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Abstract

Modern scientific applications are frequently producing data sets where the data are not in

the form of vectors but instead higher order tensors. For instance, multi-channel MEG signals in

biomedical engineering, gene expression data in bioinformatics and so on. In this dissertation,

we combine the semi-parametric model (single index model) with nuclear norm regularization

to fit the data with order-2 tensor (matrix). An efficient estimation algorithm is developed.

Furthermore, we proved that this algorithm has a good asymptotic property that the estimator

of the true parameter B is root-n consistent. In addition to theoretical results, we demonstrate

the efficiency of the new method through simulation. One real data set is analyzed by this new

method and traditional logistic regression, then the results show that the performance of the

new proposed method is better than the performance of logistic regression.
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Chapter 1

Introduction

1.1 Tensor Data

Tensor is a type of data structure used in matrix theory/linear algebra. In the physics and

traditional mathematics field, the definition of tensor is that a tensor is a generalized concept

of scalars (that have no indices), vectors (that have exactly one index), and matrices (that have

exactly two indices) to an arbitrary number of indices. For example, a scalar is an order 0

tensor, a vector is an order 1 tensor, a 2D-matrix is an order 2 tensor, and so on. We can

create a higher order tensor if we add more dimensions. Kolda and Bader (2009) gave a formal

definition of tensor that is:

Definition 1.1.1 (Tensor). An N-way or Nth-order tensor is an element of the tensor product of

N vector spaces, each of which has its own coordinate system.

Figure 1.1: A color photo is order-3 tensor data
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With the advances of data collection and storage capabilities, higher order tensor data

are being generated on a daily basis in a wide range of emerging applications, for instance,

order 2 tensor data include gray-level images in computer vision and pattern recognition (Yan

et al., 2006; Lu et al., 2003), multichannel EEG signals in biomedical engineering (Li et al.,

2008), etc. Order 3 tensor data include 3D objects in generic object recognition (Sahambi

and Khorasani, 2003), hyperspectral cube in remote sensing (Renard and Bourennane, 2009),

and gray-level video sequences in activity or gesture recognition for surveillance or human-

computer interaction (Chellappa et al., 2005; Green and Guan, 2004). In Figure 1.1, a color

image is also an order 3 tensor data, because each color image has three 2D arrays, blue, green

and red.

The algorithms for extracting information from these data become more and more im-

portant. For example, the field of computer vision, concerning machines being able to un-

derstand images and videos, is one of the hottest topics in the tech industry. There is one

popular database, MNIST database (Modified National Institute of Standards and Technology

database), treating images (order-2 tensor data) as independent variable, X . This database con-

tains 60,000 training image cases and 10,000 testing image cases. In each case, the size of

independent variable data is a 28 × 28 image, which is a grayscale handwritten digit and the

image is a matrix in which each value represents a pixel and describes the intensity in this pixel.

For example, 0 represents the darkest and 255 represents the brightest. In Figure 1.2, there are

some images about handwritten digits in the database. We need to find an algorithm that the

computer can recognize the handwritten digits in these images correctly.

Now our problem is a sequence of {(yi, Xi), i = 1, · · · , n}, in which yi ∈ R is a scalar

and Xi ∈ Rp×q is an order 2 tensor. There is a relationship between y and X

y = m(X) + ε

where function m() is an unknown smooth function and ε is the random error that is not relate

to X, we need to develop some methods to fit the model.

2



Figure 1.2: The Images of Handwritten Digits in the MNIST

1.2 Linear Matrix Regression

Zhou and Li (2014) used the easiest and simplest way, linear matrix regression, to fit the model.

We consider the model

y = 〈X,B〉+ ε

where B is the coefficient matrix of the same size as X . The inner product between two

matrices is defined as 〈B,X〉 = 〈vecB, vecX〉 =
∑

r,c βrcxrc, where vec(·) is the vectorization

operator that stacks the columns of a matrix into a vector, βrc means the element in the matrix

B whose row index is r and column index is c. ε represents the random error whose conditional

expectation is 0 and variance is a constant, which means E(ε|X) = 0 and V ar(ε) = σ2.

Then, we get the estimator of B by solving the optimization problem

min
B

1

n

n∑
i=1

(yi − 〈B,Xi〉)2 (1.1)

3



1.3 Regularization

During the estimation process of B, we need to avoid over-fitting and improve model inter-

pretability. A regularization term is generally imposed upon the equation (1.1). Regularization

can regularize or shrink the coefficient estimates towards zero. Regularization term is added to

equation (1.1).

min
B

1

n

n∑
i=1

(yi − 〈B,Xi〉)2 + λR(B)

in which R(B) is the regularization function, the λ is the regularization parameter, which is

a hyper-parameter that controls how severe the regularization term is. The value of λ varies

from 0 to∞. When λ = 0, the regularization term does not affect the loss function. As the λ

gets larger, the impact of the shrinkage penalty grows, more parameters tend to zero in order to

avoid the model over-fitting.

There are several commonly used regularizations.

• Power family (Frank and Friedman, 2002)

Rη,λ(w) = λ‖w‖η,

where w is a vector w ∈ Rp, ‖ · ‖η means the η-norm of w. There are two important

special cases for this family, namely the lasso penalty when η = 1 (Tibshirani, 1996;

Chen et al., 2001), and the ridge penalty when η = 2 (Hoerl and Kennard, 1970).

• l1-norm regularization: It is ‖w‖1 =
∑p

i=1 |wi|. l1-norm regularization limits the size of

the coefficients, some coefficients can become zero and eliminated. l1-norm regulariza-

tion encourages the parameter space to be sparse. l1-regularization can reduce the curse

of dimensionality problem, multi-collinearity problem.

• l2-norm regularization: It is ‖w‖2 =
∑p

i=1w
2
i . l2-norm regularization encourages to keep

all parameters instead of a subset of it. It will not yield sparse models and all coefficients

are shrunk. Figure 1.3 is plotted by Hastie et al. (2009), which shows the constraint

4



Figure 1.3: The difference between l1-norm and l2-norm

function, for l1-norm (left) and l2-norm (right), along with contours for residual sum of

squares (RSS). It is easy to find that the l2-norm has a round feasible region without

sharp corners. If RSS and feasible area have intersection points that are not on the axis,

it means that the l2-norm coefficient estimates will be non-zero. However, the l1-norm

feasible region has corners, then the intersections points between RSS and constraint area

will be likely on the axis. If this situation happens, the coefficients will equal zero.

• Elastic net (Zou and Hastie, 2005)

Rη,λ(w) = λ[(1− η)‖w‖2 + η‖w‖1]

The elastic net, which combines l1 and l2 norm regularization methods, simultaneously

does automatic variable selection and continuous shrinkage, and it can select groups

of correlated variables. Varying η from 0 to 1 bridges the lasso to the ridge penalty

functions. l1-norm regularization (LASSO penalty) and l2-norm regularization (Ridge

penalty) both have some disadvantages. For example, l2-norm is a little difficult to be

interpreted, because the final model will include all predictors. The disadvantage of l1-

norm is that it can not do group selection. If there is a group of variables among which

5



the pairwise correlations are very high, then the l1-norm tends to arbitrarily select only

one variable from the group.

• Log penalty (Armagan et al., 2011)

Rη,λ(w) = λln(η + |w|)

Armagan et al. (2011) proposed this penalty function and proved this penalty has three

advantages:

1. Nearly unbiased when the true unknown parameter is large

2. A thresholding rule, which automatically sets small estimated coefficients to zero

to reduce the model complexity

3. Continuous in data to avoid instability in model prediction.

• SCAD (Fan and Li, 2001a), in which the penalty is defined via its partial derivative

∂

∂w
Rη,λ(w) = λ{1{|w|≤λ} +

(ηλ− |w|)+
(η − 1)λ

1{|w|>λ}}

With η > 2, the penalty corresponds to a quadratic spline function with knots at λ and

ηλ. Explicitly, the penalty is

Rλ,η(w) =


λ|w|, if |w| ≤ λ

2ηλ|w|−w2−λ2
2(η−1) , if λ < |w| ≤ aλ

λ2(η+1)
2

, otherwise

These penalty functions are fit for the vector covariates. For linear matrix regressions, a

direct approach is to first vectorize the matrix covariates then apply the classical penalization

function. But if we did it, there would be a severe problem caused. Vectorization destroys the

wealth of structural information inherently possessed in the matrix.

We want to explore for models that incorporate the structural information of matrices.

Low-rank is a property that we want to consider and it will lead to a parsimonious model. The

6



low-rank matrix is that matrices have fewer degrees of freedom than its ambient dimensions

p× q. If the rank of the matrix is r, r ≤ min(p, q).

We need to find the penalty function that fits for the matrix covariate. Zhou and Li (2014)

suggests the regularization function to be R(B) = f ◦ δ(B), where f : Rq → R is a function

of the singular values of B. They choose f(w) = λ
∑q

i=1 |wi|, which is the l1 norm of the

singular values of B, as the regularization function. f(w) = λ
∑q

i=1 |wi| corresponds to the

nuclear norm regularization of B, ‖B‖∗. The nuclear norm of B is
∑

i=1 δi where δi’s are the

singular values of the matrix B. Zhou and Li (2014) listed two reasons why the nuclear norm

‖B‖∗ is a suitable measure of the size of a matrix. The first one is that the nuclear norm a

convex relaxation of rank(B)=‖δ(B)‖0. The second reason is that nuclear norm is analogous

to the l1 norm for a vector, because the l1 ball in high dimensions is extremely ”pointy” – the

extreme values of a linear function on this ball are very likely to be attained on the faces of

low dimensions, those that consist of sparse vectors. When applied to matrices, the sparseness

of the set of singular values means low rank. Furthermore some researches (Luo et al., 2015;

Chen et al., 2015; Qian et al., 2015; Yang et al., 2014) find that if the nuclear norm is used

as a criterion, it can measure the low-rank structural information. Because the nuclear norm

only sets the singular values whose absoluted values are small to zero, but not change the

eigenvectors corresponding to these zero singular values. For this reason, the nuclear norm can

keep the important information (eigenvalues whose absoluted values are large) of this matrix.

Because of these reasons, we select the nuclear norm as the regularization term and add it to

function (1.1).

min
B

1

n

n∑
i=1

(yi − 〈Xi, B〉)2 + λ‖B‖∗ (1.2)

1.4 Single Index Model

There is at least one disadvantage about linear matrix regression, that is, the linear matrix re-

gression assumes a linear relationship between dependent variables and predictors. It means
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that it assumes that there is a straight-line relationship between them. It may be a misspeci-

fication. Because there are many other relationships between X and y beside linear. For this

reason, single index model can be considered.

y = g(〈X,B〉) + ε (1.3)

in which the item contained in the function g() is 〈X,B〉. X ∈ Rr×c is a matrix of explanatory

variables, B ∈ Rr×c is the matrix of regression coefficients and ‖B‖F = 1, ‖ · ‖F represents

the Frobenius norm, ‖B‖F =
√
〈B,B〉 =

√∑
i

∑
j b

2
ij , where bij represents each element in

matrix B. The Frobenius norm is differentiable with respect to the individual entries of B, and

Frobenius norm is induced by a natural matrix inner product. y ∈ R is the response variable,

ε ∈ R is the noise that E(ε|X) = 0 almost surely. Let g : R1 → R1 is an unknown smooth

function. The single index model has many advantages, one of them is that it mitigates the risk

of misspecifying the link function, Horowitz and Härdle (1996) have shown that misleading

results are obtained if a binary probit model is estimated by specifying the cumulative normal

distribution function as the link function rather than estimating g(·) by nonparametric methods.

The other advantages are listed in Horowitz (2012), including the ability to overcome the curse

of dimensionality. It is known that estimating the regression function is especially difficult

whenever the dimension p of explanatory vector variable vec(X) in the regression function

becomes large. The convergence rate of the estimation of a k-times differentiable regression

function’s optimal mean square is n−2k/(2k+p), which will converge to zero dramatically slowly

if the dimension p is large compared to k. In single index model, Gaı̈ffas et al. (2007) proved

that the optimal rate of convergence over the single-index model class is n−2k/(2k+1).

