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Abstract

In mobile crowdsourcing, workers are financially motivated to perform as many self-

selected tasks as possible to maximize their revenue. Unfortunately, the existing task schedul-

ing approaches in mobile crowdsourcing fail to consider task execution duration and do not

scale for massive tasks and large geographic areas. In this dissertation, we propose a novel

framework, Turbo-GTS, in support of large-scale Geo-Task Scheduling (GTS), with the ob-

jective of identifying an optimal task assignment for each worker in order to maximize the

total number of tasks that can be completed for an entire worker group while taking into

account various spatial and temporal constraints, such as task execution duration, task ex-

piration time, and worker/task geographic locations. Since the exact solution to the GTS

problem is computationally intractable, we first propose two sub-optimal approaches (LCPF

and NUD-IC) based on particle filtering and DBSCAN for the Single Worker Geo-Task

Scheduling (SGTS) problem. We then extend our work to solve the Multi-Worker Geo-Task

scheduling (MGTS) problem by proposing two space partitioning-based methods (QT-NNH

and QT-NUD), which leverage the point-region quadtree to ensure workload balancing. We

further propose WBT-NNH and WBT-NUD, which build on the algorithms QT-NNH and

QT-NUD respectively, and provide more effective and dynamic workload balancing among

all workers using the proposed Workload-balancing Bisection Tree (WBT) comparing to

QT-NNH and QT-NUD. The effectiveness and efficiency of the six proposed approximate

solutions are verified by our extensive experiments using both real and synthetic data. Com-

pared with the state-of-the-art approaches, our proposed solutions are able to return a higher

number of completed tasks for the worker group while reducing the computation cost by up

to three orders of magnitude when coping with massive tasks distributed in large geographic
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areas. Last but not least, we present a web-based demo application for Turbo-GTS fea-

turing the aforementioned four MGTS algorithms, which includes an interactive interface

for users to load the current task/worker distributions and compare the task assignment of

each worker returned by different algorithms in a real-time fashion. We also demonstrate

the front-end interface of Turbo-GTS demo with several exploratory use cases in New York

City.
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Chapter 1

Introduction

The ubiquity of mobile platforms and smart phones breeds a large number of mobile

crowdsourcing applications like TaskRabbit (a mobile marketplace allowing users to out-

source small tasks to workers in their neighborhood [5]), Uber (a mobile application allow-

ing passengers with smartphones to submit trip requests which are then routed to willing

drivers [20]), Gigwalk (a crowdsourcing service that helps businesses to appraise their per-

formance [18]), and MediaQ (an online media management framework allowing workers to

collect, organize, share, search, and trade user-generated mobile images and videos [24]). A

common feature of all these applications is that workers are required to go to the exact spot

of each task in person and perform the task by means of a mobile device.

In mobile crowdsourcing, obtaining an optimal or near-optimal task schedule for a

worker or a group of workers to accomplish as many tasks as possible is a crucial yet quite

challenging problem. Take the scenario shown in Figure 1.1 as an example. A worker at

location w has five tasks to complete, s1, s2, s3, s4 and s5, each with a preset expiration

time. According to the existing scheduling solutions [10] [23], s1 will be selected as the first

option to execute because it is geographically closest to w. Considering that s1 needs one

hour to finish while all the other four tasks only need one minute to complete, it is very

likely that s2, s3, s4, and s5 will all have expired after finishing s1, leading to the fact that

the worker can only accomplish one task. Therefore, the optimal solution in the case should

be the task sequence s2 → s3 → s4 → s5, so that the worker can have a higher probability

to get more tasks completed.

Limitations of the Existing Approaches. We make the following troubling obser-

vations on the existing research for mobile crowdsourcing.
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Figure 1.1: An example of spatial task scheduling in Manhattan Island, New York City.
w represents the current location of a worker; s1 represents a task near w but with longer
execution duration, whereas s2, s3, s4, and s5 represent four other tasks located farther from
w but with shorter execution duration. The arrow represents the optimal task execution
route for w.

• Lack of capability to scale up to identify optimal/sub-optimal task assignment for

mobile crowdsourcing with massive tasks in large geographic areas. As shown in our

experiments (to be detailed in Chapter 7, Chapter 8 and Chapter 9), existing scheduling

solutions [10] [23] [11] fail to find optimal/sub-optimal task assignment when coping

with massive tasks distributed in large geographic areas. Table 1.1 and Table 1.2 show

the performance of BSH [10] (single worker task scheduling) and BLALS-T [11] (multi-

worker task scheduling), using tasks randomly chosen from the Foursquare mobile user

check-ins in New York City [40] [39] [38]. As depicted in Table 1.1 and Table 1.2,

novel task scheduling solutions that are able to accomplish more tasks given massive

tasks distributed in large geographic areas are particularly desirable in practice.

• Absence of efficient task scheduling frameworks to support real-time mobile crowd-

sourcing applications. Existing scheduling solutions [10] [23] [11] suffer from ineffi-

ciency in terms of generating task assignment sequence for each worker when handling

massive tasks distributed in large geographic areas. As depicted in Table 1.1 and Ta-

ble 1.2, the computation cost of BSH [10] and BLALS-T [11] increased exponentially
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when the total number of tasks was increased. For example, BSH [10] cost 7.5 hours

to schedule 113 tasks for one worker while BLALS-T [11] needed 11 minutes to assign

and schedule 12048 tasks among 300 workers.

• Failure to take into account important spatial and temporal constraints. Existing

scheduling solutions [10] [23] [11] ignore the task execution duration and treat the

task expiration time as the only temporal factor in task scheduling. However, in

reality it always requires a certain amount of time for a worker to complete a task.

For example, in Gigwalk, tasks may require a few minutes or a few hours [15]. For

example, a hotel gig may take a Gigwalker one to two hours [13]. A preferred scheduling

solution should be able to consider important spatiotemporal characteristics of real-

world mobile crowdsourcing applications.

Table 1.1: Performance of the state-of-the-art single worker task scheduling solu-
tion (BSH [10]) in mobile crowdsoucing

Total number of tasks 3000 4000 5000 6000 7000

CPU cost (hours) 0.8 1.3 5.5 7 7.5

Number of accomplished tasks 84 94 104 108 113

Table 1.2: Performance of the state-of-the-art multi-worker task scheduling solu-
tion (BLALS-T [11]) in mobile crowdsoucing on 300 workers

Total number of tasks 10000 15000 20000 25000 30000

CPU cost (minutes) < 1 2 4 8 11

Number of accomplished tasks 7483 8879 9861 10926 12048

Our Goal and Contributions. In this dissertation, we propose a novel framework,

Turbo-GTS, in support of large-scale Geo-Task Scheduling (GTS), with the objective of

identifying an optimal task assignment for each worker in order to maximize the total number

of tasks that can be completed for an entire worker group, given the geographic locations of

each task and each worker. Turbo-GTS is able to perform scheduling by taking into account

various spatial and temporal constraints, including task execution duration, task expiration
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time, and task geographic locations. The contributions of this dissertation are summarized

as follows:

• We formulate the GTS problem that maximizes the number of completed tasks for

a worker group by taking into account important spatial and temporal constraints,

including task execution duration and task expiration time and propose a novel frame-

work, Turbo-GTS, to solve the GTS problem with massive tasks distributed in large

geographic areas.

• We define the Non-Urgency Degree (NUD) for task assignment and present two ap-

proximate solutions, LCPF and NUD-IC, for the Single Worker Geo-Task Scheduling

(SGTS) problem. LCPF solves the problem by incorporating particle filtering while

NUD-IC generates the sub-optimal schedule by integrating particle filtering with DB-

SCAN clustering based on Non-Urgency Degree (NUD).

• Inspired by the proposed LCPF and NUD-IC for the Single Worker Geo-Task Schedul-

ing (SGTS) problem, we solve the Multi-Worker Geo-Task scheduling (MGTS) prob-

lem by proposing two space partitioning-based task assignment methods, QT-NNH

and QT-NUD, which leverage the point-region quadtree to ensure workload balancing

among multiple workers.

• To provide more effective and dynamic workload balancing among all the workers,

we propose a novel tree structure, Workload-balancing Bisection Tree (WBT), and

further present two more advanced scheduling algorithms WBT-NNH and WBT-NUD

to solve the Multi-Worker Geo-Task scheduling (MGTS) problem. WBT-NNH and

WBT-NUD build on algorithms QT-NNH and QT-NUD but utilize WBT to perform

workload balancing instead of quadtree.

• The effectiveness and efficiency of the six proposed approximate solutions were verified

by our extensive experiments using the synthetic data and Foursquare [40] [39] [38]
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mobile user check-in data in three highly populated cities (i.e., New York City; Austin,

Texas; Tokyo). Compared with the state-of-the-art approaches, all our proposed so-

lutions were able to return a higher number of completed tasks for a single worker or

the entire worker group while reducing the computation cost by up to three orders of

magnitude when coping with massive tasks distributed in large geographic areas.

• We present a web-based demo application for Turbo-GTS featuring the aforementioned

four MGTS algorithms, which includes an interactive interface for users to load the

current task/worker distributions and compare the task assignment of each worker

returned by different algorithms in a real-time fashion. We also demonstrate the front-

end interface of Turbo-GTS demo with several exploratory use cases in New York

City.

1.1 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 describes the

related work on task scheduling in mobile crowdsourcing. Chapter 3 formulates our studied

problem and presents the system architecture of Turbo-GTS. In Chapter 4, we elaborate

on LCPF and NUD-IC algorithms for single worker task scheduling. QT-NNH and QT-

NUD are introduced to solve multiple worker task scheduling in Chapter 5. Workload-

balancing Bisection Tree (WBT) along with the two algorithms WBT-NNH and WBT-NUD

are presented in Chapter 6 to provide better workload balancing for multiple worker task

scheduling. Experimental evaluation is presented in Chapter 7, Chapter 8 and Chapter 9.

Exploratory use cases of Turbo-GTS demo is demonstrated in Chapter 10. Chapter 11

concludes the dissertation and presents our future work.
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Chapter 2

Related Work

2.1 Mobile Crowdsourcing

Crowdsourcing enables businesses to utilize the spare time of a crowd of people to do

jobs which would have been done by their employees, contractors or outsourcing suppliers

in the past [19]. For example, Amazon’s Mechanical Turk is a micro-task market that helps

individuals and businesses to engage a large group of people to do things for monetary pay-

ment [25]. Although currently crowdsourcing is mainly used to perform small and easy jobs,

models in support of more sophisticated tasks such as searching queries, decision making,

and scientific problem solving have already been investigated [2] [32] [26] [4]. The commer-

cial prospects of crowdsourcing have also been discussed in [35] [37] . Beyond the benefits

from the perspective of enterprises, crowdsourcing even has the potential to be used for

governments to deal with disasters [14] [16] [41]. .

