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Abstract

Superconductive electronics that exhibit ultra-low power consumption and high speed are

good candidates for neuromorphic computing, which aims to emulate the human brain, as

CMOS-based systems are approaching the bottleneck of Moore’s law. Quantum phase-slip

junctions (QPSJs) are 1-D superconducting nanowires that have been identified as exact du-

als to Josephson junctions (JJs), based on charge-flux duality in Maxwell’s equations. These

superconductive circuits that operate by the propagation of small voltage or current pulses,

corresponding to propagation of single flux or charge quantum, are naturally suited for imple-

menting spiking neuron circuits.

Superconductive circuits based on QPSJs can conduct quantized charge pulses, which

naturally resemble action potentials generated by biological neurons. Synaptic circuits, which

work as dynamic weighted connections between two neurons, can also be realized by circuits

comprised of QPSJs and magnetic Josephson junctions (MJJs) or only using QPSJs as a means

of charge modulation for quantized charge propagation. A fan-out circuit uses charge-flux

converters to emulate dendrites that allow a neuron to connect with many other neurons. Unlike

a JJ splitter circuit that provides very limited fan-out, charge-flux converters, along with the

corresponding circuitry, can provide significantly more fan-out. We present basic neuromorphic

computing circuitry components, including neuron, synaptic, fan-out, and axon circuits. In

addition to that, a learning circuit is introduced to explore learning functions in these systems.

We use a simplified spike timing dependent plasticity (STDP) learning rule to automatically

update the synaptic weight between a presynaptic and postsynaptic neuron according to their

relative spike timings. Using a SPICE model developed for QPSJs, circuits were simulated in

WRspice to demonstrate corresponding functionalities.

An important step for the experimental realization of QPSJ-based circuits is to fabricate

superconducting nanowires that exhibit coherent quantum phase-slip. Since niobium nitride

(NbN) was identified as an appropriate material for QPSJ, we optimized an NbN deposition
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process in our available equipment and fabricated ultra-narrow NbN nanowires in search of

quantum phase-slips. We investigated low-temperature transport behavior in our NbN super-

conducting nanowires. NbN nanowires with different dimensions on different substrates were

fabricated and tested at temperatures down to 1.5 K. Resistive tails were observed for ultra-

thin and narrow nanowires below the superconducting critical temperature TC. These results

suggest that phase-slips may exist in these test structures.

This project and work presented in this dissertation provide not only multiple neuromor-

phic circuits using QPSJs and other superconducting technologies, such as JJs, for high-speed,

low power dissipation neuromorphic computing, but also provide experimental results of NbN

nanowire fabrication and characterization that show potential evidence of quantum phase-slips.

These results are critical for the future development of the fabrication process of reproducible

and controllable QPSJs and physical implementations of QPSJ-based neuromorphic circuits.
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Chapter 1

Introduction

1.1 Background and motivation

The imbalance between data processing speed and memory access speed restricts the further

development of von Neumann architecture [18]. While nearing the impending end of Moore’s

Law scaling [19], the saturation in the power and operation frequency of CMOS processors

has seen a bottleneck, which has driven the development of new approaches, such as GPU

computing [20], quantum computing [21] and neuromorphic computing [22], all of which are

considered to improve computational performance.

Neuromorphic computing is a brain-inspired, non-von Neumann architecture that has been

realized in CMOS technologies [22, 23, 24, 18, 25]. The average human brain has a level of

approximately 1011 neurons, and each neuron is connected to up to 15,000 adjacent neurons

via synapses, resulting in a total of 1015 synapses [26, 27]. For approximately 1015 operations

per second, the brain dissipates only approximately 10−16 J per operation [3]. Mapping con-

ventional neural networks running on a von Neumann machine to a neuromorphic platform

designed specifically for neural networks is expected to significantly reduce power consump-

tion and improve processing efficiency [28]. Neuromorphic systems, proposed as adaptive

analog technology, can process massive data represented in the form of relative analog val-

ues in parallel and are expected to be important platforms for information processing moving

forward.

Solid-state neuromorphic hardware has recently experienced remarkable improvement due

to advanced, highly-scaled CMOS technology and emerging memory devices [23, 24, 29, 18,
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30, 31, 25, 32]. These non-von Neumann architectures show great promise for solving com-

plex problems, such as object recognition and decision-making, faster and more efficiently than

conventional von Neumann architectures [33, 34]. However, a bottleneck arises when scaling

CMOS technology to smaller nodes, as its energy efficiency is several orders of magnitude

lower than the human brain. This is evident in the case of Spiking Neural Network Architec-

ture (SpiNNaker), which is one of the largest projects within the Human Brain Project [35].

SpiNNaker can simulate 1% of the human brain’s 85 billion neurons but dissipates over 2500

times more power than a human brain [36].

Superconducting circuits that exhibit ultra-low power dissipation and high-speed opera-

tion are interesting candidates for brain-inspired computation. The massive interconnection

required for neuromorphic circuits presents a significant challenge for systems with lossy in-

terconnects, such as CMOS integrated circuits, while superconducting interconnects are nearly

lossless at the chip, multi-chip module (MCM) and printed circuit board (PCB) levels [37]. Re-

search on Josephson junction (JJ)-based superconducting neuromorphic circuits has made great

progress over the past decade [38, 5, 39, 40, 41, 42, 43, 44]. With the realization of magnetic

Josephson junctions (MJJs)[45, 46], the research of Russek, Schneider, et al. [42, 43, 44] has

recently demonstrated learning functions in a superconducting neuromorphic circuit, consisting

of JJs and MJJs, which improved the speed to the order of ps/spike and energy dissipation to

the order of aJ/spike. Comparable achievements have been realized by a hybrid platform with

semiconducting few-photon light-emitting diodes and superconducting nanowire single-photon

detectors (SNSPDs)[47, 7]. A superconducting nanowire in parallel with a shunt resistor is

viewed as a relaxation oscillator that also has spiking behavior, which emulates a neuron action

potential [48, 8]. Furthermore, these systems perform well, even when taking into consider-

ation the power required for cooling the superconducting hardware to required temperatures

of . 4 K [49]. Additional state-of-the-art superconducting neuromorphic technologies will be

introduced in Section 1.3.

Quantum phase-slip junctions, which rely on quantum phase-slip (QPS) in superconduct-

ing nanowires, are an emerging superconducting device family that shows promise for high-

speed and low-power superconductive electronics [50, 12, 10, 51, 52, 53, 54, 13, 14, 15].
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Quantum phase-slips can be observed as a resistive tail at a temperature sufficiently below

the critical temperature Tc [55]. The phase of superconducting order parameter is shifted by 2π

in a one-dimensional superconducting nanowire due to quantum tunneling [10]. Multiple ex-

periments were performed to demonstrate the existence of quantum phase-slip during the past

few years [11, 51, 56]. Applications were suggested in digital computing, quantum comput-

ing, and current standards [50, 10, 51], but related neuromorphic computing applications have

not been particularly explored. Coherent quantum phase-slips, as exact duals to Josephson

junctions [12], can generate quantized current pulses that behave like neuron spiking events

[57, 53]. QPSJ-based neuromorphic hardware systems are expected to provide lower power

consumption, similar operation speed and smaller chip area compared to JJ-based neuromor-

phic systems [13], and could outperform or complement other existing superconducting neu-

romorphic hardware systems. With a learning circuit proposed in this work, this QPSJ-based

neuromorphic hardware system is expected to perform complex computational functions, e.g.,

pattern recognition. Furthermore, taking the advantage of loss-less superconducting intercon-

nections along with the scalability of QPSJ-based neuromorphic hardware could help simulate

neuron spiking dynamics in large spiking neural networks. In this work, we explored the use

of QPSJ-based circuits for high-speed and low-power neuromorphic computing. To begin, we

give an introduction to brain-inspired neuromorphic computing and artificial neural networks

(including spiking neural networks), and review state-of-the-art superconducting neuromorphic

computing hardware in the following subsections.

1.2 Brain-inspired neuromorphic computing

In this section, we will explain some of the known biological processes in human brains and

corresponding mathematical models that are used to emulate them. Synaptic plasticity, as a

means of learning functions, will also be introduced. A biological neural network has multi-

ple functional components to receive, process, and transmit signals. Artificial neural network

(ANN) is a computational model inspired by biological neural network for applications in ma-

chine learning and pattern recognition [3, 58]. As the third generation of ANNs, spiking neural

networks (SNNs) are the core of brain-inspired neuromorphic computing systems. A biological
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neural network, also known as the nervous system, is modeled by mathematical equations and

realized by circuits to emulate brain functions. Neuromorphic chips are physical implementa-

tions of spiking neural networks at a low energy cost to perform computational functions.

1.2.1 Biological nervous system

A biological nervous system has a large number of interconnected cells that coordinate vol-

untary and involuntary actions by transmitting electrical signals to and from different parts of

the body [1]. Neurons are the fundamental and primary functional units of a biological nervous

system, as shown in Figure 1.1(a). The cell body of a neuron is called soma (typically known as

“neuron”), which can receive, process, and transmit information in the forms of cellular signals.

The membrane potential of an excitable neuron increases after it receives currents from other

neurons or external stimuli. Once the membrane potential is beyond a threshold, it will rapidly

rise and fall to a resting potential followed by a refractory period, during which the neuron does

not respond to any stimulus. The resulting nerve impulse signal, which occurs in neuron cells

and propagates along an axon towards synaptic boutons, is called an action potential (AP) or

“spike” [59], as shown in Figure 1.1(b).

Figure 1.1: (a) Biological neuron anatomy, from [1]. A neuron is comprised of soma, synapse,
dendrite, axon, etc. (b) Action potential, from [2].
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A synapse connects two neurons, which are referred to as presynaptic and postsynaptic

neurons, by diffusing neurotransmitter molecules produced by presynaptic neuron to postsy-

naptic neuron [60]. The type of receptor and neurotransmitter determines whether the post-

synaptic neuron should be excited or inhibited. The synapse does not directly store informa-

tion to be processed, but its strength affects the changing speed of the postsynaptic neuron’s

membrane potential. This kind of memory is well-known as synaptic plasticity, which can be

modified through learning [61].

The main neuronal functions, receiving and processing incoming information, generally

take place in the dendrites and cell body [1]. A neuron can receive up to thousands of input

signals, either excitatory or inhibitory signals, throughout its dendrite trees. A single neuron

could have more than one set of dendrites. These signals are summed up at the dendrites, which

then determine whether the neuron should fire an action potential or not.

Action potentials are generally transmitted through axons to postsynaptic neurons. Many

axons are covered with a particular insulating substance called myelin, which helps them prop-

agate signals fast [1]. At the end of an axon, it is split into many branches (known as axon

terminals), which allow multiple connections with other neurons.

A biological nervous system is a dynamic system that extracts signals from the internal

and external environments using sensory receptors. The central part of the biological nervous

system is the brain, which processes signals and sends signals to other parts of the body. While

a human brain is so powerful to solve complex problems through learning, mathematical mod-

els and corresponding hardware systems have been developed to emulate a human brain for

complex computation.

1.2.2 Artificial neural networks

The human brain is a highly complex, nonlinear, and parallel computing system. Artificial neu-

ral networks, commonly referred to as “neural networks”, are mathematical models to emulate

brain functions. A neural network is comprised of massive interconnections of simple comput-

ing cells referred to as “neurons” or “processing units” to model the way in which the brain
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performs a particular task or function of interest [3]. The procedure used to perform the learn-

ing process is called a learning algorithm, the function to modify the synaptic weights of the

network to achieve desired goals. Neural networks have many advantages over traditional com-

puting systems. A neural network has a built-in capability to adapt synaptic weights to changes

in the surrounding environment. Another feature is that neural networks have excellent error

tolerance and are capable of robust computation. This feature is beneficial from the distributed

nature of the information stored in the network, where the errors usually do not cause severe

degradation in performance.

In a neural network, neurons are fundamental elements used to process signals. A nonlin-

ear neuron model is illustrated in Figure 1.2. Generally, an artificial neuron can be modeled by

the following equations:

vk =
m∑
j=1

xjwkj + bk (1.1)

yk = φ(vk) (1.2)

where x1, x2, ..., xm are input signals, w1, w2, ..., wm are the respective synaptic weights of

neuron k, bk is the bias, vk is the activation potential, φ(·) is the activation function, and yk is

the output signal of the neuron.

Figure 1.2: An artificial neuron model. Weighted signals with a bias bk are summed up and
injected to an activation function, which generates an output signal yk (adapted from [3]).

The activation function φ(·) that defines the output yk is a function of vk. Two basic

activation functions are the threshold function and the sigmoid function. In engineering, a
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threshold function is often referred to as a Heaviside function, as shown in Figure 1.3. The

output of a neuron is given by:

yk =


1, if vk ≥ 0

0, if vk < 0

(1.3)

This equation defines a simple binary neuron, which is either active or inactive. This is the first

computational model of artificial neurons, proposed by McCulloch and Pitts [62].

Figure 1.3: The threshold function used to describe a binary neuron behavior (adapted from
[3]).

The most commonly used activation function is an “s” shaped sigmoid function. An ex-

ample of the sigmoid function is a logistic function, given by:

φ(v) =
1

1 + e−av
(1.4)

where a is the slope parameter. Taking different values of a, we can obtain different slopes for

the sigmoid function, which exhibits a graceful balance between linear and nonlinear behavior,
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as shown in Figure 1.4. The sigmoid function becomes a threshold function if parameter a ap-

proaches infinity. However, the sigmoid function is differentiable while the threshold function

is not.

Figure 1.4: The sigmoid function with a varying slope parameter a (adapted from [3]).

Sometimes, when −1 to 1 are the desired output range, activation functions are changed

to odd functions. Specifically, a modified threshold function can be defined as:

φ(v) =


1, if v > 0

0, if v = 0

−1, if v < 0

(1.5)

An example for an odd sigmoid function is the hyperbolic tangent function, defined by:

φ(v) = tanh(v) (1.6)

This function may exhibit more practical benefits (e.g., to provide inhibitory signals) compared

to a logistic function.
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Neurons are combined to form a network in different architectures, which is also inti-

mately linked with the learning algorithms used to train the network. There are generally two

types of network architectures: feedforward networks and recurrent networks.

A neural network is usually organized as different layers of neurons with connections

between different layers. A feedforward network generally has an input layer, one or more

hidden layers, and an output layer, as shown in Figure 1.5. The input layer takes input signals

from source nodes and transmits them to the hidden layer. Since there are no actual neurons and

no computations in the input layer, this layer is usually not counted. The hidden layer cannot

be seen directly from either the input or output of the network. In a single-layer feedforward

network, there are no hidden layers. The function of hidden neurons is to intervene between

the external input and the network output in some useful manner. Adding more hidden layers

helps the network extract high-order statistics from its inputs. The network shown in Figure

1.5 is a fully connected feedforward network. Every neuron in one layer is connected to every

other neuron in adjacent layers. However, the numbers of neurons in each layer do not have to

be identical.

A recurrent neural network (RNN) has at least one feedback loop, as shown in Figure

1.6. A simple example of RNNs is a single layer of neurons, where each neuron feeds its

output signal back to the inputs of all the other neurons. An RNN may or may not have hidden

layers. The presence of feedback loops has a profound impact on the learning capability of

the network and on its performance. An RNN considers the current input and also what it has

learned from the inputs it received previously to make a decision. This feature allows RNNs to

show temporal dynamic behavior.

1.2.3 Spiking neural networks

Spiking neural networks (SNNs) are the third generation ANNs that more closely mimic natural

neural networks [63]. Traditional ANNs do not contain temporal information of spikes and

thus are not able to emulate the real biological neural networks. An SNN has been developed

to process precise timing information of spikes. Neuromorphic computing is generally the

hardware realization of SNNs at a chip level, which is specifically built for SNN algorithms.
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Figure 1.5: A fully connected feedforward neural network with one hidden layer and one output
layer (adapted from [3]).

Unlike the conventional ANNs that process neural information with real-valued numbers,

SNNs exploit both the presence and timing of individual spikes as the means of communication

among neurons in different layers. An SNN utilizes spike trains as input and output, as shown in

Figure 1.7. In an SNN, neurons generate spiking signals (or spikes) at the moment of threshold

crossing. These spikes are transmitted to other neurons, which in turn changes their membrane

potentials. Spiking information is encoded in the form of spike timings (or frequencies, etc.)

rather than the amplitudes of spikes. The output signals are also decoded to interpret the result

of the network. There are various input and output coding schemes for SNNs, such as rate

coding [64], temporal coding [65], population coding [66] and sparse coding [67], to interpret

spike trains as real-valued numbers. By using either the frequencies of the spikes or the timings

between the spikes, spiking information can be processed more efficiently [68].
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Figure 1.6: A recurrent neural network with one hidden layer and one output layer. The neurons
in the hidden layer have feedback loops (adapted from [3]).

1.2.4 Synaptic plasticity in neuromorphic computing

The major difference between a computer system and a human brain is that the human brain can

learn through training while the computer system cannot. While weight information is stored

in synapses, the learning function of a neural network is determined by synaptic plasticity.

Biologists discovered that learning behaviors such as long term potentiation (LTP), long term

depression (LTD) and spike timing dependent plasticity (STDP) existed in cortical neurons

[69]. Besides the broad implementation of STDP, spike rate dependent plasticity (SRDP), as

an extension of Hebbian learning rule [70], was also implemented in neuromorphic hardware

systems [71, 72, 73]. There are other learning rules based on STDP tailored for neuromorphic

hardware systems, such as spike-driven synaptic dynamics, which takes both spike timing and

recent spiking activity into account and has comparable performance to state-of-the-art learning

rules [74].
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Figure 1.7: A spiking neural network that utilizes spike trains as input and output (adapted
from [3]).

Spike timing dependent plasticity is most commonly used in neuromorphic computing. In

1983, biologists observed that relative timing of presynaptic and pos-synaptic action potentials

at milliseconds had an effect on the synaptic plasticity [75]. After that, a series of experiments

carried out by different research groups showed evidence of long-term depression induced by

pairing presynaptic and postsynaptic activities [68, 76]. The subsequent research on this topic

demonstrated the existence of STDP [77] and clearly recorded the entire synaptic change within

5-20 ms relative timing [4, 78]. It has also been demonstrated that STDP is more efficient than

Hebbian learning rule [79]. The experimental result of STDP is shown in Figure 1.8.

Spiking rates of presynaptic and postsynaptic neurons were observed as another key factor

to determine synaptic plasticity [71]. During the last few years, a memristor-based circuit that

exhibits SRDP has been designed and fabricated [80, 73]. Furthermore, experiments have been

conducted to demonstrate the successful application of memristor-based synapses with SRDP

in neuromorphic hardware systems [81, 82].
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Figure 1.8: Experimental result of spike timing dependent plasticity, from [4]. EPSC is poten-
tiated if ∆t > 0 while EPSC is depressed if ∆t < 0.

Although STDP and SRDP are biologically plausible, they cannot account for all the ob-

served learning behaviors existing in a nervous system [83]. To improve the learning perfor-

mance, a novel synaptic plasticity model called spike-driven synaptic dynamics was proposed

by Brader in 2007 [74]. This learning rule was designed for electronic hardware and proved to

be compatible with VLSI neuromorphic systems [84, 85]. The weight update rule is defined as:

∆w = a, if V (tpre) > Vth and θlup < C(tpre) < θhup, (1.7)

∆w = −b, if V (tpre) ≤ Vth and θldown < C(tpre) < θhdown (1.8)

where the calcium variable C(t) is a function of postsynaptic activity; θlup, θhup, θldown and θhdown

are thresholds of the calcium variable. During the absence of presynaptic spikes, weight w
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drifts towards one of two stable states:

∆w = α, if w > θ, (1.9)

∆w = β, if w ≤ θ (1.10)

Homeostasis is the capacity of neurons to regulate firing activities and maintain a stable

state [86]. Neuromorphic systems with homeostatic plasticity can adjust each neuron’s firing

rate and prevent minor neurons from dominating the entire system [87]. It has been demon-

strated that neurons with homeostasis are more robust to threshold variation since they can

mitigate the negative impact the threshold variation has on the neuron. [88]. Biologists discov-

ered that synaptic scaling mechanism existing in cortical synapses was used for homeostasis

[86]. The synapses connected to frequently fired neurons or infrequently fired neurons are

scaled up or down accordingly. However, when implemented in a neuromorphic system, this

mechanism is different from that in a biological system. For instance, some neuromorphic sys-

tems used adjustable firing thresholds to control neuron firing rates, as seen in [88, 87]. The

proposed adaptive neuron has negative feedback to control leaky current. Upon the arrival of

each spike, the leaky current increases slightly, which makes it more difficult to generate more

spikes subsequently[89].

1.3 A review for state-of-the-art superconducting neuromorphic hardware

Superconducting technologies are featured by very low power dissipation and very fast pro-

cessing speed, which could be ideal candidates for neuromorphic computing. There are a few

potential superconducting technologies for neuromorphic computing, proposed during the last

few decades [90, 91, 6, 92, 47, 7, 8, 13, 14, 15]. In this section, we will introduce several state-

of-the-art superconducting neuromorphic hardware systems, such as Josephson junction based

neuromorphic systems, neuromorphic hardware based on superconducting optoelectronics and

neuromorphic hardware based on superconducting nanowires.
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1.3.1 Neuromorphic hardware based on Josephson junctions

Josephson junctions are suitable candidates for neuromorphic computing due to their intrinsic

spiking behavior. An example of JJ neurons is shown in Figure 1.9. This neuron circuit provides

capabilities to explore neural interactions such as synchronization, long term dynamics and

bifurcations, feature identification, and information processing [5]. This circuit includes two

Josephson junctions connected in a loop, which is basically a “DC-to-SFQ” converter from

rapid single flux quantum (RSFQ) circuitry family [93]. Since the switching time of a JJ is

within tens of picoseconds, it only takes 50 ps to generate an action potential in a JJ neuron,

which is several orders of magnitude faster than typical CMOS-based neurons. In addition, the

JJ neuron can reproduce some neuron behaviors such as firing threshold and refractory period,

as shown in Figure 1.10. The synapse in this circuit mimics a chemical synapse that can be

either excitatory or inhibitory. The voltage across the junction φp is coupled to a synaptic

loop comprised of Lsyn, Rsyn and Csyn in Figure 1.9. An output current I12 can be generated

and propagated to the next neuron. One of the biggest challenges for this JJ neuron is the

limitation of integration level and device tolerance, as seen from many other JJ-based circuits

[94]. Additional circuitry is necessary to provide weighted connections for synaptic plasticity.

Figure 1.9: Schematic of a JJ neuron (left loop) connected to a synapse (right loop), from [5].
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Figure 1.10: Simulation results of the JJ neuron shown in Figure 1.9, from [5].

A more complex neuromorphic system based on Josephson junctions and magnetic Joseph-

son junctions (MJJ) was proposed by Schneider [43, 6]. The nonlinear neuron shown in Figure

1.11 has a similar structure to a superconducting quantum interference device (SQUID). The

SQUID neuron is characterized by the total inductance LSQ, the coupled magnetic flux Φcpl

through the inductively coupled synaptic inputs, the DC bias current Ibias, and the critical cur-

rent IC of JJs in this loop. Similar to the JJ neuron circuit in Figure 1.9, this SQUID neuron

can generate SFQ pulses to emulate the neuron’s spiking behavior. During the zero-voltage

state (i.e., dφ/dt = 0 for both junctions), the current through each JJ changes smoothly ac-

cording to the change of coupled flux Φcpl, until the current through one of the JJs reaches its

critical current. This JJ generates an SFQ pulse, which results in increments or decrements of

circulating current Icir. If Φcpl decreases to zero or its original value, the other JJ will generate

an SFQ pulse, returning Icir to its initial state. Figure 1.12 shows the simulation results of a

SQUID neuron with coupled flux ramp. One of the JJs outputs an SFQ pulse once Φcpl passes

a threshold, and the other JJ generates an SFQ as Φcpl decreases.

A significant improvement of the neuromorphic hardware proposed by Schneider’s group

was that non-volatile devices called magnetic Josephson junctions (MJJs) were first used to
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Figure 1.11: Schematic of multiple synapses inductively coupled to an SQUID neuron, from
[6].

Figure 1.12: Simulation results of a SQUID neuron with coupled flux ramp, from [6].

emulate biological synapses [42]. This type of JJs doped with magnetic material has tunable

critical currents, which can be used as non-volatile memory. The circuit shown in Figure 1.13 is

a synaptic circuit consisting of an MJJ in parallel with a fixed inductor. An MJJ can be viewed

as a nonlinear inductor that has an inductance of Φ0/2πIC, in parallel with a resistance Rn. The

input current Iin through this synapse is split into two inductive branches. The current through

the inductor branch is coupled to a SQUID neuron, as seen in Figure 1.11. A change of the
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MJJ’s inductance causes a change of current distribution in these two branches. Therefore, the

current (or flux) coupled to the SQUID neuron can be adjusted by tuning the critical current of

the MJJ. The adjustable synaptic weight is thus represented by the coupled current (or flux) in

the JJ loop. There are also some limitations for MJJ-based superconducting synapses, e.g., the

requirement of high energy and a local magnetic field for programming. [42, 44, 6, 95, 96].