In the single index model, our priority target is estimating the parameter B matrix. Cur-

rently there is no method that can be used to estimate matrix parameter. But there are several

popular methods that can be used to estimate the vectorized matrix B, vec(B). Such as the

average derivative estimation (ADE) method (Härdle and Stoker, 1989), the minimum average

conditional variance estimation (MAVE) method (Xia et al., 2002) and the sliced inverse re-

gression (Li, 1991). The majority of these methods can estimate the true parameter vecB at the

8



root-n rate of convergence, but they are different from each other in terms of estimation and

computation efficiencies (Xia et al., 2002). Xia and Tong (2006) showed that MAVE can be

more advantageous than those in the other two categories in terms of estimation efficiency.

1.4.1 Average Derivative Method

This average derivative method was introduced in Powell et al. (1989). This approach is to

estimate a specific set of coefficients, vecB, termed average derivatives. This method is based

on the fact that the derivative of conditional expectation is proportional to vecB:

∂E(y|X)

∂X
= 5m(X) = g

′
(〈X,B〉)vecB

Thus any weighted average of the derivatives5m(X) will also be proportional to vecB. Then

a natural estimator for vecB is v̂ecB = N−1
∑N

i=1 5̂m(Xi)/‖N−1
∑N

i=1 5̂m(Xi)‖ with ‖ · ‖

being the Euclidean norm.

The advantage of the ADE approach is that ADE allows estimating vecB directly. Xia

et al. (2002) mentioned the limitations of ADE. To estimate vecB, the conditionE(g
′
(vecXTvecB)) 6=

0 is needed. This condition is violated when g(·) is an even function and X is symmetrically

distributed. As far as we know, there is no successful extension to the case of more than one

EDR direction. The high-dimensional kernel smoothing used for computing 5̂m(X) suffers

from the curse of dimensionality if the model dimension is large.

1.4.2 Minimum Average Conditional Variance (MAVE)

It is proposed by Xia et al. (2002). Consider the model (1.3). By the local linear smoothing

techniques, the MAVE method estimate vecB by solving the following minimization problem

min
vecB,aj ,bj ,j=1,··· ,n

n−2
n∑
i=1

n∑
j=1

[yi − (aj + bjvecB
Tvec(Xi −Xj))]

2wij (1.4)
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with respect to aj ∈ R, bj ∈ R and vecBTvecB = 1. wij ≥ 0 are some weights with∑n
i=1wij = 1. MAVE minimizes (1.4) with respect to (aj, bj), j = 1, · · · , n and vecB itera-

tively, with an explicit solution of each optimization.

Xia et al. (2002) mentioned the advantages of MAVE. A faster consistency rate can be

achieved by the MAVE even without undersmoothing the nonparametric link function estima-

tor. The MAVE method is applicable to a wide range of models, with fewer restrictions on the

distribution of the covariates.

1.4.3 Sliced Inverse Regression (SIR)

This method is introduced by Li (1991). The name of SIR comes from computing the inverse

regression (IR) curve. Which means that instead of working on E(Y |X = x), we investigate

E(X|Y = y). There are a sequence of (Xi, yi), i = 1, · · · , n. SIR method estimates the

so-called sufficient dimension reduction directions β1, · · · , βd. The corresponding algorithm is

outlined as follows.

1. Divide the range of the yi into H disjoint intervals, denoted as S1, · · · , SH ;

2. Compute for h = 1, · · · , H, X̄h = H−1
∑

yi∈Sh
Xi, where nh is the number of y′is in Sh.

3. Estimate Cov(E(X|y)) by M̂ = H−1
∑H

h=1 nh(X̄h− X̄)(X̄h− X̄)T and Cov(X) by the

sample covariance matrix Σ̂.

4. SIR uses the first K eigenvectors of Σ̂−1M̂ to estimate the SDR directions, where K is an

estimate of d based on the data.

The limitation of SIR is that SIR need a distributional assumption on predictors, which

may not be satisfied in practice.

Currently, the single index model is a very useful semiparametric regression model. Com-

pared to linear matrix regression, the single index model works better in the situations where

the linear regression model may not perform well.
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1.5 Contribution

In this dissertation, the data is not vector any more, the parameter is a matrixB and our primary

purpose is to estimate the parameter matrix B of the single index model. Although these

forementioned methods can still be used to estimate the coefficient matrix B by vectorizing B

to vec(B), Zhou and Li (2014) stated some reasons why those classical penalty functions do

not incorporate the matrix structural information. One is that sparsity is in terms of the rank of

the matrix parameters and it is different from sparsity in the number of nonzero entries. The

other is if the matrix is vectorized, some important information about the matrix is vanished,for

example eigenvalues, eigenvectors, the structure and so on.

These limits may restrict the effectiveness of these regression methods in practical appli-

cation. Therefore a new single index model is needed to estimate the matrix parameter. A

penalty function that is different from l1 and l2 norm is also needed to add to the new single in-

dex model method, because the penalty function is very important for estimating the parameter

matrix B as mentioned above, but l1-norm and l2-norm fit for the parameter vector θ, not for

the order 2 tensor B.

The contribution of this dissertation is that we develop a new estimation approach for

single index model with order 2 tensor data as covariates. And in the loss function of (1.3), we

add a nuclear norm as penalty function. The new method is called as single index model with

nuclear norm, or SIM-nuclear. We proposed an algorithm by combing a fast iterative shrinkage-

thresholding (FISTA) algorithm with Nesterov algorithm to estimate the matrix parameter B in

the SIM-nuclear. We proved that the new method has good property that it can estimate B at

the rate of root-n. Furthermore we also discuss how to select the hyperparameters, such as λ

and bandwidth h and kernel function in order to get the optimal estimator B̂.
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Chapter 2

Single Index Model with Nuclear Norm Penalty

2.1 Formulation

In this chapter we will introduce the new single index model mentioned at the end of the

previous chapter and the algorithm can be used to solve this new model. Our priority task

is to estimate the matrix parameter B by solving the loss equation of (1.3)

min
B,‖B‖F=1

1

n

n∑
i=1

(yi − g(〈Xi, B〉))2 + λ‖B‖∗

in this function, both g(·) andB are unknown. We propose to use the local linear approximation

idea.

g(u) ≈ g(v) + g
′
(v)(u− v) = a+ b(u− v)

for v in a neighborhood of u, where a = g(v) and b = g
′
(v) are local constants. Then the

estimate of B is obtained by solving the minimization problem,

min
a,b,B,‖B‖F=1

1

2n

n∑
j=1

n∑
i=1

[yi − aj − bj〈B,Xi −Xj〉]2wij + λ‖B‖∗ (2.1)

where a = (a1, a2, · · · , an)T , b = (b1, b2, · · · , bn)T and wij(·) is the weight function that

wij(·) ≥ 0,
∑n

i=1wij(·) = 1 and

wij = Kh(〈B, xi − xj〉)/
n∑
l=1

Kh(〈B, xl − xj〉) (2.2)
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where Kh = h−dK(·/h) and d is the dimension of K(·). The equation (2.1) involves two

summations. The inner summation is

n∑
i=1

[yi − aj − bj〈B,Xi −Xj〉]2wij (2.3)

which is the loss function for the local linear smoothing atXj andB. aj and bj can be estimated

by minimizing the equation (2.3). Summing (2.3) over all the Xj and adding the nuclear norm

about B as the penalty function leads to the following penalized minimization problem:

min
a,b,B,‖B‖F=1

1

2n

n∑
j=1

n∑
i=1

[yi − aj − bj〈B,Xi −Xj〉]2wij + λ‖B‖∗ (2.4)

We refer to (2.4) as the SIM-nuclear minimization problem. Next we will give the asymptotic

properties about SIM-nuclear method.

2.2 Asymptotic properties

We will show the asymptotic properties about the single index model for tensor data in this sec-

tion. We assume the true parameter matrix B is unknown. The value of B is not given but there

exists an initial estimator of B with root-n rate. Actually if average derivative estimator(ADE)

is applied, its estimator is root-n consistent. We can use ADE to get an initial estimator named

B̂initial of the true parameter matrix B, and ‖B̂initial − B‖ = O(n−1/2). The root-n neighbor-

hood assumption is a common assumption in a single-index model, refer to Carroll et al. (1997)

and Hardle et al. (1993) for more information.

We establish the asymptotic properties of the SIM nuclear model. At first, let define some

notations that will be used in the proof

Q(g,B) =
n∑
i=1

[yi − g(〈Xi, B〉)]2 + λ‖B‖∗

and

m(·) =
1

2n
(·)2

13



Denote B0 as the true value of B in the model and ‖B0‖F = 1. Then we impose the following

regularity conditions:

A. B0 ∈ Rp×q is the parameter matrix. The marginal density of 〈x,B0〉 is positive and

uniformly continuous.

B. For the unknown smooth function g(〈X,B〉), its second derivative g′′(.) is continuous

and bounded in D.

C. X is bounded and its density function has a continuous second derivative.

D. The kernel function K(·) is a symmetric density function with compact and bounded

support and bounded first derivative. It satisfies
∫∞
−∞K(z)dz = 1,

∫∞
−∞ zK(z)dz = 0,∫∞

−∞ z
2K(z)dz <∞.

E. E(εi|xi) = 0, E(ε2i |xi) = σ2 and E(ε4i |xi) exists.

F. nh3 →∞ and nh4 → 0

G. The conditional density function of y given u = 〈X,B0〉, f(y|u) is continuous in u for

each y. Moreover, there exist positive constants ε and δ and a positive function G(y|u)

such that sup|un−u|≤εfy(y|un) ≤ G(y|u) and that
∫
|m′(y − g0(u))|2+δG(y|u)dµ(y) <

∞, and
∫

(m(y − t)−m(y)−m′(y)t)2G(y|u)dµ(y) =o(t2) as t→ 0.

These conditions are commonly used in the literature. Conditions (A) and (B) are regular

conditions for the single index model. Condition (C) is imposed to facilitate the technical argu-

ments though it is somewhat complex. Condition (D) simply requires that the kernel function

is a proper density with finite second moment which is required for the asymptotic variance

of estimators. Condition (F) is used for the rate of bandwidth. The bandwidth h is selected to

satisfy the condition, and assumed to be constant during the whole computation process. Con-

dition (G) is weaker than the Lipschitz continuity of the function m′(), which is required by the

dominated convergence theorem and moment calculation in proving the asymptotic normality.
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Theorem 2.2.1. Let x1, · · · , xn be independent and identically distributed with a density f(x)

that satisfies conditions (A)-(F). Under the assumption that λn = O(n−1/2), there exists a local

minimizer B̂ of Q(gB, B) such that ‖B̂ − B0‖ = Op(n
−1/2), where ‖B̂‖F = ‖B0‖F = 1, and

gB is the local linear estimate of the link function g(.) given B.

By this theorem, there exists a root-n consistent penalized least squares estimate for B0 if

we can properly select the tunning parameter λn.

Theorem 2.2.2. Under conditions above, if n→∞, h→ 0, and nh→∞, then for an interior

point u.

ĝ(u; B̂)− g(u)− 1

fU(u)φ′′(0|u)
(nh)−1

∑
i=1

m
′
(y∗i )Ki → o((nh)−1/2)

where g() is the true function, y∗ = yi− g(u)− g′(u)(〈Xi, B̂〉−u), φ(t|u) = E(m(y− g(u) +

t)|U = u) and fU() is the density function of u = 〈X,B0〉.

In this theorem, we consider the difference between the estimated link function and true

link function. Both the estimated link function and true link function are evaluated at the same

covariate value u. But the pointwise accuracy is based on the quantity ĝ(〈X, B̂〉)− g(〈X,B〉).

Both the estimated link function and true link function are evaluated at the same covariate value

X . The scaled pointwise error term can be written as ĝ(〈X, B̂) − g(〈X,B〉) = ĝ(〈X, B̂〉) −

ĝ(〈X,B〉) + ĝ(〈X,B〉)− g(〈X,B〉). We can use the next corollary to prove the scaled point-

wise between ĝ(〈X, B̂〉) and g(〈X,B〉) tends to o(1).

Corollary 2.2.2.1. Under the same conditions as in theorem 2.2.2, we can have

ĝ(〈X, B̂〉)− g(〈X,B0〉)−
g
′′
(u)h2

∫
t2k(t)

2
→ O(n−1/2)

Before the next theorem, the singular value decomposition (SVD) of a matrix B should be

introduced.
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Definition 2.2.1. A singular value decomposition (SVD) of B ∈ Rp×q is a factorization

B = USV T

where:

• U is an p× p orthogonal matrix.

• V is an q × q orthogonal matrix.

• S is an p × q matrix whose ith diagonal entry equals the ith singular value δi for i =

1, · · · , r. All other entries of S are zero.