Mobile crowdsourcing means to outsource a set of spatial tasks to a group of workers,

who are physically located at a certain place to perform a certain task at a certain time.

There are two types of mobile crowdsourcing, namely, reward-based and self-driven based

crowdsourcing. In the reward-based mobile crowdsourcing, workers have reward benefits for

correctly performed tasks. For example, EasyShift [30] - a smartphone application similar

to Gigwalk - pays a user three to eight dollars for checking price and availability of several

varieties of baby food products in a local retailer [3], where the user takes photos of the

store’s front entrance and the baby food shelves inside before answering several questions

according to the actuality. Workers in the self-driven based crowdsourcing volunteer to

perform tasks. In this case, workers are driven by incentives rather than being induced

by any physical rewards; sample incentives include praise, recognition, job enrichment, and
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promotion opportunities. For example, a community data campaign was initiated during

the spring of 2010 in the East Los Angeles neighborhood of Boyle Heights [1], where local

residents with smartphones were recruited and answered survey questions regarding their

neighborhood, home environment, transportation, school conditions, and work conditions.

All the volunteers participating in this campaign are self-motivated users.

2.2 Geo-Task Scheduling

Due to the fact that traditional task scheduling fails to take spatial data into account,

solutions from [36] [7] [22] [21] can not be directly used in mobile crowdsourcing. We note

that (1) location awareness, (2) workers’ path selection, and (3) spatial indexing structures

are three most unique characteristics of mobile crowdsourcing that distinguishes itself from

traditional task scheduling. First, mobile crowdsourcing requires workers to physically be

at specific locations to complete the tasks. Every time a worker is assigned to a new task,

she has to physically move to that task. As a result, the relative cost of completing any

specific task to each worker is always changing dynamically, which traditional task scheduling

models are unable to handle well. Second, since workers must travel to event places and

perform the tasks, it is critical for the workers to select the best route and wisely schedule

the task sequence. Traditional task scheduling or routing problems like traveling salesman

problem (TSP) are commonly used to formulate the problem of finding the optimal solution

given fixed tasks. However, in mobile crowdsourcing, finding the right paths is much more

challenging because: (1) multiple workers start from different locations and (2) both the

number of workers and tasks may vary over time due to the unavailability of the workers or

the expiration of tasks. Last but not least, a desirable solution to mobile crowdsourcing relies

on the efficient and effective design and integration of different spatial indexing mechanisms,

such as R-tree, Quad-tree, or KD-tree, which is beyond the scope of the traditional task

scheduling problems.
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Task scheduling with spatial data has also been studied in the past. Kazemi et al.

proposed three strategies [23] to assign tasks from the crowdsourcing server’s perspective

(i.e., a server determines which task will be assigned to which worker). Their strategies were

designed to address the Maximum Task Assignment (MTA) problem by turning MTA into

a maximum flow minimum cost problem. Dang et al. further improved Kazemi’s model to

dedicatedly address the assignment problem of special tasks that can only be performed by

workers with certain expertise in reward-based mobile crowdsourcing [6]. The problem with

their solutions is that the travel cost calculated based on their model can be very inaccurate

since the order chosen to perform tasks from a selected task set really matters in travel cost

computation. Heuristic algorithms and exact algorithms based on dynamic programming and

branch-and-bound strategies were proposed in [10]. However, their approaches suffer from

scalability and inefficiency. In our prior work [27], we presented two approximate solutions,

LCPF and NUD-IC, for the Single Worker Geo-Task Scheduling (SGTS) problem. The most

closely related work to this dissertation is [11], which attempted to solve the Multi-worker

Geo-Task Scheduling (MGTS) problem by maximizing the total number of tasks that can

be accomplished by all the workers. However, their work has two limitations. First, they

assume that each worker has a maximum number of tasks that can be assigned to her.

Second, they assume that each worker is only able to select tasks within a predetermined

neighborhood. Therefore, their approach suffers from poor performance in practice when

coping with massive tasks distributed in large geographic areas.
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Chapter 3

Problem Formulation

Definition A spatial task s is a crowdsourced task located in a spatial region Z, with three

innate attributes: its location s in Z (in this dissertation, we use the same symbol s to

represent the location as well as the task itself for convenience, since the task itself is nothing

but the three attributes in our model), its execution duration us and expiration time

es.

In mobile crowdsourcing, each task will be located at a certain position in a spatial

region and can only be accomplished there. Moreover, each task also has its own execution

duration, which indicates how long it takes to complete the task, and expiration time, which

indicates when the task is going to expire if it is still left unfinished. In this dissertation, we

use an imaginary task s0 to represent the spot where w is located in Z originally. Similarly,

t0 represents the time when w starts from s0, or the completion time of the imaginary task

s0.

Definition A task set S = {s1, s2, · · · , sn} is a collection of spatial tasks in Z waiting to be

accomplished, in which each task can be accomplished once and only once.

In our model, we assume that no task can be executed by more than one worker, i.e.,

collaboration of workers is not taken into account in this dissertation. We also assume that

a worker will lose no time to head for the next one once the current task has been finished.

Definition A task sj is a potential successor of task si at time tsi if and only if it satisfies

tsi + csi,sj + usj ≤ esj , where csi,sj denotes the time required for traveling from si to sj

and tsi stands for the time when si has been accomplished.

9



Table 3.1: Symbolic Notations
Symbol Meaning

S the whole task set
W the worker set
w a worker in W
Z the spatial region where W and S are located
s a task in S, representing its location in Z
es the expiration time of s
us the execution duration of s
s0 the imaginary task representing where w starts in Z
t0 the time when w starts from s0

csi,sj the time cost in traveling between si and sj
ts the completion time of s

ptcl no number of particles in particle filtering
Q a priority queue of ptcl no task sequence samples
Ri a task sequence sample in Q
Gi a task group generated by classifying each task’s duration
ndiv the number of Gi to divide S into
ddr a given decimal used to calculate ndiv

Rfinal the task sequence returned by an algorithm

Checking whether a task is another task’s potential successor is very useful in pruning

those tasks that have already expired or are about to expire so that the whole task set can be

reduced in the future steps no matter what algorithm is being used. In addition, we assume

that all the tasks in S are the potential successors of s0 at time t0 when the worker is still in

her original position. Otherwise it makes no sense to include those unaccomplishable tasks

from the very beginning into the candidate task set S.

Definition A task sequence Rfinal = {sr1 , sr2 , · · · , srm} (1 ≤ rk ≤ n, 1 ≤ k ≤ m, 1 ≤ m ≤

n) is a succession of tasks assigned to or chosen by a worker from the whole task set S such

that all tasks in Rfinal are distinct from each other (if i 6= j, then ri 6= rj, 1 ≤ i, j ≤ m) and

are able to be accomplished before their respective expiration time. The number of elements

in Rfinal (m in this case) is defined as the length of task sequence.

Definition The Single-worker Geo-Task Scheduling (SGTS) is designed to find the

longest task sequence obtained from a task set S in a spatial region Z, given the time when

the worker starts from her original location.
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Figure 3.1: Here, w represents the location where the worker starts at time 0. s1−5 represent
all the tasks at their respective locations. Parenthesized number pairs on top of each task
represent this task’s execution duration and expiration time with the same time unit as the
scales in the grid, where distances are calculated in taxicab geometry.

Figure 3.1 shows an example of the SGTS problem. In Figure 3.1, w indicates her

starting position at time 0. If NNH [10] is used, w will end up with only s2 accomplished

because the expiration time of all the other tasks does not leave her enough time to perform

any of them at the completion time of s2; however, if w chooses NUD-IC (to be introduced

in Chapter 4) as her scheduling method instead, w is going to end up with the longest task

sequence s1 → s3 → s5 → s4.

Definition The Multi-worker Geo-Task Scheduling (MGTS) is designed to find a task

scheduling plan for all the workers from a worker set W so as to achieve the maximum

number of accomplished tasks from a task set S in a spatial region Z, given the time when

those workers start from their respective locations.
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MGTS problem is not simply a set of SGTS problems, and it cannot be solved by solving

each worker’s SGTS problem one by one, for workers compete for tasks and the solution to

each SGTS problem conflicts with others. Thus, MGTS problem has to be solved as a whole

to achieve the maximum number of accomplished tasks by all the workers.

Figure 3.2 shows the system architecture of Turbo-GTS. We proposed two algorithms,

LCPF and NUD-IC (we will compare them in detail later in Chapter 4), for the SGTS

problem and four algorithms, QT-NNH, QT-NUD, WBT-NNH and WBT-NUD (QT-NNH

and QT-NUD will be compared in detail later in Chapter 5 while WBT-NNH and WBT-NUD

will be discussed in detail later in Chapter 6), for the MGTS problem. Turbo-GTS takes

as input the workers’ current locations and the related information (e.g., location, execution

duration, and expiration time) of each task and returns the task assignment for each worker

in order to maximize the total number of tasks that can be completed by all the workers.

Table 3.1 summarizes the notations used in the problem formulation and the following

algorithms.
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Figure 3.2: System Architecture of Turbo-GTS
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Chapter 4

Single-worker Geo-Task Scheduling

In this chapter, we present two approximate solutions to solve the SGTS problem.

4.1 The Least Cost Neighbor with Particle Filtering (LCPF)

Particle filtering is a Monte Carlo method used to perform inference in a state-space

model where the state of systems changes in every instant of time [31]. It was first proposed

to deal with recursive Bayesian estimation [17], then it is used as a solution to the general

nonlinear filtering problems [8] [9]. Assume we want to estimate a Markov chain {Xn}(n ≥

1), then we have

xk = fk(xk−1, vk−1) (4.1)

In Equation 4.1, xk is the state vector at instant k, fk a possibly nonlinear function,

and vk−1 an independent and identically distributed (i.i.d.) process noise sequence. However,

what can be measured by us directly is just the corresponding observations {Zn}(n ≥ 1),

and we have

zk = hk(xk, nk) (4.2)

In Equation 4.2, hk is a nonlinear function and nk a measurement noise sequence. Given

the settings above, now we are able to estimate the probability density function (PDF)

p(xk|z1:k) for the state vector xk at instant k via particle filtering. First a certain number

(ptcl no) of random samples or particles are chosen from {Xn} and each sample will be

assigned an importance weight through importance sampling [34]. This procedure is called
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the prediction stage. After that, each sample’s importance weight will be normalized and

in proportion to each sample’s normalized weight, ptcl no new samples will be generated

again. This procedure is called the update stage, which will be followd by a new prediction

stage and so forth. For the resampling step, if given the set of particles paired with the

corresponding importance weights {xik−1, wi
k−1}

ptcl no
i=1 at instant k− 1, the new sample set at

the next instant k can be obtained by the formulae:

xik ∼ p(xk|xik−1) (4.3)

wi
k ∝ wi

k−1p(zk|xik) (4.4)

LCPF is a particle filtering algorithm based on the heuristic of nearest neighbor. For

the sake of clarity and precision in describing our algorithm, we present the definition of

least cost neighbor based on nearest neighbor as below:

Definition Given a task s ∈ S at time ts, let Ssub = {si|ts + cs,si + usi ≤ esi , si ∈ S, s 6= si};

if there exists a task s∗ ∈ Ssub such that cs,s∗ + us∗ ≤ cs,si + usi for any si ∈ Ssub, then s∗ is

the least cost neighbor of s in S at time ts.

