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Abstract 
 
 

This dissertation investigates two innovative applications of the Second Strategic Highway 

Research Program Naturalistic Driving Study (SHRP 2 NDS) data: (1) freeway interchange 

deceleration lane design and (2) work zone mobility analysis.  

For freeway interchange deceleration lane design, the objective is to determine the 

minimum lengths of freeway deceleration lanes based on naturalistic driving speeds and 

deceleration rates from the SHRP 2 NDS database. SHRP 2 NDS has the distinct advantage of 

providing insight into driver behavior based on a wide-ranging collection of data regarding the 

driver, the vehicle, and the environment, whereas previous studies of this subject relied primarily 

on crash data, radar data, computer simulations, and driving simulators. Ten study locations that 

are located on I-75 in Florida with varying deceleration lane lengths and off-ramp lengths were 

used. The analysis included (1) speed distribution on different lengths of freeway deceleration 

lanes and off-ramps based on polynomial regression models; (2) drivers’ behavior, including brake 

pedal usage, critical speed change point detection, and the distribution of deceleration rates 

compared with the American Association of State Highway and Transportation Officials 

(AASHTO) Green Book assumptions; and (3) a new method to determine the minimum 

deceleration lane lengths based on naturalistic driving speeds and deceleration rates. The results 

revealed that (1) typically, vehicle speeds reduced by 10% to 25% on deceleration lanes while 75% 

to 90% on off-ramps; (2) deceleration rates on deceleration lanes and off-ramps before critical 

speed change points are lower than assumptions from the Green Book; and (3) deceleration lanes 

can be shorter when off-ramps are long at diamond interchanges (e.g., greater than 1,550 ft). The 

research results provided guidance to improve freeway deceleration lane design. 



iii 
 

For freeway work zone mobility analysis, the objective is to study work zone mobility by 

utilizing the SHRP 2 NDS data. The NDS data provides a unique opportunity to study car-

following behaviors for different driver types in various work zone configurations, which cannot 

be achieved through traditional field data collection. The complete NDS work zone trip data of 

200 traversals by 103 individuals, including time-series data, forward-view videos, radar data, and 

driver characteristics, was collected at four work zone configurations (two-to-one and three-to-two 

lane closure, and two-to-two and three-to-three shoulder closure), which encompasses nearly 1,100 

vehicle miles traveled (VMT), 19 vehicle hours traveled (VHT), and over 675,000 data points at 

0.1-s intervals. First, the gap and headway were analyzed for different drivers (gender, age group, 

and risk perceptions) to develop the gap and headway selection tables. Then, the speed profiles for 

different work zone configurations were established to explore the speed change through the entire 

work zones. The generalized additive model (GAM) was used to develop the best-fitted curves of 

time headway and speed distributions. The change point detection method was used to identify 

where significant changes in mean and variance of speeds occur. The research results provided 

additional information on the potential impact of human factors on car-following models at work 

zones that have been implemented in current work zone planning and simulation tools. 

Additionally, it can also be helpful to improve the Adaptive Cruise Control (ACC) gap spacing 

setting at the work zone for the automotive industry. 
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Chapter 1. Introduction 

1.1 Background 

Freeways are essential components in the highway system that are designed under the 

highest highway design standards. In the United States, the interstate highway system constitutes 

only 2% of the nation’s total rural lane miles, yet it conveys 25% of the annual rural vehicle miles 

traveled (VMT) (Pisarski and Reno 2015). Similarly, the urban interstate with under 4% of the 

nation’s total urban lane miles carries 24% of urban VMT (Pisarski and Reno 2015). Freeways are 

controlled access multilane divided facilities for safer high-speed operation of automobiles through 

the exclusion of at-grade junctions. Two sections of freeways deserve more attention: diverge areas 

and work zones because (1) approximately half of crashes at freeway interchanges occurred at 

ramp diverging areas (McCartt, Northrup, & Retting, 2004); (2) approximately 24% of the 

nonrecurring freeway delay is caused by work zones (FHWA Work Zone Facts and Statistics, 

2019).  

1.2 Problem Statement 

1.2.1 Safety Issues in Freeway Diverge Areas 

Freeway diverge areas, including deceleration lanes and off-ramps, are critical elements 

that provide exits for traffic from freeway mainline segments via off-ramps to adjacent crossroads. 

The design intent of freeway diverge areas is to provide drivers with an effective, safe, and smooth 

transition from high-speed mainline to low-speed off-ramps and crossroads. This area is supposed 

to improve traffic safety and operation, reduce vehicle interference between through and exiting 
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traffic, and increase freeway capacity. However, it has been found to have high crash rates on 

deceleration lanes and off-ramps for nearly half a century. 

As early as the 1960s, the operation and safety performance in freeway diverge areas had 

raised the attention of the public and the transportation agencies. The California Department of 

Public Works conducted a three-year study of 722 freeway ramps with 1,643 crashes occurred to 

investigate the geometric features in ramp safety and to classify these geometric features by ramp 

type and relative safety measures. It was found that the crash rates on exit ramps were consistently 

higher than those on entrance ramps and the highest percentages of exit ramp crashes occurred on 

the deceleration lane (Lundy 1965). In the 1970s, the Highway Users Federation for Safety and 

Mobility investigated the relationship between interchange design features and traffic safety. It 

was claimed that crashes are more frequent and severe at interchanges than at freeway mainlines 

(Oppenlander and Dawson 1970). During the decades, researchers aimed to reduce crash rates and 

improve safety and operational perspectives of freeway diverge areas. It was suggested to upgrade 

and rehabilitate freeway interchanges and ramps to guarantee the capacity, efficiency, and safety 

(Harwood & Graham, 1983). Researchers in Northern Virginia examined a sample of 1,150 

crashes that occurred on heavily traveled urban interstate ramps and found that about half of all 

crashes occurred when drivers were exiting interstates in the diverge areas, 36% occurred when 

drivers were entering, and 16% occurred at the ramp terminal areas. They recommended to 

increase ramp design speed, use surveillance systems to alert drivers, and extend the length of 

speed-change lanes (McCartt, Northrup and Retting 2004). In Alabama, among all crashes 

involved on interstate ramps from 2012 to 2016, 73.5% of all crashes occurred at diverge areas 

when drivers were existing interstates (Critical Analysis Reporting Environment (CARE) 

(Computer Software), 2018). 
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Although studies, countermeasures, and efforts have been taken in the past decades to 

alleviate the safety problems in freeway diverge areas, the safety issues have not been solved and 

have been tending to be intensified. More recently, according to a National Cooperative Highway 

Research Program (NCHRP) report in 2012 (Torbic, et al. 2012), the average crash rate at freeway 

deceleration lanes was 0.68 crashes per million vehicle miles traveled (MVMT), which is three 

times higher than crashes on acceleration lanes (0.16MVMT) and 15.3% higher than crashes at 

freeway mainline sections near exit ramps (0.59MVMT). Furthermore, 42.4% of the crashes that 

occurred at freeway deceleration lanes were rear-end crashes resulting from speed differential. In 

Alabama, similarly, 201 crashes that occurred on freeway deceleration lanes were rear-end crashes, 

accounting for 71.28% of total freeway deceleration lane crashes from 2012 to 2016 (Critical 

Analysis Reporting Environment (CARE) (Computer Software), 2018). Therefore, there is an 

urgent need to reduce crash rates on freeway deceleration lanes. 

Previous studies revealed that crash rates can be related to the deceleration lane length 

(Cirillo 1970, Chen, et al. 2009, Bauer and Harwood 1998, Bared, Giering and Warren 1999, Lord 

and Bonneson 2005). In other words, crash rates would be reduced with an optimal length of the 

deceleration lane. Referring to the deceleration lane design, three aspects that determine the 

deceleration lane length are recommended by the American Association of State Highway and 

Transportation Officials (AASHTO) Green Book (AASHTO 2018). The first is drivers’ speeds 

while they initially diverge onto the auxiliary lane. The second is drivers’ speeds at the end of the 

deceleration lane. The third is their manners of deceleration. Additionally, it requires the 

consideration of the speed differential between vehicles on the mainline and the ramp. However, 

the Green Book only provides the minimum lengths of deceleration lanes according to the design 

speed differential from the freeway mainline and off-ramp. Moreover, similarities of 
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recommended design lengths were found in the 2018 Green Book and 1965 Blue Book. The method 

to determine the minimum length remained the same between the two versions. Data that was used 

in both editions were collected in the 1930s. Thus, new data and research are required to update 

the design guide. 

However, the majority of past studies on safety issues in freeway diverge areas focused on 

the analysis of crash data on deceleration lanes, which have not resulted in new guidelines for 

planners and designers with clear and updated criteria for appropriately designing deceleration 

lanes. Naturalistic driving data recorded diverging and deceleration behaviors of drivers and the 

vehicle braking mechanisms that can provide in-depth analysis of freeway deceleration lane design 

and develop new design guides.  

1.2.2 Mobility Issues in Freeway Work Zones 

As the National Highway System (NHS) is aging, an increasing number of work zones has 

occurred to address the growing needs of maintenance and construction. However, reduced 

operating speeds, narrowed lane widths and shoulder clearances, along with other construction 

activities, not only result in crashes but also cause excessive delays (FHWA Work Zone Facts and 

Statistics 2019). It has been well stated that the capacity per lane in the work zone is lower than 

that in the nonwork zone due to the reduced operating speed, lane width, and shoulder clearance 

(Yeom, Rouphail and Rasdorf 2015). Different passing behaviors along the work zone area can 

contribute to the loss of work zone capacity as well (Yeom, Rouphail and Rasdorf 2015). 

According to the Federal Highway Administration (FHWA), work zones led to approximately 

24% of the nonrecurring freeway delay, which was equivalent to about 888 million vehicle hours 

in 2014 (FHWA Work Zone Facts and Statistics 2019). Moreover, work zone activities occurred 
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on roads that were often already congested, which brought more mobility issues on the busy 

arterials.  

Thus, in order to arrange for construction work on the freeway and mitigate delay issues, 

the State Departments of Transportation (DOTs) and transportation agencies have applied various 

simulation models and planning tools to estimate or predict work zone capacity (Yeom, Rouphail 

and Rasdorf 2015, Weng and Meng 2015, Weng and Meng 2011, Transportation Research Board 

2016, Weng and Meng 2012, Heaslip, et al. 2009, Kan, Ramezani and Benekohal 2014). In the 

sixth edition of the Highway Capacity Manual (HCM), the new freeway work zone capacity model 

estimates work zone capacity as a function of the lane closure severity index, barrier type, area 

type, lateral clearances, and day- or nighttime work conditions (Transportation Research Board 

2016). Meanwhile, microscopic traffic simulation models, such as CORSIM (University of 

Florida, USA) and VISSIM (PTV Group, Germany), have been applied to estimate and calibrate 

the operational capacity of work zones with different lane closure configurations for decades 

(Heaslip, et al. 2009, Chatterjee, et al. 2009, Heaslip, Jain and Elefteriadou 2011). The calibration 

of these models requires quite an amount of field data to ensure the accuracy of the estimated 

results. Meanwhile, the planning-level work zone simulation tools such as QUEWZ (University of 

Florida, USA) and QuickZone (FHWA, USA) are also popular among DOTs, although it was 

reported that the QUEWZ and QuickZone were inaccurate due to outdated field data and 

parameters (Benekohal, Kaja-Mohideen and Chitturi 2003, Ramezani and Benekohal 2012, 

Ishimaru and Hallenbeck 2019, Trask, et al. 2015). 

Although the freeway work zone capacity methodology proposed in the latest edition of 

the HCM has been substantially improved over previous editions, it is still limited by the 

macroscopic model, which cannot account for various work zone configurations (Weng and Meng 
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2011). In order to represent the increasingly complex freeway systems and freeway work zones, it 

was suggested that further calibrations are needed to address other issues with specific work zone 

configurations (Yeom, Rouphail and Rasdorf 2015).  

1.3 Research Objectives 

The Second Strategic Highway Research Program Naturalistic Driving Study (SHRP 2 

NDS) has been used in many safety studies of driver behaviors. However, few studies focused on 

its application in studying highway geometric design and freeway operations. This dissertation 

investigates two innovative applications of NDS data: (1) freeway interchange deceleration lane 

design and (2) work zone mobility analysis. 

Considering the safety issues of deceleration lane and outdated design guides, the first part 

of this dissertation is to analyze the impact of freeway deceleration lane design features on the 

drivers’ diverging behavior and vehicle braking mechanisms. Past studies heavily relied on field 

data collection (e.g., radar gun) to collect vehicle speeds and trajectories. They have been either 

time-consuming or labor-intensive tasks, which may also result in erroneous conclusions due to 

intrinsic biases, such as false reading that resulted from incorrect calibration. To fill this gap, using 

the SHRP 2 NDS data is a new approach to investigate the driver behavior during daily trips 

through unobtrusive data gathering equipment and without experimental control (Van-Schagen, et 

al. 2011). Data including speed, acceleration–deceleration rate, brake status, traffic condition, 

pavement markings, etc., can provide insight into the interrelationship among drivers, vehicles, 

and deceleration lane designs. 

The detailed objectives of the first part are to:  

1. explore speed distributions along deceleration lanes and off-ramps; 
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2. investigate drivers’ braking behaviors on deceleration lanes and off-ramps; and  

3. develop a method for estimating minimum lengths of deceleration lane for naturalistic 

driving speed. 

The second part of this dissertation is for an in-depth analysis of the impact of driver 

behavior on freeway work zone mobility. Compared with traditional field data collection 

techniques, the NDS data offers a unique opportunity to observe actual work zone layouts, traffic 

conditions, and driver behaviors while negotiating freeway work zones (Dingus, et al. 2015). Past 

data collection methods cannot collect driver characteristics, such as gender, age, risk index, etc. 

This part of the study was funded by the Region 4 UTC project. In the first phase of this project, 

researchers utilized the NDS data to evaluate capacity, car-following characteristics, and driver 

types in three freeway work zone configurations [two-to-one lane closure (LC 2-1), two-to-two 

shoulder closure (SC 2-2), and SC 3-3)] (Zhou, Turochy and Xu 2019). It was the first attempt to 

apply NDS data to study the headway distribution at work zones based on driver characteristics. 

In the second phase of this study, researchers collected more complete trips that traverse the entire 

work zone for further study.  

The detailed objectives were set to:  

1. develop gap and headway selection tables based on different driver characteristics (i.e., 

gender, age group, and risk perception) at four work zone configurations; and 

2. perform a speed analysis to develop speed distribution models and identify key speed 

change points at work zones. 
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1.4 Dissertation Organization 

This dissertation contains six chapters. Chapter 1 discusses the background, research 

objectives, and organization of the dissertation. A comprehensive review of previous research on 

SHRP 2 NDS data, freeway diverge areas, and freeway work zones is provided in Chapter 2. The 

methodology is documented in Chapter 3, which includes detailed discussions on data collection 

and reduction, site description, and data analysis methods. Chapter 4 discusses the results of 

freeway diverge area design and work zone mobility analysis. Chapter 5 concludes the findings 

from this study. Chapter 6 points out the limitations of this study and the needs of future studies.
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Chapter 2. Literature Review 

The literature review is divided into four sections for this dissertation to better summarize 

the existing literature regarding SHRP 2 NDS data, freeway diverge areas, and freeway work 

zones. First, an overview of SHRP 2 NDS data is provided. This is followed by a review of 

previous studies that related to freeway diverge area designs and their impacts. Next, a summary 

of research focused on work zone mobility is presented. Lastly, the final section summarizes the 

gaps in previous research and proposed work. 

2.1 SHRP 2 NDS Data Overview 

The purpose of SHRP 2 was to identify strategic solutions to three national transportation 

challenges: improving highway safety, reducing congestion, and improving methods for reviewing 

roads and bridges (The National Academies of Sciences, Engineering, and Medicine, 2020). 

Extensive data collection was conducted to achieve the goal of SHRP2, which offers a unique 

opportunity to address different research questions that were not able to be studied before. To 

fulfill the critical gap in data about driver behavior, the SHRP 2 Safety Program conducted the 

most comprehensive NDS that collected large-scale data from six states, including Florida, 

Indiana, New York, North Carolina, Pennsylvania, and Washington (Strategic Highway Research 

Program 2014). This section summarizes details of the NDS background, how the dataset can be 

accessed, and the NDS data applications on transportation studies.   

2.1.1 Background 

SHRP 2 NDS aims at improving safety and reliability for motorists and providing answers 

to key traffic- and safety-related questions (Dingus, et al. 2015). It involves understanding how 
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the driver interacts with and adapts to the vehicle, environmental condition, roadway geometric 

characteristics, and traffic control devices (TCDs) (Campbell 2012). The NDS database contains 

comprehensive video and vehicle sensor data collected from drivers and their vehicles over a three-

year period in six locations across the United States. More than 3,500 volunteer drivers from the 

six study sites participated in this study with their everyday or “natural” driving behavior recorded. 

During three years of data collection from 2010 to 2013, over five million trips with nearly 50 

million miles of driving were monitored with more than 4 petabytes (4 million gigabytes) of 

naturalistic information. The volunteer drivers were balanced distributed with approximately equal 

numbers of male and female in all age groups as presented in Figure 1. Six data collection areas 

were selected to represent a mix of road types and weather conditions. The participants were 

recruited through call centers and traditional methods (Campbell 2012). The call centers screened 

for eligible drivers and vehicles from household phone number lists at each NDS site. Traditional 

recruitment applied advertisements in various media such as the web-based Craigslist, flyers, 

presentations, mass mailing, and e-mails. 

 

Figure 1 Primary participants enrolled in NDS by age and gender (Dingus, et al. 2015). 

(Blue = male; green = female). 
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The Virginia Tech Transportation Institute (VTTI) developed the Data Acquisition System 

(DAS) to collect and maintain data of all trips made during the study period (Campbell 2012). The 

DAS was manufactured by American Computer Development, Inc., which includes forward radar, 

four video cameras, accelerometers, vehicle network information, Geographic Positioning System 

(GPS), on-board computer vision lane tracking plus other computer vision algorithms, and data 

storage capability (Dingus, et al. 2015). Figure 2 shows the schematic view and key components 

of the DAS used in the data collection process. As demonstrated in Figure 3, the participant’s 

vehicle was equipped with forward view (upper left), driver and left side view (upper right), 

instrument panel view (lower left), and rear and right view (lower right) cameras to record both 

the in-vehicle and out-of-vehicle environment. Data were continuously recorded while the 

participant’s vehicle is operating. The study resulted in the successful collection of 4 petabytes of 

real-world driving video and sensor data (Strategic Highway Research Program 2014). 

(a) 
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(b) 

Figure 2 Installed DAS schematic: (a) top view diagram of DAS components (Dingus, et al. 

2015); (b) side view diagram of DAS components (Antin, Lee and Perez, et al. 2019). 
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(a) 
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(b) 

Figure 3 Video camera views: (a) fields of view for the DAS (Antin, Lee and Perez, et al. 

2019); (b) quad image of four video camera views (Dingus, et al. 2015). 

The NDS adheres to appropriate informed consent and privacy requirements as it deals 

with human subjects (Campbell 2012), which has been approved by the institutional review board 

(IRB) for the National Academies of Science (Dingus, et al. 2015). The IRB, also known as 

Independent Ethics Committee (IEC), Ethical Review Board (ERB), Research Ethics Board 

(REB), etc., is an administrative body established to protect the rights and welfare of human 

research subjects recruited to participate in research activities conducted under the auspices of the 

institution with which it is affiliated (U.S. Food & Drug Administration 2019). The data were 

protected from the moment they were collected through migration from vehicle to the final 

research repository (Dingus, et al. 2015). Human subjects protection in the NDS required the 
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secure usage of Personally Identifying Information (PII), which is any data that could potentially 

be used to identify a particular person. As NDS data collected driver face video, GPS traces that 

might contain the participant’s home, work location, or school, etc., a Certificate of Confidentiality 

was secured from the National Institute of Mental Health (NIMH) to protect PII data collected 

during the data collection period, so that the researchers and study sponsors cannot be forced to 

disclose information that may identify any participants (Dingus, et al. 2015). Nonidentifying and 

deidentified data are allowed to be widely shared and the data was encrypted from the moment it 

was collected. Only qualified researchers can access the PII through a secure data enclave (SDE), 

which is a physically isolated environment that restricts data access and protects the PII (Dingus, 

et al. 2015). Thus, the NDS data were divided into two portions (InSight and InDepth) with regard 

to their nature. 

2.1.2 InSight and InDepth 

The InSight Website (https://insight.shrp2nds.us/) contains a subset of NDS data that 

excludes PII but is publicly available. Any registered researchers who had successfully taken the 

IRB training and passed the exam can access this type of data through the InSight Website online. 

The InSight data are divided into four categories: vehicle, drivers, trips, and events. The 

information provided under each category is summarized in Table 1. The data was either directly 

captured by the DAS during the data collection period or through questionnaire surveys. A query 

builder is provided on the website to select variables and conditions, submit a query, assess results, 

build cross-tabulations, view graphs of output, and view the table of individual records for 

researchers’ needs. This allows for preliminary analysis of aggregated data or getting some 

preview and background on the data for further request and analysis. The data on the InSight 

Website has been extracted and coded through manual review of the videos by VTTI in the SDE 
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that can only be viewed, without any sort of extraction or export of data. Unique identifiers were 

developed for each event, trip, driver, and vehicle to allow for efficient PII protection and easy 

linkages among them to perform analysis. A driver may have multiple trips and events associated, 

and a trip may consist of several events.  

Table 1 Summary of InSight data categories. 

Vehicles 

Vehicle types (car, truck, van, etc.) 

Vehicle ages and condition 

Amount of data collected per vehicle 

Quantities of vehicles installed (the number of 

vehicles that had a system installed and were 

actively collecting data for at least one day 

during the calendar month) 

Vehicle technologies and equipment 

Drivers 

Numbers of participating drivers 

Amount of data collected per driver 

Driver demographics and driving history (the 

demographic characteristics and driving 

knowledge of participating drivers) 

Driver physical and psychological state 

(physical strength tests including left- and right-

hand grip strength and a rapid pace walk test; 

psychological tests including Barkley’s ADHD 
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screening, risk perception, sensation seeking 

scale survey, etc.) 

Driver participation experience 

Trips 

Summary measures describing trips 

Trip length, duration, start time, stop time 

Min, max, mean for speed, acceleration 

Trip summary record table 

Trip density maps 

Events 

Crashes, near-crash, and baseline event records 

Events by type and severity 

Event viewer 

 
The second portion of NDS data is known as InDepth, which data includes information 

that may potentially result in identifying the participants. These data contain time-series data and 

video data, which are not available online (InSight). To access the data at InDepth, further 

investigation as to the eligibility of the involved researchers and research questions must be 

performed. An IRB application should be submitted regarding research questions, the details of 

data variables requested, how will the data be used, how the data will be maintained and secured, 

etc. Finally, authorized researchers who obtained a data use license (DUL) will be provided with 

the requested NDS data from InDepth under certain agreements and fees. 

2.1.3 NDS Data Applications in Transportation 

NDS data applications in transportation paid more attention to safety aspects, as the intent 

of NDS is to address traffic- and safety-related questions (Dingus, et al. 2015). The data fill in the 
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gap about driver behavior, including how drivers really drive, how they interact with vehicular, 

roadway, and environmental features, what they are doing just before they crash, and why some 

risky situations do not result in crashes. Thus, existing NDS data applications on transportation 

mainly concentrate on refining existing countermeasures and developing new ones to reduce 

crashes, injuries, and fatalities. A recent study investigated the changes in driving behavior, before, 

during, and after near-crash events on freeways by applying NDS data to identify the driving 

patterns (Ali, Ahmed and Yang 2020). Victor et al. performed a study to determine the relationship 

between driver inattention and crash risk in lead-vehicle pre-crash scenarios by utilizing NDS data 

(Victor, et al. 2015). The results of this study were reported to support distraction policy, 

regulation, and guidelines; improve intelligent vehicle safety systems; and teach safe glance 

behaviors. Wu and Lin explore driver perception time prior to the occurrence of the safety-related 

event by using NDS data (Wu and Lin 2019). They analyzed a total of 1,417 rear-end crashes and 

near-crashes, and reported that critical driving situations, driving environment, and driver behavior 

are influential factors in explaining the variation of driver perception times in safety-related events. 