Figure 1.13: A synaptic circuit consisting of an MJJ in parallel with a fixed inductor, from [6].

1.3.2 Neuromorphic hardware based on superconducting optoelectronics

Superconducting optoelectronic hardware is also a promising candidate for large-scale neuro-

morphic computing. Circuits using superconducting single-photon detectors (SNSPDs) and

Josephson junctions have been developed to perform neuromorphic functions such as signal

reception, synaptic weighting and integration [47]. This system provides a large fan-in so that

a neuron can receive input from thousands of synaptic connections. Light signals, generated

from semiconductor diodes, are used to communicate between neurons in the network. They

also demonstrated spike timing dependent plasticity using two photons to strengthen and two

photons to weaken the synaptic weight via Hebbian learning rules. The firing speed of this

type of neuron is typically up to 20 MHz. The scalability is also impressive, and a system with

8,100 neurons and 330,430 synapses can fit onto a 1 cm × 1 cm die.

Figure 1.14 shows the basic operations of the optoelectronic system. An SPD is viewed

as a variable resistor rspd in series with an inductor Lspd, which exhibits zero resistance in the

steady state and switches to a high-resistance state upon the absorption of a photon. When a
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Figure 1.14: A neuromorphic hardware system based on superconducting optoelectronics, from
[7]. (a) Schematic of the neuron. (b) Schematic of a simple photon-to-fluxon transducer com-
bining a single-photon detector, Josephson junction, and flux-storage loop. (c) Signal process-
ing sequence during the synaptic firing event. (i) Single-photo detector transduces photon to
electrical current. (ii) SFQ pulses are generated when SPD diverts current to JJ. (iii) Current is
integrated in the flux-storage loop.

photon is detected, current flows into Jsf, causing the total current in the JJ loop to exceed IC.

Depending on the value of Isy, different numbers of fluxons are generated by Jsf. Therefore, the

synaptic weight is implemented via the current bias across Jsf, controlled by Isy. Whether the

number of photons present is one or greater than one, the response of SPD is virtually identical.

Furthermore, the SPD response is not strongly dependent on the frequency of light across a

bandwidth broad enough for multiplexing. Implementing synaptic weight in this manner takes
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advantage of both the speed and energy efficiency of JJs, while also leveraging the strengths of

light for communication.

1.3.3 Neuromorphic hardware based on superconducting nanowires

Superconducting nanowires have intrinsic non-linearity and spiking behavior [48] similar to

Josephson junctions. Based on the architecture proposed for a JJ neuron [5], two coupled

nanowires were used to emulate spiking neuron behavior [8]. The nanowire neuron circuit

shown in Figure 1.15 has a similar design to the JJ neuron circuit shown in Figure 1.9. When the

current flowing into a superconducting nanowire exceeds its critical current, superconductivity

is suppressed, and the nanowire becomes resistive, producing a voltage across it. The nanowire

switches back to the superconducting state once the bias current reduces below the retrapping

current (Ir). With a parallel shunt resistor, the switching process of the nanowire can be viewed

as relaxation oscillations. The two nanowires viewed as two oscillators (main oscillator and

control oscillator) can emulate the biological neuron’s Na+ ion channel and K+ ion channel.

Like the original JJ neuron circuit [5], the nanowire neuron circuit also exhibits other neuron

behaviors such as adjustable firing threshold and refractory period.

Figure 1.15: Simulation results of the nanowire neuron, from [8]. (A) Input current Iin = 4 µA.
(B) Current through the loop inductor. (C) Current through the control nanowire. (D) Current
through the main nanowire. (E) Output voltage.

An inductive synapse is coupled with the nanowire neuron to provide excitatory or in-

hibitory outputs, as shown in Figure 1.16. The output from the nanowire neuron charges a

large inductor Lsyn, resulting in a slow discharging current through downstream neurons. The
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excitatory or inhibitory effects are generally based on the sign of the bias current applied to the

upstream neuron (the neuron shown in Figure 1.16). The synapse strength can be modulated

by adding a high inductance nanowire with an ideal current source in parallel with the synapse

inductor, as shown in Figure 1.17. By injecting current through the nanowire, the kinetic in-

ductance changes, reflecting a change of overall parallel inductance. Therefore, the output

current from the synapse is dependent on the modulating current. The energy dissipation per

spiking event for this design is as low as 0.05 fJ, while the synapse consumes energy of ∼

0.005 fJ. This suggests that the nanowire-based neuromorphic hardware is a good candidate for

low-power neuromorphic computing.

Figure 1.16: Nanowire neuron coupled with an inductive synapse, from [8]. (A) Circuit
schematic. (B) Excitatory coupling. (C) Inhibitory coupling.

1.4 Outline of this dissertation

The dissertation is organized as follows. In Chapter 2, the theoretical background of phase-slip

phenomena, including thermally activated phase-slip (TAPS) and quantum phase-slip (QPS),
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Figure 1.17: Synapse modulating, from [8]. (A) Circuit schematic of a high inductance
nanowire with an ideal current source in parallel with the synapse inductor. (B) Simulation
results of synaptic current as a function of different modulation currents. (Inset) Zoom-in view
of the boxed area.

will be described in detail. A single QPSJ SPICE model will be introduced as the fundamen-

tal element for QPSJ-based neuromorphic circuits. In Chapter 3, QPSJ-based neuromorphic

circuits that are used to emulate biological neuron cells will be introduced, and corresponding

WRspice simulation results will be presented. The proposed neuromorphic circuits include

spiking neuron circuits, an integrate-and-fire-neuron (IFN) circuit, synaptic circuits, a fan-out

circuit and an axon circuit. In Chapter 4, we will focus on QPSJ-based neuromorphic circuits

towards learning. A simplified STDP learning circuit consisting of an LTD circuit and an LTP

circuit will be introduced to update synaptic weight based on relative timings between presy-

naptic and postsynaptic spikes. The proposed simplified STDP learning circuit is the starting

point to provide on-chip learning functions, and corresponding simulation results will be pre-

sented. Chapter 5 describes the power dissipation and operation speed of QPSJ-based circuits.

We provide estimates of the switching energy of a single QPSJ at its operating temperature and

analyze power/energy dissipation in QPSJ-based circuits. Then we discuss the operating tem-

perature, experimental challenges, scalability and tolerance of QPSJ-based circuits. In Chapter

6, the method of fabricating NbN nanowires will be introduced, and the experimental results of

NbN thin films and NbN nanowires will be presented. We will show the characterization results

of NbN thin films and the characterization results of NbN nanowires of different geometries on
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different substrates. Chapter 7 is the final chapter that summarizes the work presented in this

dissertation and proposes future works.
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Chapter 2

Quantum Phase-slip Phenomena

A superconducting wire whose transverse dimensions are . ξ, where ξ is the superconducting

coherence length, is generally viewed as a quasi-1D system. In quasi-1D systems, as the cross-

section of a superconductor reduces, finite resistance can be observed at temperatures below TC,

where TC is the critical temperature of the superconductor. The finite resistance is attributed

to the fluctuation of superconducting order parameter, also known as phase-slips [97, 98]. The

phase-slip phenomenon in quasi-1D superconducting nanowires is in great agreement with the

Mermin-Wagner theorem, which prohibits phase transitions in 1D systems [99]. During a

phase-slip, the order parameter fluctuates to zero in a short segment of the channel, allowing

the phase difference between the ends to be 2π. Phase-slips that were observed at temperatures

just below critical temperatures in superconducting nanowires [100, 101] are referred to as

thermally activated phase-slips (TAPS). Quantum phase-slips are experimentally observed at

temperatures much lower than TC [102, 11, 103, 104, 51].

2.1 Thermally activated phase-slips

In TAPS, thermal fluctuations provide free energy that can suppress the order parameter locally.

A theory known as LAMH theory was proposed by Langer and Ambegaokar [105], followed

by McCumber and Halperin to explain TAPS in the 1960s. At the position where TAPS occurs,

the order parameter ψ = |ψ|eiφ is driven to zero and phase change is dφ = ±2π. The free

energy barrier of a TAPS event is defined by:

∆F (T ) = (8
√

2/3)VPSH
2
C(T )/8π (2.1)
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where VPS is the volume across the phase-slip and HC(T ) is the critical field. VPS = ξ(T )A,

where ξ(T ) is the Ginzburg-Laudau (GL) coherence length [106] and A is the cross-sectional

area of the wire. The phase-slip attempt frequency is given by:

Ω =
8kB(TC − T )

π~
L

ξ(T )

√
∆F

kBT
(2.2)

where kB is the Boltzmann constant, ~ is the Planck constant and L is the length of the wire.

The attempt frequency is inversely proportional to the relaxation time τGL = π~/(8kB(TC−T ))

of GL theory. The TAPS rate is thus given by

ΓTAPS = Ωe−∆F (T )/kBT (2.3)

With a non-zero bias current I , the voltage is defined by

V =
~Ω

e
e(−∆F/kBT )sinh(I/I0) (2.4)

where I0 = 4ekBT/h. Differentiation of this equation with respect to bias current I results in

differential resistance:

dV/dI =
~Ω

e
e(−∆F/kBT )cosh(I/I0) (2.5)

In the limit of low current I � I0, the temperature-dependent resistance is given by:

RLAMH(T ) = Rq
~Ω

kBT
e(−∆F/kBT ) (2.6)

where Rq = h/(2e)2 = 6.5 kΩ is the quantum resistance.

2.2 Quantum phase-slips

2.2.1 Macroscopic quantum tunneling model for quantum phase-slips

At temperatures much below TC, thermal fluctuations are significantly suppressed, and phase-

slips are resulted from quantum tunneling, as shown in Figure 2.1. This phenomenon was first
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suggested by Mooij et al. [107] that an analogous quantum phase-slip process may exist, sim-

ilar to macroscopic quantum tunneling (MQT) in Josephson junctions (JJs) [108, 109, 110].

Like TAPS, QPS can also suppress the order parameter over a length of ξ. QPS event is ex-

pected to exist in extremely narrow superconducting nanowires. QPS can be dissipative or

non-dissipative, which corresponds to incoherent QPS or coherent QPS, respectively. Early

experimental results for QPS from Giordano [55] suggested that finite resistance persisted at

temperatures much below TC for indium wires that were . 50 nm wide. In his model, the QPS

rate is given by:

ΓQPS = BΩQPSe
(−aτGL∆FQPS)/h (2.7)

where ΩQPS = (L/ξGL)
√

∆FQPS/kBT is the quantum tunneling attempt rate, and a and B are

fitting constant parameters. The temperature-dependent resistance as a result of QPS is given

by:

RQPS = BRqτGLΩQPSe
(−aτGL∆FQPS)/h (2.8)

Figure 2.1: The particle can overcome the energy barrier through thermal activation or quantum
tunneling (adapted from [9]).
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2.2.2 Flux-charge duality

Charge and phase are dual quantum variables for superconductors. A coherent QPS is a dual

process of Cooper-pair tunneling in a JJ, as demonstrated by Mooij [12]. Flux-charge duality

based on Maxwell’s equations can be explained by the context of planar lumped-element cir-

cuits [111, 112, 113, 114, 115, 116]. Figure 2.2 illustrates the duality transformation for planar,

lumped-element circuits. The classical quantities can be interpreted as arising from a sum of

free and bound current densities:

JQ = ρQυQ +
dD

dt
(2.9)

JΦ = υΦ ×Bf −
dA

dt
(2.10)

Figure 2.2: Duality transformation for planar, lumped-element circuits (adapted from [10]).

where JQ is the current density corresponding to charge, ρQ is the ordinary density of

free charge moving at velocity υQ, D is the electric displacement, JΦ is the current density

corresponding to flux, Bf is the magnetic flux density moving at velocity υΦ and A is the vector

potential. Using equation A = −ΛρQυQ for a superconductor and equation D = εE for an

insulator, we obtain:

Λ
dJ

dt
= E → Lk

d2Q(Σ)

dt2
= VΓ (2.11)

ε
dE

dt
= J → C

d2Φ(Γ)

dt2
= IΣ (2.12)
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where VΓ is the voltage difference between the two ends of Γ, IΣ is the current flow through

Σ, Lk is the kinetic inductance and C is the kinetic capacitance. Now we consider the duality

of a JJ and a QPSJ. A QPSJ is typically an ultra-narrow nanowire that shows coherent QPS. A

JJ has two superconducting layers separated by an insulating barrier, where Cooper pairs can

tunnel through. A QPSJ can be viewed as two insulating layers separated by a superconducting

barrier, where flux quanta (or fluxons) can tunnel through, as shown in Figure 2.3. The charge

and flux quantities in a JJ and QPSJ can be defined by:

Q = n2e+ CJV,Φ =
Φ0

2π
θ +

∮
Γ

A · dΓ = mΦ0 + LJI (2.13)

Φ = mΦ0 + LkI,Q = Qf +

∫
Σ

D · dΣ = n2e+ CkV (2.14)

Figure 2.3: Duality between the charge tunneling in a JJ and the flux tunneling in a QPSJ
(adapted from [11]).

For JJs,Q is the junction quasicharge [115, 116, 117, 118], n is the number of Cooper pairs

that have passed through it and CJV is the charge on the capacitor CJ induced by voltage V .

The quantity Φ is due to the phase difference between two superconducting layers and magnetic

fields inside the junction. For QPSJs, quantity Φ consists of the total bound flux of a nanowire

having kinetic inductance Lk and fluxons that passed through the wire. The quasicharge Q is

due to free charge Qf that has passed through the wire and the electric fields on the wire.
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2.2.3 QPSJ SPICE model

The operation of a single QPSJ can be illustrated through a simulation of the current-voltage (I-

V) characteristics of a QPSJ using a compact equivalent SPICE model [12, 52]. The equivalent

circuit is comprised of an intrinsic QPSJ, a series inductor and a series resistor, as shown in

Figure 2.4. The I-V characteristics can be described by Equations 2.15 and 2.16, where L is the

geometrical inductance, R is the normal resistance, and VC is the critical voltage. The specific

values of the model parameters are determined by the superconducting material and junction

geometry.

Figure 2.4: Voltage biased QPSJ in SPICE model. A QPSJ SPICE model comprises of an
intrinsic QPSJ in series with an inductor and a resistor (adapted from [12]).

The equations that govern the QPSJ SPICE model are derived from:

V = VCsin(q) + L
dI

dt
+RI (2.15)

I =
2e

2π

dq

dt
(2.16)

where q is the charge equivalent in the QPSJ normalized to the charge of a Cooper pair (2e).

The critical voltage VC is defined by:

VC =
2πES

2e
(2.17)

where ES is the phase-slip energy, which can be calculated using the model by Mooij et al.

[119] and e is the elementary charge of an electron. The normal resistance R is calculated

from normal-state resistivity of the given material at operating temperature and the physical

29



dimensions of the nanowire that forms the QPSJ. The inductance L of the junction is related

to inductive energy EL, which is a function of normal resistance R and critical temperature

of the material [119]. Simulated I-V characteristics of a single QPSJ are shown in Figure

2.5. The junction exhibits a Coulomb blockade [120, 51] when the voltage is below its critical

voltage, and is resistive when the voltage is above the critical voltage. The parameters selected

are from estimates to demonstrate a QPSJ and all its switching characteristics; the model may

be tuned to represent a practically-realized QPSJ. These parameters depend on the specific

material properties and device geometry for generation of quantum phase-slips [119].

Figure 2.5: I-V characteristics of a single QPSJ with VC = 1 mV, L = 20 nH and R = 1 kΩ,
from [13].

A QPSJ circuit can be designed and operated in an appropriate configuration to produce

quantized-area current pulses corresponding to tunneling of a Cooper pair per switching event.

The QPSJ can be treated as a series RLC oscillator with a damping parameter defined as:

βL =
2πVCL

2eR2
(2.18)

30



where βL is the damping parameter, VC is the critical voltage of the QPSJ, L is the geometrical

inductance and R is the normal resistance. The QPSJ is overdamped if βL � 1 and under-

damped if βL � 1. Therefore, by appropriately choosing material and junction (nanowire)

geometry, the QPSJ can be made to be overdamped or underdamped [13]. This aspect can be

verified by simulation of a QPSJ connected with voltage pulse input and appropriate DC bias

voltage, as shown in Figure 2.6. A quantized current pulse with area equal to 2e can only be

produced when the junction is overdamped, as shown in Figure 2.7. This operation is analogous

to an overdamped JJ circuit producing a single voltage pulse with area corresponding to a sin-

gle magnetic flux quantum. The overdamped QPSJ circuit can be achieved by either choosing

a superconducting material with sufficient normal resistance or adding a series resistor to each

junction to increase the value of R in Equation 2.18. In the underdamped case, the integrated

area under the output pulse curve is more than 2e and thus not properly quantized, as shown in

Figure 2.8.

Figure 2.6: Single QPSJ circuit with voltage pulse input and DC voltage bias, from [13].
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Figure 2.7: Simulation result of switching of a single QPSJ circuit with an overdamped junc-
tion, from [13]. The current shown is the current that flows through the QPSJ. The critical
voltage of the junction Q1 is 0.7 mV. Voltage bias Vb is 0.5 mV and magnitude of input pulse
Vin is 1.1 mV. The normal resistance of Q1 is 1 kΩ, and series resistance of Q1 is 8 kΩ.

2.3 Summary

We presented the physics of thermally activated phase-slips and quantum phase-slips and the

single QPSJ operations in this chapter. The superconducting order parameter can overcome

the energy barrier through thermal activation (TAPS) or through quantum tunneling (QPS).

A coherent QPSJ is a dual to a JJ, explained by charge-flux duality. The research on QPSJs

are at an early stage, where materials, dimensions, and other critical conditions for fabricating

reproducible QPSJs are still under investigation. Using the QPSJ SPICE model, we showed

the nonlinear characteristics of QPSJs. The spiking behavior of overdamped QPSJs makes

them a potential candidate for digital and neuromorphic computing. We made many efforts to

design and simulate neuromorphic circuits using QPSJ technology. In the following chapters,

we will show our neuromorphic circuit designs and simulations using QPSJs, JJs, and lumped

elements, to emulate neuron spiking and learning behaviors and to potentially form a large

scalable spiking neural network for high-speed and low-power neuromorphic computing.
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Figure 2.8: Simulation result of switching of a single QPSJ circuit with an under-damped
junction, from [13]. The current shown is the current that flows through the QPSJ. The critical
voltage of the junction Q1 is 0.7 mV. Voltage bias Vb is 0.5 mV and magnitude of input pulse
Vin is 1.1 mV. Normal resistance of Q1 is 1 kΩ, and series resistance of Q1 is 1 kΩ.
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Chapter 3

Neuromorphic Circuits Design and Simulation

3.1 Introduction

A biological neural network is a cognitive system with self-learning functions and is mainly

comprised of neurons, synapses, axons, dendrites, etc. [121]. A neuromorphic system that

emulates a biological neural network also has multiple functional components. We use QPSJs,

JJs, and other lumped elements to build circuits that function like biological neurons (somas),

synapses, axons, dendrites, etc. In this chapter, we introduce QPSJ-based neuromorphic circuits

that mimic biological neural networks to perform neuromorphic functions. These circuits are

well-designed to be able to form a large scalable network through the operation of quantized

charge and fluxons. The spiking signals, represented by quantized current pulses, are generated,

processed, and transmitted among these circuits. The simulations were carried out in an SPICE-

based platform (i.e., WRspice) using a QPSJ SPICE model with several tunable parameters.

3.2 QPSJ-based spiking neuron circuit

Neurons, as the primary components in a nervous system, can receive, process, and transmit

information in the form of cellular signals. The membrane potential of an excitable neuron

increases after it receives currents from other neurons or external stimuli. Once the membrane

potential is beyond a threshold, it will rapidly rise and fall to a resting potential followed by

a refractory period, during which the neuron does not respond to any stimulus. The resulting

nerve impulse, which occurs in neuron cells and propagates along an axon towards synaptic

boutons, is called action potential (AP) or “spike” [59]. Spiking neuron circuits that emulate
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biological neuron functions play an important role in neuromorphic hardware systems [122].

The neuron circuits can process electrical signals and propagate them to other neuron circuits

through synaptic devices. Depending on the system requirement, neuron circuits may have

adjustable firing rate, threshold voltage, and refractory period.

One implementation of a QPSJ-based neuron circuit is comprised of two QPSJs and a

small capacitor [53], forming a charge island, as shown in Figure 3.1. The QPSJ neuron con-

ducts individual Cooper pairs that tunnel across the phase-slip center in the superconducting

nanowire [13]. When phase-slip occurs in both the junctions, the node 1 between both the

QPSJs is isolated from the rest of the circuit acting as an island that can hold charge up to

Q = CVC. Both the junctions Q1 and Q2 are biased by a DC voltage Vb such that the voltage

across each junction does not exceed the critical voltage VC of either junction. Bias voltage

Vb typically provides approximately 70% of the critical voltage for each junction and therefore

is 1.4 VC. The input voltage Vin is a pulse signal that can drive the junction Q1 above its crit-

ical voltage VC. The capacitor functions as a membrane capacitor in a neuron circuit. If the

capacitance C < 2e/VC, the capacitor cannot hold the charge generated by exciting Q1 above

its critical voltage, and therefore immediately switches the junction Q2. But if the capacitance

C > 2e/VC, then the island does not trigger Q2 when pulses arrives until C < Q/VC, after

which, it fires multiple pulses as quickly as the QPSJs can switch. Here, Q is the total charge

accumulated on the capacitor. Depending on the value of the capacitor, the QPSJ neuron circuit

emulates a biological neuron response by exhibiting tonic spiking and tonic bursting [123]. If

Q1 and Q2 are identical, the critical voltage of both the junctions is VC, the magnitude of Vin

is Va and bias voltage is Vb, the circuit works only if Va + Vb > 2VC. The circuit operates in

a tonic spiking mode if C < 2e/VC as in Figure 3.2, and it operates in a tonic bursting mode

if C > 2e/VC as in Figure 3.4. In each of these figures, the panels show input voltage pulses,

output current pulses and voltage across the capacitor, for top, middle and bottom, respectively.

Figure 3.3 shows a zoom-in view of the input voltage and output current shown in Figure 3.2.

A zoom-in view of these two types of pulses is shown in Figure 3.5. These responses, which

resemble certain types of neuron firing responses, are described in more detail in the following

paragraphs.
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Figure 3.1: The QPSJ circuit comprised of two QPSJs and one capacitor, along with corre-
sponding voltage pulse input and DC voltage bias, from [13].

Figure 3.2: Simulation results of a QPSJ spiking neuron circuit operated in tonic spiking mode,
from [13]. The critical voltage of junctions Q1 and Q2 is 0.7 mV. Capacitance C = 0.23 fF,
voltage bias Vb = 1 mV and magnitude of input pulses Vin = 1 mV. (a) Input voltage pulses.
(b) Output current. (c) Capacitor voltage at node 1.

In Figure 3.2, junction Q2 is switched immediately and fires a single pulse after a Cooper

pair is propagated to the capacitor C, since the capacitor cannot hold the charge. In Figure

3.4, the voltage at node 1 increases by an amount 2e/C (64 µV) upon the arrival of each
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Figure 3.3: A zoom-in view of the input voltage and output current shown in Figure 3.2. (a)
Input voltage. (b) Output current.

Figure 3.4: Simulation results of a QPSJ spiking neuron circuit operated in tonic bursting mode,
from [13]. The critical voltage of junctionsQ1 andQ2 is 0.7 mV. CapacitanceC = 5 fF, voltage
bias Vb = 1 mV and magnitude of input pulses Vin = 1 mV. (a) Input voltage pulses. (b) Output
current. (c) Capacitor voltage at node 1.

input voltage pulse. The 5 fF capacitor can hold a charge up to 10e before the voltage is large

enough to switch junction Q2. Thus the capacitance defines the firing threshold for this neuron
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Figure 3.5: A zoom-in view of the output current pulses shown in Figure 3.2 and Figure 3.4,
from [13]. (a) Tonic spiking pulse from Figure 3.2. (b) Tonic bursting pulses from Figure 3.4.

circuit. After junction Q2 is switched, three subsequent current pulses that contain 6e are

generated, which resembles a tonic bursting behavior in a cortical neuron [123]. The membrane

voltage gradually drops three steps but is not fully reset since the membrane capacitor does

not discharge all the charges it stores. It is also different from a biological neuron, which

has a refractory period after a firing event during which the neuron does not respond to any

stimulus. By adjusting the resistance in Equation 2.18, the damping condition can be changed

and therefore the number of electrons discharged each time changes. This technique can be

used to adjust the firing period of a tonic bursting neuron as shown in Figure 3.6.