It is easy to see that searching for the least cost neighbors of a task s from the whole

task set S is actually to seek the nearest neighbors (considering the execution duration of

tasks into the calculation of nearness) of s from all its potential successors in S.

LCPF is detailed in Algorithm 1. Before particle filtering process begins, an empty

priority queue Q for task sequence samples with the reciprocal of the completion time as

each sample’s priority is created. This means that the less the completion time of the task

sequence, the larger the priority of this sample in the queue (line 1 in Algorithm 1), and the

first sample with only one task s0 (representing w’s start location) is inserted into Q (line

2 in Algorithm 1). Lines 3 - 21 in Algorithm 1 show the whole process of particle filtering.

Initially, the task sequence with the least completion time is kept into Rfinal as a candidate
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Figure 4.1: An illustration of dividing a task set of nine tasks into three task groups through
the duration categorization process.

of the final result (line 4 in Algorithm 1), and Q∗ is created as a duplicate of Q (lines 5 - 6 in

Algorithm 1) before clearing out all the elements in Q for the upcoming new samples (line

7 in Algorithm 1). Lines 8 - 20 in Algorithm 1 show the process of re-sampling. Each task

sequence sample finds at most pctl no least cost neighbors of the last task in the sequence

(lines 9 - 12 in Algorithm 1), generates at most pctl no new samples by appending each least

cost neighbor to the sequence (line 14 in Algorithm 1), and inserts every newly generated

sample into Q (line 15 in Algorithm 1). Lines 16 - 18 in Algorithm 1 make sure only the

top ptcl no task sequences with the least completion time are kept in Q. The process of

re-sampling continues until no more new samples can be found in Q (line 3 in Algorithm 1)

and the current value kept in Rfinal is returned as the final result (line 22 in Algorithm 1).

4.2 Non-Urgency Degree Particle Filtering with Iterative Clustering (NUD-IC)

In this section, we elaborate on the NUD-IC algorithm, which generates the sub-optimal

schedule based on particle filtering, DBSCAN clustering, and the concept of Non-Urgency
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Degree (NUD) that is about to be introduced here. The basic idea behind the NUD-IC

algorithm is that if the completion of a task can leave more time for the accomplishment of

other tasks before they expire, this task should be selected as the worker’s next stop with a

higher probability.

Given a task s and its completion time ts, the non-urgency degree (NUD) of s for each

task si ∈ S at time ts can be defined as the following:

NUD(si, s, ts) =
esi − usi − cs,si − ts

usi
(4.5)

where the numerator means how early si could be finished before its expiration time

when w starts from s at time ts. Given a task sequence sample Ri, its importance weight can

be in proportion to the value of the function NUD SUM(S, Ri), as shown in Algorithm 2.

Thus, similar to LCPF, we propose a new particle filtering algorithm (NUDPF) by using

NUD SUM as the objective function. The details of NUDPF are shown as in Algorithm 3.

DBSCAN [12] is one of the most widely used data mining algorithms for clustering

noisy data with outliers. However, it takes no temporal factor into account. We observe

that tasks with long execution duration could be as unpromising as remote tasks. In our

design, POIs are clustered via DBSCAN algorithm not only based on their relative distances

to each other but also based on the homogeneity of their execution duration. This process is

called iterative clustering. Iterative clustering contains two steps: the first step is called

duration categorization, which divides the whole task set into several groups according

to each task’s execution duration; the second step then applies DBSCAN routine to each

group thus generated in turn to create clusters. This design guarantees that tasks with

diverse execution duration will never be assigned into the same cluster no matter how close

they are located geographically. To achieve this goal, besides the two traditional DBSCAN

parameters, ε and MinPts, we introduce a third parameter duration division ratio (ddr)

into our iterative clustering process. Specifically, ddr determines how many task groups S
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Algorithm 1 LCPF(S, s0, t0, ptcl no)

1: Create an empty priority queue Q for at most ptcl no task sequence samples
〈R1, R2 . . . , Rptcl no〉, where Ri with smaller completion time has a higher priority.

2: Q.insertWithPriority({s0}, t−10 ) . Reciprocal of completion time as priority.
3: while Q.isNotEmpty() do
4: Rfinal ← Q.getHighestPriority() . Element with highest priority is returned but not

removed.
5: Create an empty priority queue Q∗.
6: Copy all the elements of Q into Q∗.
7: Q.removeAllElements()
8: while Q∗.isNotEmpty() do
9: R← Q∗.pullHighestPriority() . Element with highest priority is returned and

removed.
10: send ← the last task in R
11: tend ← the completion time of R
12: Snb ← at most ptcl no least cost neighbors of send at tend from S.
13: for all sj ∈ Snb do
14: R∗j ← R ∪ {sj}
15: Q.insertWithPriority(R∗j , t

−1
sj

) . Reciprocal of completion time as priority.
16: if |Q| > ptcl no then
17: Q.removeLowestPriority() . Element with lowest priority is removed.
18: end if
19: end for
20: end while
21: end while
22: return Rfinal
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should be divided into according to each task’s execution duration, and we call this process

duration categorization.

In duration categorization, we first pick up the minimum umin and maximum umax out of

the set {usi | si ∈ S} and create an interval I = [umin, umax]; second, we figure out the number

of subintervals (ndiv) that the interval I can be divided into via ndiv = d1/ddre, ddr ∈ (0, 1];

third, letting ∆u = (umax−umin)∗ddr, we divide I into ndiv subintervals: I1 = [umin, umin +

∆u], I2 = (umin+∆u, umin+2∗∆u], . . . , Indiv−1 = (umin+(ndiv−2)∗∆u, umin+(ndiv−1)∗∆u],

Indiv
= (umin + (ndiv − 1) ∗ ∆u, umax]; lastly, we put tasks with their respective execution

duration falling into the same subinterval Ii into the same task group Gi (1 ≤ i ≤ ndiv), and

thus divide the whole task set S into ndiv task groups G1, . . . , Gndiv
. Figure 4.1 illustrates

the process of dividing a set S of nine spatial tasks s1−9 into three task groups according to

their respective execution duration.

After the whole task set S has been divided into ndiv task groups, G1, . . . , Gndiv
by the

duration categorization process aforementioned, the first group G1 containing tasks with the

shortest execution duration will be processed by DBSCAN routine and the outliers thus

extracted from G1 will be added into G2, which will be processed with DBSCAN algorithm

too with its outliers being added into G3 and so forth. When the last task group Gndiv

has been processed by DBSCAN algorithm, the outliers generated in this step comprise

tasks with long execution duration and/or located geographically in some remote areas. The

detailed algorithm of iterative clustering is shown in Algorithm 4.

Algorithm 2 NUD SUM(S, R)

1: sum← 0
2: send ← the last task in R
3: tend ← the completion time of R
4: for all si ∈ S \R do
5: if si is a potential successor of send at tend then
6: sum← sum + NUD(si, send, tend) . Definition of NUD is shown in Equation 4.5.
7: end if
8: end for
9: return sum
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Algorithm 3 NUDPF(S, s0, t0, ptcl no)

1: Create an empty priority queue Q for at most ptcl no task sequence samples
〈R1, R2 . . . , Rptcl no〉, where Ri with larger NUD SUM(S,Ri) value has a higher prior-
ity.

2: Q.insertWithPriority({s0}, NUD SUM(S, {s0})) . NUD SUM value as priority
3: while Q.isNotEmpty() do
4: Rfinal ← Q.getHighestPriority() . Element with highest priority is returned but not

removed.
5: Create an empty priority queue Q∗.
6: Copy all the elements of Q into Q∗.
7: Q.removeAllElements()
8: while Q∗.isNotEmpty() do
9: R← Q∗.pullHighestPriority() . Element with highest priority is returned and

removed.
10: send ← the end task of R
11: tend ← the end time of R
12: for all sj ∈ S \R do
13: if sj is a potential successor of send at tend then
14: R∗j ← R ∪ {sj}
15: Q.insertWithPriority(R∗j , NUD SUM(S,R∗j )) . NUD SUM value as

priority
16: if |Q| > ptcl no then
17: Q.removeLowestPriority() . Remove element with lowest priority.
18: end if
19: end if
20: end for
21: end while
22: end while
23: return Rfinal
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Algorithm 4 IterativeCluster(S, ε,MinPts, ddr)

1: ndiv = d1/ddre
2: Divide S into G1, . . . , Gndiv

by duration categorization.
3: for all Gi ∈ {G1, . . . , Gndiv

} do
4: DBSCAN(Gi, ε,MinPts)
5: if i < ndiv then
6: Put outliers of Gi into Gi+1.
7: end if
8: end for
9: return all the clusters and outliers.

Algorithm 5 NUD-IC(S, s0, t0, ptcl no, ε, MinPts, ddr)

1: Rfinal ← ∅
2: (clusters, outliers)← IterativeCluster(S, ε,MinPts, ddr)
3: scur ← s0
4: tcur ← t0
5: for all clsti ∈ clusters do
6: Rfinal ← Rfinal ∪ NUDPF(clsti, scur, tcur, ptcl no)
7: scur ← the last task in Rfinal

8: tcur ← the completion time of Rfinal

9: end for
10: Rfinal ← Rfinal ∪ NUDPF(outliers, scur, tcur, ptcl no)
11: return Rfinal

The algorithmic description and the block diagram of the Non-Urgency Degree Particle

Filtering with Iterative Clustering (NUD-IC) are shown in Algorithm 5 and Figure 4.2,

respectively. NUD-IC first divides the whole task set into clusters and an outlier set through

iterative clustering, and then applies the aforementioned particle filtering method NUDPF

to each cluster and the outlier set following the same order as they are generated.

