
Deep Time Series Model on Translation and Forecasting

by

Jingjing Li

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 11, 2021

Keywords: Deep learning, Natural Language Processing, Database, Time Series Model

Copyright 2021 by Jingjing Li

Approved by

Wei-Shinn Ku, Chair, Professor of Computer Science and Software Engineering
Cheryl Seals, Charles W. Barkley Professor of Computer Science and Software Engineering

Anh M. Nguyen, Assistant Professor of Computer Science and Software Engineering
Bo Liu, Assistant Professor of Computer Science and Software Engineering

Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Abstract

Deep learning techniques have acquired much attention and have been shown to outper-

form previous state-of-the-art methods in plenty of fields over the last years. This dissertation

delves further into the deep time series model and its application to a variety of datasets,

including natural language sequence datasets and real estate-related datasets, with a deeper

insight using a comprehensive set of analytical methods and algorithms.

The first part is a study of the deep learning techniques for processing natural language

data. A spatial translation interface is proposed that focuses on the spatial domain vo-

cabularies and translates the natural language questions to structured queries executable by

database management systems (DBMS). Inspired by the deep comprehension model, we pro-

pose a natural language interface(NLI) with the spatial comprehension model that is able to

recognize the meaning of spatial entities based on the semantics of the context. Our system

could support a flexible back-end of multiple database query languages, such as SQL and

Prolog, which are all supported based on our effective strategy. A transfer learning strategy

is also presented to deal with the challenge of translating spatial language into database

queries. A basic model is trained on one sort of database query before being fine-tuned to

work with another. The models are verified using the Geoquery dataset, and the performance

is demonstrated to outperform conventional approaches.

The second portion covers the application of time series models to real estate forecasting.

To complete the real-estate price prediction task, a large-scale real estate-related dataset is

constructed, encompassing both static and dynamic features, combining the numerical real

estate price history data from Zillow and the survey data from the Census Bureau public

dataset. A carefully designed Transformer-based forecasting model which could capture the

change of real estate prices and predict hotspot areas for investment in real estate is proposed

ii

based on this time series dataset. The model is designed to embed the data with sequential

temporal features and combine them with non-temporal features for subsequent prediction

tasks. The results of the experiment reveal that our suggested model has a high level of

accuracy and surpasses all baseline models.

iii

Acknowledgments

Throughout the completion of this dissertation, and more broadly, my entire Ph.D path,

I have received enormous counsel and support from many people in a variety of ways. It is

a great pleasure to thank everyone who helped me complete my degree. The words I have

used here cannot express how grateful I am.

First and foremost, I would like to give my sincere gratitude to my advisor, Dr. Wei-

Shinn Ku, for his expert effort and support in the past five years. He always gives me plenty

of room to develop as an independent researcher. I could not earn my Ph.D degree without

his generous guidance and continuous encouragement. Also, I would like to thank all my

committee members: Dr. Cheryl Seals, Dr. Anh Nguyen, Dr. Bo Liu and Dr. Thaddeus

Roppel, for reviewing my dissertation and providing useful feedback.

Besides, I must give my most profound appreciation to my labmate, Dr. Wenlu Wang,

for her insightful suggestion and instruction on my research. She gave me great assistance

throughout my entire dissertation work. My sincere gratitude also goes to my other fellow

labmates, Chen Jiang, Bo Hui, Ai-Te Kuo, Zhitao Gong and Ting Shen, for their helpful

discussion and collaboration.

In addition, I would like to acknowledge my two internship managers, Christian West in

Apple and Shuting Wang in Facebook. These two incredible internships taught me how to

apply what I learned in school in a real-world business environment, considerably enhancing

my software programming skills and widening my grasp of research technique.

My best friend, Zijie Zhang, deserves praise. I consider myself quite fortunate to have a

friend with such advanced programming abilities and in-depth comprehension of the research.

The discussion with him enriches my knowledge and broadens my perspective of the academic

issues. I am also grateful to my best friend, Muzi Li. I will never forget the moment when we

iv

laughed together. For all my other friends, Chang Ren, Dongji Feng, Yuanzhi Yao, Yanbo

Gong, Boning Liang, Yuqiao Zhang, Ziqi Zhou, Tianhang Lan, Junwei Ma, Huanyi Zhou,

Jueting Liu, Jinyan Cui, Zhitao Yu, Chao Yang, Jing Wu, Ya-Chi Kuo, Jiayi Xu, Chi Xu,

Zhaohui Jin, Minghong Jian, Lin Lu, Yu Wang, Wei Huang, Chengfei Wang, Kenan Xiao,

Yankun He, Dehua Li, Xing Wang, etc. The time, memories, and friendship that we shared

will be treasured for the rest of my life.

Last but not least, I want to give special thanks to my parents and family for their

continuous support in assisting me in obtaining my degree. They never fail to inspire and

empower me whenever I am perplexed or frustrated. They have always been my source of

strength in overcoming problems and challenges throughout my life.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . viii

List of Tables . x

1 Introduction . 1

1.1 Overview . 1

1.2 Deep Natural Language Translation . 2

1.3 Deep Real Estate Forecasting . 3

2 Related Work . 5

2.1 Deep Time Series Model . 5

2.2 Time Series Forecasting . 7

2.3 Deep Linguistic Processing . 8

2.4 Deep Real Estate Prediction . 11

3 Deep Linguistic Translation . 13

3.1 Spatial Natural Language Interface . 13

3.1.1 Problem Overview . 13

3.1.2 Challenges . 16

3.1.3 Interface Design . 18

3.1.4 Experimental Validation . 31

3.1.5 Conclusion . 37

3.2 Spatial Interface With Flexible Back End . 37

3.2.1 Challenges Of Spatial NLI With Flexible Back End 37

3.2.2 Spatial Comprehension With Table Selection 38

vi

3.2.3 NLI With Flexible Back End . 39

3.2.4 Experimental Validation . 40

3.2.5 Conclusion . 43

3.3 Transfer Learning of Spatial Data Query . 44

3.3.1 Transfer Learning and Spatial Query 44

3.3.2 Experiment Validation . 44

4 Deep Real Estate Forecasting . 48

4.1 Deep Real Estate Dynamics Encoding . 48

4.1.1 Introduction . 48

4.1.2 Proposed Dataset . 51

4.1.3 Model Design . 58

4.1.4 Experimental Validation . 62

4.1.5 Conclusion . 73

4.2 Deep Real Estate Encoding with Location Features 73

4.2.1 Prediction Model with Location Features 73

4.2.2 Experimental Validation . 74

5 Conclusion and Future Work . 83

5.1 Conclusion . 83

5.2 Future Work . 84

Bibliography . 85

vii

List of Figures

1.1 Thesis Overview. 2

3.1 Spatial Semantics Is Encyclopedic. 13

3.2 Spatial POI Ambiguity . 16

3.3 POI Type Recognition Without Spatial Comprehension Model 17

3.4 SpatialNLI Workflow. 18

3.5 Spatial Comprehension Model. 22

3.6 Using Spatial Comprehension for POI Type Selection. T = {State, City, River}. 22

3.7 An example of Information Injection Format With Type Feeding 27

3.8 Seq2seq Model. 29

3.9 Two Examples Of Data Augmentation . 31

3.10 Three Examples Of Data Augmentation . 32

3.11 Spatial Comprehension Case Study. 34

3.12 A Case Study using Symbol Inject (Geoquery). 36

3.13 Spatial Comprehension Model. 38

3.14 Using Spatial Comprehension for schema linking. 38

viii

3.15 Flexible Back-End Overview . 40

4.1 Related features. 49

4.2 An example of a real estate price trend. 54

4.3 Data collection process. 57

4.4 Design flow of the Transformer-based prediction model. 58

4.5 Transformer Architecture. 76

4.6 Study Area. It consists of 7,436 neighborhoods, 567 cities, 304 counties, 225

metros, and 50 states across the U.S. 77

4.7 Hotspot Areas. It shows the ground truth of the hotspot region in the U.S in 2018. 77

4.8 ROC curve (L=2). An AUC score of 0.5 suggests no discrimination, and 0.7 to

0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9

is considered outstanding [86]. 78

4.9 Normalized Confusion Matrix (L=2). It shows that our model has a high true

positive and true negative rates over both classes, and a low false positive and

false negative rates for both classes. 79

4.10 Normalized Confusion Matrix (L=3). It shows that our model has a high positive

rate over all three classes and a low negative rate for all three classes. 80

4.11 Design flow of the Transformer-GCN-based prediction model. 81

ix

List of Tables

3.1 Spatial Comprehension Model Evaluation. 33

3.2 Experiment Results . 46

3.3 Evaluation Of Jointly Training On Denotation Match. 47

3.4 SQL Evaluation. 47

3.5 Evaluation Of Jointly Training Of Prolog And SQL. 47

3.6 Evaluation Of Transfer Learning from Prolog to Sparql. 47

4.1 Comparisons of real estate datasets. 51

4.2 Existing Public Dataset Comparisons. 52

4.3 Temporal data format. 55

4.4 Census Data Examples. 56

4.5 Hyper-parameter L evaluation. 64

4.6 Model performance comparisons (L=2). The proposed Transformer-based model
has achieved 93.5% accuracy. 68

4.7 Model performances comparisons (L=3). The proposed Transformer-based model
has achieved 90.1% accuracy. 69

4.8 Model performances comparisons (L=4). Our proposed model outperforms all
the baseline models on the accuracy, precision, recall, and f1-score. It has 83%
accuracy. 70

4.9 Model performances comparisons temporal data only (L=3). 72

4.10 Model performance. The proposed Transformer-GCN-based model has achieved
95.4% accuracy. 82

x

Chapter 1

Introduction

1.1 Overview

In mathematics, a time series is a sequence of data points listed or indexed in time

order. Examples of time series include weather records, economic indicators and stock prices

forecasting. Traditionally, time series forecasting has been dominated by the statistical

methods to extract meaningful characteristics of the data and predict future values based

on previously observed values. Deep learning techniques have acquired much attention and

have outperformed previous state-of-the-art methods in plenty of fields over the last years. It

shows deep learning methods could offer a lot of promise for time series forecasting and are

able to automatically learn complex mappings from inputs to outputs and support multiple

inputs and outputs. Neural networks like Multilayer Perceptrons(MLP) [1, 2], Recurrent

Neural Network (RNN), Long Short-Term Memory Network (LSTM) [7, 8], Gated Recurrent

Unit(GRU) [9, 45] and Transformer model [25] are all proposed to deal with the time-series

data, including the natural language sequences and real estate datasets.

In this thesis, my work will focus on the deep time series model for two tasks: (1) the

translation of the natural language sequences, and (2) the prediction of the real estate data.

Specifically, as the Figure 1.1 shows, in the first part of this thesis, my work will focus on the

deep time series model for processing natural language sequence data. In the second part of

this thesis, time series models are designed for the prediction of the real estate-related data.

1

Figure 1.1: Thesis Overview.

1.2 Deep Natural Language Translation

The first part is a study of a spatial translation interface that focus on the spatial domain

vocabularies and translates the natural language questions to a structured queries that is

executable by database management systems (DBMS). A natural language interface(NLI)

that is trained in the general domain is hard to apply in the spatial domain due to the

idiosyncrasy and expressiveness of the spatial questions. Inspired by the deep comprehension

model, we propose a spatial comprehension model that is able to recognize the meaning of

spatial entities based on the semantics of the context. The spatial semantics learned from

the spatial comprehension model is then injected to the natural language question to ease

the burden of capturing the spatial-specific semantics.

In the second part of this section, we propose to not only address the spatial domain

generalization challenge, but also support spatial flexible back-end. Multiple database query

2

languages, such as SQL and Prolog, are all supported based on our effective strategy. We

propose to add a prefix symbol to support the flexible back-end. Comparisons against

other State-of-the-art approaches are demonstrated in the experiments. With our spatial

comprehension model and information injection, our NLI for the spatial domain is able to

capture the semantic structure of the question and translate it to the corresponding syntax

of an executable query accurately.

In the third part of this section, A transfer learning approach is proposed to address the

problem of translation from spatial language to database queries. We first train a base model

from one natural language to database query dataset and then fine-tune the model applying

to another type of database queries. The models are validated with the Geoquery dataset and

shown to achieve a superior transferability performance compared with traditional methods.

1.3 Deep Real Estate Forecasting

There are several ways in which deep learning has benefited modern society. A good

example is how precise economic forecasting may assist individuals in more effectively man-

aging and distributing their resources. This year’s COVID-19 epidemic has led to an increase

in U.S. housing prices of 13.3 percent, compared to this time in 2019. Real estate market

forecasting is vital for home buyers and investors to make well-informed decisions about

their purchases and investments. Accurate property price assessments are sometimes even

more important than ever in preventing financial blunders. This section offers a large-scale

real estate-related dataset that may be used to aid in the prediction of property values. It

is constructed with numerical historical data on real estate prices obtained from Zillow1 and

survey data from the Census Bureau’s public dataset. Our objective is to simulate the dy-

namics of real estate using both temporal and non-temporal data from a range of sources in

order to better understand the market. For the purpose of subsequent prediction, we suggest

the use of a Transformer to integrate sequential temporal data and concatenate them with

1https://www.zillow.com/

3

non-temporal information. We evaluate this approach using a variety of number of classes

L ∈ {2, 3, 4, 5}. With our proposed model, we were able to achieve 93.5 percent prediction

accuracy when L = 2, 90.1 percent prediction accuracy when L = 3. The recommended

model appears to outperform all of the other models that were assessed in the study.

4

Chapter 2

Related Work

2.1 Deep Time Series Model

The Sequence-to-sequence (Seq2Seq) [9, 45, 44] method is one of the training models

to natual language processing, solving complex Language problems like machine translation,

question answering, text summarization, etc... It does so by use of a RNN (recurrent neural

network) or more often LSTM (Long short-term memory) [7, 8] or GRU (gated recurrent

unit) [9, 45].

The RNN is an artificial neural networks where connections between nodes form a

directed graph along a temporal sequence. RNNs can use the internal memory to process

variable length sequences of inputs. LSTM A common LSTM unit is composed of a cell, an

input gate, an output gate and a forget gate.

The most common architecture used to build Seq2Seq models is Encoder-Decoder ar-

chitecture. The encoder reads the input sequence and summarizes the information into a

context vector. This vector aims to encapsulate the information for all input elements in

order to help the decoder make accurate predictions. The decoder is used to generate the

output sequence, using the vector from encoder as the input. One of the drawbacks of the

Seq2seq model is that the output sequence relies heavily on the context defined by the hidden

state in the final output of the encoder, making it challenging for the model to deal with long

sentences. In the case of long sequences, there is a high probability that the initial context

has been lost by the end of the sequence. One of the most important optimization for the

Seq2seq model is the attention mechanism [25], which help to solve this problem by allowing

the decoder to look at the input sequence selectively.

5

The Transformer [25] model is designed to process the input sequence data for tasks

such as translation and text summarization. Unlike RNN(recurrent neural network) that

handle the input tokens in order, the Transformer adopts the mechanism of attention, that

identifies the context that confers meaning to each word in the sentence. The Transformer

uses the encoder-decoder architecture. The encoder is to encode the input data and the

decoder is used to generate incorporated sequence using the encoding information. It shows

the attention layer is powerful compared to the model before. The Transformer allows the

training on larger datasets and has lead to the development of the pretrained models such

as BERT [26] and GPT series models.

Then the pre-trained models become popular these days. For this kind of pre-trained

models, the model is first trained by an extremely large amount of natural language dataset.

Later on, to work the model on a specific problem or area, the model fine-tuning will be done

on a specific small dataset. With finetuning, the same model could be repurposed to perform

different NLP functions on new dataset. By doing this, a lot of time and computational

resources could be saved when building a new complex language model.

BERT (Bidirectional Encoder Representations from Transformers) is such kind of pre-

trained model developed by Google. Based on the Transformer we mentioned before, BERT

is designed to pretrain deep bidirectional representations of input language sequences from

both left and right side, with only the encoder part of the Transformer model. As a result,

the pre-trained BERT model can be finetuned with just one additional layer to work for

other tasks. Since it only includes the encoder part of the Transformer, the BERT works

well for problems such as word embedding, question answering... But does not work for tasks

such as machine translation.

Another famous pretrained model these days is the GPT2 (Generative Pre-trained

Transformer 2) [24], a successor to GPT [27], developed by OpenAI. It has 1.5 billion param-

eters, trained on a dataset of 8 million web pages. Same as the BERT, it is a Transformer

6

based language model. But different with the BERT, which uses a bidirectional Trans-

former, the GPT2 uses a left-to-right Transformer. The left-to-right Transformer works well

for sentence-level tasks. But it is harmful when applying fine-tuning to token-level tasks

such as question answering which incorporate context from both directions.