In Figure 3.6, the firing periods and pulse shapes change according to different values of

the resistances in series with each QPSJ (or, alternatively, with different values of QPSJ normal

resistance). When the series resistance is small, junction Q2 is heavily under-damped and the

capacitor is fully discharged; when the resistance is large, junction Q2 is heavily overdamped

and the capacitor can only discharge one pair of electrons per switching event. With appropri-

ate choice of capacitor and resistor, the circuit operates similar to a digital integrate and fire

neuron (IFN) that has a pre-defined firing threshold, as described in the next section. These
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Figure 3.6: Simulation results of a QPSJ-based tonic bursting neuron with different firing fre-
quencies, from [13]. The critical voltage of junctions Q1 and Q2 is 0.7 mV. Capacitance C = 5
fF, voltage bias Vb = 1 mV, normal resistance of Q1 and Q2 is 1 kΩ, series resistance of Q1

is 12 kΩ, and magnitude of input pulses Vin = 1 mV. (a) Series resistance of Q2 is 4 kΩ. (b)
Series resistance of Q2 is 8 kΩ. (c) Series resistance of Q2 is 12 kΩ.

responses demonstrate that QPSJ-based circuits hold promise for realizing certain functions of

neuromorphic circuits.

3.3 Integrate and fire neuron circuit

In addition to have a neuron circuit that can generate spikes to mimic biological neuron dynam-

ics, computational neuron circuit is also an essential component for neuromorphic computing

hardware. One of the simplest and most widely used neuron models for computation is the

integrate and fire neuron model [124]. An example of IFN models is the leaky integrate and

fire (LIF) neuron, which can be defined by:

dV

dt
= I + a− bV (3.1)

V = c, V ≥ Vth (3.2)
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where V is the membrane potential, I is the input current, Vth is threshold voltage and a, b and c

are relevant parameters. This model includes a leaky path that allows voltage to slowly recover

to the resting potential. The integrate and fire neuron circuit we propose here does not have a

leaky path, although it can be easily realized by adding a dissipative path. The integrate and fire

neuron integrates input signals and fires an action potential once the membrane voltage reaches

a threshold value. The circuit shown in Figure 3.7, which is based on the circuit in Figure 3.1,

restricts one pulse for each firing event to imitate the behavior of an IFN circuit. This circuit has

a flexible configuration with tunable threshold and firing frequency. The capacitor C, in Figure

3.7, is chosen such that it can store a charge Q = 2Ne and all the junctions are nominally

identical and overdamped. The value of C is given by:

C =
2Ne

VC − Vb − V1

(3.3)

where V1 is the initial voltage at node 1 and VC is the critical voltage of all junctions. The

number of parallel QPSJs N determines the threshold for the firing. The equivalent resistance

of multiple parallel QPSJs is much smaller than the normal resistance of Q0, especially when

N is large. Therefore, bias voltage Vb cannot provide equal bias voltage for all QPSJs without

using a bias resistor. The bias resistor Rb is thus used to balance the bias voltages of Q0 and

multiple parallel QPSJs, i.e. Q1 to QN . Similar to the previous design in Figure 3.1, the first

firing event occurs when the voltage at the capacitor C is large enough to switch junctions Q1

to QN . A pair of electrons are then propagated through each parallel junction where a current

pulse is generated. Meanwhile, the voltage at the capacitor gradually drops N steps with each

step equal to 2e/C.

Figure 3.8 shows the simulation results of a QPSJ neuron circuit with threshold N equal

to 10. Input rectangular voltage pulses have a period of 120 ps and a width of 3 ps. The voltage

at capacitor C keeps increasing as a result of quantized charge accumulation. Once the voltage

applied on the parallel QPSJs reaches the critical voltage, the capacitor immediately discharges

20e charge. Each 2e charge is transported through a parallel QPSJ, resulting in a spike-like

current pulse. We can also observe that the magnitude of current pulse through Q0 decreases
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Figure 3.7: A QPSJ-based integrate and fire neuron circuit with integration capacitor C and
multiple parallel output QPSJs, from [13].

periodically, because the voltage across Q0 decreases when the voltage at the capacitor keeps

increasing. The input voltage pulse width and magnitude must be appropriately selected so

that a single quantized current pulse can be generated during the voltage integration process.

Otherwise, multiple pulses might be generated after one input voltage pulse.

In Figure 3.9, the output current is the current that flows into node 2 and has a 2Ne area

under each pulse. Since junctions Q1 to QN are identical and parallel, they are switched at the

moment when voltage between node 1 and 2 is above the critical voltage so that a 2e current

pulse is generated at each branch and sums up at node 2. All the simulations were performed

with a 50 ps periodic rectangular pulse input and therefore the neuron firing period is N times

the source period. If the input is a random pulse sequence, the neuron circuit starts to generate

output pulses as soon as it receives N pulses. The circuit only works when the capacitor is

large enough, otherwise quantized charge-based current cannot be generated in each parallel

QPSJ branch.
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Figure 3.8: Simulation results of an IFN circuit with N = 10, from [13]. (a) Input voltage. (b)
Input current. (c) Output current. (d) Capacitor voltage at node 1.

Figure 3.9: Simulation results of IFN circuit showing output currents for different N values,
from [13]. (a) Input voltage pulses. Output current when (b) N = 1, (c) N = 3, and (d) N = 6.

3.4 Synaptic circuits

A synapse connects two neurons in a brain and determines the signal strength transmitted from

a presynaptic neuron to a postsynaptic neuron. Similarly, a synaptic circuit should be able to
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adjust the connection strength between two neuron circuits. In CMOS neuromorphic systems,

non-volatile memory cells are usually used to implement synaptic circuits [125]. A lack of non-

volatile superconducting devices/circuits made superconducting neuromorphic implementation

more challenging until the recent realization of magnetic Josephson junctions (MJJs) for this

purpose [45, 46, 126, 127]. An MJJ has a tunable critical current that can control the switching

threshold [43] to function as a binary synapse or control the circulating current in a supercon-

ducting loop to function as an analog synapse [44]. Although a corresponding tunable critical

voltage of a QPSJ has not yet been theoretically or experimentally demonstrated, we were able

to combine MJJs and QPSJs to realize synaptic functions. To overcome the MJJ programming

challenges, we also introduce new synaptic circuits that are essentially non-destructive read-

out (NDRO) memories based on QPSJs. These synaptic circuits can be configured as binary

synapses and multi-weight synapses, which work seamlessly with the neuron circuit to transmit

a weighted signal between two neurons.

3.4.1 Synaptic circuits based on QPSJs and MJJs

A simple binary synaptic circuit using an MJJ and a QPSJ is shown in Figure 3.10 [14]. This

circuit includes an MJJ to store the synaptic weight information. Initially, MJJ J1 is biased by

a DC current Ib while QPSJ Q1 is biased by Vb. A short voltage pulse from input Vin, through

R1 and L1, provides a current pulse for J1. Inductor L1, which can be omitted in this circuit

operation, is used to trap an SFQ pulse from a previous stage if there are multiple JJ stages. If

J1 is designed to have two distinct critical currents controlled by the magnetic order parameters

[42], the junction can be either switched or not upon the arrival of an input current pulse. For

instance, in the case of low critical current of J1, the input current pulse is large enough to

switch J1. An SFQ pulse is generated at node 1, which can, in turn, switch Q1, resulting in

a current pulse at the output. However, if the critical current of J1 is high, the total current

injected to J1 is insufficient to switch it. Voltage at node 1 stays at zero and there will be no

quantized current pulses at the output.

The full operation of this binary synaptic circuit is illustrated in the simulation results

shown in Figure 3.11, where the critical current of J1 is either 200 µA or 300 µA, to represent
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Figure 3.10: A binary synaptic circuit based on a superconducting MJJ (J1) and QPSJ (Q1),
from [14].

a weight of 1 or 0. In Figure 3.11(a), an input current pulse is generated by an input voltage

pulse from Vin. The current pulse is then injected into J1, which results in an SFQ pulse

across the junction. The SFQ pulse can switch Q1 to produce a quantized current pulse at

output. However, if we increase the critical current value of J1 to 300 µA, the current from

input is insufficient to switch J1 and therefore no SFQ pulses and quantized current pulses are

generated.

In the neuromorphic system described here, signals are generated and propagated in the

form of quantized charge current pulses. The multi-state synaptic circuit shown in Figure 3.12

can generate multiple current pulses that contain a charge of 2Ne, depending on the state of

MJJ J2. Josephson junction J1 is biased by Ib and switched after an input current pulse from

Vin. Inductor L2 is chosen to store a single flux quantum, which in turn switches MJJ J2 after

a short delay. The resulting voltage pulse at node 2 switches Q1 and generates current pulses

at the output. Since the magnitude of SFQ pulse at node 2 is proportional to the critical current

IC of J2, the width of this SFQ pulse is inversely proportional to IC. As a result, more current

pulses are generated when IC is low because the switching speed of Q1 is fast (i.e. the normal

resistance ofQ1 is relatively low), which allowsQ1 to be switched multiple times within a short

time.
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Figure 3.11: Simulation results of input voltage, voltage at J1, and output current in a binary
synaptic circuit with different J1 critical current IC, from [14]. Critical voltage ofQ1 is 0.7 mV,
bias current Ib is 140 µA, and magnitude of input pulse Vin is 1.4 mV. (a) IC is 200 µA. (b) IC

is 300 µA.

Figure 3.12: A multi-state synaptic circuit based on a superconducting JJ (J1), MJJ (J2), and
QPSJ (Q1), from [14].

The simulation results in Figure 3.13 show that different numbers of current pulses are

generated when IC varies from 10 µA to 400 µA. When IC = 10 µA shown in Figure 3.13(a),

each input voltage pulse from Vin can cause two sequential pulses at output. As IC increases,

the synaptic weight decreases. No output current pulses can be generated once IC is more than
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400 µA. Although the change is not linear, this can be used to represent a synaptic weight of 2,

1, 0.5, or 0, according to the number of current pulses generated within a set time interval.

Figure 3.13: Simulation results of voltage at J1, voltage at J2, and output current in a multi-
state synaptic circuit with different J1 critical current IC, from [14]. Critical voltage of Q1 is
0.7 mV, critical current of J2 is 200 µA, and bias current Ib is 160 µA. (a) IC is 10 µA. (b) IC

is 50 µA. (c) IC is 350 µA. (d) IC is 400 µA.

3.4.2 Synaptic circuits based on QPSJ memories

The tunable critical current of an MJJ, incorporated into a circuit with QPSJs, made it possible

to realize either binary or multi-state memory. However, programming, or changing the state, of

an MJJ requires not only a larger number of energy in comparison to the traditional JJ operation

but also a magnetic field (global or potentially local) to polarize the magnetic materials within

the junction [42, 44, 6, 95, 96]. An alternative QPSJ-based approach could potentially be more

energy efficient than MJJs and could potentially allow on-chip learning.

We introduce a non-destructive readout (NDRO) memory circuit based on QPSJs, as

shown in Figure 3.14, to overcome the programming problem described above [15]. Q2 and

Q3 are identical while the other QPSJs do not have to be identical. For simplicity, we used
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identical parameters for Q0, Q1 and Q4 in our simulations. Read signal Vr and write signal Vw

were rectangular pulses with a duration of 5 ps and a magnitude of 0.6 mV.

Figure 3.14: A non-destructive readout (NDRO) memory circuit based on QPSJs as a synaptic
circuit, from [15]. Specific device parameters and bias values are included with simulation
result plots.

The writing process for this circuit can be described as follows. For the case where there

is initially no charge on capacitor C1 or C2. A short voltage pulse from Vw can switch Q0,

resulting in a quantized current pulse that contains a charge of 2e. The 2e charge is then moved

onto C1. This is a “set” process and the weight is set to 1. One more pulse from Vw moves

another 2e charge onto C1. At that point, the voltage across Q2 and Q3 exceeds their critical

voltages, which switches Q2 and Q3. The charge on C1 is thus released to the bias voltage

supply Vb1. This is a “reset” process and the weight is reset to 0. The operation that comprises

a “set” and a “reset” process is a complete writing cycle of the QPSJ-based memory cell, as

shown in Figure 3.15.

Every time Q1 is switched by a pulse from Vr, a 2e charge flows onto C2, which induces

another 2e charge on C1. So the voltage change on node 2 is the summation of voltage change

on both of the two capacitors. If there is no charge on C1, Q1 can only be switched once

because the potential on node 2 becomes too high for another incoming voltage pulse from Vr

to switch Q1 again. As a result, there is no output at Iout. However, if there is a charge on C1

while no charge on C2, the initial voltages on node 1 and node 2 are slightly higher. Once Q1 is

switched, the voltage on node 2 increases by 2e/C1 + 2e/C2 and is high enough to switch Q4
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Figure 3.15: Simulation results of set and reset operation of the synaptic circuit shown in Figure
3.14, from [15]. The critical voltage values used for Q0, Q1 and Q4 were 0.7 mV and for Q2

and Q3 were 0.4 mV. The capacitance values used for C1 and C2 were 3 fF. Bias voltage Vb1

was 0.8 mV and Vb2 was 1 mV. The magnitude of Vr and Vw was 0.6 mV. (a) Write pulse signal.
(b) Voltage on capacitor C1. (c) Current through Vb1.

before Q2 and Q3 are switched. Therefore, every read signal from Vr can trigger a current pulse

at Iout. In Figure 3.16, read signals cannot trigger any current pulses at the output initially. After

a set signal, a current pulse is immediately generated at the output, indicating that the synapse

is set to 1. The upcoming read pulse is able to read the state 1 in terms of a current pulse at the

output until the synapse is reset to 0 by a reset pulse from Vw.

We present a multi-weight synaptic circuit that is a more flexible synaptic circuit compared

to the binary version. For the case of spiking neuromorphic systems being described here, this

multi-weight synaptic circuit can generate multiple pulses for each triggering event. Generally

speaking, a multi-weight synaptic circuit can store more weight information rather than just 0

or 1. Therefore, the weight between two neurons can be more accurate, potentially providing

more complex computational capacity. The circuit shown in Figure 3.17 can store up to three
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Figure 3.16: Simulation results of the synaptic circuit shown in Figure 3.14, from [15]. The
critical voltage values used for Q0, Q1 and Q4 were 0.7 mV and for Q2 and Q3 were 0.4 mV.
The capacitance values used for C1 and C2 were 3 fF. Bias voltage Vb1 was 0.8 mV and Vb2 was
1 mV. The magnitude of Vr and Vw was 0.6 mV. (a) Read pulse signal. (b) Write pulse signal.
(c) Output current.

pairs of electrons, which correspond to a weight of 3. QPSJ Q1, Q2 and Q3 have different

critical voltages. The critical voltages of Q1, Q2 and Q3 are VC1, VC2 and VC3 respectively

while VC1 > VC2 > VC3. Initially, a read pulse from Vr is sufficient to switch Q1, Q2 and

Q3, providing a current pulse that carries six electrons at Iout. Parallel QPSJs Q5 to Q8 are

identical. The capacitor C1 is appropriately chosen to store up to three pairs of electrons before

the voltage at node 1 is large enough to switch Q5 to Q8. A write pulse from Vw can switch

Q0 and store a pair of electrons at C1, which also increases the voltage at node 2. The voltage

change at node 2 makes one of the parallel QPSJs (Q1 in this case) not to be switched upon the

arrival of another upcoming read pulse. Therefore, the weight of the synapse is changed to 2.

Each write pulse can reduce the weight by 1 until it reaches 0. Then the following write pulse
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would push another pair of electrons onto C1, which in turn switches Q5 to Q8 and releases all

the electrons at C1.

Figure 3.17: A multi-weight synaptic circuit based on QPSJs, from [15]. This synaptic circuit
can have a weight of 0, 1, 2 or 3, which can be modified by applying pulses at Vw.

In Figure 3.18, periodic pulses are applied at Vr and Vw to show how the number of output

pulses changes according to the write pulses. Initially, a read pulse from Vr is able to switch

Q1, Q2 and Q3, resulting in three sequential pulses that contain a charge of 6e at Iout. Once the

first pulse from Vw is introduced, the read pulse could only switch Q2 and Q3 while the number

of sequential pulses at Iout reduces to two. Further applying pulses at Vw makes the number

of sequential pulses at Iout reduce to one, zero and then be reset to three. The multi-weight

synaptic circuit we have shown here can exhibit multiple quantized weights other than 0 and 1,

and thus provides a more flexible configuration for large-scale and complex neural networks.

3.4.3 Inhibitory synaptic circuit

The inhibitory synapse is a type of synapse that makes a postsynaptic neuron less likely to gen-

erate an action potential [128]. Inhibitory presynaptic neurons can release neurotransmitters

that bind to the postsynaptic receptors, which induces a change in the permeability of the post-

synaptic neuron membrane to particular ions. As a result, an electric current that changes the
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Figure 3.18: Simulation results of the multi-weight synaptic circuit shown in Figure 3.17, from
[15]. The critical voltages values used for Q0, Q1, Q2, Q3 and Q4 were 0.6 mV, 0.54 mV, 0.52
mV, 0.51 mV and 0.3 mV, respectively. The critical voltage values used for Q5 to Q8 were 0.09
mV. The capacitance value used for C1 was 7.8 fF and the capacitance value used for C2 was
1.2 fF. Bias voltage Vb1 was 0.2 mV and Vb2 was 0.5 mV. The magnitude of Vr was 0.54 mV
and the magnitude of Vw was 1.2 mV. (a) Read signal. (b) Write signal. (c) Current through
Q1. (d) Current through Q2. (e) Current through Q3. (f) Output current Iout.

postsynaptic membrane potential to create a more negative postsynaptic potential is generated,

i.e., the postsynaptic membrane potential becomes more negative than the resting potential. To

generate an action potential, the postsynaptic neuron membrane must reach a voltage threshold

more positive than the resting potential, which makes the postsynaptic neuron less likely to gen-

erate an action potential. In neuromorphic computing, inhibitory synapses are also necessary

to process certain types of input signals. We emulate inhibitory postsynaptic potential (IPSP)

by sending negative pulses to the neuron’s membrane capacitor and discharging the membrane

capacitor accordingly.
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Here we introduce a binary inhibitory synaptic circuit in Figure 3.19. This circuit com-

prises a binary synaptic circuit and a current inverter circuit. The binary synaptic circuit uses

Vw to switch the weight between 0 and 1, similar to the circuit shown in Figure 3.14. Voltage

pulses applied at Vr can read the synaptic weight by switching Q2. If the synaptic weight is 1,

every pulse from Vr can trigger an output current pulse at I1. The slight voltage change at node

3 allows Q2 and Q3 to be switched simultaneously, resulting in a current pulse that contains

a charge of 4e. Since there are only two electrons coming from Vr, the voltage drop at node

3 allows Q6 to be switched and to provide another pair of electrons. Therefore, the output

current Iout is a negative current pulse containing a charge of 2e. The capacitor C4 shown in

the schematic diagram is considered as the membrane capacitor from an IFN circuit. Every

negative current pulse from Iout could take 2e from C4. The simulation results are shown in

Figure 3.20 and 3.21.

Figure 3.19: An inhibitory synaptic circuit based on QPSJs. This circuit has a binary synaptic
circuit combined with a current inverter circuit to store and transmit weighted signals of 0 or
−1.

In Figure 3.20, the initial weight of the synaptic circuit is −1. Each pulse from Vr can

trigger a positive current pulse at I1, although there is a delay of ∼ 40 ps. The QPSJ Q6 will

be switched shortly, providing a negative current pulse through capacitor C4. The voltage drop

at node 4 is ∼ 35 µV, which is 2e/VC4. In this design, we choose appropriate parameters so

that the voltage at node 4 keeps decreasing as negative current pulses Iout are generating but

will not drop below the minimum value, which is the resting potential of a neuron. Figure 3.21
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shows the simulation results when the weight is changed from −1 to 0. This simulation has the

same initial condition as the previous one shown in Figure 3.20. Before there is a voltage pulse

applied at Vw, the read pulse can cause a voltage drop at V4. However, once a positive voltage

pulse is applied at Vw, the synaptic weight is changed to 0, and the upcoming voltage pulses

from Vr are no longer able to switch Q3. Therefore, no current pulses are observed at Iout and

no voltage drops are observed at node 4 even there is a voltage pulse at Vr.

Figure 3.20: Simulation results of the inhibitory synaptic circuit shown in Figure 3.19 when
the weight is −1. (a) Read signal. (b) Write signal. (c) Current at I1. (d) Current at Iout. (e)
Voltage at node 4.

This circuit is a simple example of inhibitory synapse applications in QPSJ-based neu-

romorphic computing systems. For complex computational tasks, multi-weight inhibitory

synapses are desired. However, the same design idea may not be applied to multi-weight synap-

tic circuits. This is because that the output of the proposed multi-weight synaptic circuits is a

fast pulse sequence while the charging and discharging speed of capacitor C3 in Figure 3.19
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Figure 3.21: Simulation results of the inhibitory synaptic circuit shown in Figure 3.19 when
the weight is changed from −1 to 0. (a) Read signal. (b) Write signal. (c) Current at I1. (d)
Current at Iout. (e) Voltage at node 4.

are relatively slow. Therefore, capacitor C3 and QPSJs Q4 and Q5 cannot respond promptly to

the pulse sequences from a multi-weight synaptic circuit. We envision a future improvement

on this circuit that allows inhibitory multi-weight outputs for more complex computations.

3.5 Fan-out circuit consisting of charge-flux converters

A typical biological neuron has thousands of synaptic connections to other neurons [129],

which allow the formation of complex networks. Therefore, it is important to have a large

fan-out for neuromorphic circuits to emulate biological counterparts. As described previously,

the operation of QPSJ-based circuits relies on the propagation of quantized current pulses. JJ-

based (single flux quantum, SFQ) circuits face a similar difficulty due to quantized flux. The

difficulty of signal fan-out in these circuits arises from the need to equally split a current pulse
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to deliver to as many neuron inputs as needed. One way to handle neuron fan-out is by using

charge-to-flux and flux-to-charge converters [54]. We note that there is no maximum limit for

the fan-out in simulation, though a real circuit may have fabrication-related issues.

In Figure 3.22, the current pulse Iin from an IFN circuit flows into an inductor L1. The

current pulse is then coupled to a mutual inductor L2 and injected to junction J1 and J2. Since

J2 is biased close to its critical current by bias current Ib, the additional current pulse from L2

can switch J2 and generate a single flux quantum (SFQ) pulse that is able to switch multiple

parallel QPSJs. Once J2 is switched and in the resistive state, J1 can be switched by Ib and

the system is recovered to its initial state [93]. To avoid directly connecting a QPSJ and a JJ in

series with a bias voltage, we use small mutual inductors to transmit current from a QPSJ-based

IFN circuit to a JJ loop.

Figure 3.22: A fan-out circuit is comprised of flux-charge and charge-flux circuits, from [15].
The number of fan-out shown in this schematic is n.

The simulation results of the fan-out circuit that has a fan-out of 10 (i.e., ten parallel

QPSJs) are shown in Figure 3.23. We use an IFN circuit that has a threshold of 500 to generate

current pulses flowing into Iin. The induced current pulses from mutual inductors are injected
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to J2, resulted in SFQ pulses across J2. Since all the parallel QPSJs (Q1 to Q10) are switched

at the same time, we can see identical output current pulses in Figure3.23(c)(d).

Figure 3.23: Simulation results of the fan-out circuit shown in Figure 3.23, from [15]. The
fan-out was set to be 10 in this simulation. Only output 1 and output 2 are shown here while
the other outputs are identical. The critical voltage values used for Q1 to Q10 were 0.5 mV. The
critical current value used for J1 was 40 µA and the critical current value used for J2 was 50
µA. The inductance values used for L1 and L2 were 0.1 nH with a coupling coefficient of 0.9.
The inductance value used for L3 was 0.01 nH. Bias current Ib was 70 µA and bias voltage Vb

was 0.5 mV. Input current Iin is from the output of a QPSJ-based IFN circuit that has a threshold
of 500. (a) Input current. (b) Voltage at J2. (c) Output current 1. (d) Output current 2.

In order to provide sufficient current for J1, current Iin from the QPSJ neuron circuit

should be at the same level of the critical current of J1. For practical application, we may need

JJs with small critical currents and QPSJs with small critical voltages. Otherwise, we instead

use a neuron that has a large threshold and can fire a large current pulse that contains up to

1,000 Cooper pairs [54].
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3.6 QPSJ transmission line circuit as an axon circuit

Like the biological axon that transmits action potentials, the QPSJ-based axon circuit performs

charge/current transmission between neurons and synapses over a long distance. We use a

simple QPSJ transmission line circuit to handle the signal transmission and control the signal

delays. This circuit is based on the charge island circuit proposed in [53]. The number of

charge island stages in the axon circuit, shown in Figure 3.24, is flexible and depends on how

much signal delay is required between neurons in different layers.