4.3 Algorithmic Comparison

In this section, we first compare our proposed methods with the baseline methods the-

oretically and then shed light on the performance improvement of the proposed algorithms

against the baseline methods using an illustrative example.
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Comparison of ICPF and NUD-IC with Baselines. Suppose that we use n to

represent the total number of tasks and k to represent the number of particles. Then the

time complexity of LCPF can be estimated as

TSL ∗ k ∗ top k select() = O(n) ∗ k ∗ O(k ∗ n) = O(k2 ∗ n2), (4.6)

where TSL is the task sequence length and top k select() is the cost to select the top

k particles in each step. NUD-IC comprises two subroutines, IterativeCluster and NUDPF

(which dominates the whole algorithm). Thus, the time complexity of NUD-IC can be

represented as

∑
i

(TSLCi
∗ k ∗ NUD()) =

∑
i

(O(|Ci|) ∗ k ∗ O(|Ci|2))

= O(k ∗
∑
i

|Ci|3) = O(k ∗ (
∑
i

|Ci|)3) = O(k ∗ n3),

(4.7)

where TSLCi
is the task sequence length in cluster Ci, NUD() denotes the cost to

compute the NUD values, and |Ci| represents the number of tasks within cluster Ci. On the

contrary, the time complexity of NNH [10] is O(n2) and the time complexity of BSH [10] can

be calculated as

Search Tree Height ∗ Nst ∗ NNH() = O(n) ∗ O(n) ∗ O(n2) = O(n4), (4.8)

where Nst denotes the maximum number of tree nodes in each level in BSH [10] while

NNH() represents the cost of the NNH [10] approach which is used as lower bound compu-

tation in BSH [10]. Table 4.1 compares the characteristics of each algorithm under different

application scenarios, where more check marks indicate better performance.
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Table 4.1: Performance Comparison of ICPF and NUD-IC with Baselines
Methods Optimizing

Running Time
Optimizing #

of
Accomplished

Tasks

Detecting
Outliers

Time
Complexity

NNH [10] XXX × × O(n2)

BSH [10] × × × O(n4)

LCPF XX X × O(k2 ∗ n2)

NUD-IC X XXX X O(k ∗ n3)

An Illustrative Example. Figure 3.1 compares NUD-IC with NNH [10] as an illus-

trative example. Since NNH [10] always chooses the task with the least total of traveling

time plus execution duration, NNH [10] will return w = {s2} as the result. In this case,

only s2 can be accomplished by w since all the other tasks, s1, s3, s4, s5, have expired

when s2 is completed. However, when applying NUD-IC, at first, s1, s3 and s5 will be clus-

tered together while s2 and s4 will be detected as outliers by IterativeCluster (as shown in

Algorithm 4). Next, the subroutine NUDPF (as shown in Algorithm 3) runs on the clus-

ter including s1, s3, and s5 to determine which task should be selected first by comparing

their respective resulting NUD SUM values. Specifically, if w chooses s1, the completion

time of s1 will be the traveling time between w and s1 plus the execution duration of

s1, which is 9 + 2 = 11. Therefore, s1’s NUD SUM value NUD SUM(S,w → s1) =

NUD(s3, s1, 11) + NUD(s5, s1, 11) = 23 − 2 − 3 − 11
2

+ 27 − 4 − 4 − 11
4

= 3.5 + 2 = 5. Notice

that here both s3 and s5 are potential successors of s1 at time 11. Similarly, we can also

derive s3’s NUD SUM value, NUD SUM(S,w → s3) = NUD(s1, s3, 12) + NUD(s5, s3, 12) =

20 − 2 − 3 − 12
2

+ 27 − 4 − 3 − 12
4

= 1.5 + 2 = 3.5, s5’s NUD SUM value, NUD SUM(S,w →

s5) = NUD(s3, s5, 17) = 23 − 2 − 3 − 17
2

= 0.5. According to Algorithm 3, since choosing s1

will lead to the highest NUD SUM value, s1 will be selected and assigned to w as her first

task for completion. The aforementioned selection procedure repeats until all the tasks in

each cluster have been assigned first or already expired. Once all the tasks in each cluster

have been assigned, the algorithm continues to check on outlier tasks by comparing their

respective NUD SUM values to determine the next task to take. As shown in Figure 3.1, at
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last, NUD-IC yields w = {s1 → s3 → s5 → s4} as the final task assignment, with four tasks

completed in total.
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Chapter 5

Multi-worker Geo-Task Scheduling based on Quadtree

In this chapter, we elaborate on our solutions for multi-worker geo-task scheduling

problem. The major challenge in multi-worker geo-task scheduling is how to divide the

whole task set into spatial subsets to ensure workload balancing among workers. Note that

simply running any SGTS approaches for each worker sequentially does not work here. We

propose two space partitioning-based methods, QT-NNH and QT-NUD, for multi-worker

geo-task scheduling, inspired by the proposed LCPF and NUD-IC for single worker geo-task

scheduling problem. QT-NNH and QT-NUD leverage the point-region quadtree to ensure

workload balancing among multiple workers.

5.1 Space Partitioning using Point-Region (PR) Quadtree

Turbo-GTS employs Point-Region (PR) quadtree [33] to perform space partitioning

to ensure task workload balancing among multiple workers. PR quadtree is a quadtree

organized in the same way as region quadtree except that its leaf nodes are either empty or

contain a data point with its coordinates. In our design, if a node in PR quadtree contains

more than one worker, then the node will generate four children; otherwise, the node will

serve as a leaf node. Figure 5.1 (a) illustrates how a spatial region with six workers and

nine tasks can be partitioned using the PR quadtree. The corresponding tree structure is

shown in Figure 5.1 (b). Figure 5.1 (c) depicts the structure of a PR quadtree node. A PR

quadtree node consists of three parts: the region which the tree node represents, the workers

who will be assigned to this region, and all the tasks located in the region. As illustrated

in Figure 5.1 (a) and Figure 5.1 (b), at first, a PR quadtree root is created to represent the

whole region A containing all the workers and tasks. Next, because region A contains more
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Figure 5.1: An illustration of how a region A is partitioned using a PR quadtree. w1−6
represent workers and s1−9 represent tasks.

than one worker, A is further divided into four sub-regions B, C, D and E, each of which

constitutes a child node of A, and each worker or task inside A is assigned to one of A’s

children based on their locations. Because region B and region D each contains only one

worker, they stop splitting and become leaf nodes. Region C and region E both contain

more than one worker so they will split into F , G, H, I and J , K, L, M respectively. Such

recursive splitting process stops when all the leaf nodes contain no more than one worker.

Algorithm 6 QT-NNH(Z,W, S)

1: Create an empty PR quadtree qt.
2: qt.root← {Z,W, S}.
3: TopDownDivideNNH(qt.root)
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Algorithm 7 TopDownDivideNNH(qt node)

1: if qt node.NumberOfWorkers > 1 then
2: {chld1, . . . , chld4} ← qt node.split()
3: for all chldi ∈ {chld1, . . . , chld4} do
4: TopDownDivideNNH(chldi)
5: end for
6: for all chldi ∈ {chld1, . . . , chld4} do
7: wk set← ∅
8: for all chldj ∈ {chld1, . . . , chld4} and chldj 6= chldi do
9: wk set← wk set ∪ chldj.getWorkers()

10: end for
11: while wk set 6= ∅ do
12: w∗ ← argmin{wi.getCurrentTime() + travel cost(wi → chldi) | wi ∈ wk set}
13: NNH(chldi.getTasks(), w∗.getCurrentLocation(), w∗.getCurrentTime())
14: wk set← wk set \ {w∗}
15: end while
16: end for
17: else
18: if qt node.NumberOfWorkers = 1 then
19: w ← qt node.getWorkers()
20: NNH(qt node.getTasks(), w.getCurrentLocation(), w.getCurrentTime())
21: end if
22: end if
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5.2 QT-NNH and QT-NUD

The algorithmic design of QT-NNH and QT-NUD are shown in Algorithm 6 and Al-

gorithm 8, respectively. Both QT-NNH and QT-NUD are based on PR quadtree discussed

in the last section. In QT-NNH, a PR quadtree root node is created first to represent the

whole region Z including the worker set W and task set S (lines 1 - 2 in Algorithm 6). Such

root node is passed as a parameter to a recursive function TopDownDivideNNH (line 3 in

Algorithm 6). TopDownDivideNNH then checks the received parameter qt node to deter-

mine whether qt node contains more than one worker (line 1 in Algorithm 7). If qt node

contains more than one worker, qt node will then be split into four children and TopDown-

DivideNNH will be invoked on each child recursively (lines 2 - 5 in Algorithm 7). In this

way, a PR quadtree is constructed recursively. Once the PR quadtree is created, every leaf

node will be checked to determine whether there is one worker associated with it (line 18 in

Algorithm 7). If yes, NNH [10] is invoked for the current leaf node (lines 19 - 20 in Algo-

rithm 7) to identify tasks for the associated worker, i.e, we assign each worker to the tasks

in the same node first. After all the workers have been designated to the tasks in their own

nodes individually, we continue to dispatch workers to the tasks that have not been assigned

in the corresponding three sibling nodes (lines 6 - 16 in Algorithm 7). A worker with an

earlier arrival time will have a higher priority to select a task (line 12 in Algorithm 7). This

process repeats iteratively from the leaf nodes to the root node. QT-NUD follows the same

process except that QT-NUD employs NUDPF (as illustrated in Algorithm 9) in each tree

node and its corresponding three sibling nodes to dispatch workers to tasks iteratively.

Algorithm 8 QT-NUD(Z,W, S, pctl no)

1: Create an empty PR quadtree qt.
2: qt.root← {Z,W, S}.
3: TopDownDivideNUD(qt.root, pctl no)
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Algorithm 9 TopDownDivideNUD(qt node, pctl no)

1: if qt node.NumberOfWorkers > 1 then
2: {chld1, . . . , chld4} ← qt node.split()
3: for all chldi ∈ {chld1, . . . , chld4} do
4: TopDownDivideNUD(chldi, pctl no)
5: end for
6: for all chldi ∈ {chld1, . . . , chld4} do
7: wk set← ∅
8: for all chldj ∈ {chld1, . . . , chld4} and chldj 6= chldi do
9: wk set← wk set ∪ chldj.getWorkers()

10: end for
11: while wk set 6= ∅ do
12: w∗ ← argmin{wi.getCurrentTime() + travel cost(wi → chldi) | wi ∈ wk set}
13: NUDPF(chldi.getTasks(),w∗.getCurrentLocation(),w∗.getCurrentTime(),pctl no)
14: wk set← wk set \ {w∗}
15: end while
16: end for
17: else
18: if qt node.NumberOfWorkers = 1 then
19: w ← qt node.getWorkers()
20: NUDPF(qt node.getTasks(),w.getCurrentLocation(),w.getCurrentTime(),pctl no)
21: end if
22: end if
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Figure 5.2: A comparison of the results when QT-NNH and BLALS-T are applied respec-
tively to the same scenario, where w1−4 represent workers and s1−8 represent tasks. Paren-
thesized number pairs on top of each task represent this task’s execution duration and expi-
ration time with the same time unit as the scales in the grid, where distances are calculated
in taxicab geometry.

5.3 Algorithmic Comparison

In this section, we first compare our proposed methods with the baseline methods the-

oretically and then shed light on the performance improvement of the proposed algorithms

against the baseline methods using an illustrative example.