The third-generation language prediction model in the GPT-n series, GPT3 [29], is

introduced by OpenAI in May 2020. It has a capacity of 175 billion parameters in the model.

GPT3 provides a text-in, text-out interface via the Python. With its ‘text in, text out’ API,

the user can input the text and the model will generate the text completion to match the

input context. The GPT3 performs very well on the translation, question-answering and

text generation tasks. The quality of the text generated by GPT3 is very high.

2.2 Time Series Forecasting

There are several diverse approaches to time series forecasting. When the input data

has a strong linear connection with the goal value, traditional statistical models such as

Exponential Smoothing, Vector Autoregression (VAR), Auto-Regressive Integrated Mov-

ing Average (ARIMA) [72] [79] have all achieved high results. A linear model, on the other

hand, is incapable of capturing non-linear patterns in time series data. To analyze non-linear

relationships in time series data, the Threshold Autoregressive (TAR) and Autoregressive

Conditional Heteroscedastic (ARCH) [97] models have been proposed. Because the special-

ized rules generated in these models could not be extended to other prediction tasks, these

models could not be extensively employed in general prediction issues.

Machine learning methodologies were employed to construct an adaptable model for

general prediction tasks. [93] and [69] employed the Support Vector Machine (SVM) to

solve financial time series forecasting issues, and both of the suggested models have achieved

excellent accuracy. But their dataset in the experiments are relatively small. Kayacan

et al. [81] evaluate the effectiveness of several modified grey models in predicting foreign

7

currency exchange rates (FX rates); the findings indicate that the grey model is superior in

terms of model fitting and forecasting.

Neural networks gained popularity as a technique for solving issues involving time series

prediction. At the moment, Recurrent Neural Networks (RNNs), and particularly the long-

short term memory network(LSTM) [7, 70], are widely employed in time series forecasting.

The RNN and LSTM have the connections between nodes in the time order, which allows

it to have the temporal dynamic behavior and use the features from the previous neuron to

informa the later ones. It could help to understand the data following the time order. [88] did

a prediction of the Bitcoin price using the RNN and LSTM network. Convolutional Neural

Networks (CNN) are also a viable alternative for sequence prediction, since its calculations,

unlike those of RNN, can be parallelized. [67].

2.3 Deep Linguistic Processing

Word embedding

A word embedding is a learned representation for the words in the text where the words

having similar meaning will have more similar vector representations.

Word2vec is a group of word embedding models published in 2013. With the input

text, the Word2vec is trained to learn word embeedings from large dataset where similar

words are closer to each other. Embeddings learned through Word2Vec have been proven

to succeed on a variety of natural language processing works. GloVe [59] is an open sourced

word embedding model launched by Stanford in 2014, which uses an unsupervised learning

algorithm to obtain the word representations. But there are some problems for the Word2vec

and GloVe. Since the vector representation remains same for one word in Word2vec and

Glove, they are not effective for words with the same spelling but different meanings.

Then models such as ELMo [31] and BERT start to be used in word embedding. Unlike

previous models, the ELMo is a word embedding method that is based on the bi-directional

LSTM, which could produce different representations for the same word. Also, BERT take

8

into the account of the whole context and could provide different word embedding based

on different context and sentence. It shows the BERT could provide a more powerful word

embedding in the natural language processing tasks compared with Word2vec and GloVe.

Natural language and semantic parsing

In recent years, a line of works has been focusing on semantic parsing, which aims at con-

verting natural language utterances to formal meaning representations. ZC05 [30], ZC07 [32],

UBL [33] and FUBL [34] induce the specific grammars to make the translation, which de-

fines the meanings of individual words and phrases. KCAZ13 [35] and [12] use ontologies

to help form the grammar. [36] uses domain-independent facts to make the translation and

ZH15 [37] builds the grammar based on the specific entity type of words. DCS+L [38] and [6]

introduce tree structure for input natural language to solve this problem. However, most

of the conventional methods rely on predefined templates or manually designed features to

complete the translation, which is not comparable to ours, as we avoid using such lexicon

mapping and predefined templates of prior knowledge in our system.

Spatial natural language interface to database

Also, some of the work focuses on the Natural Language Interface to Databases (NLIDB)

for users to interact with the database without acknowledging the grammar of structured

queries executed by the database engine. [3] first explores this issue with a specific database

and concrete examples. [39, 11, 40, 41, 42] also work on this issue depending on grammars

and processes the semantic grammars manually for each individual database. [4] and [5] work

on the NLIDB systems requiring large sets of natural language and SQL pairs. [10] and [13]

present an interface with the help of the feedback from users and PEK03 [11] also defines

the coverage of the NLIDB system, which is certainly not suitable for all databases. The

problem is that the NLIDB study mentioned above is all designed for the general domain

and is hard to apply to spatial natural language queries directly without loss of accuracy.

9

Now deep neural network models have been applied successfully to semantic parsing to

exploit the sequential structure on both input and output side. One of them is the Encoder-

Decoder model [43, 44, 45]. FKZ18 [46] works on translating the input to SQL queries based

on the Encoder-Decoder model. TRANX [22] and ASN [47] construct Decoder-Encoder

models with the tree structure. SQL2TREE [48] proposes a seq2seq model based on the

Encoder-Decoder architecture and JL16 [49] enhances the performance of seq2seq by adding

attention-based copying in the output and implementing data augmentation. [50, 14] work

on an Encoder-Decoder based transfer learning for semantic parsing. [51] trains one model

that is able to parse natural language sentences from multiple different languages and [52]

exploits the Encoder-Decoder model in different domains. [53] introduces a framework with

reinforcement learning to generate SQL queries. Here, we introduce on seq2seq model in

our system. Compared with SQL2TREE [48] and JL16 [49], our model solves the spatial

ambiguity problem for the input natural language more efficiently.

Spatial natural language processing

Natural language process for the spatial domain has been observed in literature. [54]

annotates the spatial relation in natural language based on the specific annotation schema.

[55] focuses on spatial ontologies to process the input spatial natural language queries. [56]

maps the objects and spatial relations to formal linguistic terms, which disambiguate the

spatial meanings of objects. [57] uses a form of symbolic expressions to extract spatial terms

from natural language descriptions to represent spatial features and relations between them.

All of them limit the query in the fixed form and have difficulty dealing with different kinds

of spatial complex queries. For [58], it introduces a system that is capable of capturing the

semantics of spatial relations in natural language using the neural network. But none of the

above gives users an interface to interact with the database.

10

2.4 Deep Real Estate Prediction

Numerous studies have been conducted in recent years that have focused on real estate-

related issues. Deep neural networks, hybrid modeling, and linear regression are just a few

of the approaches that have been developed over the last several years to address real estate

value prediction difficulties.

Numerous indications based on the Hedonic Model [91] are identified and discussed, as

well as their application to house price prediction. By applying an error correction tech-

nique, Hall et al. [78] estimate real property values in the United Kingdom. The authors’

findings demonstrate the parameters’ instability as a result of economic fluctuations and the

magnitude of the divergence from long-run equilibrium.

Wang and Peng [94] predicted the monthly Shanghai housing price index using a wavelet

neural network. The Grey-Markov model and n-polynomial model [96] are used to forecast

the annual average price of housing. Fu et al. [73] [74] evaluated real estate based on the

location of the point of interest, the popularity of the property, and customer ratings.

Yan et al. [95] predicted seasonal housing prices using regression and grey models, which

they combined with wavelet neural network based on TEI@I methodology to forecast housing

price. They also specified contributing indicators that would assist improve the prediction

result’s accuracy. The TEI@I approach was initially presented for the purpose of forecasting

oil prices.

Manjula et al. [87] proposed an Artificial Neural Network (ANN) model for forecasting

for forecasting land values in the Chennai Metropolitan Area, India, utilizing data gathered

from interviews, newspapers, magazines, and the Internet. Guirguis et al. [77] proposed

the Generalized Autoregressive Conditional Heteroscedastic (GARCH) model and Kalman

Filter with Autoregressive Presentation (KAR) tmodels to simulate the housing market in

the United States. By applying univariate time series models such as the ARIMA, GARCH,

and regime-switching, Crawford et al. [71] were able to predict home price increases in states

such as California, Florida, Massachusetts, Ohio, and Texas from January 1979 to April 2001.

11

They discover that regime-switching models outperform ARIMA and GARCH in in-sample

forecasting while ARIMA and GARCH outperform ARIMA and GARCH in out-of-sample

forecasting.

12

Chapter 3

Deep Linguistic Translation

3.1 Spatial Natural Language Interface

3.1.1 Problem Overview

Many business applications rely on data-warehousing. To facilitate the usage of database

management systems to the public, NLI to databases has been extensively studied [3, 4, 5,

6, 10, 11, 12, 13, 14, 15, 16]. Spatial Domain NLI to databases has drawn great attention

due to the popularity of spatial applications [17, 18, 19, 20]. An intuitive solution is to adopt

existing NLI in general databases to the spatial domain. However, due to the idiosyncrasy

and expressiveness of the spatial semantics, it is unfeasible to adopt general NLI for the

spatial domain directly. The challenge of adopting the existing general domain NLI to

spatial domain lies to harnessing the expressiveness of spatial semantics. The expressiveness

of spatial semantics can be justified based on the following observations [21]:

The meaning of spatial phrase “Mississippi”
How many rivers does Mississippi have? State
How many cities does Mississippi traverse? River

The meaning of spatial phrase “over”
How many people walked over the bridge? On
How many birds flew over the bridge? Above

The meaning of spatial phrase “at the back of”
How many trees are at the back of the building? Exterior
How many rooms are at the back of the building? Interior

Figure 3.1: Spatial Semantics Is Encyclopedic.

13

The examples as mentioned in Figure 3.1 show that the same spatial phrase in different

questions embodies divergent senses expressing divergent query intentions. In the first two

questions, “Mississippi” as a name can refer to either a state or a river, depending on the

context where it is mentioned. In this example, the type of word “Mississippi” depends on

the verb located after the name (“have” or “traverse”). In the second two questions, the

preposition “over” means either a superior position or on the surface. Its spatial meaning

depends on the verb located before the preposition (“walk” or “fly”). In the last two ques-

tions, the prepositional phrase “at the back of” means either outside the building or inside

the building, which depends on the noun before the prepositional phrase (“tree” or “room”).

Such contextually dependent spatial semantics raises serious challenges for NLI to spatial

domain databases. For instance, in the third example, if there are two spatial tables (one for

the interior architecture of a building and one for the surroundings of a building), a wrongly

comprehended spatial semantics would cause the NLI to query a wrong table. In general,

spatial semantic understanding relies heavily on its contextual interpretation.

Taking Prolog query as an example, existing works of NLI rely on conventional grammar-

based methods or neural network-based methods. The former line of existing work uses

predefined templates or manually designed features, which has the lower-transfer ability,

thus confined in its specific dataset. The latter line of existing work uses grammar embedded

neural networks. Embedding grammar into a model relies on converting the process of

generating a sequence of tokens to the task of generating a sequence of actions that expands

a syntax tree. Converting word space to action space will inevitably introduce transformation

error, which can not guarantee overall accuracy. To the best of our knowledge, the state-of-

the-art Syntax-based method TRANX [22] achieves an accuracy of 88.2 percent which is 2.1

percent lower than our accuracy.

The aforementioned observations and survey inspired us to propose a Spatial Domain

NLI that is able to support the idiosyncrasy of spatial semantics. Inspired by the NLI

in [14, 16], we propose a strategy to address the ambiguity of spatial meaning (mentioned

14

in Figure 3.1) and data sparsity problem by feeding necessary spatial semantics to the deep

model. Here ambiguous spatial phrases are those that can not be uniquely identified by the

schema. By feeding external spatial semantics, our NLI is able to support various spatial

questions even when it has not seen similar semantics in the training set. The extra spatial

semantics is recognized by our external spatial comprehension model, whose functionality is

to recognize pre-defined spatial semantics.

We propose to capture spatial semantics using an external spatial comprehension model,

where the interpretation of each word is based on the attentive combination of the context.

We then complete our NLI model using a sequence-to-sequence (seq2seq) translation, which

is not only able to achieve grammar correctness but also robust with data sparsity problem.

Our fundamental strategy is to separate the tasks of NLI to (1) learning semantic structure

of a natural language question, and (2) learning the spatial semantics of a spatial question.

The necessity of the external spatial comprehension model is due to the seq2seq trans-

lation model’s failure to capture all the spatial semantics while learning the structure of the

question. In our design, Task (1) is assigned to the seq2seq model, while an external spatial

comprehension model is in charge of Task (2). We propose our spatial comprehension model

as a bi-directional attentive workflow [23, 28].

Our strategy is a general-purpose automatic solution that only relies on database con-

tent, spatial comprehension model, a seq2seq model, and a minimum amount of human

knowledge. To the best of our knowledge, we are the first to use an external spatial semantic

understanding model to enhance the performance of the main seq2seq model. Our solution

not only addresses the problem of data sparsity but also introduces minimum error since the

spatial comprehension model achieves an accuracy of 98 percent for Geoquery dataset.

Our contribution are described as follows

• We propose a spatial comprehension model that is able to recognize the meaning (e.g.,

POI type) of an ambiguous spatial phrase (e.g., POI name) based on contextual inter-

pretation.

15

• After injecting spatial semantics learned from spatial comprehension into the question,

our model outperforms the state-of-the-art.

• We propose a simple but effective strategy to support multiple query languages (e.g.,

both Prolog and SQL) in the back-end of databases.

• We evaluate our strategies systematically and show that our spatial comprehension

model and injection format perform well as expected.

3.1.2 Challenges

I. Sparse training data. Even though data augmentation is a feasible solution to sparse

training data, it is likely that the deep model will be forced to handle unseen questions

that are not covered by data augmentation, and required to support transfer learning.

II. Spatial semantics ambiguity. A unique feature of spatial questions is its expressiveness

in the spatial domain, and a spatial phrase often has an ambiguous meaning. For

example, “Mississippi” could be either a state or a river, “New York” could be either a

city or a state (taking Figure 4.2 as examples).

Question
State How many people live in Mississippi?
River How many states does Mississippi traverse?
City Is New York or London bigger?
State What is the capital of New York ?

Figure 3.2: Spatial POI Ambiguity

Theoretically, a powerful data augmentation should be able to address the first challenge;

however, such data augmentation strategy is rare in practice. Moreover, a seq2seq model is

designed to translate a sentence, it is reasonable that it fails to capture the context precisely

and infer the correct spatial semantics. For example, in the question “How many rivers does

16

Mississippi have ?” (shown in Figure 3.3), a seq2seq model should be able to understand the

context and infer “Mississippi” as a state. However, since the word “rivers” appears in the

question and precedes the word “Mississippi”, which means it has a major impact on the

prediction when attentive on “Mississippi”, in that case, it is highly possible that riverid

will be inferred instead of stateid.

Question How many rivers does Mississippi have ?
Ground

answer(A,count(B,(river(B),const(C,stateid(Mississippi)),loc(B,C)),A))
Truth
Infer answer(A,count(B,(river(B),const(C,riverid(Mississippi)),loc(B,C)),A))

Figure 3.3: POI Type Recognition Without Spatial Comprehension Model

Therefore, we propose another deep model for the purpose of spatial semantic under-

standing; despite the fact that we use the same parse training data, an external model

targeted on understanding the context is able to infer the correct spatial semantics (Chal-

lenge II) precisely. With the spatial semantics retrieved from the spatial comprehension

model, we adopt symbol insertion strategy [14] to inject external information and help the

seq2seq to infer an unseen sample correctly (Challenge I).

Overview To address the aforementioned challenges, we present our SpatialNLI overview

shown in Figure 4.4. The workflow of our SpatialNLI involves the following steps:

1. Identify ambiguous spatial semantics in the NL query.

2. Build a spatial comprehension model that is able to understand a spatial-related question

semantically.

3. Injecting spatial semantics retrieved from the spatial comprehension model into the ques-

tion (q −→ q′).

4. “Translating” the question into a structured query (Lambda expression in our example)

(q′ −→ l′).

5. Replace the symbols injected to their original text (l′ −→ l).

17

Machine
Comprehension

Model

Spatial
Comprehension

Model
Spatial Semantics Injection

Spatial Semantics
e.g., POI type

Spatial Semantics
Detection

e.g., POI

Similarity Model
e.g., GloVe

Spatial Database

User Interface

NL query

Translation Seq2Seq Model

Query Recovery

Execute
query

Result

NL query

Figure 3.4: SpatialNLI Workflow.