Theorem 2.2.3. If n1/2λn tends to a limit λ0 ≥ 0, then B∗ = n1/2(B̂ − B0) converges in

distribution to the unique global minimizer of

√
n(B̂ −B0)→d argmin(T )

where

T (B∗) =
1

2
vec(B∗)C1vec(B∗)− C0vec(B∗) + λ0[trU

TB∗V + ‖U⊥B∗V⊥‖∗]

where U and V are from the singular value decomposition of B0 = USV T , U⊥ and V⊥ are any

orthonormal complements of U and V, φ(t|〈X,B0〉) = Em(y − ĝ(〈X, B̂〉) + t|〈X,B0〉),

C1 = E{fy(0|〈X,B0〉)g(〈X,B0)
2[X − E(X|〈X,B0〉)][X − E(X|〈X,B0〉)]T},

and

C0 = ZE{g′(〈X,B〉)(X − E(X|〈X,B0〉))}

. In which Z →D N(0, σ2). The function T (·) can be proved to be convex, and T (·) has unique

solution.
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2.3 Proofs

In order to prove the theorem 2.2.1, 2.2.2 and 2.2.3, we will prove prelimiaries that would be

needed.

2.3.1 Prelimiaries knowledge

Let Sjn =
∑n

i=1Kh(Ui − u)(Ui − u)j in which Kh(t) = K(t/h)
h

, K() is a kernel function that

satisfies condition(D). Then it is very easy to prove that Sjn = E(Sjn) +O(
√
var(Sjn)).

Sjn =E(Sjn) +O(

√
var(Sjn))

≤nhjf(u)

∫
K(t)tjdt+O(

√
nEKh(Ui − u)(Uj − u)2j)

≤nhj[f(u)

∫
K(t)tjdt+O(

√
1/nh)]

(2.5)

We define

sn =

s0n s1n

s1n s2n


From (2.5), sn can be rewritten as

sn =

n(f(u) +O(
√

1/nh)) nh(O(
√

1/nh))

nh(O(
√

1/nh)) nh2(f(u)
∫
k(t)t2 +O(

√
1/nh))


And the inverse of sn is

s−1n =

 s2n
s0ns

2
n−(s1n)2

−s1n
s0ns

2
n−(s1n)2

−s1n
s0ns

2
n−(s1n)2

s0n
s0ns

2
n−(s1n)2


From (2.5), the inverse matrix can be rewritten as

s−1n =


∫
k(t)t2+O(

√
1/nh)

nf(u)(
∫
k(t)t2+O(1/nh))

O(
√

1/nh)

nhf(u)(
∫
k(t)t2+O(1/nh))

O(
√

1/nh)

nhf(u)(
∫
k(t)t2+O(1/nh))

1+O(
√

1/nh)

nh2f(u)(
∫
k(t)t2+O(1/nh))
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We can get the value of (a, b) by minimizing the equation
∑n

i=1(yi−a−b(Ui−u))2Kh(Ui−u).

Then we get a =
∑n

i=1 s
−1
n Kh(Ui − u)yi. We define the function W (·)

W (
Ui − u
h

) = [1, 0]s−1n Kh(Ui − u)[1, Ui − u]T

=

∫
k(t)t2 +O(

√
1/nh)

nf(u)(
∫
k(t)t2 +O(1/nh))

Kh(Ui − u)

+
O(

√
1/nh)

nhf(u)(
∫
k(t)t2 +O(1/nh))

Kh(Ui − u)(Ui − u)

=

∫
k(t)t2 +O(

√
1/nh)

nf(u)(
∫
k(t)t2 +O(1/nh))

Kh(Ui − u) +O(
√

1/nh)

(2.6)

2.3.2 Proof of Theorem 2.2.1

Let

Q(ĝB, B) =
1

n

n∑
i=1

(yi − ĝ(〈Xi, B〉))2 + λn‖B‖∗

And

Q(ĝB, B0) =
1

n

n∑
i=1

(yi − ĝ(〈Xi, B0〉))2 + λn‖B0‖∗

where ĝ is the local linear regression of the link function g() with B.

In this theorem, we need only to show that for any given ε there exists a large C such that

P{ sup
‖B−B0‖=Cn−1/2,‖B‖F=1

Q(ĝ, B) > Q(ĝ, B0)} ≥ 1− ε

This implies that with probability tending to 1 there is a local minimum B in the ball {B :

‖B −B0‖ = Cn−1/2, ‖B‖F = 1}, hence B0 is the true parameter. We have

Q(ĝ, B)−Q(ĝ, B0) ≥
1

n

n∑
i=1

{(yi − ĝ(〈xi, B〉))2 − (yi − ĝ(〈xi, B0〉))2}+ λn(‖B‖∗ − ‖B0‖∗)

There are two steps for this proof:

1. 1
n

∑n
i=1[(yi − ĝ(〈xi, B〉))2 − (yi − ĝ(〈xi, B0〉))2] is dominated by O(‖B −B0‖).

2. λn(‖B‖∗ − ‖B0‖∗) is dominated by O(‖B −B0‖).
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Next we show that the equation is bounded by the first term. Denote Ûi = 〈xi, B〉 and Ui =

〈xi, B0〉. We then can write the first term as

1

2n

n∑
i=1

[(yi − ĝ(〈xi, B〉))2 − (yi − ĝ(〈xi, B0〉)2]

=
1

2n

n∑
i=1

[(yi −
n∑
j=1

W (
Ûj − Ûi

h
)yj)

2 − (yi −
n∑
j=1

W (
Uj − Ui

h
)yj)

2]

=
1

n

n∑
i=1

(yi −
n∑
j=1

W (
Uj − Ui

h
)yj)(

n∑
j=1

W (
Uj − Ui

h
)yj −

n∑
j=1

W (
Ûj − Ûi

h
)yj)

+
1

2n

n∑
i=1

(
n∑
j=1

W (
Uj − Ui

h
)yj −

n∑
j=1

W (
Ûj − Ûi

h
)yj)

2

=
1

n
I1 +

1

2n
I2

(2.7)

First consider I2 in (2.7). It is easy to know that

n∑
j=1

W (
Uj − Ui

h
)yj −

n∑
j=1

W (
Ûj − Ûi

h
)yj

=
n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)

+
n∑
j=1

W (
Uj − Ui

h
)εj −

n∑
j=1

W (
Ûj − Ûi

h
)εj

(2.8)
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So I2 can be divided into three parts

n∑
i=1

(
n∑
j=1

W (
Uj − Ui

h
)yj −

n∑
j=1

W (
Ûj − Ûi

h
)yj)

2

=
n∑
i=1

[
n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)

+
n∑
j=1

W (
Uj − Ui

h
)εj −

n∑
j=1

W (
Ûj − Ûi

h
)εj]

2

=
n∑
i=1

[
n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)]

2

+
n∑
i=1

[
n∑
j=1

W (
Uj − Ui

h
)εj −

n∑
j=1

W (
Ûj − Ûi

h
)εj]

2

+2
n∑
i=1

[
n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)] · [

n∑
j=1

W (
Uj − Ui

h
)εj −

n∑
j=1

W (
Ûj − Ûi

h
)εj]

=p1 + p2 + p3

(2.9)

We will find the bound of these parts. For p1 in (2.9), we have

n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)

=
n∑
j=1

W (
Uj − Ui

h
)(g(Ui) + g

′
(Ui)(Uj − Ui) +O(h2)) 1©

−
n∑
j=1

W (
Ûj − Ûi

h
)(g(Ûi) + g

′
(Ûi)(Uj − Ûi) +O(h+ n−1/2)2) 2©

(2.10)

For 1©, it be proved by 1© = g(Ui) +O(h2)

n∑
j=1

W (
Uj − Ui

h
)(g(Ui) + g

′
(Ui)(Uj − Ui) +O(h2)

=
n∑
j=1

[1, 0]s−1n Kh(Uj − Ui)[1, Uj − Ui]T [g(Ui) + g
′
(Ui)(Uj − Ui) +O(h2)]

=g(Ui) +O(h2)

(2.11)

where the first equation holds because of the definition of W() in (2.6).
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For 2©,

n∑
j=1

W (
Ûj − Ûi

h
)[g(Ûi) + g

′
(Ûi)(Uj − Ûi) +O(Uj − Ûi)2]

=g(Ûi) +
n∑
j=1

W (
Ûj − Ûi

h
)[g
′
(Ûi)(Uj − Ûj + Ûj − Ûi) +O(Uj − Ui + Ui − Ûi)2]

=g(Ûi) + EW (
Ûj − Ûi

h
)g
′
(Ûi)E(Uj − Ûj|U = Ûj) +O(n−1/2 + h)2

=g(Ûi) + g
′
(Ûi)vecE(xj|U = Ûj)

Tvec(B0 −B) +O(n−1/2 + h)2

(2.12)

We combine the results of (2.11) and (2.12), then we get

n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)

=g(Ui)− g(Ûi)− g
′
(Ûi)vecE(xj|U = Ûj)

Tvec(B0 −B) +O(h+ n−1/2)2 +O(h2)

=g
′
(Ûi)vec(xi − E(xj|U = Ûj))

Tvec(B0 −B) +O(h2) +O(h+ n−1/2)2

(2.13)

Then part p1 can be expressed by

n∑
i=1

(
n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)−

n∑
j=1

W (
Uj − Ui

h
)g(Uj))

2

=nvec(B −B0)
TΣvec(B −B0) + nO(‖B −B0‖h2) +O(nh4)

(2.14)

where Σ = E[g
′
(Ûj)]

2vec(xj − E(xj|U = Ûj))vec(xj − E(xj|U = Ûj))
T . For the part p2 of

(2.9)

n∑
i=1

(
n∑
j=1

W (
Ûj − Ûi

h
)εj −

n∑
j=1

W (
Uj − Ui

h
)εj)

2 = εT (SB − SB0)
T (SB − SB0)ε = V1 (2.15)

Note that

EV1 = σ2Etr((SB − SB0)
T (SB − SB0)) = σ2

n∑
i=1

ESii

where

Sii =
n∑
j=1

(W (
Ûj − Ûi

h
)−W (

Uj − Ui
h

))2
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By Taylor expansion,it can be proved by

W (
Ûj − Ûi

h
) =

f−1(Ui) +O(
√

1/nh)

n
(kh(Uj − Ui) + k

′

h(U
∗
j − U∗i )

(Ûj − Ûi)− (Uj − Ui)
h

)

W (
Uj − Ui

h
) =

f−1(Ui) +O(
√

1/nh)

n
kh(Uj − Ui)

Where U∗i is a value between Ui and Ûi, and U∗j is between Uj and Ûj . Hence

W (
Ûj − Ûi

h
)−W (

Uj − Ui
h

)

=
O(

√
1/nh)

n
kh(Uj − Ui) +

f−1(Ui) +O(
√

1/nh)

n
k
′

h(U
∗
j − U∗i )

(Ûj − Ûi)− (Uj − Ui)
h

=O(1/(n3h) + 1/n)

(2.16)

Then the expectation of Sii

ESii

≤2
n∑
j=1

[
O(

√
1/nh)

n
kh(Uj − Ui)]2 + 2

n∑
j=1

[
f−1(Ui) +O(

√
1/nh)

n
k
′

h(U
∗
j − U∗i )

(Ûj − Ûi)− (Uj − Ui)
h

]2

=Si1 + Si2

It is obvious that

Si1 = O(1/(n2h2)) and Si2 = O(‖B −B0‖2/nh3) (2.17)

Then by conditions nh→∞,nh3 →∞ and ‖B −B0‖ = O(n−1/2), we have

EV1

=σ2E[tr(SB − SB0)
T (SB − SB0)]

=n ·O(1/(nh)2) + n ·O(‖B −B0‖2/nh3)

=O(1/nh2) +O(‖B −B0‖2/h3)

(2.18)
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and by Gersgorin theorem(Quarteroni et al. (2000)), |λi(SB − SB0)(SB − SB0)
T | = o(1) < 1,

where λi, i = 1, · · · , p are eigenvalues of (SB − SB0)(SB − SB0)
T . Then we have

EV 2
1 ≤ 2Eε4E[tr(SB − SB0)

T (SB − SB0)(SB − SB0)
T (SB − SB0)]

≤ 2Eε4E[(SB − SB0)
T (SB − SB0)]

= o(1)

(2.19)

The last equation is held by (2.18). Based on (2.18) and (2.16), it is easy to show that the part

p2 is bounded.