Comparison of QT-NNH and QT-NUD with Baselines. Suppose that we use

nt to represent the total number of tasks, nw to represent the total number of workers,

and k to represent the number of particles. The time complexity of QT-NNH equals

QuadTree Create Cost + Scheduling Cost. In the worst case, QuadTree Create Cost =

O(nt + nw) and Scheduling Cost = O(n2
t ). Therefore, the time complexity of QT-

NNH is O(nt + nw) + O(n2
t ) = O(n2

t ). Similarly, the time complexity of QT-NUD

can be represented as O(nt + nw) + O(k ∗ n3
t ) = O(k ∗ n3

t ). On the con-

trary, BLALS-T [11] is composed of two major parts, recursive top-down bisection parti-

tioning and bottom-up merging. Therefore, the time complexity of BLALS-T [11] equals
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Table 5.1: Performance Comparison of QT-NNH and QT-NUD with Baselines
Methods Optimizing

Running Time
Optimizing # of

Accomplished
Tasks

Detecting
Outliers

Time
Complexity

BLALS-T [11] × × × Ω((nw + nt)
2 ∗

nw ∗ nt)

QT-NNH XX X × O(n2
t )

QT-NUD X XX X O(k ∗ n3
t )

∑
i

[Hpartition(i) + Hmerge(i)] + Hr = Ω(Hmerge(1)) = Ω((nw + nt)
2 ∗ nw ∗ nt),

where i represents the i-th iteration of the outermost loop in BLALS-T [11]. Hpartition(i)

and Hmerge(i) represent the cost of recursive top-down bisection partitioning and bottom-up

merging in the i-th iteration. Hr is the cost of scheduling the remaining tasks when all the

recursive top-down bisection partitioning and bottom-up merging are finished. Table 5.1

compares the characteristics of each algorithm under different application scenarios, where

more check marks indicate better performance.

An Illustrative Example. Figure 5.2 compares QT-NNH with BLALS-T [11] as an

illustrative example. As shown in Figure 5.2 (a), QT-NNH at first employs the proposed

quadtree to divide the whole target spatial region into four subregions (i.e., four tree leaf

nodes), let’s say, Q1, Q2, Q3, and Q4 (represented using solid red lines). Next, the tasks in

each leaf node will be assigned to its associated worker one by one according to NNH [10]

(for QT-NNH) or NUD-IC (for QT-NUD) proposed for the SGTS scenario. If all the tasks in

a tree node have been assigned, the algorithm continues to check on the tasks in the sibling

tree nodes and then the parent nodes iteratively in a bottom-up manner. For the scenario as

shown in Figure 5.2 (a), QT-NNH will return the following task assignment for each worker:

w1 = {s7 → s6}; w2 = {s4 → s5}; w3 = {s1 → s2}; w4 = {s3 → s8}, with all eight tasks

completed.

On the contrary, BLALS-T [11] assigns each worker the task which incurs the least cost

to her current task sequence according to its insertion scheduling. This could lead to conflicts

where multiple workers compete for the same tasks and some far-away tasks will be ignored
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since workers’ spatial regions may overlap. As shown in Figure 5.2 (b), BLALS-T [11] will

generate the following task assignments for workers: w1 = {s1}; w2 = {s3 → s8}; w3 = {s2};

w4 = {s4}. Consequently, there are only five tasks, s1, s2, s3, s4, s8, that can be completed,

with no worker being able to complete s5, s6 and s7.
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Figure 6.1: An illustration of the space partitioning using the proposed workload-balancing
bisection tree, which results in two occurrences of worker reassignments (highlighted as red
arrows) based on the estimated task-worker-density scores for tree nodes.

Chapter 6

Multi-worker Geo-Task Scheduling based on Workload-balancing Bisection Tree (WBT)

In this chapter, we propose two new space partitioning-based methods, WBT-NNH and

WBT-NUD, which buid on the two algorithms QT-NNH and QT-NUD proposed in [28] re-

spectively, to ensure a more effective and dynamic workload balancing among multiple work-

ers by leveraging a novel tree structure called Workload-balancing Bisection Tree (WBT).

6.1 Workload-balancing Bisection Tree (WBT)

6.1.1 General Description

Similar to point-region quadtree [33] that recursively divides a region into four equal

quadrants until there is at most one data point in the region, WBT divides a rectangle

region recursively into two equal parts transversely as long as this region contains more than

one worker. The differences between WBT and point-region quadtree reside in the following
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three aspects. First, a region will only be partitioned when it contains more than one worker,

whereas the number of tasks within has no impact on the behavior of partitioning. Second,

WBT divides a region into two equal parts instead of four, and the division is always made

transversely. Third, immediately after a partition is made on a region, a workload balancing

procedure will be triggered to balance the number of workers between the two partitions.

6.1.2 Task Worker Density (TWD)

Workload balancing in WBT is performed based on the calculation of the task-worker-

density of each tree node, which can be estimated using Equation 6.1, where N represents

a WBT node, w and s represent a worker and a task in N respectively, es and us represent

the expiration time and execution duration of s respectively, and tw represents the current

time of w. The workload balancing in WBT is performed based on the calculation of Task-

Worker-Density (TWD) of each tree node, which can be estimated using Equation 6.1. The

TWD of each tree node is to estimate the likelihood that the workers currently in that node

are able to finish all the tasks currently in the same node, assuming the locations of all the

tasks are uniformly distributed. In Equation 6.1, RPD(N) is the Random Point Distance

(RPD), which is the average distance of the two uniformly distributed random points in a

rectangular region and can be calculated by Equation 6.2 [29].

task worker density(N) =

∑
si∈N

1
usi∑

wi∈N
max{esi |si∈N}−twi

RPD(N)

(6.1)

RPD(a, b) =
1

15

(
a3

b2
+
b3

a2
+ d ∗

(
3− a2

b2
− b2

a2

)
+

5

2
∗
(
b2

a
∗ ln

(a+ d

b

)
+
a2

b
∗ ln

(b+ d

a

)))
.

(6.2)
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6.1.3 Dynamic Workload Balancing

In WBT, node splitting is based on the bisection tree while worker reassignment is con-

ducted to ensure all the leaf nodes reach a similar TWD score for achieving load-balancing.

The whole procedure of the dynamic workload balancing on each pair of node siblings is

shown in Algorithm 10. After figuring out which node has a greater workload between a

pair of siblings in lines 1 - 11, workers keep being reassigned from the sibling with a lesser

workload to the sibling with a greater workload in lines 12 - 28. As we want to make sure

the chosen worker to be reassigned still has enough time to do something in her new working

area after moving, each time the worker with the earliest arrival time in the destination par-

tition is selected (line 13). If the workload relation between the two sibling nodes still holds

after reassigning the chosen worker with her current time updated by adding the traveling

cost between her and the destination partition, the reassignment will be committed and the

information of the two nodes will also be updated accordingly (line 15 - 20); otherwise, the

reassignment will be rolled back with the worker’s current time being reverted (line 22) and

the whole procedure quits (line 23). The procedure also quits when the number of workers

is no longer less than the number of tasks in the node with a greater workload (line 12), or

when there is no worker left in the node with a lesser workload (line 26).

Figure 6.1 illustrates how a spatial region with two workers and five tasks can be parti-

tioned following Algorithm 10. As shown in Figure 6.1 (b), each WBT tree node consists of

three parts: the region which the tree node represents, the workers belonging to that region,

and the tasks belonging to that region. First the whole region A, as illustrated in Figure 6.1

(a), is divided into two sub-regions B and C, with all workers located in region C and all

tasks located in B. By calculating the task-worker-density scores of B and C, the workers

will be reassigned to B from C. Next, the region B is divided into D and E. Similarly, by

checking the task-worker-density scores of D and E, w2 in E is reassigned to D. As a result,

the final WBT tree will have three leaf nodes, C, D, and E, with C having no workers or

tasks, D having one worker and three tasks, and E having one worker and two tasks.
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Algorithm 10 WorkloadBalance(N1, N2)

1: if TWD(N1) > TWD(N2) then
2: Nbig ← N1

3: Nsml ← N2

4: else
5: if TWD(N1) < TWD(N2) then
6: Nbig ← N2

7: Nsml ← N1

8: else
9: return

10: end if
11: end if
12: while workers are less than tasks in Nbig do
13: w ← argmin{twi

+ travel cost(wi → Nbig) | wi ∈ Nsml}
14: if w 6= null then
15: twi

← twi
+ travel cost(wi → Nbig)

16: N∗big ← Nbig ∪ {w∗}
17: N∗sml ← Nsml \ {w∗}
18: if TWD(N∗big) > TWD(N∗sml) then
19: Nbig ← N∗big
20: Nsml ← N∗sml

21: else
22: twi

← twi
− travel cost(wi → Nbig)

23: break
24: end if
25: else
26: break
27: end if
28: end while
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6.2 WBT-NNH and WBT-NUD

The algorithmic design of WBT-NNH and WBT-NUD are shown in Algorithm 11 and

Algorithm 13, respectively. Besides adding dynamic workload balancing (shown in Algo-

rithm 10) into each algorithm, WBT-NUD uses NUD-IC [28] instead of NUDPF [28] to

improve the efficiency.

Both WBT-NNH and WBT-NUD are based on WBT discussed in the last section. In

WBT-NNH, a WBT root node is created first to represent the whole region Z including

the worker set W and task set S (lines 1 - 2 in Algorithm 11). Such root node is passed

as a parameter to a recursive function TopDownWbtNNH (line 3 in Algorithm 11). Top-

DownWbtNNH then checks the received parameter wbt node to determine whether wbt node

contains more than one worker (line 1 in Algorithm 12). If wbt node contains more than

one worker, wbt node will then be split into two children and TopDownWbtNNH will be

invoked on each child recursively after workload being balanced between them (lines 2 - 6 in

Algorithm 12). In this way, a WBT is constructed recursively. Once the WBT is created,

every leaf node will be checked to determine whether there is one worker associated with it

(line 22 in Algorithm 12). If yes, NNH [10] is invoked for the current leaf node (lines 23 - 27

in Algorithm 12) to identify tasks for the associated worker, i.e, we assign each worker to the

tasks in the same node first. After all the workers have been designated to the tasks in their

own nodes individually, we continue to dispatch workers to the tasks that have not been

assigned in the corresponding sibling node (lines 7 - 20 in Algorithm 12). A worker with

an earlier arrival time will have a higher priority to select a task (line 13 in Algorithm 12).