Figure 3.24: Schematic of the axon circuit that has multiple stages of charge island. Signals
are transmitted in one direction, depending on the bias voltage and source voltage.

In the axon circuit, signals can only travel in one direction, controlled by the bias voltage

and source voltage. Generally speaking, a positive pulse propagated in the axon circuit requires

a negative bias voltage. However, a negative pulse (e.g., from an inhibitory synapse) requires

a positive bias voltage. This behaves like a biological neuron that only allows action potential

to travel in one direction. Figure 3.25 shows the simulation results of the axon circuit with

different charge island stages. The capacitance value of the island capacitor is 0.3 fF in this

simulation, resulting in less than 200 ps delay after 50 charge island stages. These results

indicate that the signal propagation delay in QPSJ-based circuits is expected to be very small.

Furthermore, manipulating signal delay could improve circuit performance, especially when

the timing is a big concern (e.g., in the time-dependent learning circuits).
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Figure 3.25: Simulation results of the axon circuit shown in Figure 3.24 with different charge
island stages. (a) Input voltage. (b) Output current after 10 stages. (c) Output current after 20
stages. (d) Output current after 30 stages. (e) Output current after 40 stages. (f) Output current
after 50 stages.

3.7 Simulation of small neural networks

To verify the functions of our neuron and synaptic circuits and demonstrate extension to more

complex circuits, we combined neuron and synaptic circuits and simulated neural networks.

We show different network configurations based on choices of different synaptic circuits pro-

posed in previous sections. In the first configuration, we used synaptic circuits based on QPSJs

and MJJs. The synaptic circuits were assigned with different weight matrices initially. Those

synaptic weights did not change during the simulation. In the second configuration, synaptic

circuits based on QPSJ memories were used to show a more complex application. Although the

synaptic circuits were also assigned with different weights initially, the weights changed during
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the simulation through different write signals. The functionality of these neural networks were

demonstrated through WRspice simulation results.

3.7.1 A network comprised of IFN circuits and synaptic circuits based on QPSJs and MJJs

A basic 3×2 network architecture is shown in Figure 3.26, for simplicity. We simulated the

3×2 network consisting of three voltage sources and two neuron circuits connected by six

binary synaptic circuits. Voltage sources provide input pulses with different frequencies, which

represent three different external signals or signals from upstream neurons. The output neuron

fires a pulse/spike as soon as it receives a set number (in this case 10) of quantized current

pulses from the three synaptic circuits, as the threshold is set to 10.

Vin1

1

Q0R1 L1

J1

Ib1

Vb1

2 3

C1

...

Q2

Q10
Rb1

Q1

Input Synaptic circuit Neuron circuit

Ni1

No1

No2

Ni2

Ni3

Figure 3.26: Network architecture of a 3×2 neural network based on superconductive synaptic
and neuron circuits, from [14]. Nix are input neurons and Noy are output neurons.

The simulation was conducted with different initial values of each synaptic weight (i.e.

critical current of J1), that reflected different firing frequencies observed for each output neu-

ron. Weight matrices for neuron 1 and neuron 2 were [1 1 1] and [0 1 1], respectively, in Figure
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3.27, and were [1 0 1] and [0 0 1], respectively, in Figure 3.28. The results show that pulses

from a synapse of weight 1 is counted while those from a synapse of weight 0 are not counted,

and the neuron fires immediately after the number of total pulses received reaches the thresh-

old (= 10 here). As a result, this circuit works similar to a digital neuromorphic system that

can process binary signals. If we replace the synaptic circuit in Figure 3.26 with a multi-state

synaptic circuit, the network will be more complex, but also, more flexible.

Figure 3.27: Simulation results of the 3×2 network illustrated in Figure 3.26 with weight
matrices [1 1 1] and [0 1 1], from [14]. (a) Input voltage 1. (b) Input voltage 2. (c) Input
voltage 3. (d) Output current 1. (e) Output current 2.

3.7.2 A network comprised of IFN circuits and synaptic circuits based on QPSJ memories

We conducted a simulation of an example network comprised of two inputs and one output

neuron, connected by two synapses proposed in Figure 3.14. The neuron circuit is a QPSJ-

based IFN circuit that was proposed earlier [13]. For simplicity, the threshold of the neuron is

set to three, which means the neuron will fire a current pulse as soon as it receives three pulses

from two synapses. The schematic of the network is shown in Figure 3.29. We apply periodic
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Figure 3.28: Simulation results of the 3×2 network illustrated in Figure 3.26 with weight
matrices [1 0 1] and [0 0 1], from [14]. (a) Input voltage 1. (b) Input voltage 2. (c) Input
voltage 3. (d) Output current 1. (e) Output current 2.

pulse signals at each read and write terminals of the two synaptic circuits to show how the input

pulses are propagated to the output neuron through synapses and make the neuron fire pulses.

The write signals from Vw1 and Vw2 are chosen randomly to demonstrate circuit functionality

but not for any learning purposes.

As we can see from Figure 3.30, once a synapse is set to 1, a current pulse is generated and

injected into the output neuron every time a read signal arrives at the synapse. The voltage on

capacitor C5 gradually increases until it can simultaneously switch three parallel QPSJs Q10,

Q11 and Q12, resulting in a quantized current pulse that contains a charge of 6e. Figure 3.30

shows that a pulse is generated at Iout after the output neuron receives a total amount of three

pulses from Isyn1 and Isyn2. The operation of this network is similar to a digital neuromorphic

system that comprises digital IFN circuits and binary memories.

We also replace the binary synapses in Figure 3.29 with multi-weight synapses to demon-

strate the functionality of multi-weight synapses in a neural network, as shown in Figure 3.32.
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Figure 3.29: A 2×1 network consisting of QPSJ-based neurons and binary synapses, from [15].

We increase the neuron firing threshold to 10 to reduce output neuron firing frequency that is

potentially affected by the multi-weight synapses in the network. The simulation results are

shown in Figure 3.33 and Figure 3.34. The weights of synapses 1 and 2 are modified by Vw1

and Vw2, respectively.

In Figure 3.33, the initial weights of both synapses are set to 3. As soon as a positive pulse

arrives at Vw1 or Vw2, the weight of synapse 1 or synapse 2 is reduced by 1 until it reaches 0.

Once the weight of either synapse is 0, one more positive pulse from either write terminal could

reset the corresponding synaptic weight to 3. As the weights of both synapses change during

the simulation, the firing frequency of the output neuron also changes.

Sometimes, when the output neuron receives more pulses (or electrons) than it requires to

fire a pulse, it will only release 20 electrons and the remaining electrons will still be stored on

capacitor C5 after firing. As a result, the neuron will require fewer pulses from two synapses

to fire another pulse. This operation could be an issue in real circuit operations because the

IFN circuit we designed previously only allows a fixed number of electrons to be released

at a time. We believe that future improvement or modification of IFN circuit (for example by
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Figure 3.30: Simulation results of the 2×1 network shown in Figure 3.29, from [15]. (a) Write
signal of input 1. (b) Read signal of input 1. (c) Synapse 1 output. (d) Write signal of input 2.
(e) Read signal of input 2. (f) Synapse 2 output. (g) Voltage at node 5. (h) Neuron output.

incorporating a reset or inhibitory mechanism) could solve this problem. The simulation results

have demonstrated the functionality of combined neuron and synaptic circuits based on QPSJs.
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Figure 3.31: Synaptic current Isyn1, Isyn2 and output current Iout re-plotted from Figure 3.30,
from [15].

3.8 Summary

Neuromorphic circuits based on superconductive QPSJs are introduced in this chapter. These

circuits are designed to emulate biological neuron components to perform neuromorphic com-

puting through charge and fluxon operations. The intrinsic spiking behaviors of QPSJs make

them an ideal candidate for high-speed and low-power neuromorphic computing. We have

demonstrated the functionalities of each circuit and some combined neuron and synaptic cir-

cuits through simulations in WRspice.

Furthermore, these circuits can be scaled up to form a large neural network, which is

desired to solve complex and practical problems. To enhance scalability, a large network may

be broken into multiple smaller blocks where one or a small number of bias voltages can be

used for each block. For example, we can bias one neuron and multiple synapses with only

one bias voltage, and the downstream neuron and synapses, separated by a fan-out circuit, use
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Figure 3.32: A 2×1 network consisting of QPSJ-based neurons and multi-weight synapses.

another bias voltage. The fan-out circuit works as a bridge to connect neurons from adjacent

layers. The goal of this work is to build large neural networks using QPSJ technology, which

can solve practical problems at a low energy cost and a high speed.
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Figure 3.33: Simulation results of the 2×1 network consisting of QPSJ-based neurons and
multi-weight synapses, from [15]. (a) Write signal of input 1. (b) Read signal of input 1. (c)
Synapse 1 output. (d) Write signal of input 2. (e) Read signal of input 2. (f) Synapse 2 output.
(g) Voltage at node 5. (h) Neuron output.
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Figure 3.34: Synaptic current Isyn1, Isyn2 and output current Iout re-plotted from Figure 3.33,
from [15].
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Chapter 4

Toward Learning in Neuromorphic Circuits

4.1 Introduction

The human brain serves as a power-efficient learning machine, solving demanding computa-

tional tasks while consuming a small number of power. Like a human brain has the ability to

adapt to surrounding environment and to solve complex problems by implementing synaptic

plasticity, one of the most important functions of neuromorphic computing is to have the abil-

ity to adjust synaptic weights through learning. While there are plenty of learning strategies

in neuromorphic computing as we discussed in Section 1.2.4, we focused on STDP learning

rule in this work to provide potential computational functions for QPSJ-based neuromorphic

systems. Early neuroscience experiments on synaptic plasticity suggested that relative timing

of presynaptic and postsynaptic action potentials at milliseconds had effects on the plasticity

[75]. This is well known as spike timing-dependent plasticity (STDP), which has been ob-

served in cortical neurons [69]. In neuromorphic hardware systems, STDP-type learning rules

are widely used as an unsupervised learning method. We introduce a method of realizing a

simplified STDP rule by using QPSJ-based circuits. The weight change is either 1 or −1 dur-

ing each learning event. We modified the synaptic circuit shown in Figure 3.17 to adapt to our

learning circuit. The learning circuit is comprised of a long term depression circuit and a long

term potentiation circuit, which are combined together to realized a simplified STDP rule [16].
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4.2 A multi-weight synaptic circuit for learning

The circuit shown in Figure 4.1 is a multi-weight synaptic circuit that can generate different

numbers of sequential pulses, which correspond to a weight of 0, 1, 2 or 3. Here, the weight

is defined as the number of pairs of electrons at the output for each input pulse. In general, N

sequential current pulses contain N pairs of electrons, although the shapes of these pulses may

not look significantly different. This circuit does not have a reset mechanism that was seen in

Figure 3.17. Parallel QPSJs Q1, Q2 and Q3 have different critical voltages. The weight can

be increased by applying negative pulses at Vw or decreased by applying positive pulses at Vw.

Applying (positive) pulses at Vr can read but not destroy the memory state. Different numbers

of sequential current pulses will be generated at Iout upon the arrival of one short voltage pulse

at Vr, depending on the number of electrons stored at capacitor C1. The simulation results of

this circuit are shown in Figure 4.2.

Figure 4.1: A multi-weight synaptic circuit used for learning, from [16]. The synaptic weight
can be increased or decreased by applying negative or positive pulses at Vw.
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In Figure 4.2, the initial weight of the synaptic circuit is set to 3. A voltage pulse from

Vr can switch all three parallel QPSJs Q1, Q2 and Q3, resulting in three sequential current

pulses at Iout. Applying a positive voltage pulse at Vw can add two electrons onto capacitor

C1 and the voltages at node 1 and node 2 increase accordingly. In this case, the upcoming

voltage pulse from Vr can only switch two out of three parallel QPSJs, which causes two

sequential current pulses at Iout. Once the synaptic weight reaches 0, it will not decrease any

more. Similarly, applying a negative voltage pulse at Vw can take two electrons from capacitor

C1 and the voltages at node 1 and node 2 decrease accordingly. Therefore, the synaptic weight

is increased by 1. This can be repeated up to reaching the maximum weight. Different weights

result in different numbers of sequential current pulses at Iout during each read operation. The

weight modulation scheme in this circuit allows us to design learning circuits that can generate

appropriate positive and negative pulses based on specific learning rules to control the synaptic

weight.

Figure 4.2: Simulation results of the synaptic circuit shown in Figure 4.1, from [16]. (a) Read
signal Vr. (b) Write signal Vw. (c) Output current Iout. (d) Voltage at node 1.
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4.3 A long term depression circuit

In a biological neural system, long term depression (LTD) occurs when a postsynaptic spike

leads a presynaptic spike by ∼ 20 to 100 ms [130, 77]. The synaptic weight between these two

neurons is thus depressed as they are considered to be uncorrelated. The LTD circuit shown

in Figure 4.3 can generate positive pulses used to depress the synaptic weight if the timing

difference ∆t = tpost − tpre is within a short learning window. This circuit operates at a much

faster speed than its biological counterpart, tens of GHz versus kHz, therefore LTD is designed

to be effective within a shorter (ps scale) learning window. In Figure 4.3, the initial voltage

at node 1 is set by bias voltage Vb1 when there are no inputs at Vpost. In the circuit design,

we choose an appropriate critical voltage value for Q1 such that Q1 cannot be switched by

Vpre should a voltage pulse from Vpre arrive first. Therefore, no current pulses are generated at

Ilearning. On the other hand, if a negative voltage pulse from Vpost arrives first, Q0 is switched

and a pair of electrons are taken from capacitor C1. The voltages at node 1 and node 2 drop

by 2e/C1, where C1 is the capacitance of capacitor C1. The slight voltage change at node 2

allows the upcoming pulse from Vpre to switch Q1 and in turn switch Q2, resulting in a positive

current pulse at Ilearning. The voltages at nodes 1 and 2 will recover to their initial states since

C1, R1 and Vb1 behave like a series RC circuit with a corresponding voltage decay time. As a

result, there will be pulses at Ilearning only if signals at Vpre and Vpost are close enough in time.

The width of the learning window is determined by the resistance value of R1. The simulation

results in Figure 4.4 illustrate how the learning window changes as R1 changes.

In Figure 4.4, the voltage at node 1 drops upon arrival of a negative pulse into Vpost. A cur-

rent pulse at Ilearning is followed by each upcoming pulse from Vpre before the voltage at node

1 gradually increases to a stable point. The effective time window over which the circuit re-

sponds as intended is viewed as the learning window for this LTD function. In this LTD circuit

design, the width of the learning window increases as R1 increases. This can be explained by

the different voltage level recovering speeds due to different RC time constants.

This LTD circuit works seamlessly with a synaptic circuit as shown in Figure 4.5. LTD

occurs when the circuit detects t1 < ∆t < 0, where t1 ≈ 50 ps defines the maximum LTD
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Figure 4.3: An LTD circuit that generates depression pulses to a synapse, from [16]. A pulse
will be generated at Ilearning when the timing difference ∆t = tpost−tpre is within a short learning
window.

learning window. Charge (electrons) will be injected onto capacitor C3, which depresses the

synaptic weight. A simulation was performed to show how the synaptic weight changes accord-

ing to the LTD rule. The results are shown in Figure 4.6. The width of LTD learning window

was not a concern during this simulation, as the circuit parameters were chosen to demonstrate

LTD functions but not for a specific LTD learning window.

In this circuit design, the initial weight was set to 3 based on the device parameters used for

this simulation. Each presynaptic pulse could result in three sequential current pulses (contain-

ing a charge of six electrons) at Isyn. As the first negative voltage pulse from Vpost is presented,

the voltage at node 1 drops due to the switching of Q0, which takes two electrons from C1. The

voltage at node 2 also drops subsequently, which allows the fourth voltage from Vpre to switch

Q1 and in turn switch Q2 to inject two electrons onto C3. As a result, the synaptic weight is de-

pressed by 1. The weight change is not immediate but can be observed by the upcoming pulse

from Vpre, which results in two sequential current pulses (containing a charge of four electrons)

at Isyn. We can also see that the timings between the third pulse from Vpost and the tenth pulse
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Figure 4.4: Simulation results of the circuit shown in Figure 4.3 with different R1 values, from
[16]. Vpre was 0.54 mV and Vpost was 0.95 mV. The critical voltage values used for Q0 to Q2

were 0.75 mV, 0.56 mV and 0.31 mV, respectively. C1 was 9.2 fF and C2 was 1.2 fF. Vb1 was
0.03 mV and Vb2 was 0.5 mV. R1 was 10/20/30/40 kΩ. (a) Input signal Vpre. (b) Input signal
Vpost. (c) Output signal Ilearning. (d) Voltage at node 1.

from Vpre is relatively larger (∼ 100 ps), which does not result in a weight depression. This is

because the voltage at node 1 and node 2 recover to their initial states (set by bias voltages)

before the tenth pulse from Vpre arrives. These simulation results demonstrate that the LTD

circuit can realize a weight depression function with respect to the relative timing information

between presynaptic and postsynaptic pulses.

4.4 A long term potentiation circuit

In a biological neural system, long term potentiation (LTP) occurs when a presynaptic spike

leads a postsynaptic spike by up to 20 ms [131, 77]. The synaptic weight between these two

neurons is thus potentiated as they are considered as correlated. In a synaptic circuit shown in
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Figure 4.5: An LTD circuit with a multi-weight synaptic circuit, from [16]. The number of
sequential pulses at Isyn can be reduced when the timings of pulses from Vpre and Vpost trigger
an LTD learning event.

Figure 4.1, the weight can be potentiated by applying negative pulses at Vw. Here we propose an

LTP circuit that can generate negative current pulses to potentiate the synaptic weight according

to the relative timing information between a presynaptic neuron and a postsynaptic neuron. The

circuit shown in Figure 4.7 is an LTP circuit with a multi-weight synaptic circuit. Similar to

the LTD circuit shown in Figure 4.3, the LTP circuit has two inputs Vpre and Vpost. Q2 and Q3

are identical and biased by voltage Vb3. The initial voltage at node 1 is set by bias voltage Vb1.

Voltage at node 2 (V2) is set by bias voltage Vb2 so that the voltage acrossQ2 andQ3 is near their

critical voltages. When there are no inputs at Vpre, Vpost cannot switch Q1. A negative voltage

pulse from Vpre can switch Q0, taking two electrons from capacitor C1. The voltage drop at

node 1 results in a voltage drop at node 2 as well. The slight voltage change at node 2 allows

the upcoming voltage pulse from Vpost to switch Q1 and in turn switch Q2 and Q3, resulting in

a current pulse that contains a charge of 4e. Since there are only two electrons coming from

Vpost, the voltage drop at node 2 allows Q4 to be switched and allows C3 to provide another pair
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Figure 4.6: Simulation results of the circuit shown in Figure 4.5, from [16]. Vpre was 0.54 mV
and Vpost was 0.95 mV. The critical voltage values used for Q0 to Q7 were 0.75 mV, 0.55 mV,
0.3 mV, 2 mV, 0.54 mV, 0.52 mV, 0.5 mV and 0.34 mV, respectively. C1 and C3 were 9.2 fF,
and C2 and C4 were 1.2 fF. Vb1, Vb2 and Vb3 were 0.03 mV, 0.77 mV and 0.53 mV, respectively.
R1 was 10 kΩ. (a) Input signal Vpre. (b) Input signal Vpost. (c) Output signal Isyn.

of electrons. This circuit behaves like an “inverter” circuit that can convert positive voltage (or

current from an upstream neuron) pulses to negative current pulses. By choosing appropriate

biasing conditions and critical voltage value of Q4, we only allow Q4 to be switched for a

maximum of three times, which represents a maximum weight change of 3. Each time Q4 is

switched, a pair of electrons flow from C3 to C2 and voltage at node 3 drops by 2e/C3, which

makes the synaptic weight increase by 1.

In Figure 4.8, we assume LTP is effective when 0 < ∆t < t2, where t2 ≈ 34 ps is

primarily determined by the resistance of R1 in Figure 4.7. The width of LTP learning window
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Figure 4.7: An LTP circuit with a multi-weight synaptic circuit, from [16]. The number of
sequential pulses at Isyn can be increased when the timings of pulses from Vpre and Vpost trigger
an LTP learning event.

was not a concern during this simulation, as the circuit parameters were chosen to demonstrate

LTP functions but not for a specific LTP learning window. The initial weight of the synapse was

set to 0. Different periodic pulses were applied at Vpre and Vpost in the simulation to demonstrate

LTP learning. For example, the sixteenth pulse from Vpre is slightly ahead of the seventh pulse

from Vpost, which triggers LTP for the multi-weight synapse. As a result, the weight changes

from 1 to 2. The upcoming pulse from Vpre can trigger two sequential current pulses at Isyn.

However, the second pulse from Vpre has a relatively large time interval (∼ 100 ps) with the

first pulse from Vpost, which does not trigger a weight change.
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Figure 4.8: Simulation results of the circuit shown in Figure 4.7, from [16]. Vpre was 0.78 mV
and Vpre was 0.54 mV. Vpost was 0.51 mV. The critical voltage values used forQ0 toQ9 were 0.4
mV, 0.5 mV, 1 mV, 1 mV, 0.58 mV, 2 mV, 1.04 mV, 1.02 mV, 1 mV and 0.28 mV, respectively.
C1, C2, C3 and C4 were 9 fF, 1 fF, 9.2 fF and 2 fF, respectively. Vb1, Vb2, Vb3, Vb4 and Vb5 were
0.05 mV, 0.2 mV, 1.1 mV, 1.01 mV and 0.6 mV, respectively. R1 and R2 were 10 kΩ. (a) Input
signal Vpre. (b) Input signal Vpost. (c) Output signal Isyn.

We replaced negative input voltage pulses from Vpre with positive input voltage pulses

from Vpre in the circuit shown in Figure 4.9. This circuit contains another “inverter” circuit to

convert positive voltage pulses from Vpre to negative current pulses. As we explained earlier,

the “inverter” circuit can take electrons from capacitor C2 to temporally reduce voltage at node

2. Like many other technologies, signals transmission and processing in QPSJ-based circuits

exhibit delays. The extra “inverter” circuit in Figure 4.9 also adds extra delay. The learning

window shifts by t0 ' 10 ps and becomes ∼ t0 < ∆t < t2 + t0, as shown in Figure 4.10.
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Figure 4.9: A modified LTP circuit with a multi-weight synaptic circuit, from [16]. The number
of sequential current pulses at Isyn can be increased when the timings of pulses from Vpre and
Vpost trigger an LTP learning event.

Although the input signals are identical during the simulations, the output results of Isyn

in Figure 4.10 are different from results in Figure 4.8. We observed that LTP occurs in Figure

4.10 where ∆t is relatively large (t2 < ∆t < t2 + t0) but does not occur where ∆t is very

small (0 < ∆t < t0). Proper choice of resistance values and potentially adding a delay circuit

(e.g., using a QPSJ transmission line circuit) for some of the input signals can adjust the LTP

learning window to desired values.

4.5 A spike timing dependent plasticity circuit

A simplified STDP rule is illustrated in Figure 4.11. The synaptic weight is depressed if t1 <

∆t < t2 while the synaptic weight is potentiated if t3 < ∆t < t4. This simplified STDP rule
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Figure 4.10: Simulation results of the circuit shown in Figure 4.9, from [16]. Vpre was 0.78 mV
and Vpost was 0.51 mV. The critical voltage values used for Q0 to Q12 were 0.8 mV, 0.95 mV,
0.95 mV, 0.36 mV, 0.5 mV, 1 mV, 1 mV, 0.58 mV, 2 mV, 1.04 mV, 1.02 mV, 1 mV and 0.28
mV, respectively. C1, C2, C3, C4 and C5 were 1 fF, 9 fF, 1 fF, 9.2 fF and 2 fF, respectively. Vb1,
Vb2, Vb3, Vb4, Vb5, Vb6 and Vb7 were 0.2 mV, 1.1 mV, 0.05 mV, 0.2 mV, 1.1 mV, 1.01 mV and
0.6 mV, respectively. R1, R2 and R3 were 10 kΩ. (a) Input signal Vpre. (b) Input signal Vpost.
(c) Output signal Isyn.

can be realized by combining the LTD and LTP circuit, as shown in Figure 4.12. Charge is

injected onto or taken from capacitor C6, resulting in a weight depression or potentiation for

the multi-weight synapse. The LTD portion has an additional bias voltage Vb8 and a resistor R5

to provide voltage bias for Q10 and Q11, which is different from the original LTD circuit shown

in Figure 4.3. The LTD and LTP learning windows, defined by t1 < ∆t < t2 and t3 < ∆t < t4,

can be adjusted by choosing appropriate circuit parameters or adding extra circuit components

for signal delays. The simulation results of this circuit are shown in Figure 4.13.
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Figure 4.11: A simplified STDP learning rule. LTD occurs if t1 < ∆t < t2 while LTP occurs
if t3 < ∆t < t4.

