2.2. Model Description 

The Dynamic Land Ecosystem Model-CNP (DLEM-CNP) is a highly integrated process-

based terrestrial biosphere model, includes N and P controls on vegetation and soil biogeochemical 

processes (Figure 2-2). DLEM-CNP has a major advantage of representing the interactive co-

limitation of N and P on vegetation C assimilation (Wang et al., 2020c). 

2.3. Input Data 

The model input datasets include climate conditions (daily mean temperature, maximum 

temperature, and minimum temperature, daily precipitation, and solar radiation), atmospheric CO2 

concentrations, annual land cover, and land use (LCLU) maps, nitrogen deposition, soil properties 

(parent P content, texture, pH, and bulk density), and topographical information (e.g., elevation, 

slope, and aspect). The climate conditions at the spatial resolution of 0.5°x 0.5° latitude/longitude 

from 1860 to 2018 were obtained from the CRU-JRA55 climate data from the 2019 Global Carbon 

Budget Project (Friedlingstein et al., 2019). Atmospheric CO2 concentrations from 1860 to 2018 

were obtained from the National Oceanic and Atmospheric Administration (NOAA). Atmospheric 

N deposition data were from the N2O Model Intercomparison Project (NMIP) (Tian et al., 2018). 

The potential vegetation map was constructed with Synergetic Land Cover Product (SYNMAP; 

(Jung et al., 2006)). LULC data was from LUH2-GCB2019 data, which used the most recent 

HYDE–FAO release and was applied in the 2019 Global Carbon Budget Project (Friedlingstein et 

al., 2019). Soil physical properties were taken from ISRIC‐WISE Harmonized Global Soil Profile 

Data Set (Batjes, 2009).  Parent P content data was obtained from Global Gridded Soil Phosphorus 

Distribution Maps (Yang et al., 2014a). The elevation, slope, and aspect were derived from the 

Global 30 Arc‐Second Elevation product (GTOPO30; https://lta.cr.usgs.gov/GTOPO30).  

https://lta.cr.usgs.gov/GTOPO30
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2.4. Field Observation Data for Model evaluation 

FLUXNET data is a standard TBMs benchmark (Friend et al., 2007). We selected six 

FLUXNET sites in tropical areas with the vegetation type of evergreen broadleaf forests (BR-Sa3, 

BR-Sa1, MY-PSO, GF-Guy, GH-Ank, AU-Rob, Figure 4-1) for model validation and performance 

evaluation. Daily gross primary production (GPP) from the Daytime partitioning method 

(Pastorello et al., 2020) was used to evaluate DLEM-CNP performance. In order to identify the 

effects of the representation of P-related processes in DLEM-CNP, we also simulated the site-level 

GPP using the DLEM-CN model for comparison purposes. 

2.5. Model simulation experiments 

DLEM-CNP simulations include three steps: (1) an equilibrium run driven by the first 20-

year mean climate (1860–1879) to develop the initial conditions for ecosystem C, N, P, and water 

pools, (2) a spin‐up simulation of 30 years before 1860 to eliminate noise caused by the simulation 

shift from the equilibrium simulation mode to the transient simulation mode, and (3) a transient 

simulation using input data sets from 1860-2018 to generate simulation results. First, the DLEM-

C (without N and P limitations, which was executed with the same model code without N and P 

limitations on photosynthesis or decomposition), DLEM-CN (without P limitation, assuming P 

saturation), DLEM-CNP (with N and P limitations) were driven by contemporary CO2 from 1860-

2018 to examine the effects of nutrients limitation on the CO2 fertilization effect. To simulate the 

effects of individual environmental factors on C fluxes, we use DLEM-CNP to implement six 

numerical experiments (S0 to S5) (Table 4-1). The S0 is baseline run with cycled input data in 

1860. The S1 experiment included the temporal variations of all time-varying driving forces and 

represent the model's "best estimate" of ecosystem dynamics. The combined effect of all 

environmental factors was calculated as S1 - S0. The individual effects of deforestation (DEF), 
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atmospheric CO2 (CO2), N deposition (NDEP), and climate (CLIM) were calculated as S1 - S2, 

S1 - S3, S1 - S4, and S1- S5, respectively. 

Table 4- 1 Simulation protocol with the Dynamic Land Ecosystem Model 

Experiments CLIM CO2 NDEP DEF 

S0 1860 1860 1860 1860 

S1 1860-2018 1860-2018 1860-2018 1860-2018 

S2 1860-2018 1860-2018 1860-2018 1860 

S3 1860-2018 1860 1860-2018 1860-2018 

S4 1860-2018 1860-2018 1860 1860-2018 

S5 1860 1860-2018 1860-2018 1860-2018 

Note: CLIM is climate; NDEP is N deposition; CO2 is atmospheric CO2; and DEF is deforestation. 

2.6. Path analysis model 

To quantify the direct and indirect effects of CO2 and climate with NPP, P uptake, and 

available P, path analysis model (PAM) was applied in this study. Path analysis model is a 

multivariate quantitative statistical technique and belongs to the structural equation model. 

Compared to common statistical methods such as simple or multiple regressions, it is capable of 

quantifying the complex and dynamic relationships among multiple dependent and independent 

variables, and it allows to separate the direct and indirect effects of the explanatory variable on the 

response variable (Alwin & Hauser, 1975; Hoyle, 1995; You et al., 2020). Before performing PAM, 

a conceptual model needs to be established based on prior knowledge of the empirical relationships 

between variables. In this study, we developed a conceptual model by specifying the relationship 

between CO2, climate, NPP, P uptake, and available P while considering the interactions between 

these factors. In this study, PAM was conducted in R using the "lavaan" package (Rosseel, 2012), 

and all variables were standardized before analysis. 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL089286#grl61196-bib-0038
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3. Results 

3.1. Model validation using FLUXNET GPP 

To evaluate our tropical rainforests subdivision strategy, we simulated GPP at FLUXNET 

sites with uniform Vcmax25 (41 μmol m−2 s−1, averaged value of all the 13 sites) and varied Vcmax25 

from calibration  (BR-Sa3, BR-Sa1: 48 μmol m−2 s−1
; GF-Guy, MY-PSO, AU-Rob: 35 μmol m−2 

s−1
;  GH-Ank: 45 μmol m−2 s−1

), respectively, for subdivided TrEBFs (Figure 4-2). Field 

observations showed that average daily GPP tended to be higher in the Amazon region (BR-Sa3, 

BR-Sa1, GF-Guy) with an average of 10.5 g C m-2 d-1. The simulated daily GPP with the average 

Vcmax25 showed less variation among FLUXNET sites. In comparison, the simulations with 

subdivided TrEBF and assigned different Vcmax25 were able to catch the tendency that higher daily 

GPP for the Amazon sites than the sites in Southeast Asia and Africa (Figure 4-2). This tendency 

is consistent with observations. Comparison with the site-level observations of all the selected 

FLUXNET sites showed that simulation with varied Vcmax25 improved simulation accuracy with 

the root mean squared error (RMSE) decreasing from 2.19 to 0.53 g C m-2 d-1. 

The ability of the DLEM-CNP to reproduce the observed daily and seasonal cycles of GPP 

at the six FLUXNET sites was demonstrated in Figure 4-2. Generally, the DLEM-CNP performed 

well with respect to R2 and RMSE for all sites. The model captured the pattern of the observed 

daily and seasonal cycle of carbon fluxes via the representation of the P effects on photosynthesis. 

Incorporating the P cycle lowered the model-simulated GPP compared to the DLEM-CN 

simulation and significantly increased its accuracy. This evaluation gives us the confidence that 

the DLEM-CNP is capable of simulating C fluxes in the tropical rainforests. 



 98 

 
Figure 4- 2 Comparison of the daily average GPP between observations at FLUXNET sites and 

model simulations. Model simulations are derived using the average Vcmax25, and varied Vcmax25 in 

the four subdivided TrEBFs zones, respectively 
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Figure 4- 3 Comparison of the daily gross primary productivity (GPP) between observations and model simulations at the selected 

FLUXNET sites. (a) BR-Sa1 (R2: 0.98(0.98), RMSE: 0.78(2.35) g C m-2 d-1), (b) BR-Sa3 (R2: 0.70(0.73), RMSE: 0.95(1.57) g C m-2 

d-1), (c) MY-PSO (R2: 0.45(0.41), RMSE: 0.63(1.02) g C m-2 d-1) , (d) AU-Rob (R2: 0.42(0.4), RMSE: 1.08(2.82) g C m-2 d-1) , (e) 

GF-Guy (R2: 0.70(0.70), RMSE: 0.95(2.50) g C m-2 d-1), (f) GH-Ank (R2: 0.42(0.42), RMSE: 1.92(5.58) g C m-2 d-1). Statistics and 

plotted values are a 7-day running mean. RMSE is the root-mean-squared error. The DLEM-CN model corresponds to performances 

given within parenthesis. 
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3.2. Reduced CO2 fertilization effects by nutrient limitation 

Model simulations showed that increasing CO2 led to a sustained increase of GPP, NPP, 

and NEP in the tropical rainforests due to the CO2 fertilization effect in all DLEM-C, DLEM-CN, 

and DLEM-CNP simulations (Figure 4-4). The DLEM-CNP simulated lower GPP, NPP, and NEP 

increases (amount and rate) in the tropical rainforests than that of the DLEM-C and DLEM-CN 

models between 1860 and 2018, indicating that the P limitation reduced the response of GPP, NPP, 

and NEP to the CO2 fertilization effect. For DLEM-C, DLEM-CN, and DLEM-CNP, the GPP 

increased by 21%, 18%, and 16%, autotrophic respiration (Ra) increased by 19%, 17%, and 15%, 

and NPP increased by 23%, 20%, and 18%, respectively, from 1860 to 2018 (Figure 4-4). During 

1860-2018, the DLEM-C modeled GPP and NPP increased gradually by 0.10 and 0.06 Pg C year-

1, respectively. For DLEM-CN and DLEM-CNP, in contrast, the simulated GPP and NPP 

increased by 0.08 and 0.06 Pg C year-1, and by 0.04 and 0.03 Pg C year-1, respectively (Figure 4-

4 g, h). Net ecosystem production (NEP) is the difference between NPP and heterotrophic 

respiration (Rh), and it represents the total amount of organic carbon in an ecosystem available for 

storage, export, or nonbiological oxidation through fire (Lovett et al., 2006). NEP is potentially 

controlled by N and P availability via C‐N‐P interactions on NPP and Rh. For DLEM-C, DLEM-

CN, and DLEM-CNP, the simulated Rh grew by 18%, 16%, 14%, respectively.  The NEP 

simulated by DLEM-CNP in 2018 was 0.95 Pg C year-1 with considering N, P limitation, which 

was 51% lower than the simulated CO2 fertilization effect on NEP without considering nutrient 

limitation (1.95 Pg C year-1) and 25% lower than the DLEM-CN simulation only considering N 

limitation (1.27 Pg C year-1) in 2018. The CO2 fertilization effect was most pronounced after 1960 

when the CO2 concentration accelerated (Figure 4-4 f).  

https://statisticsbyjim.com/glossary/predictor-variables/
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Comparison between DLEM-CNP and DLEM-C simulations suggested that considering N 

and P limitation lowered the CO2 fertilization effect on GPP, NPP, and NEP by 45%, 46%, and 

41%, respectively. Compared with the DLEM-CN, the DLEM-CNP lowered the CO2 fertilization 

effect on GPP, NPP, and NEP by 25%, 25%, and 28%, respectively. In addition, simulation with 

the DLEM-CNP showed a larger spatial variation of CO2 fertilization effect on GPP and NPP and 

a different spatial pattern of CO2 fertilization effect on NEP compared to that without considering 

the P limitation. The DLEM-CNP simulated a higher than average CO2 fertilization effect on GPP, 

NPP and NEP in the west Amazon, the eastern part of central Africa, and west Indonesia than other 

areas (Figure 4-5). 

 

 



 102 

 
Figure 4- 4 The increased GPP (a), Ra (b), NPP (c), Rh (d), and annual NEP (e) in the tropical rainforest from 1860-2018 under 

historical atmospheric CO2 concentration, simulated by DLEM-C (blue), DLEM-CN (red), and DLEM-CNP (green), respectively; 

figure (a,b,c,d,e) are with reference to 1860. Figure (f) is the CO2 concentration from 1860-2018. Figures (g) and (h) are plots of 

annual GPP and NPP against CO2 concentration 
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Figure 4- 5 Spatial pattern of the annual GPP, NPP, and NEP simulated by the DLEM-C (a, d, g), DLEM-CN (b, e, h), DLEM-CNP 

(c, f, i) in the 2010s with 1860-2018 atmospheric CO2 concentration. To better show the spatial variations, we further processed the 

original GPP, NPP, and NEP values in each pixel by subtracting the mean GPP, NPP, and NEP of all tropical forest pixels of the 

corresponding simulation 
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3.3. The best estimate of temporal and spatial variability of tropical rainforest carbon 

fluxes 

The DLEM-CNP was driven by time-varying environmental factors (climate, atmospheric 

CO2 concentration, N deposition, and deforestation) in the simulation S1, which provided the "best 

estimate" of ecosystem carbon fluxes. Over the period 1860-2018, tropical rainforest areas 

declined at a rate of 1.7 million hectares per year (Figure 4-6). The area of tropical rainforests in 

the 1950s presented the largest decline of 35.5 Mha over the study period. However, the per unit 

area C fluxes of tropical rainforests had an increasing trend. From the 1860s to the 2010s, tropical 

rainforest GPP per unit area increased by 17% from 2464 + 9 g C m-2 year-1 to 2881 + 25 g C m-2 

year-1; Ra per unit area increased by 18%; NPP per unit area increased by 16 % from 1192 + 10 g 

C m-2 year-1 to 1383 + 21 g C m-2 year-; Rh per unit area increased by 13%, and NEP per unit area 

increased by 121% from 29 + 13 g C m-2 year-1 to 65  + 23 g C m-2 year-1. The total NEP had an 

increasing trend of 0.003 Pg C year-1 in the study period and reached the highest value of 0.82 + 

0.28 Pg C year-1 in the 2000s and the 2010s. The NEP of the tropical rainforests has significant 

interannual variation related to ENSO cycles. In the El Niño years of 1998, 1987, 1983, 1969, 

1958, 1941, 1931, 1926, 1871, the tropical rainforests had negative NEP, implying that the tropical 

rainforests are a C source during most El Niño years. 

