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Abstract

We compare multiple methods of distributing data and error correcting code across

distributed hash tables. We focus on the scaling of distributed hash tables and at which

methods moved the least amount of data while maintaining an even distribution. A common

technique is to use erasure coding and storing pieces of files on separate hardware. This

approach makes placement of pieces dependent on earlier placements. We identify several

rules that when applied to standard methods reduces the amount of data moved while scaling

dramatically. Even though CRUSH [28] includes these heuristics we found that tweaking its

approach allowed it to migrate less data when changing the cluster layout.
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Chapter 1

Introduction

This work highlights a set of techniques that minimizes data migration in decentralized

object stores. We will demonstrate how these techniques improved a custom distribution

algorithm as well as two prominent industrial standard methods: CRUSH [28] and Consistent

Hashing [13].

Over the last couple decades decentralized object stores have gained popularity in the

form of NoSQL databases, key/value stores, web caches, and general data archives. Their

appeal includes the ability to easily scale, evenly spread load, ensure data availability and

resilience, and run on cheap commodity hardware.

An object store is considered decentralized when the placement of data can be carried

out without coordination [15]. Large scale centralized storage systems have single points of

failure and bottlenecks when locating data. A popular approach to design a decentralized

object store is to use a Distributed Hash Tables (DHT). DHTs are desirable as they are

simple in design and fast at determining data placement.

To provide data resilience, decentralized object stores will store the data including

parity information. There are two primary ways to provide parity information, replicas and

error correcting codes like erasure coding. In a standard DHT all this information would

be stored together with a single place. However to provide better availability and further

increase resilience these systems will break up the data and parity information into even

sized blocks and store each block on different hardware to minimize the effects of failures,

data corruption, and system maintenance. When using replication each block is a copy of

the data, and when using erasure coding the data is split up into multiple blocks and extra
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parity blocks are generated. Improving how these stores distribute blocks across a DHT is

the focus of this work.

The placement of blocks affects three specific metrics of a storage system. How much

data must move when new nodes are added or old nodes are removed from a store? Is the

data and parity information evenly distributed? And how long does it take to calculate

where to store each block? We will focus on the first two, as systems like Ceph [27] negate

the cost of placement by distributing buckets, known as placement groups, instead of the

data keys ahead of time.

In the rest of this chapter we will go into detail on what we are trying to solve 1.1, what

our solution was 1.2, and what contributions we have made 1.3.

1.1 What we are Trying to Solve

We set out to find a better method of distributing data on our custom storage system

that minimized data movement when scaling. We built a simple storage system that utilized

a simple hashchain distribution algorithm discussed in 3.7. With 24 Petabytes of capacity

and billions of files we noticed adding new nodes to the system was moving more data than

we believed to be reasonable. Our investigation found that our naive algorithm distributed

files in a way that caused a cascaded of movement. When a block is moved the probability

subsequent blocks are moved is higher than it needs to be. Figure 1.1 illustrates how ensuring

that blocks are placed on separate nodes causes a dependent relationship between all the

blocks.

We began researching how existing systems handled distributing blocks across a DHT

ensuring all blocks resided on unique nodes. We tried several modifications to our distribution

algorithm and looked at how other systems handled collisions to reduce the likelyhood a block

being moved would cause others to move as well.
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Figure 1.1: Independent vs Dependent Block Placement. To maximize Reliability and Avail-
ability of stored data, Distributed Object Stores will make sure that a node is not responsible
for more than a single block. This restriction means that subsequent blocks are dependent
on where previously placed blocks are located. When a block is mapped to a node that is
already in use a collision occurs.

1.2 What was the solution

We discovered some simple techniques that greatly reduced the migration cost of our

hashchain algorithm while still evenly distributing the data across the available storage

hardware. We also found that applying these techniques to existing distribution algorithms,

like CRUSH and consistent hashing, we were able to further minimize data movement when

scaling a cluster.

A collision happens when two or more blocks want to be placed on the same node. How

the distribution method deals with resolving these collisions greatly affects how much data

is moved during migrations. In general to minimize data movement distribution methods

should:

• Not try to place all blocks in a single pass. By deferring blocks that collide with others

to future passes one minimizes the chance a single block move will cause multiple

subsequent movements, a cascade.
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• Not place blocks relative to previous placements. Rings are a popular topology for

DHTs, however as we’ll see in 5.5 simply placing blocks at offsets after the initial

placement leads to many unnecessary moves.

• Encode information about the placement. We found altering the set of nodes to con-

sider after each pass improved CRUSH (4.2), while altering the key of a block each

pass improved our hashchain and consistent hashing methods.

1.3 Our Contribution

To understand why our distribution method was moving so much data, we implemented

a simulator. Over time we continued to try new things, and added other methods to the

system. Today we have a framework that allows for fast prototyping of a distribution method

and a simple way to compare it to other methods.

The outcome of this research is we:

• Defined a few techniques 1.2 that when applied to naive distribution algorithms, greatly

reduces the cost of data migration.

• Implemented a simulator C.2 which allows fast prototyping of methods and testing.