We use a customized spike train applied at Vpre and a periodic spike train applied at Vpost

and Vpost to demonstrate STDP learning functionality. The initial weight of the synapse is

set to 0. At the beginning of this simulation, no current pulses are presented at Isyn when

applying voltage pulses at Vpre. As synaptic weight changes according to the relative timings

of presynaptic pulses and postsynaptic pulses, the output current pulses at Isyn also change over

time. Specifically, both presynaptic and postsynaptic voltage pulses are transmitted to the LTD

and LTP units. However, using the specific device parameter values during this simulation, the

LTD unit only generates depression pulses to the synaptic circuit if −10 ps < ∆t < −2 ps.

The LTP unit only generates potentiation pulses to the synaptic circuit if 16 ps < ∆t < 41 ps.

These results demonstrate the simplified learning rule realized by this STDP circuit.
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Figure 4.12: An STDP circuit with a multi-weight synaptic circuit, from [16]. The STDP
circuit is comprised with an LTD circuit and an LTP circuit. The number of sequential current
pulses at Isyn can be updated according to the timings of pulses from Vpre and Vpost.

4.6 A modified LTD circuit towards a more complex STDP learning rule

The proposed STDP learning circuit has the ability to update synaptic weight by 1 or−1 during

each learning event. However, for more complex computation tasks, more synaptic weight

states are desired. In this case, the weight change per learning event is expected to be more

than 1 unit. We designed a modified LTD circuit towards a more complex STDP learning rule

while the modified STDP circuit is yet to be designed at this point. The modified LTD circuit

can update weight up to 3 per learning event, as shown in Figure 4.14. The initial voltage at

node 1 is set by the bias voltage Vb1 when there are no inputs at Vpost. The critical voltages

of Q3, Q4 and Q5 are VC3, VC4 and VC5 respectively while VC3 < VC4 < VC5. QPSJ Q0, Q1
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Figure 4.13: Simulation results of the circuit shown in Figure 4.12, from [16]. Vpre was 1.07
mV. Vpost was 0.51 mV and Vpost was 0.51 mV. The critical voltage values used for Q0 to Q15

were 0.8 mV, 0.95 mV, 0.95 mV, 0.36 mV, 0.5 mV, 1 mV, 1 mV, 0.46 mV, 2 mV, 0.75 mV, 0.55
mV, 0.3 mV, 1.37 mV, 1.35 mV, 1.33 mV and 0.28 mV, respectively. C1, C2, C3, C4, C5, C6

and C7 were 1 fF, 9 fF, 1 fF, 9.2 fF, 1.2 fF, 9.2 fF and 2 fF, respectively. Vb1, Vb2, Vb3, Vb4, Vb5,
Vb6, Vb7, Vb8 and Vb9 were 0.2 mV, 1.1 mV, 0.05 mV, 0.2 mV, 1.1 mV, 0.89 mV, 0.46 mV, 0.3
mV and 0.6 mV, respectively. R1, R2, R3, R4 and R5 were 10 kΩ, 10 kΩ, 20 kΩ, 10 kΩ and 20
kΩ, respectively. (a) Input signal Vpre. (b) Input signal Vpost. (c) Output signal Isyn.

and Q2 are identical. In this design, if a voltage pulse from Vpre arrives first, none of Q3 to Q5

can be switched by Vpre. Therefore, no current pulses are generated at Ilearning. However, if a

negative voltage pulse from Vpost arrives first, Q0 toQ2 are switched and three pairs of electrons

are taken from capacitor C1. The voltages at node 1 and node 2 drop by 6e/C1, where C1 is

the capacitance of capacitor C1. The voltage change at node 2 allows the upcoming voltage

pulse from Vpre to switch Q3, Q4 and Q5 and in turn switch Q6, resulting in three sequential

current pulses at Ilearning. The voltage at node 1 and node 2 will recover to their initial states

gradually. If the relative timings of Vpre and Vpost are very small (−34 ps < ∆t < −10 ps),

all three QPSJs Q3, Q4 and Q5 can be switched upon the arrival of a voltage pulse at Vpre.

However, if the voltage pulse arrives at Vpre later, only Q3 and Q4 can be switched. There are

only two sequential current pulses at Ilearning. Depending on the relative timings of Vpre and
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Vpost, different numbers of sequential current pulses can be generated at Ilearning. The resulting

learning window resembles a quantized STDP curve and also can be adjusted by the resistance

value of R1.

Figure 4.14: A modified LTD circuit that generates depression pulses to a synapse. The
number of sequential current pulses generated at Ilearning depends on the the timing difference
∆t = tpost − tpre.

In Figure 4.15, we show the comparison of different STDP learning rules. The complex

STDP learning rule is based on the modified LTD circuit. We investigated the number of

sequential current pulses at Ilearning by setting different ∆t in the simulation with a step size of

1 ps. The results at ∆t > 0 are a mirror of the simulation results at ∆t < 0 while no actual

LTP circuit was simulated. The resistance value of R1 is chosen to be 10 kΩ, which allows

voltages at node 1 and 2 to recover fast. Therefore, the resulting learning curve resembles a

quantized STDP curve compared to the biological STDP shown in Figure 1.8. Based on this

design scheme, a complex STDP circuit is expected to be designed and simulated to realize the

learning curve shown in Figure 4.15.
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Figure 4.15: A comparison of different STDP learning rules. The complex STDP learning rule
is based on the modified LTD circuit shown in Figure 4.14. The results at ∆t > 0 are a mirror
of the simulation results at ∆t < 0 while no actual LTP circuit was simulated.

4.7 Summary

In this chapter, we proposed a simplified STDP learning circuit based on QPSJs. This circuit is

designed to update synaptic weight automatically according to the timings of presynaptic and

postsynaptic spikes. The weight change per learning event is either 1 or −1, which is com-

patible with previously designed multi-weight synaptic circuit. The simplified STDP learning

circuit is consisting of an LTD circuit and an LTP circuit, which contributes to weight depres-

sion and weight potentiation, respectively. The functionality of the STDP circuit, incorporating

with a multi-weight synaptic circuit, has been demonstrated in WRspice simulations. We also

presented a modified LTD learning circuit. This circuit is more flexible since it can update

the synaptic weight up to 3 per learning event. A quantized STDP learning curve has been

generated based on this modified LTD circuit.

The simplified learning rule presented in this paper aims to provide a simple learning

method to update synaptic weights according to relative timings of presynaptic and postsynaptic
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pulses, but has interesting differences compared to its biological counterpart. One aspect is that

the superconducting circuit processes information for signals with pulse rates in the tens of GHz

scale, which is many orders of magnitude faster than a human brain that typically operates at

tens of Hz. Another aspect is the effective learning window for a circuit in Figure 4.12 is −10

ps to−2 ps for LTD and 16 ps to 41 ps for LTP using the specific parameters in this simulation.

Though this learning window does not have the exact shape of a more realistic STDP, it may

still be useful for implementation to solve practical problems. We also note that the learning

window can be adjusted by slightly modifying the STDP circuit in Figure 4.12, in addition to

what we mentioned earlier to fix delay issues noted in this dissertation. For example, adding

QPSJs in parallel withQ9 and increasing the resistance ofR4 could extend the effective learning

window for LTD. We have not yet combined input and output neuron circuits, synaptic circuit,

fan-out circuit and STDP circuit to demonstrate a large network application. While voltage

biasing in QPSJ-based circuits has advantages, as circuit sizes grow and become more complex,

challenges related to biasing and impedance matching will likely become more critical [15].

We believe that these challenges, which are also found as challenges in other technologies

(e.g., current distribution in large JJ-based circuits), do have engineering solutions and require

additional work. We also note that these solutions may exist as trade-offs with circuit operation

speed and may impact the overall power or energy efficiency. Circuit modifications and new

circuit configurations to realize interconnection circuits for synapse feedback loops may also be

needed. These aspects are expected to be the focus of potential improvements in future studies.

In the next chapter, we will discuss the advantages of QPSJ-based circuits in terms of power

dissipation and processing speed.
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Chapter 5

Power Dissipation, Processing Speed and Experimental Challenges

5.1 Power dissipation and processing speed

Power dissipation and switching speed are important considerations for densely integrated elec-

tronics. As superconducting charge-based circuits, QPSJ neuron circuits present the opportu-

nity for very low power dissipation per switching event and with similar switching speed com-

pared to Josephson junction-based circuits. An additional advantage of these circuits is nearly

zero static power dissipation, as the junctions will be in a Coulomb blockade condition when

they are biased below their critical voltage. Given the relatively new and unexplored situation

of both QPSJ-based and JJ-based neuron circuits, a complete characterization of their power

dissipation and switching speeds is challenging to perform at this time. Nonetheless, in this

section, we present estimations based on device switching to compare the power dissipation

and switching speed of single-neuron cells for both JJ and QPSJ-based circuits. The power per

switching event for a JJ circuit is given by [132]:

P =
IbΦ0

t1 + t2
(5.1)

t1 = RC (5.2)

t2 =
Lk

R
(5.3)

where t1 is the charging time of intrinsic capacitor, R is normal resistance, C is intrinsic capac-

itance, t2 is discharging time of intrinsic capacitor, Lk is kinetic inductance, P is power, Ib is

bias current and Rp is parallel resistance.
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For a practical QPSJ using InOx material, the power per switching event and switching

speed for given dimensions of a nanowire can be estimated using the phase-slip energy model

developed by Mooij et al. [119], which can be summarized as:

P =
Vb2e

t1 + t2
(5.4)

t1 =
L

R
(5.5)

t2 = RCk (5.6)

where t1 is the charging time of kinetic capacitor, R is normal resistance, L is intrinsic induc-

tance, t2 is discharging time of kinetic capacitor, Ck is kinetic capacitance, P is power and Vb

is bias voltage. For both technologies, the switching delay is determined by the charging or

discharging time of the capacitor, whichever is larger. Results from this analysis are shown

in Figure 5.1 and Figure 5.1. A QPSJ that has a VC of 0.7 mV has a switching energy of

∼ 2eVC, i.e., ∼ 0.224 zJ. Therefore, the energy per spike is approximately 0.45 zJ (two switch-

ing events) for a QPSJ-based neuron shown in Figure 3.1, compared with approximately 0.33

aJ (one switching event) for a typical JJ-based neuron [44].

Some additional comments about this analysis and associated assumptions are warranted.

The parameters chosen for QPSJ and JJ technologies are typical values from published ex-

perimental results for devices at their nominal operating temperatures. The presented power

dissipation numbers do not take into account the device operating temperature. Classical JJ-

based circuits usually operate at a temperature of 4.2 K. Quantum phase-slip events have been

experimentally observed at temperatures up to 700 mK [133] and recent experiments report

QPS phenomena in NbN nanowires at a temperature of 1.92 K [56]. These results support the

possibility of realizing useful QPS events at higher temperatures, perhaps up to and beyond

4.2 K, with proper choice of materials and refined fabrication processes. Furthermore, com-

parison to CMOS-based implementations provides additional insight. In CMOS neuromorphic

systems, IBM’s digital neuron consumes 45 pJ per spike [134] and even the most recent neuron

circuits can currently only reach several fJ/spike [135]. While these results are estimates based
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on assumed material properties, they show promise for QPSJ-based neuromorphic circuits and

logic that may exhibit competitive power-delay properties compared to other solid-state tech-

nologies.

Figure 5.1: Power dissipated per switching event in an InOx QPSJ, from [13]. Values were
calculated based on a model by Mooij et al. for a nanowire of length 2 µm.

5.2 Power dissipation analysis

For QPSJ circuits that do not have dissipative components (e.g., resistors), the main energy dis-

sipation is due to switching energies of multiple QPSJs, which are extremely small. Some of

the learning circuits we presented in the previous chapter have resistors in series with bias volt-

age, also consuming low energy. We performed simulations to find out the energy dissipation

among different voltage sources under different operating conditions.

We consider the power dissipation under three different conditions for the circuit shown

in Figure 4.3. In the case of no inputs from Vpre or Vpost, this circuit will adapt to a resting state
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Figure 5.2: Switching speed in an InOx QPSJ, from [13]. Values were calculated based on a
model by Mooij et al. for a nanowire of length 2 µm.

after initialization. No power is generated from all the voltage sources, as shown in Figure 5.3.

If there is a voltage pulse from Vpost, we can observe dynamic power consumption at Ppost and

Pvb1 in Figure 5.4, which corresponds to the energy dedicated to Q0 and energy consumed at

resistor R1, respectively. The learning happens when a pulse from Vpost is slight ahead of a

pulse from Vpre. In this case, the power dissipation is presumed to be the maximum for this

circuit operation. We can observe dynamic power dissipation at each input and output voltage

source, as shown in Figure 5.5. The total energies dissipated are calculated by the integral of

dynamic powers over an active period. We estimate that the energies dissipated at Vpre, Vpost,

Vb1 and Vb2 are 79.8 yJ, 134 yJ, 9.45 yJ, and 159 yJ, respectively. These simulation results

suggest that the power dissipation in QPSJ-based circuits is expected to be extremely low, and

QPSJ technology could be a good candidate for low-power neuromorphic computing.
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Figure 5.3: Power consumption of voltage sources in the circuit shown in Figure 4.3 when no
inputs are presented. (a) Power from Vpre. (b) Power from Vpost. (c) Power from Vb1. (d) Power
from Vb2.

5.3 Experimental challenges and scalability

We reiterate that the work described here is simulation based, with goals of exploring neuro-

morphic circuits based on QPSJs and motivating future experimental work. In this section,

we first discuss experimental challenges. Then we discuss scalability and tolerance of these

QPSJ-based circuits. Finally, we propose potential improvement for QPSJ-based neuromor-

phic circuits in our future design and simulation.

The circuits presented here have been designed and analyzed based on the ideal model.

As stated previously, the experimental realization of QPSJ-based circuits is in its early stages

and presents multiple challenges. Charge based circuits are subject to interactions with stray

charges and charge fluctuations in the local environment. Random offset charge may affect

the operation of Coulomb blockade devices such as single electron transistors, quantum dots,
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Figure 5.4: Power consumption of voltage sources in the circuit shown in Figure 4.3 when there
is an input pulse at Vpost. (a) Power from Vpre. (b) Power from Vpost. (c) Power from Vb1. (d)
Power from Vb2.

etc. [136]. Similar issues are expected to impact operation of QPSJ-based circuits. This is-

sue has been considered previously and one of the possible methods to solve the offset charge

problem is to add a tunable gate voltage on the island for charge modulation [137, 136, 103],

though this results in a more complex circuit and requires more control signals. Furthermore,

superconductive QPSJ-based technology may experience fan-in and fan-out challenges when

the circuits are scaled up. This is evident in JJ-based technologies, as well [94]. In particular,

for QPSJ-based neuron circuits, fan-in is highly dependent on the integration (i.e., membrane)

capacitance, while fan-out is determined by the number of QPSJ splitter circuits that can be

driven [57]. The challenge is how to guarantee that each QPSJ in a complex circuit has ap-

propriate but generally not identical bias voltage. Additionally, there is a possible need for

isolation of these circuits with high impedances as suggested in references [56] and [138].
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Figure 5.5: Power consumption of voltage sources in the circuit shown in Figure 4.3 when there
are input pulses at Vpre and Vpost. (a) Power from Vpre. (b) Power from Vpost. (c) Power from Vb1.
(d) Power from Vb2.

These impedances are neglected in this study, as their effects on operation of the circuits are

not expected to change significantly. It is interesting to note that this challenge is somewhat

similar to JJ current biasing in single flux quantum circuit technologies [93].

A growing number of research is being performed in this area to discover appropriate

materials and device dimensions for a functional coherent quantum phase-slip. However, the

fabrication of reproducible and controllable QPSJs is still at an early stage where the conditions

to create and control a coherent quantum phase-slip are still under investigation. Although

the DC I-V characteristics of a QPSJ have been experimentally observed as exact duals to a

JJ, the AC characteristics of a QPSJ (i.e., dual Shapiro steps) have not been experimentally

demonstrated. Charge fluctuation and charge noise are believed to be a great challenge for

charge-based circuits.
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The neuromorphic systems we present here have the ability to scale up without limitations

in theory. For area scalability, each nanowire is expected to be only a few nanometers wide

and a few micrometers long (and potentially in a meandered configuration). A large number

of QPSJs can fit into a small chip area. Therefore, scalability is currently assumed to be a

benefit of using QPSJ-based circuits. Biasing is a concern of QPSJ-based circuits, like many

other superconducting circuits. Both voltage-biasing and current-biasing have advantages and

disadvantages in the context of superconducting circuits. Supplying current and distributing

it properly are known issues for JJ-based, SFQ-like circuitry, and are still an active area of

research and development. The voltage bias aspect of QPSJ-based circuits has a sense of simi-

larity to CMOS. We envision voltage biasing for QPSJ-based circuits that can be achieved using

voltage regulators and/or resistor networks (perhaps at higher temperature stages in a cryostat).

The actual number of required voltages is dependent on the circuit and complexity of the net-

work and is an aspect that we are currently studying. Furthermore, using one voltage source to

bias multiple QPSJs or logic blocks in series can potentially reduce the bias complexity. On the

other hand, using one bias voltage for multiple QPSJs may require very finely tuned parameters

for each QPSJ and may potentially reduce circuit tolerance. To enhance scalability, a large net-

work may be broken into multiple smaller blocks where one or a small number of bias voltages

can be used for each block. For example, we can bias one neuron and multiple synapses with

only one bias voltage and the downstream neuron and synapses, separated by a fan-out circuit,

use another bias voltage. One interesting aspect that is implied here is potentially being able

to use voltage bias for some portions of the network (QPSJ-based pieces) and current bias for

other portions (JJ-based pieces).

The operating margin of QPSJ-based circuits in this work is not only determined by the de-

sign itself but also the practical device performance. For example, the practical critical voltage

was found to be smaller than 100 µV in [139], but up to several mV in [56]. We take the circuit

in Figure 3.17 as an example to analyze each device tolerance in this circuit. The tolerance of

the circuit shown in Figure 3.17 highly depends on the critical voltage variation of each QPSJ.

The critical voltage variation of parallel QPSJs Q5 to Q8 in Figure 3.17 should not be greater

than 2e/C1 in order to guarantee parallel QPSJs are switched at the same time. If capacitance
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C1 is 10 fF, 2e/C1 is ∼ 32 µV, resulting in a maximum tolerance of 16% for QPSJs with 100

µV critical voltage. However, it only allows 1.6% maximum tolerance for QPSJs with 1 mV

critical voltage. Ideally, the critical voltage difference between Q1 and Q2 or Q2 and Q3 should

be the same as the voltage change on node 1 after an input pulse from Vw, which is ∼ 2e/C1.

The critical voltage variation of Q4 should not be greater than 2e/C2 + 2e/C1. The critical

voltage of Q0 has more tolerance as long as it can be switched by the input pulses from Vw. In

general, in the simulation shown in Figure 3.18, we have found that a tolerance of less than 1%

is required for critical voltage for parallel QPSJs (Q1 to Q3, Q5 to Q8) in the synaptic circuits.

The tolerance of Q4 and Q0 are 7% and 40%, respectively. We also found that the tolerances

of different QPSJs in this circuit are relatively independent. Varying the critical voltage value

of one QPSJ does not significantly affect the tolerances of the other QPSJs. We note that this

level of tolerance is also dependent on the nominal value of the varied parameter and is specific

to the particular circuit. Developing a better understanding of the impact of device parameter

mismatch and non-uniformity is critical to scaling this technology and is an ongoing effort.

The issues mentioned here are the challenges that researchers in this area are currently

facing and we look forward to solutions through future research.

5.4 Summary

In this chapter, we introduced the equations used to estimate the power dissipation and process-

ing speed of a single QPSJ. A QPSJ has nearly zero static power dissipation due to Coulomb

blockade and has extremely low switching energy compared to other technologies. Having

dissipative components in a QPSJ circuit does not significantly increase power dissipation, as

demonstrated in the simulation of a typical learning circuit. This is because the current flows

in QPSJ circuits are extremely low and are at a level of nA. The switching delay of a typical

QPSJ ranges from a few ps to tens of ps, which suggests a processing speed up to hundreds

of GHz. In theory, the QPSJ technology has a similar processing speed to the JJ technology

but consumes less power and is promising for neuromorphic computing. To further explore the

applications of QPSJ-based neuromorphic circuits, we addressed the experimental and design
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challenges related to QPSJ technology. Another concern is the scalability of QPSJ-based neu-

romorphic circuits. The circuits, while configured properly, have the ability to scale up without

any limitations. This requires an appropriately designed voltage biasing scheme for QPSJs

along with improved device tolerance. In conclusion, the QPSJ technology is a promising

candidate for high-speed and low-power applications, while many unsolved experimental chal-

lenges will continue to be a highlighted research topic for this technology. In the next chapter,

we will introduce the method used to fabricate ultra narrow superconducting NbN nanowires

in search of QPS phenomenon and show the experimental results and mathematical analysis of

selected NbN nanowires.
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Chapter 6

NbN Nanowire Fabrication and Characterization

6.1 Materials and methods

6.1.1 Introduction

The physical implementation of QPSJs requires the fabrication of ultra-narrow superconduct-

ing nanowires that have cross-section dimensions approaching the materials’ coherence length.

In this work, we focus on exploring the underlying conditions for ultra-narrow superconducting

nanowires to show evidence of QPS. We considered InOx, NbTiN, and NbN as highly disor-

dered superconducting materials that could be good candidates for QPSJs. Further analysis

of these materials regarding phase-slip energy for a QPSJ will be discussed. We chose NbN

and performed experiments to optimize NbN sputtering process for the fabrication of NbN

nanowires. A lift-off method is introduced to fabricate NbN nanowires using electron beam

lithography (EBL). Selected NbN nanowires were characterized at temperatures down to 1.5

K.

6.1.2 Materials and device dimensions

We estimated that InOx, NbN, and NbTiN are some of the suitable materials for QPSJs, due to

their high normal resistivity (at low temperatures) and high phase-slip potential energy. We use

equations provided in [119] to estimate the phase-slip energies ES and the appropriate range of

device dimensions.

ES = a
A

ξ
kBTC

Rq

Rξ

exp(−b
Rq

Rξ

) (6.1)
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where A is the length of the wire, ξ is the coherence length, kB is the Boltzmann constant, TC

is the critical temperature, Rq is the quantum resistance and Rξ is the resistance per coherence

length, a and b are unknown constants. Parameters ξ, TC and Rξ are material dependent, while

Rξ is also dependent on device dimensions. The range of suitable physical dimensions for a

particular material was discussed in [119]. The phase slip rate is determined by the ratio of

ES/EL, where EL is the inductive energy. The ratio of ES/EL between the range 0.1 and 1 is

put forth as a good estimate for crossover between superconducting and phase-slip behavior,

which is desired for QPSJs. The typical values for these materials are shown in Table 6.1.

Using practical values extracted from experiments for parameter a and b could predict the

superconducting-insulating transition. The range of desired device dimensions for QPS are

thus estimated.

Material Resistivity (µΩ·cm) Critical temperature (K) Coherence length (nm)
InOx 14× 10−5 [11] 2.7 10.0
NbN 400× 10−6 [140] 13.0 4.0

NbTiN 93× 10−6 [141] 15.0 4.3

Table 6.1: Typical parameter values for materials that are potential candidates for QPS.

6.1.3 Substrate selection and preparation

The choice of substrates has a significant impact on the success of subsequent fabrication

stages. The adhesion between the substrate and deposited materials is a major consideration

since the NbN film is amorphous, and the lattice matching between the substrate and the NbN

film is not a concern. We used silicon substrates that have a surface roughness less than 5 Å

to allow uniform NbN structures to be formed. Two types of silicon substrates were used for

this experiment: doped p-type silicon and intrinsic silicon. The doped p-type silicon has a re-

sistivity measured at 16 Ω· cm. No oxide was grown on these substrates, but a native oxide

was presumed present. All substrates were cleaned in an acetone sonication bath for at least 5

minutes, followed by isopropanol and DI water rinse, and were blown dry by nitrogen.
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6.1.4 DC magnetron sputtering

The main deposition method to grow NbN thin film in this work is DC magnetron sputtering.

Sputtering is a physical vapor deposition (PVD) coating technique where a target material used

as the coating is bombarded with ionized gas molecules, and atoms from the source target are

sputtered off into the plasma. The vaporized atoms are deposited onto the substrate as they

condense as a thin film.

The target material is placed in a vacuum chamber parallel to the substrate to be coated.