The DLEM-CNP simulation that was driven by time-varying environmental factors 

showed that NPP, GPP, and NEP of the tropical rainforests presented great spatial variability 

across the tropical regions (Figure 4-7). Higher GPP was located in the western and northern parts 

of the Amazonia, the eastern part of tropical Africa, and some areas in Southeast Asia and the 

Pacific Islands. By contrast, the lowest GPP was in the southeast part of the Amazonia and west 

tropical Africa. As NPP is closely related to GPP, the general spatial pattern of the tropical 
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rainforests NPP was similar to the spatial pattern of GPP. We found that the higher NEP was 

located in Central America, the western part of South America, the eastern part of tropical Africa, 

and Southeast Asia and the Pacific Islands, likely because of more parent P and less P limitation 

in these areas  (Figure 4-7). The Mann-Kendall (MK) trend test showed that, in most tropical 

rainforests, GPP and NPP showed significant increasing trends (Figure 4-8). Also, the trends of 

GPP and NPP had similar spatial patterns. Although the Sen's slope of the NEP showed increasing 

trends in most tropical rainforests, there was no significant NEP trend (p-value ≥ 0.05) in some 

areas of the central Amazonia, the edge of Africa rainforests, Southeast Asia and the Pacific Islands, 

Australia (Figure 4-8). 

javascript:;
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Figure 4- 6 Inter-annual variations of tropical forest GPP (a), NPP (b), and NEP (c; Pg C per year) for 1860–2018 simulated by the 

DLEM-CNP driven by all historical environmental factors. The shade means one standard deviation (sd) of each simulation. 
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Figure 4- 7 Spatial distribution of the annual mean GPP (a; g C/m2/year), NPP (c; g C/m2/year), and NEP (e; g C/m2/year) in the 

tropical forests in the 1860s and the 2010s simulated by the DLEM-CNP with all historical environmental forcing. In the 2010s, 

annual mean GPP minus the mean of all grids (e), the annual mean NPP minus the mean of all grids (f), and the annual mean NEP 

minus the mean of all grids (i). 
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Figure 4- 8 Sen's slope of the tropical rainforests annual GPP (g C m-2 year-1, a), NPP (g C m-2 year-1, b), and NEP (g C m-2 year-1, c) 

during 1860-2018. And area of the tropical forests with significant and insignificant trends in annual GPP (d), NPP (e), and NEP (f). 

The significance of the trend is estimated through the MK trend test, and p-values less than 0.05 are significant.
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3.4. Various factors' impacts with the CO2 fertilization effect in the tropical rainforests 

We investigated different environmental factors' contribution to GPP and NPP comparing 

with the CO2 fertilization effect during the period 1860-2018 (Figure 4-9). The CO2 fertilization 

effect and deforestation were found to be the two most significant factors that influenced the long-

term GPP and NPP trends. The combined effects of climate variability, atmospheric CO2, N 

deposition, and deforestation resulted in decreased tropical rainforest GPP and NPP with varying 

degrees. Before the 1910s, the negative deforestation impacts offset the positive CO2 fertilization 

effect, resulting in a slight GPP reduction of 0.20 Pg C year-1. Between the 1920s and the 1960s, 

deforestation was the dominating factor of the significantly declined GPP (0.83 Pg C year-1). The 

largest GPP reduction (1.56 Pg C year-1) occurred in the 1960s. After the 1960s, the CO2 

fertilization effect largely stimulated GPP increase, leading to the increased tropical rainforest GPP. 

During the1860s to the 1910s, NPP had a slight increase of 0.0019 Pg C year-1 due to the combined 

effect of environmental factors. Then the NPP shows a similar pattern with GPP from the 1920s 

to the 2010s.  

Compared with atmospheric CO2 and deforestation, climate and N deposition had a small 

effect on the simulated GPP and NPP throughout the study period. Climate presented diverged 

impacts on GPP and NPP in some periods. For example, in the 1990s, 2000s, and 2010s, climate 

increased GPP by 0.13, 0.44, and 0.59 Pg C year-1 but reduced NPP by 0.15, 0.06, and 0.09 Pg C 

year-1. The GPP and NPP increase by N deposition was relatively stable after the 2000s as a result 

of a relatively stable level in the N deposition input (Figure S2-3). 
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Figure 4- 9 Changes in tropical rainforests decadal GPP (a) and NPP (b) contributed by multiple 

environmental factors, including climate variability (Climate), atmospheric CO2 (CO2), 

atmospheric N deposition (N deposition), and deforestation during 1860–2018 simulated by the 

DLEM-CNP. Contributions of environmental factors were estimated by the difference between 

simulation scenarios (Table 4-1). Black lines represent the combined effects of all the driving 

factors(S1-S0).  
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Figure 4- 10 Structural equation model of NPP interactions with P uptake, available P, 

precipitation, temperature, and CO2. Numbers adjacent to arrows in the diagram are standardized 

path coefficients indicating the magnitude of the influence between factors, and the significance 

level is indicated by * (p < 0.05). The width of arrows is proportional to the strength of 

standardized path coefficients, and the green and red colors indicate positive and negative 

effects, respectively. 

 

PAM was used to quantify the direct and indirect effects of CO2 and climate with NPP, P 

uptake, and available P. As shown in Figure 4-10, annual mean precipitation and temperature had 

a small positive effect on NPP, while the CO2 concentration had a major influence on NPP increase, 

with a direct effect of 0.69, indicating that the CO2 fertilization effect is the most significant factor 

enhancing tropical rainforests NPP. The NPP showed a significantly positive correlation with plant 

P uptake, with a correlation coefficient of 0.93, suggesting that an increase in NPP was 

accompanied by increasing plant P uptake as more P is needed for plants to support C fixation. 

Meanwhile, the available P in soil also significantly promoted plant P uptake, with a direct positive 

effect of 0.51. However, the CO2 concentration showed a significantly negative effect on the 

available P in the soil, with a direct effect of -0.78, indicating that under the increased CO2 

condition, soil available P may damp the CO2 fertilization effect. In addition, precipitation and 

temperature have negative effects on available P, but not significantly. 
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4. Discussion  

4.1 Spatial heterogeneity of the simulated GPP and NPP 

Simulations of the DLEM-CNP showed considerable spatial variations in annual GPP and 

NPP compared to the simulations of the DLEM-C and had a different spatial pattern compared to 

the DLEM-CN (Figure 4-5). The GPP and NPP simulated by the DLEM-CNP showed a decreasing 

gradient from west to east across the Amazonia (Figure 4-5), which is consistent with field 

observations. In the Amazon basin, field observations have demonstrated the spatial variation of 

forest aboveground wood productivity (Malhi et al., 2004) and NPP (Aragão et al., 2009; Malhi et 

al., 2009). These studies showed that Amazon forests in the west tend to have higher productivity, 

while those in the east and central Amazon are slower growing with lower NPP (Baker et al., 2004; 

Malhi et al., 2004; Quesada et al., 2012). A number of mechanisms have been discussed in the 

existing literature about the productivity gradient in the Amazon region, such as climate, soil 

physical and chemical properties, soil nutrient limitations, and species composition (Castanho et 

al., 2013; Fauset et al., 2019; Fyllas et al., 2009; Malhi, 2012; Mercado et al., 2011; Quesada et al., 

2012). However, the underlying mechanisms are still not well understood. In the DELM-CNP 

simulation, we showed that this productivity gradient in the Amazon region is related to P 

limitation and soil P availability. 

Beyond the Amazon region, the DLEM-CNP simulated GPP and NPP do not show 

significant differences between different continents. Some field studies indicated that tropical 

rainforest productivity might vary between different continents (Banin et al., 2014; Lewis et al., 

2013). However, there have been too few systematic cross-continental comparisons of tropical 

rainforest productivity to draw a clear conclusion, so more studies for cross-continental 

comparisons of tropical rainforests are still needed.  
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4.2 Phosphorus limitation on the CO2 fertilization effect  

Elevated CO2 concentration increasing photosynthesis is undisputed (Lloyd & Farquhar, 

1996), and aboveground biomass growth is perhaps the most obvious manifestation of the CO2 

fertilization effect on trees in many field experiments (Norby et al., 2005). However, questions 

have arisen concerning the CO2 fertilization effect will be constrained by nutrient cycling. 

Nutrients, primarily N and P, control or limit the plant responses to the CO2 fertilization effect has 

been long recognized (Norby et al., 2010; Terrer et al., 2019; Thornton et al., 2007; Wieder et al., 

2015). Our results showed that P limitation reduced the CO2 effects on GPP and NPP in the tropical 

rainforests (Figure 4-4 and 4-7), which was consistent with the simulation of the planned 

AmazonFACE experiment (Fleischer et al., 2019). Their simulation showed that NPP response to 

15-year elevated CO2 (+200 ppm) was 35%, 29%, 9% for the C, CN, and CNP models, respectively. 

Fleischer et al. (2019) showed that the CO2 fertilization effect on GPP and NPP showed the fastest 

declined in the CNP models due to P limitation. Several modeling studies also demonstrated that 

coupling P dynamics into TBMs could reduce the CO2 fertilization impacts on terrestrial C uptake 

in the Amazon basin and other tropical regions (Goll et al., 2012; Wang et al., 2010; Yang et al., 

2019; Yang et al., 2016; Zhang et al., 2011). Additionally, McMurtrie et al. (2008) reported that 

plant growth at low nutrient availability consistently reduces the percentage growth response to 

elevated CO2. This pattern was shown in field experiments of many tropical tree species (Cernusak 

et al., 2011; Winter et al., 2001; Winter et al., 2000). These results supported our findings that the 

GPP and NPP increase rates reduced when considering P limitation. In our results, from 1860 to 

2018, the differences in GPP and NPP between DLEM-C, DLEM-CN, and DLEM-CNP increased 

over time, indicating that P limitation on CO2 fertilization effect increased gradually.  
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The overall picture from the PAM also indicates that under the increased CO2 condition, P 

becomes more limiting because more P is needed for plant growth, but soil available P may 

decrease and constrain the demanded P uptake. Despite the fact that total productivity increased 

under elevated CO2, the increase is constrained by P availability in tropical forests where 

antecedent soil P availability is low (Terrer et al., 2019). 

4.3 Comparison of DLEM-CNP simulated terrestrial C fluxes with other estimates 

Bottom-up estimates of C stocks and fluxes in tropical forests based on inventory data and 

long-term field observations provide a good opportunity to compare with model results. Malhi 

(2010) estimated that the intact tropical rainforest represents a carbon sink of 0.82 ± 0.11 

Pg C year−1 during 1987 – 1997 based on the analysis of Lewis et al. (2009) and the forest areas 

in each continent. For the same period, our simulation of NEP was 0.60 ± 0.35 Pg C year−1, which 

is comparable with Malhi's estimate. Hubau et al. (2020) suggested that the C sink in 

structurally intact old-growth tropical forests in the pan-tropics is between 0.16–1.52 Pg C year−1 

for 1980–1990, 0.88–1.63 Pg C year−1for 1990–2000, 0.70–1.25 Pg C year−1 for 2000–2010 and 

0.25–1.18 Pg C year−1 for 2010–2015. DLEM-CNP simulated NEP for the same periods are 0.60 

± 0.45, 0.64 ± 0.40, 0.77 ± 0.27 and 0.77 ± 0.30 Pg C year−1, respectively. All the DLEM-CNP 

simulated values fall within the inventory-based statistic intervals. 

4.4 Nutrient and drought effects on tropical rainforests under the rising CO2 

Our results showed that the NEP of the tropical rainforests has significant interannual 

variation related to ENSO cycles. In the El Niño years of 1998, 1987, 1983, 1969, 1958, 1941, 

1931, 1926, 1871, the tropical rainforests had negative NEP (Figure 4-6f), implying that the 

tropical rainforests are a C source during most El Niño years. The tropical rainforest C sink 

declines during El Niño years, which has been recognized in previous studies. Tian et al. (1998) 
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suggested that El Niño events with hot and dry weather over much of the Amazon region drove a 

shift of Amazon forest carbon balance from a C sink towards a net C source. Bastos et al. (2018) 

investigated the 2015/2016 El Niño impacts on the terrestrial carbon cycle with TBMs simulations 

and reported that decreased vegetation productivity, rather than increased respiration, dominated 

the net biome productivity anomalies in response to ENSO throughout the tropics. Our findings 

are consistent with these studies (Figure S2-5). Furthermore, the interaction between drought and 

plant nutrient availability may intensify the decrease in productivity during a drought event by 

reducing soil nutrient availability. The reduced soil moisture content during droughts can limit 

available nutrients for plant to use by decreasing microbial activity (Lévesque et al., 2016; Schimel 

et al., 2007) and reducing nutrient diffusion and mass flow in the soil (Lambers et al., 2008). 