This process repeats iteratively from the leaf nodes to the root node. WBT-NUD follows

the same process except that WBT-NUD employs NUD-IC (as illustrated in Algorithm 14)

in each tree node and its corresponding sibling to dispatch workers to tasks iteratively.
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Algorithm 11 WBT-NNH(Z,W, S)

1: Create an empty WBT wbt.
2: wbt.root← {Z,W, S}.
3: TopDownWbtNNH(wbt.root)

Algorithm 12 TopDownWbtNNH(wbt node)

1: if wbt node.NumberOfWorkers > 1 then
2: {chld1, chld2} ← qt node.split()
3: WorkloadBalance(chld1, chld2)
4: for all chldi ∈ {chld1, chld2} do
5: TopDownWbtNNH(chldi)
6: end for
7: for all chldi ∈ {chld1, chld2} do
8: wk set← ∅
9: for all chldj ∈ {chld1, chld2} and chldj 6= chldi do

10: wk set← wk set ∪ chldj.getWorkers()
11: end for
12: while wk set 6= ∅ do
13: w∗ ← argmin{wi.getCurTime() + travel cost(wi → chldi) | wi ∈ wk set}
14: S ← chldi.getTasks()
15: s0 ← w∗.getCurLocation()
16: t0 ← w∗.getCurTime()
17: NNH(S, s0, t0)
18: wk set← wk set \ {w∗}
19: end while
20: end for
21: else
22: if wbt node.NumberOfWorkers = 1 then
23: S ← wbt node.getTasks()
24: w ← wbt node.getWorkers()
25: s0 ← w.getCurLocation()
26: t0 ← w.getCurTime()
27: NNH(S, s0, t0)
28: end if
29: end if

Algorithm 13 WBT-NUD(Z,W, S, pctl no)

1: Create an empty WBT wbt.
2: wbt.root← {Z,W, S}.
3: TopDownWbtNUD(wbt.root, pctl no)
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Algorithm 14 TopDownWbtNUD(wbt node, pctl no)

1: if wbt node.NumberOfWorkers > 1 then
2: {chld1, chld2} ← qt node.split()
3: WorkloadBalance(chld1, chld2)
4: for all chldi ∈ {chld1, chld2} do
5: TopDownWbtNUD(chldi, pctl no)
6: end for
7: for all chldi ∈ {chld1, chld2} do
8: wk set← ∅
9: for all chldj ∈ {chld1, chld2} and chldj 6= chldi do

10: wk set← wk set ∪ chldj.getWorkers()
11: end for
12: while wk set 6= ∅ do
13: w∗ ← argmin{wi.getCurT ime()+ travel cost(wi → chldi) | wi ∈ wk set}
14: S ← chldi.getTasks()
15: s0 ← w∗.getCurLocation()
16: t0 ← w∗.getCurTime()
17: Find optimal ε,MinPts, ddr.
18: NUD-IC(S, s0, t0, pctl no, ε,MinPts, ddr)
19: wk set← wk set \ {w∗}
20: end while
21: end for
22: else
23: if qt node.NumberOfWorkers = 1 then
24: S ← wbt node.getTasks()
25: w ← wbt node.getWorkers()
26: s0 ← w.getCurLocation()
27: t0 ← w.getCurTime()
28: Find optimal ε,MinPts, ddr.
29: NUD-IC(S, s0, t0, pctl no, ε,MinPts, ddr)
30: end if
31: end if
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Chapter 7

Experimental Evaluation for SGTS Algorithms

In this chapter, we investigate the performance of LCPF and NUD-IC in terms of

the number of accomplished tasks and CPU cost in support of the single worker geo-task

scheduling using both real and synthetic datasets. All the experiments were run on a machine

with POWER8E CPUs at 2.06 GHz and 1024 GB RAM. Each result is averaged over 2000

random queries (except BF-6 and BSH [10]), where the location of the worker was randomly

generated in the target geographic areas.

7.1 All the SGTS Methods for Comparison

• BF-6: the brute force scheduling algorithm which runs up to 6 hours.

• NNH [10]: the method in which the worker always chooses the next task which has the

least total cost of the traveling distance plus the task’s execution duration.

• BSH [10]: the method which stores a predetermined number k (i.e., the beam width)

of best partial task sequence in a container (i.e., the beam), and keeps extending them

until a solution is found. The beam width k in BSH [10] was set the same as the

number of particles ptcl no (default value 5) used in LCPF and NUD-IC.

• LCPF: our proposed method based on particle filtering, as described in our conference

paper [27].

• NUD-IC: our proposed method based on the NUD computation and iterative clustering,

as described in our conference paper [27].
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Figure 7.1: Effect of task number on the synthetic data of uniform distribution with expira-
tion time range [40%, 60%].

7.2 Experiments on Synthetic Data

We generated our synthetic data based on uniform and skewed distributions. For the

skewed distribution, all the tasks were generated according to four Gaussian clusters, each

of which had the same radius r and the same deviation σ (with 0.2 as the default value), in

a target region with edge length 6r. We randomly generated the expiration time for each

task from [20%, 40%], [40%, 60%], [60%, 80%], and [80%, 100%] of the total expiration time

etotal (with [40%, 60%] as the default range).

7.2.1 Impact of the Total Number of Tasks

Uniform Distribution. As shown in Figure 7.1, both LCPF and NUD-IC outperformed

BF-6, NNH [10] and BSH [10] in terms of the number of accomplished tasks. On the other

hand, the CPU cost of BSH [10], LCPF and NUD-IC was higher than NNH [10]. Except

BF-6, BSH [10] returned the fewest accomplished tasks and required the longest CPU time

among all the investigated algorithms because it works well only when the total number of

tasks is small.
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Figure 7.2: Effect of task number on the synthetic data of skewed distribution (σ = 0.2)
with expiration time range [40%, 60%].

Skewed Distribution. As shown in Figure 7.2, NUD-IC outperformed all the other al-

gorithms in terms of the number of accomplished tasks. When the number of total tasks

increased, their performance difference became more noticeable. For example, when the total

number of tasks equaled 6000, NUD-IC was able to return 192 tasks while NNH [10] only

returned 120 tasks.

7.2.2 Impact of the Task Expiration Time

Uniform Distribution. As shown in Figure 7.3, when we extended the task expira-

tion time, NUD-IC and LCPF outperformed all other algorithms in terms of the number

of accomplished tasks. For example, when the expiration time was [80%, 100%], NUD-IC

accomplished 106 tasks, while BSH [10] only returned 56 tasks.

Note that BSH [10] showed little improvement in terms of the number of completed tasks

when the expiration time increased. This is because BSH [10] always favors the tasks which

have more potential successors, leading to a higher probability of choosing unpromising tasks

when the expiration time of all tasks is extended. In other words, BSH [10] only works well
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Figure 7.3: Effect of expiration time on the synthetic data of uniform distribution with task
number 5000.

in the case that all the tasks tend to expire soon. If most of the tasks have a long expiration

time, the performance of BSH [10] would deteriorate noticeably.

Skewed Distribution. Figure 7.4 shows that as the expiration time was prolonged, the

number of accomplished tasks returned by NUD-IC was up to 1.6 times more than the tasks

accomplished by NNH [10]. For example, when the expiration time is [60%, 80%], the number

of accomplished tasks obtained by NUD-IC and NNH [10] was 245 and 155, respectively.

7.2.3 Impact of the Task Spatial Distribution

As shown in Figure 7.5, when we increased σ for skewed distribution, the number of

accomplished tasks of all the algorithms went down. For example, when σ equaled 0.2, the

number of completed tasks returned by NUD-IC and NNH [10] was 180 and 113, respectively,

whereas when σ rose to 125, the number of accomplished tasks obtained by NUD-IC and

NNH [10] declined to 162 and 109, respectively. Also, we can observe that the more skewed

the task distribution is, the larger the advantage of NUD-IC over NNH [10] is. NUD-IC

43



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

[20, 40]

[40, 60]

[60, 80]

[80, 100]

N
um

be
r 

of
 A

cc
om

pl
is

he
d 

T
as

ks
 

Expir. Time Range (%)

BF-6
    NNH
   BSH

   LCPF
NUD-IC

100

102

104

106

108

1010

[20, 40]

[40, 60]

[60, 80]

[80, 100]

R
un

ni
ng

 T
im

e 
(m

ill
is

ec
)

Expir. Time Range (%)

    NNH
   BSH

   LCPF
NUD-IC

(a) Number of Accomplished Tasks (b) CPU Cost
(Syn-skewed) (Syn-Skewed)

Figure 7.4: Effect of expiration time on the synthetic data of skewed distribution (σ = 0.2)
with task number 5000.
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Figure 7.5: Effect of σ on the synthetic data of skewed distribution with task number 5000
and expiration time range [40%, 60%].

outperformed other algorithms in terms of the number of accomplished tasks and the CPU

cost of all the algorithms slightly decreased in the increase of σ.
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Figure 7.6: Effect of the number of particles on the synthetic data of uniform distribution
with task number 5000 and expiration time range [40%, 60%].

7.2.4 Impact of the Number of Particles

Figures 7.6 and 7.7 show the impact of the number of particles on the performance of

LCPF and NUD-IC. We can observe that when there was only 1 particle used in LCPF, it

returned the same number of accomplished tasks as NNH [10]. As the number of particles

increased, the performance gain of both LCPF and NUD-IC over NNH [10] in terms of the

number of accomplished tasks became larger.

7.3 Experiments on Real Geo-Task Data

Our real data were collected from Foursquare [40] [39] [38], featuring New York City

(42981 tasks) and Austin, Texas (8569 tasks). For task execution duration, we set dur min

to 5 seconds and dur max to 5 minutes. The expiration time of each task was randomly

generated from the following four intervals: 30 to 60 minutes, 60 to 90 minutes, 90 to 120

minutes, and 120 to 150 minutes, with 60 to 90 minutes as the default interval.
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Figure 7.7: Effect of the number of particles on the synthetic data of skewed distribution
(σ = 0.2) with task number 5000 and expiration time range [40%, 60%].

7.3.1 Impact of the Total Number of Tasks

Figures 7.8 and 7.9 show the performance of all the algorithms in terms of the number of

accomplished tasks and CPU cost based on POI distributions in New York City and Austin,

Texas. NUD-IC was able to return more accomplished tasks than NNH [10] and LCPF at

the price of the increased CPU cost. For example, when the total number of tasks was 7000

in New York City, the number of accomplished tasks returned by NUD-IC was 139, 1.6 times

more than that of NNH [10], which was 87. On the other hand, the CPU cost of all the

algorithms increased as the total number of tasks enlarged.

7.3.2 Impact of the Task Expiration Time

As depicted in Figures 7.10 and 7.11, when we extended the task expiration time, NUD-

IC outperformed the other algorithms in terms of the number of accomplished tasks. For

example, when the expiration time was in the interval of [90 mins, 120 mins] in New York

City, the number of accomplished tasks returned by NUD-IC was 162, 1.5 times more than
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Figure 7.8: Effect of task number on the dataset of New York City with expiration time
range [60 mins, 90 mins].
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Figure 7.9: Effect of task number on the dataset of Austin, Texas, with expiration time
range [60 mins, 90 mins].

that obtained by NNH [10], which was 107. BSH [10] showed little improvement in terms of

the number of accomplished tasks when all the tasks expire after 90 minutes in both cities.
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Figure 7.10: Effect of expiration time on the dataset of New York City with task number
5000.
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Figure 7.11: Effect of expiration time on the dataset of Austin, Texas, with task number
5000.