3.1.3 Interface Design

Since most of the keywords or data elements in spatial queries (e.g., lambda expression)

are spatial-related, we propose a strategy to inject latent spatial semantics into the natural

language question to help the seq2seq model to capture the semantic meaning of the question.

For example, for the question “How many rivers does Mississippi have ?”, its correspondence

lambda expression is “count(B,(river(B), const(C,stateid(Mississippi)), loc(B,C))”,

which has five keywords “count”, “river”, “const”, “stateid”, “loc”, and three of them are

spatial-related. We will illustrate the workflow of our SpatialNLI with this running example.

Our SpatialNLI model is composed of the following steps (corresponding to Algorithm 1)

1. Spatial Semantics Detection. Having access to GeoSpatial databases, we detect po-

tential keywords or data elements using 1) string match, 2) edit distance, and 3) cosine

distance in semantic embedding space (e.g., Glove). In the aforementioned question,

“Mississippi” can be detected by comparing against the data in the databases using

18

string match, “river” can be detected by edit distance since “rivers” is in the table. We

will detail semantic distance measurement later in Section 3.1.3.

2. Spatial Comprehension Model. For ambiguous spatial phrases, we propose a spatial

comprehension model to resolve the ambiguity. As we mentioned in Section 3.1.2, “Mis-

sissippi” is an ambiguous POI, and it will be identified as a river type using our spatial

comprehension model.

3. Spatial Semantics Injection. With identified keyword “river” and data element “Mis-

sissippi” (river name), we inject such information into the question by inserting pre-

defined symbols “How many 〈k0〉 rivers 〈eok〉 does 〈k1〉 stateid 〈eok〉 〈v0〉 Mississippi

〈eov〉 have ?”

4. Seq2seq Translation. We then feed the modified question to a seq2seq translation

model. In the previous example, the predicted output sequence is “answer(A, count(B,

(〈k0〉(B), const(C,〈k1〉(〈v0〉)), loc(B,C)), A))”.

5. Query Recovery. The generated sequence of the seq2seq model is then recovered to an

executable query. Following the previous example, we have “answer(A, count(B,(river(B),

const(C, stateid(Mississippi)), loc(B,C)), A))”.

Algorithm 1 SpatialNLI

1: function SpatialNLI(q, D, E)
2: P , V = SpatialMapper(D, q, E);
3: q′, s2p =SpatialInjection(q, V , P);
4: l′ = Seq2seq(q′);
5: l = Recover(l′, s2p);
6: Return l;
7: end function

19

Spatial Semantics Detection

Even though our major contribution is spatial comprehension, we formally define our

strategy to detect keywords and data elements mentioned in the question (denotated as

SpatialMapper) to keep our work self-contained.

P, V = SpatialMapper(D, q, E)

The inputs are the GeoSpatial database D, a natural language question q, and an

embedding function E (e.g., Glove). E will change a word to a high-dimensional vector,

which represents its location in the embedding space. We collect the table names, column

names, and column values from D, thus D refers to a collection of entities in our spatial

mapper. The table names (e.g., river) and column names (e.g., river length) in D are

potential keywords of executable queries (e.g., Lambda expression), and column values (e.g.,

Mississippi) are potentially data elements that might be mentioned in executable queries.

The detail of the algorithm is presented in Algorithm 2, in the aforementioned example,

P = [〈rivers, river〉, 〈Mississippi,Mississippi〉], since “Mississippi” is detected by exact

string match, and “rivers” (in q) and “river” (in D) has a small edit distance. We define

semantic distance measurement as

semantic distance(a, b) = 1− E(a) · E(b)

||E(a)||2||E(b)||2

The semantic distance is also the spatial distance in the embedding space. If any operand

is a phrase which comprises multiple tokens, for example, A is a list of tokens, we define

E(A) = avga∈A
(
E(a)

)
.

Taking question “Where is the lowest spot in Iowa?” as an example, its correspond-

ing logic form is answer(A,lowest(A,(place(A), loc(A,B),const(B,stateid(Iowa)))),

“spot” in the NL question is matched to keyword “place” since semantic distance(place, spot)

< 0.368, which is relatively small.

20

Algorithm 2 Spatial Semantics Mapper

1: function SpatialMapper(D, q, E)
2: P = ∅; . Spatial semantics matching pairs.
3: V = ∅; . Spatial values with its semantic meaning.
4: for k in K..1 do . Iterating from K-gram to 1-gram
5: for all pq ∈ k-gram of q do
6: for all c ∈ D do
7: if pq == c or semantic distance(pq, c) < τsem or edit distance(pq, c) < τed

then . τed is the threshold for edit distance. τsem is the threshold for semantic distance.
8: P .add(〈pq, c〉);
9: if c is a column value then

10: for all table tb that has c do
11: pq.types.add(tb)
12: end for
13: V .add(pq)
14: end if
15: end if
16: end for
17: end for
18: end for
19: Return P , V ;
20: end function

We care about the spatial phrases that have semantic ambiguities (e.g., Mississippi).

An intuitive solution is to use pre-collected human knowledge. However, to devise an au-

tomatic and intelligent approach, we propose using Geospatial database; for example, we

discover that “Mississippi” is an ambiguous value by simply searching for this phrase in the

database, and it appears in two tables River and State. In Algorithm 2 Line 9-13, if a

phrase appears in multiple tables, we collect all the ambiguous information in V . For exam-

ple, in V , “Mississippi”.types = [River, State], “New York”.types = [City, State] and

“Alabama”.types = [State]. In other words, for a spatial phrase that is a value, we collect

the tables it belongs to and stored in V . For most of the Geospatial databases, the table

names are able to represent the meaning of the value. In the question “How many rivers

does Mississippi have?”, V = [“Mississippi”] and “Mississippi”.types = [River, State].

It is worth noticing, we use minimum human knowledge to cover phrase mapping that

is not covered by Glove. For example, in a question where “population per km2” refers to

21

“population density”, such mapping is not easy to be covered by Glove or a deep model, thus

human knowledge is necessary. However, such cases are rare in practice, and we only require

minimum human knowledge.

Spatial Comprehension

Figure 3.5: Spatial Comprehension Model.

Question POI Type Label
How many states does 〈@〉 Mississippi 〈@〉 traverse? State False
How many states does 〈@〉 Mississippi 〈@〉 traverse? City False
How many states does 〈@〉 Mississippi 〈@〉 traverse? River True

Figure 3.6: Using Spatial Comprehension for POI Type Selection. T = {State, City, River}.

A critical challenge in understanding the spatial question is the meaning of an ambiguous

phrase, such as a point of interest (POI). For example in Figure 4.2, where “Mississippi’ could

be a river or a state, we have to differentiate its meaning by the context and understanding

the semantic meaning of the question. In the question “How many people live in Mississippi

?”, we would interpret “Mississippi” as a state name, and in the question “How many states

does the Mississippi run through ?”, people would understand “Mississippi” is referring to

a river.

22

With large training corps, a deep model might be able to capture that information;

however, existing spatial question answer data sets are inadequate and sparse due to the

difficulty in collecting ground truth. To address this challenge, we propose a principle method

to enable semantic understanding of spatial questions using sparse training data, which

relieves the burden of collecting large training sets. By our definition, Spatial Comprehension

is spatial semantic understanding using machine comprehension. Our strategy is to exploit

pre-trained Glove embedding to understand spatial keywords in the question first, then use

a seq2seq machine comprehension model to learn the semantic meaning of the question

(context) without the burden of extracting the spatial relations.

Model Structure Our spatial comprehension model is designed to understand the

“meaning” (e.g., type of POI) of an ambiguous spatial phrase mentioned in the question

based on its context.

Inspired by the machine comprehension model using an attention flow [23], we propose

our spatial comprehension model composed of two stacked LSTM layers on each input with

another shared attentive LSTM layer. The design of the bi-directional attentive workflow [23]

is to answer a question given a premise – i.e., locate the sentences in the premise that is most

relevant to the answer of the question. The task of the machine comprehension is different

from ours; however, they do share the same strategy: understanding one of them (question

and premise) semantically based on the context of the other. So we use LSTM to pre-process

our NL question and the possible meaning of the ambiguous spatial phrase separately, and

conduct an attentive workflow over the hidden states of the question (shown in Figure 3.5).

Also inspired by [14], we enclose the ambiguous spatial phrase in special symbols to indicate

it has more influence than the other tokens in the question.

We denote a question as q = [q1, ..., qn] and the meaning of the ambiguous spatial phrase

(mentioned in the question), such as a POI type, as t = [t1, ..., tm], both of which are fed to

a word embedding layer φ (initialized with GloVe [59]). On top of that, we use an LSTM

layer to capture the hidden states of each time step i.

23

We build the same structure for both q and t. We denote the hidden states of the top

stacked LSTM layers as

Hq = LSTM(φ(q)) = (hq1, · · · , h
q
n)Ht = LSTM(φ(t)) = (ht1, · · · , htm)

Inspired by natural language understanding proposed in [15, 23], we build an extra LSTM

layer on Hq with attention over H t as the follows

di = LSTM
(
[hti, βi−1], di−1

)
eij = vTTanh(W0H

t +W1h
q
j +W2di)

αij = eij/
∑
j′

eij′

βi =

n∑
j=1

αijh
q
j

d0 = 0. W0, W1, W2, v, and U are model parameters. Here i is the time step while

enumerating t, and j enumerates each token in q. The final output dm is fed to a multi-layer

perceptron (MLP) and then resized to a binary prediction. If t involves a sequence of tokens,

we use bi-directional attentive flow as in [23] and compute bi-directional output di = [
−→
di ,
←−
di].

With the attentive flow on type t while reading the question, our spatial comprehension

model is able to make the prediction based on the memory of the context. However, with

the observation that, given a question “How many rivers in Mississippi?” and a POI type

“river”, the machine comprehension model is highly likely to produce a positive prediction

(false prediction), since “river” is mentioned in the question by “rivers”, but the model would

fail to capture our intention to categorize the type of “Mississippi”. In order to feed our

intention into the model, we insert special symbols (e.g., 〈@〉) to enclose the POI mentioned

in the question.

The corresponding model structure is shown in Figure 3.5. For the question shown

in Figure 3.5, to address the ambiguity of “Mississippi”, we feed three records shown in

24

Figure 3.6. Our spatial comprehension function is defined as follows:

SpatialComprehension(q, p, t)

where q is the question, p is the ambiguous phrase, and t is the meaning of the phrase. If

SpatialComprehension returns true, the semantic meaning of p is identified as t.

Spatial Semantics Injection

Now we are able to understand the context and recognize the meaning of each ambiguous

spatial phrase correctly through the spatial comprehension model. The question is how to

inject the external information to the main seq2seq model. We propose an injection strategy

shown in Figure 3.7. The general idea is to insert symbols into the question at the locations

before and after every spatial phrase to emphasize its semantics, then feed the inserted

question into a seq2seq model.

The first step is to search for components in the question that need a spatial seman-

tics injection–i.e., ambiguous spatial semantics. For example, in the question “What is the

population of San Antonio?”, we do not feed extra information for every word, instead, we

only focus on spatial information or tokens that could be shown in the corresponding logic

form (e.g., keywords). In other words, we only care about the tokens in the NL question

that contribute to its logic form. The tokens such as question word “what” and stop words

“is” “the” “of” do not contain the question’s information, thus are not annotated.

For the ambiguity of spatial phrases, we believe it is necessary to feed the meaning of the

phrase in the question. For example, we feed the Type of POI in the question to address

the POI ambiguity. We present our Information Injection Format With Type Feeding in

Figure 3.7. We will validate in the experiment section that our type feeding improves the

accuracy dramatically.

We propose a general purpose automatic injection algorithm shown in Algorithm 3. For

the input natural language question q, after we recognize the meaning (e.g., type) ti of each

25

phrase pi (e.g., POI) correctly through spatial comprehension model, for each pair of ¡pi, ti¿

∈ < P, T >, we will insert the type ti before the pi in the input question q. Also, for pi ∈

P , we store the symbol sym of each phrase pi in s2p, which will be used later in the query

recovery. For example, as Figure 3.7 shows, the symbol for the phrase “san antonio” is 〈v0〉.

Then the ¡〈v0〉, san antonio¿ is stored in s2p which will later be used for the recovery of

〈v0〉 in the output logic form query.

Algorithm 3 Spatial Semantics Injection

1: function SpatialInjection(q, V , P)
2: s2p = ∅; . Symbol phrase mapping.
3: indexv = 0; . Value Symbol index.
4: indexk = 0; . Keyword symbol index.
5: q′ = q;
6: for all 〈pq, c〉 ∈ P do . Iterate each matched pairs.
7: if c is a keyword then
8: sym = ‘k’+indexk;
9: else if c is a value then

10: sym = ‘v’+indexv;
11: Search for c.types from V ;
12: if —c.types—¿1 then . c is an ambiguous spatial phrase
13: T = p.types
14: for all t ∈ T do
15: if SpatialComprehension(q, p, t) is True then
16: c.type = t;
17: end if
18: end for
19: else if —c.types—==1 then . c is not an ambiguous spatial phrase
20: c.type = c.types[0];
21: end if
22: Insert c.type to q′ (using symbol ‘k’+indexk)
23: end if
24: indexk = indexk + 1;
25: indexv = indexv + 1;
26: s2p.add(〈sym, c〉);
27: Insert sym to q′;
28: end for
29: Return q′, s2p;
30: end function

26

Figure 3.7 presents our detailed injection format. For a phrase or token in the question

that is identified as a keyword (e.g., population), that phrase or token will be enclosed with

〈ki〉 and 〈eok〉. For values such as “San Antonio” that appear in the question, we enclose

them with 〈vi〉 and 〈eov〉 where 〈eok〉 represents “end of keyword” and 〈eov〉 represents “end

of value”. Note that we use the spatial databases and the grammar of executable queries to

identify keywords and values without referring to the ground truth. Here i indicates it is

the i-th spatial semantics that is injected. For a value 〈v〉, if ambiguity exists, we predict its

spatial meaning using spatial comprehension model and feed the spatial semantics into the

question using the symbol 〈k〉.

Question q What is the population of San Antonio ?
Keyword

What is the population of San Antonio ?
Detection
Symbol q′ what is the 〈k0〉 population 〈eok〉 of
Injection 〈k1〉 cityid 〈eok〉 〈v0〉 San Antonio 〈eov〉 ?

Seq2seq Model

Output l′ answer(A,〈k0〉(B,A),const(B,〈k1〉(〈v0〉)))
Recover l answer(A,population(B,A),const(B,cityid(San Antonio)))

Figure 3.7: An example of Information Injection Format With Type Feeding

27

As shown in Figure 3.7, since the output of the seq2seq model involves symbols that

are inserted into the question which need to be transformed to its original literal form, we

propose a query recovery model. The detailed algorithm will be presented in Section 3.1.3.

Following the aforementioned example in spatial comprehension q = “How many states

does the Mississippi run though?”, if we do not address the ambiguity problem and rely on the

seq2seq model to infer the spatial meaning of “Mississippi”, q′ will be “How many 〈k0〉 states

〈eok〉 does the 〈v0〉 Mississippi 〈eov〉 run through?”. After translated by the seq2seq model,

the recovered query is likely to be answer(A, count(B, (state(B), const(C, stateid

(mississippi)), traverse(C,B)), A)) since “states” is mentioned in the question. Our

model is fundamentally built upon a seq2seq translation model, where the context is trans-

formed into a weighted sum of all the tokens, in which “states” will be embedded as part of

the context, and the model is easy to be confused and outputs “Mississippi” as a state name.

We will mention in Section 3.1.3 later that, since the output vocabulary size is much smaller

than the input vocabulary size and most of the tokens in output appear in the input as well,

we adopt Copying Mechanism [49], where the output token has a higher chance to be copied

from the input sequence. Copying Mechanism makes the ambiguity harder to address, such

as in the aforementioned question, “river” does not appear in the input question, the model

has a higher probability of copying “state” from the input sequence. Thus we need to insert

‘riverid′ before the word “Mississippi” in the input sentence to help the model make the

translation. The final input will be “How many 〈k0〉 states 〈eok〉 does the 〈k1〉 riverid 〈eok〉

〈v0〉 Mississippi 〈eov〉 run through?”.

Translation Model

Since seq2seq models have been widely adopted in translation tasks, and our NLI task

is simpler than a translation task due to small vocabulary size. We believe a seq2seq model

is able to capture the logic and the spatial structure of the question as long as it is able to

understand the entities that are mentioned in the question. So we adopt a seq2seq model as

28

in Figure 3.8 with copying mechanism following [14].

l′ = seq2seq(q′)

Figure 3.8: Seq2seq Model.