Hao et al. performed an in-depth investigation of crashes involving roadway objects and animals 

based on NDS data including 2,689 events (Hao, et al. 2020). The results indicated that driver 

errors, involvement of secondary tasks, roadway characteristics, lighting condition, and pavement 

surface condition are significant factors that contributed to the occurrence and increased severity 

outcomes of crashes. 

NDS data can be used to evaluate geometric design features. A study conducted by 

Hallmark et al. evaluated driving behavior on rural two-lane curves using the SHRP 2 NDS data 

to propose appropriate countermeasures for mitigating crash rates on rural horizontal curves 

(Hallmark, et al. 2015). The results suggested that better curve delineation with delineation 
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countermeasures would allow drivers to better gauge upcoming changes in roadway geometry with 

better speed selection and decreased risk of an encroachment. Wu and Xu analyzed right-turn 

driver behavior at signalized intersections with NDS data (Wu and Xu 2017). This research 

revealed that drivers have high acceleration and low observation frequency under Right-Turn-On-

Red (RTOR) controlled intersections. It suggested that the implementation of traffic safety 

countermeasures at signalized intersections is necessary to reduce right-turn crashes. 

There have been some studies focused on the impacts of adverse weather conditions on 

driver behaviors. A group of researchers from the University of Wyoming investigated the effect 

of adverse weather on driver speed selection behavior by using SHRP 2 NDS data (Khan, Das and 

Ahmed 2020). They suggested that a weather-specific distribution should be used to model driver 

behavior more representatively in microsimulation platforms. By employing NDS data, another 

study showed how drivers compensated differently according to weather conditions to avoid the 

crash event and provided a discrimination threshold in vehicle kinematics (e.g., speed, acceleration 

rates, yaw rates, etc.) between normal and risky driving patterns in both rainy and clear weather 

conditions (Ali, Ahmed and Yang 2020). The same group of researchers also explored the impacts 

of heavy rain on speed and headway behaviors. They compared driver behavior in clear and heavy 

rain conditions using the trips with the same driver, same vehicle, and same traversed routes. The 

study concluded that drivers were more likely to reduce their speed by more than 5 kilometers per 

hour on average below the speed limits in heavy rain than in light rain (Ahmed and Ghasemzadeh 

2018). 

NDS data can help with connected vehicle (CV) application development as well. A study 

utilized trajectory analysis and unsupervised machine learning techniques to identify normal and 

risky driving patterns based on vehicle kinematics data from NDS (Ali, Ahmed and Yang 2020). 
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It stated that the identification of these patterns can distinguish between different driving patterns 

in a CV environment using basic safety messages. 

2.2 Research on Freeway Diverge Areas 

This section covers a review of design guides and relevant research in freeway diverge 

areas. Firstly, a review of current design guidance in the AASHTO Green Book was provided. 

This was followed by safety and operational effects of freeway diverge areas, specifically freeway 

deceleration lanes. Next, driver diverge maneuvers regarding deceleration rates and diverge speeds 

when exiting the freeway were discussed. Finally, the related research that utilized NDS data was 

summarized.  

2.2.1 AASHTO Design Policy 

According to the Green Book definition, a deceleration lane is a speed-change lane that 

intends to minimize conflicts between vehicles on the mainline and diverging area (AASHTO 

2018, Bared, Giering and Warren 1999). There are two general forms of declaration lane (as shown 

in Figure 4): the parallel-design which has an added lane for changing speed and the tapered design 

which provides a direct exit at a flat angle (AASHTO 2018). The length of a deceleration lane is 

measured from the point of a 12-ft right-tapered wedge, or a 12-ft added parallel lane to the point 

of the exit ramp curvature beginning (AASHTO 2018). In practice, it is hard to control and measure 

the beginning of the exit ramp alignment because exit ramp curvature beginning is difficult to 

determine. Thus, this study measured the deceleration lane length from the same starting point 

defined by AASHTO to the point of the physical gore (after the painted nose). 
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(a) 

 

(b) 

Figure 4 Definition of deceleration lane length: (a) parallel-design deceleration lane and (b) 

tapered-design deceleration lane. 

Equations 1 and 2 present the procedure of calculating the minimum deceleration lane 

length in the 1965 Blue Book (AASHTO 1965). AASHTO policies used a basic two-step process 

for establishing design criteria (Torbic, et al. 2012). Deceleration is accomplished as follows: the 

driver removes his or her foot from the gas pedal, the vehicle slows in gear for a period of time 

(assumed to be 3 seconds) without braking, and then the driver applies the brake pedal and 

decelerates at a comfortable rate. The length is primarily determined by the speed differential 

between the average speed on the mainline and the off-ramp. 

𝐿஽௘௖௘௟ ൌ 1.47𝑉௛𝑡௡ െ 0.5𝑑௡ሺ𝑡௡ሻଶ ൅
ሺ1.47𝑉௥ሻଶ െ ሺ1.47𝑉௔ሻଶ

2𝑑௪௕
ሺ1ሻ 

𝑉௔ ൌ
1.47𝑉௛ ൅ 𝑑௡𝑡௡

1.47
ሺ2ሻ 
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Where, 𝐿஽௘௖௘௟ ൌ Deceleration lane length, ft 

 𝑉௛ ൌ Highway speed, mi/h 

 𝑉௔ ൌ Speed after 𝑡௡ seconds of deceleration without brakes, mi/h 

 𝑉௥ ൌ Entering speed for controlling exit ramp curve, mi/h 

 𝑡௡ ൌ Deceleration time without brakes (assumed to be 3 s), s 

 𝑑௡  ൌ Deceleration rate without brakes, ft/s2 

 𝑑௪௕  ൌ Deceleration rate with brakes, ft/s2 

Two assumptions were made during calculation (Fitzpatrick, Chrysler and Brewer 2012) 

that (1) most vehicles travel at the average speed instead of the design speed when traffic volumes 

are low (e.g., on a freeway with a 70 mi/h design speed, the assumption is that a driver will enter 

the auxiliary lane at 58 mi/h as presented in Table 2.); and (2) a 3s deceleration before braking is 

applied on the taper section, which results in two deceleration rates (dn and dwb). 

Table 2 Minimum deceleration lane lengths for exit terminals with flat grades of less than 

3%, adopted from AASHTO Green Book (2018). 

Deceleration Lane Length, La (ft) for Design Speed of Controlling Feature on Ramp, V’ (mph) 

Highway 

Design 

Speed, V 

(mph) 

Diverge 

Speed, 

Va 

(mph) 

Stop 

Condition 
15 20 25 30 35 40 45 50 

Average Running Speed at Controlling Feature on Ramp, V’a (mph) 

0 14 18 22 26 30 36 40 44 

30 28 235 200 170 140 — — — — —

35 32 280 250 210 185 150 — — — —

40 36 320 295 265 235 185 155 — — —
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45 40 385 350 325 295 250 220 — — —

50 44 435 405 385 355 315 285 225 175 —

55 48 480 455 440 410 380 350 285 235 —

60 52 530 500 480 460 430 405 350 300 240 

65 55 570 540 520 500 470 440 390 340 280 

70 58 615 590 570 550 520 490 440 390 340 

75 61 660 635 620 600 575 535 490 440 390 

80 64 705 680 665 645 620 580 535 490 440 

V = design speed of highway (mph) 

Va = average running speed on highway (i.e., diverge speed) (mph) 

V’ = design speed of controlling feature on ramp (mph) 

V’a = average running speed at controlling feature on ramp (mph) 

La = deceleration lane length (ft) 

The Green Book provides minimum requirements for the design of deceleration lengths for 

exit terminals. Table 2 adopted the table available in the Green Book 2018 edition. The 

AASHTO’s deceleration lane lengths from Table 2 were calculated from old studies in which data 

was collected in the 1930s (Fitzpatrick, Chrysler and Brewer 2012). The only difference between 

the 2004 Green Book and the 1965 Blue Book, regarding minimum lengths of freeway deceleration 

lanes, is that the taper length is included in the deceleration lane length in the 1965 Blue Book 

while being listed separately in the 2004 Green Book. Comparing three recent versions of the 

Green Book, parameters in Equations 1 and 2 turn out to be the same in 2018, 2011, and 2004 

editions (AASHTO 1965, AASHTO 2004, AASHTO 2011, AASHTO 2018). This revealed that 

the minimum deceleration lane lengths provided in Table 2 from the Green Book 2018 edition 
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were calculated from the data collected in the 1930s. Given that vehicle technology has been 

improved and driver behaviors and driving patterns have been changed, these values need to be 

updated based on the current drivers’ diverging behavior and vehicle braking mechanisms. 

2.2.2 Safety and Operational Impacts of Freeway Deceleration Lane 

If the deceleration distance was judged to be short, a harder deceleration would be applied 

by the diverging driver which would also start on the mainline before the deceleration lane starts. 

When the following vehicles, which could be either on the freeway mainline or deceleration lane, 

do not take action accordingly, a conflict or a crash would happen. Similarly, if the deceleration 

lane was too long, the diverging driver would be accelerating on the deceleration lane. When the 

leading vehicles on the deceleration lane are at a lower speed, and the diverging driver does not 

accommodate accordingly, a conflict or a collision may occur. These examples relate operational 

performance to safety. There have been a lot of studies that explored safety and operational impacts 

on the freeway deceleration lane. 

FHWA conducted a study to model crash frequency on deceleration lanes, but they found 

it was difficult to develop models because of the low crash frequencies at most locations (Bauer 

and Harwood 1998). They finally applied the negative binomial regression in modeling crash 

frequency and the geometric design and traffic volume characteristics of ramps. This method has 

been widely used among researchers who focused on the safety performance of freeway diverge 

areas. There have been several studies utilized regression models to optimize the deceleration lane 

length and the configuration of off-ramps (Cirillo 1970, Chen, et al. 2009, Bauer and Harwood 

1998, Bared, Giering and Warren 1999, Lord and Bonneson 2005). However, the results from past 

studies were inconsistent or even contradictory.  
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Some studies suggested that increasing the deceleration lane length would reduce crash 

rates. A study conducted in 1970 identified the relationship of crashes to lengths of deceleration 

lanes (Cirillo 1970). Data from 20 states were collected between 1950 to 1965 and 700 weaving 

areas were analyzed. The lengths of deceleration lane were categorized in less than 200 ft, between 

200 ft and 299 ft, between 300 ft and 399 ft, …, and more than 700 ft. It was found that longer 

deceleration lane has few crashes with the percentage of diverging traffic being less than 6% of 

the mainline volume. The results also compared the benefits from additional lengths of 

deceleration lane and acceleration lane. It was concluded that the deceleration lane has less 

reduction in crashes compared to acceleration lane with the length increasing. This study used the 

crash rates in the analysis, which could be misleading as locations with lower traffic volumes 

would have high rates and vice versa. Similar to this study, Bared, Giering, and Warren evaluated 

the safety performance of acceleration and deceleration lane lengths (Bared, Giering and Warren 

1999). They developed a crash model for ramps from a sample of Interstate highways in 

Washington State, which contained 276 exit ramps equally located in rural and urban areas. The 

results of this study illustrated the importance of providing longer deceleration lane since 

deceleration lane has higher number of crashes than acceleration lane related to their lengths due 

to the higher complexity of the driver’s tasks on deceleration lanes compared to acceleration lanes. 

Similar findings were achieved by Twomey et al., who identified that deceleration lane of 900 ft 

or more can reduce traffic friction on through lanes, therefore, reducing crash rates (Twomey, et 

al. 1993). Wang et al. also evaluated the impacts of various factors on injury severity at freeway 

diverge areas (Wang, Chen and Lu 2009). They collected crash data and roadway information from 

231 freeway exit segments in Florida and applied partial proportional odds regression to predict 

injury severity at freeway diverge areas. They found that the length of deceleration lanes is a 
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significant factor affecting injury severity and addressed that a longer deceleration lane is more 

likely to reduce injury severity. 

On the contrary, some studies implied that increasing the deceleration lane length would 

increase crash occurrence. Garcia and Romero found that a long deceleration lane would 

encourage accelerating maneuver before drivers exit the deceleration lane (Garcia and Romero 

2006). As a result, they noted that vehicles do not initially decelerate, instead, an acceleration 

maneuver often appears before drivers start braking on the deceleration lane. They also found that 

overtaking scenarios occur on the excessively long deceleration lane in order to precede the vehicle 

on the mainline, thus increasing crash risks at freeway diverge areas. These results are also 

consistent with other studies on this topic (Chen, et al. 2009, Chen, et al. 2011, Chen, Zhou and 

Lin 2014). Chen et al. conducted a traffic conflict study to evaluate the safety performance of left-

side off-ramps (Chen, et al. 2011). They collected crash data from 11 left-side and 63 similar right-

side freeway diverge areas in Florida and the left-side off-ramp were found to have higher average 

crash counts, crash rate, and percentage of severe crashes. They also developed a crash predictive 

model to identify the factors that contribute to the crashes. The model revealed that the crash 

frequency increases with the lengthening of the deceleration lane for both left-side and right-side 

diverge areas. Another study conducted by Chen, Zhou and Lin evaluated the safety and 

operational performance of different deceleration lane lengths at freeway diverge areas (Chen, 

Zhou and Lin 2014). They collected crash data from 218 sites and categorized them into nine 

groups based on their lengths for crash analysis. 360 simulation models were developed to examine 

the operational effects of deceleration lane lengths for one-lane exits with parallel/tapered designs 

and two-lane exits with parallel design. Different scenarios considered the number of exit lanes, 

through movement lanes, exiting volume, design speed on the freeways and exits, and the 
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deceleration lane lengths. For both one and two-lane exits, crash counts and crash rates were 

compared to deceleration lengths. Their results indicated that the optimal deceleration lane length 

between 500 ft and 700 ft significantly reduces the crash severity and delay for through traffic. 

They also noted that when the deceleration lane is long, crash frequencies and crash rates start 

increasing. However, drivers may accelerate which caused the extra deceleration distance to have 

no positive safety effect at a long deceleration lane. When considering different types of off-ramps, 

Lu et al. concluded that parallel-designed sites with a one-lane exit had the lowest crash frequency 

and crash rate (Lu, et al. 2010). 

2.2.3 Diverge Maneuver 

When the assigned driving tasks increase complexity, drivers’ maneuver becomes more 

complex. A series of decisions should be made when drivers proceed to exit a freeway. First, a 

satisfactory gap and a diverge point with appropriate diverge speeds would be selected where 

drivers change lanes from the freeway mainline to the deceleration lane. After accomplished the 

first step, if the deceleration lane was judged to be long, the driver might not decelerate 

immediately; instead, either slight acceleration or deceleration could be applied. Then, drivers 

would select a point to start decelerating with an initial deceleration rate. Their deceleration rate 

would increase when they are approaching the gore area. Finally, a final speed based on the 

controlling features (e.g., stopped controlled intersection, signalized intersection, sharp curvature, 

etc.) of off-ramps would be selected. 

Deceleration rates of deceleration lanes vary depending on the length, which is initially 

calculated based on the speed differential between the average speed on the mainline and the off-

ramp. The AASHTO Green Book provides a table of minimum lengths of freeway deceleration 

lane but does not offer a table of deceleration rates they used to determine deceleration lane length 
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(Torbic, et al. 2012). However, based on the NCHRP 730 report, two methodologies to back-

calculate deceleration rates used in the Green Book 2004 edition were provided with one using 

Equations 1 and 2, and the other using a constant deceleration approach (Torbic, et al. 2012). 

Table 3 andTable 4 summarized corresponding deceleration rates used in the Green Book 2004 

edition. As mentioned in Section 2.2.1, the minimum deceleration lane lengths values presented in 

Table 2 remained the same in the Green Book 2004, 2011, and 2018 editions. Thus, although 

Table 3 andTable 4 were adapted from the Green Book 2004 edition, they actually provide 

corresponding deceleration rates for the latest version of Green Book (2018 edition). In this 

NCHRP report, the authors compared the back-calculated deceleration rates to the rates measured 

from the field. They found that field-measured deceleration rates were lower than the derived 

AASHTO values, which indicated that the Green Book assumed higher deceleration rates than 

what drivers really applied. This research also found that drivers applied various deceleration rates 

while driving on the deceleration lane instead of constant deceleration rates. 

Table 3 Corresponding deceleration rates for minimum deceleration lane lengths, adopted 

from AASHTO Green Book (2004). 

Deceleration Rate (ft/s2) for Design Speed of Controlling Feature on Ramp (mph) 

Highway 

Design 

Speed 

(mph) 

Diverge 

Speed 

(mph) 

Stop 

Condition 
15 20 25 30 35 40 45 50 

Average Running Speed at Controlling Feature on Ramp (mph) 

0 14 18 22 26 30 36 40 44 

1st Deceleration Rates (ft/s2) While Coasting in Gear used to Reproduce Deceleration Lane Lengths

30 28 -1.04 -1.04 -1.04 -1.04 —  —  —  —  — 

35 32 -1.53 -1.53 -1.53 -1.53 -1.53 — — — — 
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40 36 -1.52 -1.52 -1.52 -1.52 -1.52 -1.52 — — — 

45 40 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 — — — 

50 44 -2.51 -2.51 -2.51 -2.51 -2.51 -2.51 -2.51 -2.51 — 

55 48 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 -2.01 — 

60 52 -2.98 -2.98 -2.98 -2.98 -2.98 -2.98 -2.98 -2.98 -2.98 

65 55 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 

70 58 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 -2.50 

75 61 -2.99 -2.99 -2.99 -2.99 -2.99 -2.99 -2.99 -2.99 -2.99 

2nd Deceleration Rates (ft/s2) While Braking used to Reproduce Deceleration Lane Lengths

30 28 -5.75 -6.42 -5.49 -8.97 — — — — — 

35 32 -5.83 -5.75 -5.38 -6.68 -10.29 — — — — 

40 36 -5.66 -5.22 -5.11 -5.66 -5.95 -4.42 — — — 

45 40 -6.38 -6.05 -5.68 -6.91 -6.83 -6.18 — — — 

50 44 -6.74 -6.57 -6.28 -7.20 -7.86 -6.55 -6.23 N/A — 

55 48 -7.10 -7.08 -6.86 -7.55 -7.86 -7.46 -7.49 -7.86 — 

60 52 -7.07 -7.19 -6.99 -7.45 -7.70 -7.34 -6.98 -7.43 -16.84

65 55 -7.55 -7.43 -7.27 -8.03 -7.76 -7.49 -7.51 -7.66 -9.60 

70 58 -7.40 -7.41 -7.27 -7.77 -7.53 -7.60 -7.45 -7.54 -8.17 

75 61 -7.76 -8.02 -7.90 -8.06 -7.85 -7.65 -7.70 -7.62 -8.49 

 

Table 4 Corresponding deceleration rates for minimum deceleration lane lengths assuming 

a constant deceleration, adopted from AASHTO Green Book (2004). 

Deceleration Rate (ft/s2) for Design Speed of Controlling Feature on Ramp (mph) 



30 
 

Highway 

Design 

Speed 

(mph) 

Diverge 

Speed 

(mph) 

Stop 

Condition 
15 20 25 30 35 40 45 50 

Average Running Speed at Controlling Feature on Ramp (mph) 

0 14 18 22 26 30 36 40 44 

30 28 -3.59 -3.16 -2.91 -2.30 —  —  —  —  — 

35 32 -3.93 -3.56 -3.59 -3.14 -2.50 — — — — 

40 36 -4.36 -4.01 -3.95 -3.72 -3.60 -2.75 — — — 

45 40 -4.47 -4.31 -4.22 -4.07 -3.98 -3.42 — — — 

50 44 -4.79 -4.62 -4.50 -4.40 -4.30 -3.91 -3.06 -2.07 — 

55 48 -5.16 -4.98 -4.84 -4.77 -4.61 -4.31 -3.80 -3.22 — 

60 52 -5.49 -5.39 -5.33 -5.19 -5.07 -4.79 -4.33 -3.96 -3.44 

65 55 -5.71 -5.63 -5.59 -5.47 -5.38 -5.19 -4.77 -4.51 -4.18 

70 58 -5.88 -5.78 -5.74 -5.63 -5.56 -5.41 -5.06 -4.86 -4.52 

75 61 -6.06 -5.97 -5.89 -5.80 -5.70 -5.67 -5.32 -5.18 -4.92 

 

Generally, conventional studies employed field observation to monitor driving behaviors 

of diverging drivers on deceleration lanes and off-ramps. Garcia and Romero concluded that the 

drivers start to decelerate before exiting the mainline with a speed reduction of 10.5 mph even on 

a long deceleration lane (Garcia and Romero 2006). Based on the NCHRP project, vehicles that 

diverge early on the deceleration lane are likely to diverge at speeds that are close to freeway 

speeds while late diverging vehicles have lower diverging speeds (Torbic, et al. 2012). A recent 

study conducted by Ma et al. used an advisory speed limit sign located on the freeway deceleration 

lane to accommodate the speed changes ahead of the gore area in China (Ma, et al. 2019). They 
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collected 12 hours of data that contains 480 vehicles speed profiles from seven sections at 3 similar 

freeway diverge areas. They observed an average10 kmph (6.21 mph) speed reduction on the 

mainline before entering the deceleration lane at tapered-designed locations based on the speed 

profiles without advisory speed limit signs. The authors also observed a slight acceleration around 

the gore areas, which they explained might be due to sufficient deceleration on the deceleration 

lane. 

Driving simulators were also used for this topic. Three groups of researchers led by Calvi 

did three studies on diverging performance on deceleration lanes with a driving simulator (Calvi, 

Benedetto and De Blasiis 2012, Calvi, Bella and D’Amico 2015, Calvi, et al. 2020). The first study 

simulated three different traffic scenarios to analyze driving performance while approaching a 

diverge area and decelerating during the exiting maneuver (Calvi, Benedetto and De Blasiis 2012). 

Thirty drivers were recruited to collect their lateral position, speed, and deceleration. This study 

revealed that lower traffic volumes result in higher existing speeds, higher average and maximum 

deceleration rates, and earlier braking on the mainline. The second study was conducted to analyze 

the effects of traffic flow and deceleration lane geometry on the driving performance of diverging 

drivers (Calvi, Bella and D’Amico 2015). This study took thirty-one volunteers in the experiments 

with parallel and tapered designed deceleration lanes under low and high traffic flow conditions. 

Findings from the second study indicated that the taper type of deceleration lane contributes to the 

significantly higher speed difference. Furthermore, lower traffic volumes lead to higher 

deceleration rates. The most recent study by Calvi et al. validated the driving simulator for use by 

designers in adopting the best solution for freeway acceleration and deceleration lanes (Calvi, et 

al. 2020). This time ninety participants took part in the experiment. They were recorded in real and 

simulated scenarios using an instrumented vehicle and a driving simulator for driving performance 
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of merging and diverging maneuvers. The authors compared the field and simulation data in terms 

of driving speeds and trajectories and validated the simulator usage. This study suggested that 

drivers significantly reduced their speeds before diverging from the mainline and entering the 

deceleration lane based on both field and simulator results. 