n∑
i=1

(
n∑
j=1

W (
Ûj − Ûi

h
)εj −

n∑
j=1

W (
Uj − Ui

h
)εj)

2

=εT (SB − SB0)
T (SB − SB0)ε

=O(1/nh2) +O(‖B −B0‖2/h3)

(2.20)

In next step, we need to use the property
∑n

j=1 εi = nE(ε) + O(
√
nvar(εi)), from the condi-

tion(E). We have E(ε) = 0 and
√
nvar(ε) ≤

√
nE(ε)2 = O(

√
n). For the third term p3 of

(2.9)

n∑
i=1

[
n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)]·[

n∑
j=1

W (
Uj − Ui

h
)εj−

n∑
j=1

W (
Ûj − Ûi

h
)εj]

From (2.13) and (2.17), we have

n∑
i=1

O(‖B −B0‖+ h2)[
n∑
j=1

W (
Uj − Ui

h
)εj −

n∑
j=1

W (
Ûj − Ûi

h
)εj]

=
n∑
i=1

O(‖B −B0‖+ h2)
n∑
j=1

(W (
Uj − Ui

h
)−W (

Ûj − Ûi
h

))εj

=O(
‖B −B0‖+ h2√

h
+

√
n‖B −B0‖2 +

√
nh2‖B −B0‖

h
+
‖B −B0‖2 + h2‖B −B0‖√

hh
)

(2.21)
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By (2.14), (2.20) and (2.21), we have

1

2n
I2 = O(

‖B −B0‖√
nh

) (2.22)

Now we consider I1 in (2.7)

I1 =
n∑
i=1

(yi −
n∑
j=1

W (
Uj − Ui

h
)yj)(

n∑
j=1

W (
Uj − Ui

h
)yj −

n∑
j=1

W (
Ûj − Ûi

h
)yj)

=
n∑
i=1

T1 · T2

(2.23)

For T2

n∑
j=1

W (
Uj − Ui

h
)yj −

n∑
j=1

W (
Ûj − Ûi

h
)yj

=
n∑
j=1

W (
Uj − Ui

h
)g(Uj)−

n∑
j=1

W (
Ûj − Ûi

h
)g(Uj)

+
n∑
j=1

W (
Uj − Ui

h
)εj −

n∑
j=1

W (
Ûj − Ûi

h
)εj

=g
′
(Ûi)vec(xi − E(xj|U = Ûj))

Tvec(B0 −B) +O(
‖B −B0‖√

h
+

√
n‖B −B0‖

h
+

√
‖B −B0‖2

h3
)

(2.24)

where the second equation holds because
∑n

j=1W (
Uj−Ui

h
)g(Uj) −

∑n
j=1W (

Ûj−Ûi

h
)g(Uj) =

g
′
(Ûi)vec(xi−E(xj|U = Ûj))

Tvec(B0−B)+O(h2) and
∑n

j=1W (
Uj−Ui

h
)εj−

∑n
j=1W (

Ûj−Ûi

h
)εj =
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O(‖B−B0‖√
h

+
√
n‖B−B0‖

h
+
√
‖B−B0‖

h3
). For T1

yi −
n∑
j=1

W (
Uj − Ui

h
)yj

=yi −
n∑
j=1

W (
Uj − Ui

h
)(g(Uj) + εj)

=yi −
n∑
j=1

W (
Uj − Ui

h
)(g(Ui) + g

′
(Ui)(Uj − Ui) +O(Uj − Ui)2 + εj)

=yi −
n∑
j=1

W (
Uj − Ui

h
)g(Ui)−

n∑
j=1

W (
Uj − Ui

h
)g
′
(Ui)(Uj − Ui)

−
n∑
j=1

W (
Uj − Ui

h
)O(Uj − Ui)2 −

n∑
j=1

W (
Uj − Ui

h
)εj

=yi − g(Ui) +O(
√

1/nh) +O(h2)

=εi +O(h2)

(2.25)

By (2.24) and (2.25),

1

n
I1 = O(g

′
(Ûi)vec(xi − E(xj|U = Ûj))

Tvec(B0 −B)/
√
n)

Then 1
n
I1 and 1

2n
I2 are dominated by ‖B − B0‖2Eg

′
(Ûj)

2{Xj − E(Xj|U = Ûj)}2. As shown

by Bach (2008). The second term is bounded by

λn(±16min{p, q}s
2
1

s2r
‖B0 −B‖22 + trUT (B0 −B)V + ‖UT

⊥(B0 −B)V⊥‖∗) (2.26)

where s1 and sr are the largest and smallest strictly positive singular values of B. Since we

know ‖B−B0‖ = O(n−1/2) and λn = O(n−1/2), it is very easy to prove that (2.26) is bounded

by O(‖B − B0‖2). The first and second term of (2.7) are bounded by O(‖B − B0‖2). Hence

this theorem is proved.

2.3.3 Proof of Theorem 2.2.2

The proof is similar to the proof of Fan et al. (1994). One lemma is needed in the proof.
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Lemma 2.3.1 (Quadratic Approximation Lemma (Hjort and Pollard, 2011)). Suppose An(s) is

convex and can be represented as 1
2
s
′
V s+U

′
ns+Cn+rn(s),where V is symmetric and positive

definite, Un is stochastically bounded, Cn is arbitrary , and rn(s) goes to zero in probability

for each s. Then αn, the argmin of An is only o(1) away from βn = −V −1Un, the argmin of

1
2
s
′
V s+ U

′
ns+ Cn. If also Un → U , then αn → −V −1U .

ĝ(u;B0) is a local linear estimator of g() if the index coefficient B0 is known. We divide

ĝ(u; B̂)− g(u) into two parts.

ĝ(u; B̂)− g(u) = ĝ(u; B̂)− ĝ(u;B0) + ĝ(u;B0)− g(u) (2.27)

There are three steps to finish the proof,

1. The first part on the right-hand side of (2.27), ĝ(u; B̂)− ĝ(u;B0) is bounded byOp(‖B̂−

B0‖).

2. Then we need to prove ĝ(u;B0)− g(u)− 1
fu0 (u)φ

′′ (0|u)

∑
m
′
(y∗i )Ki → o(1/

√
nh).

3. At last ĝ(u; B̂)− g(u)− 1
fu0 (u)φ

′′ (0|u)(nh)−1
∑
m
′
(y∗i )→ O(n−1/2).

In which φ(t|u) = E(m(y− g(u) + t)|U = u), For the part ĝ(u; B̂)− ĝ(u;B0) in the equation

(2.27)

ĝ(u; B̂)− ĝ(u;B0)

=ĝ
′
(u)O(‖B̂ −B‖)

=ĝ
′
(u) ·O(n−1/2)

=O(n−1/2)

where O(‖B̂ −B0‖) = O(n−1/2), the first step is proved.

For given u, for notational simplicity, we write âB0 := ĝ(u;B0) and b̂B0 := ĝ
′
(u;B0)

which are the solutions of the following minimization problem,

mina,b
∑

m(yi − a− b(〈xi, B0〉 − u))K(
〈Xi, B0〉 − u

h
) (2.28)
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Denote

θ̄ = (nh)1/2(âB0 − g(u), h(b̂B0 − g
′
(u)))

zi = (1, (〈xi, B0〉 − u)/h)T

y∗i = yi − g(u)− g′(u)(〈Xi, B0〉 − u)

m(yi − a− b(〈Xi, B0〉 − u)) =
1

2n
(yi − a− b(〈Xi, B0〉 − u))2

Ki = K(
〈Xi, B0〉 − u

h
)

Thus θ̄ minimize

Q(θ) =
∑
i=1

[m(y∗i − θT zi/
√
nh)−m(y∗i )]Ki,

it can be proved that Q(θ) is convex in θ. We will show

Q(θ) =
1

2
θTSθ +W T θ + r(θ), r(θ) = op(1) (2.29)

where

S = fU0(u)φ
′′
(0|u)

 1 0

0
∫
v
K(v)v2dv

 ,

Wn = −(nh)−
1
2

∑
m
′
(y∗i )ziKi. Here φ′′(0|u) is the second derivative of φ(t|u) = E(m(y −

g(u)+ t)|U = u) with respect to t evaluated at t = 0. The first and second derivatives of φ(t|u)

with respect to t, φ′() and φ′′(), are assumed to exist. And v ∈ [−M,M ], where M is such a

real number that [−M,M ] contains the support of K(), which means |ui − u| ≤ Mh which

ui = 〈xi, B̂〉, when we face the situation that B0 is known, the conclusion still works.

Write
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Q(θ) = E(Q(θ)|u)− (nh)−1/2
∑
i=1

(m
′
(y∗i )− E(m

′
(y∗i )|ui))Kiθ

T zi +R(θ) (2.30)

E(Q(θ)|ui) =
∑
i=1

[φ(g(ui)− g(u)− g′(u)(ui − u)− θT zi/
√
nh|ui)

− φ(g(ui)− g(u)− g′(u)(ui − u)|ui)]Ki

=− (nh)−1/2
∑
i=1

φ
′
(g(ui)− g(u)− g′(u)(ui − u)|ui)(θT zi)Ki

+ (2nh)−1θT (
∑
i=1

Kiφ
′′
(g(ui)− g(u)− g′(u)(ui − u)|ui)zizTi )θ(1 + op(1))

=− (nh)−1/2
∑
i=1

E(m
′
(y∗i )|ui)(θT zi)Ki

+ (2nh)−1θT (
∑
i=1

Kiφ
′′
(g(ui)− g

′
(u)(ui − u)|ui)zizTi )θ(1 + op(1))

and next we will show that

∑
Kiφ

′′
(g0(ui)− g0(u)− g′0(u)(ui − u)|ui)zizTi = S(1 +Op(h

2))

where

S = (nh)−1
∑
i=1

Kiφ
′′
(0|u)ziz

T
i =

 s0 s1

s1 s2

 (2.31)

∑
i=1

Kiφ
′′
(g0(ui)− g0(u)− g′0(u)(ui − u)|ui)zizTi

=
∑

Ki(φ
′′
(0 +Op(h

2)|u))ziz
T
i

=
∑

Ki(φ
′′
(0|u) +Op(h

2))ziz
T
i

=
∑

Kiφ
′′
(0|u)(1 +Op(h

2))ziz
T
i

=S(1 +Op(h
2))
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in the matrix S, the matrix components sj = (nh)−1
∑

i=1Kiφ
′′
(0|u)((ui−u)/h)j , j = 0, 1, 2.

Because sj = E(sj) +O(V ar(sj)), we calculate the expectation and variance of sj to find the

boundness .

E(sj) =h−1φ
′′
(0|u)

∫
K(

U − u
h

)(
U − u
h

)jfU(U)dU

=φ
′′
(0|u)

∫
K(t)tjfU(th+ u)dt

=fU(u)φ
′′
(0|u)

∫
K(t)tjdt(1 + o(1))

=fU(u)φ
′′
(0|u)cj(1 + o(1))

where cj =
∫
K(t)tjdt, c0 = 1, c1 = 0 and c2 =

∫
K(t)t2dt from condition (D). Next,we will

discuss the V ar(sj), it can be proved that V ar(sj)→ op(1) when j = 0, 1, 2.

V ar(sj) ≤(nh)−2E(
∑

φ
′′
(0|u)K(

U − u
h

)(
U − u
h

)j)2

≤(nh)−2nE(φ
′′
(0|u)K(

U − u
h

)(
U − u
h

)j)2

≤O(1/nh)

≤op(1)

Therefore

S = fu0(u)φ
′′
(0|u)

 1 0

0 c2

 + op(1) (2.32)

At last, we have

E(Q(θ)|ui) = −(nh)−1/2
∑

E(m
′
(y∗i )|ui)(θT zi)ki +

1

2
θTSθ(1 + op(1)). (2.33)
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Next, we show that with R(θ) defined by (2.30), R(θ) = op(1). Note that E(R(θ)) = 0. Then

V ar(R(θ)) ≤ E(
∑
i=1

(m(y∗i − θT zi/
√
nh)−m(y∗i )−m

′
(y∗i )θ

T zi/
√
nh)Ki)

2

≤
∑
i=1

E(m(y∗i − θT zi/
√
nh)−m(y∗i )−m

′
(y∗i )θ

T zi/
√
nh)2K2

i

(2.34)

Because we assume that every Xi is independent with each other, cov(Xi, Xj) = 0, if i 6= j.