However, drought impact on nutrient uptake is species‐ and nutrient‐dependent (Lévesque et al., 

2016). Additionally, the low nutrient availability could change plant traits such as reduced shoot‐

to‐root ratios in order to decrease the susceptibility to drought (Ewers et al., 2000) as well as 

alleviate soil drought as a result of P limitation reducing water consumption during wet periods 

(Goll et al., 2018).  

Furthermore, increasing CO2 concentration could enhance the resistance of tropical 

rainforests to drought. Plants could improve water use efficiency (WUE) with rising CO2, thereby 

fixing more C through photosynthesis for a given amount of transpiration (Battipaglia et al., 2013). 

This could help maintain more soil water owing to reduced transpiration, which could prolong 

transpiration and, therefore, photosynthesis for a longer time between rain events (Holtum & 

Winter, 2010; Leuzinger & KÖRner, 2007). Such water savings mechanism could benefit 

microbial activity and nutrient provision and maintain turgor pressure in meristem tissues for cell 

expansion (Boyer, 1968; Eamus, 1991), and, thereby, promote plant growth.  
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4.5 Uncertainty and future work 

Uncertainties in this study mainly come from TrEBF subdivision classification and model 

parameterization and simulation. First, although grouping TrEBF into four subdivisions and 

assigning different Vcmax25 enhanced the model performance of GPP simulation at FLUXNET sites, 

this is an exploratory approach for improving the representation of biophysical parameters of 

tropical rainforests. With a small number (13) of tropical rainforest information sites, the k-mean 

cluster approach to cluster grids into 4 group centers may introduce bias, which could increase 

uncertainty to our subdivision classification. Thus, in the future, we need to expand the numbers 

of tropical rainforest sites with reliable data to help create a better TrEBF subdivision. Second, our 

simulations did not consider the fire effect, which is a critical factor in the tropical rainforest C 

cycle. Carbon emissions from tropical forest fires can have a large impact on C flux interannual 

variability (Cochrane, 2003). For instance, forest fires in Amazonia released an average of 454 Tg 

of CO2 per year from 2003 to 2015, with large spikes during the dry years in 2005, 2007, and 2015 

(Brando et al., 2019; Silva et al., 2018). During the 1997–1998 El Niño event, large areas of forests 

burned in Indonesia, releasing an estimated 0.81–2.57 Pg C to the atmosphere (Brando et al., 2019; 

Page et al., 2002). In addition, fires resulted in increased tree mortality, changed ecosystem 

productivity, and release large amounts of C to the atmosphere as dead trees decompose (Barlow 

et al., 2003). Third, the DLEM-CNP lacks detailed representations of the tree mortality events 

caused by wind and insects. Without accurately accounting for tree mortality, the C sink in tropical 

rainforests may be overestimated (Trumbore et al., 2015). Finally, while the current model includes 

a detailed treatment of many components of the terrestrial P cycle, it lacks details on the 

biochemical mineralization process, a process that plants and microbes can produce phosphatase 

enzymes to mineralize P in soil organic matter but without mineralizing C and N (Mcgill & Cole, 
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1981). This may result in an underestimation of the available P and cause stronger P limitation on 

plant productivity (Wang et al., 2007).  

5. Conclusions 

This study represents the first attempt to assess the long-term historical changes of GPP, 

NPP, and NEP with a fully coupled C-N-P ecosystem model for pantropical rainforests under 

elevated CO2, using a TrEBF subdivision classification scheme. The simulations with subdivided 

TrEBF and different Vcmax25 improved model accuracy. And results showed that the P limitation 

reduced the responses of GPP, NPP, and NEP in the tropical rainforests to the CO2 fertilization 

effect. The combined effects of N and P limitation reduced the CO2 fertilization effect on the GPP, 

NPP, and NEP by 45%, 46%, and 41%, respectively. Compared with the DLEM-CN, the DLEM-

CNP lowered the GPP increase by 25%, the NPP increase by 25%, and the NEP increase 28% 

from 1860 to 2018. DLEM-CNP simulations showed large spatial variations of ecosystem GPP 

and NPP associated with the P limitation on photosynthesis. Using DLEM-CNP under historical 

environmental conditions during 1860-2018, we estimated that tropical rainforests GPP increased 

by 17 % from 2464 + 9 g C m-2 year-1 to 2881 + 25 g C m-2 year-1, NPP increased by 16 % from 

1192 + 10 g C m-2 year-1 to 1383 + 21 g C m-2 year-1, and NEP increased by 121% from 29 + 13 g 

C m-2 year-1 to 65  + 23 g C m-2 year-1 from the 1860s to the 2010s. In the 2000s and 2010s, the 

NEP reached the highest amount of 0.82 + 0.28 Pg C year-1. The CO2 fertilization effect was the 

most prominent factor in enhancing the GPP and NPP, while deforestation was the primary factor 

accounting for GPP and NPP reduction and offset the CO2 fertilization effect by 147% and 135% 

from the 1860s to the 2010s. Our study implicated that the carbon sink potential of tropical 

rainforests is likely reduced due to the continuous increase in deforestation as well as the P-

limitation and highlighted the importance of P limitation on the C cycle in tropical rainforests. 



 118 

References 

Aragão, L. E. O. C., Malhi, Y., Metcalfe, D. B., Silva-Espejo, J. E., Jiménez, E., Navarrete, D., et 

al. (2009). Above- and below-ground net primary productivity across ten Amazonian 

forests on contrasting soils. Biogeosciences, 6(12), 2759-2778. https://doi.org/10.5194/bg-

6-2759-2009 

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Fiore, A. D., et al. (2004). 

Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal 

Society of London. Series B: Biological Sciences, 359(1443), 353-365. 

https://doi.org/10.1098/rstb.2003.1422 

Banin, L., Lewis, S. L., Lopez-Gonzalez, G., Baker, T. R., Quesada, C. A., Chao, K.-J., et al. 

(2014). Tropical forest wood production: a cross-continental comparison. Journal of 

Ecology, 102(4), 1025-1037. https://doi.org/10.1111/1365-2745.12263 

Barlow, J., Peres, C. A., Lagan, B. O., & Haugaasen, T. (2003). Large tree mortality and the 

decline of forest biomass following Amazonian wildfires. Ecology letters, 6(1), 6-8. 

https://doi.org/10.1046/j.1461-0248.2003.00394.x 

Bastos, A., Friedlingstein, P., Sitch, S., Chen, C., Mialon, A., Wigneron, J.-P., et al. (2018). 

Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up 

and top-down approaches. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 373(1760), 20170304. https://doi.org/10.1098/rstb.2017.0304 

Batjes, N. H. (2009). ISRIC-WISE - Global Soil Profile Data (ver. 3.1). Retrieved from: 

https://doi.org/10.1594/PANGAEA.858569 

Battipaglia, G., Saurer, M., Cherubini, P., Calfapietra, C., McCarthy, H. R., Norby, R. J., & 

Francesca Cotrufo, M. (2013). Elevated CO2 increases tree-level intrinsic water use 

efficiency: insights from carbon and oxygen isotope analyses in tree rings across three 

forest FACE sites. New Phytologist, 197(2), 544-554. 

https://doi.org/https://doi.org/10.1111/nph.12044 

Bonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., & Reichstein, M. (2012). Reconciling 

leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in 

the Community Land Model version 4. Journal of Geophysical Research: Biogeosciences, 

117(G2). https://doi.org/10.1029/2011JG001913 

Boyer, J. S. (1968). Relationship of Water Potential to Growth of Leaves. Plant physiology, 

43(7), 1056-1062. https://doi.org/10.1104/pp.43.7.1056 

Brando, P. M., Paolucci, L., Ummenhofer, C. C., Ordway, E. M., Hartmann, H., Cattau, M. E., et 

al. (2019). Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. 

Annual Review of Earth and Planetary Sciences, 47(1), 555-581. 

https://doi.org/10.1146/annurev-earth-082517-010235 



 119 

Castanho, A. D. A., Coe, M. T., Costa, M. H., Malhi, Y., Galbraith, D., & Quesada, C. A. 

(2013). Improving simulated Amazon forest biomass and productivity by including spatial 

variation in biophysical parameters. Biogeosciences, 10(4), 2255-2272. 

https://doi.org/10.5194/bg-10-2255-2013 

Cernusak, L. A., Winter, K., Dalling, J. W., Holtum, J. A. M., Jaramillo, C., Körner, C., et al. 

(2013). Tropical forest responses to increasing atmospheric CO2: current knowledge and 

opportunities for future research. Functional plant biology, 40(6), 531-551. 

https://doi.org/https://doi.org/10.1071/FP12309 

Cernusak, L. A., Winter, K., Martínez, C., Correa, E., Aranda, J., Garcia, M., et al. (2011). 

Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated 

CO<sub>2</sub> Concentration. Plant physiology, 157(1), 372-385. 

https://doi.org/10.1104/pp.111.182436 

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et al. (2013). Carbon and 

other biogeochemical cycles. Climate change 2013: the physical science basis. 

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental 

Panel on Climate Change. Comput. Geom, 18, 95-123.  

Clark, D. A., Brown, S., Kicklighter, D. W., Chambers, J. Q., Thomlinson, J. R., Ni, J., & 

Holland, E. A. (2001). Net primary production in tropical forests: an evaluation and 

synthesis of existing field data. Ecological applications, 11(2), 371-384.  

Clark, D. A., Piper, S. C., Keeling, C. D., & Clark, D. B. (2003). Tropical rain forest tree growth 

and atmospheric carbon dynamics linked to interannual temperature variation during 1984–

2000. Proceedings of the National Academy of Sciences, 100(10), 5852. 

https://doi.org/10.1073/pnas.0935903100 

Cochrane, M. A. (2003). Fire science for rainforests. Nature, 421(6926), 913-919. 

https://doi.org/10.1038/nature01437 

Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, 

C. M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon 

dioxide variability. Nature, 494, 341. https://doi.org/10.1038/nature11882 

Davidson, E. A., Reis de Carvalho, C. J., Vieira, I. C. G., Figueiredo, R. d. O., Moutinho, P., 

Yoko Ishida, F., et al. (2004). NITROGEN AND PHOSPHORUS LIMITATION OF 

BIOMASS GROWTH IN A TROPICAL SECONDARY FOREST. Ecological 

applications, 14(sp4), 150-163. https://doi.org/10.1890/01-6006 

De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C., & Terrer, C. (2016). Satellite 

based estimates underestimate the effect of CO2 fertilization on net primary productivity. 

Nature Climate Change, 6(10), 892-893. https://doi.org/10.1038/nclimate3105 

Eamus, D. (1991). The interaction of rising CO2 and temperatures with water use efficiency. 

Plant, Cell & Environment, 14(8), 843-852. https://doi.org/https://doi.org/10.1111/j.1365-

3040.1991.tb01447.x 



 120 

Ewers, B. E., Oren, R., & Sperry, J. S. (2000). Influence of nutrient versus water supply on 

hydraulic architecture and water balance in Pinus taeda. Plant, Cell & Environment, 

23(10), 1055-1066. https://doi.org/10.1046/j.1365-3040.2000.00625.x 

Farquhar, G. D., von Caemmerer, S., & Berry, J. A. J. P. (1980). A biochemical model of 

photosynthetic CO2 assimilation in leaves of C3 species. 149(1), 78-90. journal article. 

https://doi.org/10.1007/bf00386231 

Fauset, S., Gloor, M., Fyllas, N. M., Phillips, O. L., Asner, G. P., Baker, T. R., et al. (2019). 

Individual-Based Modeling of Amazon Forests Suggests That Climate Controls 

Productivity While Traits Control Demography. 7(83). Original Research. 

https://doi.org/10.3389/feart.2019.00083 

Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary Production of 

the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281(5374), 237-

240. https://doi.org/10.1126/science.281.5374.237 

Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F., Fuchslueger, L., 

et al. (2019). Amazon forest response to CO2 fertilization dependent on plant phosphorus 

acquisition. Nature Geoscience. https://doi.org/10.1038/s41561-019-0404-9 

Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., et al. 

(2019). Global Carbon Budget 2019. Earth Syst. Sci. Data, 11(4), 1783-1838. 

https://doi.org/10.5194/essd-11-1783-2019 

Friend, A. D., Arneth, A., Kiang, N. Y., Lomas, M., OgÉE, J., RÖDenbeck, C., et al. (2007). 

FLUXNET and modelling the global carbon cycle. Global Change Biology, 13(3), 610-

633. https://doi.org/10.1111/j.1365-2486.2006.01223.x 

Fu, Z., Gerken, T., Bromley, G., Araújo, A., Bonal, D., Burban, B., et al. (2018). The surface-

atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental 

drivers and flux measurement methodology. Agricultural and Forest Meteorology, 263, 

292-307. https://doi.org/https://doi.org/10.1016/j.agrformet.2018.09.001 

Fyllas, N. M., Patino, S., Baker, T., Bielefeld Nardoto, G., Martinelli, L., Quesada, C., et al. 