2.2.4 Related Research that Utilizing NDS Data 

Few studies that utilizing NDS data focused on freeway diverge areas. Brewer and Stibbe 

used SHRP 2 NDS data to identify relationships between ramp design speed characteristics and 

drivers’ choices of operating speeds on those ramps (Brewer and Stibbe 2019). The results of this 

study suggested that the type of traffic control at crossroad terminal has a larger effect on off-

ramps speed selection. Recent research explored the lane-change behaviors in freeway off-ramp 

areas by utilizing Shanghai NDS data (Zhang, et al. 2018). The authors identified 433 lane-change 

events with trajectory data and applied the speed variance of the following vehicle on the 

deceleration lane as a safety surrogate index. However, this study was more on the modeling that 

did not provide practical insights into freeway diverge area design. 

2.3 Research on Freeway Work Zone Mobility 

This section synthesizes relevant literature on the topic of freeway work zone mobility. 

Firstly, a review of work zone capacity estimation was provided in terms of parametric, 

nonparametric, and simulation-based methods. This follows by headway and gap distribution of 

freeway work zones. Next, speed studies regarding speed distribution and speed change in work 

zones were discussed. Finally, the related research that utilized NDS data was summarized.  



33 
 

2.3.1 Capacity Estimation 

Numerous studies have focused on work zone capacity issues, including several methods 

that have been proposed to estimate and predict work zone capacity. These methods can be divided 

into three categories, i.e., parametric, nonparametric, and simulation-based (Weng and Meng 

2015). The following sections summarize these methods. 

 

2.3.1.1 Parametric Method  

Many studies have used the parametric method to estimate work zone capacity. This 

method uses a predetermined form to predict work zone capacity based on the field data so that 

the coefficients of predictors can be determined (Lu, et al. 2018). 

In 1994, Krammes and Lopez developed a multi-regression model to estimate the short-

term work zone capacity based on the data collected in 33 work zones in Texas (Krammes and 

Lopez 1994). It only included parameters such as work intensity, presence of ramps, and heavy 

vehicle adjustment factor. Therefore, Kim et al. proposed another multi-regression model that 

considered more capacity-influencing factors for short-term work zones, including the number of 

closed lanes, lane closure locations, heavy vehicle percentage, lateral distance to the lane closure, 

work zone length, work intensity, and the work zone grade (Kim, et al. 2000). As for long-term 

work zones, a generic multiplicative model was proposed to investigate capacity with lane closure 

conditions in Ontario, Canada (Al-Kaisy, Zhou and Hall 2000, Al-Kaisy and Hall 2003). The 

variables included in the model are temporal variations, grade, day of week, and weather 

conditions, which were found to have significant impacts on the long-term work zone capacity. 

In addition, the sixth edition of the HCM offered detailed guidance on determining work 

zone capacity. It defined the capacity as “the maximum sustainable hourly flow rate at which 
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persons or vehicles reasonably can be expected to traverse a point or a uniform section of a lane 

or roadway during a given time period under the prevailing roadway, environmental, traffic, and 

control conditions” (Transportation Research Board 2016). Upon the work zone capacity, Yoem, 

Rouphail, and Rasdorf performed an extensive literature search, established a relationship between 

the queue discharge rate (QDR) and pre-breakdown capacity (PBC), and provided a regression 

model for estimating work zone capacity under different conditions (Yeom, Rouphail and Rasdorf 

2015). This work, currently included in the sixth edition of the HCM, was based on 90 archival 

literature sources and 12 data sets collected from the field. It stated that freeway work capacity 

corresponds to the maximum sustainable flow rate immediately preceding a breakdown, which is 

the PBC (Transportation Research Board 2016). However, it is not feasible to measure the pre-

breakdown value in the work zone. Thus, the HCM proposed a method to calculate the QDR first, 

which can be easily measured via video cameras or other data collection tools, and then converted 

the QDR to the corresponding PBC by using a conversion ratio. The QDR is calculated as follows 

in Equation 3: 

𝑄𝐷𝑅ௐ௓ ൌ 2,093 െ 154 ൈ 𝐿𝐶𝑆𝐼 െ 194 ൈ 𝑓஻௥ െ 179 ൈ 𝑓஺்

൅9 ൈ 𝑓௅஺் െ 59 ൈ 𝑓஽ே ሺ3ሻ 

 

Where, 𝑄𝐷𝑅ௐ௓ ൌ The average 15-min queue discharge rate at the work zone 

bottle neck 

 𝐿𝐶𝑆𝐼 ൌ Lane closure severity index 

 𝑓஻௥ ൌ Indicator variable for barrier type (0 for concrete; 1 for cone 

or drum) 

 𝑓஺் ൌ Indicator factor for area type (0 for urban; 1 for rural) 
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 𝑓௅஺் ൌ  Lateral distance from the edge of travel lane adjacent to the 

work zone to the barrier, barricades, or cones (0-12 ft) 

 𝑓஽ே  ൌ Indicator variable for daylight or night (0 for daylight; 1 for 

night) 

The lane closure severity index is illustrated In Exhibit 10-15 in the HCM. It also applies 

to shoulder closures without lane closures. This index is calculated as follows in Equation 4: 

𝐿𝐶𝑆𝐼 ൌ
1

𝑂𝑅 ൈ 𝑁ை
ሺ4ሻ 

 

Where, 𝐿𝐶𝑆𝐼 ൌ Lane closure severity index 

 𝑂𝑅 ൌ Open ratio, the ratio of the number of open lanes during road 

work to the total (or normal) number of lanes (decimal) 

 𝑁ை ൌ Number of open lanes in the work zone 

 

After obtaining the QDR, the PBC can be calculated as follows in Equation 5: 

 

𝐶ௐ௓ ൌ
𝑄𝐷𝑅ௐ௓

100 െ 𝑎ௐ௓
ൈ 100 ሺ5ሻ 

 

Where, 𝐶ௐ௓ ൌ Pre-breakdown flow rate 

 𝑎ௐ௓ ൌ Percentage drop in pre-breakdown capacity at the work zone 

due to queuing conditions (%), an average value of 13.4% in 

freeway work zones  
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Another way to estimate the work zone capacity is to derive the capacity from speed-flow 

curves. Over the years, some researchers adopted this method to derive information from the 

prediction model (Weng and Meng 2015, Sarasua, et al. 2006, Racha, et al. 2008, Avrenli, 

Benekohal and Ramezani 2011, Bharadwaj, Edara, et al., Traffic Flow Modeling of Diverse Work 

Zone Activities 2018). For example, Benekohal et al. presented a step-by-step methodology to 

estimate the operating speed and capacity on lane closure two-to-one work zones in Illinois 

(Benekohal, Kaja-Mohideen and Chitturi 2004). The authors recorded 30 hours of video data from 

11 work zones on the Interstate and compared the field data with predictions for validation. In this 

study, the operating speed was modeled as a function of work intensity, lane width, lateral 

clearance, and other factors to examine the influences of external factors on traffic speed. Sarasua 

et al. conducted a study to develop the speed-flow curves for lane closure in two-to-one, three-to-

two, and three-to-one work zones (Sarasua, et al. 2006). The authors revealed that passenger car 

equivalents (PCEs) differed for various speed ranges, and PCEs for various speed groups are 

recommended in calculating capacity. Racha et al. collected field data from 22 work zones in 

South Carolina and modeled the work zone capacity from the relationships among speed, flow, 

and density (Racha, et al. 2008). The authors also demonstrated that a non-linear hyperbolic model 

was developed to depict the speed–density relationship for two-to-one lane closure configurations 

of Interstate highway work zones. Avrenli et al. examined the speed-flow relationship of work 

zones with no lane closure (Avrenli, Benekohal and Ramezani 2011). The authors developed two 

nonlinear models for work zones with no lane closure under uncongested and congested 

conditions. It was found that the flow rate of the free-flow regime was much lower than the 

capacity that the HCM 2000 model predicted.   
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2.3.1.2 Nonparametric Method  

When estimating the work zone capacity, sometimes it is not feasible to describe the 

capacity by mathematical functions due to nonlinear relationships and complex interactions 

between a large number of variables and capacity (Adeli and Jiang 2003). Therefore, several non-

parametric methods, such as neural-fuzzy logic, decision tree, and ensemble tree models, have 

been applied to provide work zone capacity estimations (Weng and Meng 2015). The 

nonparametric method is a technique that does not assume that the structure of a model is fixed 

(Corder and Foreman 2014). Because of fewer assumptions being made by nonparametric 

methods, these models are more flexible, robust, and applicable to nonquantitative data (Yau 

2013). However, it was also pointed out that nonparametric approaches typically require generous 

historical traffic data to provide accurate and reliable predictions (Karim and Adeli 2003). 

The neural-fuzzy logic method was the first nonparametric method applied to estimate the 

work zone capacity (Adeli and Jiang 2003). The study introduced a novel adaptive neural-fuzzy 

logic model, including 17 different factors that have an impact on the work zone capacity. The 

authors concluded that this model could provide a more accurate estimate, compared with two 

empirical equations. However, due to its complexity, the model was hardly applicable to the users. 

In another study, Karim and Adeli proposed a radial-basis function neural network model, which 

considered 11 parameters to learn the mapping from quantifiable and nonquantifiable factors in 

the estimation of work zone capacity (Karim and Adeli 2003). In 2011, a decision-tree-based 

model was developed to provide higher estimation accuracy of the work zone capacity (Weng and 

Meng 2011). This model considered 16 influencing factors; in addition, the data in this study were 

collected from 14 states. The results demonstrated that this model outperformed the neural-fuzzy 

approach, as it predicted more accurately; further, it was applicable to all users. The weakness of 
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this method is that the tree structure is highly dependent on the training and testing data. In other 

words, a slight change in the training and testing data set will dramatically alter the results. In order 

to address this weakness, an ensemble tree method was applied in another research (Weng and 

Meng 2012). Weng and Meng built an ensemble tree consisted of 105 individual decision trees by 

using a bootstrap aggregation method. It proved that the ensemble tree was more accurate and 

stable than the decision tree method. However, due to the absence of graphical-display results, it 

was complicated to understand the detailed relationship between the capacity and factors. In 

addition, the decision tree and ensemble tree both discretize the continuous factors based on the 

F-test to make them categorical when building the tree structure. This process may lower the 

accuracy of the entire work (Weng and Meng 2013). 

2.3.1.3 Simulation-Based Method  

According to the use of traffic analysis tools and simulation models in the FHWA Traffic 

Analysis Toolbox, simulation tools have been widely applied in much traffic analysis research 

(Dowling, Skabardonis and Alexiadis 2004). Focused on different aspects, simulation tools can be 

grouped into four categories: sketch-planning tools; macroscopic simulation models; mesoscopic 

simulation models; and microscopic simulation models. 

Sketch-planning methodologies and tools produce general order-of-magnitude estimates of 

travel demands and traffic operations in response to transportation changes (Zhang, Morallos, et 

al. 2012). The planning level work zone simulation tools include software such as QUEWZ 

(University of Florida, USA), QuickZone (FHWA, USA), FREEVAL-WZ (North Carolina, USA), 

etc. (Alexiadis, Jeannotte and Chandra 2004). As high-level planning applications, these 

deterministic tools aid in simpler approaches in that data requirements, calibration, and 

interpretation of the results are highly aggregated. Thus, they cost the least time or money in which 
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to facilitate rapid analysis. These advantages, however, are coupled with the weakness in that the 

network complexity, potential network impacts, vehicle interactions, and high-level analysis are 

limited. It was found that the QUEWZ and QuickZone were not accurate in past studies 

(Benekohal, Kaja-Mohideen and Chitturi 2003, Ramezani and Benekohal 2012). Research 

conducted by Benekohal Kaja-Mohideen, and Chitturi stated that QUEWZ overestimated the 

capacity and average speed; further, the queue length from QuickZone did not match the field data 

(Benekohal, Kaja-Mohideen and Chitturi 2003). Ramezani and Benekohal also reported that the 

maximum queue length was overestimated by these tools (Ramezani and Benekohal 2012). The 

inaccurate results were caused because QUEWZ and QuickZone applied outdated HCM 

methodology to estimate performance measures in work zones. For example, the QUEWZ models 

were developed based on the 1965 HCM general speed-flow relationship and regression based on 

field data (Ishimaru and Hallenbeck 2019). Although the FREEVAL-WZ applied the latest 

methodology of 2016 HCM and can model different work zone scenarios as well as quantify 

effects of congested periods over time and space (Trask, et al. 2015), its effectiveness has not been 

fully explored.  

Macroscopic simulation models are based on the deterministic relationships of the flow, 

speed, and density of the traffic stream that treat traffic flows as an aggregate quantity without 

analyzing individual vehicle movement (Zhang, Morallos, et al. 2012). These simulation models 

include software such as the TRANSYT-7F (University of Florida, USA) package within the 

Highway Capacity Software from McTrans (Alexiadis, Jeannotte and Chandra 2004). While these 

models have the ability to model a large geographic area and provide slightly more details than the 

sketch-planning tools, they are still limited to their simple representation of traffic movement and 

are unaccounted for the stochasticity of work zone environments. 
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Mesoscopic simulation models are a combination of both microscopic and macroscopic 

simulation models (Zhang, Morallos, et al. 2012). While they still model at an aggregate level and 

the focus is on the movement of a platoon of vehicles, their unit of traffic flow is the individual 

vehicle; further, different platoons’ interactions are considered. One example of mesoscopic 

simulation software is DYNASMART-P (University of Florida, USA), developed by the 

University of Maryland and distributed by FHWA in 2004 (Alexiadis, Jeannotte and Chandra 

2004). It provides the capability to model the evolution of traffic flows in a traffic network when 

individual travelers can make decisions on selecting the best path (Mahmassani, Sbayti and Zhou 

2004). These models are able to model both large geographic areas and corridors, but their primary 

limitation is their inability to model detailed operational strategies. Thus, these tools may not be 

helpful for individual work zones. 

Microscopic models simulate the movement of every vehicle in the network based on car-

following, lane-changing, and gap-acceptance theories (Zhang, Morallos, et al. 2012). These tools 

are based on a stochastic process, and every vehicle in the network can be tracked over short time 

intervals so that the result of each run is unique. Popular microscopic simulation software includes 

CORSIM and VISSIM, which are developed by FHWA and the PTV Group, respectively 

(Alexiadis, Jeannotte and Chandra 2004). These models aim to represent transportation systems 

accurately at the individual vehicle level and are effective in modeling plenty of scenarios such as 

heavily congested conditions, complex geometric configurations, and system-level improvement 

impacts. CORSIM and VISSIM have been used in several studies to estimate the capacity of work 

zones with different lane closure configurations (Heaslip, et al. 2009, Chatterjee, et al. 2009, 

Heaslip, Jain and Elefteriadou 2011). However, the detailed and comprehensive analysis requires 

a substantial amount of roadway geometry, traffic control, and traffic pattern data. In addition, to 
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represent real-world traffic conditions, it was suggested that further calibration work is needed to 

address other issues with specific work zone configurations (Yeom, Rouphail and Rasdorf 2015). 

This calibration process is usually tedious and expensive. 

2.3.2 Headway and Gap Distribution 

2.3.2.1 Headway 

Vehicle time headway is a critical traffic flow characteristic that affects the level of service 

and capacity (May 1990). Thus, in work zones, this factor is of utmost importance to analyze so 

that accurate vehicle dynamics in work zones can be generated. Headway distribution modeling 

has been studied for decades (Ye and Zhang 2009). Many vehicle headway distribution models 

have been proposed to model the vehicle headway at various traffic flow levels, including 

exponential distribution, Weibull distribution, gamma distribution, lognormal distribution, Erlang 

distribution, and inverse Gaussian distribution (Cowan 1975, Sun and Benekohal 2006, Greenberg 

1966). These studies only fit the models in the mixed vehicular traffic without consideration of 

vehicle headways for different types of vehicle following patterns. Thus, researchers began to 

disaggregate vehicle headways into various types as the leader and follower vehicle pairs, such as 

the car-truck pair, truck-car pair, truck-truck pair, and car-car pair (Ye and Zhang 2009, 

Hoogendoorn and Bovy 1998, Weng, Meng and Fwa 2014). However, as work zone traffic has 

unique characteristics, few studies explored vehicle headway distribution in work zones (Sun and 

Benekohal 2006, Weng, Meng and Fwa 2014). Moreover, none of the existing studies takes into 

account the effects of driver characteristics on headway in work zones, despite the fact that 

different drivers exhibit various influences due to their unique driving behaviors. Therefore, there 

is a need to develop headway selection tables based on driver characteristics in work zones. 
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2.3.2.2 Gap 

Gap spacing is the distance between two consecutive vehicles during vehicle following, 

which is the core of adaptive cruise control (ACC) systems (Swaroop and Rajagopal 2001). There 

are two major gap spacing categories in the previous research, including constant spacing policy 

and variable spacing policy (Swaroop and Huandra 1998). The constant spacing policy always 

keeps a constant spacing between two consecutive vehicles which is independent of driving 

environment (Gerdes and Hedrick 1996, McMahon, Hedrick and Shladover 1990, Chehardoli and 

Homaeinezhad 2018). If a small spacing is chosen, a high traffic capacity will be provided (Darbha, 

Rajagopal and Tyagi 2008).  However, no ACC systems have adopted the constant spacing policy 

on the market in practice due to the failure of string stability (Xiao, Gao and Wang 2009, 

Sheikholeslam and Desoer 1990, Seiler, Pant and Hedrick 2004, Farnam and Sarlette 2019, Căilean 

and Dimian 2017).   

The variable spacing policy treats the desired spacing between consecutive vehicles as a 

function of the ACC vehicle’s speed, which includes the time headway-based, traffic flow stability, 

constant safety factor, and human driving behavior spacing policies. The most common spacing 

policy in both academia and the automotive industry is the time headway-based spacing (Wang 

and Rajamani 2004). In the previous studies, the term “time gap” was used instead of “time 

headway” (van der Heijden, Lukaseder and Kargl 2017, Căilean and Dimian 2017, Lin, et al. 2008, 

Moon, Kang and Yi 2010, Bageshwar, Garrard and Rajamani 2004). As aforementioned, “time 

gap” refers to the time between the rear bumper of the leading vehicle and the front bumper of the 

following vehicle when passing a fixed position, while “time headway” refers to the time between 

the front bumper of the leading vehicle and the front bumper of the following vehicle when passing 

a fixed position. “time gap” and “time headway” are different in quantity, but they lead to the same 
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vehicle behavior based on the qualitative perspective (Stüdli, Seron and Middleton 2017). In the 

automotive industry, ACC systems normally select the range of time gap between 1 to 2 seconds 

(Naranjo, et al. 2006). However, the time headway-based spacing is not suitable for high-density 

traffic conditions due to the failure of traffic flow stability (Marsden, McDonald, & Brackstone, 

2001; Darbha & Rajagopal, 1999; Wang & Rajamani, 2004).  

Thus, the traffic flow stability spacing is introduced to solve this problem. One of the traffic 

flow stability spacing policies was designed based on the Greenshield’s model, which was proven 

to maintain traffic flow stability and ensure safety (Wang and Rajamani 2004, Swaroop and 

Huandra 1998, Zou and Levinson 2002). The other one was developed based on the traffic volume 

flow rate curve with the desired spacing being a nonlinear function of the following vehicle’s speed 

(Santhanakrishnan and Rajamani 2003).  

Constant safety factor spacing was proposed to improve safety as safety is one of the major 

concerns in ACC systems (Xiao and Gao 2010, Shladover, et al. 2015). This policy can be obtained 

by analyzing the emergency braking process (Mackinnon 1975). However, the safety factor 

spacing emphasizes more on the safety perspective and it is more conservative safety-wise 

(Tomizuka and KARL HEDRICK 1995).  

The fourth gap spacing is human driving behavior spacing, which is to enhance driver 

comfort and take human driving behaviors into consideration for ACC systems (Fancher, Bareket 

and Ervin 2001). It was stated that the ACC spacing should be similar to human driver’s spacing 

behavior (Zhou and Peng 2005) and real human driving data was employed to develop ACC 

systems (Moon and Yi 2008, Kesting and Treiber 2008, Fancher, Bareket and Peng, et al. 2003). 

In a previous study, Peng et al. recorded 107 drivers’ driving behaviors to develop a human driving 

behavior spacing policy. It was proved that this spacing policy can improve customer acceptance 
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and system utilization by introducing driver characteristics (Gao, et al. 2015). However, more 

research is needed to further expand and develop the human driving behavior spacing policy that 

is similar to human drivers to reflect their physical and mental capabilities. From this perspective, 

the SHRP 2 NDS data offers the potential for developing the human driving behavior spacing 

policy for ACC systems in the automotive industry. 

2.3.3 Speed Studies 

Various factors affect the speed of vehicles passing through a work zone, including 

roadway geometrics, such as the number of lanes, lane width, horizontal and vertical curvature, 

lateral clearance; traffic warning signs (variable speed limit signs, speed monitoring and display, 

flaggers), and law enforcement (Noel, et al. 1988). Previous work zone speed studies mainly 

addressed factors affecting speed limits, driver compliance with speed limits, enforcement, and 

safety issues (J. Migletz, J. Graham, et al. 1998, Bham and Mohammadi 2011, Benekohal, Kaja-

Mohideen and Chitturi 2004, J. Migletz, J. L. Graham, et al. 1999, Pesti and McCoy 2001, Li and 

Bai 2008).  

It was found that narrowed lane widths contributed to greater speed reduction (Chitturi and 

Benekohal 2005). Another study evaluated the effectiveness of signs usage to reduce speed of 

traffic through work zones. As recommended by the NCHRP, the normal posted speed is typically 

reduced by 10 mph for work zones (J. Migletz, J. Graham, et al. 1998). It was stated that 

Changeable Message Sign (CMS), speed display trailers or CMS with radar, innovative signs, 

flagging treatments, lane narrowing, late merge, transverse striping, and rumble strips are the 

commonly used speed reduction methods and strategies (Bham and Mohammadi 2011, Benekohal, 

Kaja-Mohideen and Chitturi 2004). For driver compliance, it was found that compliance was the 

greatest where the speed limit was not reduced, and compliance decreased where the speed limit 
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was reduced by 10 mph or more (J. Migletz, J. L. Graham, et al. 1999). In a recent study, Adeli 

evaluated driver speed variations according to speed limits and road work signs based on driving 

simulator data (A. Adeli 2014). The results found that drivers’ age, road familiarity, and experience 

had a noteworthy impact on speed limit compliance. However, research has shown that once the 

enforcement tool (police vehicle patrolling or a speed feedback trailer) is out of sight, vehicle 

speeds will return to their previous levels (Pesti and McCoy 2001). As for safety issues, it was 

revealed that the greatest number of fatal crashes occurred on highways with speed limits between 

61 and 70 mph, which confirmed that high speeds increase the severity of work zone crashes (Li 

and Bai 2008). Furthermore, the previous speed studies in work zones did not provide a full picture 

of speed profiles when utilizing spot-measured data. Thus, it would be useful to perform a speed 

analysis that explores the speed distribution and speed change in the form of time series at work 

zones. 

2.3.4 Related Research that Utilizing NDS Data 

There have been a few work zone studies utilizing NDS data, but none of them aims to 

explore work zone mobility issues; instead, the main focus of these work zone studies was on the 

safety aspect. Goswamy used NDS data to investigate work zone safety, especially the role of 

speed and distraction in work zone crashes and near-crashes (Goswamy 2019). Another work zone 

study used statistical descriptions of normal driving behavior to identify abnormal behavior as the 

basis for countermeasures by utilizing NDS data (Flannagan, et al. 2019). Bharadwaj et al. 

investigated risk factors and developed a binary logistic regression model to estimate the crash risk 

in work zones (Bharadwaj, Edara and Sun 2019). The authors also quantified the risk of different 

contributing factors. For instance, it was found that the odds ratio of driver inattention is 29, which 

is the most critical behavioral factor contributing to crashes. Chang and Edara applied four 
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machine-learning algorithms to work zone events with NDS data to predict the occurrence of a 

safety-critical event by using pre-event variables (Chang and Edara 2017). These algorithms 

included the random forest, deep neural network, multilayer feed forward neural network, and t-

distributed stochastic neighbor embedding. It was concluded that the random forest algorithm 

performed the best in classifying different safety-critical events with a prediction accuracy of 

97.7%.  