Query Recovery Model

Algorithm 4 Symbol Recovery

1: function Recover(l′, s2p)
2: l = l′;
3: for all 〈sym, c〉 ∈ s2p do
4: l.replace(sym,c);
5: end for
6: Return l;
7: end function

We detail our strategy of query recovery through Algorithm 4, whose inputs are l′, the

output of translation model, and s2p, the symbol-phrase pairs detected by spatial seman-

tics injection model (Algorithm 3). Just as Figure 3.7 shows, the output l′ of the seq2seq

translation model is a sequence of the symbol, for example, 〈k0〉, 〈k1〉 and 〈v0〉 here. Then

29

we need to recover the output logic form query. For each pair 〈sym, c〉 ∈ s2p, every symbol

sym l′ needs to be replaced by the original phrase c. After replacing all symbols in l′, we

finally get the output logic form. In Figure 3.7, for output l′, we replace the symbols 〈k0〉,

〈k1〉 and 〈v0〉 by their corresponding phrase “population”,“cityid” and “San Antonio” based

on the pairs in s2p. After recovery, we finally get the right output logic form.

Data Augmentation By Shuffling

Just as mentioned before, one of the Challenges right now is the lack of training set.

The sparsity of training data causes two problems: 1). The semantic structures of questions

are sparse; 2). The data entities mentioned in the questions are inadequate. Problem 2 can

be simply addressed by replacing data entities. However, addressing problem 1 is non-trivial.

So we propose to shuffle the prepositional phrases to augment the semantic structures of the

training set.

We propose our unique augmentation strategy as follows: If a question has a preposi-

tional phrase (PP as a POS tag), and the question can be decomposed as q = qprefix|qPP or

q = qPP|qsuffix, where qprefix are the words placed before the prepositional phrase and qsuffix

are the words placed after the prepositional phrase, we will shuffle the position of the prepo-

sitional phrase. Note that we only consider the questions that start with a prepositional

phrase or end with a prepositional phrase.

Consider the example in Figure 3.9, for the query ”Which states does the Mississippi

river run through”, the format of the question is q = qprefix|qPP, and qprefix=“Which states

does the Mississippi river run” and qPP =“through”. By exchanging qprefix and qPP, we can

get a new sentence “Through which states does the Mississippi river run” and the meaning

of the new query remains the same. Also, for the other question “In what state is Mount

Mckinley ”, q = qPP|qsuffix, qPP=“In what state”, and qsuffix=“is Mount Mckinley”. we can

shuffle the position of the prepositional phrase to get a new sentence.

30

q
Which states does the Mississippi river run through ?

qprefix qPP

Augment
Through which states does the Mississippi river run ?
qPP qprefix

q
In what state is Mount Mckinley ?

qPP qsuffix

Augment
Mount Mckinley is in what state ?

qsuffix qPP

Figure 3.9: Two Examples Of Data Augmentation

3.1.4 Experimental Validation

Experimental Settings

Configuration All our experiments are conducted on a machine equipped with 2 Intel CPU

E5-2670 v3 running at 2.3GHz with 256GB of RAM and 2 NVIDIA Tesla K80 GPUs.

Dataset To evaluate the effectiveness of our system, we performed an experimental evalua-

tion on dataset Geoquery and Restaurants.

• Geoquery [39] is a collection of 880 natural language questions and corresponding

executable database query pairs about U.S. geography. The answers in this dataset

are defined in λ-calculus logical form. We follow the standard training-test split to

that of [30], of which the dataset was divided into 600 training examples and 280

test examples respectively. As [49], [38] and [60], we determine its Acc based on the

denotation match.

• Restaurant (Rest) [40, 11] is a dataset with 251 question-answer pairs about restau-

rants, their food types, and locations. The questions are all human natural language

and the answers are in λ-calculus logical form.

31

Data Augmentation

We not only propose our new data augmentation strategy by shuffling in Section 3.1.3,

but also adopt a data augmentation strategy that is based on the recombination [49] of a

sentence itself.

For example, as in Figure 3.10, for the query “What is the highest point in Florida?”,

we can simply identify that the word “Florida” is the name of a state based on the spatial

database. Given this example, we change it to new questions, in which the word “Florida” is

replaced by the name of other states in the database. Here, the word “Florida” is replaced by

“Rhode Island”. For the second example in Figure 3.10, for the query “What is the highest

point in Florida?” and the query “What state has the smallest population density?”, we can

infer that the entire expression of the second sentence could map to the word “Florida” in

the first query since this query is asking about one state. Then we can generate one new

question by replacing the word “Florida” with the second sentence. For the third example,

the two queries, “What state has the largest population?” and “What state has no rivers?”,

are both asking about one state, so we combine them together to generate a new query.

Type 1
Original What is the highest point in Florida ?
Augment What is the highest point in Rhode Island ?

Type 2
Original

What is the highest point in Florida ?
what state has the smallest population density ?

Augment What is the highest point in state that has the smallest population density ?

Type 3
Original

what state has the largest population ?
what state has no rivers ?

Augment what state has the largest population and has no rivers ?

Figure 3.10: Three Examples Of Data Augmentation

Spatial Comprehension Model

We preprocess the dataset for spatial comprehension model so that each record con-

tains (1) A question with each POI phrase enclosed with symbols (e.g., 〈@〉) indicating the

attentive position; (2) A POI type (e.g., River, State, and City.).

32

Dataset Train Test

Geoquery
Accrcd 97.4% 91.9%
Accqu 98.3% 98.1%

Rest(aurant)
Accrcd 100.0% 100.0%
Accqu 100.0% 100.0%

Table 3.1: Spatial Comprehension Model Evaluation.

For a question “How many states does the Mississippi run through?” with one ambiguous

POI “Mississippi”, we have the three records as shown in Figure 3.6. To balance the positive

and negative samples in the training set, we replicate positive samples. For samples in

Figure 3.6, we replicate positive samples by 2 times.

We run experiments with 200 hidden units and 300-dimensional pre-trained Glove em-

bedding. We minimize the cross entropy using Adam Optimization Algorithm. We evaluated

the performance of our spatial comprehension model in Table 3.1. Accrcd represents the per-

centage of correctly predicted records. Accqu represents the percentage of correctly predicted

questions where all POIs are recognized correctly. For the example in Figure 3.6, the total

number of samples for Accrcd is 3, and the total number of samples for Accqu is 1. Even

the training objective function is to optimize Accrcd. In fact Accqu is what we are trying to

optimize, and we prove that Accrcd and Accqu are optimized simultaneously.

We evaluate on Geoquery and Rest datasets, respectively (shown in Table 3.1). Test

Accqu is 98.1 percent for Geoquery, and 100.0 percent for Restaurant data, respectively. All

the Accqu is not less than Accrcd. In other words, our spatial comprehension model is able

to recognize the spatial semantics with high confidence.

Evaluation

For the encoder and the decoder of our seq2seq model, we use one layer of Gated

Recurrent Unit (GRU) with a hidden size of 800 and 800 ∗ 2, respectively. The input and

output of both encoder and decoder share the same embedding layer, which is initialized

33

with 300-dimensional pre-trained Glove embedding. Special symbols inserted (e.g., k1 and

v1) are treated as special tokens; they are represented by the concatenation of an embedding

of the symbol type (e.g., k and v) and an index, where the embedding of the symbol type and

the index are randomly initialized with 150-dimension (the concatenation has a dimension

of 300). The other unknown token is initialized with a 300-dimension random vector. For

training, we use gradient clipping with a threshold 5.0, and for inference, we use beam search

with width 5.

q How many states does the Mississippi run through ?

+SC
q′ 〈k0〉 How many 〈eok〉 〈k1〉 states 〈eok〉 does the 〈k2〉 riverid 〈eok〉 〈v0〉 Mississippi 〈eov〉 run 〈k3〉 through 〈eok〉 ?

Infer answer(A,〈k0〉(B,(〈k1〉(B),const(C,〈k2〉(〈v0〉)),〈k3〉(C,B)),A))
Recover answer(A,count(B,(state(B),const(C,riverid(Mississippi)),traverse(C,B)),A))

-SC
q′ 〈k0〉 How many 〈eok〉 〈k1〉 states 〈eok〉 does the 〈k2〉 stateid 〈eok〉 〈v0〉 mississippi 〈eov〉 run 〈k3〉 through 〈eok〉 ?

Infer answer(A,〈k0〉(B,(〈k1〉(B),const(C,〈k2〉(〈v0〉)),〈k3〉(C,B)),A))
Recover answer(A,count(B,(state(B),const (C,stateid(Mississippi)),traverse(C,B)),A))

Figure 3.11: Spatial Comprehension Case Study.

*+SC means using Spatial Comprehension, -SC means without.

Table 3.2 presents our experiment results for (a) Geoquery dataset and (b) Rest(aurant)

dataset. For Geoquery, compared with the previous models, our method outperforms the

state-of-the-art. The conventional methods are overdependent on predefined templates and

manually designed features, which have lower accuracy on the test set. For neural network-

based methods such as ASN [47] and TRANX [22], they convert word space to action space,

which inevitably introduces transformation error. SQL2TREE [48] and JL16 [49] use seq2seq

model as well, but fail to address spatial semantics ambiguity. For Rest, the state-of-the-art

achieves 100 percent accuracy, which states the Rest dataset is an easier task than Geoquery.

Our model exhibits excellent downward compatibility by achieving 100 percent accuracy on

Rest dataset.

To validate the performance of our system, several ablation experiments were conducted

by the removal of (1) Copy Mechanism, (2) Spatial Comprehension Model, (3) Data Aug-

mentation, (4) Type Feeding, and (5) Information Injection, respectively. By the removal of

the spatial comprehension model, we random guess the meaning (type) of ambiguous POI

34

and inject it to the question. For removing information injection, we feed the original content

to the model without inserting any symbols. By the removal of type feeding, we conduct

symbol injection but omit to inject the extra spatial information (e.g., 〈k1〉 cityid 〈eok〉 in

Figure 3.12).

First, we measure the contribution of the spatial comprehension mechanism to the over-

all performance of the model. We train and evaluate two models: one with the spatial

comprehension model and one without. Training is done with data augmentation and in-

formation injection. In Table 3.2, for Geoquery and Restaurant, with the removal of spatial

comprehension model, the denotation match accuracy drops 4 percent for Geo and drops

3.9 percent for Rest. Since only 19.3 percent of the test set for Geoquery and 4 percent

of the test set for Restaurant has POI ambiguity problem, it is obvious that our machine

comprehension model is able to resolve the majority of them.

As shown in Figure 3.11, by comparing against the spatial database, “Mississippi”

appears in two tables: River table and State table. Without spatial comprehension, if we

are using random guess, “river” has only 50 percent chance to be correctly categorized.

The ‘+comprehension’ in the figure means we use the spatial comprehension model and ‘-

comprehension’ is for the result without a right understanding of “Mississippi”. Without

the spatial comprehension model, it is possible for the system to recognize the “Mississippi”

as a state name. As the figure shows, once “Mississippi” is recognized as a state, it will

insert “stateid” in the input question and finally get a wrong result after recovery. One

interesting thing is that the infer for ‘+comprehension’ and ‘-comprehension’ are the same,

both correct. This is because, for seq2seq model, it just outputs the result with 〈ki〉, not

the specific word. Here the “riverid” and “stateid” are both replaced by 〈k2〉. Thus we get

the same infer result from seq2seq model. However, after recovery, the result without spatial

comprehension model is wrong.

Table 3.2 shows that by removing type feeding, the accuracies drop 5.4 percent on

Geoquery and 29.4 percent on Restaurant. The symbol injection significantly improves the

35

accuracy of the Restaurant dataset since for most samples in the Restaurant dataset, one

token in the input question always corresponds to multiple tokens/symbols in the output

sequence, which relationships are hard for the seq2seq model to capture.

As shown in Table 3.2, the information injection component improves test accuracy by

7.5 percent on Geoquery and 39.2 percent on Restaurant. When we stop injecting informa-

tion into the natural language question, the seq2seq is not able to capture all the necessary

information to infer correctly and suffers from a large accuracy decrease. A case study of our

symbol injection strategy is shown in Figure 3.12, where a seq2seq model generates outputs

token by token and a large number of entities involve a sequence of tokens. Without symbol

injection, the seq2seq model has to infer “San Antonio” token by token using two steps. On

the other hand, with symbol injection, the seq2seq model generates v0 as a representation of

“San Antonio”, which only requires one step. Our symbol injection format is able to replace

a name entity composed of a sequence of tokens to a single symbol, which prevents wrong

name entity caused by a long sequential generation.

-SI
q What is the population of San Antonio ?

Infer answer(A, population(B,A), const(B,cityid(San Jose)))

+SI

q What is the population of San Antonio ?

q′
what is the 〈k0〉 population 〈eok〉 of 〈k1〉 cityid 〈eok〉
〈v0〉 San Antonio 〈eov〉 ?

Infer answer(A, 〈k0〉(B,A), const(B,〈k1〉(〈v0〉)))
Recover answer(A, population(B,A), const(B,cityid(San Antonio)))

Figure 3.12: A Case Study using Symbol Inject (Geoquery).

* +/- SI means with/without Symbol Injection.

We also jointly train both datasets in a shared model compared with separate training,

shown in Table 3.5. Jointly training achieves an accuracy of 90.7 percent. Our experiment

results show that a shared model performs better than two separate models.

36

3.1.5 Conclusion

In this work, we propose an NLIDB applied for the spatial domain to convert natural

language queries to structured queries executable by database. The main contribution of

our work is to recognize the meaning of the ambiguous spatial phrases based on contextual

interpretation and capture the semantic structure of the question by the seq2seq model

with injecting spatial information. Our extensive experimental analysis demonstrates the

advantage of our approach over state-of-the-art methods.

3.2 Spatial Interface With Flexible Back End

3.2.1 Challenges Of Spatial NLI With Flexible Back End

Besides the challenges in the Section 3.1.2, adding a flexible back-end to spatial NLI

could be more challenging.

We argue that if an NLI model only supports a single query language (e.g., SQL), its

commercial value would be limited since different database engines are better at different

tasks. For example, Prolog 1 works well for logic-intensive tasks where a lot of reasoning is

involved; NoSQL works better for unstructured or semi-structured data; and SQL is widely

adopted in industry. It is important to incorporate flexible back-end when designing a natural

language interface to databases.

To address this issue, a prefix symbol is introduced to support the flexible back-end.

The system overview will be the same as Section 3.1.2. But we prefix a query type token to

indicate the target query language so that the 4th step, ”Translating”, in the Section 3.1.2

is able to support more types of database query such as Prolog and SQL.

37

How many states does <@> Mississippi <@> traverse River name

+

Natural language question Candidate

t-1 t1 2 3 … … n

Attention Binary

RNN

RNN

Attentive Workflow
Multi-layer
PerceptronEmbedding

Figure 3.13: Spatial Comprehension Model.

Question Table Label
What are the populations of states through which the Mississippi traverses? State True
What are the populations of states through which the Mississippi traverses? City False
What are the populations of states through which the Mississippi traverses? River True
What are the populations of states through which the Mississippi traverses? Border False
What are the populations of states through which the Mississippi traverses? Mountain False

Figure 3.14: Using Spatial Comprehension for schema linking.

T ′ ={State, River}.

3.2.2 Spatial Comprehension With Table Selection

The corresponding model structure is shown in Figure 3.13. We build the same structure

for both q and t. We denote the hidden states of the top stacked RNN layers as

Hq = RNN(φ(q)) = (hq1, · · · , hqn)

H t = RNN(φ(t)) = (ht1, · · · , htm)

1https://www.swi-prolog.org/pldoc/man?section=db

38

Inspired by natural language understanding proposed in [15, 23], we build an extra RNN

layer on Hq with attention over H t as follows:

di = RNN
(
[hti, βi−1], di−1

)
eij = vTTanh(W0H

t +W1h
q
j +W2di)

αij = eij/
∑
j′

eij′

βi =
n∑

j=1

αijh
q
j

d0 = 0. W0, W1, W2, v, and U are model parameters. Here i is the time step while

enumerating t, and j enumerates each token in q. The final output dm is fed to a multi-layer

perceptron (MLP) and then resized to a binary prediction. If t involves a sequence of tokens,

we use bi-directional attentive flow as in [23] and compute bi-directional output di = [
−→
di ,
←−
di].

When a database is too large to be scanned for each question and the NLI has to identity

related schema first (i.e., schema linking), we adopt spatial comprehension model for schema

linking. Specifically, T is the collection of tables, SpatialComprehension(q, T) will return

T ′ ⊂ T where T ′ are related tables. Unlike ambiguity challenge, we do not need to annotate

anything in q and feed it as the original format (shown in Figure 3.14). After schema linking,

our method will redefine D as T ′ tables.