We assume (y∗1, z1, K1) can maximize (m(y∗i − θT zi/
√
nh)−m(y∗i )−m

′
(y∗i )θ

T zi/
√
nh)2K2

i .

So the equation (2.34) can becomes

V ar(R(θ)) ≤ nE(m(y∗1 − θT z1/
√
nh)−m(y∗1)−m′(y∗1)θT z1/

√
nh)2K2

1

Hence, by condition (B), the equation (2.34) is

E(R2(θ)) ≤o(n
∫

(θT1 z1)
2

nh
K2(

U1 − u
h

)fU1(U1)dU1)

And from the relation R(θ) = E(R(θ)) +O(V ar(R(θ))). Thus, R(θ) = op(1). Now we have:

Q(θ) =
1

2
θTSθ +W T

n θ +R(θ) (2.35)

where Wn = −(nh)−1/2
∑
m
′
(y∗i )ziKi. We outline the proof for stochastic boundedness of

W . By change of variable and existence of
∫
K2(t)tjdt, j = 0, 1, 2 in condition (D), for some

c > 0.

E(WnW
T
n ) =(nh)−1E(

∑
i

∑
j

m
′
(y∗i )m

′
(y∗j )KiKjziz

T
j )

≤(nh)−1[
∑
i

m
′
(y∗i )

2K2
i ziz

T
i +

∑
j

m
′
(y∗j )

2K2
j zjz

T
j ]

≤c(nh)−1E
∑
i

(m
′
(y∗i )

2K2
i ziz

T
i )

=O(h−1E(K2
i ziz

T
i ))

=O(1)
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which also implies E(Wn) = O(1) as a result of jensen’s inequality. Bounded second moment

implies that Wn is stochastically bounded. According to the Quadratic Approximation Lemma,

θ̄ converges in probability to the minimizer θ̂ = −S−1Wn of the right-hand side of (2.35).

θ̄ − θ̂ = op(1)

The first component of the above equality is

√
nh(ĝ(u;B0)− g(u)− Vn) = op(1)

where Vn = Un/[fu0(u)φ
′′
(0|u)] and

Un =
1

nh

∑
i=1

m
′
(y∗i )Ki

The second step is finished. At last, we combine the results of the previous two steps then get

ĝ(u; B̂)− g(u)− 1

fu0(u)φ′′(0|u)
(nh)−1

∑
m
′
(y∗i )Ki → op(

1√
nh

)

The theorem is proved.

2.3.4 Proof of Corollary 2.2.2.1

This proof has three steps:

1. Based on theorem 2.2.2, we can prove that θ̂(X)−θ(X)− 1
fU (u)φ′′ (0|u)(nh)−1

∑
i=1m

′
(y∗i )Ki →

O(n−1/2), where θ̂(X) = ĝ(〈X, B̂〉) and θ(X) = g(〈X,B0〉).

2. Next we can prove 1
fU (u)φ′′ (0|u)(nh)−1

∑
i=1m

′
(y∗i )Ki − g

′′
(u)h2

∫
t2K(t)

2
→ o(1).

3. At last, we get θ̂(X)− θ(X)− g
′′
(u)h2

∫
t2k(t)

2
→ O(n−1/2).
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where φ(t|u) = E(m(y − g(u) + t)|U = u). For given X

θ̂(X)− θ(X)

=ĝ(〈X, B̂〉; B̂)− ĝ(〈X,B0〉; B̂) + ĝ(〈X,B0〉; B̂)− g(〈X,B0〉)

=A+B

(2.36)

Base on the Taylor theorem, part A converges to 0 at the rate of n−1/2

A = ĝ(〈X, B̂〉, B̂)− ĝ(〈X,B0〉, B0) = ĝ
′
(〈X, B̂〉, B̂)‖B̂ −B0‖ = Op(n

−1/2)

The part B tends to op( 1√
nh

) based on theorem 2.2.2. Then we get that

θ̂(X)− θ(X)− 1

fU(u)φ′′(0|u)
(nh)−1

∑
i=1

m
′
(y∗i )Ki → O(n−1/2)

and we define U = (nh)−1
∑
m(y∗i )Ki and U = E(U) + O(var(U)). Note that φ′(0|u) = 0

by the definition of φ(). From the Taylor expansion, we have

φ
′
(t|u) = φ

′′
(0|u)t(1 + o(t)), as t→ 0

E(U) = E(E(U |u))

=

∫
φ
′
(
1

2
g
′′
(u)(th)2|u)f(u)K(t)dt

= φ
′′
(0|u)

1

2
g
′′
(u)h2f(u)

∫
t2K(t)dt

For V ar(U). It can be proved V ar(U) ≤ E(U2) and E(U2) = o(1), so that we get θ̂(X) −

θ(X)− g
′′
(u)h2

∫
t2K(t)

2
→ O(n−1/2)

At last this corollary is proved.
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2.3.5 Proof of Theorem 2.2.3

This proof is similar to Fu and Knight (2000). At first, we define Tn(B∗), and B∗ can be

estimated by minimizing Tn.

Tn(B∗) =
n∑
j=1

n∑
i=1

[m(yij−
1√
n
b̂j〈Xij, B∗〉)−m(yij)]wij +λnn

1/2(‖B0 +n−1/2B∗‖∗−‖B0‖∗)

The proof can be divided into several steps:

1. Prove
∑n

j=1

∑n
i=1[m(yij− 1√

n
b̂j〈Xij, B∗〉)−m(yij)]wij → 1

2
vec(B∗)C1vec(B∗)−C0vec(B∗)

2. Prove λnn1/2(‖B0 + n−1/2B∗‖∗ − ‖B0‖∗)→ λ0[trU
TB∗V ] + ‖U⊥B∗V⊥‖

3. The theorem is proved by combing the results of previous steps.

At first, we review the definition of function m()

m(yi − âj − b̂j〈Xi −Xj, B〉) =
1

2n
(yi − âj − b̂j〈Xi −Xj, B〉)2 (2.37)

, where âj = ĝ(〈Xj, B0〉) and b̂j = ĝ
′
(〈Xj, B0〉). Write B̂∗ =

√
n(B̂ −B0), then we define

Tn(B∗) =
n∑
j=1

n∑
i=1

[m(yij−
1√
n
b̂j〈Xij, B∗〉)−m(yij)]wij +λnn

1/2(‖B0 +n−1/2B∗‖∗−‖B0‖∗)

(2.38)

where yij = yi−âj− b̂j〈Xij, B0〉 andXij = Xi−Xj . We defineQ(B∗) =
∑n

j=1

∑n
i=1[m(yij−

1√
n
b̂j〈Xij, B∗〉)−m(yij)]wij . It can be shown that

Q(B∗) = E(Q(B∗))−
1√
n

n∑
i=1

n∑
j=1

[m
′
(yij)− E(m

′
(yij))]b̂j〈Xij, B∗〉wij + r(B∗) (2.39)
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where r(B∗) = op(1), the similar proof can be found in the proof of theorem 2.2.2. Write

φ(t|〈X,B0〉) = Em(y − ĝ(〈X, B̂〉) + t|〈X,B0〉)

E(Q(B∗)) =
n∑
i=1

n∑
j=1

[Em(yij −
1√
n
b̂j〈Xij, B∗〉)− Em(yij)]wij

=
n∑
i=1

n∑
j=1

Em(yij −
1√
n
b̂j〈Xij, B̂∗〉+

1√
n
b̂j〈Xij, B̂∗ −B∗〉)wij

−
n∑
i=1

n∑
j=1

Em(yij −
1√
n
b̂j〈Xij, B̂∗〉+

1√
n
b̂j〈Xij, B̂∗〉)wij

=
n∑
i=1

n∑
j=1

Em(yi − âj − b̂j〈Xij, B̂〉+
1√
n
b̂j〈Xij, B̂∗ −B∗〉)wij

−
n∑
i=1

n∑
j=1

Em(yi − âj − b̂j〈Xij, B̂〉+
1√
n
b̂j〈Xij, B̂∗〉)wij

=
n∑
i=1

n∑
j=1

Em(yi − ĝ(〈Xi, B̂〉|〈X,B0〉) +
1√
n
b̂j〈Xij, B̂∗ −B∗〉)wij

−
n∑
i=1

n∑
j=1

Em(yi − ĝ(〈Xi, B̂〉|〈X,B0〉) +
1√
n
b̂j〈Xij, B̂∗〉)wij

=
n∑
i=1

n∑
j=1

φ(
1√
n
b̂j〈Xij, B̂∗ −B∗〉|〈X,B0〉)wij −

n∑
i=1

n∑
j=1

φ(
1√
n
b̂j〈Xij, B̂∗〉|〈X,B0〉)wij

= −
n∑
i=1

n∑
j=1

φ
′
(

1√
n
b̂j〈Xij, B̂∗〉|〈X,B0〉)

1√
n
b̂j〈Xij, B∗〉wij

+
n∑
i=1

n∑
j=1

1

2n
φ
′′
(

1√
n
b̂j〈Xij, B̂∗〉|〈X,B0〉)b̂2j〈Xij, B∗〉2wij + op(1)

= − 1√
n

n∑
i=1

n∑
j=1

φ
′
(0|〈X,B0〉)b̂j〈Xij, B∗〉wij

+
n∑
i=1

n∑
j=1

1

2n
φ
′′
(0|〈X,B0〉)b̂2j〈Xij, B∗〉2wij + op(1)

(2.40)
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The last equation holds because of root-n assumption. So we have the following representation,

Qn(B∗) = − 1√
n

[
n∑
i=1

n∑
j=1

m
′
(yij)b̂jvec(xij)

Twij]vec(B∗)

+
1

2n
vec(B∗)

T [
n∑
i=1

n∑
j=1

φ
′′
(0|〈x,B0〉)b̂2jvec(xij)Tvec(xij)wij]vec(B∗)

+ op(1)

(2.41)

Kong and Xia (2012) proved that φ′′(0|〈X,B0〉) = fy(0|〈X,B0〉), fy(0|〈X,B0〉) is the condi-

tional density function of y given 〈X,B0〉. With a simple calculation and by Slutsky’s Theorem,

we have the following approximation,

Qn(B∗) =
1

2
vec(B∗)C1vec(B∗)− C0vec(B∗) (2.42)

, where

C1 = E{fy(0|〈X,B0〉)g(〈X,B0)
2[X − E(X|〈X,B0〉)][X − E(X|〈X,B0〉)]T}

and

C0 = ZE{g′(〈X,B〉)(X − E(X|〈X,B0〉))},

where Z →D N(0, σ2). We have discussed the extension form ofQ(B∗). Then we will analyze

λnn
1/2(‖B0 +n−1/2B∗‖∗−‖B0‖∗). From the subdifferential, we get the directional derivative(

Borwein and Lewis (2000)) as

n1/2λn(‖B0 + n−1/2B∗‖∗ − ‖B0‖∗)→ λ0[trU
TB∗V + ‖UT

⊥B∗V⊥‖∗] (2.43)

where U and V are from the singular value decomposition of B0 = Udiag(s)V T .And U⊥ and

V⊥ denote any orthogonal complements of U and V.

If we combine (2.42) with (2.43), we can get

Tn(B∗) =
1

2
vec(B∗)C1vec(B∗)− C0vec(B∗) + λ0[trU

TB∗V + ‖UT
⊥B∗V⊥‖∗] (2.44)
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Bach (2008) proved Tn(B∗) is strictly convex, which implies that it has an unique global mini-

mum. At last this theorem 2.2.3 is proved.

36



Chapter 3

Implementation

3.1 Algorithm

The algorithm of SIM nuclear can be used the table 3.1 to illuminate. There are two steps in

this algorithm. The first step is to use the outer product of gradients (OPG) to get the initial

estimator of B, B̂0. The second step is that we use the alternating minimization algorithm to

update the estimator B̂t and ĝ() iteratively until both of them converge to fixed points.

Table 3.1: SIM-Nuclear Algorithm

Initialize
Use outer product of gradients (OPG) method to
get the initial B0, then standardize B̂0 = B̂0/‖B̂0‖F
Repeat
P1: Given B̂t−1, use equation (3.2) to calculate âjt and b̂jt
P2: Given ât and b̂t, use equation (3.4), to renew Bt

Until objective value converges.