(2009). Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils 

and climate. 6, 2677-2708.  

Goll, D., Joetzjer, E., Huang, M., & Ciais, P. (2018). Low Phosphorus Availability Decreases 

Susceptibility of Tropical Primary Productivity to Droughts. Geophysical Research Letters, 

45(16), 8231-8240.  

Goll, D., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., et al. (2017). A 

representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geoscientific 

Model Development Discussions, 10(10), 3745-3770.  

Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., et al. (2012). 

Nutrient limitation reduces land carbon uptake in simulations with a model of combined 



 121 

carbon, nitrogen and phosphorus cycling. Biogeosciences, 9(9), 3547-3569. 

https://doi.org/10.5194/bg-9-3547-2012 

He, L., Chen, J. M., Liu, J., Zheng, T., Wang, R., Joiner, J., et al. (2019). Diverse photosynthetic 

capacity of global ecosystems mapped by satellite chlorophyll fluorescence measurements. 

Remote sensing of Environment, 232, 111344. 

https://doi.org/https://doi.org/10.1016/j.rse.2019.111344 

Hofhansl, F., Andersen, K. M., Fleischer, K., Fuchslueger, L., Rammig, A., Schaap, K. J., et al. 

(2016). Amazon Forest Ecosystem Responses to Elevated Atmospheric CO2 and 

Alterations in Nutrient Availability: Filling the Gaps with Model-Experiment Integration. 

Frontiers in Earth Science, 4(19). Perspective. https://doi.org/10.3389/feart.2016.00019 

Holtum, J. A. M., & Winter, K. (2010). Elevated CO2 and forest vegetation: more a water issue 

than a carbon issue? Functional plant biology, 37(8), 694-702. 

https://doi.org/https://doi.org/10.1071/FP10001 

Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., et 

al. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. 

Nature, 579(7797), 80-87. https://doi.org/10.1038/s41586-020-2035-0 

Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., et al. 

(2013). Simulated resilience of tropical rainforests to CO2-induced climate change. Nature 

Geoscience, 6(4), 268-273. https://doi.org/10.1038/ngeo1741 

Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., et al. 

(2020). The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 

580(7802), 227-231. https://doi.org/10.1038/s41586-020-2128-9 

Jung, M., Henkel, K., Herold, M., & Churkina, G. (2006). Exploiting synergies of global land 

cover products for carbon cycle modeling. Remote sensing of Environment, 101(4), 534-

553. https://doi.org/10.1016/j.rse.2006.01.020 

Kattge, J., Knorr, W., Raddatz, T., & Wirth, C. (2009). Quantifying photosynthetic capacity and 

its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global 

Change Biology, 15(4), 976-991. https://doi.org/10.1111/j.1365-2486.2008.01744.x 

Kolby Smith, W., Reed, S. C., Cleveland, C. C., Ballantyne, A. P., Anderegg, W. R. L., Wieder, 

W. R., et al. (2016). Large divergence of satellite and Earth system model estimates of 

global terrestrial CO2 fertilization. Nature Climate Change, 6(3), 306-310. 

https://doi.org/10.1038/nclimate2879 

Lambers, H., Chapin III, F. S., & Pons, T. L. (2008). Plant physiological ecology: Springer 

Science & Business Media. 

Leuzinger, S., & KÖRner, C. (2007). Water savings in mature deciduous forest trees under 

elevated CO2. Global Change Biology, 13(12), 2498-2508. 

https://doi.org/https://doi.org/10.1111/j.1365-2486.2007.01467.x 



 122 

Lévesque, M., Walthert, L., & Weber, P. (2016). Soil nutrients influence growth response of 

temperate tree species to drought. Journal of Ecology, 104(2), 377-387. 

https://doi.org/10.1111/1365-2745.12519 

Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., et al. 

(2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 

1003-1006. https://doi.org/10.1038/nature07771 

Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., Heijden, G. M. F. v. 

d., et al. (2013). Above-ground biomass and structure of 260 African tropical forests. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 

20120295. https://doi.org/doi:10.1098/rstb.2012.0295 

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. (2017). 

Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. 

Science, 358(6360), eaam5690. https://doi.org/10.1126/science.aam5690 

Liu, Y., Piao, S., Gasser, T., Ciais, P., Yang, H., Wang, H., et al. (2019). Field-experiment 

constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature 

Geoscience. https://doi.org/10.1038/s41561-019-0436-1 

Lloyd, J. (1999). The CO2 dependence of photosynthesis, plant growth responses to elevated 

CO2 concentrations and their interaction with soil nutrient status, II. Temperate and boreal 

forest productivity and the combined effects of increasing CO2 concentrations and 

increased nitrogen deposition at a global scale. Functional Ecology, 13(4), 439-459. 

https://doi.org/10.1046/j.1365-2435.1999.00350.x 

Lloyd, J., & Farquhar, G. D. (1996). The CO2 Dependence of Photosynthesis, Plant Growth 

Responses to Elevated Atmospheric CO<sub>2</sub> Concentrations and Their 

Interaction with Soil Nutrient Status. I. General Principles and Forest Ecosystems. 

Functional Ecology, 10(1), 4-32. https://doi.org/10.2307/2390258 

Lovett, G. M., Cole, J. J., & Pace, M. L. (2006). Is Net Ecosystem Production Equal to 

Ecosystem Carbon Accumulation? Ecosystems, 9(1), 152-155. 

https://doi.org/10.1007/s10021-005-0036-3 

MacQueen, J. (1967, 1967). Some methods for classification and analysis of multivariate 

observations. Paper presented at the Proceedings of the Fifth Berkeley Symposium on 

Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, Calif. 

Malhi, Y. (2010). The carbon balance of tropical forest regions, 1990–2005. Current Opinion in 

Environmental Sustainability, 2(4), 237-244. 

https://doi.org/https://doi.org/10.1016/j.cosust.2010.08.002 

Malhi, Y. (2012). The productivity, metabolism and carbon cycle of tropical forest vegetation. 

Journal of Ecology, 100(1), 65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.x. 

https://doi.org/https://doi.org/10.1111/j.1365-2745.2011.01916.x 



 123 

Malhi, Y., AragÃO, L. E. O. C., Metcalfe, D. B., Paiva, R., Quesada, C. A., Almeida, S., et al. 

(2009). Comprehensive assessment of carbon productivity, allocation and storage in three 

Amazonian forests. Global Change Biology, 15(5), 1255-1274. 

https://doi.org/10.1111/j.1365-2486.2008.01780.x 

Malhi, Y., Baker, T. R., Phillips, O. L., Almeida, S., Alvarez, E., Arroyo, L., et al. (2004). The 

above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change 

Biology, 10(5), 563-591. https://doi.org/10.1111/j.1529-8817.2003.00778.x 

Mcgill, W. B., & Cole, C. V. (1981). Comparative Aspects of Cycling of Organic C, N, S and P 

through Soil Organic-Matter. Geoderma, 26(4), 267-286. https://doi.org/Doi 

10.1016/0016-7061(81)90024-0 

McMurtrie, R. E., Norby, R. J., Medlyn, B. E., Dewar, R. C., Pepper, D. A., Reich, P. B., & 

Barton, C. V. M. (2008). Why is plant-growth response to elevated CO2 amplified when 

water is limiting, but reduced when nitrogen is limiting? A growth-optimisation 

hypothesis. Functional plant biology, 35(6), 521-534. 

https://doi.org/https://doi.org/10.1071/FP08128 

Mercado, L. M., Patiño, S., Domingues, T. F., Fyllas, N. M., Weedon, G. P., Sitch, S., et al. 

(2011). Variations in Amazon forest productivity correlated with foliar nutrients and 

modelled rates of photosynthetic carbon supply. Philosophical transactions of the Royal 

Society of London. Series B, Biological sciences, 366(1582), 3316-3329. 

https://doi.org/10.1098/rstb.2011.0045 

Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature, 

559(7715), 527-534. https://doi.org/10.1038/s41586-018-0300-2 

Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., et al. 

(2005). Forest response to elevated CO2 is conserved across a broad range of productivity. 

Proceedings of the National Academy of Sciences of the United States of America, 102(50), 

18052-18056. https://doi.org/10.1073/pnas.0509478102 

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO2 

enhancement of forest productivity constrained by limited nitrogen availability. 

Proceedings of the National Academy of Sciences, 107(45), 19368-19373. 

https://doi.org/10.1073/pnas.1006463107 

Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., & Ceulemans, R. (1999). 

Tree responses to rising CO2 in field experiments: implications for the future forest. Plant, 

Cell & Environment, 22(6), 683-714. https://doi.org/10.1046/j.1365-3040.1999.00391.x. 

https://doi.org/https://doi.org/10.1046/j.1365-3040.1999.00391.x 

Norby, R. J., & Zak, D. R. (2011). Ecological Lessons from Free-Air CO2 Enrichment (FACE) 

Experiments. Annual Review of Ecology, Evolution, and Systematics, 42(1), 181-203. 

https://doi.org/10.1146/annurev-ecolsys-102209-144647 



 124 

Page, S. E., Siegert, F., Rieley, J. O., Boehm, H.-D. V., Jaya, A., & Limin, S. (2002). The 

amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 

420(6911), 61-65. https://doi.org/10.1038/nature01131 

Pan, S., Tian, H., Dangal, S. R., Ouyang, Z., Tao, B., Ren, W., et al. (2014). Modeling and 

monitoring terrestrial primary production in a changing global environment: toward a 

multiscale synthesis of observation and simulation. Advances in Meteorology, 2014.  

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A 

Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988. 

https://doi.org/10.1126/science.1201609 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., et al. (2020). 

The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance 

data. Scientific Data, 7(1), 225. https://doi.org/10.1038/s41597-020-0534-3 

Quesada, C. A., Lloyd, J., Schwarz, M., Patiño, S., Baker, T. R., Czimczik, C., et al. (2010). 

Variations in chemical and physical properties of Amazon forest soils in relation to their 

genesis. Biogeosciences, 7(5), 1515-1541. https://doi.org/10.5194/bg-7-1515-2010 

Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., et al. 

(2012). Basin-wide variations in Amazon forest structure and function are mediated by 

both soils and climate. Biogeosciences, 9(6), 2203-2246. https://doi.org/10.5194/bg-9-

2203-2012 

Schimel, D., Stephens, B. B., & Fisher, J. B. (2015). Effect of increasing CO2 on the terrestrial 

carbon cycle. Proceedings of the National Academy of Sciences, 112(2), 436-441. 

https://doi.org/10.1073/pnas.1407302112 

Schimel, J., Balser, T. C., & Wallenstein, M. (2007). MICROBIAL STRESS-RESPONSE 

PHYSIOLOGY AND ITS IMPLICATIONS FOR ECOSYSTEM FUNCTION. Ecology, 

88(6), 1386-1394. https://doi.org/10.1890/06-0219 

Silva, C. V. J., Aragão, L. E. O. C., Barlow, J., Espirito-Santo, F., Young, P. J., Anderson, L. O., 

et al. (2018). Drought-induced Amazonian wildfires instigate a decadal-scale disruption of 

forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 373(1760), 20180043. https://doi.org/10.1098/rstb.2018.0043 

Tanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). EXPERIMENTAL INVESTIGATION 

OF NUTRIENT LIMITATION OF FOREST GROWTH ON WET TROPICAL 

MOUNTAINS. Ecology, 79(1), 10-22. https://doi.org/10.1890/0012-

9658(1998)079[0010:EIONLO]2.0.CO;2 

Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., et al. (2019). 

Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature 

Climate Change, 9(9), 684-689. https://doi.org/10.1038/s41558-019-0545-2 



 125 

Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., & Mahowald, N. M. (2007). Influence of 

carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate 

variability. Global Biogeochemical Cycles, 21(4). https://doi.org/10.1029/2006GB002868 

Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D., Helfrich, J. V. K., Moore, B., & 

Vörösmarty, C. J. (1998). Effect of interannual climate variability on carbon storage in 

Amazonian ecosystems. Nature, 396(6712), 664-667. https://doi.org/10.1038/25328 

Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., et al. (2018). The Global N2O 

Model Intercomparison Project. Bulletin of the American Meteorological Society, 99(6), 

1231-1251. https://doi.org/10.1175/BAMS-D-17-0212.1 

Trumbore, S., Brando, P., & Hartmann, H. (2015). Forest health and global change. Science, 

349(6250), 814-818. https://doi.org/10.1126/science.aac6759 

Turner, B. L., Brenes-Arguedas, T., & Condit, R. (2018). Pervasive phosphorus limitation of tree 

species but not communities in tropical forests. Nature, 555, 367. 

https://doi.org/10.1038/nature25789 

Vitousek, P. M. (2004). Nutrient cycling and limitation: Hawai'i as a model system: Princeton 

University Press. 

Vitousek, P. M., Porder, S., Houlton, B. Z., & Chadwick, O. A. (2010). Terrestrial phosphorus 

limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological 

applications, 20(1), 5-15.  

Walker, A. P., Beckerman, A. P., Gu, L., Kattge, J., Cernusak, L. A., Domingues, T. F., et al. 