The vacuum chamber is pumped down to a base pressure and filled with a high purity inert pro-

cess gas (e.g., Ar). A DC voltage is applied between the anode (the substrate) and the cathode

(the magnetron gun), generating a plasma of energetic species from atoms in the process gas.

Ar has a relatively high mass and has the ability to convey kinetic energy upon impact

during high energy molecular collisions in the plasma, which creates the gas ions that are the

primary driving force of sputter thin film deposition. The electrically neutral Ar gas atoms are

first ionized due to the forceful collision of these gas atoms onto the surface of the negatively

charged source material, which ejects atoms off into the plasma. The ionized Ar gas atoms

are then driven to the positively charged substrate, where the vaporized target coating atoms

condense and form a thin film coating on the substrate to be coated. DC magnetron sputtering

uses magnets behind the cathode to trap electrons over the negatively charged target material,

providing a faster deposition rate. The deposition rate depends on the energy of the accelerated

ions, which in turn depends on the potential difference between the two electrodes.

The high process pressure involved in sputtering can cause sputtered atoms collisions be-

fore reaching the substrate. These collisions change the angle of incidence at which the sput-

tered atoms arrive at the surface of the substrate. The result is that sputtering coating is more

conformal and ideal for the deposition of noncrystalline films and structures. It is also suitable

for applications that require uniform coverage of stepped features, such as the creation of inter-

connects and multi-layer device fabrication. DC magnetron sputtering is a cost-effective way

of applying metal target coatings that are electrically conducting. However, DC Sputtering is
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less effective for non-conducting insulating materials that can take on a polarized charge, such

as dielectric coating materials.

6.1.5 Deposition in CHA Mark 50

Deposition of NbN was carried out in a CHA Mark 50 system manufactured by CHA Industries.

CHA Mark 50 is a high vacuum deposition system that has sputtering and evaporation operation

modes. Samples were mounted onto a 4” wafer that was loaded in the chamber before an

overnight pump-down. A Ti gettering was performed to further reduce the system vacuum. No

materials were deposited on the substrates during this period since the samples were shielded

by a shutter. The base pressure was in the range of 1.5 × 10−7 Torr before NbN deposition.

The power used in sputtering was 1 kW for all the depositions. The Ar pressure and the ratio of

N2/Ar flow rate were varied to obtain the highest TC value. Before the deposition, a two-minute

ion milling was performed to clean the substrate and remove any impurities. A five-minute pre-

sputtering was performed immediately after that, using the same sputtering parameters. This

was used to remove impurities from the surface of the target and achieve a constant deposition

rate. During the deposition, the substrates placed in a disk were rotating at a constant speed to

ensure film uniformity. Details of deposition parameters and measurement results will be given

in the following subsections. Once the deposition was done, the chamber was pumped up, and

the samples were unloaded.

6.1.6 Electron beam lithography

Electron beam lithography (EBL) is a lithography technique that uses a focused beam of elec-

trons to draw custom shapes on a substrate covered with electron beam resist [142]. The elec-

tron beam changes the solubility of the resist, enabling selective removal of either the exposed

or non-exposed areas of the resist by immersing it in the developer.

Unlike photolithography that uses a photomask to expose large areas indiscriminately,

EBL can be used to write patterns into a resist layer without a photomask directly. Another

feature of EBL is that dedicated doses can be assigned to different areas during the exposure

while patterns of different geometries are exposed appropriately. In terms of resolution, EBL is
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much better than photolithography, which is limited by the wavelength of the visible light used

(e.g., a typical UV light has a 365 nm wavelength range). Electrons have a wavelength down

to the picometer range, which can overcome the diffraction limits experienced with optical

lithography. The reported EBL resolution can be less than 10 nm for isolated features and for

features that have a pitch of 30 nm, leading to a density close to 700 Gbit/in2 [143]. The feature

size is not determined by beam size but is limited by forward scattering in the resist, while the

pitch size is limited by secondary electron travel in the resist [144, 145].

In addition to secondary electrons, primary electrons from the electron gun with sufficient

energy to penetrate the resist can be scattered from the resist and/or the substrate. This effect

leads to a larger exposure area compared to the defined exposure area. The forward scattering

is that the electron beam scatters laterally from the beam-defined area as it moves forward into

the resist. The primary electrons are typically deflected by a small angle, and thus statistically

broaden the beam in the resist. The back scattering is due to a collision with a heavy particle and

leads to wide-angle scattering in the substrate. A large enough dose of backscattered electrons

can lead to complete exposure of resist over an area much larger than defined by the beam

spot. Due to the interactions of the primary beam electrons with the resist and substrate, the

developed pattern is wider than the scanned pattern, which is known as the proximity effect.

During exposure, a beam of electrons is generated by an electron gun and accelerated

towards the sample, similar to a scanning electron microscope (SEM). The acceleration voltage,

also known as electron high tension (EHT) voltage, plays an important role in the volume of

interaction between the primary beam and the used material. Increasing EHT voltage causes the

electron beam to penetrate further into the resist/substrate with less forward scattering, which

significantly affects the resolution. Other beam parameters include aperture size, stigmation,

and shift. The magnet array used to deflect the beam has a limited range known as write

field (WF). A typical write field ranges from 100 µm to 1 mm. Larger patterns require stage

movement between different write fields, and write field alignment is the critical step to avoid

stitching problems.
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6.1.7 Electron beam resists and developers

Choosing appropriate electron beam resists is critical to obtain desired patterns and achieve

the desired resolution. Most electron beam resists are polymeric materials whose solubility in a

developer is proportional to their molecular weight. Like photoresists, electron beam resists are

also classified as positive tone resists and negative tone resists. Exposure to electron beams will

cause crosslinking of polymeric chains and an increase of molecular weight in a negative tone

resist while causing chain scission and a decrease of molecular weight in a positive tone resist.

The most commonly used electron beam resists we introduce here are polymethyl methacry-

late (PMMA), copolymer (MMA (8.5) MMA), Zeon electron beam positive-tone (ZEP), and

hydrogen silsesquioxane (HSQ).

PMMA and copolymer

PMMA resist is most commonly used as a high-resolution positive resist for direct-write elec-

tron beam and is also used as a protective coating for wafer thinning, as a bonding adhesive, and

as a sacrificial layer. When exposed at higher dose levels, PMMA becomes a negative resist, as

reported in [146]. Copolymer resist is based on a mixture of PMMA and ∼ 8.5% methacrylic

acid, formulated in the safer solvent ethyl lactate. Due to the chemical properties of methacrylic

acid during the bake step at 200 ◦C in which dehydration leads to ring formation, copolymer

has higher sensitivity and higher contrast than PMMA. Copolymer is commonly used in com-

bination with PMMA in the bi-layer lift-off resist process.

Standard PMMA resists are formulated with 495,000 or 950,000 molecular weight in ei-

ther chlorobenzene or the safer solvent anisole. Depending on the concentration, these products

cover a wide range of film thicknesses, ranging from tens of nanometers to a few microns.

Typically, PMMA is developed in a 1:3 methyl isobutyl ketone (MIBK): isopropanol (IPA)

solution to provide a relatively high resolution. However, higher concentrations of MIBK in

IPA, such as 1:1 and 1:2, are also available if the resolution is not the primary concern. In

addition to MIBK/IPA, IPA mixed with a small proportion of water was also reported as being

an effective developer for PMMA [147]. Recent research has demonstrated an improvement of
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PMMA resolution by using a 3:7 water/IPA developer, which helped them successfully fabri-

cate gratings of minimum size 16 nm equal line spacing [148].

ZEP

ZEP resists are also high-resolution positive tone resists manufactured by the Zeon Corporation.

ZEP resists generally require a lower dose than PMMA, and thus, write time is shorter. Another

feature of ZEP resists is that they have excellent etch resistance, which is better for dry/wet

etching process when etch selectivity is a concern. However, ZEP resists are much expensive

than PMMA resists. Developers for ZEP resist family are ZED-N50, ZED-N60 and ZEP-A.

ZED-N50, and ZED-N60 are for high sensitivity and high resolution, respectively, while ZEP-

A is for thinner resists.

HSQ

HSQ is an inorganic material used as a negative tone resist for EBL. HSQ has excellent plasma

etch resistance and selectivity to silicon. This resist has a better resolution compared to PMMA,

and it has a reported minimum feature size of 2 nm [149]. However, HSQ generally needs a

higher dose (∼ 3× higher than PMMA), resulting in a longer write time. In addition to that,

it has higher line edge roughness than positive tone resists and potentially has more stitching

errors. HSQ is typically developed in tetramethylammonium hydroxide (TMAH). After HSQ

is exposed, it turns into silicon dioxide. Unlike organic resists that are soluble in solvents,

the typical chemical used to remove HSQ is hydrogen fluoride (HF) or buffered oxide etchant

(BOE).

6.1.8 Nanowire pattern definition in Raith e-LINE system

The Raith e-LINE EBL system utilizes thermal field emission filament technology and a laser-

interferometer controlled stage. The system is featured by an accelerating voltage ranging

from 0.5 to 30 kV with a minimum linewidth of 8 nm. The standard write field size is 100 µm,

and the electron beam sequentially exposes each pixel (2 nm) before stitching the write fields

together to generate the final patterns.
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Substrates were prepared as illustrated in Section 6.1.3 before spinning PMMA resists.

Bi-layer resist stacks PMMA 495K/PMMA 950 K were spun onto the substrate to achieve the

best lift-off results, as shown in Figure 6.1. Since the molecular weight of PMMA 495K is

smaller than that of PMMA 950K, PMMA 495K is more sensitive to electron beams. After

the resist stacks are exposed to electron beams, the PMMA 495K layer is slightly over-exposed

and has a bigger opening area after development. This provides an undercut profile that is ideal

for the lift-off process and minimizes the possibility of “lily-pad” folded edges, especially

after directional deposition. The “lily-pad” folded edge, illustrated in Figure 6.2, leading to

non-ideal lift-off results and unexpected impacts on nanowire uniformity and potential device

performance. Although this process has been optimized for lift-off results, the “lily-pad” issue

is still inevitable due to the conformal deposition property of DC magnetron sputtering and the

extremely thin resist thicknesses.

Figure 6.1: Bi-layer resist stacks for lift-off.

Nanowire patterns were designed to fit onto a 5 mm × 5 mm die, which was wire-bonded

to a leadless chip carrier (LCC). Each design contains eight nanowires for a four-point mea-

surement setup. Each nanowire has two leads connected to one side (e.g., V+ and I+), and the

other two leads (e.g., V− and I−) are shared with three other nanowires to maximize lead uti-

lization during cryogenic measurement. The nanowire width and length vary for each different

design. Nanowires are typically positioned close to the center of a standard write field (100 µm

× 100 µm) to avoid stitching errors. The patterns are split to two exposures to reduce exposure

time. The interconnection lines were exposed first using a larger step size and smaller dose

value, followed by the exposure of nanowires using a smaller step size and larger dose value.
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Figure 6.2: SEM image of a “lily-pad” folded edge after lift-off.

The dose values were optimized for the specific length and width of the nanowire. We imple-

mented 1 µm offset at both sides of the nanowires to alleviate the alignment issue between two

exposures, as shown in Figure 6.3. The 100 µm × 100 µm contact pads were written after the

NbN layer was lifted off, using alignment marks for overlay exposure. After that, A layer of

250 nm thick Al was deposited onto the samples, followed by a lift-off process. The nanowire

samples were then diced into 5 mm × 5 mm dies and were packaged for testing.

6.2 Characterization of NbN thin films

6.2.1 Measurement equipment

Cryogenic measurements were mainly carried out in a pulse tube-based cryostat (Cryo Indus-

tries of America), with temperature control from ∼ 1.5 K and up. Each sample was mounted

onto a sample holder that has PCBs for different measurement configurations. An image of

mounted samples is shown in Figure 6.4. Figure 6.4(a) shows that an NbN witness sample
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Figure 6.3: The full EBL mask design for nanowires. Each design contains eight nanowires for
a four-point measurement setup. The figure shows the EBL pattern at different magnifications.
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was mounted on the sample holder, using pogo pins, to perform a four-point resistance mea-

surement. In Figure 6.4(b), a packaged 5 mm × 5 mm NbN nanowire sample was mounted

on a PCB for various measurements. A micro-Ohm meter (Agilent 34420A) was used to mea-

sure DC resistance. Pulse generator, current amplifier, lock-in amplifier and etc., were used to

conduct I-V characteristic, differential resistance measurements at cryogenic temperatures. In

addition, a Physical Property Measurement System (PPMS) was used to conduct DC and AC

resistance measurements with precise temperature control at temperatures down to 1.8 K.

Figure 6.4: The pulse-tube based cryostat measurement setup. (a) An NbN witness sample is
mounted to the sample holder. (b) A 5 mm × 5 mm NbN nanowire sample is wire-bonded to a
leadless chip carrier on a PCB.

6.2.2 Experimental results

NbN was deposited onto an oxidized silicon substrate using different Ar pressures and ratios of

N2/Ar flow rate. The deposition time was 20 minutes, resulting in a thickness from 80 nm to 150

nm. The TC values of different samples are summarized in Table 6.2. The R(T ) measurement

results are shown in Figure 6.5. In each of the cases, the normal state resistance and room

temperature resistance were inversely proportional to TC, except for sample 10, which suggests

that the N2 percentage in sample 10 is too low. Therefore, the film has properties that are

closer to Nb. We noticed that samples 1 and 2 were not superconducting, probably due to very

low Ar pressure. X-ray diffraction (XRD) analysis was performed on these witness samples to
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determine the crystallographic structure of deposited NbN, as shown in Figure 6.6. Sample 9

was measured at two different spots, labeled by S9-1 and S9-2.

Sample number N2/Ar ratio Ar pressure (mTorr) TC (K)
1 0.200 1.5 N/A
2 0.100 1.5 N/A
3 0.060 4.0 6.2
4 0.043 4.5 6.0
5 0.040 4.5 6.8
6 0.040 4.0 8.5
7 0.033 4.5 7.7
8 0.035 4.0 10.0
9 0.027 4.0 11.0

10 0.021 4.0 9.8

Table 6.2: TC of NbN witness samples using different Ar pressures and ratios of N2/Ar flow
rate.

The XRD analysis results suggested that there were multiple NbN crystal structures ex-

isting on these samples. Samples that are superconducting have a peak at 35.5 degrees, while

samples that are not superconducting do not have a peak at 35.5 degrees, which means δ- NbN

might contribute to the superconductivity of these samples. We also noticed that there were

impurities corresponding to a peak at 33 degrees.

The ratio of N2/Ar flow rate was further narrowed down into an optimized region to explore

the maximum TC that could be achieved in this CHA deposition system. These experiments

were performed after an upgrade of the mass flow controller, which resulted in a different ratio

of N2/Ar flow rate compared to the previous experiments. The power and Ar flow rate were

fixed during these experiments. The results are summarized in Table 6.3. The resulting TC is in

a range from 10.3 K to 11.0 K, indicating a maximum TC of∼ 11 K, which was consistent with

all the previous experiments. The following NbN depositions for nanowires were performed

using a typical N2/Ar ratio of 0.1, but a reduced deposition time for thinner films.
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(a)

(b)

Figure 6.5: Resistance vs temperature measurement results for NbN witness samples using
different Ar pressures and ratios of N2/Ar flow rate. (a) Results at a temperature range from 0
K to 250 K. (b) Results at a temperature range from 0 K to 25 K.

6.3 Low temperature characteristics of NbN nanowires

6.3.1 Introduction

NbN nanowires were fabricated using the method introduced in Section 6.1. The nanowires and

interconnection wires were first patterned by EBL. NbN thin film was then deposited onto the
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Figure 6.6: XRD analysis results for NbN witness samples using different Ar pressures and
ratios of N2/Ar flow rate.

N2/Ar ratio Resistance at 293 K (Ω) Resistance at 15 K (Ω) RRR TC (K)
0.081 4.29 11.46 0.375 10.3
0.090 8.19 16.80 0.487 10.7
0.100 5.07 14.86 0.341 11.0
0.107 9.99 16.84 0.593 10.7
0.110 7.30 20.86 0.350 10.8
0.119 7.88 20.03 0.393 10.5

Table 6.3: TC of NbN witness samples using different ratios of N2/Ar flow rate.

samples using CHA Mark 50 at a deposition rate of ∼ 6.5 nm/min for three minutes, followed

by a lift-off process. The contact pads were also defined by EBL. After that, a layer of 250

nm aluminum was deposited and lifted off. The nanowire sample was diced into a 5 mm ×

5 mm die that can be wire-bonded to a leadless chip carrier and fit into a socket on the test

PCB. Nanowires with different widths, lengths, and thicknesses were fabricated and tested to

seek evidence of QPS. However, controlling the parameters in these narrow and thin nanowires

in order to maintain homogeneous behavior across them is not trivial. Even geometrically

identical nanowires fabricated on the same samples tend to exhibit slight variations in behavior.
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(a)

(b)

Figure 6.7: Resistance vs temperature measurement results for NbN witness samples using
different ratios of N2/Ar flow rate. (a) Results at a temperature range from 0 K to 260 K. (b)
Results at a temperature range from 4 K to 20 K.
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In this section, we will show experimental results of selected NbN nanowires and analyze

experimental data using mathematical models.

6.3.2 Temperature dependence of NbN nanowires

Superconducting nanowires of NbN were fabricated from thin films of thickness ∼ 20 nm,

measured by Atomic force microscope (AFM). Prior to the sputtering run for nanowires, a test

NbN run was conducted for a period of 30 minutes, giving a thickness of ∼ 140 nm and a TC

of 10 K. The TC of the witness sample for the nanowire run was 7.9 K, as shown in Figure 6.8.

The TC values for both runs were slightly lower than what we had before, which were typically

11 K for a 30-minutes run and 9 K for a 3-minute run.

Figure 6.8: Resistance vs temperature measurement results for NbN witness samples of two
different NbN runs.

We investigated the temperature dependence of NbN nanowires with different lengths and

widths on different substrates. Figure 6.9 and 6.10 show the results for 5 µm and 10 µm long

NbN nanowires on doped silicon substrates that has a resistivity of 16 Ω· cm. The DC resistance

of each nanowire was measured using a four-point probe method at temperatures down to 3.2
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Figure 6.9: Resistance vs temperature measurement results for 5 µm long NbN nanowires on
doped silicon substrates. Nanowire widths are from 62 nm to 213 nm.

K. DC current of 200 nA from Yokogawa GS200 source meter was injected into the nanowire,

and DC voltage was measured by a nano-volt/micro-ohm meter (Agilent 34420A).

In Figure 6.9 and 6.10, all the nanowires showed a transition at a temperature of ∼ 8 K.

This is due to the superconducting transition for wider NbN interconnection wires, which have

widths up to 10 µm. There are also two nanowires (142 nm in Figure 6.9 or 148 nm in Figure

6.10) that show extremely high resistances, before and after the transition. This indicates that

the high resistances of these two nanowires are probably from the nanowires themselves, not

from interconnection parts. We will have a more detailed discussion regarding the extremely

high residual resistance in the following sections.

Most of the other nanowires shown in Figure 6.9 and 6.10 have resistances less than 1

kΩ at temperatures below 3.5 K, which implies that they probably show zero resistance at

lower temperatures. For example, this is evident in the 213 nm wide nanowire shown in Figure

6.9, which has a sharp transition at ∼ 3.2 K and its resistance drops to a few ohms. This

phenomenon is in agreement with results shown in Figure 6.11 from [17], which was explained

by the LAMH-TAPS model. However, the narrowest nanowires of either 5 µm or 10 µm length
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Figure 6.10: Resistance vs temperature measurement results for 10 µm long NbN nanowires
on doped silicon substrates. Nanowire widths are from 60 nm to 202 nm.

Figure 6.11: Experimental results of MoGe nanowires from [17]. (a) SEM image of an 8 nm
nanowire over the trench in SiN. (b) R(T) curves for insulating nanowires. (c) R(T) curves for
superconducting nanowires. Solid curves suggest fits to the LAMH-TAPS theory.

show very high resistive tails below 8 K. In particular, the 60 nm wide nanowire in Figure 6.10

does not show significant resistance change at temperatures between 3.2 K and 7.8 K, which
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could be a sign of phase-slip phenomena. Further analysis of this nanowire will be presented

in Section 6.3.5.

Figure 6.12: Resistance vs temperature measurement results for 10 µm long NbN nanowires
on intrinsic silicon substrates. Nanowire widths are from 65 nm to 208 nm.

The resistance-temperature results for 10 µm long nanowires on intrinsic silicon substrates

are shown in Figure 6.12. At the same length, the resistances of nanowires on intrinsic silicon

substrates are typically smaller than the resistances of nanowires on doped silicon substrates

at temperatures below TC. Similarly, most of the wide nanowires exhibit low resistance at

temperatures below TC. The 65 nm wide nanowire, however, shows a second transition at a

temperature of 7 K, and the resistance further reduces to a few kΩ. This nanowire probably

behaves like TAPS at temperatures around TC. We classified all these nanowires into three cat-

egories based on their experimental results. The results and analytical results will be presented

in the following subsections.

6.3.3 I-V characteristics of selected wide nanowires

Most of the wide NbN nanowires were expected to be superconducting at temperatures below

7.9 K, according to the R(T ) measurement results shown in Section 6.3.2. To further explore
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the nonlinearity of these nanowires, I-V measurements were conducted at a temperature of ∼

3.2 K. Sweeping DC current was injected into the nanowires by a source meter, and the resulting

DC voltage was measured by a nano-volt/micro-ohm meter. We measured each nanowire at a

low current regime from −1 µA to 1 µA with 10 nA current step size and at a high current

regime from −10 µA to 10 µA with 50 nA current step size.

In Figure 6.13(a), all the nanowires show linear I-V characteristics at currents below 1

µA. In general, the residual resistance is inversely proportional to the width w of the nanowire.

At higher current biases shown in Figure 6.13(b), a transition is observed for most of the

nanowires. This transition is similar to a superconducting-normal transition. The current at

which the transition occurs is similar to the critical current IC of a superconductor. This current

is also proportional to the width of the nanowire. It is also interesting to see non-zero resis-

tances existing in wide NbN nanowires, which may be due to TAPS. These results support our

hypothesis that superconducting properties of NbN dominate in wider NbN nanowires.

We also find similar results in Figure 6.14 for longer nanowires. They all have residual

resistances less than 1 kΩ at bias currents below 1 µA. Only one nanowire shows a transition

at approximately 7.5 µA. The transition in this plot is too fast due to the relatively large step

size. The other nanowires are expected to show transitions at current biases larger than 10 µA.

Nanowires from this sample do not follow the rule of resistance-width dependency, which is

probably because of sample-to-sample variations and inhomogeneity of some nanowires (e.g.,

effects of “lily-paddings”) during the fabrication process. The nanowires shown in Figure 6.15

exhibit even smaller resistances compared to their counterparts shown in Figure 6.14, although

they all have the same length and thickness. For example, the 188 nm wide nanowire in Figure

6.15 has a resistance of∼ 500 Ω while the 184 nm wide nanowire in Figure 6.14 has a resistance

of∼ 800 Ω. This implies that the substrate may affect the low temperature performance of NbN

superconducting nanowires. The critical currents of the three nanowires in Figure 6.15 are also

expected to be greater than 10 µA.

Based on these experimental results and results of other nanowire samples we do not

show in this dissertation, we can imply that the width of NbN superconducting nanowires is a

critical condition for phase-slip phenomena. Specifically, nanowires that are ∼ 20 nm thick are
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(a)

(b)

Figure 6.13: I-V characteristics of 5 µm long NbN nanowires on doped silicon substrates. (a)
Bias current is from −1 µA to 1 µA with 10 nA current step size. (b) Bias current is from −10
µA to 10 µA with 50 nA current step size.
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(a)

(b)

Figure 6.14: I-V characteristics of 10 µm long NbN nanowires on doped silicon substrates. (a)
Bias current is from −1 µA to 1 µA with 10 nA current step size. (b) Bias current is from −10
µA to 10 µA with 50 nA current step size.
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(a)

(b)

Figure 6.15: I-V characteristics of 10 µm long NbN nanowires on intrinsic silicon substrates.
(a) Bias current is from −1 µA to 1 µA with 10 nA current step size. (b) Bias current is from
−10 µA to 10 µA with 50 nA current step size.
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expected to show relatively large residual resistance at temperatures below TC if their widths

are below ∼ 70 nm. This could be a result of TAPS or QPS. Wider nanowires of the same

thickness may still show small residual resistances at temperatures below TC, probably due

to TAPS. In the following sections, we will focus on the narrowest nanowires we fabricated

and show experimental results and analysis regarding the existence of phase-slip phenomena in

ultra-narrow NbN nanowires.