3.2 The First Step of the Algorithm

It is to find an initial estimator B̂0. A convenient choice for B is B̂/‖B̂‖F where B̂ is the

least squares estimate calculated by regressing y on X. But this choice may not be appropriate

when the function g() is symmetric. For this reason, in this dissertation we propose to use outer

product of gradients method by Xia et al. (2002) and get the resulting estimate of B as the initial

matrix parameter.
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Let us introduce OPG method briefly. Suppose that

y = g(〈X,B〉) + ε

with E(ε|X) = 0 almost surely. Consider the loss function

min
aj ,bj

n∑
i=1

(yi − aj − bjvec(B)Tvec(Xi −Xj))
2wij

and

wij = Kh(Xi −Xj)/
n∑
l=1

Kh(Xl −Xj)

in which Xj is in the neighborhood of Xi in the sample, the mean response E(Y |X = Xi) =

g(〈B,Xi〉) can be approximated by aj + bj〈B,Xi − Xj〉, where aj = g(〈B,Xj〉) and bj =

g
′
(〈Xj, B〉). vec(B) represents the vectorized B.

We can obtain an estimate for βj = g
′
(〈Xj, B〉)vec(B), β̂j , by simply solving the follow-

ing weighted loss function problem:

min
aj ,βj

n∑
i=1

[yi − aj − βjvec(Xi −Xj)]
2wij

Because βj is proportional to vec(B), β̂j can be standardized to produce an estimate of vec(B).

An efficient approach for estimating B is to consider the outer-product M =
∑n

j=1 β̂jβ̂
T
j /n.

We propose to estimate B by transferring the eigen-vector corresponding to the largest singular

value of M to a matrix and denote it by B̂0.

3.3 The Second Step of the Algorithm

After we get the initial estimator B̂0. We can estimate B and g(·) iteratively in the second step.

This step can be divided into two parts.

38



1. We need to estimate the unknown function g() under the assumption that we have an

estimator of B, B̂ from

min
g,‖B‖F=1

1

n

n∑
i=1

(y − g(〈X, B̂〉))2 (3.1)

To solve the equation 3.1. We can replace g(〈Xi, B̂〉) by aj + bj(〈Xi, B̂〉 − 〈Xj, B̂〉).

Then the function (3.1) becomes

min
aj ,bj ,‖B‖F=1

1

2n

n∑
j=1

n∑
i=1

(yi−aj−bj(〈Xi, B̂〉−〈Xj, B̂〉))2wij(
〈Xi, B̂〉 − 〈Xj, B̂〉

h
) (3.2)

In the equation (3.2), where aj = g(〈Xj, B̂〉) and bj = g
′
(〈Xj, B̂〉). We assume that

the optimal bandwidth is obtained. Then we can get least square estimators âj and b̂j ,

j = 1, · · · , n for function (3.2). âj and b̂j can be expressed by a certain function of

x, y, and B̂. Use some simple calculation, we can get the expression of âj and b̂j based

on (3.2)

âj
b̂j

 = (UTWU)−1UTWY

in which y =



y1

y2
...

yn


, U =



1 U1 − Uj

1 U2 − Uj
...

1 Un − Uj


, Ui = 〈Xi, B̂〉 and W =


w1j

. . .

wNj

.

In this step, we estimate the link function g(·) as a classical univariate non-parametric re-

gression problem. And the estimator âj represents ĝ(〈Xj, B̂〉) and b̂j represents ĝ′(〈Xj, B̂〉).

2. When âj and b̂j are given, we can update the estimator of B by solving the problem below

min
B:‖B‖F=1

1

2n

n∑
j=1

n∑
i=1

[yi − âj − b̂j(〈xi, B〉 − 〈xj, B〉)]2w(
〈xi, B〉 − 〈xj, B〉

h
) + λ‖B‖∗

(3.3)
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The second step is that after âj and b̂j are given, we can update the estimator of parameter

matrix B by solving equation (3.4)

min
‖B‖F=1

1

2n

n∑
j=1

n∑
i=1

(yi − aj − bj(〈Xi −Xj, B〉))2wij + λ‖B‖∗ (3.4)

This step is to update the B̂ by solving the function (3.4). In this step, the equation (3.4) can

be calculated through a fast iterative shrinkage-thresholding algorithm (FISTA) combing Nes-

terov method. This method has attracted much attention in recent years due to its efficiency in

solving regularization problems (Beck and Teboulle, 2009). Because it resembles the classical

gradient descent algorithm in that only the first order gradients of the objective function are

utilized to produce next algorithm iterate from current search point. It differs from the gradient

descent algorithm by extrapolating the previous two algorithmic iterates to generate the next

search point. This extrapolation step incurs trivial computational cost but improves the conver-

gence rate dramatically. A simple iterative shrinkage-thresholding has a worst-case complexity

result of O(1/k), where k represents the iteration steps. However the fast iterative shrinkage

thresholding has complexity result of O(1/k2).

3.3.1 The Nesterov Method

Next, we will introduce the FISTA algorithms. At first ,we define the loss function with regu-

larization F (X).

F (X) = f(X) + g(X)

.

f(X) : Rn → R is a smooth convex function of type C1,1, i.e., continuously differentiable with

Lipschitz continuous gradient H(f):

‖∇f(x)−∇f(y)‖ ≤ H(f)‖x− y‖ for every x, y ∈ Rn

where ‖·‖ denotes the standard Euclidean norm andH(f) > 0 is the Lipschitz constant of∇f .

g(X) : Rn → R is a continuous convex function which is possibly non-smooth.
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For example, when g(X) = 0, F (X) is the general unconstrained smooth convex minimization

problem. For any L > 0, consider the following quadratic approximation of F (X) = f(X) +

g(X) at a given point y:

QL(X, y) = f(y) + 〈X − y,∇f(y)〉+
L

2
‖X − y‖2 + g(x) (3.5)

which admits a unique minimizer

PL(y) = argmin{QL(x, y) : x ∈ Rn} (3.6)

in detail, we can have

pL(y) = argminx{g(x) +
L

2
‖x− (y − 1

L
∇f(y))‖2}

Beck and Teboulle (2009) has proved that key recursive relation for the sequence {F (xk) −

F (x∗)}, x∗ is the true parameter, will imply the better complexity rate O(1/k2). We just need

to replace order 1 tensor data (vector) X ∈ Rn in the algorithm to order 2 tensor data (matrix)

X ∈ Rm×n and Bt ∈ Rm×n in order to apply this algorithm to SIM-nuclear.

Define these notations that are used in algorithm

l(B) =
n∑
j=1

n∑
i=1

1

2n
(yj − aj − bj〈B, xi − xj〉)2wij,

∇l(B) =
∂l(B)

∂B
= −

n∑
j=1

n∑
i=1

1

n
(yj − aj − bj〈B, xi − xj〉)bj(xi − xj)wij,

J(B) = λ‖B‖∗,

h(B) = l(B) + J(B),

g(B|St, δ) = l(St) + 〈∇l(St), B − St〉+
1

2δ
‖B − St‖2F + J(B).

Then the process of Nesterov method is as follows. There are three important steps in Nesterov

method for estimating the parameter B.
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Table 3.2: The Algorithm of Estimating B

1 Initialize
2 B0 = B1

3 δ > 0
4 α0 = 0
5 α1 = 1
6 Repeat
7 St = Bt + at−1

at
(Bt −Bt−1)

8 Atemp = St − δ∇l(St)
9 compute SVD Atemp = Udiag(a)V T

10 ai is the ith eigenvalue of Atemp
11 b = argmin 1

2δ
‖X − Atemp‖22 + λ‖X‖∗

12 So the value of bi = (ai − λδ)+
13 Btemp = Udiag(b)V T

14 While(h(Btemp) > g(Btemp|St, δ))
15 δ = δ

2

16 Atemp = St − δ∇l(St)
17 Atemp = Udiag(a)V T

18 b = argmin 1
2δ
‖X − Atemp‖22+λ‖X‖∗

19 bi = (ai − λδ)+
20 Btemp = Udiag(b)V T

21 if h(Btemp) ≤ h(Bt)
22 Bt+1 = B(temp)

23 else
24 Bt+1 = Bt

25 αt+1 = (1 +
√

1 + (2αt)2/2)
26 Until objective value converges.
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1. Predict a search point S by a linear extrapolation from previous two iterates (Line 7 of

Table 3.2).

2. Perform gradient descent from the search point S possibly with Armijo type line search

(Lines 8-20 of Table 3.2).

3. Force the descent property of the next iterate (Lines 21-24 of Table 3.2).

In step 1, αt is a crucial hyperparameter in the extrapolation. at is updated by each iteration

by the equation at = (1 +
√

1 + (2αt−1)2/2) (Line 25 of Table 3.2), other sequences, for

example αt = (t− 1)/(t+ 2), can also be used.

In step 2, the gradient descent is based on the first order approximation to the loss function

at the current search point St

g(Btemp|St, δ) = l(St) + 〈∇l(St, B − St)〉+
1

2δ
‖B − St‖2F + J(B)

=
1

2δ
‖B − [St − δ∇l(St)]‖2F + J(B) + c,

(3.7)

where the variable δ is determined during the loop while h(Btemp) > g(Btemp|St, δ) is true and

the constant c contains terms irrelevant to the optimization. (2δ)−1‖B − St‖2F can shrink the

next iterate towards St. If the loss function l(·) denotes the class of functions that are convex,

continuously differentiable and the gradient satisfies ‖∇l(u) − ∇l(v)‖ ≤ L(l)‖u − v‖ with

a unknown gradient Lipschitz constant L(l). Then δ is updated dynamically to capture the

unknown l() by using the classical Armijo line search rule. g(·) is the surrogate function and

Zhou and Li (2014) proved that the solution of g(·) is the same as the solution of function

min
b

1

2δ
‖b− a‖22 + f(b), (3.8)

where b’s are the matrix B’s singular values, a’s are the matrix [St− δ∇l(St)]’s singular values

and f(b) = λ
∑

j |bj|, the summation of the singular values of B because the penalty is nuclear

norm. Then the solution of function (3.8) is bi = (ai − λδ)+. For this reason, single value

decomposition is performed on the intermediate matrix Atemp = St−δ∇l(St). The next iterate
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Bt+1 shares the same singular vectors as Atemp and the singluar values bt+1 are determined by

minimizing 1
2δ
‖b− a‖22 + f(b).

For minimization of a smooth convex function l. It is well-known that the Nesterov method

is optimal with the convergence rate at order O(t−2), where t indicates the iterate number. In

contrast, the gradient descent has a slower convergence rate of O(t−1). The SIM-nuclear is

non-smooth, but the same convergence result can be established.

3.3.2 The Advantages of Nesterov Method

There are some common questions in gradient descent.

The first question is non-convex loss function. The Nesterov method and its convergence

properties hinge upon convexity of the loss l. But sometimes the loss function may be non-

convex. The solution is the iteratively reweighted least squares strategy can be applied in this

scenario. At each IWLS step, the Nesterov method is used to solve the penalized weighted least

squares problem, which is convex.

The second problem is whether the monotonicity of the objective function during iter-

ations. Because of the extrapolation step, the objective values of algorithmic iterates f(Bt)

are not guaranteed to be monotonically decreasing. The solution is that we added one check-

ing point in the algorithm, only if the objective function of Btemp smaller than the objective

function of Bt, then we updated Bt+1 by Bt.

The last question is to estimate the Lipschitz constant L for the GLM loss. Each step

halving the line search part of algorithm involves an expensive singular value decomposition.

Therefore even a rought initial estimate of L potentially cuts the computational cost signifi-

cantly. Recall based on the table 3.2, the estimate of parameter matrix B can be updated by

standardizing the result, B̂t = B̂t/‖B̂t‖F , then B̂t is plugged back in equation (2.4), then just

repeat the process until the estimator of B converges.
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3.4 Implementation

3.4.1 Selection of Kernel Function

Before we select the weight, we need to select the kernel function at first. In nonparametric

statistics, a kernel is a weighting function used in non-parametric estimation. In general there

are several requirements that every kernel function needs to satisfy.

• Normalization: ∫ ∞
−∞

K(u)du = 1

• Symmetry about the origin:

∫
xK(x)dx = 0 for all values of x

• Finite second moment: ∫
x2K(x)dx <∞

The first requirement ensures that the method of kernel density estimation results in a prob-

ability density function. The second requirement ensures that the kernel function is an odd

function. Various kernel functions can be used as K(·), we just introduce two of them.