(2014). The relationship of leaf photosynthetic traits – Vcmax and Jmax – to leaf nitrogen, 

leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecology and 

Evolution, 4(16), 3218-3235. https://doi.org/10.1002/ece3.1173 

Walker, T., & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15(1), 

1-19.  

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., et al. (2020a). Recent global 

decline of CO2 fertilization effects on vegetation photosynthesis. Science, 370(6522), 

1295-1300. https://doi.org/10.1126/science.abb7772 

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., et al. (2020b). Recent global 

decline of CO<sub>2</sub> fertilization effects on vegetation photosynthesis. Science, 

370(6522), 1295-1300. https://doi.org/10.1126/science.abb7772 

Wang, Y. P., Houlton, B. Z., & Field, C. B. (2007). A model of biogeochemical cycles of carbon, 

nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase 

production. Global Biogeochemical Cycles, 21(1). https://doi.org/10.1029/2006GB002797 

Wang, Y. P., Law, R., & Pak, B. (2010). A global model of carbon, nitrogen and phosphorus 

cycles for the terrestrial biosphere. Biogeosciences, 7(7), 2261-2282.  



 126 

Wang, Z., Tian, H., Yang, J., Shi, H., Pan, S., Yao, Y., et al. (2020c). Coupling of Phosphorus 

Processes with Carbon and Nitrogen Cycles in the Dynamic Land Ecosystem Model: 

Model Structure, Parameterization and Evaluation in Tropical Forests. Journal of Advances 

in Modeling Earth Systems, n/a(n/a), e2020MS002123. 

https://doi.org/10.1029/2020MS002123 

Wieder, W. (2014). Regridded Harmonized World Soil Database v1.2. In: ORNL Distributed 

Active Archive Center. 

Wieder, W. R., Cleveland, C. C., Smith, W. K., & Todd-Brown, K. (2015). Future productivity 

and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441. 

https://doi.org/10.1038/ngeo2413 

Winter, K., Aranda, J., Garcia, M., Virgo, A., & Paton, S. R. (2001). Effect of elevated CO2 and 

soil fertilization on whole-plant growth and water use in seedlings of a tropical pioneer 

tree, Ficus insipida Willd. Flora, 196(6), 458-464. 

https://doi.org/https://doi.org/10.1016/S0367-2530(17)30087-7 

Winter, K., Garcia, M., Lovelock, C. E., Gottsberger, R., & Popp, M. (2000). Responses of 

model communities of two tropical tree species to elevated atmospheric CO2 : growth on 

unfertilized soil. Flora, 195(4), 289-302. https://doi.org/https://doi.org/10.1016/S0367-

2530(17)30988-X 

Yang, J., Tian, H., Pan, S., Chen, G., Zhang, B., & Dangal, S. (2018). Amazon drought and 

forest response: Largely reduced forest photosynthesis but slightly increased canopy 

greenness during the extreme drought of 2015/2016. Glob Chang Biol, 24(5), 1919-1934. 

https://doi.org/10.1111/gcb.14056 

Yang, X., Post, W. M., Thornton, P. E., & Jain, A. K. (2014a). Global Gridded Soil Phosphorus 

Distribution Maps at 0.5-degree Resolution. In: ORNL Distributed Active Archive Center. 

Yang, X., Ricciuto, D. M., Thornton, P. E., Shi, X., Xu, M., Hoffman, F., & Norby, R. J. (2019). 

The effects of phosphorus cycle dynamics on carbon sources and sinks in the Amazon 

region: a modeling study using ELM v1. Journal of Geophysical Research: 

Biogeosciences, 0(ja). https://doi.org/10.1029/2019JG005082 

Yang, X., Thornton, P., Ricciuto, D., & Post, W. (2014b). The role of phosphorus dynamics in 

tropical forests–a modeling study using CLM-CNP. Biogeosciences, 11(6), 1667-1681.  

Yang, X., Thornton, P. E., Ricciuto, D. M., & Hoffman, F. M. (2016). Phosphorus feedbacks 

constraining tropical ecosystem responses to changes in atmospheric CO2 and climate. 

Geophysical Research Letters, 43(13), 7205-7214. https://doi.org/10.1002/2016GL069241 

Zaehle, S., & Friend, A. D. (2010). Carbon and nitrogen cycle dynamics in the O-CN land 

surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter 

estimates. Global Biogeochemical Cycles, 24(1). https://doi.org/10.1029/2009GB003521 



 127 

Zhang, Q., Wang, Y. P., Pitman, A. J., & Dai, Y. J. (2011). Limitations of nitrogen and 

phosphorous on the terrestrial carbon uptake in the 20th century. Geophysical Research 

Letters, 38(22). https://doi.org/10.1029/2011GL049244 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 128 

Chapter 5 Future phosphorus availability and its effect on carbon sequestration in tropical 

regions 

Abstract 

Tropical terrestrial ecosystems play a significant role in the global carbon cycle because of 

the substantial amount of carbon assimilated through plant production. Using a C-N-P coupled 

terrestrial ecosystem model (DLEM-CNP), we investigate the potential effects of climate change 

and rising atmospheric CO2 concentration on tropical terrestrial ecosystem gross primary 

production (GPP), net primary production (NPP), and carbon use efficiency (CUE) during 2020-

2100. Results showed that the P limitation on the CO2 fertilization effect reduced future tropical 

GPP and NPP. Under the SSP585 scenario, the CO2 fertilization effect would reach plateaus and 

the tropical ecosystem’s capability to respond to CO2 increase would weaken after 2060. Under 

future environmental conditions during 2020-2100, DLEM-CNP estimated that under the SSP126 

scenario, the tropical GPP, NPP, and CUE would slightly increase, with a substantially interannual 

variation. Under the SSP585 scenario, the tropical GPP and NPP would increase by 44% and 21% 

from 2020 to 2100, respectively, but the CUE would decrease 15% under the SSP585 scenario. 

The CO2 fertilization effect is the dominant factor that would increase the future GPP and NPP in 

tropical ecosystems. The climate effect is the most significant factor that would decrease the CUE 

under both SSP126 and SSP585 scenarios. 
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1. Introduction 

In the 21st century, the global atmospheric CO2 concentration is predicted to keep 

increasing due to anthropogenic activities (IPCC, 2013). With a third of CO2 emissions absorbed 

by global terrestrial ecosystems, the increase of atmospheric CO2 is slowed down by terrestrial 

ecosystems (Friedlingstein et al., 2020). Among global terrestrial ecosystems, tropical forests and 

savannahs account for 60% gross primary production (GPP) (Beer et al., 2010). Therefore, tropical 

terrestrial ecosystems play a pivotal role in regulating the exchange of carbon (C) between land 

and the atmosphere. Yet, the magnitude and spatial pattern of the future tropical C sink at elevated 

CO2 levels remain uncertain due to our limited knowledge on vegetation responses to increased 

CO2 concentration and nutrient limitation.  

The nutrient limitation on plant growth has been found to reduce the capacity of terrestrial 

ecosystem to absorb atmospheric  CO2. N limitation on productivity mostly occurs in temperate 

and boreal forests, whereas phosphorus (P) limitation was primarily observed in tropical forests 

(Hofhansl et al., 2016; Vitousek et al., 2010; Walker & Syers, 1976; Wang et al., 2020a). Free-air 

CO2 enrichment (FACE) experiments in temperate areas indicated that soil nutrient availability, 

particularly nitrogen (N), limits the magnitude of forest productivity increase (Norby et al., 2010). 

However, FACE experiments have not been conducted in tropical forests so far (Cernusak et al., 

2013; Hofhansl et al., 2016; Jiang et al., 2020b). Some studies based on model and remote sensing 

indicate that tropical low phosphorus supply constrains plant responses to elevated CO2 (Fleischer 

et al., 2019; Wang et al., 2020a; Wieder et al., 2015; Yang et al., 2016). Due to the importance of 

the P cycle, TBMs have started to include the P dynamics and impacts on vegetation growth 

(Thornton et al., 2007; Zaehle & Friend, 2010). Recent progress in developing the quantitative 

frameworks in TBMs to represent the P cycle including the Community Land Model (CLM -CNP) 
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(Yang et al., 2014b), CABLE-CNP (Wang et al., 2007), Organizing Carbon and Hydrology In 

Dynamic Ecosystems (ORCHIDEE) (Goll et al., 2017), and DLEM-CNP (Wang et al., 2020b). 

Carbon use efficiency (CUE, net primary production (NPP)/gross primary production 

(GPP) ratio) is an indicator related to the allocation of photosynthesized products by plants. The 

carbon use efficiency indicates the fraction of total assimilated carbon being incorporated into new 

tissues and represents the efficiency with which ecosystems sequester carbon from the atmosphere 

in terrestrial biomass (DeLucia et al., 2007; Valentini et al., 2000). The CUE is a critical ecosystem 

property for C cycle research because it is often used to calculated GPP from NPP, or likewise to 

estimate autotrophic respiration (Ra) as the difference between GPP and NPP (Waring et al., 1998; 

Zhang et al., 2009). Several studies have evaluated the effects of climate variables on the 

ecosystem CUE at multiple scales (Rowland et al., 2014; Zhang et al., 2014). Knowledge has 

advanced since the development of remote sensing and numerical modeling technology with 

respect to the potential effects of climate change and other drivers on the C cycle at large scales. 

Under future climate change and elevated CO2 conditions, with C-N-P interaction, to evaluate 

tropical region C fluxes and CUE are not well explored.  

Numerical modeling has played an important role in simulating the terrestrial C cycle since 

the 1970s (Alton et al., 2009; Berner & Lasaga, 1989; Liu et al., 2008). Model simulation 

experiments provide a possible solution for quantifying the contributions of different 

environmental factors on the C cycle. In this study, we used the DLEM-CNP to estimate the 

tropical terrestrial C fluxes and CUE patterns in the 21st century in response to climate change, 

increasing atmospheric CO2, N deposition and land use/land cover change. The purpose of this 

study is to: (1) investigate nutrient limitation on the GPP, NPP, and CUE during the 21st century 

in tropical regions; (2) provide the estimate of tropical terrestrial GPP, NPP, and CUE during the 
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21st century; (3) evaluate climate, CO2, N deposition and land use/land cover change impacts on 

tropical terrestrial GPP, NPP, CUE during 2020-2100. 

2. Methods 

2.1. Model Description 

The Dynamic Land Ecosystem Model-CNP (DLEM-CNP) is a highly integrated process-

based terrestrial biosphere model, includes N and P controls on vegetation and soil biogeochemical 

processes (Wang et al., 2020b) (Figure 2-2). 

2.2. Input Data 

All the climate forcing is from CMIP6 models the IPSL-CM6A-LR and is bias-corrected 

and down-scaled to a spatial resolution of 0.5° to keep consistent with historical data. Future 

climate data during 2020-2100 include two different scenarios: SSP1-2.6 and SSP5-8.5. In the lead 

up to the IPCC AR6, the energy modeling community has developed a new set of emissions 

scenarios driven by different socioeconomic assumptions, these are the “Shared Socioeconomic 

Pathways” (SSPs). The IPCC AR5 featured four Representative Concentration Pathways (RCPs), 

these scenarios – RCP2.6 and RCP8.5 – have new versions in CMIP6. These updated scenarios 

are called SSP1-2.6 and SSP5-8.5, each of which results in similar 2100 radiative forcing levels 

as their predecessor in AR5. The RCP2.6 emission and concentration pathway are representative 

of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 

2°C. These scenarios form the low end of the scenario literature in terms of emissions and radiative 

forcing. They often show negative emissions from energy use in the second half of the 21st century 

(van Vuuren et al., 2011). The RCP8.5 combines assumptions about high population and relatively 

slow income growth with modest rates of technological change and energy intensity improvements, 

leading in the long term to high energy demand and GHG emissions in the absence of climate 
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change policies. Compared to the total set of RCPs, RCP8.5 thus corresponds to the pathway with 

the highest greenhouse gas emissions (Riahi et al., 2011). 

Annual CO2 concentration during 2020-2100 under different SPP scenarios was achieved 

from Meinshausen et al. (2020), which were generated using the reduced complexity climate-

carbon cycle model MAGICC7.0. Land use/land cover change data and monthly gridded N 

deposition during 2020-2100 under different SPP scenarios were from the IMAGE model. 

Soil physical properties were taken from ISRIC‐WISE Harmonized Global Soil Profile 

Data Set (Batjes, 2009).  Parent P content data was obtained from Global Gridded Soil Phosphorus 

Distribution Maps (Yang et al., 2014a). The elevation, slope, and aspect were derived from the 

Global 30 Arc‐Second Elevation product (GTOPO30; https://lta.cr.usgs.gov/GTOPO30).  

https://lta.cr.usgs.gov/GTOPO30
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Figure 5- 1 Climate data under SSP1-2.6 (red) and SSP5-8.5 (blue) in tropical region: (a) 

atmosphere CO2 concentration, (b) annual precipitation, (c) average shortwave radiation, (d) 

average annual temperature, (e) average minimum temperature, (f) average maximum 

temperature (g) annual total N deposition. 

 

 
Figure 5- 2 Future vegetation cover fraction change (a) crop area fraction (b) forest area fraction 

(c) grassland area fraction under SSP1-2.6 (red) and SSP5-8.5 (blue). 
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2.3 Data for Model evaluation  

FLUXNET data is a standard TBMs benchmark (Friend et al., 2007). We selected 

FLUXNET sites in tropical areas with different vegetation types (Figure 5-3) for model validation 

and performance evaluation. Annual mean gross primary production (GPP) was used to evaluate 

DLEM-CNP performance.  