3.2.3 NLI With Flexible Back End

Inspired by Google multilingual translation model [63], we propose a multi-language

natural language interface (i.e., flexible back end) [15]. The idea is simple but effective: we

prefix a query type token to indicate the target query language. For example, considering

a natural language query “What are the populations of states through which the Mississippi

traverses?”. As shown in Figure 3.15,

• If we prefix 〈Prolog〉 to the model input, the model will generate

39

Question: What are the populations of states through which the Mississippi traverses?

Table Detection
<k0> state, <k1> river

Spatial Semantics Injection
<Prolog> What are the <k0> populations of <k1> states through

which the <k2> riverid <v0> Mississippi <k3> traverses?

Spatial Semantics Injection
<SQL> What are the <k2> populations of <k3> states through

which the <k4> river.river_name <v0> Mississippi <k5> traverses?

Cross-Domain NLI

answer(A,(<k0>(B,A), <k1>(B), const(C, <k2>
(<v0>)), <k3>(C, B)))

answer(A,(population(B,A),state(B), const(C,riverid
(Mississippi)), traverse(C,B)))

SELECT <k2> FROM <k0> WHERE <f3> IN
(SELECT <k5> FROM <k1> WHERE <k4> = <v0>)

SELECT state.population FROM state WHERE state.state_name IN
(SELECT river.traverse FROM river
WHERE river.river_name = Mississippi)

Spatial
Comprehension

Figure 3.15: Flexible Back-End Overview

Prolog (left) and SQL (right).

answer(A,(population(B,A),state(B),const(C,riverid(Mississippi)),traverse(C,B)))

• If we prefix 〈SQL〉 to the model input, the model will generate

SELECT state.population FROM state where state.state name IN (SELECT river.traverse

FROM river WHERE river.river name = Mississippi)

3.2.4 Experimental Validation

Experimental Settings

Dataset

To evaluate the effectiveness of our system, we performed an experimental evaluation

on dataset Geoquery in both SQL and Prolog formats.

40

Geoquery [39] is a collection of 880 natural language questions and corresponding exe-

cutable database query pairs about U.S. geography. The original answers in this dataset are

defined in λ-calculus logical form (Prolog), later the answers are converted to SQL2.

The dataset was divided to 600 training examples and 280 test examples [30]. For

SQL format, the accuracy is calculated by exact query match. For Prolog, we determine its

accuracy based on the denotation match following [49, 38, 60].

SQL Evaluation

We compare our method with the following baselines:

• Transformer [25]. Transformer is the proposed for contextual understanding. We

test our data on the pre-trained Transformer 3.

• RAT-SQL [62]. RAT-SQL is the state-of-the-art for Spider4 dataset. As the sketch

of SQL in Spider dataset is very similar to ours. We compare with RAT-SQL 5.

• Spatial Semantics Injection. As our spatial semantics injection strategy is or-

thogonal to most of the designs, we inject our information when applicable.

(1)Bert Embedding 6 + Seq2Seq. We use pre-trained bert embedding with

sequence-to-sequence model.

(2)Transformer. We adopt the previous setting, and the only difference is the

input data has our injected information.

Table 3.4 presents our evaluation on SQL query language. Similar to our schema-

aware strategy, RAT-SQL encodes the database relations and learns the alignment between

schema columns and their mentions in a natural language query. In this section, we compare

2https://github.com/jkkummerfeld/text2sql-data
3https://github.com/Kyubyong/Transformer
4https://yale-lily.github.io/spide
5https://github.com/microsoft/rat-sql
6https://huggingface.co/Transformers/

41

different schema-aware strategies where RAT-SQL uses direct schema encoding and schema

linking, while our design uses an external model to focus on schema linking (especially

spatial ambiguity), and feed the schema alignment to the translation model using predefined

symbols. We argue that even though direct schema linking is a more compact design, but

it fails to address challenges posed by spatial domain (e.g., spatial ambiguity). Our design

outperforms all the state-of-the-arts and is specifically designed for spatial domain.

We also compare our work with Transformer [25], and the accuracy is 55.2 percent.

We hypothesize that the contribution of pre-trained embeddings (BERT) is limited since

the major challenge of an NLIDB is schema linkage and alignment rather than contextual

understanding. To further test our hypothesis, we run our dataset with information injection

on Transformer, and the accuracy was largely improved (62.3%). However, Transformer does

not take the consideration that the output space is much smaller than the input space and

most output tokens are directly copied from the input.

Information Injection Performance Our information injection strategy works well

on both Transformer and seq2seq models, which proves that our design is orthogonal to the

model structure and can be adopted by any NLIDB model.

SQL and Prolog Performance Gap We also notice that Prolog accuracy is much

higher than SQL. Existing high-accuracy achievements [16, 61] on translating natural lan-

guage questions to SQL are often limited to simple SQL sketch, shown as the following:

SELECT $AGG $SELECT COL

WHERE $COND COL $OP $COND VAL

(AND $COND COL $OP $COND VAL)∗

Datasets with complex SQL sketches (e.g., JOIN, nested SQL) suffer from relatively

low accuracy. For example, the deep learning state-of-the-art for Spider dataset is only

42

65.6 percent accuracy. Existing deep models can hardly handle complex SQL with nested

queries, GROUP BY, and ORDER BY, etc. A most challenging bottleneck of such trans-

lation is schema linking, i.e., aligning entity referenced in the natural language question to

schema [62].

For logic-intensive queries, it would be very hard for NLI itself to handle heavy schema

linking and alignment for SQL. Our Geoquery dataset is a Spider-style dataset which requires

complex table join. For such queries, Prolog is designed to handle logic-intensive queries with

a lot of reasoning, and it is reasonable to observe that Prolog has a higher accuracy than

SQL.

Jointly Learning for Different Query Languages

As we mentioned earlier, a NLI model should be able to support different query lan-

guages, otherwise the practical value would be diminished. In this section, we test our model

on both SQL and Prolog.

As shown in Figure 3.15, we prefix an indicator (i.e., 〈SQL〉 or 〈Prolog〉) to each natural

language question for training and inference. We up sampling less numbered dataset so that

each query language has equal number of training samples. Even though Prolog dataset

experiences slight performance decrease, we believe it is due to the greater challenges of

modeling SQL queries where the schema linkage and alignments require more complex logical

inferences.

3.2.5 Conclusion

In this work, we propose an NLIDB applied for the spatial domain to convert natural

language queries to multiple types of queries executable by databases. The main contribution

of our work is to support a flexible back-end translation of spatial natural language including

43

Prolog and SQL which are the most commonly used queries in the database. Our exten-

sive experimental analysis demonstrates the advantage of our approach over state-of-the-art

methods.

3.3 Transfer Learning of Spatial Data Query

3.3.1 Transfer Learning and Spatial Query

When a model is developed for one activity, it is then used in another study to help

in the enhancement of learning for the second target task, this is referred to as ”transfer

learning.” Specifically, in this part, we propose a transfer learning technique for addressing

the problem of spatial natural language translation to database queries. We train a base

model from natural language to the Prolog database query dataset, and then we apply it to

another kind of database query dataset, the SPARQL query dataset, to see how it performs.

The models are validated against the Geoquery dataset and are shown to outperform known

methodologies in terms of transferability, as shown by the experiment result.

3.3.2 Experiment Validation

In order to verify the transferability of our model, we trained the SpatialNLI network

on the Prolog dataset and then used the same model on the Sparql dataset to ensure that it

was transferable. The model’s capacity to translate from normal language to Sparql is shown

in the table 3.6. Upon further fine tuning, the model demonstrates the capacity to translate

from natural language to Sparql, with the outcome demonstrating that it outperforms the

Transformer model in this regard.

The reason we chose Prolog and SPARQL for the transfer learning experiment rather

than SQL is that when working with a SQL dataset, there is an assumption that the table

name must first be detected before the translation can be continued in the NLI, which is not

the case when working with Prolog and SPARQL. Seeing as how both Prolog and Sparql

could be put straight into the neural network without any modification, we could utilize the

44

model trained by Prolog to finish the transfer learning job for SPARQL by using the model

learned by Prolog.

45

Dataset Geoquery

Conventional

ZC05 [30] 79.3%
ZC07 [32] 86.1%
UBL [33] 87.9%
DCS+L [38] 87.9%
FUBL [34] 88.6%
ZH15 [37] 88.9%
KCAZ13 [35] 89.0%

Deep Model

ASN [47] 87.1%
SQL2TREE [48] 87.1%
TRANX [22] 88.2%
JL16 [49] 89.3%

Ours

SpatialNLI 90.4%
– Copy Mechanism 88.9 %
– Spatial Comprehension 86.4 %
– Type Feeding 85.0 %
– Data Augmentation 83.2 %
– Information Injection 82.9 %

(a)

Dataset Restaurant

Conventional
PEK03 [11] 97.0%
TM00 [40] 99.6%

Deep Model FKZ18 [46] 100.0%

Ours

SpatialNLI 100.0%
– Spatial Comprehension 96.1 %
– Copy Mechanism 94.1 %
– Data Augmentation 92.2 %
– Type Feeding 70.6 %
– Information Injection 60.8 %

(b)

Table 3.2: Experiment Results

“–” means the removal of each component. The accuracy is measured as denotation match [49] on test
set.

46

Training Geoquery Restaurant
Separately 90.4% 100%
Jointly 90.7% 100%

Table 3.3: Evaluation Of Jointly Training On Denotation Match.

Data Test

Previous

Transformer [25] 55.2 %
RAT-SQL [62] 56.2%
Information Injection

+ Bert Embedding + Seq2Seq 60.5%
+ Transformer 62.3%

Ours

SpatialNLI 66.3%
– Copy Mechanism 63.1 %
– Spatial Comprehension 63.8 %
– Data Augmentation 62.7 %
– Information Injection 40.8 %

Table 3.4: SQL Evaluation.

“–” means the removal of each component. For RAT-SQL methods, we use schema information for fair
comparisons.

Training Prolog SQL
Separately 90.4% 66.3%
Jointly 86.4% 67.7%

Table 3.5: Evaluation Of Jointly Training Of Prolog And SQL.

Data SpatialNLI Transformer
60.36% 51.79%

Table 3.6: Evaluation Of Transfer Learning from Prolog to Sparql.

47

Chapter 4

Deep Real Estate Forecasting

4.1 Deep Real Estate Dynamics Encoding

4.1.1 Introduction

As a result of the global economy’s rapid evolution, the economies of many countries

face a diverse variety of difficulties and opportunities. It is still hard to forecast the future

of the global economy, despite the fact that economic development has received considerable

attention in recent years. Economic development cannot be predicted with high confidence

using static data, dynamic data, or other types of data due to the massive number of elements

involved, some of which are unknown at the moment, and the great number of variables that

must be considered. We seek to visualize and forecast economic growth at a fine-granular

level in this study by using an example from the real estate. We anticipate that our findings

will aid individuals in making data-driven decisions. The objective of this research is to

identify and anticipate real estate investment opportunities that give a higher rate of return

and a greater possibility that the hotspot we recommend will rise significantly in the near

future.

For years, real estate prediction was a manual process. However, as data accumulates

daily, it is impractical for prospective real estate buyers to manually assess the pertinent

information online. Individuals are seeking the assistance of automated analysis supported

by deep learning to accurately evaluate the worth of real estate property. Due of the problems

inherent in integrating static and non-static data from possibly inaccurate sources, economic

prediction research (e.g., real estate) is rudimentary.

48

Figure 4.1: Related features.

Temporal price history, census data, and location features are all important factors in predicting real
estate prices.

In previous works, collecting static data online for the purpose of predicting real estate

values has been explored. Static characteristics, on the other hand, are insufficient to accu-

rately predict the value of real estate property. Prospective buyers frequently rely on price

history to determine the worth of real estate. As illustrated in Figure 4.1, the difficulties

arise from recording temporal dynamics and merging them with static information in order

to completely represent a listing’s real estate potential.

49

To solve this issue, we present a practical approach for encoding temporal price listings

using the Transformer-based model and combining it with other static real estate character-

istics. In brief, we utilize Zillow data on neighborhood listings and supplement it with data

from the United States public census records collected by us.

To demonstrate our idea, we structure our problem as a multi-class categorization indi-

cating which regions see bigger average value increments. We concentrate on region-by-region

aggregated value increments to ensure the dataset’s privacy and anonymity. Additionally, we

normalize data to remove the effect of US dollar inflation. Please keep in mind that we are

forcasting real estate hotspots that may experience value growth, which does not necessarily

indicate whether a location is desirable or not.

Our contributions are described as follows:

• A large-scale real estate-related dataset is created by merging numerical real estate

data from Zillow with a publicly available dataset from the Census Bureau.

• A properly developed Transformer-based forecasting model is proposed that is capable

of capturing changes in real estate values and making investment predictions.

• We incorporate both static and temporal information in order to overcome prediction

challenges.

• The experiment’s results indicate that our proposed model is highly accurate and

outperforms all baseline models.

All of the specifics of our new dataset are provided in Section 4.1.2. Our model ar-

chitecture and specific design are described in depth in Section 4.1.3. In Section 4.1.4, we

conduct an experimental evaluation of our proposed approach and dataset. Section 4.1.5 is

the section that discusses the conclusions .

50

Datasets # records # features
Manjula et al. [87] 21000 7
Limsombunchai [84] 200 40
Lee et al. [83] 116 62
Park et al. [90] 5359 76
Nur et al. [64] 9 16
Goodman et al. [76] 28561 46
Sampathkumar et al. [92] n/a 13
Ours 7437 294

Table 4.1: Comparisons of real estate datasets.

We compare the number of records and features in datasets used in other literature.

4.1.2 Proposed Dataset

Existing Datasets

There are several public datasets that provide information on housing, and these databases

span a wide range of countries and geographic areas. Table 4.2 examines the geographical lo-

cations (State, Metro, and so on) of several real estate datasets in the United States. Spatial

locations are critical in our data gathering since the data integration is based on administra-

tive spatial units such as counties and regions, which are the primary data collecting places.

One of the publicly accessible real estate-related datasets is a real estate value dataset from

Zillow [75], which is one of the datasets that is currently available. With housing data span-

ning from April 1996 to September 2019, it covers 7,436 neighborhoods in 567 cities and

304 counties in 225 metropolitan areas and 50 states throughout the United States. Zillow

Research provides statistics on a weekly and monthly basis. However, one disadvantage of

utilizing the Zillow dataset is that it only contains data that is directly connected to the

worth of a property, such as rental prices, listing prices, and sale prices, and does not include

relevant economic and demographic data, which may be useful.

51

Dataset State/Province Level Metro Level County Level
Zillow Dataset + + +
Census Bureau’s Dataset1 + + +
NBSC Quarterly Housing Dataset2 + + −
FHFA’s House Price Index Dataset3 + + +
Magicbricks’ Dataset4 + + −
NJOP House Price Dataset + + −
NYC Property Sales Dataset5 − − −

Neighborhood Level Building Unit Level
Zillow Dataset + −
Census Bureau’s Dataset − −
NBSC Quarterly Housing Dataset − −
FHFA’s House Price Index Dataset − −
Magicbricks’ Dataset − −
NJOP House Price Dataset − −
NYC Property Sales Dataset + +

1 https://www.census.gov/
2 http://www.stats.gov.cn/english/
3 https://www.fhfa.gov/
4 https://www.magicbricks.com/
5 https://www1.nyc.gov/site/finance/taxes/property-rolling-sales-data.page

Table 4.2: Existing Public Dataset Comparisons.

Existing Public Dataset Comparisons. We compare the scale of data in these public datasets. The scale
of data is categorized to state/province level, metro level, county level, neighborhood level, and building
unit level.

52

In addition, academics often use the housing statistics provided by the Census Bureau.

This dataset, which is based on survey data, contains information on housing in the United

States from 1991 to 2019. It contains a variety of housing-related data, such as size, age,

house prices, and rentals; it also contains economic and demographic data on a county, zip

code, or tract level. As stated in Table 4.4, we have gathered static data related to real

estate price change.

The quarterly home price dataset from the National Bureau of Statistics of China

(NBSC) might be a valid data source for studying the Chinese real estate market, accord-

ing to [95]. This dataset contains historical data on commercial housing sales prices at the

nation, province, and city levels from 1999 to 2020, as well as data from the 2010 Chinese

population census, which includes data from all households in the country. The House Price

Index Dataset from the Federal Housing Finance Agency (FHFA) contains house price in-

dexes that assess changes in single-family home prices based on data from 50 states and

more than 400 cities throughout the United States of America. It contains statistics on

housing indices spanning the period from the mid-1970s until 2020. Monthly Purchase-Only

Indexes, Quarterly Purchase-Only Indexes, etc. are all accessible in their public datasets.