2.4 Gaps in Previous Research and Proposed Work 

For freeway diverge areas, according to the literature review, conventional studies heavily 

relied on field data collection (e.g., radar gun). They have been either time-consuming or labor-

intensive tasks, which may also result in erroneous conclusions due to intrinsic biases. 

Furthermore, the Green Book only provides the minimum lengths of deceleration lanes according 

to the design speed differential from the freeway mainline and off-ramp. Moreover, similarities of 

recommended design lengths were found in the 2018 Green Book and 1965 edition. Data that was 

used in both editions were collected in the 1930s. Thus, new data and research are required to 

update the design guide. The literature review also illustrated that none of the previous studies that 

used SHRP 2 NDS data explored speed and deceleration rates on freeway deceleration lane and 

off-ramp. To fill this gap, using the SHRP 2 NDS data is a new approach to investigate the driver 

behavior during daily trips through unobtrusive data gathering equipment and without 

experimental control (Van-Schagen, et al. 2011). As SHRP 2 NDS data consists of various 

information such as the driver’s interaction with the vehicle, the traffic environment, and roadway 

characteristics, it provides an opportunity to conduct a first-ever study on determining deceleration 

lane lengths based on distributions of naturalistic driving speeds and deceleration rates on freeway 

diverge areas.  
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For freeway work zone mobility, in summary, the review of the available literature 

indicated that very few work zone studies in the past considered driver characteristics and their 

car-following behaviors. The NDS data can provide this unique information that could not be 

obtained from field data collection or traffic simulation models, which have been used to evaluate 

the freeway work zone mobility in the past. The driver types and their gap and headway 

distributions in work zones would be helpful to identify how driver behaviors affect work zone 

capacity. Moreover, the NDS data can be used to develop gap spacing policies for ACC systems 

based on human driving behavior in work zones. The literature review also revealed that none of 

the previous studies that applied SHRP 2 NDS data investigated the work zone mobility. The 

impact of driver characteristics on gap and headway selection and speed distribution during the 

entire work zone areas has never been studied. Furthermore, the results can be used to enhance 

work zone planning and simulation models by considering different headway distributions based 

on driver characteristics and their speed profiles traversing the entire work zone. 
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Chapter 3. Methodology 

3.1 Data Collection and Reduction 

This section provides the extensive data collection and reduction process for freeway 

diverge areas and work zones. 

Data collection was mainly controlled by the availability of NDS data. For freeway diverge 

areas, the diverge area of diamond interchanges with relatively straight off-ramps was targeted 

because diamond interchanges are the most widely used service interchange, which consists of 

79% of all interchanges in the United States (Missouri DOT 2017). The number of trips and drivers 

available at each potential site was checked from “Traversal Density Data” on the Insight Website 

(https://insight.shrp2nds.us/) to ensure a relatively large sample size on the off-ramp and the 

freeway mainline. The sites were checked to collect their geometric design features such as taper 

length, deceleration lane length, off-ramp length, divergence angle, off-ramp controlling feature 

(e.g., sharp curvature, stop-controlled intersection, signalized intersection, etc.), and deceleration 

lane type. It should be noted that sites within the same state were preferred to minimize the design 

differences. Subsequently, 10 study locations were selected from Florida. Later, the data request 

was sent to VTTI, which is responsible for the compilation and dissemination of NDS data, for 

extracting NDS data from locations of interest. After the IRB approval from the Office of Human 

Research in Auburn University (https://cws.auburn.edu/OVPR/pm/compliance/irb/home) 

obtained, VTTI would approve the DUL and deliver NDS data afterward. 

For freeway work zone locations, work zones are dynamics and cannot be identified from 

“Traversal Density Data” on the Insight Website (https://insight.shrp2nds.us/). However, the 

“Events” dataset on the InSight could be utilized to find baselines, crashes, and near-crash events 
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in work zones. Then, a list of event IDs of interest along with IRB approval from Auburn 

University was sent to VTTI staff so that they can use the roadway link IDs and dates of these 

events to find trips that pass through the same area around the same timeframe. To make this 

process more smooth, a conference call was scheduled with VTTI staff for requesting proper work 

zone NDS data. They delivered data in two steps. First, over 58-hour sample video clips were 

delivered. Work zone start and end mileposts were identified so that the trips traversed the same 

locations during the same time periods can be exported. Then, the final dataset was delivered with 

exported time interval which covers at most 20 weeks (10 weeks before and 10 weeks after the 

identified sample events occurred). However, as work zone activity proceeded, the configuration 

changed very quickly. For example, although work zone start and end milepost were identified 

from the first sample data, work zone configuration might have changed within 2 weeks (1 week 

before and 1 week after the identified sample events). Thus, all received NDS videos were 

reviewed to ensure that they were categorized into the proper work zone configuration.  

The data delivered for freeway diverge areas and work zones are two subsets of the SHRP 

2 NDS dataset, both including video clips of the forward-view and rear-view videos, corresponding 

time-series reports for each trip, driver risk perception, driver demographics, and vehicle 

information. The time-series report contains speeds (km/h), acceleration–deceleration rates (g), the 

brake pedal status (0 or 1), etc. Table 5 provides the data dictionary in time-series reports. The 

time-series report of each traversal provides all data at 0.1-s intervals. By reviewing the forward-

view videos, which were taken from cameras mounted inside the vehicles to provide drivers’ 

views, the traffic condition (free-flow or non-free-flow), environmental condition (lighting and 

weather), roadway geometric features (freeway diverge area or work zone layout), and the 

presence of traffic control devices (traffic sign and pavement marking) can be identified to assist 
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with understanding driver behavior. Driver risk perception and driver demographics were also 

requested. The driver risk perception was collected from the questionnaire designed to gauge the 

participant’s perception of dangerous or unsafe driving behaviors or scenarios (Transportation 

Research Board 2013). This questionnaire includes 32 driving-behavior-related questions and 

driver risk perceptions were calculated based on self-reported measures, which indicated their 

perceptions of risk associated with different driving behaviors. For example, how would the 

participant evaluate the risk when not yielding the right of way, the participant’s associated risk 

with passing other cars on the right side or the shoulder of the road, the participant’s associated 

risk with turning without signaling, etc. Each question was assigned a score from 1 (No Greater 

Risk) to 7 (Much Greater Risk); thus, it is assumed that a higher score indicates that the driver self-

reported to be cautious and obedient to traffic rules with greater risk perceptions. The total risk 

perception score of drivers is the sum of all the scores from questions in the questionnaire which 

ranges from 32 to 224.  

Table 5 NDS time-series data dictionary. 

Variable Name Description 

vtti_timestamp Time since beginning of trip, in milliseconds 

vtti_speed_network Vehicle speed indicated on speedometer collected 

from network, in km/h 

vtti_accel_x Vehicle acceleration in the longitudinal direction 

versus time, in g 

vtti_pedal_brake_state On or off press of brake pedal, 0 = off; 1 = on 
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LEADVEHICLE_HEADWAY Time gap between the participant vehicle front 

bumper and the lead vehicle rear bumper, in 

seconds 

 

For freeway diverge areas, the video of each trip was reviewed to ensure that it is a 

complete traversal beginning before the deceleration lane and ending after the off-ramp terminal. 

At the bottom left corner of the forward-view video, the continuous timestamp is offered to refer 

to the corresponding time-series report as presented in Figure 5, where details of the vehicle 

maneuver were provided at 0.1-s intervals. These details include the vehicle speed from the 

speedometer, the longitudinal acceleration rate, and the brake pedal status. The original dataset 

contained 971 trips from 10 locations, but some time-series reports were incomplete. Further, some 

trips began after the off-ramp or ended before the terminal were filtered. Finally, 709 complete 

trips driven by 272 unique drivers were used for analysis in this study as presented in Table 6. 

 

(a) 
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(b) 

Figure 5 NDS example data for freeway diverge areas:  

(a) time-series report; and (b) forward-view video. 

For freeway work zones, in addition to the time-series data (i.e., speeds), radar data (i.e., 

time gap) and video clips of the forward roadway were obtained for each trip. As the radar data 

dictionary file stated in Table 5, the headway collected from the radar is actually gap in seconds 

which equals the distance between the target rear bumper and participant vehicle front bumper 

divided by the participant’s vehicle speed. Space headway is defined as the distance between the 

same points of two consecutive vehicles following each other (Mathew and Rao 2006). Thus, an 

average vehicle length of 15 ft (Sellén, 2021) was added to the space gap, so that the time headway 

was counted from the lead vehicle’s front bumper to the participant vehicle’s front bumper. The 

example data is provided in Figure 6. To eliminate the potential distraction or impact by non-work 

zone elements, only trips that occurred during daylight time with a clear vision in good weather 

conditions on the dry pavement were selected. To reduce the impact of interchanges near work 
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zones that might potentially influence driver performance, trips near interchanges (within or one 

lane next to auxiliary lanes) were also filtered to exclude the effects of merging and diverging 

maneuvers on driver behaviors. A total of 200 complete work zone trips traversed the entire work 

zone by 103 unique drivers were finally selected at four locations as presented in Table 7, which 

encompass nearly 1,100 VMT, 19 vehicle hours traveled (VHT), and over 675,000 data points at 

0.1-s intervals.  

 

(a) 
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(b) 

Figure 6 NDS example data for freeway work zones:  

(a) time-series report; and (b) forward-view video. 

3.2 Freeway Diverge Area 

3.2.1 Site Description 

Ten study locations, five one-lane exit with parallel-design deceleration lane locations 

(Locations 1P through 5P), and five one-lane exit with tapered-design deceleration lane locations 

(Locations 1T through 5T) are located on I-75 in Florida as shown in Figure 7. The 2018 Green 

Book design criterion for minimum deceleration lane lengths was compared with study locations 

to determine if they met the minimum requirement. Table 6 lists site information, the type of 

interchange design, the type of deceleration lane design, the divergence angle, the length of every 

section (taper, deceleration lane, and off-ramp) in the diverge area, the minimum length 

determined in the Green Book, the number of trips, and the number of unique drivers. 
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Eight of 10 locations are diamond interchanges with relatively straight off-ramps. Two 

others are partial cloverleaf interchanges (Locations 3P and 5P) where the straight off-ramps were 

selected for reducing the impact on the speed by horizontal curvature (as presented in Figures 2e 

and 2i). For parallel-design locations, taper lengths are from 165 to 270 ft. Taper lengths of 

tapered-design locations were found to be shorter (130 to 205 ft). Deceleration lane lengths are in 

the range of 645 to 990 ft for parallel-design locations, which are longer than lengths in tapered-

design locations (320 to 445 ft). For both types, off-ramp lengths vary from 940 to 1,725 ft. Most 

of the locations’ off-ramp terminals are signalized intersections while three of them are under yield 

control (Locations 1T, 3P, and 5T). The speed limit on the freeway mainline is 70 mph for all 

locations. Off-ramp advisory speeds of 35 mph were posted at four locations (Locations 1P, 2P, 

3P, and 4T). It should be noted that limited information is available on establishing advisory speeds 

for off-ramps that do not have horizontal curvatures (Venglar, et al. 2008). After comparing the 

actual deceleration lane length of each location with Green Book recommendations, lengths of 

deceleration lane from parallel-design locations are longer than the minimum length, while 

tapered-design locations are shorter. 
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Table 6 Site description, minimum deceleration lane length, and number of trips and drivers. 

Site Locations 
Interchange 

Design 

Taper 
Length 

(ft) 

Deceleration 
Lane 

Length (ft) 

Off-
Ramp 
Length 

(ft) 

Green Book 
Minimum 

Deceleration 
Length (ft) 

Design 
Status 

Compared 
to Green 

Book

Number 
of Trips 

Number 
of 

Drivers 

Location 1P: 
I-75/SW Archer 

Rd 
Diamond 190 645 1475 490 GREATER 92 45 

Location 1T: 
I-75/Clark Rd 

Diamond 200 425 1595 615 LESS 102 30 

Location 2P:  
I-75/SW 
County 

Highway 484 

Diamond 195 735 990 490 GREATER 23 23 

Location 2T: 
I-75/US 98 

Diamond 150 320 940 615 LESS 59 48 

Location 3P:  
I-75/FL 326 

Parclo 165 775 1030 490 GREATER 46 32 

Location 3T: 
I-75/US 98 

Diamond 205 420 1170 615 LESS 202 56 

Location 4P:  
I-75/CR 768 

Diamond 200 700 1180 615 GREATER 28 6 

Location 4T: 
I-75/SW 

College Rd 
Diamond 150 445 1340 490 LESS 16 13 

Location 5P:  
I-75/CR 765 

Parclo 270 990 1690 615 GREATER 120 9 

Location 5T: 
I-75/CR 769 

Diamond 130 365 1725 615 LESS 21 10 
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(a) (b)

 

(c) (d) 

(e) (f) 

(g) (h)

  

(i) (j) 
Figure 7 Aerial photos of study locations: (a) Location 1P; (b) Location 1T; (c) 

Location 2P; (d) Location 2T; (e) Location 3P; (f) Location 3T; (g) Location 4P; 
(h) Location 4T; (i) Location 5P; and (j) Location 5T (Imagery © 2020 Google, 

Map data © 2020 Google). 
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3.2.2 Data Analysis 

Data analysis was performed from three aspects: (1) speed distributions on deceleration 

lanes and off-ramps; (2) driver behaviors in terms of the brake pedal usage and the deceleration 

rates, and (3) methods on estimating minimum deceleration lane length based on naturalistic 

driving speeds and deceleration rates. 

Reviewing videos was the first step in the data analysis. Observers recorded the video 

frame number (the timestamp) at critical points in the video. Taper start point, deceleration lane 

start point, deceleration lane endpoint (physical gore), and off-ramp endpoint (stop bar at the 

terminal) on each location were considered critical points for this analysis. The frame number 

allowed for correlation to the data in the time-series report (speed, acceleration/deceleration rate, 

brake pedal status, etc.). Thus, the timestamp of each critical point in the time-series table was 

tagged to help determine the speed distribution (i.e., maximum, 85th percentile, mean, and 

minimum speed; and their standard deviations) of every section on the deceleration lane and off-

ramp. In Table 6, the lengths of different sections (taper, deceleration lane, and off-ramp) at each 

study location are presented.  

3.2.2.1 Polynomial Regression 

The speed distributions on the taper, the deceleration lane, and the off-ramp were calculated 

by applying polynomial regression models, which were estimated using the NDS trips and speed 

data at 0.1-second intervals. The polynomial regression method minimizes the sum-of-squared 

residuals between measured and simulated quantities. The least-squares method is used to estimate 

unknown parameters (Gill, Murray and Wright 2019): 

𝑣 ൌ 𝛽଴ ൅ 𝛽ଵ𝐿 ൅ 𝛽ଶ𝐿ଶ ൅ 𝛽ଷ𝐿ଷ ൅ ⋯ ൅ 𝛽௡𝐿௡ ൅ 𝜀 ሺ6ሻ 
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Where, 𝐿 ൌ The distance from the starting point of the taper along the 

deceleration lane and off-ramp (ft) 

 𝑣 ൌ Vehicle speed (mph) 

 𝛽௡ ൌ Estimated parameters 

 𝜀 ൌ The error of the specification  

Four best-fitted models using NDS speed data, maximum speed, 85th percentile speed, 

mean speed, and minimum speed distributions, were developed for each study location by using 

the statistical computing software R. R software provides a variety of statistical (linear and 

nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering, etc.) 

and graphical techniques (R Core Team 1993). The residual standard error was used as a measure 

of goodness-of-fit to evaluate and determine the quality of the fitted model.  

3.2.2.2 Critical Speed Changepoint Detection 

The changepoint detection estimates the point at which the statistical properties of a 

sequence of observations change (Killick and Eckley 2014). It has been widely used in various 

application areas, including climatology, bioinformatic applications, finance, oceanography, and 

medical imaging (Reeves, et al. 2007, Erdman and Emerson 2008, Zeileis, Shah and Patnaik 2010, 

R. Killick, et al. 2010, Nam, Aston and Johansen 2012). By applying this method, speed time series 

data is defined as: 𝑉ଵ:௡ ൌ ሺ𝑉ଵ, 𝑉ଶ, … , 𝑉௡ሻ. A changepoint may occur within this set when there 

exists a time, τ ∈ ሼ1, … , 𝑛 െ 1ሽ, where the statistical properties of ሼ𝑉ଵ, … , 𝑉ఛሽ and ሼ𝑉ఛାଵ, … , 𝑉௡ሽ are 

different in some way (R Core Team 1993). The aim of the analysis is to estimate the location of 

the changepoint efficiently and accurately by minimizing the following equation: 

෍ ቂ𝐶 ቀ𝑉൫ఛ೔భାଵ൯:ఛ೔
ቁቃ

௠ାଵ

௜ୀଵ

൅ 𝛽𝑓ሺ𝑚ሻ ሺ7ሻ 
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Where, 𝐶 ൌ A cost function for a segment (e.g., negative log-likelihood) 

 𝑚 ൌ The number of changepoints 

 𝛽𝑓ሺ𝑚ሻ ൌ A penalty to guard against overfitting  

This method is used to identify the driver speed change position on the deceleration lane 

and off-ramp, so that the location where drivers take action to decelerate can be determined. 

3.2.2.3 Driver Behavior 

Driver behavior was identified by brake pedal usage and deceleration rate. Brake pedal 

status was coded as 0 or 1 in the time-series reports. The value of 0 indicates that the driver did 

not apply the brake at the certain 0.1-second interval, while 1 means he or she did. To find where 

drivers applied brakes most often, brake pedal usage was evaluated by the percentage of the drivers 

applying brakes in certain sections.  

The time-series reports provided deceleration rates which can be used to calculate the mean 

and 85th percentile deceleration rates on the taper, deceleration lane, and off-ramp sections. The 

rates can also be determined by converting the distance-based speed model to the time-based one. 

The deceleration rate distribution was executed to find out the section where drivers mostly reduce 

their speeds so that the effective decelerating section could be found. When calculating 

deceleration rates, the Green Book recommended two methods (AASHTO 2018): one is based on 

a two-step process of deceleration, coasting (assumed 3 seconds) and braking; the other is based 

on a constant decelerating behavior on the deceleration lane which was validated by El-Basha et 

al. (El-Basha, Hassan and Sayed 2007). In this study, the deceleration rate was compared with the 

Green Book rates based on a constant decelerating behavior over the entire deceleration process. 

The minimum deceleration lane length can then be estimated based on the deceleration rate from 

NDS data and polynomial regression models by using Equation 8. 
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𝐷 ൌ
𝑣௜

ଶ െ 𝑣௙
ଶ

2𝑑
ሺ8ሻ 

Where, 𝐷 ൌ Deceleration distance (ft) 

 𝑣௜ ൌ Initial speed (ft/s) 

 𝑣௙ ൌ Final speed (ft/s) 

 𝑑 ൌ Deceleration rate (ft/s2)  

3.3 Freeway Work Zone Mobility 

3.3.1 Site Description 

According to the FHWA, lane closure and shoulder closure are the most common work 

zone configurations (FHWA 2020). Meanwhile, four- and six-lane divided highways are the most 

common types of roadways that occupy over 90% of the Interstate System mileage (FHWA 2017). 

Thus, four work zone configurations were selected in this study as presented in Figure 8. They are 

lane closure with lane reduction from two lanes to one lane (LC 2-1), lane closure with lane 

reduction from three lanes to two lanes (LC 3-2), shoulder closure with two lanes (SC 2-2), and 

shoulder closure with three lanes (SC 3-3). As defined in the MUTCD, a work zone typically 

consists of four consecutive sections: advance warning area, transition area, activity area, and 

termination area. In lane closure work zones (Figure 8a andFigure 8b), it is easy to define these 

four sections. But in shoulder closure work zones, the borders among transition area, activity area, 

and termination area are not clear according to the forward-view videos. In this study, only two 

areas were defined for shoulder closure work zones: advance warning area and work zone area 

(the combination of transition area, activity area, and termination area) as shown in Figure 8c 

andFigure 8d.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8 Four work zone configurations: (a) LC 2-1; (b) LC 3-2; (c) SC 2-2; and (d) SC 3-3. 
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All work zone configurations complied with the requirements of Temporary Traffic 

Control (TTC) zones in the Manual on Uniform Traffic Control Devices (MUTCD). The speed 

control methods were only applied at lane closure configurations with portable changeable 

message signs at the beginning of the transition area. Work zone speed limits that affect speed 

choice only appeared in the LC 2-1 location. There was no other law enforcement to affect speed 

reduction in the other three work zone locations. Only SC 2-2 appeared concrete barriers while 

drums were used as channelizing devices in the other three work zone configurations. Table 7 

summarizes numbers of unique drivers and trips at each work zone configuration (location) and 

their geographic locations. One LC 2-1 work zone is located in New York State, and the other 

three work zones are located in Florida. 

Table 7. Summary of Final Dataset 

Work Zone 

Configuration 

(Location) 

Geographically 

Located 

Number of Unique Drivers 
Number of 

Trips Female Male Total 

LC 2-1 New York 11 9 20 50 

LC 3-2 Florida 10 10 20 50 

SC 2-2 Florida 10 14 24 50 

SC 3-3 Florida 21 17 38 50 

 

3.3.2 Data Analysis 

Data analysis was performed with two objectives: (1) gap and headway selection tables 

based on different driver characteristics at four work zone configurations; and (2) speed analysis 

in terms of speed distribution and key speed change points identification at work zones. 
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The headway and gap distributions through the entire work zone were explored for the four 

different configurations. To identify the relationships between headway/gap selection and driver 

characteristics, all the drivers were categorized into different age groups: young, middle-aged, and 

senior groups. The mean headway and critical gap spacing, its 95% confidence interval, and the 

associated risk score were investigated. The analysis at different work zone sections was also 

performed to find out whether drivers adopted different headways and gap spacings. 

3.3.2.1 Generalized Additive Model 

To explore the driver’s headway distribution through the entire work zone, the generalized 

additive model (GAM) was used to predict the best-fitted curve of headway profile of work zone 

consecutive sections to provide a better understanding of how driver negotiating the entire work 

zone, given the headway data from NDS. When compared with other techniques, GAM has three 

key advantages: (1) easy to interpret; (2) flexible predictor functions can uncover hidden patterns 

in the data; and (3) regularization of predictor functions help avoid overfitting (Larsen 2015). The 

GAM (Hastie and Tibshirani 1990, Wood 2017) allows non-linear functions of each variable, 

while maintaining the additivity of the model. This is achieved by replacing each linear component 

βjxij with a smooth non-linear function fj(xij). A GAM can be written as Equation 9: 

𝑦௜ ൌ 𝛽଴ ൅ ෍ 𝑓௝൫𝑥௜௝൯ ൅ 𝜀௜ ൌ

௡

௝ୀଵ

𝛽଴ ൅ 𝑓ଵሺ𝑥௜ଵሻ ൅ 𝑓ଶሺ𝑥௜ଶሻ ൅ ⋯ ൅ 𝑓௡ሺ𝑥௜௡ሻ ൅ 𝜀௜ ሺ9ሻ 

Where, 𝑦௜ ൌ Dependent variable 

 𝑥௜௡ ൌ Predictor variable 

 𝑓௡ሺ𝑥௜௡ሻ ൌ Smooth non-linear function 

 
GAM allows fitting a non-linear function fj to each xj that one does not need to manually 

try out numerous transformations on each of the predictor variables. Since GAM is an additive 
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model, one can examine the impact of each xj on yi individually. In this model, the smoothness of 

function fj for the variable xj is summarized via degrees of freedom. In GAM, the linear predictor 

predicts a known smooth monotonic function of the expected value of the response, and the 

response may follow any distribution (Wood 2017). To compare GAM with the other models such 

as the polynomial regression model, the Akaike information criterion (AIC) is an estimator of the 

relative quality of models for a given set of data. AIC uses a model’s maximum likelihood 

estimation (log-likelihood) as a measure of fit. Typically, lower AIC values indicate a better-fit 

model. The R package ‘mgcv’ (Wood and Wood 2021) with the ‘gam’ function was applied to 

develop the GAM models. 