 

Figure 5- 3 Selected FLUXNET sites location. 

The improved global MODIS primary production products have been widely used to 

monitor ecological conditions, natural resources, and environmental changes (Zhao et al., 2005; 

Zhao et al., 2006). The MODIS GPP values are calculated as follows: 

GPP = εmax × 0.45 × SWrad × FPAR × fVPD × fTmin 

where εmax is the maximum light use efficiency under optimal conditions; SWrad is the incoming 

short-wave solar radiation, of which 45% is Photosynthetically Active Radiation (PAR); FPAR is 

the fraction of PAR absorbed by the plant canopy; fVPD is vapor pressure deficits scalar, and fTmin 

is the daily minimum temperature (Tmin,◦C) scalar.  
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The MODIS NPP is defined as the difference between GPP and respiration, including 

maintenance and growth components. The newly developed NPP is calculated as follows: 

NPP = ∑ GPP365
1  − Rm_lr – Rm_w − Rg 

where Rm_lr is the maintenance respiration from living leaves and fine roots, and Rm_w is the annual 

maintenance respiration from living wood, Rg is annual growth respiration. More detailed 

descriptions for modeling MODIS GPP and NPP can be found in related publications (Zhao & 

Running, 2010; Zhao et al., 2006). Tropical CUE for each grid cell was calculated as the ratio of 

annual NPP to GPP from 2000 to 2014. 

2.4 Model simulation experiments 

First, the DLEM-C (without N and P limitations, which was executed with the same model 

code without N and P limitations on photosynthesis or decomposition), DLEM-CN (without P 

limitation, assuming P saturation), DLEM-CNP (with N and P limitations) were driven by CO2 

from 1900-2100 to examine the effects of nutrient limitation on the CO2 fertilization effect.  

To simulate the effects of individual environmental factors on GPP, NPP, and CUE, we 

use DLEM-CNP to implement five numerical experiments (S1 to S5, Table 5-1). The S1 

experiment included the variations of all time-varying driving forces and represent the model's 

"near-reality" of ecosystem dynamics. The individual effects of land use/land cover change 

(LULC), atmospheric CO2 (CO2), N deposition (NDEP), and climate (CLIM) were calculated as 

S1 - S2, S1 - S3, S1 - S4, and S1- S5, respectively 
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Table 5- 1 Simulation protocol with the Dynamic Land Ecosystem Model 

Experiments CLIM CO2 NDEP LULC 

DLEM-C 1900 1900-2100 1900 1900 

DLEM-CN 1900 1900-2100 1900 1900 

DLEM-CNP 1900 1900-2100 1900 1900 

S1 2020-2100 2020-2100 2020-2100 2020-2100 

S2 2020-2100 2020-2100 2020-2100 2020  

S3 2020-2100 2020 2020-2100 2020-2100 

S4 2020-2100 2020-2100 2020 2020-2100 

S5 2020 2020-2100 2020-2100 2020-2100 

Note: CLIM is climate; NDEP is N deposition; CO2 is atmospheric CO2; LULC is land use/land 

cover change. 

 

3. Results 

3.1. Model validation results 

The FLUXNET site mainly includes deciduous broadleaf forests, evergreen broadleaf 

forests, grasslands, savannas, and woody savannas. The capacity of the DLEM-CNP to reproduce 

the observed annual GPP of different plant types in tropical region FLUXNET sites was 

demonstrated in Figure 5-4. Generally, the DLEM-CNP performed well for all sites with R2 = 0.88. 

During 2000-2014, from MODIS products, we calculated the pan-tropical mean CUE is 0.42 ± 

0.13; the DLEM-CNP estimated CUE is 0.45 ± 0.06.  
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DBF: Deciduous Broadleaf Forests; EBF: Evergreen Broadleaf Forests; GRA: Grasslands; SAV: 

Savannas; WSA: Woody Savannas. 

Figure 5- 4 Multiple-year mean GPP of DLEM-simulation vs. FLUXNET observation. 

 

 

Figure 5- 5 Mean annual CUE from 2000 to 2014 estimated by (a)MODIS (b) DLEM-CNP. 
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3.2 Nutrient limitation on future CO2 fertilization effect  

Under the SSP126 scenario, CO2 concentration is projected to increase from 414 ppm in 

2020 to 474 ppm in 2063 with a rate of 1.38 ppm/year and then start to decrease to 445 ppm in 

2100 by 0.84 ppm/year. Under the SSP585 scenario, the CO2 concentration would increase from 

414 ppm in 2020 to 1135 ppm in 2100 by 9.07 ppm/year. Model simulations show that increasing 

CO2 would lead to a sustained increase of GPP and NPP in tropical regions due to the CO2 

fertilization effect in all DLEM-C, DLEM-CN, and DLEM-CNP simulations (Figure 5-6). Under 

the SSP126, the low end of the scenario in terms of emissions, for DLEM-C, DLEM-CN, and 

DLEM-CNP, the GPP would increase by 3%, 9%, 6%, and NPP would increase by 2%, 7%, 4%, 

respectively, from 2020 to 2100. At the end of the 21st century, DLEM-CNP indicates the tropical 

GPP would decrease by 40% and 21% comparing to those of DLEM-C and DLEM-CN, 

respectively; the NPP decrease by 40% and 23% comparing to those of DLEM-C and DLEM-CN, 

respectively. Under the SSP585 scenario, for DLEM-C, DLEM-CN, and DLEM-CNP, the GPP 

would increase by 31%, 43%, 32%, and NPP would increase by 29%, 42%, 31%, respectively, 

from 2020 to 2100. At the end of the 21st century, DLEM-CNP indicates the tropical GPP would 

decrease by 41% and 25% comparing to those of DLEM-C and DLEM-CN; the NPP would 

decrease by 40% and 27% comparing to DLEM-C and DLEM-CN, respectively. Under the 

SSP126 scenario, DLEM-CNP indicates the tropical CUE would increase by 1.6% relative to that 

of DLEM-C, but slightly decrease 0.2% relative to DLEM-CN. Under the SSP585 scenario, 

DLEM-CNP shows the tropical CUE increase by 2% relative to DLEM-C and decrease 0.2% 

relative to DLEM-CN. 

We analyzed the GPP and NPP growth rates of five-year running mean with CO2 changing 

rate (Figure 5-7). Under the SSP126 scenario, the growth rate of CO2 concentration would keep 
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decreasing, resulting in the tropical GPP and NPP growth rates decreasing. Under the SSP585 

scenario, the CO2 concentration growth rate would increase and reach a peak in the 2080s and then 

start to decrease. However, the tropical GPP and NPP growth rate peak in the 2060, earlier than 

the peak of CO2 concentration growth rate. Moreover, considering N and P limitations, the model 

shows a delayed peak than DLEM-C.  DLEM-CN and DLEM-CNP show a stronger increase rate 

and increasing inter-annual variation with respect to GPP and NPP than DLEM-C.  

 
Figure 5- 6 DLEM-C, DLEM-CN, DLEM-CNP simulated (a)GPP, (b) NPP, (c) CUE, with only 

CO2 changing from 2020 to 2100. 
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Figure 5- 7 DLEM-C, DLEM-CN, DLEM-CNP simulated growth rate of (a) GPP, (b) NPP under 

the SSP126 CO2 concentration scenario; and (c) GPP, (d) NPP under the SSP585 CO2 

concentration scenario. 

 

 

3.3 DLEM-CNP future projection 

 

DLEM-CNP was driven by all time-varying driving forces, including land use/land cover 

change, atmospheric CO2, N deposition, and climate from 2020 to 2100, to estimate the future 

tropical ecosystem C dynamics. Under the future SSP126 scenario, the tropical GPP, NPP, CUE 

would slightly increase, with a clear interannual variation. While, under the SSP585 scenario, the 

tropical GPP would increase by 44% from 2020 to 2100; the NPP would increase by 21%. The 

CUE shows a 15% decrease under the SSP585 scenario (Figure 5-8). Because forests and grassland 

have different plant traits, we further separated the tropical forests and grasslands to evaluate their 

response under different SSP scenarios. Figure 5-9, results indicated that forests and grasslands 

would have similar GPP and NPP increase trends. Both forests and grasslands show decrease 

trends of CUE under the SSP585 scenario, and forests have higher CUE than grassland.  

 

 
Figure 5- 8 DLEM-CNP under all time-varying driving forces, including land use/land cover 

change, atmospheric CO2, N deposition, and climate from 2020 to 2100. (a) GPP, (b) NPP, (c) 

CUE. 
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Figure 5- 9 DLEM-CNP for forests and grass, under all time-varying driving forces, including 

land use/land cover change, atmospheric CO2, N deposition, and climate from 2020 to 2100. 

3.4 Environmental factors' contribution to GPP, NPP, and CUE 

We investigated different environmental factors' contribution to GPP, NPP, and CUE under 

SSP126 and SSP585 scenarios during the period 2020-2100 (Figure 5-10). The CO2 fertilization 

effect is the dominant factor that would increase the future GPP and NPP. The CO2 fertilization 

effect would contribute to increases in GPP by 117 and 492 gCm-2year-1 and increases in NPP by 

51 gCm-2year-1 and 192 gCm-2year-1 under SSP126 and SSP585 scenarios, respectively. The land 

use/land cover change would decrease GPP by 32 and 99 gCm-2year-1, and decrease NPP by 18 

and 50 gCm-2year-1 under SSP126 and SSP585 scenarios, respectively, mainly because of 

deforestation.  The climate effect presents diverged impacts on GPP and NPP in the future. Climate 

would promote tropical GPP and reduce NPP. The climate effect was found to be the most 

significant factor that would decrease the CUE under both SSP126 and SSP585 scenarios. The 
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combined effects of climate variability, atmospheric CO2, N deposition, and land use/land cover 

change would result in a decreased tropical CUE with varying degrees. Before the 2040s, the CO2 

fertilization effect would have a slightly positive effect. The climate effect would cause a large 

decrease in CUE under SSP585 scenarios, especially during the 2070s to 2100s. Compared with 

atmospheric CO2 and climate, land use/land cover change and N deposition would have a small 

effect on the simulated CUE throughout the study period.  
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Figure 5- 10 Contributions of environmental factors (climate, CO2, land use land cover change, and N deposition) to GPP, NPP, and 

CUE under SSP126 (a,b,c) and SSP585 (d,e,f).
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4. Discussion  

4.1 Nutrient effects on GPP, NPP, CUE 

  In the simulation of DLEM-C, DLEM-CN, DLEM-CNP driven by CO2 from 1900-2100 

under the SSP585 CO2 concentration scenario, the tropical GPP and NPP growth rates show an 

earlier peak than the CO2 growth rate in 2060. This phenomenon indicates that the CO2 fertilization 

effect reaches plateaus and the tropical ecosystem’s capability to respond to CO2 increase weakens 

after 2060 under the SSP585 CO2 concentration scenario. In a recent study using multiple long-

term satellites and ground-based datasets, Wang et al. (2020a) also showed that the plant response 

to increasing CO2 concentration has declined, correlating well with changing nutrient 

concentrations and availability of soil water. Besides, experimental evidence indicates that the 

percentage growth response to elevated CO2 is amplified under water limitation but reduced under 

nitrogen limitation (Jiang et al., 2020a; McMurtrie et al., 2008). Including the nutrients cycle, the 

model showed more variation in year-to-year GPP and NPP growth rates, which is moderate in the 

DLEM-C. In our model, a large part of the N and P for plant uptake is from the decomposition 

process. When there is an increase of GPP introduced by increasing CO2, the NP limitation occurs 

because there is not much available NP in soil for plant uptake. After more litterfall goes into 

decomposition process, there is an alleviation of NP limitation because mineralization releases 

more N and P, which can be uptaken by plant.  

4.2 CUE response to environmental factors 

A number of studies have found that the NPP/GPP ratio varies with ecosystem types, 

climate, soil nutrients and geographic locations (DeLucia et al., 2007; Maseyk et al., 2008; Xiao 

et al., 2003). A recent study found that forests in high-nutrient availability areas allocate more 

photosynthesis to plant biomass production than forests in low-nutrient availability areas (Vicca 
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et al., 2012). In our results, the climate has dominating impacts on CUE, which is consistent with 

other studies. Zhang et al. (2014), using remote sensing data, revealed a decreasing NPP/GPP ratio 

under increased precipitation and temperature at a global scale. The global terrestrial plant 

ecosystem exhibited a decreasing NPP/GPP ratio over time, driven primarily by decreases in 

ecosystems: evergreen and deciduous broadleaf forests and open and closed shrubs. Studies 

indicate that NPP/GPP ratio exhibited a globally positive correlation with precipitation and a 

negative correlation with temperature in most vegetated areas. However, in our study, we did not 

separate climate effect as precipitation and temperature.  