Magicbricks.com contains a comprehensive collection of Indian homes, including residential

and commercial housing statistics for key Indian cities from 2007 to 2020 [87]. Alfiyatin et

al. [64] model and evaluate housing prices in Indonesia using data from Nilai Jual Objek

Pajak (NJOP). This dataset offers time series data on housing in key cities across Indone-

sia from 2014 to 2017. It contains information about the property’s identification number,

location, coordinates, year, building area, and land area, as well as the NJOP land price

(IDR/m2). The NYC Property Sales dataset contains information on every building or unit

(apartment, condo, etc.) sold in New York City within a 12-month period. It comprises

information on the location, address, type of housing, selling price, and date of sale of all

building units sold.

53

In Table 4.1, We compare the amount of records and characteristics in other studies’

datasets to our own. While our dataset may not have the most records, it does contain 294

characteristics, which is 218 more than the [90] that comes in second place.

Dataset Construction

Figure 4.2: An example of a real estate price trend.

We propose a new dataset to capture the dynamics of the real estate market. We

gathered geographically correlated data from a variety of sources, and the data is linked

together based on their physical placements (State, County). The gathered data are based

on geographical correlation, and our suggested dataset comprises a multi-level spatial hier-

archy (State, Metro, County, City, Neighborhood). There are three components of our data

collection:

• Census data. The specifics are shown in the following Table 4.4. Each record indicates

the region’s aggregated average. We utilize factors that are directly connected to the

54

price of housing: Median Value, Total Price Asked, Wage or Salary Income, Total

Household Income, transportation (time) to work.

• Pricing History. The pricing history format is described in Table 4.3, which describes

temporal price history in county level. Real estates in the same county but different

regions share the same census record.

• Location Features. The dataset includes neighborhood location information. The inner

relationships between neighborhoods are examined. For instance, we determined if two

neighborhoods are situated inside the same city/county/metropolitan area/state.

RegionID 274772
RegionName Northeast Dallas

City Dallas
State TX

CountyName Dallas County
SizeRank 1

Time Stamps Average Price
April, 1996 135800
May, 1996 135300
June, 1996 136900

... ...
September, 2019 325700

Table 4.3: Temporal data format.

It has data on the region name, city, state, county name, size rank, time stamps, and average price.

The Figure 4.2 depicts the average trend in East Village (New York, NY) real es-

tate prices from 1996 to 2019. The real estate market is heavily associated with economic

conditions and exhibits year-to-year fluctuations. This observation motivates us to encrypt

time-series price histories in order to capture the full range of historical real estate dynamics.

55

ID Data Source
1 Median Gross Rent (monthly)
2 Total Household Income (yearly)
3 Total population
4 Transportation to Work
5 Wage or Salary Income
6 Health Insurance Coverage
7 Employment Status
8 Bedrooms
9 Total Contract Rent
10 Total Rent Asked
11 Total Gross Rent
12 Aggregate Gross Rent
13 Median Value
14 Total Price Asked
15 Selected Monthly Owner Costs
16 Housing Cost (monthly)

Table 4.4: Census Data Examples.

Data Collection

As depicted in Figure 4.3, we gather the dataset in five steps:

1. Price History Collection: We gather region-wise aggregated price history. Each record

has a monthly price history spanning the years 1996 to 2019.

2. Census Data Collection: The county-wise census data is obtained from the public data

warehouse. Because the county is the most fine-grained granularity accessible from the

public data repository, information is gathered for each county.

3. Location Data Collection: The location data for each real estate, including state, city,

metropolitan area, county, neighborhood information, is collected.

56

Figure 4.3: Data collection process.

4. Record Matching: Because a county is divided into areas, numerous pricing history

records are associated with the same census data. We utilize the same census data from

each county for all areas within that county.

5. Data Normalization: It is necessary to take inflation into account, and the price data

is normalized.

6. Jointly Learning: In our deep learning model, we learn both temporal and census data

concurrently.

57

Figure 4.4: Design flow of the Transformer-based prediction model.

We first employ a Transformer layer to encode the information of the time-series real estate price data,
then concatenate it with the local features. By combining the time series data with other features, a
four-layer MLP model is used for the final prediction.

4.1.3 Model Design

This section explains our model architecture and the advantages of our approach. Our

data is classified into two categories:

• Temporal price data xt. Modeling real estate dynamics necessitates consideration of

prior price trends. The temporal price history is defined as xh with N timestamps,

xt = {x1
t , x

2
t , ..., x

N
t }

58

xit i∈{1..N} represents the average price for the i-th timestamp.

• Census data xc. As shown in Table 4.4, by using census data, we can gain insight into

the elements that influence the real-estate market.

We normalized the temporal data we collected in the data preprocessing step by applying

the US inflation rate from 1996 to 2018 to the temporal data. We then used the normalized

monthly temporal data for 2017 and 2018 to generate the median value for both years and

then further generated the hotspot index as the prediction model’s target value.

Figure 4.4 illustrates our proposed architecture. We begin by encoding time series

price data with a Transformer encoder and then combining it with real estate-related census

information. To forecast the future hotspot index, the combined latent encoding is fed into

a multi-layer perceptron.

Model Architecture

I. Preliminaries

The structure of our Transformer-based prediction model is shown in Figure 4.5. It

first consists of an Encoder and then Multi-layer Perceptron (MLP) layers. The major

component in the Transformer is the Multi-head self-attention.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V

where the K is the key matrix and V is the value matrix. Q is the query matrix that will

map against a set of keys.

II. Transformer-based Encoding and Prediction

Predicting the fluctuations in real estate values is accomplished through the use of a

precisely constructed forecasting model based on Transformer. We were able to fulfill the

prediction challenge by using not only time-series data on real estate prices, but also data on

59

the features of the properties. Local factors such as the property’s location, gross rental rev-

enue, household income, transportation, and health insurance, etc. are all considered while

determining the instant real estate price in a given area. These features are all considered to

have a great impact on the real estate price. We use this local information to help prediction

in our model.

Price history, as can be seen in Figure 4.2, is an important indicator for predicting future

prices. Such temporal data, on the other hand, is insufficient to capture the complete picture

and must be supplemented with census information. Examples include two regions A and B,

which have both experienced an increase in price in the past, while A has a comparatively

high Median Gross Rent (as shown in the Table 4.4) and B has a relatively low Median Gross

Rent. It is most likely that A will exhibit a stable price change whereas B may experience

a value decrease in this situation.

We make the prediction using a Transformer-based model. In recent years, it has been

demonstrated that a Transformer model [25] works effectively in time series data. In our

approach, we first use a Transformer layer to encode the information contained in the time-

series real estate price data. This Transformer layer could assist in capturing the change rule

of data as it changes over time. Then, after embedding the time series data into the model,

we concatenate it with the local characteristics (e.g., local gross renting, household income,

etc.). Precision prediction will be aided by these region characteristics. A four-layer MLP

model is used to make the final prediction after merging the time series data with additional

features.

III. Jointly Learning Model

We propose concatenating temporal and non-temporal data in the same latent space

and combining the latent vectors for the future prediction job. Multi-layer perceptrons are

used to encode the data census features xc. Formally, we define the l-th layer network as

h(l)
c = ReLu(W (l)

c h(l−1)
c + b(l)

c)

60

where

h(0)
c = xc

Assuming we use Lc layers in total, and we use the final layer to summarize census

information, which is defined as

hc = h(Lc)
c

and hc ∈ Rdc .

Temporal price history is encoded by using a Transformer encoder [25], and ht ∈ Rdt .

Since xt and xc are encoded as ht and hc, the merged hidden state is defined as hm

hm = [ht,hc]

To further process the merged data, we employ another multi-layer perceptron for the

prediction task. Similarly, we define the l-th layer in the network as (assuming Lm layers in

total)

h(l)
m = ReLu(W (l)

m h(l−1)
m + b(l)

m)

where h
(l−1)
m is the input of the (l-1)-th layer in the i -th position. W

(l)
m and b

(l)
m are model

parameters.

We use the output from the last layer for prediction

ȳ = sigmoid(h(Lm)
m)

Loss is measured with the Mean Squared Error (MSE)

loss = MSEloss(ȳ, y)

MSEloss =
1

n

n∑
i=1

(y − ȳ)2

where n is the number of items; y is the actual value and ȳ is the predicted value.

61

4.1.4 Experimental Validation

The train-to-test split ratio in our dataset is 7:3.

Ground Truth

The ground truth for model training and testing is set by using neighborhood pricing

history. The true label in the training data is defined as 2018 price minus 2017 price. The

price history before 2017 is used as training data.

Data Normalization

Inflation has a long-run effect on house prices as well as the pricing of non-housing

products and services [66]. As a result, inflation is considered, as property values often

increase in lockstep with inflation over time. The adjusted value, which takes inflation into

account, is supposed to assist disclose the underlying value of residential real estate.

In order to capture the pricing trends across a 23-year period, we normalize the listing

prices for each year based on the fluctuation of the U.S. dollar against the euro and other

major currencies. The real house listing price will be determined using historical data on

the inflation rate1 in the United States . The temporal price history is defined as xh with N

timestamps,

xt = {x1
t , x

2
t , ..., x

N
t }

The U.S. inflation rate historic data is defined as Ih with N timestamps,

It = {I1
t , I

2
t , ..., I

N
t }

xactual = {x1
t ∗ I1

h, x
2
t ∗ I1

h, ..., x
N
t ∗ INh }

1https://www.macrotrends.net/countries/USA/united-states/inflation-rate-cpi

62

Evaluation Metrics

In order to quantify the performance of our model, we use the metrics of Accuracy,

Recall, Precision, F1-score, and Roc for further evaluation. Let tp be the number of true

positives, fp be the number of false positives, fn be the number of false negatives, tn be the

number of true negatives.

Accuracy measures how many observations, both positive and negative, were correctly

classified. It is simply a ratio of correctly predicted observation to the total observations.

acc =
tp + tn

tp + fp + tn + fn

Precision, also called positive predictive value, is the number of true positives divided by

the total number of elements labelled as belonging to the positive class.

precision =
tp

tp + fp

Recall, also known as sensitivity, is defined as the ratio of true positives and total number

of elements that actually belong to the positive class. It measures how many of the true

positives were found.

recall =
tp

tp + fn

F1-score is the harmonic mean of the precision and recall. It balances both the concerns of

Precision and Recall in one number.

F1 = 2 ∗ precision ∗ recall
precision+ recall

ROC is the receiver operating characteristic curve [98], which is a graphical plot that illus-

trates the performance of a binary classifier system. It is created by plotting the fraction of

63

L Precision Recall F1-score

2 0.88 0.98 0.93
3 0.92 0.94 0.93
4 0.94 0.88 0.91
5 0.92 0.86 0.89

(a) class 0

L Precision Recall F1-score

2 0.98 0.90 0.94
3 0.80 0.89 0.84
4 0.73 0.81 0.77
5 0.66 0.77 0.71

(b) class 1

L Precision Recall F1-score

2 n/a n/a n/a
3 0.97 0.88 0.93
4 0.80 0.69 0.74
5 0.58 0.72 0.64

(c) class 2

L Precision Recall F1-score

2 n/a n/a n/a
3 n/a n/a n/a
4 0.87 0.95 0.91
5 0.78 0.54 0.64

(d) class 3

L Precision Recall F1-score

2 n/a n/a n/a
3 n/a n/a n/a
4 n/a n/a n/a
5 0.88 0.88 0.88

(e) class 4

L Accuracy ROC

2 93.5% 0.941
3 90.1% n/a
4 83% n/a
5 74.6% n/a

(f) Results with all classes

Table 4.5: Hyper-parameter L evaluation.

The accuracy decreases as L increases. It indicates that when having more classes, it would be more
difficult to make accurate predictions.

TPR (True Positive Rate) vs. the fraction of FPR (False Positive Rate).

TPR =
tp

tp + fn

FPR =
fp

fp + tn

Hotspot Prediction

Study Area

Figure 4.6 presents the location of the study area in this study. It consists of 7,436 neigh-

borhoods, 567 cities, 304 counties, 225 metros, and 50 states across the U.S.

64

Predictions of hotspots and their increase in values over time are the primary focus of

our problem settings, as previously noted. Price comparisons are not what we’re interested

in. For instance, If location A has an average value of 100, 000 and location B has an average

value of 10, 000, A will rise by 1, 000(1%) and B will rise by 500(5%). Because of the greater

increment percentile, we conclude B is a hotspot rather than A. Figure 4.7 displays the U.S.

hotspots for the year 2018.

The purpose of hotspot prediction is to identify areas that will see a significant increase

in the value of the houses in the near future. Early detection and prediction of hotspot

locations is extremely significant since it can assist property buyers and investors in iden-

tifying properties with high potential value. Figure 4.7 illustrates the hotspots’ position.

For the purpose of establishing the ground truth for hotspot prediction, we further define

the increment of 2018 minus 2017 of greater than 7.5 percent as high (2), greater than 4.5

percent but less than 7.5 percent as medium (1), and less than 4.5 percent as low (0).

We denote the increase rate of a region as

z =
P2 − P1

P1

where P2 is 2018 average price, P1 is 2017 average price. We formalize the hotspot prediction

problem as a multi-category classification with L classes. We partition the increase rate

range to L intervals

(−∞, µ1), [µ1, µ2), ..., [µL−1,∞)

65

Each label is defined as

z ≥ µL−1 label = L− 1

...

µ1 ≤ z < µ2 label = 1

z < µ1 label = 0

Note that the intervals are partitioned with equal distribution. Taking L = 3 as an example

z ≥ µ2 label = 2

µ1 ≤ z < µ2 label = 1

z < µ1 label = 0

µ2 = 7.5%, µ1 = 4.5% in our experimental setting.

In this thesis, the term hotpot refers to a location with a greater investment potential

and a greater likelihood of future value increasement. Multi-class classification is used in the

hotspot prediction challenge, and the higher the score (label), the greater the increment.

Hyper-parameter Evaluation

In this section, we use a different number of classes L to conduct evaluation tasks.

We test L ∈ {2, 3, 4, 5}. The number of hotspot locations will be reduced when more

classes are used, and the prediction results will reveal a more detailed classification for

neighborhoods with varying house value increment rates. As shown in Table 4.5, as L

increases, the prediction result decreases. This suggests that forecasting accurately becomes

more difficult as the number of classes increases. As an example, when L = 2, we have the

highest accuracy with our proposed model, 93.5 percent, and when L = 5, we have the lowest

accuracy, 74.6 percent. Additionally, when 0 < L ≤ 3, the proposed model has achieved high

66

precision, recall, and F1-score in all classes. However, when L > 3, the proposed model has

a relatively poor performance in some of the classes. For example, when L = 4, the proposed

model has 0.73 in precision when class is 2 and has 0.69 in recall when class is 3. When L =

4, the proposed model has 0.66 in precision when predicting class 1, 0.58 in precision when

predicting class 2, and has 0.54 in recall when predicting class 3.

Baselines

We use the following baseline methods:

• Logistic Regression (LR) [89]

• Long Short Term Memory (LSTM) [7]

• Random Forest (RF) [80]

• Decision Tree (DT) [85]

• Support Vector Machine (SVM) [68]

• Multilayer Perceptron (MLP) [65]

The experimental results are shown in Tables 4.6, 4.7, 4.8 and 4.9.

Performance Analysis

The comparisons in Tables 4.6 and 4.7 indicate that the deep models outperform tra-

ditional machine learning models when L = 2 or L = 3. LR outperforms all other classic

machine learning methods. It predicts hotspots with a 90 percent accuracy when L = 2,

and with a 78.3 percent accuracy when L = 3. The proposed Transformer-based model

has achieved 93.5 percent accuracy when L = 2 and 90.1 percent accuracy when L = 3,

outperforming all of our baseline models. When L = 2, the model that has the second-best

performance is LR, which is 3.5 percent worse than the result of the proposed model. When

67

Model/Precision class0 class1

RF 0.79 0.84
SVM 0.77 0.78
DT 0.73 0.77
LR 0.91 0.90

MLP 0.82 0.94
LSTM 0.79 0.96
Ours 0.88 0.98

(a) Presicion

Model/Recall class0 class1

RF 0.84 0.79
SVM 0.76 0.78
DT 0.77 0.73
LR 0.90 0.91

MLP 0.93 0.84
LSTM 0.96 0.79
Ours 0.98 0.90

(b) Recall

Model/F1-score class0 class1

RF 0.81 0.81
SVM 0.77 0.78
DT 0.75 0.75
LR 0.91 0.90

MLP 0.87 0.89
LSTM 0.86 0.87
Ours 0.93 0.94

(c) F1-score

Model Accuracy Roc

RF 0.81 0.813
SVM 0.772 0.772
DT 0.765 0.754
LR 0.90 0.904

MLP 0.878 0.879
LSTM 0.866 0.874
Ours 0.935 0.941

(d) Accuracy and Roc

Table 4.6: Model performance comparisons (L=2). The proposed Transformer-based model
has achieved 93.5% accuracy.