3.3.2.2 Speed Analysis 

A speed analysis was performed to explore the speed distribution and speed change over 

the entire work zone. To achieve this goal, GAM and change point detection techniques were 

applied. These two methods were described in the previous sections. 
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Chapter 4. Analysis and Results 

This chapter summarizes the results from the freeway diverge area and work zone. 

4.1 Freeway Diverge Area Results 

The results are categorized into three parts: (1) polynomial regression of speed distribution 

on the deceleration lanes and off-ramps; (2) driver behavior in terms of brake pedal usage, 

deceleration rates, and a comparison with the Green Book assumptions; and (3) minimum lengths 

of deceleration lanes based on naturalistic driving speed and deceleration rates. 

4.1.1 Speed Distribution 

Four fitted speed distribution profiles by polynomial regression are presented in Figure 9, 

which shows speed distribution on the deceleration lane and the off-ramp in Locations 1P and 1T. 

The x-axis is the length (ft), and the y-axis is the speed (mph). The light blue lines are the speed 

data from NDS time-series reports, one trace coming from one traversal. The other four lines in 

the figure are fitted polynomial regression models, including the maximum speed distribution 

(maroon), the 85th percentile speed distribution (red), the mean speed distribution (orange), and 

the minimum speed distribution (pink). The critical points are also marked with estimated speeds.  

For example, the 85th percentile speed distribution in Location 1P (Figure 9a), the speed 

at the beginning of the taper was 74.02 mph. It was reduced to 72.67 mph when the vehicle entered 

the deceleration lane. The speed was further reduced to 63.39 mph after driving through the 645 ft 

deceleration lane, resulting in a 9.28 mph speed reduction on the deceleration lane. However, it 

was found that a great speed reduction occurred on the off-ramp, especially close to the off-ramp 

terminal where a signalized intersection exists. Finally, the 85th percentile speed was reduced to 
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23.88 mph. As for Location 1T as shown in Figure 9b, the speed distribution was slightly different 

from Location 1P. Before the taper in Location 1T, an extra 210-ft segment before the taper section 

was counted to make the length equal to the total length of taper and deceleration lane in Location 

1P. It was found that, in Location 1T, drivers decelerated on the mainline before entering the taper 

section. The 85th percentile speed at the taper start point was 69.64 mph, which is nearly 5 mph 

lower than that in Location 1P. When entering the deceleration lane, the speed was 68 mph. The 

425-ft deceleration lane only helps reduce 3 mph considering the speed at the off-ramp start point 

being 64.49 mph. Similar to Location 1P, a significant speed reduction of 33.58 mph was observed 

on the off-ramp. The speed distribution of other study locations can be found in Appendix A. 

(a) 
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(b) 

Figure 9 Speed distributions: (a) Location 1P; and (b) Location 1T. 

Polynomial regression models and R-squared values of 85th percentile speed and mean 

speed distributions for Locations 1P and 1T are summarized as follows:  

For Location 1P: 

𝑣ଵ௉ି଼ହ೟೓ ൌ െ9.767 ൈ 10ିଵଶ𝐿ଵ௉
ସ ൅ 3.380 ൈ 10ି଼𝐿ଵ௉

ଷ െ 3.462 ൈ 10ିହ𝐿ଵ௉
ଶ

െ1.703 ൈ 10ିଷ ൈ 𝐿ଵ௉ ൅ 74.02 ሺ10ሻ

 

𝑅ଶ ൌ 0.9981 

𝑣ଵ௉ିெ௘௔௡ ൌ െ6.646 ൈ 10ିଵହ𝐿ଵ௉
ହ ൅ 2.697 ൈ 10ିଵଵ𝐿ଵ௉

ସ െ 3.978 ൈ 10ି଼𝐿ଵ௉
ଷ

൅2.997 ൈ 10ିହ𝐿ଵ௉
ଶ െ 2.594 ൈ 10ିଶ𝐿ଵ௉ ൅ 69.80 ሺ11ሻ

 

𝑅ଶ ൌ 0.9981 
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For Location 1T: 

𝑣ଵ்ି଼ହ೟೓ ൌ െ3.320 ൈ 10ିଽ𝐿ଵ்
ଷ ൅ 5.640 ൈ 10ି଺𝐿ଵ்

ଶ െ 1.071 ൈ 10ିଶ𝐿ଵ் ൅ 71.67 ሺ12ሻ

𝑅ଶ ൌ 0.9980 

𝑣ଵ்ିெ௘௔௡ ൌ െ3.968 ൈ 10ିଽ𝐿ଵ்
ଷ ൅ 6.610 ൈ 10ି଺𝐿ଵ்

ଶ െ 1.165 ൈ 10ିଶ𝐿ଵ் ൅ 66.59 ሺ13ሻ

𝑅ଶ ൌ 0.9956 

All study locations were performed four regressions. The equations and R-squared values 

can be found in Appendix A. All R-squared values are greater than 0.95, which indicates a very 

good fit. Generally, overfitting with polynomial regression occurs when the model is too 

complicated or has too many features. Thus, to avoid overfitting and obtain relatively accurate 

models, this study applied a two-step method. First, the R-squared value is examined to be greater 

than 0.95 so that a very good fit can be guaranteed. Second, the model should be consistent with 

the data distribution pattern. For example, by adding powers of the model, the regression 

distribution may not follow the data distribution pattern. Such a model should not be selected. It 

should be noted that all estimated parameters are statistically significant at the 99% confidence 

level. L is defined as the distance from the starting point of the taper to any points on the taper, 

deceleration lane, or off-ramp. v is the speed downstream from the taper start point.  

From the models developed, only 85th percentile speeds and mean speeds at the taper start 

point, deceleration lane start point, deceleration lane endpoint, and off-ramp endpoint are 

summarized in Table 8. All speeds at critical points can be found in Appendix A. The speeds at 

parallel-design locations were 1-2 mph higher than that at tapered-design locations in taper and 

deceleration lane sections. However, the speeds upon vehicles entering the off-ramp for Locations 

1T to 5T were typically 3 mph higher than parallel-design locations. When an advisory speed was 



70 
 

posted on the off-ramp, the operating speeds were not significantly affected by the advisory speed 

which is 35 mph for Locations 1P, 2P, 3P, and 4T. The mean speed for a 35-mph advisory speed 

location was approximately 55 mph, and the approximate speed was 58 mph without the advisory 

speed sign. 

Table 8 A comparison of speed distribution and speed reduction percentage on the 

deceleration lane and off-ramp: (a) parallel-design locations; and (b) tapered-design 

locations. 

(a) 

Site 

Speed (mph) Speed Reduction Percentage* 

Taper 

Start 

Deceleration 

Lane Start 

Deceleration 

Lane End 

Off-

Ramp 

End 

Taper 
Deceleration 

Lane 

Off-

Ramp 

Location 

1P 

645 ft 

85th 74.02 72.67 63.39 23.88 2.69% 18.51% 78.80%

Mean 69.80 65.71 56.29 10.26 6.87% 15.82% 77.31%

Location 

2P 

735 ft 

85th 72.53 70.14 60.04 31.48 5.82% 24.60% 69.57%

Mean 64.59 65.70 53.14 17.71 
-

2.37% 
26.79% 75.58%

Location 

3P 

775 ft 

85th 68.09 65.12 55.92 19.31 6.09% 18.86% 75.05%

Mean 61.97 58.84 47.13 11.50 6.20% 23.20% 70.60%

85th 69.47 70.76 63.29 19.14 
-

2.56% 
14.84% 87.72%
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Location 

4P 

700 ft 

Mean 63.03 64.57 55.95 13.95 
-

3.14% 
17.56% 85.57%

Location 

5P 

990 ft 

85th 75.07 73.87 69.81 29.00 2.60% 8.81% 88.58%

Mean 69.26 68.36 62.18 22.50 1.92% 13.22% 84.86%

*Note: Speed reduction percentage=speed reduction/total speed reduction from deceleration lane 

start point to the off-ramp end point 

(b) 

Site 

Speed (mph) Speed Reduction Percentage* 

Taper 

Start 

Deceleration 

Lane Start 

Deceleration 

Lane End 

Off-

Ramp 

End 

Taper 
Deceleration 

Lane 

Off-

Ramp 

Location 

1T 

425 ft 

85th 69.64 68.00 64.89 31.31 4.28% 8.11% 87.61% 

Mean 64.40 62.65 59.34 20.38 3.98% 7.52% 88.51% 

Location 

2T 

320 ft 

85th 72.55 70.62 65.46 20.81 3.73% 9.97% 86.30% 

Mean 64.37 62.52 57.06 15.82 3.81% 11.25% 84.94% 

Location 

3T 

420 ft 

85th 67.14 65.47 61.58 28.29 4.30% 10.01% 85.69% 

Mean 61.30 59.45 54.59 19.62 4.44% 11.66% 83.90% 

Location 

4T 

445 ft 

85th 68.19 68.37 64.85 7.47 -0.30% 5.80% 94.50% 

Mean 64.37 63.63 58.75 0.00 1.15% 7.58% 91.27% 
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Location 

5T 

365 ft 

85th 73.20 71.98 68.26 37.05 3.37% 10.29% 86.33% 

Mean 66.65 65.82 62.61 28.18 2.16% 8.34% 89.50% 

*Note: Speed reduction percentage=speed reduction/total speed reduction from deceleration lane 

start point to the off-ramp end point 

 

 

The speed reduction percentage is the percentage of speed reduced at the taper, deceleration 

lane, and off-ramp section. As shown in Table 8, the high percentage of the speed reduction 

occurred on off-ramps, which revealed that speed reduction was more significant on off-ramps 

than deceleration lanes. However, NCHRP Report 730 made a different indication (Torbic, et al. 

2012). It should be mentioned that NCHRP Report 730 did not include the speed and deceleration 

along the entire deceleration lane and off-ramp but only several points (Torbic, et al. 2012). The 

authors indicated that drivers were completing much of the required deceleration in the freeway 

lane upstream of the beginning of the taper when they found field-measured deceleration rates 

were less than the Green Book assumptions (Torbic, et al. 2012). This indication is very different 

from our results. For example, our results showed that Location 1P only had a 16% speed reduction 

in mean speed distribution on deceleration lanes and approximately 77% on off-ramps. When 

comparing parallel-design locations with tapered-design locations, it was found that tapered-

design locations have higher speed reduction percentages on off-ramps in the range of 84% to 95%, 

while parallel-design locations have 70% to 88% speed reduction. The speed- reduction percentage 

on the deceleration lane and off-ramp indicated that drivers decelerated more on an off-ramp than 

on the deceleration lane. Also, some negative speed reduction percentages were observed, which 

implied that drivers may have accelerated on the taper section at three out of five parallel-design 

locations.  
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Moreover, longer deceleration lanes may not lead to higher speed reduction percentages. 

For both types of locations, the study sites with the longest deceleration lanes have the lowest 

speed reduction percentages. Location 5P with a 990-ft deceleration lane only had 8.81% speed 

reduction on it. Location 4T with a 445-ft deceleration lane only had 5.80% speed reduction on it. 

However, shorter deceleration lanes do not result in higher speed reduction percentages either. The 

locations with the highest speed reduction percentages are median lengths – Location 2P (735-ft 

deceleration lane) and Location 3T (420-ft deceleration lane). 

4.1.2 Driver Braking Behavior 

Driver braking behavior was interpreted by the brake pedal usage and deceleration rate 

distribution on the deceleration lane and off-ramp.  

4.1.2.1 Brake Pedal Usage 

The brake status (0 or 1) indicates whether the driver was applying the brake at the certain 

0.1 seconds. The brake status distribution was performed based on the percentage of drivers who 

applied brakes at certain sections on the deceleration lane and off-ramp. Figure 10 shows brake 

status distributions at Location 1P and Location 1T. At Location 1P, only 30% of drivers applied 

brakes when entering the taper section. An increase to 60% of drivers applied brakes when entering 

the deceleration lane while a decrease back to 30% happened after traversing the first half of the 

deceleration lane. More braking behavior was observed after the vehicle approached the off-ramp 

terminals. Similar results from Location 1T were presented in Figure 10b. From ten study 

locations, the average brake percentages for taper, deceleration lane, and off-ramp sections are 

21.42%, 30.30%, and 63.67% in parallel-design locations, respectively, and 25.23%, 32.51%, and 

57.69% in tapered-design locations, respectively. The brake pedal usage was also performed in 

other study locations, which can be found in Appendix B. 
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(a) 

(b) 

Figure 10 Brake status distribution: (a) Location 1P; and (b) Location 1T. 
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4.1.2.2 Deceleration Rate Distribution 

To calculate the deceleration rates, the speed-distance-based model, for example, 

Equations 10 to 13, was first converted to the speed-time-based model as time can be calculated 

from the distance and speed. Then, the first derivative of this speed-time-based model was 

determined. This first derivative is the deceleration rate from speed regression. The mean and 85th 

percentile deceleration rates will be summarized. An extra step was taken to identify the critical 

speed changepoint on the off-ramp. As greater speed reductions and higher brake percentages were 

observed upstream from the off-ramp terminal, change point models were used to identify driver 

reaction point where most drivers decelerate very hard when approaching the ramp terminal. Two 

examples of critical speed changepoint analysis are presented in Figure 11. In Location 1P, drivers 

adjusted their speed 469-ft upstream of the off-ramp terminal (1,841 ft after the taper start point) 

from the 85th percentile speed distribution. For Location 1T as shown in Figure 11b, this number 

was increased to 764 ft (1,666 ft after the taper start point). The average reaction points for parallel-

design locations are 540.4 ft in 85th percentile speed and 541.6 ft in mean speed. For tapered-design 

locations, the critical speed changepoints are 646.8 ft in 85th percentile speed and 652.2 ft in mean 

speed upstream from the ramp terminal. The 85th percentile critical speed changepoint was 

calculated for each location, which can be found in Appendix C. 
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(a) 

 

(b) 

Figure 11 Critical speed changepoint: (a) Location 1P; and (b) Location 1T. 

The R statistical package of changepoint was utilized for critical speed changepoint 

detection based on binary segmentation algorithms. After the changepoints are detected, the 

deceleration rate before and after the changepoint on the off-ramps can also be obtained. The mean 

and 85th percentile deceleration rates were compared with the Green Book criterion which assumes 
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a constant deceleration (AASHTO 2018).  The Green Book deceleration rates were derived from 

recommended minimum deceleration lane lengths as summarized in NCHRP Report 730 (Torbic, 

et al. 2012). As shown in Table 9, most of the naturalistic driving deceleration rates were lower 

than the design deceleration rates in the Green Book. However, the deceleration rates after the 

changepoint on the off-ramp were relatively higher than other sections, and some of them were 

even greater than the design rates. For parallel-design deceleration lanes, the deceleration rates on 

the deceleration lane were slightly higher than that on the tapered-design locations. In NCHRP 

Report 730, however, the authors observed that parallel deceleration lanes had a substantially 

higher deceleration rate of more than twice than tapered-design ones especially on straight ramps 

(Torbic, et al. 2012). All deceleration rates on the deceleration lane were much smaller than the 

Green Book criterion. The mean deceleration rates on certain sections of parallel-design and 

tapered-design locations were summarized in the last four rows in Table 9. It can be found that 

the Green Book assumes that drivers are exiting the freeway with a constant deceleration rate, 

while the results of this study indicate that drivers’ braking behavior on the taper section, 

deceleration lane section, and off-ramp section are different with different deceleration rates.  

Table 9 Deceleration rates at study locations. 

Deceleration Rate 

(ft/s2) 
Taper 

Deceleration 

Lane dD 

Off Ramp dR 
GB Decel Rate* 

(ft/s2) 
Before 

Changepoint 

After 

Changepoint 

Location 1P 

645 ft 

85th -1.63 -2.34 -2.12 -5.72 
-5.41 

Mean -3.61 -2.24 -1.88 -5.19 

Location 2P 

735 ft 

85th -2.47 -2.41 -2.32 -6.46 
-5.41 

Mean -0.35 -2.57 -2.55 -4.52 
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Location 3P 

775 ft 

85th -2.87 -1.79 -2.76 -3.53 
-5.41 

Mean -2.67 -1.91 -2.20 -2.47 

Location 4P 

700 ft 

85th 0.18 -1.93 -2.89 -5.09 
-5.88 

Mean 0.17 -1.95 -2.20 -4.20 

Location 5P 

990 ft 

85th -0.98 -0.92 -2.15 -5.45 
-5.88 

Mean -0.52 -1.01 -1.77 -4.55 

Location 1T 

425 ft 

85th -1.28 -1.12 -2.06 -2.94 
-5.88 

Mean -1.26 -1.10 -2.12 -2.69 

Location 2T 

320 ft 

85th -2.08 -2.53 -3.77 -5.22 
-5.88 

Mean -1.78 -2.46 -3.35 -3.61 

Location 3T 

420 ft 

85th -1.23 -1.27 -2.28 -4.48 
-5.88 

Mean -1.37 -1.48 -1.90 -4.12 

Location 4T 

445 ft 

85th 0.08 -1.90 -2.60 -7.03 
-5.41 

Mean -0.88 -1.63 -3.08 -5.40 

Location 5T 

365 ft 

85th -1.50 -1.55 -1.50 -3.24 
-5.88 

Mean -0.96 -1.36 -1.62 -2.87 

Parallel-

Design 

85th -1.55 -1.88 -2.45 -5.25 Note: *GB Decel 

Rate is the 

deceleration rate 

recommended in 

the Green Book. 

Mean -1.40 -1.94 -2.12 -4.19 

Tapered-

Design 

85th -1.20 -1.67 -2.44 -4.58 

Mean 
-1.25 -1.61 -2.41 -3.74 
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4.1.3 Determination of the Minimum Length of Deceleration Lane 

Equations 14 to 16 were developed to estimate the minimum deceleration lane length. The 

general idea of determining the minimum length for deceleration lane is to calculate the 

deceleration distance needed to decelerate from mainline speeds to ramp terminal speeds and 

subtract the certain off-ramp length. In other words, the minimum deceleration lane length is equal 

to the deceleration distance deducted by the off-ramp length. The minimum deceleration length 

can be determined by plugging in the deceleration rates from the deceleration lanes (𝑑஽) and off-

ramps (𝑑ோ  and 𝑑ோ௉ ) sections in Table 9, entering speed for the deceleration lane ሺ𝑉஽ሻ , and 

estimating entering speed for the exit ramp (𝑉ோ
ᇱ), the changepoint on the off-ramp (𝑉ோ௉), and the 

first controlling feature on off-ramp ( 𝑉஼ሻ  from regression models. The controlling feature 

represents whether ramp curvature or the crossroad terminal is the design element that controls 

vehicle deceleration (Torbic, et al. 2012). On the relatively straight ramps at locations described 

in this study, the first controlling feature usually is the crossroad terminal (signalized intersection). 

 

ቐ
𝐿஽௘௖௘௟ ൌ 𝐿ொ,                                 𝑉஽ ൑ 𝑉ோ

ᇱ

𝐿஽௘௖௘௟ ൌ
ሺ1.47𝑉ோ

ᇱሻଶ െ ሺ1.47𝑉஽ሻଶ

2𝑑஽
൅ 𝐿ொ, 𝑉஽ ൐ 𝑉ோ

ᇱ 
ሺ14ሻ 

𝑉ோ
ᇱ  ൌ

ඥሺ1.47𝑉ோ௉ሻଶ െ 2𝑑ோ𝐿ோ

1.47
ሺ15ሻ 

𝑉ோ௉  ൌ
ඥሺଵ.ସ଻௏಴ሻమିଶௗೃು௅ೃು

ଵ.ସ଻
ሺ16ሻ                         
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Where, 𝐿஽௘௖௘௟ ൌ Deceleration lane length, ft 

 𝐿ொ ൌ Queue length at the off-ramp terminal, ft 

 𝐿ோ ൌ Length from deceleration lane endpoint to the critical speed changepoint 

upstream from the first controlling feature on the off-ramp, ft 

 𝐿ோ௉ ൌ Length from the critical speed changepoint to the off-ramp terminal, ft  

 𝑉஼ ൌ Speed at the first controlling feature on the off-ramp, mi/h  

 𝑉஽  ൌ Entering speed for deceleration lane, mi/h 

 𝑉ோ
ᇱ   ൌ Estimated entering speed for the off-ramp, assuming drivers decelerate on 

𝐿ோwith a constant deceleration rate on exit ramps (𝑑ோ), mi/h 

 𝑉ோ௉ ൌ Speed at the changepoint on the off-ramp, mi/h 

 𝑑஽ ൌ Deceleration rate on deceleration lane, ft/s2 

 𝑑ோ ൌ Deceleration rate on exit ramp, ft/s2 

 𝑑ோ௉ ൌ Deceleration rate after the critical speed changepoint on the off-ramp, mi/h

To determine the deceleration lane length, the key parameters are summarized in Table 10. 

For example, at parallel-design locations, the speed at the stop bar of the off-ramp terminal (VC) 

should be 0 mph and the deceleration rate (dRP) is estimated to be -5.25 ft/s2 on the off-ramp after 

the changepoint. The distance between the stop bar and the changepoint (LRP) is 540 ft as 

mentioned previously. By applying Equation 12, the speed at the changepoint (VRP) is 51.22 mph. 

When the total length of the off-ramp is 1,550 ft (𝐿ோ ൌ 1550 െ 540 ൌ 1010 𝑓𝑡), drivers would 

be able to comfortably reduce all the required speed on the off-ramp (𝑉ோ
ᇱ ൌ 70𝑚𝑝ℎ ൌ 𝑉஽).  For 

tapered-design locations, the final speed should also be 0 mph (𝑉஼ ൌ 0 𝑚𝑝ℎ) and the deceleration 

rate is -4.58 ft/s2 after the changepoint (𝑑ோ௉ ൌ െ4.58 𝑓𝑡/𝑠ଶ). Following the same steps, it can be 
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determined that no deceleration lane will be required for decelerating purpose with a 1,540 ft off-

ramp. The proposed minimum deceleration lane lengths of study locations are presented in 
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Table 11. As a result, Locations 1T, 5P, and 5T do not require a deceleration lane serving 

decelerating functions. 

Table 10 Summary of key parameters to determine the deceleration lane length. 