6.3.4 Characterization of selected nanowires that showed extremely high resistance

The nanowires of interest in this work were the narrowest ones that may exhibit phase-slips,

as suggested in [55]. Selected nanowires that had widths below 60 nm have been tested in a

pulse tube system and a PPMS system. An SEM image of a typical narrow nanowire is shown

in Figure 6.16. This nanowire was fabricated on an intrinsic silicon substrate, with 20 µm

length, 57 nm width, and 20 nm thickness. We can see some brighter areas along the edge in

Figure 6.16(b), which are presumed to be “lily-pad” folded edges. In Figure 6.16(a), we can

see that the nanowire is a little away from the centers of two interconnection wires because

of the alignment error between two exposures in EBL. This problem was potentially fixed by

adding a constant offset during the second exposure.

Figure 6.16: SEM images of NbN nanowire with 20 µm length, 57 nm width and 20 nm
thickness. (a) Image of the nanowire. (b) Zoom-in view of the central area of this nanowire.
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We started by studying the AC resistance of this nanowire at different temperatures. Using

the Electrical Transport Option (ETO) module of the PPMS system, we measured the AC resis-

tance of the nanowire from 14 K down to 1.8 K. The AC testing current has an amplitude of 10

nA and a frequency of 1.5 Hz. In Figure 6.17, the AC resistance increases as the temperature

drops from 14 K, and it starts to decrease at ∼ 10 K, which is slightly higher than TC. The

resistance drop at temperatures around TC is due to the superconducting transition of wider in-

terconnection NbN wires. The resistance has the lowest value at ∼ 8.7 K and shows an upturn

below that temperature. We noticed that the AC resistance of this nanowire was extremely high

compared to the other nanowires we showed earlier in this chapter. The resistance is more than

10 MΩ even after the transition, which suggests a superconducting-insulating transition in this

nanowire, similar to the results shown in [17].

Figure 6.17: Experimental results of AC resistance vs temperature for a 57 nm wide nanowire.
The AC testing current has an amplitude of 10 nA and a frequency of 1.5 Hz.

The I-V measurement was carried out in the pulse tube system at a base temperature of ∼

3.2 K. The results shown in Figure 6.18(a) suggest a critical voltage of ∼ 100 mV at zero bias

current, which is presumed to be the Coulomb blockade phenomenon. As the sweeping bias

current increases to∼ 2.3 µA, a superconducting-normal transition happens, indicating that the

120



critical current of this nanowire is close to 2.3 µA. These results show some similarities to the

results of coherent quantum phase-slip presented in [56], which were from an NbN nanowire

with a length of 9 µm, a width of 60 nm, and a thickness of 18 nm.

We used two different measurement setups to explore the underlying nonlinearity of this

nanowire. The first setup is shown in Figure 6.19, which was for the measurements in the pulse

tube system at a fixed temperature. These experiments were carried out at a temperature of 3.2

K, which is the lowest stable temperature in this system. Slowly ramped DC bias current was

modulated by a small AC current. The resulting AC voltage, measured by the SR830 lock-in

amplifier, is proportional to the AC resistance (differential resistance dV/dI). The same mea-

surement was also carried out in the PPMS system, which provided a more precise temperature

control and a more flexible configuration using the build-in ETO module. The experimental

results are shown in Figure 6.20.

The AC testing current has an amplitude of 10 nA and a frequency of 1.5 Hz. The bias

current ranges from −1 µA to 1 µA with 50 nA step size. At all different temperatures shown

in Figure 6.20, the AC resistance increases significantly as bias current drops at the low bias

regime. This is presumed to be the Coulomb blockade, which is consistent with the results

shown in Figure 6.18(a). We found that it was hard to capture the details within the Coulomb

blockade area due to the relatively large step size. The peak value of AC resistance at each

temperature does not follow a trend of either increasing or decreasing. We tested this sample

again in the PPMS system at higher temperatures using a step size of 2 nA.

Figure 6.21 shows the experimental results of AC resistance vs. DC bias current at 10 K

and 11 K. To our surprise, at temperatures higher than TC, the nanowire also exhibits Coulomb

blockade at low bias regime. Therefore, the Coulomb blockade is probably not due to any co-

herent quantum phenomena, particularly quantum phase-slip phenomena. To demonstrate the

repeatability of these results, we performed more measurements using different methods and

techniques. For example, we added low pass filters at input lines to block any high-frequency

noise. In addition to that, a different experimental setup was used to explore the I-V charac-

teristics. Instead of the current biasing scheme, we used slowly sweeping DC voltage to bias

the nanowire and used SR570 low noise current preamplifier to sense the small DC current and
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(a)

(b)

Figure 6.18: I-V characteristics of a 20 µm long and 57 nm wide NbN nanowire on an intrinsic
silicon substrate. (a) Bias current is from −1 µA to 1 µA with 10 nA current step size. (b) Bias
current is from −10 µA to 10 µA with 50 nA current step size.
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Figure 6.19: Block diagram of measurement setup for differential resistance measurement in
the pulse tube system.

Figure 6.20: Experimental results of AC resistance vs DC bias current as a function of temper-
ature. The AC testing current has an amplitude of 10 nA, a frequency of 1.5 Hz and a step size
of 50 nA.

measured the output of SR570 by a nano-volt/micro-ohm meter. The resulting I-V characteris-

tic curves were similar to the curves shown in Figure 6.18. The AC differential resistance was

also re-measured by using AC currents with different amplitudes and frequencies, which did not

provide any significantly different experimental results. We found that the Coulomb blockade
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Figure 6.21: Experimental results of AC resistance vs DC bias current as a function of temper-
ature. The AC testing current has an amplitude of 10 nA, a frequency of 1.5 Hz and a step size
of 2 nA.

also existed in some other nanowires (e.g., the 142 nm wide nanowire in Figure 6.9) regardless

of their geometries and substrate types, as shown in Figure 6.22. This phenomenon usually did

not exist at room temperature but became more pronounced as temperature decreased. There-

fore, the results shown in this section are repeatable and not due to QPS. One hypothesis is

that the Coulomb blockade exhibited by the nanowire could be a result of unfiltered noise in-

side or outside the testing equipment and systems. Another possible explanation is that a low

capacitive tunnel junction may exist in this nanowire, which significantly reduces electrical

conductance under a certain bias threshold[120]. Because the capacitance is extremely small,

the voltage build-up on the capacitor is relatively large and can prevent other electrons from

tunneling. That is the reason why the conductivity was suppressed at low current bias.

6.3.5 Mathematical analysis of a selected narrow nanowire that showed high resistive tail

In Section 6.3.2, we show that some narrow nanowires have resistive tails at temperatures below

TC in the R(T ) measurement results, which could be a sign of phase-slips. In this section, we
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Figure 6.22: Temperature dependent I-V characteristics of a 142 nm wide nanowire on doped
silicon substrate. The Coulomb blockade phenomenon did not exist at room temperature, but
became more pronounced as temperature decreased.

use mathematical phase-slip models (both TAPS and QPS) to fit the experimental data in search

of evidence of phase-slip phenomena. An example is a nanowire that has a width of 60 nm,

a length of 10 µm, and a thickness of 20 nm on the doped silicon substrate. In addition to

the R(T ) results shown in Figure 6.10, we performed I-V measurements for this nanowire at

a temperature of 3.2 K using the current biasing method. The I-V experimental results are

shown in Figure 6.23. According to these results, this nanowire shows resistive behavior at 3.2

K when the bias current is below 10 µA. The resistance is over 300 kΩ, which is consistent

with the results shown in Figure 6.10. Furthermore, the temperature-dependent I-V curves

shown in Figure 6.24 were obtained by using the voltage biasing method we introduced in the

previous section. Slowly ramped DC voltage was applied on the nanowire, and the resulting

DC current was amplified by the SR570 low noise current preamplifier and measured by the

nano-volt/micro-ohm meter. At all three different temperatures, this nanowire shows resistive

behaviors, and the resistance decreases slightly as temperature decreases from 7.2 K to 3.2 K.

These results are also consistent with the results shown in Figure 6.23.
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(a)

(b)

Figure 6.23: I-V characteristics of a 60 nm wide, 10 µm long and 20 nm thick NbN nanowire
on the doped silicon substrate. (a) Bias current is from −1 µA to 1 µA with 10 nA current step
size. (b) Bias current is from −10 µA to 10 µA with 50 nA current step size.
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Figure 6.24: Temperature dependent I-V characteristics of a 60 nm wide, 10 µm long and 20
nm thick NbN nanowire on the doped silicon substrate. The nanowire shows resistive behaviors
at temperatures of 3.2 K, 5.2 K and 7.2 K.

We used a TAPS model and a QPS model to fit R(T ) data of this nanowire. The TAPS

model is described in [150], and defined by the following equations:

RTAPS(T ) = Rne
−∆F/kBT (6.2)

∆F (T ) ≈ 0.83[L/ξ(0)](Rq/Rn)kBTC(1− T/TC)3/2 (6.3)

where ξ(0) is the GL coherence length at 0 K. The normal state resistance is estimated to be

410 kΩ, which is the resistance right after superconducting transition. This resistance does not

include the resistance of wider interconnection wires, which is nearly zero after the transition.

The GL coherence length we used in this fitting is 5 nm, an estimate from [151]. The QPS

model was proposed by Golubev et al. [152, 153], given by the following equations:

RQPS(T ) = BRqSQPS
L

ξ(T )
e−SQPS (6.4)
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SQPS = C
Rq

Rn

L

ξ(T )
(6.5)

ξ(T ) = 0.907ξ(0)(1 + (1− 0.25t)ξ(0)/t)−1/2(1− t2)−1/2 (6.6)

where ξ(T ) is the GL coherence length with t = T/TC, and B and C are fitting parameters.

The values for fitting parameters were chosen to be B = 0.15 and C = 0.085 in order to fit the

QPS model.

Figure 6.25: TAPS model and QPS model are used to fit experimental data. The black curve
shows the experimental data of R(T ) results for a 60 nm wide, 10 µm long and 20 nm thick
nanowire. The red curve and blue curve show the fits for TAPS model and QPS model, respec-
tively.

In Figure 6.25, we observe that the resistance in a TAPS model drops significantly at tem-

peratures below TC due to the suppression of thermal fluctuation at very low temperatures. The

QPS model is used to predict R(T ) dependence at temperatures below TC. In this model, the

resistance approaches zero at a temperature of TC and has an upturn below TC. Therefore, this

QPS model is not appropriate for fitting data at temperatures around TC, and we do not include

data of the QPS model at temperatures higher than 6 K in this fitting. Using the appropriate fit-

ting parameters, the QPS model has a good fit to the experimental data at temperatures between
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1.5 K and 6 K. According to these results, the nanowire discussed here does not show any sim-

ilarities to TAPS. The R(T ) measurement results of this nanowire may potentially show a sign

of incoherent QPS. Further experiments at lower temperatures down to mK will help confirm

the QPS phenomenon in this nanowire. It is also interesting to see whether this nanowire shows

coherent QPS behaviors (e.g., Coulomb blockade phenomenon) at lower temperatures.

6.4 Summary

In this chapter, we provided an overview of the material selection, fabrication techniques and

methods, design and measurement configurations used in this work. We discussed the de-

velopment of our NbN thin film compositions and introduced the methods to fabricate NbN

nanowires. We also presented characterization results of NbN thin films and low temperature

characteristics of NbN nanowires with different geometries on different substrates. We showed

various of experimental results of selected nanowires that showed different electrical behaviors

and also implemented mathematical TAPS and QPS models to fit experimental data.

We grew NbN thin films on an oxidized silicon substrate via DC magnetron sputtering

technique. We optimized the ratio of N2/Ar flow rate and Ar pressure to obtain the possible

highest TC of NbN in CHA Mark 50 deposition system. We used EBL to define nanowire

patterns on bi-layer PMMA resist stacks, followed by deposition of NbN thin film and lift-off.

The NbN nanowires were thus formed on substrates of interest, which were low-conductivity

p-type silicon substrate and the intrinsic silicon substrate. The TC of our NbN was 11 K for 150

nm thick films, and we expected to see a reduction of TC as thickness reduced to ∼ 20 nm. The

TC of 20 nm thick NbN was 8 - 9 K. As the coherence length is inversely proportional to TC,

there is always a trade-off between coherence length and critical temperature. Thus, we believe

that TC from a range of 8 - 9 K might be good enough for nanowires to exhibit QPS.

We presented the low temperature characteristics of nanowires fabricated from thin films

of NbN. The temperature dependence of resistance for most of the nanowires showed an in-

creasingly insulating behavior as dimensions were confined through the reduction of widths.

This is due to the disorder in the electrical characteristics as the current path in the material is

reduced. Nanowires with widths greater than 65 nm were demonstrated to be superconducting
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at temperatures below 7.9 K through measurement results of resistance-temperature depen-

dency and I-V characteristic curves. The critical current IC of most of the wider nanowires was

proportional to the width of the nanowire.

We also observed different electrical characteristics in some of the narrow nanowires.

We used small AC testing current to obtain temperature dependence of AC resistance, which

showed a very high resistive tail at temperatures below TC. The I-V characteristic curve in-

dicated that a potential Coulomb blockade existed in one narrow nanowire. At low current

bias, the current was nearly zero before the voltage reached a critical voltage. At high cur-

rent bias, the nanowire showed a critical current value of ∼ 2.3 µA. These results indicate that

the nanowire has a nonlinear I-V characteristic, which behaves like an insulator at a low bias

regime while behaves like a superconductor at high a bias regime. The DC bias current de-

pendence of differential resistance measurements was carried out in both the pulse tube system

and the PPMS system. The results were consistent with the previous results. However, we also

observed Coulomb blockade behavior at temperatures higher than TC, which suggested that the

observed phenomenon in this nanowire was not due to QPS. More experiments were performed

for this nanowire, and repeatable results were observed. These unexplained phenomena were

expected to be a result of unfiltered noise or low-capacitance tunnel junctions formed in this

device.

More efforts have been put into this work in search of evidence of phase-slips, in addition

to the experiments we discussed earlier. We used the TAPS model and QPS model to fit experi-

mental data of a narrow nanowire that showed a very high resistive tail at low temperatures. The

TAPS model suggested a significant reduction of resistance as temperature decreased, which

was not consistent with experimental data. However, using appropriate fitting parameters for a

QPS model, the mathematical model could fit the experimental data. Therefore, this nanowire

was expected to show some behaviors of QPS. We can use lower temperatures measurements,

for example, in a dilution refrigerator, to help conclude that the observed phenomenon is indeed

QPS. The remaining high resistance at even lower temperatures (e.g., mK) could be evidence
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for QPS. The demonstration of incoherent QPS through R(T ) measurements in a dilution re-

frigerator, and more interestingly, the demonstration of coherent QPS are the goals of future

research on this topic.

In the next chapter, we will summarize all the work presented in this dissertation, includ-

ing the design and simulation of QPSJ-based neuromorphic systems and the design, fabrica-

tion, and testing of superconducting NbN nanowires. We will discuss the future improvement

of QPSJ-based neuromorphic circuits and potential applications of QPSJ-based neuromorphic

systems. New methods to fabricate nanowires, design of nanowires, and future experiments to

demonstrate QPS will also be presented.
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Chapter 7

Conclusion

7.1 Conclusions

Neuromorphic computing, as a non-von Neumann computational architecture, has received

more and more attention recently. Inspired by human brains, neuromorphic computing has

brought together electronics, biology, materials, and algorithm. The massive interconnections

in CMOS-based neuromorphic hardware (e.g., VLSI neuromorphic systems) require significant

power, which is several orders of magnitude higher than a human brain, to perform the same

functionality. However, superconductors that provide loss-less interconnections could be an

ideal candidate for large-scale neuromorphic computing. In this dissertation, we contribute to

the development of superconducting neuromorphic hardware systems using an emerging QPSJ

technology with innovative circuit design.

We presented circuit design to emulate multiple functional components existing in a bio-

logical nervous system, such as neuron (soma), synapse, axon, and dendrite. A simplified STDP

learning circuit was also proposed to perform potential learning functions for unsupervised

learning. These circuits can be combined to form a spiking neural network with an embedded

learning algorithm. The functionalities of proposed neuromorphic circuits were demonstrated

through circuit simulation in WRspice using a QPSJ SPICE model.

Circuit performance with respect to power dissipation and processing speed has been dis-

cussed in detail. The equations used to estimate energy and delay per spiking event are pro-

vided. The calculation results show that the energy per spiking event for a QPSJ neuron circuit

is typically several orders of magnitude less than the energy dissipation from many competing
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technologies. The processing speed of QPSJ technology is expected to be at the same level as

JJ technology, which is as fast as hundreds of GHz or even faster. We also showed the sim-

ulation results of power dissipation in a simple learning circuit. The experimental challenges

of QPSJ technology, and circuit design challenges such as scalability and tolerance, have been

addressed. The promising simulation and calculation results also motivated us to fabricate

reproducible and controllable QPSJs.

We showed the efforts that have been made to develop NbN sputtering process and fabri-

cate ultra narrow superconducting nanowires in search of quantum phase-slips. We compared

different superconducting materials that are suitable for QPS based on the ratio of phase-slip

energy and inductive energy. The methods used to deposit NbN thin films and fabricate NbN

nanowires from NbN thin film are introduced. We used EBL to define nanowire patterns and

the lift-off method to transfer NbN nanowires onto silicon substrates. The narrowest nanowire

we have successfully fabricated is∼ 50 nm wide. We characterized NbN thin films usingR(T )

measurement results and XRD analysis results, based on which we developed NbN sputtering

process. The highest TC of deposited NbN was∼ 11 K at a thickness of 140 nm and TC reduced

to 8 - 9 K at a thickness of 20 nm.

We compared experimental results of nanowires with different lengths and widths on dif-

ferent substrates. The wider nanowires (widths from 92 nm to 208 nm) typically showed su-

perconductivity, as demonstrated by R(T ) and I-V measurement results. We also noted that

the nanowires on the doped silicon substrate had more residual resistance compared to the

nanowires on the intrinsic silicon substrate, even they had similar geometries. Most of these

nanowires exhibited a critical current IC with a value below 10 µA.

One of the narrowest nanowires appeared to show some QPS characteristics. We observed

very high residual resistance (more than 11 MΩ) below TC in this nanowire. I-V measurement

results showed a critical voltage of ∼ 100 mV at zero bias current and a critical current of 2.3

µA. A Coulomb blockade was formed at low bias current, as seen from differential resistance

(dV/dI) measurement results. This phenomenon did not only exist at temperatures below TC,

but also at temperatures much higher than TC. We have demonstrated that these results were

repeatable through experiments using different measurement setups. This phenomenon was
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expected to be a result of noise or an unexpected low-capacitance tunnel junction formed in

this nanowire.

Phase-slip models, including the TAPS model and QPS model, were used to fit the R(T )

measurement results of a narrow nanowire. We observed that in a TAPS model, the residual

resistance dropped fast and approached zero at ∼ 6 K as temperature decreased. The TAPS

model is not consistent with our experimental data. The QPS model, when using appropriate

fitting parameters, has a good fit for the experimental data. The very high residual resistance

that appeared at temperatures down to 1.5 K is expected to remain when the temperature keeps

decreasing. We look forward to performing more experiments to demonstrate QPS in future

work, as discussed in the following section.

7.2 Future work

Design of superconducting neuromorphic circuits and systems based on QPSJs, and fabrication

of reproducible and controllable QPSJs are ongoing research topics. The work we presented

here is only a small step towards the successful applications of QPSJ technology in the neuro-

morphic computing area.

A human brain has billions of neurons and trillions of synaptic connections. To emulate a

human brain, we need a very large neural network consisting of functional neurons, synapses,

etc. This requires future work on combining different circuits, tuning parameters, dealing with

fan-in and fan-out challenges, and applying appropriate learning algorithms. Improving cir-

cuit tolerance is another big concern. We mentioned that some of the QPSJ-based circuits had

very small operating margins. This could be an issue when a neural network is scaled up.

Therefore, optimizing circuit design to improve circuit tolerance is a necessary step towards

a large-scale neuromorphic system. Although much superconducting neuromorphic hardware

has been proposed since the last few decades, we could hardly witness any physical imple-

mentations and practical applications of these advanced technologies. To advance QPSJ-based

neuromorphic hardware to a useful point, we envision many useful applications of this hard-

ware platform, such as pattern recognition and character recognition. This requires ongoing
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efforts on the aforementioned integration of different circuits to build a large network, develop-

ment of encoding and decoding methods for high-speed signals, training with a large dataset,

and performing real-time learning.

The experimental results of NbN nanowires presented in this dissertation are a starting

point for exploring fabrication and characterization methods for QPSJs. To obtain reproducible

QPSJs, using different materials and fabrication methods are necessary. Other superconducting

materials such as NbTiN, InOx and NbSi can also be used for the fabrication of supercon-

ducting nanowires. We only used PMMA resist and lift-off method to fabricate nanowire in

this work. There are more potential fabrication methods, such as dry etching method and ion

milling method, which could help make high-quality nanowires and further reduce the width,

as mentioned in [56]. Dry etching (e.g., reactive ion etching) is a more general approach to fab-

ricating nano-scale devices. Using negative tone resist or positive tone resist along with stencil

patterns, the defined nanowire patterns are protected by resist during etching. An advantage of

this technique is that any over-etching will only result in narrower nanowires, which are desired

in this work. In addition to that, nanowires made by dry etching do not exhibit “lily-paddings”,

which can be easily found in the lift-off process. As we discussed in Section 6.1.2, QPS is ex-

pected to exist in nanowires that have certain geometries, ratios of QPS energy, and inductive

energy, and are embedded in high impedance environment [138]. This may require fabrication

of additional circuit elements, such as high-resistance resistors and inductors of high kinetic

inductance in series with the nanowire, as seen in [56, 51]. One ongoing experiment is us-

ing a focused ion beam method, proposed in [154], to irradiate NbN and potentially make the

superconducting-insulating transition in NbN.

In this dissertation, we showed experimental results of DC characteristics. The future

work also includes experiments on AC characteristics of a QPSJ (i.e., dual Shapiro steps),

which have not been experimentally demonstrated. Another interesting point is the modulation

of critical voltage VC of QPSJs. Experimental results have shown that the critical voltage of a

TiN nanowire can be tuned in a magnetic field [139]. The critical voltage of a single-charge

transistor made of two QPSJs and a capacitor island can be tuned by modulating the charge on

the capacitor island [103]. Inspired by these promising results, we expect to see that the critical
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voltage of a single QPSJ can be modulated by the charge on a shunt capacitor in future studies.

Most of the experimental results I presented in this dissertation were carried out at temperatures

above 1.5 K. We can perform further measurements in a dilution refrigerator to confirm the

QPS behaviors in some of these nanowires, as we work towards repeatable and controllable

QPS devices at temperatures near and above 4 K. Once reproducible and controllable QPSJs

are successfully fabricated, the next step is to fabricate and test simple neuromorphic circuits,

such as the IFN circuit.

In conclusion, we presented an emerging superconducting technology based on quantum

phase-slip junctions (QPSJs) along with a corresponding QPSJ SPICE model used to explore

applications in neuromorphic circuit design. We showed a family of neuromorphic circuits to

emulate their biological counterparts and demonstrated individual and combined circuit func-

tions through simulations in WRspice. Simplified and complex STDP learning circuits were

also proposed to potentially support the realization of unsupervised learning functions in QPSJ-

based superconducting neuromorphic systems. In addition, we performed experiments to ex-

plore important fabrication conditions for QPSJs by fabricating ultra-narrow NbN nanowires

and characterizing them at temperatures down to∼ 1.5 K. All the work presented in this disser-

tation is towards the fabrication and testing of functional neuromorphic circuits using emerging

QPSJ and QPSJ+JJ technologies, which are expected to advance superconducting neuromor-

phic hardware to a high performance level that is competitive with corresponding semiconduct-

ing approaches.
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[77] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synaptic efficacy

by coincidence of postsynaptic aps and epsps,” Science, vol. 275, no. 5297, pp. 213–215,

1997.

[78] Y. Dan and M.-m. Poo, “Spike timing-dependent plasticity of neural circuits,” Neuron,

vol. 44, no. 1, pp. 23–30, 2004.

[79] J. M. Young, W. J. Waleszczyk, C. Wang, M. B. Calford, B. Dreher, and K. Obermayer,

“Cortical reorganization consistent with spike timing–but not correlation-dependent

plasticity,” Nature neuroscience, vol. 10, no. 7, pp. 887–895, 2007.

[80] Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, and X. J. Zhu, “Synaptic learning

and memory functions achieved using oxygen ion migration/diffusion in an amorphous

ingazno memristor,” Advanced Functional Materials, vol. 22, no. 13, pp. 2759–2765,

2012.

145



[81] K. D. Cantley, A. Subramaniam, H. J. Stiegler, R. A. Chapman, and E. M. Vogel, “Neu-

ral learning circuits utilizing nano-crystalline silicon transistors and memristors,” IEEE

transactions on neural networks and learning systems, vol. 23, no. 4, pp. 565–573, 2012.