68

Model/Precision class0 class1 class2

RF 0.68 0.54 0.76
SVM 0.67 0.48 0.66
DT 0.59 0.47 0.66
LR 0.82 0.64 0.81

MLP 0.72 0.66 0.94
LSTM 0.76 0.74 0.92
Ours 0.92 0.80 0.97

(a) Presicion

Model/Recall class0 class1 class2

RF 0.73 0.51 0.75
SVM 0.59 0.49 0.72
DT 0.58 0.48 0.66
LR 0.80 0.63 0.82

MLP 0.96 0.58 0.80
LSTM 0.88 0.65 0.90
Ours 0.94 0.89 0.88

(b) Recall

Model/F1-score class0 class1 class2

RF 0.70 0.52 0.76
SVM 0.62 0.49 0.69
DT 0.59 0.48 0.66
LR 0.81 0.64 0.81

MLP 0.82 0.62 0.87
LSTM 0.82 0.69 0.91
Ours 0.93 0.84 0.93

(c) F1-score

Model Accuracy

RF 0.668
SVM 0.60
DT 0.579
LR 0.76

MLP 0.783
LSTM 0.821
Ours 0.901

(d) Accuracy

Table 4.7: Model performances comparisons (L=3). The proposed Transformer-based model
has achieved 90.1% accuracy.

69

Model/Precision class0 class1 class2 class3

RF 0.71 0.49 0.50 0.69
SVM 0.59 0.38 0.43 0.58
DT 0.69 0.43 0.41 0.61
LR 0.66 0.44 0.46 0.69

MLP 0.72 0.42 0.37 0.74
LSTM 0.61 0.50 0.59 0.74
Ours 0.94 0.73 0.80 0.87

(a) Presicion

Model/Recall class0 class1 class2 class3

RF 0.75 0.51 0.48 0.66
SVM 0.54 0.40 0.41 0.63
DT 0.69 0.42 0.43 0.59
LR 0.77 0.35 0.52 0.64

MLP 0.88 0.69 0.05 0.82
LSTM 0.84 0.48 0.42 0.75
Ours 0.88 0.81 0.69 0.95

(b) Recall

Model/F1-score class0 class1 class2 class3

RF 0.73 0.50 0.49 0.68
SVM 0.56 0.39 0.42 0.60
DT 0.69 0.42 0.42 0.60
LR 0.71 0.39 0.49 0.66

MLP 0.79 0.52 0.09 0.78
LSTM 0.71 0.49 0.49 0.74
Ours 0.91 0.77 0.74 0.91

(c) F1-score

Model Accuracy

RF 0.597
SVM 0.49
DT 0.532
LR 0.57

MLP 0.595
LSTM 0.614
Ours 0.83

(d) Accuracy

Table 4.8: Model performances comparisons (L=4). Our proposed model outperforms all
the baseline models on the accuracy, precision, recall, and f1-score. It has 83% accuracy.

70

L = 3 or L = 4, the second-best model is LSTM, which has an accuracy of 82.1 percent, 8

percent less than that of our proposed Transformer based model.

Additionally, when L = 3, all of our baseline models have relatively higher precision and

recall for predicting high (2) and low (0) areas, but a lower precision and recall in predicting

medium (1) areas. The baseline models such as RF, SVM, LR, MLP, have a low precision

and recall in predicting medium (1) increase area; LSTM has higher precision, but low recall

and F1-score in predicting medium (1) increase area.

As illustrated in Figures 4.9 and 4.10, our proposed Transformer-based model produces

balanced prediction outcomes for all classes; for example, when L = 3, our model has a

precision of 0.80 and a recall of 0.86 for predicting areas with the medium increase rate.

Figure 4.8 shows the ROC curve of the model performance when L = 2. An AUC value

of 0.5 indicates no discrimination, 0.7 to 0.8 indicate acceptable discrimination, 0.8 to 0.9

is considered excellent discrimination, and greater than 0.9 is considered outstanding [86].

When L = 4, In Table 4.8, our proposed model outperforms all the baseline models on

accuracy, precision, recall, and F1-score. It has an accuracy of 83 percent, which is 21.6

percent higher than the accuracy of the second-best model, LSTM.

Ablation Analysis

This section evaluates the effectiveness of eliminating census data. These tests aim to

assess the influence of temporal and census data. The baseline models (RF, SVM, DT,

LR) and deep learning models (MLP, LSTM, Transformer) are run on both the temporal

data only dataset and the concatenated dataset (temporal and census data). The results

are shown in Table 4.9. An intriguing finding is that when only temporal data is used,

baseline models such as RF, DT, and MLP have shown an improvement in accuracy. For

example, RF achieves a 73.4 percent accuracy, which is 6.6 percent higher than executing

on a concatenated dataset containing temporal and census data. The prediction accuracy of

models such as DT, SVM, LR, and MLP is lower than that of concatenated datasets. One

71

Model/Precision class0 class1 class2

RF 0.77 0.59 0.81
SVM 0.66 0.48 0.65
DT 0.73 0.45 0.78
LR 0.75 0.58 0.75

MLP 0.62 0.51 0.97
LSTM 0.84 0.75 0.92
Ours 0.92 0.76 0.93

(a) Presicion

Model/Recall class0 class1 class2

RF 0.82 0.53 0.84
SVM 0.57 0.49 0.72
DT 0.73 0.46 0.76
LR 0.81 0.49 0.80

MLP 0.99 0.39 0.72
LSTM 0.93 0.73 0.87
Ours 0.83 0.84 0.92

(b) Recall

Model/F1-score class0 class1 class2

RF 0.79 0.56 0.82
SVM 0.61 0.48 0.68
DT 0.73 0.46 0.77
LR 0.78 0.53 0.78

MLP 0.76 0.44 0.82
LSTM 0.88 0.74 0.89
Ours 0.87 0.80 0.92

(c) F1-score

Model Accuracy

RF 0.734
SVM 0.598
DT 0.66
LR 0.71

MLP 0.70
LSTM 0.844
Ours 0.868

(d) Accuracy

Table 4.9: Model performances comparisons temporal data only (L=3).

Our proposed model, DT, SVM, LR, and MLP have lower prediction accuracy than using the
concatenated dataset, while RF, DT, and MLP have improved their accuracy.

72

example is that, LR has a 71 percent accuracy with only temporal data, which is 5 percent

less than using the concatenated dataset.

4.1.5 Conclusion

Modeling the real estate market only on the basis of temporal price is exceedingly

challenging. A new dataset that incorporates both price history and census data is proposed

in this work to better represent real estate dynamics. Also, to encode temporal data, we

propose employing a sequential encoder and combining it with static census features. It has

been demonstrated experimentally that our technique outperforms the baseline models for

price prediction tasks, and the Transformer model structure has been shown to be the most

appropriate model structure for temporal data encoding in our problem setting.

4.2 Deep Real Estate Encoding with Location Features

4.2.1 Prediction Model with Location Features

Real estate prices can be affected by multiple features, not limited to temporal features.

For example, spatial location play an important role in measuring the local real estate value.

In this section, based on the model of the Figure 4.4, the relationship between each real estate

locations and the corresponding location features are added and encoded into the model to

help the prediction. Here we model the real estate locations with a location graph and do

the encoding work based on the the graph embedding techniques [99, 100, 101, 102, 103].

As the Figure 4.11 shows, same as the design in Figure 4.4, the Transformer is used to

encode the time-series real estate input for further prediction. To better help the forecast,

instead of concatenating the features directly with the Transformer output, here, a Graph

Convolutional Network (GCN) [102] is carefully designed and added. The GCN is used to

encode the real estate location information and its corresponding location features. We build

a graph based on the location information and use the GCN to encode it. Each distinct real

estate location is considered as a node in the graph, and the edges in the graph are built if

73

two real estates are in the same location. If two real estates are in the same state, the graph

edge between these two nodes is set to one. If two real estates are in the same metro, the

edge is set to two. Three is for the same city and four is for the same county. The edge

will be 0 if there is no relationship between these two real estates locations. Also, there

are location features helping the GCN to encode the location information. After encoding,

the output of the GCN is then merged into the latent output vector of the Transformer for

further prediction. In the last step, an MLP network is used to complete the prediction of

the price of the input.

4.2.2 Experimental Validation

Same as the section 4.1.4, Accuracy, Recall, Precision, F1-score, and Roc are used as

the criteria of the performance. We evaluate the model using the number of classes L =

2, compared with the results before. Also, We use the following as the baseline methods:

Logistic Regression (LR), Long Short Term Memory (LSTM), Random Forest (RF), Decision

Tree (DT), Support Vector Machine (SVM), Multilayer Perceptron (MLP) and our previous

Transformer-based model.

As shown in Table 4.10, with adding the location features encoded by GCN, our deep

outperforms the traditional machine learning models and our previous Transformer-based

model. The previous proposed Transformer-based model has achieved 93.5 percent accuracy

when L = 2 and it outperforms all of our baseline models. Our new model with the location

features beding encoded outperforms the previous Transformer-based model. The model has

the performance of 95.4 percent when L = 2, which is 1.9 percent higher than the previous

result.

Another interesting finding is that, compared with the previous Transformer-based

model, our new model could help to balance the prediction result. As the Table 4.10 il-

lustrates, the Precision for class 0 was 0.88 before, which was much lower than the Precision

of class 1, which was 0.98. But for our new model with adding the location features helping

74

the prediction, The Precision of class 0 increased to 0.93. The difference between the two

classes decreases in the new model. Same in the Recall, The difference between two classes

changed from 0.8 to 0.3, which shows the prediction result becomes more balanced, with

using the GCN to encode the location relationship and features of the real estate.

75

Figure 4.5: Transformer Architecture.

76

Figure 4.6: Study Area. It consists of 7,436 neighborhoods, 567 cities, 304 counties, 225
metros, and 50 states across the U.S.

Figure 4.7: Hotspot Areas. It shows the ground truth of the hotspot region in the U.S in
2018.

77

Figure 4.8: ROC curve (L=2). An AUC score of 0.5 suggests no discrimination, and 0.7 to
0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is considered
outstanding [86].

78

Figure 4.9: Normalized Confusion Matrix (L=2). It shows that our model has a high true
positive and true negative rates over both classes, and a low false positive and false negative
rates for both classes.

79

Figure 4.10: Normalized Confusion Matrix (L=3). It shows that our model has a high
positive rate over all three classes and a low negative rate for all three classes.

80

Figure 4.11: Design flow of the Transformer-GCN-based prediction model.

A Transformer is employed to encode the information of the time-series real estate price data.
A Graph Convolutional Network(GCN) is employed to encode the location information and location features.
Then concatenate the results from GCN and Transformer. By combining the time series data with other features,
a MLP model is used for the final prediction.

81

Model/Precision class0 class1

RF 0.79 0.84
SVM 0.77 0.78
DT 0.73 0.77
LR 0.91 0.90

MLP 0.82 0.94
LSTM 0.79 0.96
Ours 0.88 0.98

Ours(+GCN) 0.93 0.97

(a) Presicion

Model/Recall class0 class1

RF 0.84 0.79
SVM 0.76 0.78
DT 0.77 0.73
LR 0.90 0.91

MLP 0.93 0.84
LSTM 0.96 0.79
Ours 0.98 0.90

Ours(+GCN) 0.97 0.94

(b) Recall

Model/F1-score class0 class1

RF 0.81 0.81
SVM 0.77 0.78
DT 0.75 0.75
LR 0.91 0.90

MLP 0.87 0.89
LSTM 0.86 0.87
Ours 0.93 0.94

Ours(+GCN) 0.95 0.96

(c) F1-score

Model Accuracy Roc

RF 0.81 0.813
SVM 0.772 0.772
DT 0.765 0.754
LR 0.90 0.904

MLP 0.878 0.879
LSTM 0.866 0.874
Ours 0.935 0.941

Ours(+GCN) 0.954 0.955

(d) Accuracy and Roc

Table 4.10: Model performance. The proposed Transformer-GCN-based model has achieved
95.4% accuracy.

82

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we focus on the deep time series model and its application. We proposed

models for the translation of the natural language sequences, and the prediction of the real

estate data. The experiment results show our proposed model could achieve high accuracy

and outperform all baseline models.

In the first part, we propose an NLIDB applied for the spatial domain to convert natural

language queries to structured queries executable by databases. The main contribution of

our work is to not only recognize the meaning of the ambiguous spatial phrases based on

contextual interpretation but also support a flexible back-end translation to database queries

under the deep learning model. Also, a transfer learning approach is proposed to address the

problem of translation from spatial language to database queries. Our extensive experimental

analysis demonstrates the advantage of our approach over state-of-the-art methods.

In the second part, we focus on the deep learning methods for processing the real

estate-related dataset. We propose a large-scale real estate-related dataset for the value

prediction task consists of numerical real estate price history data from public dataset, with

both static and dynamic features. Also, a carefully designed Transformer-based forecasting

model is proposed to encode the temporal data. We experimentally validate that our strategy

performs well for price prediction tasks and the Transformer is proven to be the most suitable

model structure for temporal data encoding in our problem setting.

83

5.2 Future Work

• Continue to develop NLP models and transfer learning approaches in order to improve

the accuracy of natural language to database query translation, e specially for the

translation of natural language to complicated database queries involving joined tables.

• Continue to develop the deep time series model and related machine learning tech-

niques, and expand its application to a broader range of issues.

84

Bibliography

[1] Rosenblatt, Frank. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms. Cornell Aeronautical Lab Inc Buffalo NY, 1961.

[2] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. Learning internal
representations by error propagation. California Univ San Diego La Jolla Inst for Cog-
nitive Science, 1985.

[3] Androutsopoulos, Ion, Graeme D. Ritchie, and Peter Thanisch. ”Natural language in-
terfaces to databases-an introduction.” arXiv preprint cmp-lg/9503016 (1995).

[4] Brad, Florin, Radu Iacob, Ionel Hosu, and Traian Rebedea. ”Dataset for a neural natural
language interface for databases (NNLIDB).” arXiv preprint arXiv:1707.03172 (2017).

[5] Utama, Prasetya, Nathaniel Weir, Fuat Basik, Carsten Binnig, Ugur Çetintemel, Ben-
jamin Hättasch, Amir Ilkhechi, Shekar Ramaswamy, and Arif Usta. ”An end-to-end neu-
ral natural language interface for databases.” arXiv preprint arXiv:1804.00401 (2018).

[6] Li, Fei, and Hosagrahar V. Jagadish. ”NaLIR: an interactive natural language interface
for querying relational databases.” In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data, pp. 709-712. 2014.

[7] Hochreiter, Sepp, and Jürgen Schmidhuber. ”Long short-term memory.” Neural com-
putation 9, no. 8 (1997): 1735-1780.

[8] Gers, Felix A., Jürgen Schmidhuber, and Fred Cummins. ”Learning to forget: Continual
prediction with LSTM.” Neural computation 12, no. 10 (2000): 2451-2471.

[9] Cho, Kyunghyun, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
”On the properties of neural machine translation: Encoder-decoder approaches.” arXiv
preprint arXiv:1409.1259 (2014).

[10] Li, Yunyao, Huahai Yang, and H. V. Jagadish. ”Nalix: an interactive natural language
interface for querying xml.” In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pp. 900-902. 2005.

[11] Popescu, Ana-Maria, Oren Etzioni, and Henry Kautz. ”Towards a theory of natural
language interfaces to databases.” In Proceedings of the 8th international conference on
Intelligent user interfaces, pp. 149-157. 2003.

85

[12] Saha, Diptikalyan, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq Minhas,
Ashish R. Mittal, and Fatma Özcan. ”ATHENA: an ontology-driven system for natural
language querying over relational data stores.” Proceedings of the VLDB Endowment
9, no. 12 (2016): 1209-1220.

[13] Iyer, Srinivasan, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. ”Learning a neural semantic parser from user feedback.” arXiv preprint
arXiv:1704.08760 (2017).

[14] Wang, Wenlu, Yingtao Tian, Hongyu Xiong, Haixun Wang, and Wei-Shinn Ku.
”A transfer-learnable natural language interface for databases.” arXiv preprint
arXiv:1809.02649 (2018).

[15] Wang, Wenlu. ”A cross-domain natural language interface to databases using adversarial
text method.” Database 1 (2019): q2.