Key Parameters 

Parallel-Design Tapered-Design 

Minimum 

(85th) 
Mean

Minimum 

(85th) 
Mean

Deceleration Lane (ft/s2) dD -1.88 -1.94 -1.67 -1.61 

Off 

Ramp  

Before Changepoint (ft/s2) 

dR 
-2.45 -2.12 -2.44 -2.41 

After Changepoint (ft/s2) 

dRP 
-5.25 -4.19 -4.58 -3.74 

Speed Entering Dec.Lane (mph) VD 70.00 65.00 69.00 63.00

Speed at the Changepoint on Off-

Ramp (mph) VRP 
51.22 45.74 52.49 47.43

Speed at the 1st Controlling Feature 

(mph) VC 
0.00 0.00 0.00 0.00 

Length from Changepoint to Off-

Ramp terminal (ft) LRP 
540 650 
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Table 11 Comparison of proposed deceleration lane length and design length 

Site Locations 

Proposed 

Minimum Length 

(ft) (85th) LDecel 

Actual 

Deceleration 

Lane Length (ft) 

Green Book Minimum 

Deceleration Length 

(ft) 

Off-Ramp 

Length (ft) 

LR+LRP 

Location 1P: 

I-75/SW 

Archer Rd 

75 645 490 1475 

Location 1T: 

I-75/Clark Rd 
NA1 425 615 1595 

Location 2P:  

I-75/SW 

County 

Highway 484 

560 735 490 990 

Location 2T: 

I-75/US 98 
600 320 615 940 

Location 3P:  

I-75/FL 326 
520 775 490 1030 

Location 3T: 

I-75/US 98 
370 420 615 1170 

Location 4P:  

I-75/CR 768 
370 700 615 1180 
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Location 4T: 

I-75/SW 

College Rd 

200 445 490 1340 

Location 5P:  

I-75/CR 765 
NA1 990 615 1690 

Location 5T: 

I-75/CR 769 
NA1 365 615 1725 

Note: 1NA indicates that the deceleration lane is not required for decelerating purpose. 

 

4.2 Freeway Work Zone Mobility Analysis 

This section describes how the SHRP 2 NDS data led to the freeway work zone mobility 

evaluation. First, the gap and headway selection tables based on the driver characteristics and work 

zone configurations were developed. Second, speed analysis in terms of speed distributions and 

speed changepoint detection along the entire work zone consecutive sections was performed.  

4.2.1 Gap and Headway Distribution 

Time and space gap together with time headway distribution were studied based on driver 

characteristics (i.e., gender, age group, and risk perception) at four work zone configurations. 

4.2.1.1 Driver characteristics 

Driver characteristics include gender (female and male), age group (younger than 24, 25 to 

59, and older than 60), and mean risk perception score. A higher perception score indicates that 

the driver is conservative and a lower score represents an aggressive driver. As presented in Figure 

12a, 60% of drivers in the dataset have a risk perception score greater than 160, which indicates 
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that these participants have good risk perceptions and tend to be cautious and obedient to traffic 

rules. It was found that risk perception distributions in female and male drivers are very different 

in  Figure 12b and 12c. Approximate 80% of female drivers’ risk perceptions fall into the interval 

between 140 and 200, while only 55% of male drivers scored within that interval. 25% of male 

drivers’ risk perceptions fall into the interval between 200 and 220. In other words, male drivers 

were self-reported to have higher risk perceptions than the participating female drivers. In total, 

there were 52 female drivers and 50 male drivers. As shown in Table 12, the numbers of young, 

middle-aged, and senior drivers are 52, 28, and 22, respectively. Despite two cases with very low 

risk perceptions, the risk perceptions of female and male drivers range from 120 to 220. Female 

drivers obtain higher risk perception scores than male drivers in the same age group. It is 

interesting to find that regardless of gender, the risk perception score increases with the increase 

of driver’s age. Please note that there was one participant who left demographic info blank, and 

thus it was not included in the headway distribution analysis. 

 

 

(a) 
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(b) 

 

(c) 

Figure 12 Driver Risk Perception Distribution: 

(a) Total Drivers; (b) Female Drivers; and (c) Male Drivers. 
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Table 12 Summary of Driver Risk Perception and Demographic Info 

Age 
Female Male 

Sample Size Risk Perception* Sample Size Risk Perception* 

≤ 24 32 (120, 198) 20 (112, 192) 

25 - 59 11 (150, 205) 17 (123, 206) 

≥ 60 9 (164, 221) 13 (147, 219) 

*Note: a higher risk perception score indicates a higher cautious level. 

 

4.2.1.2 Gap and headway profiles by driver types 

Figure 13 presents the gap and headway profile by driver types at the LC 2-1 work zone. 

The gap and headway profile at other locations can be found in Appendix D. It was stated that 

young drivers are more aggressive and have higher risks to be involved in fatal crashes when 

compared with other age groups (Lambert-Bélanger, et al. 2012), which is consistent with lower 

risk perception score (more aggressive driver) from young drivers. Interestingly, young drivers 

maintained a longer gap and headway than middle-aged drivers. From four work zone 

configurations in this study, middle-aged drivers typically maintained the shortest time gap and 

headway among all age groups. Please note that space headway equals to gap spacing plus 15 ft 

(which is the vehicle length). Thus, space headway was not presented in Figure 13. 
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(a) 

 

(b) 
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(c) 

Figure 13 Gap and headway profile by driver types at LC 2-1: 

 (a) gap; (b) gap spacing; and (c) headway. 

 
Gap and headway selection tables before, during, and after work zone by different driver 

types at four selected work zone configurations (LC 2-1, LC 3-2, SC 2-2, and SC 3-3) were 

developed, which can be found in Appendix E. Table 13 summarized the details of gap and 

headway distribution and driver characteristics (gender, age group, and driver risk perceptions) at 

the LC 2-1 work zone. It includes the 95% confidence interval, mean values of risk perception 

scores, and gap and headways from drivers by age group and gender.  

The time and space gap distributions from different drivers traversing various work zones 

can improve ACC spacing policies for the automotive industry. Taking driver characteristics into 

consideration when developing spacing policies contributes to the similarity of human driver’s 

spacing behavior in the ACC systems, and thus, would be able to enhance comfort for drivers. It 
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Transition Area Activity Area
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can further improve driver’s acceptance and system utilization by introducing driver 

characteristics. 

The headway distributions from different drivers traversing various work zone can improve 

work zone capacity models. The desired time headway parameter (CC1) in VISSIM is static 

through all work zone consecutive sections, although it was suggested that desired time headway 

should be modeled as a distribution rather than a static value when data are available (Dong, et al. 

2015). Thus, if headway distribution models built for different driver characteristics are used in 

lieu of a static value in VISSIM, a more accurate capacity estimation can be captured.  

 
Table 13 Gap and headway selection table by driver characteristics at LC 2-1. 

Start 

 (500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.7 (1.3, 4.2) 251 (121, 380) 2.9 (1.4, 4.3) 176 

≤ 24 2.4 (2.3, 2.5) 223 (218, 228) 2.6 (2.5, 2.7) 142 

25 - 59 1.5 (1.2, 1.8) 150 (120, 180) 1.6 (1.3, 2.0) 161 

≥ 60 3.2 (1.7, 4.7) 293 (155, 431) 3.4 (1.9, 4.9) 186 

Male 

Subtotal 1.9 (0.8, 2.9) 181 (81, 281) 2.0 (0.9, 3.1) 191 

≤ 24 2.8 (2.0, 3.7) 281 (191, 371) 3.0 (2.1, 3.9) 146 

25 - 59 1.7 (1.0, 2.5) 172 (99, 244) 1.9 (1.1, 2.7) 190 

≥ 60 1.6 (0.5, 2.6) 150 (58, 241) 1.7 (0.7, 2.8) 208 

Grand Total 2.4 (1.0, 3.8) 225 (101, 349) 2.6 (1.2, 3.9) 182 
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Advance 

Warning 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.9 (1.5, 4.2) 249 (125, 374) 3.0 (1.6, 4.4) 174 

≤ 24 2.1 (1.7, 2.5) 194 (149, 240) 2.3 (1.9, 2.7) 142 

25 - 59 2.8 (1.7, 2.5) 245 (126, 364) 2.9 (1.4, 4.4) 167 

≥ 60 3.0 (1.6, 4.4) 259 (128, 391) 3.2 (1.8, 4.6) 182 

Male 

Subtotal 2.6 (1.3, 4.2) 240 (94, 386) 2.8 (1.2, 4.4) 185 

≤ 24 4.7 (3.6, 5.8) 453 (356, 549) 4.9 (3.8, 6.0) 146 

25 - 59 2.3 (0.7, 3.9) 207 (72, 342) 2.5 (0.8, 4.1) 167 

≥ 60 2.3 (1.0, 3.6) 208 (93, 323) 2.5 (1.2, 3.7) 207 

Grand Total 2.8 (1.3, 4.2) 246 (114, 378) 2.9 (1.5, 4.4) 178 

Transition 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.4 (1.1, 3.7) 190 (88, 292) 2.6 (1.3, 3.9) 170 

≤ 24 1.5 (1.5, 1.6) 124 (122, 127) 1.7 (1.7, 1.8) 142 

25 - 59 3.3 (1.4, 5.2) 262 (112, 412) 3.5 (1.6, 5.4) 165 

≥ 60 2.0 (1.5, 2.6) 163 (120, 206) 2.2 (1.7, 2.8) 177 

Male 

Subtotal 3.1 (0.8, 5.4) 253 (60, 445) 3.3 (1.0, 5.6) 192 

≤ 24 6.2 (5.9, 6.5) 539 (513, 566) 6.4 (6.1, 6.7) 146 

25 - 59 3.4 (0.8, 6.8) 273 (68, 542) 3.6 (0.9, 7.0) 174 

≥ 60 2.4 (1.0, 3.8) 188 (77, 299) 2.6 (1.1, 4.0) 207 
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Grand Total 2.7 (0.9, 4.4) 213 (68, 359) 2.8 (1.1, 4.6) 179 

Activity 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.4 (1.0, 3.9) 200 (79, 322) 2.6 (1.2, 4.1) 174 

≤ 24 1.8 (0.6, 3.4) 149 (53, 297) 1.9 (0.8, 3.6) 142 

25 - 59 3.2 (0.8, 5.5) 247 (62, 432) 3.4 (1.0, 5.7) 163 

≥ 60 2.3 (1.4, 3.3) 195 (107, 282) 2.5 (1.5, 3.5) 181 

Male 

Subtotal 2.1 (0.6, 3.6) 174 (54, 294) 2.3 (0.8, 3.8) 196 

≤ 24 1.8 (0.5, 3.2) 152 (37, 268) 2.0 (0.6, 3.4) 146 

25 - 59 1.0 (0.8, 1.2) 88 (69, 108) 1.2 (1.0, 1.4) 202 

≥ 60 2.4 (0.9, 4.0) 201 (77, 325) 2.6 (1.1, 4.2) 207 

Grand Total 2.3 (0.8, 3.8) 191 (70, 313) 2.5 (1.0, 4.0) 181 

Termination 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 3.4 (1.8, 5.0) 310 (162, 459) 3.5 (1.9, 5.1) 177 

≤ 24 3.2 (2, 4.40) 313 (196, 429) 3.3 (2.1, 4.5) 141 

25 - 59 NA NA NA NA NA NA NA 

≥ 60 3.4 (1.8, 5.1) 310 (158, 462) 3.6 (1.9, 5.2) 182 

Male 

Subtotal 1.7 (0.4, 3.1) 163 (31, 297) 1.8 (0.5, 3.3) 191 

≤ 24 1.1 (1.0, 1.2) 115 (105, 126) 1.2 (1.2, 1.3) 146 

25 - 59 0.8 (0.4, 1.2) 73 (30, 119) 0.9 (0.5, 1.4) 202 
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≥ 60 2.3 (0.5, 4.0) 222 (65, 379) 2.4 (0.7, 4.2) 204 

Grand Total 2.8 (1.1, 4.6) 262 (103, 422) 3.0 (1.2, 4.7) 181 

End  

(500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.9 (1.2, 4.6) 267 (108, 425) 3.1 (1.4, 4.8) 181 

≤ 24 3.9 (3.9, 4.0) 405 (403, 408) 4.1 (4.0, 4.1) 141 

25 - 59 1.1 (0.9, 1.2) 99 (81, 116) 1.2 (1.1, 1.4) 171 

≥ 60 3.4 (1.7, 5.0) 306 (154, 458) 3.5 (1.9, 5.2) 186 

Male 

Subtotal 2.1 (0.5, 3.9) 198 (49, 364) 2.2 (0.6, 4.1) 191 

≤ 24 1.3 (1.3, 1.3) 139 (135, 144) 1.4 (1.4, 1.5) 146 

25 - 59 0.6 (0.5, 0.6) 56 (52, 60) 0.7 (0.7, 0.7) 202 

≥ 60 2.9 (0.8, 5.0) 273 (91, 455) 3.0 (0.9, 5.1) 203 

Grand Total 2.6 (0.8, 4.4) 242 (78, 407) 2.8 (1.0, 4.6) 185 
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4.2.1.3 Gap comparison 

The gap spacing distributions by different work zone consecutive sections are illustrated 

in Figure 14. Boxplots were utilized to detect potential outliers, which were filtered if they were 

beyond the upper limit or lower limit. It can be found that vehicles maintain different gap spacings 

in different work zone sections and configurations. For instance, at work zone configuration LC 

2-1 as presented in Figure 14a, the mean gap spacings from start section to end section (Table 13) 

are 225, 246, 213, 191, 262, and 242 ft, respectively. The lower quartile (25%) can be treated as 

the critical gap spacing that most drivers would maintain a gap that is longer than that.  From the 

boxplots, the range of the upper quartile (75%) and lower quartile (25%) in mean gap spacing tend 

to decrease as vehicles move from the start section to transition area. The mean gap spacing began 

to increase after traversing the activity area. While for LC 3-2 (Figure 14b), the mean gap spacing 

throughout the entire work zone remained focused – from 166 to 190 ft (Table E- 2). As for 

shoulder closure, the mean gap spacings from the start to the end at SC 2-2 are 225, 179, 162, and 

184 ft (Table E- 3). At SC 3-3, headways were stable with minor changes ranging from 142 to 

172 ft traversing work zones (Table E- 4). This might be indicating that with more through lanes, 

work zone activity will have fewer impacts on drivers. 
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(a) 

(b) 
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(d) 

Figure 14. Gap spacing distribution by work zone areas:  

(a) LC 2-1; (b) LC 3-2; (c) SC 2-2; and (d) SC 3-3. 

4.2.1.4 Headway Estimation 

As shown in Figure 15, GAM estimated the best-fitted curves of time headway throughout 

the work zone at four work zone configurations. Figure 15a presents the time headway estimation 

for LC 2-1. The time headway tends to increase when drivers approach advance warning area. It 

starts to decrease when drivers are in the advance warning area. The decreasing trend continues 

until drivers are at the end of activity area. The smallest time headway occurs in activity area. The 

time headway quickly increases after drivers enter termination area. For LC 3-2 (Figure 15b), 

fluctuations are expected before activity area. The time headway tends to consistently decrease 

when drivers approach activity area. The smallest headway was estimated in activity area. The 

time headway started to increase in termination area where drums are removed. 

Figure 15c presents the estimated headway for SC 2-2. The overall trend illustrates that 

time headway decreases until drivers start to leave the work zone. For SC 3-3 (Figure 15d), two 

smallest headway points were observed. The first one occurs at where the shoulder has been fully 

closed with limited shoulder clearance. The second one can be found where drivers approach 

activity area. A decreasing trend in time headway can be noticed before these two points and an 

increasing trend shows up after. 
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(a) 
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(d) 

Figure 15 Headway estimation by work zone sections:  

(a) LC 2-1; (b) LC 3-2; (c) SC 2-2; and (d) SC 3-3. 

4.2.2 Speed Analysis 

4.2.2.1 Speed profile 

Speed profiles by GAM are presented in Figure 16, which shows speed distributions in the 

entire work zone at four configurations. The x-axis is the length (ft) and the y-axis is the speed 

(mph). The black dots are the speed data from SHRP 2 NDS time-series reports, one trace coming 

from one traversal. The red lines are the best-fitted curves by using GAM. After reviewing the 

forward-view videos, it was found that the reduced speed limit sign (55 mph) only appeared at LC 

2-1 configuration. From Figure 16a, it is observed that at LC 2-1 work zone, speeds decreased 



102 
 

when approaching the work zone, but drivers were only compliant with the 55 mph speed limit 

during transition area. Their speeds increased when entering activity area. At SC 2-2 work zone, 

there is a speed reduction between 10,000 and 20,000 ft, which was due to the presence of concrete 

barriers instead of drums. The other two configurations did not observe significant speed changes 

during the entire work zone traversal. Additionally, speed profiles by different driver types can be 

found in Appendix F. 

 

(a) 
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(d) 

Figure 16 Speed Distribution: (a) LC 2-1; (b) LC 3-2; (c) SC 2-2; and (d) SC 3-3. 

4.2.2.2 Speed change point 

Speed change point detection was used to identify points where both mean and variance of 

speeds had significant changes. Figure 17 presents speed change points at four work zone 

configurations. The x-axis is the data point index and the y-axis is the speed (mph). The red arrow 

indicates the location of a speed change point in work zones. As aforementioned, only LC 2-1 

presented the speed reduction requirement from the reduced speed limit sign. It was found, in 

Figure 17a, that the mean speed began to decrease by 8 mph after entering advance warning area 

and increased back to initial speeds after drivers saw the end of work zone drums. At LC 3-2 

(Figure 17 b), it was observed a slight speed increase (2 mph on average) after the transition area. 
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This might be caused by the driver accelerating to merge to the left two lanes. The mean speed 

then decreased by 4 mph when drivers reached the activity area. No reduced speed limit sign was 

installed at the LC 3-2 location. For SC 2-2 (Figure 17c), the mean speed was significantly reduced 

by 5 mph where concrete barriers narrowed shoulder clearance. It increased by 2 mph near the end 

of work zone area. The slight speed decreases (2-3 mph) at SC 3-3 (Figure 17d) were observed 

which was likely led by the downstream merging behavior from downstream freeway on-ramps. 

 
(a)  

Speed Change Point 
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(b) 

Speed Change Point 
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(c) 

Speed Change Point
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(d) 

Note: Red Arrow = Speed Change Point 

Figure 17 Speed Change Point Detection:  

(a) LC 2-1; (b) LC 3-2; (c) SC 2-2; and (d) SC 3-3. 

 

 

Speed Change Point
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Chapter 5. Conclusions 

This research conducted a first-ever study to investigate two innovative applications of 

SHRP 2 NDS data to improve freeway interchange deceleration lane design and analyze work 

zone mobility. Transportation agencies can utilize findings from this study to better design freeway 

diverge areas and evaluate work zone mobility.  

For freeway diverge areas, this dissertation proposed a new method to determine the 

minimum deceleration lane lengths based on naturalistic driving speeds and deceleration rates. The 

results can be used to improve new freeway diverge areas and modify existing ones. Some key 

findings are concluded as follows: 

1. The operating speeds were much higher than the Green Book assumptions. The 

Green Book indicates that on a freeway with a 70-mph design speed, drivers will 

enter the deceleration lane at 58 mph. In the five parallel-design locations, the speed 

distribution, however, showed that the speed was 65 mph on average when vehicles 

entered the deceleration lane. The Green Book also assumed that the speed reached 

the end of deceleration lane with a ramp of 35 mph design speed should be 30 mph, 

which instead was 55 mph on average based on this study.  

2. Drivers were not effectively using the deceleration lane regarding the speed 

reduction. From speed distribution results, for parallel-design locations, the speed 

reduction on the deceleration lane is approximately 15% to 25%. The percentage 

of the speed reduced on the off-ramp is 75% to 85% which indicates that the speed 

reduced much more after vehicles approached the off-ramp terminal. For tapered-

design locations, the speeds reduced on the deceleration lane were even lower, 10% 

speed reduction on deceleration lanes and 85% to 90% on off-ramps. 
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3. The brake status distribution further emphasized that the effective deceleration 

segment is on the off-ramp rather than the deceleration lane. The average brake 

pedal usage on off-ramps is higher than that on deceleration lanes on average (26.01% 

for taper section, 36.83% for the deceleration lane section, and 53.72% for the off-

ramp section).  

4. The results from critical speed changepoint models also implied that drivers’ 

reaction points of sharp deceleration were on the off-ramp upstream of the ramp 

terminal. The average distances of reaction points from the terminal are 540 ft for 

parallel-design locations and 650 ft for tapered-design locations. 

5. The calculated mean and 85th percentile deceleration rates were dynamic while the 

Green Book criterion assumes constant values for the entire decelerating maneuver. 

It was found that the deceleration rates on the deceleration lane were much lower 

than those on the off-ramp after the critical speed changepoint. Most of the 

deceleration rates on the deceleration lane and off-ramp at study locations were 

lower than constants provided by the Green Book, however, some were higher after 

the critical speed changepoint. 

6. Based on the speed and deceleration rate distribution, a new method was developed 

to determine the minimum length of the deceleration lane. The results indicated that 

a deceleration lane may not be required for serving decelerating purpose on both 

parallel- and tapered-design deceleration lane locations when the ramp length is 

more than 1,550 ft. This number is specific to the diamond interchange (or 

interchanges with relatively straight off-ramps) with 70 mph speed limit on the 

mainline with the assumption of a stop is required at the off-ramp terminal. For off-
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ramps that have relatively high volume, the queue length can be added to the 

original design length to provide a queue storage function. 

In addition to the original objectives of this work, this study enabled the following 

observations. The advisory speeds posted on off-ramps were not able to significantly impact 

drivers’ operating speeds. For locations with a 35-mph advisory speed, the average 85th percentile 

speed and mean speed are 63 mph and 55 mph, respectively. For those without advisory speeds, 

the 85th percentile speed is 65 mph and the mean speed is 58 mph. Thus, based on the speed 

distribution and speed change, the speed advisory sign can be installed before the critical speed 

change point on off-ramps to guide the drivers to reduce their speeds accordingly. 

For freeway work zones, this dissertation developed gap and headway selection tables 

based on driver characteristics and studied speed distributions during the entire work zone areas. 

The results can be used to enhance work zone planning and simulation models and improve ACC 

spacing policies in work zones. Some key findings are summarized as follows: 

1. Gap and headway selection tables revealed that car-following behaviors are highly 

variable among different drivers. The time and space gap distributions from 

different drivers traversing various work zone areas can be useful to improve ACC 

spacing policies for the automotive industry. Further studies are needed to 

understand drivers’ acceptance of current ACC gap settings at work zones. This 

study found that mean headways change through work zone consecutive sections. 

These findings suggest that separate headway distributions should be used for 

different work zone areas when modeling work zone traffic control using 

simulation or planning tools. 
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2. Speed data analysis indicated that speeds decrease when drivers approach transition 

area and increase when they are near termination area for lane closure conditions. 

The mean speed at LC 2-1 was reduced by 8 mph from 63 mph to 55 mph (speed 

limit) when entering advance warning area and the speed increased back to initial 

speeds after activity area. At LC 3-2, the 4 mph mean speed reduction from 72 mph 

to 68 mph was observed when drivers were approaching activity area. For SC 2-2, 

the mean speed was reduced by 5 mph from 76 mph to 71 mph by the concrete 

barriers that narrowed shoulder clearance. The shoulder closure typically does not 

have significant impacts on speeds under non-breakdown conditions. There was no 

significant speed change at SC 3-3.
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Chapter 6. Future Study 

This study applied SHRP 2 NDS data to explore freeway deceleration lane and off-ramp 

designs based on naturalistic driving speeds and deceleration rates at 10 freeway diverge areas; 

and to develop gap and headway selection tables based on driver characteristics and establish speed 

profiles in four work zone configurations. The needs of future studies are pointed out as follows: 

For freeway diverge areas: 

Future studies could expand the sample size by requesting more NDS data on locations 

with different types of interchanges and off-ramps. The same procedure can be followed to further 

summarize the design methods for other types of interchanges and off-ramps. 

For freeway work zones: 

Future studies could investigate the headway and gap distributions under other types of 

weather and lighting conditions. It is also suggested to collect more NDS data to further validate 

the gap and headway selection and speed distribution by different driver types for more work zone 

configurations with additional work zone trips by more unique drivers. This would also be helpful 

for understanding drivers’ acceptance of current ACC gap settings at work zones. 
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Appendix A: Freeway Diverge Area Speed Distribution and Regression 

(a) 

(b) 
Figure A- 1 Speed distributions: (a) Location 1P; and (b) Location 1T. 
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(a) 

(b) 

Figure A- 2 Speed distributions: (a) Location 2P; and (b) Location 2T. 
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(a) 

(b) 

Figure A- 3 Speed distributions: (a) Location 3P; and (b) Location 3T. 
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(a) 

(b) 

Figure A- 4 Speed distributions: (a) Location 4P; and (b) Location 4T. 
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(a) 

(b) 

Figure A- 5 Speed distributions: (a) Location 5P; and (b) Location 5T. 
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Table A- 1 Max, 85th percentile, mean, and min speed distributions at critical points. 