Epanechnikov kernel function:

K(u) =
3

4
(1− u2) |u| ≤ 1

Gaussian kernel function:

K(u) =
1√
2π
e−

1
2
u2 |u| ≤ ∞

The Gaussian kernel function is chosen in this dissertation. There are some advantages for

selecting the guassian kernel function.
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• One advantage is the Epanechnikov kernel has 3 derivatives before it’s identically zero,

unlike the Gaussian which has infinitely many (nonzero) derivatives. Furthermore, the

first derivative of the Epanechnikov kernel is not continuous where the function crosses

the kernel’s own bounds.

• The other advantage is Gaussian kernel function is more efficiency. The performance of

kernel is measured by mean integrated squared error (MISE) or asymptotic mean inte-

grated squared error (AMISE). The smaller these values are, the better the kernel func-

tion performs. If we restrict attention to kernels that are probability density functions,

the optimal kernel is the Epanechnikov kernel. We can define the relative efficiency of

other kernels compared with the Epanechnikov kernel as the ration of their values of√∫
u2K(u)du

∫
K(u)2du. The efficiency of the Gaussian is about 95%, the relative ef-

ficiency of the other kernel function whose domain is (−∞,∞) are lower than 95%, for

example, the relative efficiency of the logistic kernel function is about 88.7%, the relative

efficiency of the sigmoid kernel function is about 84.3%.

In this dissertation, we select the Gaussian kernel function.

3.5 Selection of hyper-parameters

In this part, we discuss how to select the hyper-parameters in the model. Hyper-parameter is a

terminology in the machine learning, which represents the parameters in the model that can not

be updated by the loss function automatically. There are two hyper-parameters in the model,

one is the bandwidth, h. The other is the tuning parameter of the penalty function, λ. We

discuss how to select these two hyper-parameters one by one.

In general, the m-fold cross validation procedure can be used for simultaneously selecting

the bandwidth h and the tuning parameter of the penalty, λ.

3.5.1 Selection of Bandwidth h

Selecting a proper bandwidth h for an observed data sample is a crucial problem, because of the

effect of the bandwidth on the performance of the corresponding estimator. If the bandwidth is
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small, the estimator will be under smooth, the variability will be very high. On the contrary, if

the value of h is big, the resulting estimator will be over smooth and farther from the function

that we are trying to estimate. Guidoum (2015) use Figure 3.1 to help us understand the effect

Figure 3.1: Effect of the bandwidth on the kernel estimator

of the bandwidth on the kernel estimator. If the value of h is small, then the graph of the kernel

function will have more fluctuations or tides. If the value of h is big, the graph will be more

flat. The choice of bandwidth h is much more important than the choice of kernel function

K(·). There is a trade-off of selecting the value of h. If h is small, the bias can be reduced. If h

is large, the curve will be smoother. We need to select an optimal bandwidth. A natural metric

to use is mean squared error (MSE), the sum of squared bias and variance. Intuitively MSE

is minimized by choosing h. Since our proposed estimation procedure is iterative in nature,

GCV type of bandwidth selection methods can be computationally intensive when estimating
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B. From extensive simulation study, we have found that the rule of thumb for bandwidth

selection suggested by Silverman (1986) works reasonably well for SIM-nuclear. Let s be the

median of the standard deviations of the predictor. The rule of thumb suggests to choose h as

h = 1.06sN−1/5. We recommend to use this bandwidth when applying sim-nuclear.

3.5.2 Selection of tuning parameter in the penalty function

The λ is contained in the penalty part of the single index model for the tensor data. The penalty

part of the function can control the complexity of the model. Our goal is to make a trade-off

between how well the data is fit and how complex the model is. The λ parameter controls how

much emphasis is given to the penalty term. The larger the λ value, the more coefficients in the

model will be pushed towards zero. So the model will be simplified. But with large bias and

underfitting problem. The smaller the λ value, the model will fit the data better, but with high

variance and overfitting problem.

After h is specified, because of the iterative nature of the proposed estimation method,

standard methods, such as CV and GCV, are computationally intensive. By the discussion of

Fan and Li (2001b), when λ =
√
Clogn/nσ, the nonconcave penalized least squares method

has the so-called oracle property, namely, the zero coefficients are set to zero automatically and

the nonzero coefficients can be estimated efficiently as if the true model was known. We will

set
√
Clogn/nσ as the initial value of λ and use the 10-CV procedure to select λ. In general,the

10-CV procedure results in an optimal penalty parameter, denoted by λ0, for the estimation of

B.
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Chapter 4

Simulation

In this chapter, we illustrate the performance of the SIM-nuclear by several simulation studies.

In this chapter, we define the parameter B as a sparse and low-rank order 2 tensor parameter.

We will conduct three simulations.

The first one is we test whether SIM-nuclear is asymptotic consistent or not and whether

the recommendation about selecting the bandwidth h and λ are valid. The second one is com-

paring the estimator B̂ and the true matrix B graphically, and the last one is comparing SIM-

nuclear with other methods such as linear regression, linear lasso and SIM-lasso.

4.1 The Criteria

To evaluate the results of different experiments, we use two criterions.

One criterion is A(B̂, B) = (180/π)arccos(|vec(B̂)Tvec(B))|), which is the angle (in

degree) between the vectorized estimator B̂ and the vectorized true parameter B. Note that

A(B̂, B) ∈ [0, 90], and A(B̂, B) is equal to 90 when B̂ and B are perpendicular to each other.

The performance of an estimate B̂ is measured by A(B̂, B), with small values indicating good

performance.

The other criterion is L(B̂, B) = ‖B̂ − B‖F , in which ‖ · ‖F is the Frobenius norm of

a matrix. The Frobenius norm is the l2-norm of matrix norm, the smaller value, the better

performance.
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4.2 Demonstration of proposed methods

In this section, we demonstrate the single index model for nuclear norm works. The model we

consider joined by

y = 3 · sin(0.25〈x,B〉) + ε (4.1)

in which, ε ∼ N(0, 1) and B ∈ R5×5, which is

B =



1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 1


5×5

In our first simulation the parameter tensor size is 5 × 5, the rank of it is just 1. So it is a low-

rank matrix. We generated X ∈ R5×5 by getting random values from the distribution N(10, 1)

to be elements in the X.

4.2.1 Sample size increasing

In this subsection, we use the function (4.1) to generate the data in several simulations. Each

simulation contains 100 experiments, but the data size of the experiments from these simu-

lations is different from each other. There are 5 simulations, the experiment from different

simulation uses different sample size. For example, in the first simulation, its experiment’s

sample size is 100. In the second simulation, its experiment’s sample size is 200, and so on.

When we got the estimator B̂ in a certain experiment, we calculated the degree of angle be-

tween B and B̂ and the Frobenius norm of B̂ −B. Then we used the boxplot to describe these

100 results(because we have 100 experiments in each simulation). The results are below:

In Figure 4.1, there are 5 types of sample-size, from 100 to 1600. Both graphs told us

that as the sample size increases, the height of boxplot will go down and tends to zero, in other

words, the values of degree of angle and the values of Frobenius norm tend to decrease from
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(a)

(b)

Figure 4.1: a) ‖B − B̂‖F and b) The Angle between B and B̂
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Figure 4.2: The Rank of the Matrix B̂

left to right. Figure 4.2 indicates the rank of B̂ as the simple size increases, we can see as the

simple size increases the rank of B̂ is lower and tending to 1. It means the single index model

with nuclear norm is asymptotic consistent.
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4.2.2 The Impact of Different Bandwidth Values

In this simulation, we need to test whether the bandwidth selected by the rule of thumb can

make the degree of angle between B̂ and B and the values of Frobenius norm of B̂ − B

minimum or not. Because the rule of thumb suggests h = O(n−1/5), under the condition

n = 200, the value of bandwidth h is around 0.3 ∼ 0.4.

From Figure 4.3, we can see that the value of angle degree and the value of Frobenius

norm are the smallest when h = 0.3. Based on this simulation, we got the practical optimal

bandwidth is h = 0.3. It is very close to the theoretical optimal bandwidth.

4.2.3 The impact of λ values

In this section, we want to demonstrate the impact of λ. Theoretically the value of λ can affect

the parameter, the larger the λ is, the more parameters tends to zero. Smaller λ will have high

variance, but low bias. On the contrary, larger λ will lead to low variance and high bias. So

selecting a proper λ value is very important. But we need to determine one bandwidth, h, at

first. In this subsection, the bandwidth is selected by the rule-of-thumb, which is O(n−1/5).

Because our sample size is 200, we choose h = 0.3.

We got Figure 4.4. From Figure 4.4, we can find when the value of λ is around 5, the

box-plot is lowest, which means the degree of angle is smallest around this value. We can get

the conclusion, the optimal λ value is near 5. The Frobenius norm of B̂ − B also shows that

when the λ is 5, the average is minimum. So in this section, we found the optimal λ based on

a fixed bandwidth h = 0.3.

4.3 Comparison of B̂ and B

In previous section, we discussed the effect of different hyper-parameters, such as sample size,

bandwidth and tuning parameter of penalty function, to the performance of the algorithm for

the SIM-nuclear. We use the degree of angle and Frobenius norm to evaluate the performance

of the estimator. This method is too abstract that we can not check the performance of the

estimator directly. In this section, we use the property of order 2 tensor to create the pictures
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(a)

(b)

Figure 4.3: a) ‖B − B̂‖F and b) The Angle between B and B̂
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(a)

(b)

Figure 4.4: a) ‖B − B̂‖F and b) The Angle between B and B̂
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corresponding to the estimator, B̂, and the true parameter matrix, B. Then we can compare

with them visually.

There are several parameter matrices B, 9 × 9 and low-rank. We use three plots to il-

luminate the performance of the SIM-nuclear algorithm. On each row, the first plot is the

true parameter matrix, the second one is the scatter plot created by the points (yi, 〈xi, B〉),

i = 1, · · · , 100. In the third, we show the estimate of parameter matrix estimated by SIM-

nuclear.

In this example, we have four parameter matrices. There are number, simple shape and

Roman letters. From the scatter plots, the relationship between y and 〈x,B〉 are demonstrated

to be nonlinear. Under this situation, we compared the estimator with the true, although the

estimate is a little blurred, it can still describe the correct shape.

Figure 4.5: Parameter matrix of shape 2 (R=3, Angle Value=21.5965)

In Figure 4.5, the true parameter matrix is number 2, and the estimator of parameter is

still 2, even it is a little blurred. In Figure 4.6, the true parameter matrix is letter ’F’, and the

estimator is ’F’. So we get a good estimator. In Figure 4.7, the true parameter matrix is letter

’H’. Although the scatter plot is non-linear, the estimator is a letter ’H’ obviously. In Figure

4.8, the scatter plot shows there is a nearly linear relationship between y and 〈X,B〉. And the

estimator is almost the same as the true one.
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Figure 4.6: Parameter matrix of letter F (R=2, Angle Value=18.506)

Figure 4.7: Parameter matrix of letter H (R=2, Angle Value=16.414)

4.4 Comparison of Different Models

In this section, we will compare the performances of sim-lasso, sim-nuclear, linear matrix

regression and linear lasso. To eliminate the influence of the selection of bandwidth, h, and λ.

We compare the best possible performances of these methods under the optimal h and λ. In

these models, we use the same B,

B =



1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1


4×4
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Figure 4.8: Parameter matrix of Shape Rectangle (R=1, Angle Value=8.104)

Each element of X is generated by N(10,1) randomly, and ε follows normal distribution whose

mean is 0 and variance is 1. Randomly generate 100 experiments for each model, each experi-

ment has a size of n = 200 samples.

Model 1 : y = 3 · sin(0.25〈x,B〉) + ε

Model 2 : y = 2(〈x,B〉)2 + exp(〈x,B〉) + ε

Model 3 : y = 3(〈x,B〉)cos(〈x,B〉) + ε

Model 4 : y = 3(〈x,B〉)2 + (〈x,B〉) + ε

The linear matrix regression is proposed by Zhou and Li (2014), they refer the equation (1.2) as

the loss function of linear matrix regression problem with nuclear norm penalty function. Then

we introduce the SIM-lasso briefly.