[82] Y. Zhang, Z. Zeng, and S. Wen, “Implementation of memristive neural networks with

spike-rate-dependent plasticity synapses,” in Neural Networks (IJCNN), 2014 Interna-

tional Joint Conference on. IEEE, 2014, pp. 2226–2233.

[83] J. Lisman and N. Spruston, “Questions about stdp as a general model of synaptic plas-

ticity,” Spike-timing dependent plasticity, vol. 26, p. 53, 2010.

[84] S. Mitra, S. Fusi, and G. Indiveri, “Real-time classification of complex patterns using

spike-based learning in neuromorphic VLSI,” IEEE Transactions on Biomedical Circuits

and Systems, vol. 3, no. 1, pp. 32–42, 2009.

[85] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. In-

diveri, “A reconfigurable on-line learning spiking neuromorphic processor comprising

256 neurons and 128k synapses,” Frontiers in neuroscience, vol. 9, p. 141, 2015.

[86] G. G. Turrigiano and S. B. Nelson, “Homeostatic plasticity in the developing nervous

system,” Nature Reviews Neuroscience, vol. 5, no. 2, pp. 97–107, 2004.

[87] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition using spike-

timing-dependent plasticity,” Frontiers in computational neuroscience, vol. 9, 2015.

[88] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to device variations in a

spiking neural network with memristive nanodevices,” IEEE Transactions on Nanotech-

nology, vol. 12, no. 3, pp. 288–295, 2013.

[89] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as an effective

description of neuronal activity,” Journal of neurophysiology, vol. 94, no. 5, pp. 3637–

3642, 2005.

[90] Y. Mizugaki, K. Nakajima, Y. Sawada, and T. Yamashita, “Superconducting neural cir-

cuits using fluxon pulses,” Applied physics letters, vol. 62, no. 7, pp. 762–764, 1993.

146



[91] ——, “Implementation of new superconducting neural circuits using coupled squids,”

IEEE transactions on applied superconductivity, vol. 4, no. 1, pp. 1–8, 1994.

[92] A. E. Schegolev, N. V. Klenov, I. I. Soloviev, and M. V. Tereshonok, “Adiabatic su-

perconducting cells for ultra-low-power artificial neural networks,” Beilstein journal of

nanotechnology, vol. 7, no. 1, pp. 1397–1403, 2016.

[93] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new Josephson-

junction technology for sub-terahertz-clock-frequency digital systems,” IEEE Transac-

tions on Applied Superconductivity, vol. 1, no. 1, pp. 3–28, 1991.

[94] H. Suzuki, N. Fujimaki, H. Tamura, T. Imamura, and S. Hasuo, “A 4K Josephson mem-

ory,” IEEE Transactions on Magnetics, vol. 25, no. 2, pp. 783–788, 1989.

[95] N. V. Klenov, A. E. Schegolev, I. I. Soloviev, S. V. Bakurskiy, and M. V. Tereshonok,

“Energy efficient superconducting neural networks for high-speed intellectual data pro-

cessing systems,” IEEE Transactions on Applied Superconductivity, vol. 28, no. 7, pp.

1–6, 2018.

[96] K. Berggren, Q. Xia, K. K. Likharev, D. B. Strukov, H. Jiang, T. Mikolajick, D. Querlioz,

M. Salinga, J. R. Erickson, S. Pi et al., “Roadmap on emerging hardware and technology

for machine learning,” Nanotechnology, vol. 32, no. 1, p. 012002, 2020.

[97] E. Varoquaux and O. Avenel, “Phase slip phenomena in superfluid helium,” Physica B:

Condensed Matter, vol. 197, no. 1-4, pp. 306–314, 1994.

[98] K. C. Wright, R. Blakestad, C. Lobb, W. Phillips, and G. Campbell, “Driving phase slips

in a superfluid atom circuit with a rotating weak link,” Physical review letters, vol. 110,

no. 2, p. 025302, 2013.

[99] N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in

one-or two-dimensional isotropic heisenberg models,” Physical Review Letters, vol. 17,

no. 22, p. 1133, 1966.

147



[100] J. Lukens, R. Warburton, and W. Webb, “Onset of quantized thermal fluctuations in”

one-dimensional” superconductors,” Physical Review Letters, vol. 25, no. 17, p. 1180,

1970.

[101] R. Newbower, M. Beasley, and M. Tinkham, “Fluctuation effects on the superconducting

transition of tin whisker crystals,” Physical Review B, vol. 5, no. 3, p. 864, 1972.

[102] C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M. Tinkham, “Quantum phase

slips in superconducting nanowires,” Physical review letters, vol. 87, no. 21, p. 217003,

2001.

[103] T. Hongisto and A. Zorin, “Single-charge transistor based on the charge-phase duality of

a superconducting nanowire circuit,” Physical Review Letters, vol. 108, no. 9, p. 097001,

2012.

[104] K. Y. Arutyunov, T. T. Hongisto, J. S. Lehtinen, L. I. Leino, and A. L. Vasiliev, “Quantum

phase slip phenomenon in ultra-narrow superconducting nanorings,” Scientific reports,

vol. 2, no. 1, pp. 1–7, 2012.

[105] J. S. Langer and V. Ambegaokar, “Intrinsic resistive transition in narrow superconducting

channels,” Physical Review, vol. 164, no. 2, p. 498, 1967.

[106] V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” in On Super-

conductivity and Superfluidity. Springer, 2009, pp. 113–137.

[107] A. J. van Run, J. Romijn, and J. E. Mooij, “Superconduction phase coherence in very

weak aluminium strips,” Japanese Journal of Applied Physics, vol. 26, no. S3-2, p.

1765, jan 1987. [Online]. Available: https://doi.org/10.7567/jjaps.26s3.1765

[108] R. F. Voss and R. A. Webb, “Macroscopic quantum tunneling in 1-µm nb josephson

junctions,” Physical Review Letters, vol. 47, no. 4, p. 265, 1981.

[109] L. Jackel, J. Gordon, E. Hu, R. Howard, L. Fetter, D. Tennant, R. Epworth, and

J. Kurkijärvi, “Decay of the zero-voltage state in small-area, high-current-density

josephson junctions,” Physical Review Letters, vol. 47, no. 9, p. 697, 1981.

148



[110] J. M. Martinis, M. H. Devoret, and J. Clarke, “Experimental tests for the quantum be-

havior of a macroscopic degree of freedom: The phase difference across a josephson

junction,” Physical Review B, vol. 35, no. 10, p. 4682, 1987.

[111] A. Davidson and M. Beasley, “Duality between superconducting and semiconducting

electronics,” IEEE Journal of Solid-State Circuits, vol. 14, no. 4, pp. 758–762, 1979.

[112] K. Likharev, “Single-electron transistors: Electrostatic analogs of the dc squids,” IEEE

transactions on magnetics, vol. 23, no. 2, pp. 1142–1145, 1987.

[113] A. Kadin, “Duality and fluxonics in superconducting devices,” Journal of applied

physics, vol. 68, no. 11, pp. 5741–5749, 1990.

[114] A. Larkin, K. Likharev, and Y. N. Ovchinnikov, “Secondary quantum macrpscopic ef-

fects in weak superconductivity,” Physica B+ C, vol. 126, no. 1-3, pp. 414–422, 1984.

[115] A. Zaikin and S. Panyukov, “Dynamics of a quantum dissipative system: Duality be-

tween coordinate and quasimomentum spaces,” Physics Letters A, vol. 120, no. 6, pp.

306–311, 1987.

[116] K. Likharev and A. Zorin, “Theory of the bloch-wave oscillations in small josephson

junctions,” Journal of low temperature physics, vol. 59, no. 3, pp. 347–382, 1985.

[117] I. S. Beloborodov, F. Hekking, and F. Pistolesi, “Influence of thermal fluctuations on

an underdamped josephson tunnel junction,” in New Directions in Mesoscopic Physics

(Towards Nanoscience). Springer, 2003, pp. 339–349.

[118] W. Guichard and F. W. Hekking, “Phase-charge duality in josephson junction circuits:

Role of inertia and effect of microwave irradiation,” Physical Review B, vol. 81, no. 6,

p. 064508, 2010.

[119] J. Mooij, G. Schön, A. Shnirman, T. Fuse, C. Harmans, H. Rotzinger, and A. Verbruggen,

“Superconductor–insulator transition in nanowires and nanowire arrays,” New Journal of

Physics, vol. 17, no. 3, p. 033006, 2015.

149



[120] D. Averin and K. Likharev, “Coulomb blockade of single-electron tunneling, and coher-

ent oscillations in small tunnel junctions,” Journal of low temperature physics, vol. 62,

no. 3, pp. 345–373, 1986.

[121] J. B. Reece, L. A. Urry, M. L. Cain, S. A. Wasserman, P. V. Minorsky, R. B. Jackson

et al., Campbell biology. Pearson Boston, 2011, vol. 9.

[122] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik, R. Etienne-Cummings,
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Appendix A

Device Parameters in WRspice Simulation

Circuit simulation in this dissertation has been performed in WRspice using a QPSJ SPICE

model described in [155]. In this chapter, the device parameters for circuit simulation in WR-

spice are presented as follows.

Component Value Comment
Vin 1 mV Input voltage

Q1, Q2 0.7 mV Critical voltage
C 0.23 fF Capacitance
Vb 1 mV Bias voltage

Table A.1: Device parameters for the simulation shown in Figure 3.2.

Component Value Comment
Vin 1 mV Input voltage

Q1, Q2 0.7 mV Critical voltage
C 0.5 fF Capacitance
Vb 1 mV Bias voltage

Table A.2: Device parameters for the simulation shown in Figure 3.4.

Component Value Comment
Vin 1 mV Input voltage

Q1, Q2 0.7 mV Critical voltage
C 0.5 fF Capacitance
Vb 1 mV Bias voltage

Table A.3: Device parameters for the simulation shown in Figure 3.6.
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Component Value Comment
Vin 0.8 mV Input voltage

Q1-Q10 0.7 mV Critical voltage
C 15 fF Capacitance
Vb 1 mV Bias voltage
Rb 9 kΩ Resistance

Table A.4: Device parameters for the simulation shown in Figure 3.8.

Component Value Comment
Vin 1 mV Input voltage

Q1-QN 0.7 mV Critical voltage
C 0.3/2/5 fF Capacitance
Vb 1 mV Bias voltage
R 0/5/10 kΩ Resistance

Table A.5: Device parameters for the simulation shown in Figure 3.9.

Component Value Comment
Vin 1.4 mV Input voltage
Q1 0.7 mV Critical voltage
L1 4 pH Inductance
Vb 0.5 mV Bias voltage
Ib 140 µA Bias current
J1 200/300 µA Critical current
R 12 Ω Resistance

Table A.6: Device parameters for the simulation shown in Figure 3.11.

Component Value Comment
Vin 1 mV Input voltage
Q1 0.7 mV Critical voltage
L1 2 pH Inductance
L2 4 pH Inductance
Vb 0.5 mV Bias voltage
Ib 160 µA Bias current
J1 10/50/350/400 µA Critical current
J2 200 µA Critical current
R 3 Ω Resistance

Table A.7: Device parameters for the simulation shown in Figure 3.13.
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Component Value Comment
Vr 0.6 mV Read voltage
Vw 0.6 mV Write voltage

Q0, Q1, Q4 0.7 mV Critical voltage
Q2, Q3 0.4 mV Critical voltage
C1, C2 3 fF Capacitance
Vb1 0.8 mV Bias voltage
Vb2 1 mV Bias voltage

Table A.8: Device parameters for the simulation shown in Figure 3.15.

Component Value Comment
Vr 0.6 mV Read voltage
Vw 0.6 mV Write voltage

Q0, Q1, Q4 0.7 mV Critical voltage
Q2, Q3 0.4 mV Critical voltage
C1, C2 3 fF Capacitance
Vb1 0.8 mV Bias voltage
Vb2 1 mV Bias voltage

Table A.9: Device parameters for the simulation shown in Figure 3.16.

Component Value Comment
Vr 0.54 mV Read voltage
Vw 1.2 mV Write voltage
Q0 0.6 mV Critical voltage
Q1 0.54 mV Critical voltage
Q2 0.52 mV Critical voltage
Q3 0.51 mV Critical voltage
Q4 0.3 mV Critical voltage

Q5-Q8 0.09 mV Critical voltage
C1 7.8 fF Capacitance
C2 1.2 fF Capacitance
Vb1 0.2 mV Bias voltage
Vb2 0.5 mV Bias voltage

Table A.10: Device parameters for the simulation shown in Figure 3.18.
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Component Value Comment
Vr 0.54 mV Read voltage
Vw 0 mV Write voltage
Q1 0.75 mV Critical voltage
Q2 0.65 mV Critical voltage
Q3 0.42 mV Critical voltage

Q4, Q5 0.6 mV Critical voltage
Q6 0.58 mV Critical voltage
Q7 2 mV Critical voltage
C1 9 fF Capacitance
C2 1 fF Capacitance
C3 1.2 fF Capacitance
C4 9.2 fF Capacitance
Vb1 0.5 mV Bias voltage
Vb2 1.07 mV Bias voltage
Vb3 0.58 mV Bias voltage
R1 10 kΩ Resistance

Table A.11: Device parameters for the simulation shown in Figure 3.20.

Component Value Comment
Vr 0.54 mV Read voltage
Vw 0.9 mV Write voltage
Q1 0.75 mV Critical voltage
Q2 0.65 mV Critical voltage
Q3 0.42 mV Critical voltage

Q4, Q5 0.6 mV Critical voltage
Q6 0.58 mV Critical voltage
Q7 2 mV Critical voltage
C1 9 fF Capacitance
C2 1 fF Capacitance
C3 1.2 fF Capacitance
C4 9.2 fF Capacitance
Vb1 0.5 mV Bias voltage
Vb2 1.07 mV Bias voltage
Vb3 0.58 mV Bias voltage
R1 10 kΩ Resistance

Table A.12: Device parameters for the simulation shown in Figure 3.21.
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Component Value Comment
Q1-Q10 0.5 mV Critical voltage
L1, L2 0.1 nH Inductance
L3 0.01 nH Inductance
Vb 0.5 mV Bias voltage
Ib 70 µA Bias current
J1 40 µA Critical current
J2 50 µA Critical current

Table A.13: Device parameters for the simulation shown in Figure 3.23.

Component Value Comment
Vin 3 mV Input voltage

Q1-Q50 0.7 mV Critical voltage
C1-C50 0.23 fF Capacitance
Vb 20 mV Bias voltage

Table A.14: Device parameters for the simulation shown in Figure 3.25.

Component Value Comment
Vr1, Vr2 0.8 mV Read voltage
Vw1, Vw2 0.8 mV Write voltage

Q0, Q1, Q5, Q6 0.7 mV Critical voltage
Q2, Q3, Q7, Q8 0.41 mV Critical voltage

Q4, Q9 0.68 mV Critical voltage
Q10-Q12 0.38 mV Critical voltage
C1-C4 3 fF Capacitance
C5 13 fF Capacitance

Vb1, Vb2 0.8 mV Bias voltage
Vb3 1.34 mV Bias voltage

Table A.15: Device parameters for the simulation shown in Figure 3.30.
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Component Value Comment
Vr1, Vr2 0.5 mV Read voltage
Vw1, Vw2 1.2 mV Write voltage
Q0, Q9 0.6 mV Critical voltage
Q1, Q10 0.51 mV Critical voltage
Q2, Q11 0.52 mV Critical voltage
Q3, Q12 0.54 mV Critical voltage
Q4, Q13 0.36 mV Critical voltage

Q5-Q8, Q14-Q17 0.15 mV Critical voltage
Q18-Q27 0.075 mV Critical voltage
C1, C3 5 fF Capacitance
C2, C4 1 fF Capacitance
C5 330 fF Capacitance

Vb1, Vb2 0.15 mV Bias voltage
Vb3 0.63 mV Bias voltage

Table A.16: Device parameters for the simulation shown in Figure 3.33.

Component Value Comment
Vr 0.54 mV Read voltage
Vw 0.7 mV Write voltage
Q0 0.3 mV Critical voltage
Q1 0.5 mV Critical voltage
Q2 0.52 mV Critical voltage
Q3 0.54 mV Critical voltage
Q4 0.31 mV Critical voltage
C1 9.2 fF Capacitance
C2 1.2 fF Capacitance
Vb1 0.5 mV Bias voltage

Table A.17: Device parameters for the simulation shown in Figure 4.2.

Component Value Comment
Vpre 0.54 mV presynaptic voltage
Vpost 0.95 mV postsynaptic voltage
Q0 0.75 mV Critical voltage
Q1 0.56 mV Critical voltage
Q2 0.31 mV Critical voltage
C1 9.2 fF Capacitance
C2 1.2 fF Capacitance
R1 10/20/30/40 kΩ Resistance
Vb1 0.03 mV Bias voltage
Vb2 0.5 mV Bias voltage

Table A.18: Device parameters for the simulation shown in Figure 4.4.
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Component Value Comment
Vpre 0.54 mV presynaptic voltage
Vpost 0.95 mV postsynaptic voltage
Q0 0.75 mV Critical voltage
Q1 0.55 mV Critical voltage
Q2 0.3 mV Critical voltage
Q3 2 mV Critical voltage
Q4 0.54 mV Critical voltage
Q5 0.52 mV Critical voltage
Q6 0.5 mV Critical voltage
Q7 0.34 mV Critical voltage
C1 9.2 fF Capacitance
C2 1.2 fF Capacitance
C3 9.2 fF Capacitance
C4 1.2 fF Capacitance
R1 10 kΩ Resistance
Vb1 0.03 mV Bias voltage
Vb2 0.77 mV Bias voltage
Vb3 0.53 mV Bias voltage

Table A.19: Device parameters for the simulation shown in Figure 4.6.
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Component Value Comment
Vpre 0.78 mV presynaptic voltage
Vpre 0.54 mV presynaptic voltage
Vpost 0.51 mV postsynaptic voltage
Q0 0.4 mV Critical voltage
Q1 0.5 mV Critical voltage
Q2 1 mV Critical voltage
Q3 1 mV Critical voltage
Q4 0.58 mV Critical voltage
Q5 2 mV Critical voltage
Q6 1.04 mV Critical voltage
Q7 1.02 mV Critical voltage
Q8 1 mV Critical voltage
Q9 0.28 mV Critical voltage
C1 9 fF Capacitance
C2 1 fF Capacitance
C3 9.2 fF Capacitance
C4 2 fF Capacitance
R1 10 kΩ Resistance
R2 10 kΩ Resistance
Vb1 0.05 mV Bias voltage
Vb2 0.2 mV Bias voltage
Vb3 1.1 mV Bias voltage
Vb4 1.01 mV Bias voltage
Vb5 0.6 mV Bias voltage

Table A.20: Device parameters for the simulation shown in Figure 4.8.
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Component Value Comment
Vpre 0.78 mV presynaptic voltage
Vpost 0.51 mV postsynaptic voltage
Q0 0.8 mV Critical voltage
Q1 0.95 mV Critical voltage
Q2 0.95 mV Critical voltage
Q3 0.36 mV Critical voltage
Q4 0.5 mV Critical voltage
Q5 1 mV Critical voltage
Q6 1 mV Critical voltage
Q7 0.58 mV Critical voltage
Q8 2 mV Critical voltage
Q9 1.04 mV Critical voltage
Q10 1.02 mV Critical voltage
Q11 1 mV Critical voltage
Q12 0.28 mV Critical voltage
C1 1 fF Capacitance
C2 9 fF Capacitance
C3 1 fF Capacitance
C4 9.2 fF Capacitance
C5 2 fF Capacitance
R1 10 kΩ Resistance
R2 10 kΩ Resistance
R3 10 kΩ Resistance
Vb1 0.2 mV Bias voltage
Vb2 1.1 mV Bias voltage
Vb3 0.05 mV Bias voltage
Vb4 0.2 mV Bias voltage
Vb5 1.1 mV Bias voltage
Vb6 1.01 mV Bias voltage
Vb7 0.6 mV Bias voltage

Table A.21: Device parameters for the simulation shown in Figure 4.10.
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Component Value Comment
Vpre 1.07 mV presynaptic voltage
Vpost 0.51 mV postsynaptic voltage
Vpost 0.51 mV postsynaptic voltage
Q0 0.8 mV Critical voltage
Q1 0.95 mV Critical voltage
Q2 0.95 mV Critical voltage
Q3 0.36 mV Critical voltage
Q4 0.5 mV Critical voltage
Q5 1 mV Critical voltage
Q6 1 mV Critical voltage
Q7 0.46 mV Critical voltage
Q8 2 mV Critical voltage
Q9 0.75 mV Critical voltage
Q10 0.55 mV Critical voltage
Q11 0.3 mV Critical voltage
Q12 1.37 mV Critical voltage
Q13 1.35 mV Critical voltage
Q14 1.33 mV Critical voltage
Q15 0.28 mV Critical voltage
C1 1 fF Capacitance
C2 9 fF Capacitance
C3 1 fF Capacitance
C4 9.2 fF Capacitance
C5 1.2 fF Capacitance
C6 9.2 fF Capacitance
C7 2 fF Capacitance
R1 10 kΩ Resistance
R2 10 kΩ Resistance
R3 20 kΩ Resistance
R4 10 kΩ Resistance
R5 20 kΩ Resistance
Vb1 0.2 mV Bias voltage
Vb2 1.1 mV Bias voltage
Vb3 0.05 mV Bias voltage
Vb4 0.2 mV Bias voltage
Vb5 1.1 mV Bias voltage
Vb6 0.89 mV Bias voltage
Vb7 0.46 mV Bias voltage
Vb8 0.3 mV Bias voltage
Vb9 0.6 mV Bias voltage

Table A.22: Device parameters for the simulation shown in Figure 4.13.
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Component Value Comment
Vpre 0.54 mV presynaptic voltage
Vpost 0.95 mV postsynaptic voltage
Q0-Q2 0.7 mV Critical voltage
Q3 0.5 mV Critical voltage
Q4 0.52 mV Critical voltage
Q5 0.54 mV Critical voltage
Q6 0.3 mV Critical voltage
C1 3 fF Capacitance
C2 1.2 fF Capacitance
R1 10 kΩ Resistance
Vb1 72.6 µV Bias voltage
Vb2 0.5 mV Bias voltage

Table A.23: Device parameters for the simulation shown in Figure 4.15.
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Appendix B

Nanowire Fabrication Traveler
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Step # Process Parameters
Nanowire definition and deposition
1 Substrate clean (1) Acetone sonication bath for 5 min.

(2) Rinse in IPA/DI water.
(3) N2 dry.

2 Dehydration bake 110 ◦C on hotplate for 10 min.
3 Spin PMMA 495K A2 (1) 500 rpm, Acc. = 500 rpm/s, time = 5 s.

(2) 2000 rpm, Acc. = 1000 rpm/s, time = 60 s.
4 Soft bake 180 ◦C on hotplate for 3 min.
5 Spin PMMA 950K A2 (1) 500 rpm, Acc. = 500 rpm/s, time = 5 s.

(2) 4000 rpm, Acc. = 1000 rpm/s, time = 60 s.
6 Soft bake 180 ◦C on hotplate for 5 min.
7 EBL for interconnection patterns Area dose = 280 µC/cm2, stepsize = 20 nm.
8 EBL for nanowire patterns Area dose = 250-440 µC/cm2, stepsize = 4 nm.
9 Development (1) 1 min in MIBK:IPA (1:3). (2) 20 s in IPA.
10 NbN deposition (1) 2 min of ion milling.

(2) Power = 1kW, N2/Ar = 0.1, Ar pressure =
4 mTorr.
(3) 5 min pre-sputtering.
(4) 3 min sputtering.

11 Lift-off (1) Acetone sonication bath for 20 min.
(2) Rinse in IPA/DI water.
(3) N2 dry.

Contact pads definition and deposition
12 Dehydration bake 110 ◦C on hotplate for 10 min.
13 Spin PMMA 950K A7 (1) 500 rpm, Acc. = 500 rpm/s, time = 5 s.

(2) 2000 rpm, Acc. = 1000 rpm/s, time = 60 s.
14 Soft bake 180 ◦C on hotplate for 2 min.
15 EBL for contact pads Area dose = 250 µC/cm2, stepsize = 20 nm.
16 Development (1) 2.5 min in MIBK:IPA (1:3). (2) 20 s in IPA.
17 Al deposition (1) 2 min of ion milling.

(2) Thickness = 250 nm.
18 Lift-off (1) Acetone sonication bath for 5 min.

(2) Rinse in IPA/DI water.
(3) N2 dry.

Dicing and packaging
19 Dicing Dice samples into 5 mm × 5 mm dies.
20 Wire-bonding Wire-bond dies to LCC packages.

Table B.1: Traveler of NbN nanowire fabrication.
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