Site 

Speed (mph) 

 
Taper 

Start 

Deceleration 

Lane Start 

Deceleration 

Lane End 

Off-

Ramp 

End 

Location 

1P 

Max - 90.61 86.18 76.43 44.11 

85th - 74.02 72.67 63.39 23.88 

Mean - 69.80 65.71 56.29 10.26 

Min - 58.45 52.04 36.64 0.00 

 210ft  

Location 

1T 

Max 89.97 86.17 83.78 79.98 44.94 

85th 71.67 69.64 68.00 64.89 31.31 

Mean 66.59 64.40 62.65 59.34 20.38 

Min 53.75 51.05 50.01 42.78 0.00 

Location 

2P 

Max - 83.67 83.55 73.86 31.48 

85th - 72.53 70.14 60.04 17.71 

Mean - 64.59 65.70 53.14 7.52 

Min - 63.67 58.06 41.23 0.00 

 460ft  

Location 

2T 

Max 85.32 81.76 80.09 76.02 34.62 

85th 74.99 72.55 70.62 65.46 24.03 

Mean 68.74 64.37 62.52 57.06 18.11 
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Min 56.09 54.39 51.47 39.63 0.81 

Location 

3P 

Max - 75.19 72.18 61.28 31.22 

85th - 68.09 65.12 55.92 19.31 

Mean - 61.97 58.84 47.13 11.50 

Min - 50.59 44.96 27.32 0.00 

 315ft  

Location 

3T 

Max 82.69 83.45 82.07 76.53 43.86 

85th 68.38 67.14 65.47 61.58 28.29 

Mean 60.45 61.30 59.45 54.59 19.62 

Min 49.75 46.47 45.46 43.76 8.22 

Location 

4P 

Max - 80.45 78.01 68.10 34.05 

85th - 69.47 70.76 63.29 19.14 

Mean - 63.03 64.57 55.95 13.95 

Min - 50.23 50.13 43.70 0.00 

 305ft  

Location 

4T 

Max 79.40 74.08 73.01 67.03 15.14 

85th 70.50 68.19 68.37 64.85 7.47 

Mean 63.88 64.37 63.63 58.75 0.00 

Min 56.28 51.54 50.09 41.32 0.00 

Location 

5P 

Max - 82.18 80.17 78.96 40.80 

85th - 75.07 73.87 69.81 29.00 

Mean - 69.26 68.36 62.18 22.50 
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Min - 50.37 53.98 48.47 0.00 

 765ft  

Location 

5T 

Max 82.49 77.22 76.20 72.95 42.78 

85th 75.12 73.20 71.98 68.26 37.05 

Mean 71.02 66.65 65.82 62.61 28.18 

Min 52.98 56.45 55.01 51.45 0.00 
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Regression models 

For Location 1P: 

𝑣ଵ௉ିெ௔௫ ൌ െ5.633 ൈ 10ିଽ𝐿ଵ௉
ଷ ൅ 1.558 ൈ 10ିହ𝐿ଵ௉

ଶ െ 2.606 ൈ 10ିଶ ൈ 𝐿ଵ௉ ൅ 90.61 

𝑅ଶ ൌ 0.9963 

𝑣ଵ௉ି଼ହ೟೓ ൌ െ9.767 ൈ 10ିଵଶ𝐿ଵ௉
ସ ൅ 3.380 ൈ 10ି଼𝐿ଵ௉

ଷ െ 3.462 ൈ 10ିହ𝐿ଵ௉
ଶ

െ 1.703 ൈ 10ିଷ ൈ 𝐿ଵ௉ ൅ 74.02 

𝑅ଶ ൌ 0.9981 

𝑣ଵ௉ିெ௘௔௡ ൌ െ6.646 ൈ 10ିଵହ𝐿ଵ௉
ହ ൅ 2.697 ൈ 10ିଵଵ𝐿ଵ௉

ସ െ 3.978 ൈ 10ି଼𝐿ଵ௉
ଷ

൅ 2.997 ൈ 10ିହ𝐿ଵ௉
ଶ െ 2.594 ൈ 10ିଶ𝐿ଵ௉ ൅ 69.80 

𝑅ଶ ൌ 0.9981 

𝑣ଵ௉ିெ௜௡ ൌ െ4.970 ൈ 10ିଵସ𝐿ଵ௉
ହ ൅ 1.866 ൈ 10ିଵ଴𝐿ଵ௉

ସ െ 2.340 ൈ 10ି଻𝐿ଵ௉
ଷ

൅ 1.226 ൈ 10ିସ𝐿ଵ௉
ଶ െ 4.982 ൈ 10ିଶ𝐿ଵ௉ ൅ 58.45 

𝑅ଶ ൌ 0.9600 
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For Location 1T: 

𝑣ଵ்ିெ௔௫ ൌ 3.664 ൈ 10ିଵଶ𝐿ଵ்
ସ െ 1.877 ൈ 10ି଼𝐿ଵ்

ଷ ൅ 2.570 ൈ 10ିହ𝐿ଵ்
ଶ

െ 2.272 ൈ 10ିଶ ൈ 𝐿ଵ் ൅ 89.97 

𝑅ଶ ൌ 0.9877 

𝑣ଵ்ି଼ହ೟೓ ൌ െ3.320 ൈ 10ିଽ𝐿ଵ்
ଷ ൅ 5.640 ൈ 10ି଺𝐿ଵ்

ଶ െ 1.071 ൈ 10ିଶ𝐿ଵ் ൅ 71.67 

𝑅ଶ ൌ 0.9980 

𝑣ଵ்ିெ௘௔௡ ൌ െ3.968 ൈ 10ିଽ𝐿ଵ்
ଷ ൅ 6.610 ൈ 10ି଺𝐿ଵ்

ଶ െ 1.165 ൈ 10ିଶ𝐿ଵ் ൅ 66.59 

𝑅ଶ ൌ 0.9956 

𝑣ଵ்ିெ௜௡ ൌ െ2.108 ൈ 10ିଵସ𝐿ଵ்
ହ ൅ 1.012 ൈ 10ିଵ଴𝐿ଵ்

ସ
െ 1.630 ൈ 10ି଻𝐿ଵ்

ଷ

൅ 9.239 ൈ 10ିହ𝐿ଵ்
ଶ െ 2.597 ൈ 10ିଶ𝐿ଵ் ൅ 53.75 

𝑅ଶ ൌ 0.9922 
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For Location 2P: 

𝑣ଶ௉ିெ௔௫ ൌ െ1.892 ൈ 10ିଽ𝐿ଶ௉
ଷ െ 1.141 ൈ 10ିହ𝐿ଶ௉

ଶ ൅ 1.701 ൈ 10ିଷ ൈ 𝐿ଶ௉ ൅ 83.67 

𝑅ଶ ൌ 0.9932 

𝑣ଶ௉ି଼ହ೟೓ ൌ െ1.958 ൈ 10ିଵସ𝐿ଶ௉
ହ ൅ 7.472 ൈ 10ିଵଵ𝐿ଶ௉

ସ െ 9.974 ൈ 10ି଼𝐿ଶ௉
ଷ

൅ 4.947 ൈ 10ିହ𝐿ଶ௉
ଶ െ 1.863 ൈ 10ିଶ ൈ 𝐿ଶ௉ ൅ 72.53 

𝑅ଶ ൌ 0.9968 

𝑣ଶ௉ିெ௘௔௡ ൌ െ2.261 ൈ 10ିଵଵ𝐿ଶ௉
ସ ൅ 7.285 ൈ 10ି଼𝐿ଶ௉

ଷ െ 8.193 ൈ 10ିହ𝐿ଶ௉
ଶ

൅ 1.906 ൈ 10ିଶ𝐿ଶ௉ ൅ 64.59 

𝑅ଶ ൌ 0.9970 

𝑣ଶ௉ିெ௜௡ ൌ െ8.148 ൈ 10ିଵସ𝐿ଶ௉
ହ ൅ 3.177 ൈ 10ିଵ଴𝐿ଶ௉

ସ െ 4.281 ൈ 10ି଻𝐿ଶ௉
ଷ

൅ 2.262 ൈ 10ିସ𝐿ଶ௉
ଶ െ 5.882 ൈ 10ିଶ𝐿ଶ௉ ൅ 63.67 

𝑅ଶ ൌ 0.9825 
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For Location 2T: 

𝑣ଶ்ିெ௔௫ ൌ െ8.369 ൈ 10ିଵଶ𝐿ଶ்
ସ ൅ 1.891 ൈ 10ି଼𝐿ଶ்

ଷ െ 1.848 ൈ 10ିହ𝐿ଶ்
ଶ

െ 2.432 ൈ 10ିଷ ൈ 𝐿ଶ் ൅ 85.32 

𝑅ଶ ൌ 0.9971 

𝑣ଶ்ି଼ହ೟೓ ൌ െ8.131 ൈ 10ିଵଶ𝐿ଶ்
ସ ൅ 2.220 ൈ 10ି଼𝐿ଶ்

ଷ െ 2.916 ൈ 10ିହ𝐿ଶ்
ଶ

൅ 4.214 ൈ 10ିଷ𝐿ଶ் ൅ 74.99 

𝑅ଶ ൌ 0.9962 

𝑣ଶ்ିெ௘௔௡ ൌ െ5.557 ൈ 10ିଽ𝐿ଶ்
ଷ ൅ 1.200 ൈ 10ି଺𝐿ଶ்

ଶ െ 8.866 ൈ 10ିଷ𝐿ଶ் ൅ 68.74 

𝑅ଶ ൌ 0.9962 

𝑣ଶ்ିெ௜௡ ൌ െ5.084 ൈ 10ିଵସ𝐿ଶ்
ହ ൅ 2.176 ൈ 10ିଵ଴𝐿ଶ்

ସ
െ 3.091 ൈ 10ି଻𝐿ଶ்

ଷ

൅ 1.486 ൈ 10ିସ𝐿ଶ்
ଶ െ 2.555 ൈ 10ିଶ𝐿ଶ் ൅ 56.09 

𝑅ଶ ൌ 0.9917 
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For Location 3P: 

𝑣ଷ௉ିெ௔௫ ൌ െ6.522 ൈ 10ିଽ𝐿ଷ௉
ଷ ൅ 1.167 ൈ 10ିହ𝐿ଷ௉

ଶ െ 2.000 ൈ 10ିଶ ൈ 𝐿ଷ௉ ൅ 75.19 

𝑅ଶ ൌ 0.9906 

𝑣ଷ௉ି଼ହ೟೓ ൌ െ9.955 ൈ 10ିଽ𝐿ଷ௉
ଷ ൅ 1.750 ൈ 10ିହ𝐿ଷ௉

ଶ െ 2.060 ൈ 10ିଶ ൈ 𝐿ଷ௉ ൅ 68.09 

𝑅ଶ ൌ 0.9932 

𝑣ଷ௉ିெ௘௔௡ ൌ െ7.536 ൈ 10ିଽ𝐿ଷ௉
ଷ ൅ 1.239 ൈ 10ିହ𝐿ଷ௉

ଶ െ 2.078 ൈ 10ିଶ𝐿ଷ௉ ൅ 61.97 

𝑅ଶ ൌ 0.9965 

𝑣ଷ௉ିெ௜௡ ൌ െ7.934 ൈ 10ିଽ𝐿ଷ௉
ଷ ൅ 2.085 ൈ 10ିହ𝐿ଷ௉

ଶ െ 3.734 ൈ 10ିଶ𝐿ଷ௉ ൅ 50.59 

𝑅ଶ ൌ 0.9612 
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For Location 3T: 

𝑣ଷ்ିெ௔௫ ൌ െ3.299 ൈ 10ିଵଶ𝐿ଷ்
ସ ൅ 1.362 ൈ 10ି଼𝐿ଷ்

ଷ െ 2.723 ൈ 10ିହ𝐿ଷ்
ଶ

൅ 9.745 ൈ 10ିଷ ൈ 𝐿ଷ் ൅ 82.69 

𝑅ଶ ൌ 0.9973 

𝑣ଷ்ି଼ହ೟೓ ൌ െ5.794 ൈ 10ିଵଶ𝐿ଷ்
ସ ൅ 1.708 ൈ 10ି଼𝐿ଷ்

ଷ െ 1.931 ൈ 10ିହ𝐿ଷ்
ଶ

൅ 6.374 ൈ 10ିସ𝐿ଷ் ൅ 68.38 

𝑅ଶ ൌ 0.9953 

𝑣ଷ்ିெ௘௔௡ ൌ െ1.110 ൈ 10ିଵଵ𝐿ଷ்
ସ ൅ 3.937 ൈ 10ି଼𝐿ଷ்

ଷ െ 4.952 ൈ 10ିହ𝐿ଷ்
ଶ

൅ 1.475 ൈ 10ିଶ𝐿ଷ் ൅ 60.45 

𝑅ଶ ൌ 0.9977 

𝑣ଷ்ିெ௜௡ ൌ െ9.707 ൈ 10ିଽ𝐿ଷ்
ଷ ൅ 1.864 ൈ 10ିହ𝐿ଷ்

ଶ െ 1.532 ൈ 10ିଶ𝐿ଷ் ൅ 49.75 

𝑅ଶ ൌ 0.9738 
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For Location 4P: 

𝑣ସ௉ିெ௔௫ ൌ െ2.724 ൈ 10ିଽ𝐿ସ௉
ଷ ൅ 8.403 ൈ 10ି଻𝐿ସ௉

ଶ െ 1.227 ൈ 10ିଶ ൈ 𝐿ସ௉ ൅ 80.45 

𝑅ଶ ൌ 0.9965 

𝑣ସ௉ି଼ହ೟೓ ൌ െ1.144 ൈ 10ିଵଵ𝐿ସ௉
ସ ൅ 3.867 ൈ 10ି଼𝐿ସ௉

ଷ െ 4.975 ൈ 10ିହ𝐿ସ௉
ଶ

൅ 1.493 ൈ 10ିଶ ൈ 𝐿ସ௉ ൅ 69.47 

𝑅ଶ ൌ 0.9976 

𝑣ସ௉ିெ௘௔௡ ൌ െ1.379 ൈ 10ିଵଵ𝐿ସ௉
ସ ൅ 4.858 ൈ 10ି଼𝐿ସ௉

ଷ െ 6.145 ൈ 10ିହ𝐿ସ௉
ଶ

൅ 1.814 ൈ 10ିଶ𝐿ସ௉ ൅ 63.03 

𝑅ଶ ൌ 0.9957 

𝑣ସ௉ିெ௜௡ ൌ െ2.555 ൈ 10ିଵସ𝐿ସ௉
ହ ൅ 1.051 ൈ 10ିଵ଴𝐿ସ௉

ସ െ 1.430 ൈ 10ି଻𝐿ସ௉
ଷ

൅ 6.331 ൈ 10ିହ𝐿ସ௉
ଶ െ 8.255 ൈ 10ିଷ𝐿ସ௉ ൅ 50.23 

𝑅ଶ ൌ 0.9939 
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For Location 4T: 

𝑣ସ்ିெ௔௫ ൌ െ2.033 ൈ 10ିଵସ𝐿ସ்
ହ ൅ 9.842 ൈ 10ିଵଵ𝐿ସ்

ସ െ 1.548 ൈ 10ି଻𝐿ସ்
ଷ

൅ 1.032 ൈ 10ିସ𝐿ସ்
ଶ െ 3.702 ൈ 10ିଶ ൈ 𝐿ସ் ൅ 79.40 

𝑅ଶ ൌ 0.9953 

𝑣ସ்ି଼ହ೟೓ ൌ െ1.844 ൈ 10ିଵସ𝐿ସ்
ହ ൅ 8.800 ൈ 10ିଵଵ𝐿ସ்

ସ െ 1.487 ൈ 10ି଻𝐿ସ்
ଷ

൅ 9.779 ൈ 10ିହ𝐿ସ்
ଶ െ 2.589 ൈ 10ିଶ𝐿ସ் ൅ 70.50 

𝑅ଶ ൌ 0.9973 

𝑣ସ்ିெ௘௔௡ ൌ െ7.229 ൈ 10ିଵହ𝐿ସ்
ହ ൅ 2.393 ൈ 10ିଵଵ𝐿ସ்

ସ െ 2.094 ൈ 10ି଼𝐿ସ்
ଷ

െ 7.380 ൈ 10ି଺𝐿ସ்
ଶ ൅ 5.196 ൈ 10ିଷ𝐿ସ் ൅ 63.88 

𝑅ଶ ൌ 0.9955 

𝑣ସ்ିெ௜௡ ൌ െ3.888 ൈ 10ିଵସ𝐿ସ்
ହ ൅ 1.622 ൈ 10ିଵ଴𝐿ସ்

ସ െ 2.273 ൈ 10ି଻𝐿ସ்
ଷ

൅ 1.234 ൈ 10ିସ𝐿ସ்
ଶ െ 3.630 ൈ 10ିଶ𝐿ସ் ൅ 56.28 

𝑅ଶ ൌ 0.9924 
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For Location 5P: 

𝑣ହ௉ିெ௔௫ ൌ െ4.382 ൈ 10ିଽ𝐿ହ௉
ଷ ൅ 1.166 ൈ 10ିହ𝐿ହ௉

ଶ െ 1.029 ൈ 10ିଶ ൈ 𝐿ହ௉ ൅ 82.18 

𝑅ଶ ൌ 0.9982 

𝑣ହ௉ି଼ହ೟೓ ൌ െ1.516 ൈ 10ିଵହ𝐿ହ௉
ହ ൅ 8.509 ൈ 10ିଵଶ𝐿ହ௉

ସ െ 1.768 ൈ 10ି଼𝐿ହ௉
ଷ

൅ 1.415 ൈ 10ିହ𝐿ହ௉
ଶ െ 1.732 ൈ 10ିଷ ൈ 𝐿ହ௉ ൅ 75.07 

𝑅ଶ ൌ 0.9977 

𝑣ହ௉ିெ௘௔௡ ൌ െ1.206 ൈ 10ିଵହ𝐿ହ௉
ହ ൅ 5.515 ൈ 10ିଵଶ𝐿ହ௉

ସ െ 7.754 ൈ 10ିଽ𝐿ହ௉
ଷ

൅ 1.588 ൈ 10ି଺𝐿ହ௉
ଶ െ 3.306 ൈ 10ିଷ𝐿ହ௉ ൅ 69.26 

𝑅ଶ ൌ 0.9990 

𝑣ହ௉ିெ௜௡ ൌ െ4.204 ൈ 10ିଵହ𝐿ହ௉
ହ ൅ 1.815 ൈ 10ିଵଵ𝐿ହ௉

ସ െ 1.753 ൈ 10ି଼𝐿ହ௉
ଷ

൅ 1.383 ൈ 10ିହ𝐿ହ௉
ଶ ൅ 1.804 ൈ 10ିଶ𝐿ହ௉ ൅ 50.37 

𝑅ଶ ൌ 0.9841 

 



151 
 

For Location 5T: 

𝑣ହ்ିெ௔௫ ൌ െ8.728 ൈ 10ିଵ଴𝐿ହ்
ଷ ൅ 3.841 ൈ 10ି଻𝐿ହ்

ଶ െ 6.672 ൈ 10ିଷ ൈ 𝐿ହ் ൅ 82.49 

𝑅ଶ ൌ 0.9949 

𝑣ହ்ି଼ହ೟೓ ൌ െ1.941 ൈ 10ିଵଶ𝐿ହ்
ସ ൅ 1.048 ൈ 10ି଼𝐿ହ்

ଷ െ 2.105 ൈ 10ିହ𝐿ହ்
ଶ

൅ 8.325 ൈ 10ିଷ𝐿ହ் ൅ 75.12 

𝑅ଶ ൌ 0.9936 

𝑣ହ்ିெ௘௔௡ ൌ െ1.221 ൈ 10ିଵହ𝐿ହ்
ହ ൅ 8.262 ൈ 10ିଵଶ𝐿ହ்

ସ െ 2.044 ൈ 10ି଼𝐿ହ்
ଷ

൅ 1.892 ൈ 10ିହ𝐿ହ்
ଶ െ 1.151 ൈ 10ିଶ𝐿ହ் ൅ 71.02 

𝑅ଶ ൌ 0.9895 

𝑣ହ்ିெ௜௡ ൌ െ1.348 ൈ 10ିଵଵ𝐿ହ்
ସ ൅ 5.531 ൈ 10ି଼𝐿ହ்

ଷ െ 8.135 ൈ 10ିହ𝐿ହ்
ଶ

൅ 4.044 ൈ 10ିଶ𝐿ହ் ൅ 52.98 

𝑅ଶ ൌ 0.9727 
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Appendix B: Freeway Diverge Area Driver Brake Pedal Usage 

(a) 

(b) 
Figure B- 1 Brake status distribution: (a) Location 1P; and (b) Location 1T. 
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(a) 

(b) 

Figure B- 2 Brake status distribution: (a) Location 2P; and (b) Location 2T. 
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(a) 

(b) 

Figure B- 3 Brake status distribution: (a) Location 3P; and (b) Location 3T. 
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(a) 

(b) 

Figure B- 4 Brake status distribution: (a) Location 4P; and (b) Location 4T. 
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(a) 

(b) 

Figure B- 5 Brake status distribution: (a) Location 5P; and (b) Location 5T. 
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Table B- 1 Brake pedal usage at critical points. 

Site 

Brake Usage (%) 

  
Taper 

Start 

Deceleration 

Lane Start 

Deceleration 

Lane End 
Off-Ramp End 

Location 1P - 0.00 41.38 37.93 0.00 

  210ft   

Location 1T 0.00 18.33 23.33 28.33 0.00 

Location 2P - 0.00 9.09 54.55 0.00 

  460ft   

Location 2T 9.09 36.36 54.55 90.91 18.18 

Location 3P - 16.67 25.00 41.67 33.33 

  315ft   

Location 3T 0.00 4.55 4.55 50.00 25.00 

Location 4P - 25.00 50.00 50.00 34.05 

  305ft   

Location 4T 0.00 22.22 11.11 22.22 100.00 

Location 5P - 0.00 0.00 5.26 52.63 

  765ft   

Location 5T 0.00 25.00 25.00 25.00 25.00 
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Appendix C: Freeway Diverge Area Critical Speed Changepoint 

(a) 

(b) 
Figure C- 1 Critical speed changepoint: (a) Location 1P; and (b) Location 1T. 
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(a) 

(b) 

Figure C- 2 Critical speed changepoint: (a) Location 2P; and (b) Location 2T. 
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(a) 

(b) 

Figure C- 3 Critical speed changepoint: (a) Location 3P; and (b) Location 3T. 
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(a) 

(b) 

Figure C- 4 Critical speed changepoint: (a) Location 4P; and (b) Location 4T. 
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(a) 

(b) 

Figure C- 5 Critical speed changepoint: (a) Location 5P; and (b) Location 5T. 
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Table C- 1 Critical speed change point summary. 