4.4.1 SIM-lasso

It is proposed by Zeng et al. (2012). Suppose {(yi, xi), i = 1, · · · , n} is a random sample

drawn from a single index model

y = g(θTx) + ε
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Table 4.1: The degree of angle under n = 200

Method Mean Std. dev. h λ

Model 1
SIM-nuclear 11.253 2.712 0.3 11
SIM-lasso 16.797 4.957 0.6 0.02
Linear Nuclear 19.0906 0.902 NA 24
Linear Lasso 19.722 3.114 NA 0.001
Model 2
SIM-nuclear 4.114 0.038 0.3 11
SIM-lasso 3.085 0.019 0.690 0.02
Linear Nuclear 29.452 0.813 NA 30
Linear Lasso 24.314 6.878 NA 0.02
Model 3
SIM-nuclear 21.307 2.554 0.4 12
SIM-lasso 24.945 3.957 0.705 0.04
Linear Nuclear 56.344 9.647 NA 34
Linear Lasso 76.349 10.071 NA 0.001
Model 4
SIM-nuclear 5.196 0.178 0.3 11
SIM-lasso 3.789 0.15 0.675 0.1
Linear Nuclear 16.839 0.372 NA 25
Linear Lasso 14.397 0.408 NA 0.002

where θ ∈ Rp, x ∈ Rp. Zeng proposed the penalized minimization problem about this single

index model is:

min
a,b,θ,‖θ‖=1

n∑
j=1

n∑
i=1

[yi − aj − bjθT (xi − xj)]2wij + λ
n∑
j=1

|bj|
p∑

k=1

|θk|. (4.2)

Where all the notations are mentioned in previous chapters. The penalized loss function (4.2)

is refered as the sim-lasso model. This method is fit for the vector parameter. If we want to use

it, we should vectorize the matrix parameter B firstly.
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Table 4.2: The degree of angle under n = 400

Method Mean Std. dev. h λ

Model 1
SIM-nuclear 8.204 1.796 0.3 11
SIM-lasso 8.967 1.785 0.674 0.02
Linear Nuclear 9.382 0.8613 NA 25
Linear Lasso 10.159 1.881 NA 0.01
Model 2
SIM-nuclear 3.271 0.733 0.4 12
SIM-lasso 1.024 0.294 0.668 0.02
Linear Nuclear 24.152 1.24 NA 35
Linear Lasso 20.464 5.864 NA 0.02
Model 3
SIM-nuclear 11.679 1.517 0.3 12
SIM-lasso 13.049 1.383 0.604 0.01
Linear Nuclear 46.176 6.125 NA 38
Linear Lasso 67.993 7.328 NA 0.01
Model 4
SIM-nuclear 2.344 0.076 0.3 11
SIM-lasso 1.045 0.018 0.665 0.02
Linear Nuclear 13.771 0.370 NA 42
Linear Lasso 10.092 0.326 NA 0.002

From Table 4.1 and 4.2, the degree of angle between the estimator B̂ and the true B is

smaller as the sample size increases. Focused on either one of two tables, we can see the

performances of SIM-nuclear and SIM-lasso are better than the traditional methods, linear

nuclear and linear lasso in these four models. If the data are generated from model 1 and 3,

the estimation result of SIM-nuclear is better than the estimation result of SIM-lasso. On the

contrary, if the data are generated from the rest two models, the SIM-lasso is better than the

SIM-nuclear.

60



Chapter 5

Real Data

In the chapter, we use SIM-nuclear method to solve a real world problem, and to test whether

SIM-nuclear performs better than the traditional statistical method, logistical regression.

5.1 Background of Application

In this experiment, the data came from the magnetoencephalography (MEG). Magnetoen-

cephalography (MEG) is a functional neuroimaging technique for mapping brain activity by

recording magnetic fields produced by electrical currents occurring naturally in the brain, us-

ing very sensitive magnetometers. When a participant is scanned by MEG, the gantry can be

moved so as to position the MEG scanner over the participant. The chair on which the partici-

pant sits is then raised up so that the participants head rests inside the helmet of the scanner( see

Figure 5.1). Magnetoencephalography (MEG) can detect and record magnetic fields outside the

head that are generated by electrical activity in the participant brain. The magnitude of these

magnetic fields is of the order of femtotesla (10-15 T), which can be sensed by Magnetometers.

Arrays of SQUIDs (superconducting quantum interference devices) are currently the most

common magnetometer, while the SERF (spin exchange relaxation-free) magnetometer is be-

ing investigated for future machines. Applications of MEG include basic research into per-

ceptual and cognitive brain processes, localizing regions affected by pathology before surgical

removal, determining the function of various parts of the brain, and neurofeedback. This can

be applied in a clinical setting to find locations of abnormalities as well as in an experimental

setting to simply measure brain activity.
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Figure 5.1: A Person Undergoing An MEG

Figure 5.2: Sensor tunnels in the MEG
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In the helmet of MEG, there are many sensor tunnels like Figure 5.2, which are supersen-

sitive magnetic detectors that can record the brain’s spontaneous neuromagnetic signals. This

experiment whose data were recorded by MEG. The experiment lasted 277.77 secs. During

this period of time, the participants were seated in front of screen and worn headphone, and

given some visual and audio stimuli, such as Checkerboard patterns were presented into the

left and right visual field, interspersed by tones to the left or right ear. So there are four types

of stimuli. The interval between the stimuli was 750 ms. A listing of the corresponding trigger

codes in provided.

Figure 5.3: Raw data for Channels

The sample data set is recorded using a 306-channel Neuromag vectorview system ( Figure

5.3). In Figure 5.3, we can see a timeslot of the experiment, the label values are color-coded.

Each row represents the data recorded from a certain sensor in MEG. And these stimuli can be

treated as order-2 tensor data. The stimuli are plotted as vertical lines so you can see how they

align with the raw data ( Figure 5.4) . On top of Figure 5.4, you can see the different types of
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Table 5.1: Trigger codes for the sample data set

Name Contents
A/L 1 Response to left-ear auditory stimulus
A/R 2 Response to right-ear auditory stimulus
V/L 3 Response to left visual field stimulus
V/R 4 Response to right visual field stimulus

stimulus affected the brain activity. When the stimulus occur, the curves of each row would

fluctuate.

Figure 5.4: Apply the stimuli to Raw data

We began to record the brain activity started at 0.1s earlier than the stimulus and stopped

recording 0.4s after it. Based on these data, we could plot the topomaps the magnetometers(

figure 5.5) to restore the brain activity when the stimulus came. From the Figure 5.5, 0.093s

means the topomap of the brain activity was 0.093s before the stimulus. In the 0.071s after the

stimulus, the brain activity became more active obviously. After 0.234s of the stimulus, the

brain returned to normal again. This is how the brain responsed to a stimulus
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Figure 5.5: The brain response for a stimulus

Table 5.2: Misclassification error rate for MEG data

Method The Mean of Error Rate
Logistic regression 0.052
SIM-nuclear 0.0392

In each stimulus, for every channel, we can record 38 values. For this reason, the resulting

covariates xi are 38 × 305 matrices, not 38 × 306, because there are some ’bad’ channels( for

example ’MEG 2443’) and abandoned. ’Bad’ means that the segment will be discorded when

epoching the data. There are some reasons that can cause the discord, such as if a channel

does not show a signal at all (flat), or if a channel as a noise level significantly higher than

the other channels. The response yi is a binary variable indicating whether the i-th subject is

response to left-ear auditory stimulus (yi = 1) or response to left visual field stimulus (yi = 3),

i = 1, · · · , 145. There is a single index model between binary variable yi and matrix variable

Xi ∈ R38×305.

5.2 Data and Analysis

There are two methods applied to analyse the data. One is linear logistic regression, the

other is SIM-nuclear. We applied the famous python machine learning module scikit-learn.

The data is divided into two groups, training group and testing group by using the command

sklearn.model selection.train test split. The training group takes up 80% of the whole data,

the test group takes up the rest 20%. We use the training data to select the optimal parameters

and hyper-parameters. And the testing group is used to test the performance of each method.
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But the SIM-nuclear is built for the quantative response variables, not for the binary response

variables. In this experiment, the left-ear stimulus was treated as -1 and the left visual field

stimulus was treated as 1. If ŷi that was estimated by SIM-nuclear was greater than 0, this

stimulus was treated as left visual field stimulus. On the contrary, a negative estimator ŷi was

put into the left-ear stimulus group. We use the misclassification error rate as the criterion.

misclassification error rate =
the number of wrong classifications

the total number of data

Figure 5.6: The ROC Curves of Two Methods

Table 5.2 showed the result. We can see the misclassification error rate of Logistic regres-

sion is about 0.05, the misclassification error rate of SIM-nuclear is about 0.04. And we draw

the ROC curves about these two methods. From the figure 5.6, it is obvious that the area that

the curve of SIM-nuclear covers larger area than the area that the curve of logisitic regression

obtains. And no-skill classifier is one that cannot discriminate between the two classes and

would predict a random class in all cases. A model with no skill is represented at the point (0.5,
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0.5). A model with no skill at each threshold is represented by a diagonal line from the bottom

left of the plot to the top right and has an AUC of 0.5. In this real data example, SIM-nuclear

performs better

Figure 5.7: The T-test values

In the figure 5.7, a t-test is done to each element in the estimator matrix B̂ to find which

elements that deviates from 0 significantly.

• H0: The value βi corresponding to the ith sensor is equals to 0

• H1: The value βi corresponding to the ith sensor is not equals to 0

The p value of a sensor’s t-test is applied to −log10. The larger −log10(p), the darker red color.

We can find the darkest red area in the figure 5.7, this part is the most important part in the

matrix B̂.
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Chapter 6

Conclusion

6.1 Summary

In this dissertation, we proposed a new single index model in which the parameter is order 2

tensor and the penalty function is nuclear norm. This new single index model is named as single

index model with nuclear norm penalty. Compared to the traditional single index model whose

parameter θ is an order 1 tensor, the parameter of the SIM-nuclear is not an order 1 tensor, but

an order 2 tensor.

For our proposed method, we simply use an alternating minimization algorithm to find the

B̂ and ĝ(·) iteratively. Given an estimator B̂, estimate ĝ(〈X, B̂〉) and ĝ′(〈X, B̂〉) by minimiz-

ing a simple least square function. After ĝ(〈X, B̂〉) and ĝ′(〈X, B̂〉) are got, we used an algo-

rithm which combined the fast iterative shrinkage thresholding algorithm(FISTA) and Nesterov

method to get the estimator of B faster and more accurately.

And we discuss the asymptotic properties about the SIM-nuclear method. Under some

mild assumptions, we proved that the estimator of B can converge to the true B at root-n rate.

Simultaneously, the estimator of B can keep low-rank and sparse because of the property of

nuclear norm penalty function.

Then we applied this method to some simulations. Firstly, we found as the simple size

increases, the performance of SIM-nuclear would be better, secondly we found there would be

an optimal hyper-parameter combination. In this combination, we could find the value of λ and

bandwidth h.
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At last, we apply the SIM-nuclear method to real data, MEG data. In the MEG data, the

independent variable X is order 2 tensor data, and the dependent variable y is binary value. We

used two methods, SIM-nuclear and logistic regression, to analyse the data. Then we found the

error rate of the result was estimated by SIM-nuclear is lower than the error rate of the result

was estimated by logistic regression.

6.2 Future work

At last, we need to talk about the future work about the research. Currently, the main problems

of this method is the process of estimating the parameter B̂ costs a lot of time. It is not friendly

for ordinary people. The reason why the method costs a lot of time is I wrote this code by

Python. In future, I will rewrite the code via C++. And during the process of rewriting, I will

use orient object programming(OOP) idea to finish this job in order to update the algorithm

easily.

The second thing I plan to do is to use amazon web service(AWS) to build a pipeline

containing SIM-nuclear. It can be used to handle data stream that is a type of big data. The

data stream can renew the method dynamically, then we can use the renewed method to fit the

future data stream. By using AWS, we can share this method to more people. These people

may have some commercial requests about this method, which means we can make profit from

this method. The profit can attract more and more outstanding researchers to join us to develop

this method.

The third thing is we will extend the method from matrix-valued data to tensor with ar-

bitrary order by modifying the algorithm and penalty function. We try to get the modified

SIM-nuclear’s asymptotic properties.

From the real data example, we find that SIM-nuclear is not fit for the binary response

variables, but there are a lot of reality data with binary response variable, for example, in the

field of computer version, there are a lot of dogs and cats photos, we want the computer can

recognize the creature in a photo is a cat or a dog. In this example, the response variables are

binary, cat or dog, and the explanatory variables are a order 2 tensor data. For this reason, we

will develop the SIM-nuclear model to fit for the binary response, for example, the modified
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log-likelihood function can be the loss function of SIM-nuclear. And we found that in the real

data, we should use multiple hypothesis test to test which element in the estimator matrix is not

equal to 0. Because the sensors may not independent to each other. It is the job I will do in the

future.
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