7.3.3 Impact of the Number of Particles

Here we investigate the impact of the number of particles on the performance of LCPF

and NUD-IC. As we raised the number of particles, both the number of accomplished tasks
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Figure 7.12: Effect of number of particles on the dataset of New York City with task number
5000, expiration time range [60 mins, 90 mins].

and CPU cost of LCPF and NUD-IC increased, as shown in Figures 7.12 and 7.13. Also,

given the same number of particles, NUD-IC successfully returned much more accomplished

tasks than LCPF. Note that when we set the number of particles to 1, the performance of

LCPF degraded to the same level as NNH [10].

7.4 Case Study

In this section, we randomly selected 1000 spatial tasks from New York City, and 1000

spatial tasks from Austin, Texas, respectively, and then launched all the algorithms from

a random start location of the worker in each city. In the case of New York City, BF-6,

NNH [10], BSH [10], LCPF and NUD-IC returned 23 tasks, 42 tasks, 67 tasks, 117 tasks

and 125 tasks, respectively, while for Austin, Texas, BF-6, NNH [10], BSH [10], LCPF

and NUD-IC retrieved 21 tasks, 61 tasks, 61 tasks, 119 tasks and 132 tasks, respectively.

Figures 7.14 (a) and (b) depict the corresponding accomplished tasks returned by NUD-

IC and BSH [10] respectively in both New York City and Austin, Texas. Specifically, as

illustrated in Figures 7.14 (a) and (b), NUD-IC was able to return a much higher number of
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Figure 7.13: Effect of number of particles on the dataset of Austin, Texas, with task number
5000, expiration time range [60 mins, 90 mins].

(a) New York City (b) Austin

Figure 7.14: Spatial tasks returned by NUD-IC and BSH [10], respectively, in New York
City (a) and Austin, Texas (b). Red dot represents worker’s start location, blue dots are
tasks accomplished exclusively by NUD-IC, orange dots are tasks accomplished exclusively
by BSH [10], and brown dots are tasks accomplished by both.

spatial tasks than BSH [10] because BSH [10] works well only when the number of spatial

tasks is very few (e.g., less than 100).
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Chapter 8

Experimental Evaluation for Quadtree based MGTS Algorithms

In this chapter, we investigate the performance of QT-NNH and QT-NUD in terms of

the number of accomplished tasks and CPU cost in support of the multiple worker geo-

task scheduling on real data. All the experiments were run in the same setting as in the last

chapter unless otherwise specified. The real data were collected from Foursquare [40] [39] [38],

featuring New York City (42981 tasks) and Tokyo (67124 tasks). For task execution duration,

we set dur min to 5 seconds and dur max to 5 minutes. The expiration time of each task

was randomly generated from the following three intervals: 30 to 90 minutes, 60 to 120

minutes, 90 to 150 minutes, with 60 to 120 minutes as the default interval.

8.1 All the MGTS Methods for Comparison

• BLALS-T [11]: the method which partitions the worker-task flow network from top to

down recursively and then merges all the partitions from bottom to up.

• QT-NNH: our proposed method which leverages the point-region quadtree to ensure

workload balancing among multiple workers and schedule tasks for each worker via

NNH [10].

• QT-NUD: our proposed method which leverages the point-region quadtree to ensure

workload balancing among multiple workers and schedule tasks for each worker via

NUD-IC [27].
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Figure 8.1: Effect of the total number of tasks on the dataset of New York City with
total number of workers 300 and expiration time range [60 mins, 120 mins]; for QT-NUD,
ptcl no = 1.

8.2 Impact of the Total Number of Tasks

Figures 8.1 and 8.2 show the impact of the total number of tasks on the performance of

all the algorithms in terms of the number of accomplished tasks and CPU cost in New York

City and Tokyo. We can observe that BLALS-T not only returned fewer accomplished tasks

than QT-NNH and QT-NUD but also required much longer CPU time in execution. This is

due to three reasons. First, BLALS-T assumed that each worker does not leave her original

location too far away and she can only choose tasks within her neighborhood. However, in

reality, workers would be willing to travel far as long as the benefit can cover their travel

cost. Second, BLALS-T assumed that each worker can not be assigned to more tasks than

a predefined threshold, which is not the case in reality. Last but not the least, the insertion

scheduling method used in BLALS-T [11] was extremely inefficient when the ratio of the

number of tasks over workers was high .
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Figure 8.2: Effect of the total number of tasks on the dataset of Tokyo with total number
of workers 300 and expiration time range [60 mins, 120 mins]; for QT-NUD, ptcl no = 1.

8.3 Impact of the Total Number of Workers

Figures 8.3 and 8.4 show the impact of the total number of workers on the performance

of all the algorithms in terms of the number of accomplished tasks and CPU cost in New

York City and Tokyo. As depicted in Figures 8.3 and 8.4, when the number of workers

increased, QT-NUD and QT-NNH outperformed BLALS-T in terms of both the number

of accomplished tasks and CPU time. Note that the CPU cost of QT-NUD went down as

the number of workers was higher. This is because when the number of workers increased

and the number of tasks remained the same, the number of tasks assigned to each worker

declined, which makes QT-NUD more efficient.

8.4 Impact of the Expiration Time

Figures 8.5 and 8.6 show the impact of the expiration time on the performance of all

the algorithms in terms of the number of accomplished tasks and CPU cost in New York

City and Tokyo. As shown in Figures 8.5 and 8.6, QT-NUD and QT-NNH outperformed
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Figure 8.3: Effect of the total number of workers on the dataset of New York City with
total number of tasks 20000 and expiration time range [60 mins, 120 mins]; for QT-NUD,
ptcl no = 1.
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Figure 8.4: Effect of the total number of workers on the dataset of Tokyo with total number
of tasks 20000 and expiration time range [60 mins, 120 mins]; for QT-NUD, ptcl no = 1.

BLALS-T in terms of both the number of accomplished tasks and CPU time as the expiration

time increased. With the increased expiration time, all three approaches returned a higher

number of completed tasks.
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Figure 8.5: Effect of the expiration time on the dataset of New York City with total number
of workers 300 and total number of tasks 20000; for QT-NUD, ptcl no = 1.
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Figure 8.6: Effect of the expiration time on the dataset of Tokyo with total number of
workers 300 and total number of tasks 20000; for QT-NUD, ptcl no = 1.

8.5 Impact of the Number of Particles

Figures 8.7 and 8.8 show the impact of the number of particles on the performance

of QT-NNH and QT-NUD in terms of the number of accomplished tasks and CPU cost
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Figure 8.7: Effect of the number of particles on the dataset of New York City with total
number of workers 300, total number of tasks 20000, and expiration time range [60 mins, 120
mins].

in New York City and Tokyo. As we can see in Figures 8.7 and 8.8, it was observed that

when the number of particles increased, the performance gain of QT-NNH and QT-NUD in

terms of the number of completed tasks was very limited while the CPU cost of QT-NUD

increased. This is because in QT-NNH and QT-NUD, due to the use of PR quadtree for

space partitioning, each worker was assigned to only a small number of tasks. Therefore

in this case, adding the number of particles would not lead to a noticeable increase in the

number of completed tasks.
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Figure 8.8: Effect of the number of particles on the dataset of Tokyo with total number of
workers 300, total number of tasks 20000, and expiration time range [60 mins, 120 mins].
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Chapter 9

Experimental Evaluation for WBT based MGTS Algorithms

In this chapter, we compare the performance of all the algorithms in support of multiple

worker geo-task scheduling in terms of the number of accomplished tasks and CPU cost on

real data. All the experiments were run in the same setting as in the last chapter unless

otherwise specified. The real data were collected from Foursquare [40] [39] [38], featuring

New York City (42981 tasks) and Tokyo (67124 tasks). For task execution duration, we set

dur min to 5 seconds and dur max to 5 minutes. The expiration time of each task was

randomly generated from the interval 60 to 120 minutes.

All the MGTS Methods for Comparison:

• BLALS-T [11]: the method which partitions the worker-task flow network from top to

down recursively and then merges all the partitions from bottom to up.

• QT-NNH [28]: our proposed method which leverages the point-region quadtree to

ensure workload balancing among multiple workers and schedule tasks for each worker

via NNH [10].

• QT-NUD [28]: our proposed method which leverages the point-region quadtree to

ensure workload balancing among multiple workers and schedule tasks for each worker

via NUD-IC [27].

• WBT-NNH: our proposed method which leverages a novel workload-balancing bisec-

tion tree (WBT) to enable dynamic workload balancing among multiple workers and

schedule tasks for each worker via NNH.
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Figure 9.1: Effect of the total number of tasks on the dataset of New York City with
total number of workers 40 and expiration time range [60 mins, 120 mins]; for WBT-NUD,
ptcl no = 1.
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Figure 9.2: Effect of the total number of tasks on the dataset of Tokyo with total number
of workers 40 and expiration time range [60 mins, 120 mins]; for WBT-NUD, ptcl no = 1.

• WBT-NUD: our proposed method which leverages a novel workload-balancing bisec-

tion tree (WBT) to enable dynamic workload balancing among multiple workers and

schedule tasks for each worker via NUD-IC.
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Figure 9.3: Effect of the total number of workers on the dataset of New York City with
total number of tasks 20000 and expiration time range [60 mins, 120 mins]; for WBT-NUD,
ptcl no = 1.
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Figure 9.4: Effect of the total number of workers on the dataset of Tokyo with total number
of tasks 20000 and expiration time range [60 mins, 120 mins]; for WBT-NUD, ptcl no = 1.

Impact of the total number of tasks. Figures 9.1 and 9.2 show the impact of the

total number of tasks on the performance of all the algorithms in terms of the number of

tasks accomplished and the running time in New York City and Tokyo respectively. As
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shown in Figures 9.1 and 9.2, WBT-NNH and WBT-NUD consistently outperformed all the

other methods in terms of the number of tasks accomplished without compromising their

efficiency.

Impact of the Total Number of Workers. Figures 9.3 and 9.4 show the impact

of the total number of workers on the performance of all the algorithms in terms of the

number of tasks accomplished and CPU cost in New York City and Tokyo. As depicted

in Figures 9.3 and 9.4, WBT-NNH and WBT-NUD consistently outperformed all the other

methods in terms of the number of tasks accomplished without compromising their efficiency.
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Chapter 10

Demonstration

We built Turbo-GTS demo using Java on Google Maps API and a back-end MySQL

database under JSP framework. Turbo-GTS demo incorporates WBT-NNH and WBT-

NUD, our two newly developed scheduling algorithms, as well as BLALS-T (as baseline to

represent the state-of-the-art), QT-NNH, and QT-NUD. The project source code is available

at https://github.com/WeiTerryLi/Turbo-GTS-Demo.