Site 

Change Point (ft) 

Distance from Taper 
Distance from 

Terminal 

85th Mean 85th Mean 

Location 1P 1841 1889 469 421 

Location 1T 1666 1685 764 745 

Location 2P 1397 1423 523 497 

Location 2T 1380 1309 490 561 

Location 3P 1389 1305 581 665 

Location 3T 1576 1615 534 495 

Location 4P 1548 1541 532 539 

Location 4T 1842 1817 398 423 

Location 5P 2353 2364 597 586 

Location 5T 1937 1948 1048 1037 

Parallel-Design 1421 1420 450 451 

Tapered-Design 1400 1396 539 544 
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Appendix D: Freeway Work Zone Gap and Headway Distribution 

(a)

(b)
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(c) 

Figure D- 1 Gap and headway profile by driver types at LC 2-1: 

 (a) gap; (b) gap spacing; and (c) headway. 
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(a) 

 

(b) 
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(c) 

Figure D- 2 Gap and headway profile by driver types at LC 3-2: 

 (a) gap; (b) gap spacing; and (c) headway. 
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(a) 

 

(b) 
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(c) 

Figure D- 3 Gap and headway profile by driver types at SC 2-2: 

 (a) gap; (b) gap spacing; and (c) headway. 
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(a) 

 

(b) 
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(c) 

Figure D- 4 Gap and headway profile by driver types at SC 3-3: 

 (a) gap; (b) gap spacing; and (c) headway. 
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Appendix E: Freeway Work Zone Gap and Headway Selection Table 

Table E- 1 Gap and headway selection table by driver characteristics at LC 2-1. 

Start 

 (500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.7 (1.3, 4.2) 251 (121, 380) 2.9 (1.4, 4.3) 176 

≤ 24 2.4 (2.3, 2.5) 223 (218, 228) 2.6 (2.5, 2.7) 142 

25 - 59 1.5 (1.2, 1.8) 150 (120, 180) 1.6 (1.3, 2.0) 161 

≥ 60 3.2 (1.7, 4.7) 293 (155, 431) 3.4 (1.9, 4.9) 186 

Male 

Subtotal 1.9 (0.8, 2.9) 181 (81, 281) 2.0 (0.9, 3.1) 191 

≤ 24 2.8 (2.0, 3.7) 281 (191, 371) 3.0 (2.1, 3.9) 146 

25 - 59 1.7 (1.0, 2.5) 172 (99, 244) 1.9 (1.1, 2.7) 190 

≥ 60 1.6 (0.5, 2.6) 150 (58, 241) 1.7 (0.7, 2.8) 208 

Grand Total 2.4 (1.0, 3.8) 225 (101, 349) 2.6 (1.2, 3.9) 182 

Advance 

Warning 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.9 (1.5, 4.2) 249 (125, 374) 3.0 (1.6, 4.4) 174 

≤ 24 2.1 (1.7, 2.5) 194 (149, 240) 2.3 (1.9, 2.7) 142 

25 - 59 2.8 (1.7, 2.5) 245 (126, 364) 2.9 (1.4, 4.4) 167 

≥ 60 3.0 (1.6, 4.4) 259 (128, 391) 3.2 (1.8, 4.6) 182 

Male Subtotal 2.6 (1.3, 4.2) 240 (94, 386) 2.8 (1.2, 4.4) 185 
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≤ 24 4.7 (3.6, 5.8) 453 (356, 549) 4.9 (3.8, 6.0) 146 

25 - 59 2.3 (0.7, 3.9) 207 (72, 342) 2.5 (0.8, 4.1) 167 

≥ 60 2.3 (1.0, 3.6) 208 (93, 323) 2.5 (1.2, 3.7) 207 

Grand Total 2.8 (1.3, 4.2) 246 (114, 378) 2.9 (1.5, 4.4) 178 

Transition 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.4 (1.1, 3.7) 190 (88, 292) 2.6 (1.3, 3.9) 170 

≤ 24 1.5 (1.5, 1.6) 124 (122, 127) 1.7 (1.7, 1.8) 142 

25 - 59 3.3 (1.4, 5.2) 262 (112, 412) 3.5 (1.6, 5.4) 165 

≥ 60 2.0 (1.5, 2.6) 163 (120, 206) 2.2 (1.7, 2.8) 177 

Male 

Subtotal 3.1 (0.8, 5.4) 253 (60, 445) 3.3 (1.0, 5.6) 192 

≤ 24 6.2 (5.9, 6.5) 539 (513, 566) 6.4 (6.1, 6.7) 146 

25 - 59 3.4 (0.8, 6.8) 273 (68, 542) 3.6 (0.9, 7.0) 174 

≥ 60 2.4 (1.0, 3.8) 188 (77, 299) 2.6 (1.1, 4.0) 207 

Grand Total 2.7 (0.9, 4.4) 213 (68, 359) 2.8 (1.1, 4.6) 179 

Activity 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.4 (1.0, 3.9) 200 (79, 322) 2.6 (1.2, 4.1) 174 

≤ 24 1.8 (0.6, 3.4) 149 (53, 297) 1.9 (0.8, 3.6) 142 

25 - 59 3.2 (0.8, 5.5) 247 (62, 432) 3.4 (1.0, 5.7) 163 

≥ 60 2.3 (1.4, 3.3) 195 (107, 282) 2.5 (1.5, 3.5) 181 
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Male 

Subtotal 2.1 (0.6, 3.6) 174 (54, 294) 2.3 (0.8, 3.8) 196 

≤ 24 1.8 (0.5, 3.2) 152 (37, 268) 2.0 (0.6, 3.4) 146 

25 - 59 1.0 (0.8, 1.2) 88 (69, 108) 1.2 (1.0, 1.4) 202 

≥ 60 2.4 (0.9, 4.0) 201 (77, 325) 2.6 (1.1, 4.2) 207 

Grand Total 2.3 (0.8, 3.8) 191 (70, 313) 2.5 (1.0, 4.0) 181 

Termination 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 3.4 (1.8, 5.0) 310 (162, 459) 3.5 (1.9, 5.1) 177 

≤ 24 3.2 (2, 4.40) 313 (196, 429) 3.3 (2.1, 4.5) 141 

25 - 59 NA NA NA NA NA NA NA 

≥ 60 3.4 (1.8, 5.1) 310 (158, 462) 3.6 (1.9, 5.2) 182 

Male 

Subtotal 1.7 (0.4, 3.1) 163 (31, 297) 1.8 (0.5, 3.3) 191 

≤ 24 1.1 (1.0, 1.2) 115 (105, 126) 1.2 (1.2, 1.3) 146 

25 - 59 0.8 (0.4, 1.2) 73 (30, 119) 0.9 (0.5, 1.4) 202 

≥ 60 2.3 (0.5, 4.0) 222 (65, 379) 2.4 (0.7, 4.2) 204 

Grand Total 2.8 (1.1, 4.6) 262 (103, 422) 3.0 (1.2, 4.7) 181 

End  

(500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.9 (1.2, 4.6) 267 (108, 425) 3.1 (1.4, 4.8) 181 

≤ 24 3.9 (3.9, 4.0) 405 (403, 408) 4.1 (4.0, 4.1) 141 

25 - 59 1.1 (0.9, 1.2) 99 (81, 116) 1.2 (1.1, 1.4) 171 
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≥ 60 3.4 (1.7, 5.0) 306 (154, 458) 3.5 (1.9, 5.2) 186 

Male 

Subtotal 2.1 (0.5, 3.9) 198 (49, 364) 2.2 (0.6, 4.1) 191 

≤ 24 1.3 (1.3, 1.3) 139 (135, 144) 1.4 (1.4, 1.5) 146 

25 - 59 0.6 (0.5, 0.6) 56 (52, 60) 0.7 (0.7, 0.7) 202 

≥ 60 2.9 (0.8, 5.0) 273 (91, 455) 3.0 (0.9, 5.1) 203 

Grand Total 2.6 (0.8, 4.4) 242 (78, 407) 2.8 (1.0, 4.6) 185 
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Table E- 2 Gap and headway selection table by driver characteristics at LC 3-2. 

Start 

 (500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.3 (1.0, 3.5) 230 (96, 364) 2.4 (1.1, 3.7) 170 

≤ 24 2.0 (0.9, 3.2) 206 (84, 328) 2.2 (1.0, 3.4) 150 

25 - 59 0.6 (0.6, 0.6) 62 (62, 63) 0.8 (0.8, 0.8) 196 

≥ 60 3.3 (2.7, 3.9) 346 (272, 420) 3.5 (2.9, 4.1) 203 

Male 

Subtotal 1.7 (1.0, 2.3) 150 (78, 221) 1.8 (1.2, 2.5) 148 

≤ 24 2.0 (1.3, 2.7) 186 (115, 258) 2.2 (1.5, 2.9) 152 

25 - 59 1.2 (0.9, 1.4) 94 (59, 128) 1.3 (1.1, 1.6) 165 

≥ 60 1.8 (1.8, 1.9) 180 (177, 184) 2.0 (1.9, 2.0) 192 

Grand Total 1.8 (0.9, 2.7) 172 (72, 271) 2.0 (1.1, 2.9) 154 

Advance 

Warning 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.8 (0.5, 3.2) 192 (51, 332) 2.0 (0.6, 3.4) 172 

≤ 24 1.9 (0.6, 3.2) 192 (63, 322) 2.0 (0.7, 3.4) 163 

25 - 59 1.0 (0.2, 1.8) 114 (23, 205) 1.2 (0.4, 2.0) 196 

≥ 60 4.3 (3.9, 4.6) 470 (413, 527) 4.4 (4.0, 4.8) 203 

Male 

Subtotal 1.9 (1.0, 2.8) 165 (60, 270) 2.1 (1.2, 3.0) 152 

≤ 24 2.1 (1.3, 3.0) 205 (117, 293) 2.3 (1.4, 3.2) 153 

25 - 59 1.5 (0.7, 2.2) 101 (17, 190) 1.8 (0.9, 2.7) 165 
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≥ 60 2.5 (1.8, 3.1) 255 (191, 319) 2.6 (2.0, 3.3) 104 

Grand Total 1.9 (0.8, 2.9) 173 (56, 289) 2.1 (1.0, 3.1) 158 

Transition 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.4 (0.3, 2.6) 152 (25, 280) 1.6 (0.4, 2.7) 164 

≤ 24 1.2 (0.4, 2.0) 122 (37, 206) 1.3 (0.5, 2.2) 156 

25 - 59 1.7 (1.0, 2.4) 190 (127, 253) 1.8 (1.1, 2.5) 196 

≥ 60 5.4 (5.4, 5.4) 609 (606, 612) 5.5 (5.5, 5.6) 203 

Male 

Subtotal 2.2 (0.2, 4.2) 174 (49, 300) 2.4 (0.4, 4.4) 162 

≤ 24 2.4 (1.4, 3.5) 235 (130, 340) 2.6 (1.5, 3.6) 147 

25 - 59 1.9 (0.5, 4.5) 114 (13, 225) 2.2 (0.6, 4.9) 170 

≥ 60 2.4 (0.9, 3.8) 221 (88, 355) 2.5 (1.1, 4.0) 190 

Grand Total 1.9 (0.3, 3.7) 166 (39, 293) 2.1 (0.5, 3.9) 163 

Activity 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.0 (0.7, 3.4) 212 (73, 351) 2.2 (0.8, 3.5) 169 

≤ 24 2.1 (0.7, 3.5) 217 (73, 361) 2.2 (0.8, 3.6) 158 

25 - 59 1.7 (0.7, 2.6) 173 (75, 272) 1.8 (0.9, 2.7) 193 

≥ 60 2.7 (1.2, 4.2) 295 (130, 461) 2.8 (1.3, 4.3) 203 

Male 
Subtotal 1.9 (0.8, 3.0) 181 (66, 295) 2.1 (0.9, 3.2) 154 

≤ 24 2.2 (1.1, 3.3) 210 (100, 321) 2.3 (1.3, 3.4) 140 
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25 - 59 1.5 (0.5, 2.5) 139 (34, 244) 1.7 (0.6, 2.7) 167 

≥ 60 2.5 (1.4, 3.5) 241 (135, 347) 2.6 (1.6, 3.6) 156 

Grand Total 1.9 (0.7, 3.1) 190 (67, 314) 2.1 (0.9, 3.3) 159 

Termination 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.6 (0.7, 2.6) 161 (63, 259) 1.8 (0.8, 2.8) 184 

≤ 24 2.9 (2.4, 3.3) 281 (228, 333) 3.0 (2.6, 3.5) 158 

25 - 59 1.0 (0.5, 1.5) 97 (52, 142) 1.2 (0.7, 1.7) 191 

≥ 60 1.0 (0.6, 1.3) 96 (65, 127) 1.1 (0.8, 1.4) 203 

Male 

Subtotal 2.0 (0.8, 3.3) 190 (69, 312) 2.2 (0.9, 3.4) 141 

≤ 24 1.9 (0.8, 3.0) 180 (63, 296) 2.1 (1.0, 3.2) 138 

25 - 59 2.0 (0.6, 3.4) 183 (63, 304) 2.2 (0.8, 3.5) 164 

≥ 60 3.6 (3.6, 3.7) 360 (356, 365) 3.8 (3.7, 3.8) 192 

Grand Total 1.9 (0.7, 3.1) 183 (66, 299) 2.1 (0.9, 3.3) 160 

End  

(500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.5 (0.9, 2.1) 151 (96, 206) 1.7 (1.1, 2.3) 180 

≤ 24 2.0 (1.6, 2.5) 196 (155, 237) 2.2 (1.7, 2.6) 154 

25 - 59 0.6 (0.6, 0.7) 54 (53, 56) 0.8 (0.8, 0.8) 179 

≥ 60 1.1 (0.8, 1.4) 119 (90, 147) 1.3 (1.0, 1.6) 203 

Male Subtotal 2.2 (0.9, 3.5) 205 (74, 336) 2.4 (1.1, 3.7) 154 
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≤ 24 2.1 (0.7, 3.4) 195 (62, 328) 2.2 (0.9, 3.6) 146 

25 - 59 2.4 (1.2, 3.7) 217 (90, 343) 2.6 (1.4, 3.9) 164 

≥ 60 3.5 (3.4, 3.6) 347 (341, 353) 3.6 (3.6, 3.7) 192 

Grand Total 2.0 (0.8, 3.2) 188 (73, 303) 2.1 (1.0, 3.3) 162 
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Table E- 3 Gap and headway selection table by driver characteristics at SC 2-2. 

Start 

 (500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.1 (0.7, 3.6) 226 (81, 371) 2.3 (0.9, 3.7) 177 

≤ 24 3.0 (1.2, 4.9) 318 (132, 505) 3.2 (1.3, 5.0) 154 

25 - 59 1.7 (1.6, 1.9) 196 (183, 208) 1.9 (1.8, 2.0) 192 

≥ 60 1.5 (1.2, 1.7) 152 (121, 184) 1.6 (1.3, 1.9) 193 

Male 

Subtotal 2.0 (0.8, 3.1) 222 (91, 352) 2.1 (0.9, 3.3) 185 

≤ 24 1.1 (1.0, 1.1) 126 (121, 131) 1.2 (1.2, 1.2) 191 

25 - 59 1.7 (0.7, 3.0) 195 (76, 349) 1.8 (0.8, 3.1) 201 

≥ 60 3.0 (2.9, 3.2) 328 (300, 357) 3.2 (3.0, 3.3) 156 

Grand Total 2.1 (0.7, 3.4) 225 (84, 365) 2.2 (0.9, 3.6) 179 

Advance 

Warning 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.6 (0.9, 2.3) 166 (89, 242) 1.8 (1.1, 2.4) 181 

≤ 24 1.5 (0.8, 2.2) 147 (65, 229) 1.6 (0.9, 2.4) 158 

25 - 59 2.1 (1.2, 2.9) 229 (136, 322) 2.2 (1.4, 3.0) 192 

≥ 60 1.6 (1.0, 2.2) 168 (102, 233) 1.8 (1.2, 2.4) 192 

Male 

Subtotal 1.8 (0.5, 3.1) 200 (59, 342) 1.9 (0.7, 3.2) 194 

≤ 24 1.7 (0.9, 2.6) 200 (107, 292) 1.9 (1.0, 2.7) 188 

25 - 59 1.3 (0.5, 2.2) 149 (41, 256) 1.5 (0.6, 2.4) 201 
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≥ 60 3.1 (1.4, 4.8) 331 (140, 522) 3.2 (1.5, 4.9) 188 

Grand Total 1.7 (0.7, 2.6) 179 (71, 288) 1.8 (0.9, 2.8) 186 

Work Zone 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.8 (0.7, 2.8) 183 (72, 294) 1.9 (0.9, 3.0) 181 

≤ 24 1.7 (0.5, 2.8) 162 (44, 280) 1.8 (0.7, 3.0) 158 

25 - 59 1.4 (0.7, 2.1) 134 (71, 196) 1.6 (0.8, 2.3) 192 

≥ 60 1.9 (0.8, 2.9) 197 (87, 307) 2.0 (1.0, 3.0) 192 

Male 

Subtotal 1.4 (0.5, 2.3) 141 (43, 238) 1.5 (0.6, 2.5) 194 

≤ 24 1.4 (0.5, 2.3) 144 (41, 246) 1.5 (0.6, 2.4) 188 

25 - 59 1.1 (0.4, 1.8) 111 (34, 187) 1.3 (0.5, 2.0) 188 

≥ 60 2.3 (1.4, 3.2) 230 (140, 321) 2.5 (1.5, 3.4) 201 

Grand Total 1.6 (0.6, 2.6) 162 (55, 268) 1.7 (0.7, 2.7) 187 

End  

(500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 2.4 (1.5, 3.4) 255 (158, 352) 2.5 (1.6, 3.5) 181 

≤ 24 1.9 (1.4, 2.4) 209 (146, 272) 2.0 (1.5, 2.5) 158 

25 - 59 1.9 (1.8, 1.9) 203 (202, 204) 2.0 (1.9, 2.0) 192 

≥ 60 2.6 (1.6, 3.6) 274 (168, 379) 2.8 (1.7, 3.8) 192 

Male 
Subtotal 1.2 (0.6, 1.9) 125 (64, 192) 1.3 (0.7, 2.0) 194 

≤ 24 1.6 (1.4, 1.8) 166 (155, 177) 1.8 (1.6, 2.0) 188 
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25 - 59 0.9 (0.6, 1.4) 101 (64, 148) 1.1 (0.7, 1.5) 201 

≥ 60 1.6 (0.9, 2.8) 157 (86, 284) 1.7 (1.0, 2.9) 188 

Grand Total 1.7 (0.7, 2.8) 184 (79, 289) 1.9 (0.9, 2.9) 183 
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Table E- 4 Gap and headway selection table by driver characteristics at SC 3-3. 

Start 

 (500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.8 (0.9, 2.8) 160 (73, 247) 2.0 (1.0, 3.0) 171 

≤ 24 1.9 (1.0, 2.8) 163 (83, 243) 2.0 (1.1, 2.9) 168 

25 - 59 NA NA NA NA NA NA NA 

≥ 60 1.8 (0.6, 3.0) 153 (48, 258) 1.9 (0.7, 3.1) 181 

Male 

Subtotal 1.5 (0.7, 2.3) 143 (70, 216) 1.7 (0.9, 2.5) 162 

≤ 24 1.6 (0.7, 2.4) 143 (68, 218) 1.7 (0.9, 2.6) 153 

25 - 59 0.8 (0.5, 1.6) 92 (57, 176) 1.0 (0.6, 1.7) 166 

≥ 60 1.9 (1.8, 1.9) 178 (169, 187) 2.0 (1.9, 2.1) 189 

Grand Total 1.7 (0.8, 2.6) 153 (71, 235) 1.9 (0.9, 2.8) 167 

Advance 

Warning 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.9 (0.7, 3.2) 179 (63, 296) 2.1 (0.9, 3.3) 174 

≤ 24 1.8 (0.6, 2.9) 166 (58, 273) 1.9 (0.8, 3.1) 170 

25 - 59 NA NA NA NA NA NA NA 

≥ 60 2.4 (1.1, 3.7) 215 (85, 345) 2.6 (1.2, 3.9) 184 

Male 

Subtotal 1.6 (0.5, 2.8) 152 (44, 264) 1.8 (0.6, 2.9) 166 

≤ 24 1.5 (0.7, 2.3) 137 (68, 207) 1.6 (0.9, 2.4) 158 

25 - 59 1.3 (0.4, 2.7) 126 (44, 265) 1.4 (0.5, 2.8) 193 
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≥ 60 3.4 (1.6, 5.3) 336 (187, 518) 3.6 (1.7, 5.4) 194 

Grand Total 1.8 (0.6, 3.1) 172 (56, 288) 2.0 (0.8, 3.2) 172 

Work Zone 

Area 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.8 (0.6, 3.0) 167 (58, 276) 2.0 (0.8, 3.1) 173 

≤ 24 1.7 (0.5, 2.9) 160 (45, 276) 1.8 (0.7, 3.0) 168 

25 - 59 NA NA NA NA NA NA NA 

≥ 60 2.2 (1.4, 3.1) 190 (112, 268) 2.4 (1.5, 3.3) 191 

Male 

Subtotal 1.4 (0.6, 2.2) 128 (55, 201) 1.6 (0.8, 2.3) 168 

≤ 24 1.3 (0.6, 2.0) 120 (55, 185) 1.5 (0.8, 2.2) 161 

25 - 59 1.2 (0.4, 1.9) 116 (40, 191) 1.3 (0.6, 2.0) 170 

≥ 60 2.0 (1.1, 2.9) 180 (95, 266) 2.2 (1.3, 3.1) 198 

Grand Total 1.7 (0.6, 2.7) 154 (54, 255) 1.8 (0.8, 2.9) 171 

End  

(500 ft) 

Gender Age 
Mean 

Gap (s) 

95% CI 

of Gap 

(s) 

Mean Gap 

Spacing 

(ft) 

95% CI of 

Gap 

Spacing 

(ft) 

Mean 

Headway 

(s) 

95% CI of 

Headway 

(s) 

Mean 

Risk 

Score 

Female 

Subtotal 1.9 (1.0, 2.8) 166 (79, 253) 2.1 (1.2, 3.0) 175 

≤ 24 1.9 (1.0, 2.8) 168 (82, 254) 2.1 (1.2, 3.0) 173 

25 - 59 NA NA NA NA NA NA NA 

≥ 60 1.9 (0.7, 3.1) 144 (50, 237) 2.1 (0.9, 3.3) 198 

Male 
Subtotal 1.1 (0.4, 1.8) 92 (35, 150) 1.2 (0.5, 1.9) 173 

≤ 24 1.3 (0.9, 1.8) 114 (77, 150) 1.5 (1.1, 2.0) 168 
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25 - 59 0.8 (0.6, 0.9) 75 (58, 93) 0.9 (0.8, 1.1) 171 

≥ 60 0.9 (0.2, 1.9) 73 (16, 161) 1.0 (0.4, 2.1) 181 

Grand Total 1.6 (0.7, 2.6) 142 (56, 228) 1.8 (0.9, 2.8) 174 
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Appendix F: Freeway Work Zone Speed Profile by Driver Types 
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Figure F- 1 Speed profile at LC 2-1: (a) young female drivers; (b) middle-aged female 

drivers; (c) senior female drivers; (d) young male drivers; (e) middle-aged male drivers; (f) 

senior female drivers; and (g) all drivers. 
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Figure F- 2 Speed profile at LC 3-2: (a) young female drivers; (b) middle-aged female 

drivers; (c) senior female drivers; (d) young male drivers; (e) middle-aged male drivers; (f) 

senior female drivers; and (g) all drivers. 
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Figure F- 3 Speed profile at SC 2-2: (a) young female drivers; (b) middle-aged female 

drivers; (c) senior female drivers; (d) young male drivers; (e) middle-aged male drivers; (f) 

senior female drivers; and (g) all drivers. 
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Table F- 1 Speed profile at SC 2-2: (a) young female drivers; (b) middle-aged female 

drivers; (c) senior female drivers; (d) young male drivers; (e) middle-aged male drivers; (f) 

senior female drivers; and (g) all drivers. 

 