4.3 Uncertainties and improvements needed 

It is critical to recognize the limitations and uncertainties that are inherent in such a study 

regarding input data, parameters and models. We used climate projections from the IPSL-CM6A-

LR model under the SSP126 and SSP585 scenarios. Discrepancies existing in different global 

climate models could lead to different estimations of GPP, NPP, and CUE responses as projected 

climate variables change. Further analysis is helpful to explore the uncertainty ranges by adopting 

climate inputs derived from multiple climate models. Besides, although parameters were well-

calibrated based on existing field observation data, some processes such as responses of carbon 

assimilation/allocation and stomatal conductance to elevated temperature and CO2 may be changed 

due to plant acclimatization and dynamic responses of phenology and growing season length, 

which have not been included in the current DLEM simulations. In future studies, it is important 

to consider the role of plant acclimatization in order to provide the best estimates of tropical GPP, 

NPP, and CUE under changing climatic conditions. 
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5. Conclusions 

This study assesses the future changes of GPP, NPP, and CUE with a fully coupled C-N-P 

ecosystem model for pan-tropical ecosystems under SSP126 and SSP585 scenarios. Results 

showed that the P limitation on the CO2 fertilization effect would reduce future tropical GPP and 

NPP. Under the SSP585 scenario with high CO2 concentration, the tropical GPP and NPP growth 

rates reach a peak earlier than the peak of CO2 concentration growth rate. The CO2 fertilization 

effect would reach plateaus and the tropical ecosystem’s capability to respond to CO2 increase 

would weaken after 2060. Using the DLEM-CNP under future environmental conditions during 

2020-2100, we estimated that under the SSP126 scenario, the tropical GPP, NPP, and CUE would 

slightly increase, with a clear interannual variation. Under the SSP585 scenario, the tropical GPP 

would increase by 44% from 2020 to 2100; the NPP would increase by 21%. However, The CUE 

would decrease by 15% under the SSP585 scenario. The CO2 fertilization effect is the dominant 

factor that would increase the future GPP and NPP. The climate effect is found to be the most 

significant factor that would decrease the CUE under both SSP126 and SSP585 scenarios. Our 

study implicated that the CUE of the tropical region is changing under the future climate condition. 

Our study highlighted the importance of P limitation on the future C cycle in tropical areas. This 

study could improve the understanding of the future change patterns in GPP, NPP, CUE with C-

N-P interaction and guide policymakers to put forward strategies for adapting to and mitigating 

the future impacts of changing climate and atmospheric composition. 
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Chapter 6 Summary and future research ideas 

 

In this study, P impacts on C fluxes and the C-N-P interactions in the past and future were 

investigated at the site and tropical scales. A process-based fully coupled C-N-P model (DLEM-

CNP) was developed on the platform of one existing terrestrial ecosystem model, and its 

performance was validated by benchmark datasets. We evaluated the N-P co-limitation effects by 

using DLEM-CNP to simulate the N, P fertilization addition experiment at Hawaii sites. We 

examined how P limitation has affected C fluxes of tropical rainforests during 1860-2018.  Using 

historical environmental factors (such as climate change, land use/land cover change, atmospheric 

composition, etc.) to drive the DLEM-CNP, we examined tropical rainforests carbon fluxes and 

environmental factors’ relative contributions to tropical rainforests carbon storage. Using future 

environmental and climate scenarios (SSP1-2.6 and SSP5-8.5), we examined pan-tropic GPP, NPP, 

and CUE changes in C-N-P coupled biogeochemical cycle. Meanwhile, underlying mechanisms 

of the changes and contributions from environmental factors were analyzed and quantified through 

numerical experiments by using the DLEM-CNP. 

The major conclusions drawn from this study can be summarized as follows: 

1) We developed a process-based P module on the platform of the Dynamic Land 

Ecosystem Model (DLEM) by considering P impacts on vegetation and soil biogeochemical 

processes, which upgraded the coupled CN model (DLEM-CN) into the coupled CNP model 

(DLEM-CNP). The DLEM-CNP fully incorporates CNP cycles in all pools (plant, litter, and soil 

organic/inorganic pools) and key biogeochemical processes.  

2) The DLEM-CNP model had an outstanding innovation that it first time introduces the 

interactive co-limitation of N and P on vegetation C assimilation in the TBMs, overcoming the 
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shortcoming of using Liebig's law of the minimum. Validation results indicated a significant N 

and P impact on tropical forest C dynamics and highlighted the innovative improvements of 

introducing the N and P interactive co-limitation effect. Our results reveal interactions between C, 

N, P processes, indicating that the inclusion of the P cycle in the current TBMs is essential to better 

understand the impacts of global change on terrestrial ecosystems.  

3) Consideration of the P cycle reduced the CO2 fertilization effect on tropical rainforests 

gross primary production (GPP) by 25% and 45%, NPP by 25% and 46%, and net ecosystem 

production (NEP) by 28% and 41% relative to CN-only and C-only models, during 1860-2018. 

4) During the period from the 1860s to the 2010s, the DLEM-CNP estimated that for per 

unit area, the tropical rainforest GPP increased by 17 %, Ra increased by 18%, NPP increased by 

16 %, Rh increased by 13%, and NEP increased by 121%, respectively. Additionally, the enhanced 

GPP and NPP benefiting from the CO2 fertilization effect had been offset by 147% and 135% due 

to deforestation from the 1860s to the 2010s. 

5) The DLEM-CNP projected P limitation reduced the CO2 fertilization effect on tropical 

ecosystem. Under the SSP126, at the end of the 21st century, DLEM-CNP indicates the tropical 

GPP would decrease by 40% and 21% comparing to those of DLEM-C and DLEM-CN; the NPP 

decrease by 40% and 23% comparing to those of DLEM-C and DLEM-CN, respectively. Under 

the SSP585 scenario, at the end of the 21st century, DLEM-CNP indicates the tropical GPP would 

decrease by 41% and 25% comparing to those of DLEM-C and DLEM-CN; the NPP would 

decrease by 40% and 27% relative to those of DLEM-C and DLEM-CN, respectively. 

6) Under the future SSP126 scenario, the tropical GPP, NPP, CUE would slightly increase, 

with a clear interannual variation. While, under the SSP585 scenario, the tropical GPP would 
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increase by 44% from 2020 to 2100; the NPP would increase by 21%. The CUE would decrease 

by 15% under the SSP585 scenario. And forests have higher CUE than grassland.  

7) The CO2 fertilization effect was the dominant factor that increased the future GPP and 

NPP.  Climate promoted tropical GPP and reduced NPP. The climate effect was found to be the 

most significant factor that decreased the CUE under both SSP126 and SSP585 scenarios.  

To reduced uncertainties in this dissertation research, several future research needs have 

been identified. First, in the current DLEM version, we explicitly considered N and P limitation 

on C but neglected P effects on some N processes, such as the biological N fixation process. 

Several studies indicate that P availability may have impacts on N fixation. However, the 

mechanisms of P influence on N fixation have not yet been fully understood. Second, plants' 

adaptation to P limitation can change vegetation physiological characteristics. Plants evolve 

strategies for P acquisition and use in P‐limiting environments, including decreased growth rate, 

increased growth per unit of P uptake, remobilization of internal P, modifications in carbon 

metabolism that bypass P‐requiring steps, and alternative respiratory pathways. All these adaption 

strategies are supposed to lead to vegetation parameters change (e.g., Vcmax, minimum leaf C: N 

ratio, and minimum leaf C: P ratio). Third, a single PFT has a uniform set of parameters, which do 

not account for variations in space and, thus, inadequately represent its spatial heterogeneity. A 

more plant traits-based plant classification and parameterization algorithm are in need to be 

developed to improve model performance. 

Nevertheless, this study is the first attempt for coupling the P cycle into the process-based 

DLEM model to investigate P limitation impacts and quantify the contributions of multiple 

environmental factors on C fluxes with the P cycle involved at tropical scales. These findings could 
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provide useful knowledge to design specific climate mitigation strategies. The P model developed 

in this study can be coupled into the earth system models and improve the accuracy of projections 

in future climate and global biogeochemical cycles.  
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Appendix 1. DLEM-CN structure of carbon allocation, nitrogen uptake and allocation, and 

decomposition 

 

1. Allocation 

The assimilated carbon deducted by growth respiration (GPP - Gr) is the carbon that is 

ready to be allocated to different tissue. The allocation strategy is first confined by the scarcest 

resource and then regulated by phenology. 

1.1 Resource limited scalars 

To estimate the relative allocation among leaf, stem and root pools, DLEM follows the 

relative allocation scheme developed by Friedlingstein et al. (1999). The relative allocation among 

different parts reflects the resource limitation on the plants. DLEM groups the resource limitations 

into two general types: aboveground limitation and belowground limitation. If the aboveground 

resources are limited, more available storage carbon will be allocated to sapwood and leaf so that 

the stem will grow taller and leaf will grow more. If the belowground resources are limited, more 

available storage carbon will be allocated to the roots to enhance plant’s water/nutrients uptake 

capacity. In the current model, DLEM only considers the light limitation as aboveground stress. 

In order to give equal weight to aboveground (light) vs. belowground resources (water and 

nutrients), DLEM assumes that only the most limiting one of the two belowground resources drive 

the allocation pattern (i.e., the controlling resources are light and either water or nutrients). In 

summary, the model behaves as if one aboveground resource (light) directly controls the stem 

(sapwood) allocation of available storage carbon and one belowground resource (water or nitrogen) 

drives the root allocation of available storage carbon. Leaves get the residual: 
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𝜌 = 𝑟0 × {
3 × 𝐿

[𝐿 + 2 ×min(𝑊,𝑁)]
} (1) 

𝜎 = 𝑠0 × {
3 ×min(𝑊,𝑁)

[min(𝑊,𝑁) + 2𝐿]
} (2) 

𝜆 = 1 − 𝜌 − 𝜎 (3) 

where 𝜌 and 𝜎 are the actual fractions of carbon allocated to root and sapwood, respectively; and 

𝑟0 and 𝑠0 are the fractional carbon allocation to root and sapwood for non-limiting conditions, 

respectively. In normal conditions, both 𝑟0 and 𝑠0 is set to 0.3, giving a leaf allocation of 0.4 under 

conditions where resources are totally no limiting. 𝐿 , 𝑊, and 𝑁 are light, water and nutrients 

availability scalars, ranging from 0.01 (severely limited) to 1 (readily available). 

DLEM uses the canopy leaf area index (LAI) to estimate L, the light availability scalar: 

𝐿 = exp(−𝑘 × 𝐿𝐴𝐼) (4) 

where k is an extinction coefficient set to 0.5.  

The water availability scalar, W, is determined by soil moisture factor 𝛽, ranging from 0 to 1: 

𝑊 = 𝛽 (5) 

The nutrients availability scalar, N, is determined based on the vegetation NP limitation factor: 

𝑁 =
2

1
𝑓(𝑁)

+
1

𝑓(𝑃)

(6)
 

𝑓(𝑁) =
∑ 𝑛𝑖
5
𝑖=1

∑
𝑐𝑖

𝐶𝑁𝑚𝑖𝑛,𝑖
5
𝑖=1

 (7) 

𝑓(𝑃) =
∑ 𝑝𝑖
5
𝑖=1

∑
𝑐𝑖

𝐶𝑃𝑚𝑖𝑛,𝑖
5
𝑖=1

 (8) 
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where i represent leaf, sapwood, coarse root, fine root, and reproduction pool; 𝑛𝑖, 𝑝𝑖, and 𝑐𝑖 are the 

amount of nitrogen, phosphorus, and carbon in each pool; 𝐶𝑁𝑚𝑖𝑛,𝑖, 𝐶𝑃𝑚𝑖𝑛,𝑖 is the minimum C:N 

and C: P ratio for each tissue. 

1.2 Allocation according to phenology 

The default fraction of carbon allocated to reproduction pool (𝑓𝑟𝑒𝑝) is a plant-dependent 

parameter. The default fraction of carbon allocated to leaf (𝑓𝑙𝑒𝑎𝑓), sapwood (𝑓𝑠𝑎𝑝), coarse root (𝑓𝑐𝑟), 

fine root (𝑓𝑓𝑟) are, 

𝑓𝑙𝑒𝑎𝑓 = 𝜆 (9) 

𝑓𝑠𝑎𝑝 =  𝜎 (10) 

𝑓𝑐𝑟 =  𝜌 × 𝑐𝑟 (11) 

𝑓𝑓𝑟 = 𝜌 × 𝑓𝑟 (12) 

where 𝑐𝑟 and 𝑓𝑟 are the fractions of allocated carbon to coarse/fine root to allocated carbon to root. 

These default fractions are further adjusted according to phenology period and LAI. If the plant is 

in growing season and phenology stage is not reproduction stage, assimilated carbon is not 

allocated to reproduction pool. If LAI is greater than the maximum LAI (plant dependent 

parameter), no carbon is allocated to leaf. In growing season and LAI has not reached the 

maximum value, leaf growth is thought to be priority and carbon allocated to leaf is at its default 

fraction. The other tissues share the left carbon, while the fraction is decreased by a certain amount. 

In deciduous season and LAI is less than maximum value, the carbon allocated to reproduction 

pool is at default fraction, and other tissues share the left carbon. 

The increment of each carbon pool is, 
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∆𝑐𝑖 = (𝐺𝑃𝑃 − 𝐺𝑅) × 𝑓𝑖 (13) 

where i represent each tissue.  