Turbo-GTS demo shows task statistics/pattern for users to compare different methods in

terms of total task count, task assignment distribution over all workers, and task distribution

for any worker or for any spatial region specified by users. Here we demonstrate three

essential interactive use cases: (1) comparing task assignments for the whole worker group

returned by different algorithms, (2) visualizing the task assignment distribution over all

workers, and (3) identifying the optimal task assignment for a specific worker. Figure 10.1,

Figure 10.2 and Figure 10.3 show the task assignments using different scheduling algorithms

in Turbo-GTS demo given 3, 000 randomly distributed tasks and 50 workers randomly located

in New York City. Specifically, Figure 10.1 presents statistical results of spatial tasks returned

by BLALS-T [11] and WBT-NNH, respectively, in New York City, in which the table shows

the performance comparison between BLALS-T [11] and WBT-NNH in summary, whereas

the chart compares the number of tasks accomplished by each worker between BLALS-

T [11] and WBT-NNH, and visualizes the task assignment distribution over all workers. It

is conspicuous that WBT-NNH not only resulted in more number of tasks accomplished and

much less CPU cost, but also distributed tasks to each worker more evenly, which means

workers have had a better cooperation under the scheduling of WBT-NNH. Figure 10.2

further shows visualized results of spatial tasks returned by BLALS-T [11] and WBT-NNH,
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Figure 10.1: Statistical results of spatial tasks returned by BLALS-T [11] and WBT-NNH,
respectively, in New York City. The table shows the performance comparison between
BLALS-T [11] and WBT-NNH in summary, whereas the chart compares the number of
tasks accomplished by each worker between BLALS-T [11] and WBT-NNH, and visualizes
the task assignment distribution over all workers.
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Figure 10.2: Visualized results of spatial tasks returned by BLALS-T [11] and WBT-NNH,
respectively, in New York City. Blue dots are tasks accomplished exclusively by BLALS-
T [11], red dots are tasks accomplished exclusively by WBT-NNH, and brown dots are tasks
accomplished by both.
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(a) Task sequences returned by BLALS-T (b) Task sequences returned by WBT-NNH

Figure 10.3: Comparison of task execution sequences of selected workers obtained from
BLALS-T [11] and WBT-NNH, respectively, in New York City. Each large dot with w
followed by a number inside represents a selected worker with her own id, while each small
dot represents a task on a worker’s route and the number inside indicates the order of that
task to be performed en route.

respectively, in New York City. Blue dots are tasks accomplished exclusively by BLALS-

T [11], red dots are tasks accomplished exclusively by WBT-NNH, and brown dots are tasks

accomplished by both. Figure 10.3 compares the task execution sequences of selected workers

obtained from BLALS-T [11] and WBT-NNH, respectively, in New York City, where each

worker’s route is marked with a distinct color different from others. Each large dot with

w followed by a number inside represents a selected worker with her own id, while each

small dot represents a task on a worker’s route and the number inside indicates the order

of that task to be performed en route. It is also obvious that each worker has got more

tasks to perform along her route following the assignment and scheduling of WBT-NNH

than BLALS-T [11].
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Chapter 11

Conclusion and Future Work

In this dissertation, we propose a novel framework, Turbo-GTS, in support of large-scale

Geo-Task Scheduling (GTS), with the objective of identifying an optimal task assignment

for each worker in order to maximize the total number of tasks that can be completed for

an entire worker group, given the geographic locations of each task and each worker. This

chapter summarizes all the contributions made in this dissertation study and discusses the

future work as an extension of this dissertation.

11.1 Main Contributions

The ubiquity of mobile platforms and smart phones breeds a large number of mobile

crowdsourcing applications. A common feature of all these applications is that workers are

required to go to the exact spot of each task in person and perform the task by means of a

mobile device. In mobile crowdsourcing, obtaining an optimal or near-optimal task schedule

for a worker or a group of workers to accomplish as many tasks as possible is a crucial yet

quite challenging problem.

11.1.1 Single-worker Geo-Task Scheduling

We define the Non-Urgency Degree (NUD) for task assignment and present two approx-

imate solutions, LCPF and NUD-IC, for the Single Worker Geo-Task Scheduling (SGTS)

problem. LCPF solves the problem by incorporating particle filtering while NUD-IC gen-

erates the sub-optimal schedule by integrating particle filtering with DBSCAN clustering

based on Non-Urgency Degree (NUD). We even compare our proposed methods with the

baseline methods theoretically and then shed light on the performance improvement of the
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proposed algorithms against the baseline methods using an illustrative example. The effec-

tiveness and scalability of the two proposed solutions are further verified by our extensive

experiments using both real and synthetic data. Specifically, our city-scale experiments show

that both LCPF and NUD-IC can yield a much higher number of completed tasks than the

state-of-the-art approaches in the literature.

11.1.2 Multi-worker Geo-Task Scheduling based on Quadtree

Inspired by the proposed LCPF and NUD-IC for the Single Worker Geo-Task Schedul-

ing (SGTS) problem, we solve the Multi-Worker Geo-Task scheduling (MGTS) problem by

proposing two space partitioning-based task assignment methods, QT-NNH and QT-NUD,

which leverage the point-region quadtree to ensure workload balancing among multiple work-

ers. We even compare our proposed methods with the baseline methods theoretically and

then shed light on the performance improvement of the proposed algorithms against the

baseline methods using an illustrative example. The effectiveness and efficiency of QT-NNH

and QT-NUD are verified by our extensive experiments using real data from metropolises

like New York City and Tokyo. Compared with the state-of-the-art approaches, our pro-

posed solutions are able to return a higher number of completed tasks for the worker group

while reducing the computation cost by up to three orders of magnitude when coping with

massive tasks distributed in large geographic areas.

11.1.3 Multi-worker Geo-Task Scheduling based on Workload-balancing Bisec-

tion Tree (WBT)

To provide more effective and dynamic workload balancing among all the workers,

we propose a novel tree structure, Workload-balancing Bisection Tree (WBT), and further

present two more advanced scheduling algorithms WBT-NNH and WBT-NUD to solve the

Multi-Worker Geo-Task scheduling (MGTS) problem. WBT-NNH and WBT-NUD build on

algorithms QT-NNH and QT-NUD but utilize WBT to perform workload balancing instead
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of quadtree. Using the Foursquare mobile user check-in data in New York City and Tokyo,

we show the superiority of WBT-NNH and WBT-NUD over the state of the art including

our previously proposed QT-NNH and QT-NUD in terms of the total number of the tasks

that can be accomplished by the entire worker group and the corresponding running time.

11.1.4 Demonstration

We built Turbo-GTS demo using Java on Google Maps API and a back-end MySQL

database under JSP framework. Turbo-GTS demo incorporates WBT-NNH and WBT-

NUD, our two newly developed scheduling algorithms, as well as BLALS-T (as baseline

to represent the state-of-the-art), QT-NNH, and QT-NUD. Turbo-GTS demo shows task

statistics/pattern for users to compare different methods in terms of total task count, task

assignment distribution over all workers, and task distribution for any worker or for any

spatial region specified by users. We demonstrate three essential interactive use cases: (1)

comparing task assignments for the whole worker group returned by different algorithms, (2)

visualizing the task assignment distribution over all workers, and (3) identifying the optimal

task assignment for a specific worker.

11.2 Future Work

11.2.1 Task Rewards in Real-world Mobile Crowdsourcing

In real-world mobile crowdsourcing, different tasks tend to have different weight. The

commonest task weight in real-world crowdsourcing is reflected by the reward for accom-

plishing a task. Obviously for workers, tasks with high rewards are more worth doing than

tasks with low rewards. As a result, the motivation of workers in mobile crowdsourcing will

be changed from accomplishing as many tasks as possible to obtaining a reward as high as

possible. This change has to be reflected in the algorithmic design accordingly, so I plan to

take task rewards into consideration in our future work.
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11.2.2 Competition and Collaboration in Real-world Mobile Crowdsourcing

Although our framework provides solutions to Multi-Worker Geo-Task scheduling (MGTS)

problem in maximizing the total number of tasks accomplished by the whole group of work-

ers, this is only feasible for workers who are willing to sacrifice their own interests for the

greater good. Nevertheless, considering the complexity of the human nature, workers who

are only concerned about their own benefits may not want to strictly follow the plan and

will try to gain as many tasks or as much reward as possible. As a result, more than one

worker are very likely to compete the same task as long as this task has not yet been marked

as accomplished in the server end. Thus, I plan to introduce either a competition avoiding

mechanism to get around this kind of situations, or some other techniques to coordinate the

collaboration of workers and distribute the rewards among them according to their respective

contributions in my future work.

11.2.3 Personal Factors in Real-world Mobile Crowdsourcing

There are several personal factors in real-world mobile crowdsourcing that our solutions

have not covered yet, as a worker’s personal conditions tend to have a considerable impact

on her productivity, like her available time, her age, her health and financial conditions,

expertise, and so on. Available time, age and health conditions determine how long a worker

can be available each day. Financial conditions determine the modes of transportation that

a worker chooses on her way to the spots of tasks. If a worker is young and healthy, owns

a car, and has money enough to afford the gas for a long journey within a single day, then

she has much bigger potential to complete more tasks than others and should be assigned

with more tasks. However, if a worker is old and poor, has health conditions, and has to

go to tasks on foot, by bike or taking public transport, then her priority of task assignment

should be adjusted lower than others no matter how many tasks she is close to. Expertise

sometimes also plays an important role in mobile crowdsourcing, as in some applications,
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tasks need workers to have certain technical background to get them done. In my future

work, I plan to integrate all of these personal factors into our solutions.

11.2.4 Environmental Factors in Real-world Mobile Crowdsourcing

I plan to take the environmental factors into account in my future work, such as the

real-time traffic, some real-time incidents like road construction/block, weather, and so on.

These environmental factors may not seem that noticeable at the first sight, but could incur

considerable impact on the performance of the solutions, for exceptions and accidents might

happen at any time. To counter this, I will add a real-time traffic detector into my current

framework to reflect the latest effects of traffic on the traveling costs among workers and

tasks.

11.2.5 Privacy Issues in Real-world Mobile Crowdsourcing

In most mobile crowdsourcing applications, the information of workers and tasks are

just exposed to the platform, which incurs serious threats to the privacy of both workers

and tasks. A curious and dishonest platform could compromise and exploit the information

of both workers and tasks in many different ways. For example, workers may be given the

wrong information about the locations and rewards of the tasks published by someone whom

the platform does not like so that those tasks can never be done; or the platform can sell

the workers’ private information like home addresses, ages, health and financial conditions,

expertise, and so on for profit. Hence, I plan to incorporate the latest cloud security strategies

into my current work on mobile crowdsourcing to propose a secured mobile crowdsourcing

scheme, in which the privacy of workers and tasks can be protected from the curious and

dishonest platform without compromising the computational power of platform in generating

optimal or near-optimal task assignment plans and execution schedules for all the workers.
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