[16] Wang, Wenlu, Yingtao Tian, Haixun Wang, and Wei-Shinn Ku. ”A Natural Language
Interface for Database: Achieving Transfer-learnability Using Adversarial Method for
Question Understanding.” In 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE), pp. 97-108. IEEE, 2020.

[17] Wang, Wenlu, Ji Zhang, M-T. Sun, and W-S. Ku. ”Efficient parallel spatial skyline
evaluation using mapreduce.” In Proceedings of the 20th international conference on
extending database technology. 2017.

[18] Wang, Wenlu, Ji Zhang, Min-Te Sun, and Wei-Shinn Ku. ”A scalable spatial skyline
evaluation system utilizing parallel independent region groups.” The VLDB Journal 28,
no. 1 (2019): 73-98.

[19] Wang, Wenlu, and Wei-Shinn Ku. ”Dynamic indoor navigation with bayesian filters.”
SIGSPATIAL Special 8, no. 3 (2017): 9-10.

[20] Wang, Wenlu, and Wei-Shinn Ku. ”Recommendation-based smart indoor navigation.”
In Proceedings of the Second International Conference on Internet-of-Things Design
and Implementation, pp. 311-312. 2017.

[21] Zlatev, Jordan. ”Spatial semantics.” The Oxford handbook of cognitive linguistics
(2007): 318-350.

[22] Yin, Pengcheng, and Graham Neubig. ”TRANX: A transition-based neural abstract syn-
tax parser for semantic parsing and code generation.” arXiv preprint arXiv:1810.02720
(2018).

[23] Seo, Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. ”Bidi-
rectional attention flow for machine comprehension.” arXiv preprint arXiv:1611.01603
(2016).

86

[24] Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. ”Language models are unsupervised multitask learners.” OpenAI blog 1,
no. 8 (2019): 9.

[25] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. ”Attention is all you need.” arXiv preprint
arXiv:1706.03762 (2017).

[26] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. ”Bert: Pre-
training of deep bidirectional transformers for language understanding.” arXiv preprint
arXiv:1810.04805 (2018).

[27] Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. ”Improving
language understanding by generative pre-training (2018).” (2018).

[28] Wang, Shuohang, and Jing Jiang. ”Machine comprehension using match-lstm and an-
swer pointer.” arXiv preprint arXiv:1608.07905 (2016).

[29] Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan et al. ”Language models are few-shot learners.” arXiv
preprint arXiv:2005.14165 (2020).

[30] Zettlemoyer, Luke S., and Michael Collins. ”Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars.” arXiv preprint
arXiv:1207.1420 (2012).

[31] Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. ”Deep contextualized word representations.” arXiv
preprint arXiv:1802.05365 (2018).

[32] Zettlemoyer, Luke, and Michael Collins. ”Online learning of relaxed CCG grammars
for parsing to logical form.” In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pp. 678-687. 2007.

[33] Kwiatkowksi, Tom, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. ”Induc-
ing probabilistic CCG grammars from logical form with higher-order unification.” In
Proceedings of the 2010 conference on empirical methods in natural language process-
ing, pp. 1223-1233. 2010.

[34] Kwiatkowski, Tom, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. ”Lexical
generalization in CCG grammar induction for semantic parsing.” In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, pp. 1512-1523.
2011.

[35] Kwiatkowski, Tom, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. ”Scaling semantic
parsers with on-the-fly ontology matching.” In Proceedings of the 2013 conference on
empirical methods in natural language processing, pp. 1545-1556. 2013.

87

[36] Wang, Adrienne, Tom Kwiatkowski, and Luke Zettlemoyer. ”Morpho-syntactic lexical
generalization for CCG semantic parsing.” In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1284-1295. 2014.

[37] Zhao, Kai, and Liang Huang. ”Type-driven incremental semantic parsing with polymor-
phism.” arXiv preprint arXiv:1411.5379 (2014).

[38] Liang, Percy, Michael I. Jordan, and Dan Klein. ”Learning dependency-based compo-
sitional semantics.” Computational Linguistics 39, no. 2 (2013): 389-446.

[39] Zelle, John M., and Raymond J. Mooney. ”Learning to parse database queries using
inductive logic programming.” In Proceedings of the national conference on artificial
intelligence, pp. 1050-1055. 1996.

[40] Tang, Lappoon R., and Raymond Mooney. ”Automated construction of database in-
terfaces: Intergrating statistical and relational learning for semantic parsing.” In 2000
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora, pp. 133-141. 2000.

[41] Tang, Lappoon R., and Raymond J. Mooney. ”Using multiple clause constructors in
inductive logic programming for semantic parsing.” In European Conference on Machine
Learning, pp. 466-477. Springer, Berlin, Heidelberg, 2001.

[42] Ge, Ruifang, and Raymond Mooney. ”A statistical semantic parser that integrates syn-
tax and semantics.” In Proceedings of the Ninth Conference on Computational Natural
Language Learning (CoNLL-2005), pp. 9-16. 2005.

[43] Kalchbrenner, Nal, and Phil Blunsom. ”Recurrent continuous translation models.” In
Proceedings of the 2013 conference on empirical methods in natural language processing,
pp. 1700-1709. 2013.

[44] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. ”Sequence to sequence learning with
neural networks.” arXiv preprint arXiv:1409.3215 (2014).

[45] Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. ”Learning phrase representa-
tions using RNN encoder-decoder for statistical machine translation.” arXiv preprint
arXiv:1406.1078 (2014).

[46] Finegan-Dollak, Catherine, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan,
Sesh Sadasivam, Rui Zhang, and Dragomir Radev. ”Improving text-to-sql evaluation
methodology.” arXiv preprint arXiv:1806.09029 (2018).

[47] Rabinovich, Maxim, Mitchell Stern, and Dan Klein. ”Abstract syntax networks for code
generation and semantic parsing.” arXiv preprint arXiv:1704.07535 (2017).

[48] Dong, Li, and Mirella Lapata. ”Language to logical form with neural attention.” arXiv
preprint arXiv:1601.01280 (2016).

88

[49] Jia, Robin, and Percy Liang. ”Data recombination for neural semantic parsing.” arXiv
preprint arXiv:1606.03622 (2016).

[50] Fan, Xing, Emilio Monti, Lambert Mathias, and Markus Dreyer. ”Transfer learning for
neural semantic parsing.” arXiv preprint arXiv:1706.04326 (2017).

[51] Susanto, Raymond Hendy, and Wei Lu. ”Neural architectures for multilingual semantic
parsing.” In Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pp. 38-44. 2017.

[52] Herzig, Jonathan, and Jonathan Berant. ”Neural semantic parsing over multiple
knowledge-bases.” arXiv preprint arXiv:1702.01569 (2017).

[53] Zhong, Victor, Caiming Xiong, and Richard Socher. ”Seq2sql: Generating struc-
tured queries from natural language using reinforcement learning.” arXiv preprint
arXiv:1709.00103 (2017).

[54] Shen, Qijun, Xueying Zhang, and Wenming Jiang. ”Annotation of spatial relations
in natural language.” In 2009 International Conference on Environmental Science and
Information Application Technology, vol. 3, pp. 418-421. IEEE, 2009.

[55] Bateman, John A., Joana Hois, Robert Ross, and Thora Tenbrink. ”A linguistic ontology
of space for natural language processing.” Artificial Intelligence 174, no. 14 (2010): 1027-
1071.

[56] Kordjamshidi, Parisa, Paolo Frasconi, Martijn Van Otterlo, Marie-Francine Moens, and
Luc De Raedt. ”Relational learning for spatial relation extraction from natural lan-
guage.” In International Conference on Inductive Logic Programming, pp. 204-220.
Springer, Berlin, Heidelberg, 2011.

[57] Khan, Arbaz, Maria Vasardani, and Stephan Winter. ”Extracting Spatial Information
From Place Descriptions.” (2013).

[58] Ramalho, Tiago, Tomáš Kočiský, Frederic Besse, S. M. Eslami, Gábor Melis, Fabio Vi-
ola, Phil Blunsom, and Karl Moritz Hermann. ”Encoding spatial relations from natural
language.” arXiv preprint arXiv:1807.01670 (2018).

[59] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. ”Glove: Global
vectors for word representation.” In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp. 1532-1543. 2014.

[60] Wang, Yushi, Jonathan Berant, and Percy Liang. ”Building a semantic parser
overnight.” In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 1332-1342. 2015.

[61] He, Pengcheng, Yi Mao, Kaushik Chakrabarti, and Weizhu Chen. ”X-SQL: reinforce
schema representation with context.” arXiv preprint arXiv:1908.08113 (2019).

89

[62] Wang, Bailin, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richard-
son. ”Rat-sql: Relation-aware schema encoding and linking for text-to-sql parsers.”
arXiv preprint arXiv:1911.04942 (2019).

[63] Johnson, Melvin, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng
Chen, Nikhil Thorat et al. ”Google’s multilingual neural machine translation system:
Enabling zero-shot translation.” Transactions of the Association for Computational Lin-
guistics 5 (2017): 339-351.

[64] Alfiyatin, Adyan Nur, Ruth Ema Febrita, Hilman Taufiq, and Wayan Firdaus Mah-
mudy. ”Modeling house price prediction using regression analysis and particle swarm
optimization.” International Journal of Advanced Computer Science and Applications
8, no. 10 (2017): 323-326.

[65] Almeida, Luis B. ”C1. 2 Multilayer perceptrons.” Handbook of Neural Computation C
1 (1997).

[66] Anari, Ali, and James Kolari. ”House prices and inflation.” Real Estate Economics 30,
no. 1 (2002): 67-84.

[67] Borovykh, Anastasia, Sander Bohte, and Cornelis W. Oosterlee. ”Conditional time se-
ries forecasting with convolutional neural networks.” arXiv preprint arXiv:1703.04691
(2017).

[68] Boser, Bernhard E., Isabelle M. Guyon, and Vladimir N. Vapnik. ”A training algo-
rithm for optimal margin classifiers.” In Proceedings of the fifth annual workshop on
Computational learning theory, pp. 144-152. 1992.

[69] Cao, Lijuan, and Francis EH Tay. ”Financial forecasting using support vector machines.”
Neural Computing Applications 10, no. 2 (2001): 184-192.

[70] Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. ”Empirical
evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint
arXiv:1412.3555 (2014).

[71] Crawford, Gordon W., and Michael C. Fratantoni. ”Assessing the forecasting perfor-
mance of regime-switching, ARIMA and GARCH models of house prices.” Real Estate
Economics 31, no. 2 (2003): 223-243.

[72] De Gooijer, Jan G., and Rob J. Hyndman. ”25 years of time series forecasting.” Inter-
national journal of forecasting 22, no. 3 (2006): 443-473.

[73] Fu, Yanjie, Yong Ge, Yu Zheng, Zijun Yao, Yanchi Liu, Hui Xiong, and Jing Yuan.
”Sparse real estate ranking with online user reviews and offline moving behaviors.” In
2014 IEEE International Conference on Data Mining, pp. 120-129. IEEE, 2014.

[74] Fu, Yanjie, Guannan Liu, Spiros Papadimitriou, Hui Xiong, Yong Ge, Hengshu Zhu,
and Chen Zhu. ”Real estate ranking via mixed land-use latent models.” In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 299-308. 2015.

90

[75] Fu, Yanjie, Hui Xiong, Yong Ge, Zijun Yao, Yu Zheng, and Zhi-Hua Zhou. ”Exploiting
geographic dependencies for real estate appraisal: A mutual perspective of ranking
and clustering.” In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1047-1056. 2014.

[76] Goodman, Allen C., and Thomas G. Thibodeau. ”Housing market segmentation and
hedonic prediction accuracy.” Journal of Housing Economics 12, no. 3 (2003): 181-201.

[77] Guirguis, Hany S., Christos I. Giannikos, and Randy I. Anderson. ”The US housing
market: Asset pricing forecasts using time varying coefficients.” The Journal of real
estate finance and economics 30, no. 1 (2005): 33-53.

[78] Hall, Stephen, Zacharias Psaradakis, and Martin Sola. ”Switching error-correction mod-
els of house prices in the United Kingdom.” Economic Modelling 14, no. 4 (1997):
517-527.

[79] Hamilton, James Douglas. Time series analysis. Princeton university press, 2020.

[80] Ho, Tin Kam. ”Random decision forests.” In Proceedings of 3rd international conference
on document analysis and recognition, vol. 1, pp. 278-282. IEEE, 1995.

[81] Kayacan, Erdal, Baris Ulutas, and Okyay Kaynak. ”Grey system theory-based models
in time series prediction.” Expert systems with applications 37, no. 2 (2010): 1784-1789.

[82] KK Lai et al.2005. Crude oil price forecasting with TEI@ I methodology.Journalof Sys-
tems Science Complexity18, 2 (2005), 145–166.

[83] Lee, Kanghyeok, Hanbeen Kim, and Do Hyoung Shin. ”Forecasting short-term housing
transaction volumes using time-series and internet search queries.” KSCE Journal of
Civil Engineering 23, no. 6 (2019): 2409-2416.

[84] Limsombunchai, Visit. ”House price prediction: hedonic price model vs. artificial neural
network.” In New Zealand agricultural and resource economics society conference, pp.
25-26. 2004.

[85] Loh, Wei-Yin. ”Classification and regression trees.” Wiley interdisciplinary reviews:
data mining and knowledge discovery 1, no. 1 (2011): 14-23.

[86] Mandrekar, Jayawant N. ”Receiver operating characteristic curve in diagnostic test
assessment.” Journal of Thoracic Oncology 5, no. 9 (2010): 1315-1316.

[87] Manjula, Raja, Shubham Jain, Sharad Srivastava, and Pranav Rajiv Kher. ”Real es-
tate value prediction using multivariate regression models.” In IOP Conference Series:
Materials Science and Engineering, vol. 263, no. 4, p. 042098. IOP Publishing, 2017.

[88] McNally, Sean, Jason Roche, and Simon Caton. ”Predicting the price of bitcoin using
machine learning.” In 2018 26th euromicro international conference on parallel, dis-
tributed and network-based processing (PDP), pp. 339-343. IEEE, 2018.

91

[89] Nelder, John Ashworth, and Robert WM Wedderburn. ”Generalized linear models.”
Journal of the Royal Statistical Society: Series A (General) 135, no. 3 (1972): 370-384.

[90] Park, Byeonghwa, and Jae Kwon Bae. ”Using machine learning algorithms for housing
price prediction: The case of Fairfax County, Virginia housing data.” Expert systems
with applications 42, no. 6 (2015): 2928-2934.

[91] Potepan, Michael J. ”Explaining intermetropolitan variation in housing prices, rents
and land prices.” Real Estate Economics 24, no. 2 (1996): 219-245.

[92] Sampathkumar, V., M. Helen Santhi, and J. Vanjinathan. ”Forecasting the land price
using statistical and neural network software.” Procedia Computer Science 57 (2015):
112-121.

[93] Tay, Francis EH, and Lijuan Cao. ”Application of support vector machines in financial
time series forecasting.” omega 29, no. 4 (2001): 309-317.

[94] WANG, Jing, and Peng TIAN. ”Real Estate Price Indices Forecast by Using Wavelet
Neural Network.” Computer Simulation 2 (2005).

[95] Yan, Yan, Xu Wei, Bu Hui, Song Yang, Wen ZHANG, Y. U. A. N. Hong, and Shou-yang
WANG. ”Method for housing price forecasting based on TEI@ I methodology.” Systems
Engineering-Theory Practice 27, no. 7 (2007): 1-9.

[96] Yang, Nan, and L. C. Xing. ”Application of Grey-Markov model on the prediction of
housing price index.” In Statistics Information Forum, vol. 25, no. 9, pp. 65-67. 2006.

[97] Zhang, G. Peter. ”Time series forecasting using a hybrid ARIMA and neural network
model.” Neurocomputing 50 (2003): 159-175.

[98] Zweig, Mark H., and Gregory Campbell. ”Receiver-operating characteristic (ROC)
plots: a fundamental evaluation tool in clinical medicine.” Clinical chemistry 39, no. 4
(1993): 561-577.

[99] Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. ”Deepwalk: Online learning of social
representations.” In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 701-710. 2014.

[100] Grover, Aditya, and Jure Leskovec. ”node2vec: Scalable feature learning for networks.”
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 855-864. 2016.

[101] Wang, Daixin, Peng Cui, and Wenwu Zhu. ”Structural deep network embedding.” In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 1225-1234. 2016.

[102] Kipf, Thomas N., and Max Welling. ”Semi-supervised classification with graph convo-
lutional networks.” arXiv preprint arXiv:1609.02907 (2016).

92

[103] Hamilton, William L., Rex Ying, and Jure Leskovec. ”Inductive representation learn-
ing on large graphs.” In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 1025-1035. 2017.

93