2. Nitrogen uptake and allocation 

In DLEM, N processes are intimately coupled to the C processes by different biomass 

compartment specific C: N ratios. The N cycle is fully open, i.e., N inside the ecosystem can be 

exchanged with external sources and sinks through deposition, leaching, nitrous gas emissions, 

and so on. Combined with the inside mechanisms such as plant uptake and N mineralization, the 

open-N cycle provides a buffer to control the fluctuation of interior N (Rastetter et al., 1997). N 

flows follow mass balance principle, where change of ecosystem available N depends on the 

difference between N inputs (e.g., N deposition, fertilization, fixation) and N outputs (e.g., N 

leaching, N2O, NO emission, NH3 volatilization). The detailed information on DLEM, such as the 

model strategy related to N budget and N control on C cycling is accessible in other published 

papers (Liu et al., 2013; Lu & Tian, 2013; Lu et al., 2012; Ren et al., 2007; Tian et al., 2011; Yang 

et al., 2015). Here we primarily introduce the model strategy related to N uptake and allocation 

processes used in brief. 

2.1 Nitrogen uptake 

Nitrogen potential uptake (𝑁𝑢𝑝, g N/m2/day) is estimated as, 

                         𝑁𝑢𝑝,𝑝𝑜𝑡 = 𝑁𝑢𝑝,𝑚𝑎𝑥𝑓(𝑇𝑠)𝑓(𝑊, 𝑎𝑣𝑛) (14) 

where 𝑁𝑢𝑝,𝑚𝑎𝑥 is the maximum nitrogen uptake speed in optimum condition (g N/day), 𝑓(𝑇𝑠) is 

the temperature scalar, 

𝑓(𝑇𝑠) =
(𝑇𝑠 − 𝑁𝑢𝑝𝑡𝑚𝑎𝑥)(𝑇𝑠 −𝑁𝑢𝑝𝑡𝑚𝑖𝑛)

(𝑇𝑠 − 𝑁𝑢𝑝𝑡𝑚𝑎𝑥)(𝑇𝑠 − 𝑁𝑢𝑝𝑡𝑚𝑖𝑛) − (𝑇𝑠 − 𝑁𝑢𝑝𝑡𝑜𝑝𝑡)
2  (15) 
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where 𝑇𝑠  is soil temperature (oC); 𝑁𝑢𝑝_𝑡𝑚𝑎𝑥 , 𝑁𝑢𝑝_𝑡𝑚𝑖𝑛 , and 𝑁𝑢𝑝_𝑡𝑜𝑝𝑡  are the maximum, 

minimum and optimum temperature for N uptake (oC). 𝑓(𝑊, 𝑎𝑣𝑛) is the combined effect of water 

and available nitrogen, 

𝑓(𝑊, 𝑎𝑣𝑛) =
𝑓(𝑤)𝑎𝑣𝑛

𝑓(𝑤)𝑎𝑣𝑛 + 𝑘𝑢𝑝
 (16) 

where 𝑎𝑣𝑛 is the available nitrogen in soil, including inorganic ammonia and nitrate, 𝑘𝑢𝑝 is the 

half-saturation coefficient for nitrogen uptake (g N/m2, 1.0) 𝑓(𝑤) is the soil moisture factor, 

𝑓(𝑤) = 0.9𝛽𝑡
3 + 0.1 (17) 

The actual nitrogen uptake cannot exceed the maximum nitrogen deficit, 

𝑁𝑢𝑝 = min(𝑁𝑢𝑝,𝑝𝑜𝑡, 𝑎𝑣𝑛,∑
𝐶𝑖

𝐶𝑁𝑚𝑖𝑛,𝑖

5

𝑖=1

−∑𝑁𝑖

5

𝑖=1

) (18) 

where i represent leaf, sapwood, coarse root, fine root, and reproduction pool; 𝑁𝑖 (g N/m2) and 𝐶𝑖 

(g C/m2) are the amount of N and C in each pool 𝑖; 𝐶𝑁𝑚𝑖𝑛,𝑖 is the minimum C to N ratio for each 

tissue (g C/m2).  

2.2 Nitrogen allocation 

The nitrogen that is available for allocation (𝑁𝑎𝑙𝑙𝑜𝑐) is, 

𝑁𝑎𝑙𝑙𝑜𝑐 =∑𝑁𝑖

5

𝑖=1

+ 𝑁𝑢𝑝 (19) 

Nitrogen content (g N/m2) in each tissue is updated as, 
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𝑁𝑖 = 𝑁𝑎𝑙𝑙𝑜𝑐 ×

𝐶𝑖
𝐶𝑁𝑚𝑖𝑛,𝑖

∑
𝐶𝑖

𝐶𝑁𝑚𝑖𝑛,𝑖
5
𝑖=1

(20) 

DLEM assumes nitrogen concentrations of sunlit leaf and shade leaf are different. Leaf 

nitrogen is further separated into sunlit leaf nitrogen concentration (𝑁𝑐𝑜𝑛𝑠𝑢𝑛, g N/g biomass) and 

shade leaf nitrogen concentration (𝑁𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒, g N/g biomass) according to an extinction factor (𝑘, 

0.65), the leaf area index (LAI), and the LAI of sunlit and shaded leaves, 

𝑁𝑐𝑜𝑛𝑠𝑢𝑛 =

0.45 × 𝑁𝑙𝑒𝑎𝑓
𝐶𝑙𝑒𝑎𝑓

𝐿𝐴𝐼𝑠𝑢𝑛
𝐿𝐴𝐼 +

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑒−0.5𝑘

𝐿𝐴𝐼

(21) 

𝑁𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒 = 𝑁𝑐𝑜𝑛𝑠𝑢𝑛 × 𝑒
−0.5𝑘 (22) 

where 𝑁𝑙𝑒𝑎𝑓  (g N/m2) and 𝐶𝑙𝑒𝑎𝑓  (g C/m2) are actual leaf nitrogen and carbon concentration, 

respectively. The CN ratio of sunlit leaf and shade leaf is calculated as, 

𝐶𝑁𝑠𝑢𝑛 =
0.45

𝑁𝑐𝑜𝑛𝑠𝑢𝑛
(23) 

𝐶𝑁𝑠ℎ𝑎𝑑𝑒 =
0.45

𝑁𝑐𝑜𝑛𝑠ℎ𝑎𝑑𝑒
(24) 
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3. Decomposition 

 

Figure S1- 1 Structure of DLEM soil organic pools. 

Note: AOM: Added organic matter, i.e. litter. AOM1 and AOM2 have different residence time. 

SMB: soil microbial biomass, SMB1 is the autochthonous microbial, SMB2 is the zymogenous 

microbial; SMR: soil microbial residues; NOM: native organic matter; PSOM: passive soil organic 

matter. 

 

DLEM estimates soil and litter decomposition with first-order decay rate constants (𝐾𝐶𝑝𝑜𝑜𝑙), 

which are adopted from the models of CENTURY (Parton et al., 1988). The decomposition rate 

of each soil organic carbon pool is influenced by soil temperature, soil water content, nutrient 

availability, and soil texture: 

𝐾𝐶𝑝𝑜𝑜𝑙 =
𝐾𝑚𝑎𝑥
365

× 𝑓(𝑇) × 𝑓(𝑊) × 𝑓(𝑁𝑃)𝑓(𝑐𝑙𝑎𝑦) (25) 
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𝑓(𝑇) = 4.89 × 𝑒−3.432+0.1×𝑇×(1−0.5×
𝑇
36.9

)  (26) 

𝑓(𝑊) is the soil moisture scalar, 

𝑓(𝑊) =

{
 
 
 

 
 
 1 − 𝑒

−
𝜃
𝜃𝑠𝑎𝑡

1 − 𝑒
−
𝜃𝑓𝑐
𝜃𝑠𝑎𝑡

                                         𝜃 ≤ 𝜃𝑓𝑐

1.0044 −
0.0044

𝑒

−5

𝜃
𝜃𝑠𝑎𝑡

−
𝜃𝑓𝑐
𝜃𝑠𝑎𝑡

1−
𝜃𝑓𝑐
𝜃𝑠𝑎𝑡

                𝜃 > 𝜃𝑓𝑐
 (27) 

𝑓(𝑁𝑃) is the nutrient scalar which is controlled by N limitation and P limitation: 

𝑓(𝑁𝑃) =
2

1
𝑓(𝑁)

+
1

𝑓(𝑃)

(28)
 

𝑓(𝑁𝐼) = 0.8 + 0.2 ×
𝑎𝑣𝑛

𝑁𝑖𝑚𝑚
(29) 

𝑓(𝑁𝑀) =

{
  
 

  
 1 −

𝑎𝑣𝑛 − 𝑎𝑣𝑛𝑜𝑝𝑡

𝑎𝑣𝑝𝑜𝑝𝑡
                                       𝑎𝑣𝑛 > 𝑎𝑣𝑛𝑜𝑝𝑡

1                                               
𝑎𝑣𝑛𝑜𝑝𝑡

2
≤ 𝑎𝑣𝑛 ≤ 𝑎𝑣𝑛𝑜𝑝𝑡

1 +
0.5𝑎𝑣𝑛𝑜𝑝𝑡 − 𝑎𝑣𝑛

𝑎𝑣𝑛𝑜𝑝𝑡
                            𝑎𝑣𝑛 ≤

𝑎𝑣𝑛𝑜𝑝𝑡

2

 (30) 

where 𝐾𝑚𝑎𝑥  is the maximum decay rate (day-1); 𝑓(𝑇) is the average soil temperature 

scalar; 𝑓(𝑐𝑙𝑎𝑦)  is the fraction of clay in soil (%); T is air temperature (°C); 𝜃 is soil water content 

(mm); 𝜃𝑠𝑎𝑡 is soil water content at field capacity (mm); 𝜃𝑓𝑐 is soil water content at field capacity 

at wilting point (mm); 𝑓(𝑁𝑀)and 𝑓(𝑁𝐼)  are N scalars in mobilization and immobilization, 

respectively: 𝑁𝑖𝑚𝑚 is the potential N immobilization rate; 𝑎𝑣𝑛 is the available soil available N (g 

N m-2); and 𝑎𝑣𝑛𝑜𝑝𝑡 is the optimum available soil N (g N m-2) (Banger et al., 2015). 
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Table S2- 1 Coordinates, climate data, and soil for the 13 tropical rainforest sites from Clark et al. (2001) 

Abbreviations: annual prec, annual precipitation; prec sd, precipitation standard deviation in a year; Swrd, short wave radiation; Tmean, mean daily temperature; tmax, maximum 

temperature; tmin, minimum temperature; Sand, sand content in soil texture; Parent P, parent phosphorus in soil.  

 

 

 

  

Site longitude latitude annual prec (mm) prec sd (mm) Swrd (Wm-2d-1) Tmean (℃) tmax(℃) tmin(℃) Elevation(m) Sand (%) Parent P (gPm-2) 

Brazil:Fazenda Dimona -60 -2.5 2551.5 11.3 206.4 26.8 31.5 22.2 76.0 34.5 4 

Brazil: Paragominas -47.52 -2.98 1889.6 9.3 218.3 26.4 31.6 21.2 115.0 74.5 1 

Colombia:Magdalena -73.8 6.5 2613.0 9.9 253.3 26.1 32.7 19.6 1087.1 41.5 47 

French Guiana -55.75 5.25 1886.3 6.7 214.8 26.0 31.0 21.1 93.0 98 170 

India: Bannadpare 75.7 12.08 4395.8 17.8 198.4 24.6 29.5 19.6 355.1 41.5 47 

India: Agumbe 75.1 13.5 3561.1 15.2 177.4 23.0 28.8 17.1 577.1 41.5 47 

Ivory Coast -4.03 5.28 2404.0 7.7 213.6 26.1 29.2 23.1 76.7 89 47 

Jamaica -77 18 3148.9 14.1 258.9 25.4 27.4 23.5 1600.0 5 4 

Malaysia 102.3 2.98 4063.8 11.7 223.0 25.5 29.8 21.1 49.9 44.5 5 

Mexico -105.05 19.5 1200.4 8.7 250.5 25.1 31.3 19.0 245.1 73 127 

Puerto Rico -66 18.42 3071.6 11.1 258.2 25.2 28.0 22.5 150.7 29 47 

Venezuela -67.05 1.9 3967.3 15.3 209.2 25.5 29.6 21.4 52.0 59.5 1 

Papua New Guinea 145.18 -6 3848.2 16.8 255.9 20.3 23.7 16.9 1818.4 43 47 
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Figure S2- 1 The optimal number of clusters. 

 

 
Figure S2- 2 K-means clustering cluster plot. 
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Figure S2- 3 The input data of the DLEM-CNP. (a) Atmospheric CO2 concentration; (b) Intact 

tropical forest areas; (c) Average N deposition across tropical forest areas; (d) Annual 

precipitation across tropical forest areas; (e) Average temperature across tropical forest areas. 
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Figure S2- 4 Spatial distribution of the annual mean GPP (g C/m2/yr), NPP (g C/m2/yr), and NEP (g C/m2/yr) in the tropical forests 

during 1860–1909, 1910-1959, 1960-2009, 2010-2018 simulated by the DLEM-CNP with historical environmental forcing. 
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Figure S2- 5  Intact tropical rainforests net primary productivity (NPP) and heterotrophic 

respiration (Rh) under close to historical environmental conditions (climate, atmospheric CO2 

concentration, N deposition, CO2 concentration, land-cover, and land-use change, S1 simulation) 

during 1860-2018. 

 

 

 