The input includes file names and their sizes, how many nodes to start and end with,

how many buckets to distribute across the cluster, and the erasure coding settings

being used. The output is a raw dump of where a block is located before and after a

migration and size of the block in bytes.

• Wrote an analysis script C.4 to take the output of our simulator and provide a statistical

analysis of the data migration. The script provides information on how much data

moved, how many blocks moved, and an analysis of how evenly distributed all the

data is across the cluster.
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• Implemented and tested over 20 different methods to distribute blocks. The methods

fall under four basic types: Hashchain 3.7, Ring and Consistent hashing 3.5, CRUSH

3.6, and Shuffle A.1.6. The Hashchain family maps blocks to a set of nodes where

each node has assigned hash ranges. Ring and Consistent Hashing methods arrange

the nodes in a circle mapping blocks around the same ring. CRUSH using the straw2

strategy is akin to the nodes drawing straws to decide who gets a block. Finally shuffle

plays with a standard array shuffle algorithm to create a list of nodes to store each

block on.

• To test CRUSH and its derivatives we modified Ceph’s libcrush [26] library and provide

a C++ application C.3 to use libcrush to test migrations and provide the same output

as our simulator.

• We provide a patch to libcrush’s ChooseN algorithm, see Appendix B, that decreases

data movement of the CRUSH algorithm when using Straw2 and erasure coding 4.2.
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Chapter 2

Related Work

There has been an increased focus on distributed storage systems over the past couple

decades. Websites serving billions of users have caching and archival needs which must scale,

provide constant access to data, and handle failures gracefully. The rise of cloud computing

with the promise of unlimited user storage is now possible. There is a lot of research on

different algorithms to store and retrieve data that is spread across multiple servers. We will

look at several enterprise systems and research projects that aim to build better distribution

systems.

2.1 CRUSH

Proposed back in 2006 CRUSH [28] is the backing distribution algorithm of Ceph, a

leading industry object storage system. CRUSH was developed to be scalable and minimize

unnecessary data movement when adding and removing hardware from the cluster. It is de-

rived from the RUSH [11] family of distribution algorithms, and offers a flexible and efficient

way of storing data in a weighted hardware hierarchy. One of the unique contributions of

this work is the notion of drawing straws based off of the id and weight of a component.

Most systems distribute the keys by mapping the key to a host, with straw hosts bid on a

key instead. CRUSH was designed with storage of replicas and erasure encoded blocks in

mind.

2.2 Ceph

Currently managed by Red Hat, Ceph [27] is an enterprise ready object store with proven

record for storing hundreds of petabytes of data. The project has a library implementation
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of CRUSH [28] that we were able to use to compare CRUSH’s data movement efficiency

with other algorithms. A modification to CRUSH’s straw method was implemented in Ceph

[25], today straw2 is the default distribution method. While the distribution of data is

decentralized, Ceph does have several manager services that administers must run multiple

copies of to mitigate the impact of failures.

2.3 DynamoDB

Amazon’s DynamoDB [9] is a decentralized key value store designed for high availability

where small outages have large financial consequences to a large company. Dynamo uses

consistent hashing to distribute the storage nodes, data, and parity around a ring. To

address limitations with consistent hashing, and to provide support for nodes of differing

capacities, DyanmoDB maps nodes multiple times called virtual hosts. Hashing is used to

find where to store a given key and a preferred list is generated by skipping virtual hosts

that point to already used nodes.

2.4 Cassandra

Apache Cassandra [15] is a key value store developed at Facebook with an author of

DynamoDB. It was designed to run on hundreds of commodity hardware systems and even

across multiple data centers. To address the limitations of consistent hashing Cassandra will

move lightly loaded nodes to more optimal placements, increasing the load of the node and

reducing the load of others. This differs from DynamoDB which does not move nodes but

maps them several times.

2.5 Attributed Consistent Hashing

The Attributed Consistent Hashing paper [29], focused on comparing CRUSH, tradi-

tional Consistent Hashing, and their Attributed Consistent Hashing algorithms on hardware

7



using a mixture of both spinning and solid state storage devices. This work provided some

insight into the characteristics of Consistent Hashing versus CRUSH however it primarily

focused on I/O Bandwidth and Key Placement runtime. While they did compare data on

data movement during a migration, they only compared the two consistent hashing methods.

2.6 ZHT: Zero-Hop Distributed Hash Table

Another consistent hashing system is ZHT [16]. Instead of using a hashing function

to distribute nodes around the ring, ZHT adds nodes by placing them as neighbors to

heavily loaded nodes. The entire hash space is broken up into a static number of even sized

partitions, each node then is assigned one or more partitions to manage. Another eccentricity

of ZHT is replicas are not placed in a clockwise or counter-clockwise manner, instead they

are distributed by hoping back and forth in both directions.

2.7 ECHash

ECHash [7] is a consistent hashing system that is designed to make storage of data and

erasure coding parity more efficient while scaling. The authors noticed read penalties when

adding and removing nodes as recovering data with erasure coding has a computational cost.

Unlike other consistent hashing systems ECHash makes use of multiple hash rings. When

coupled with their fragmented erasure coding scheme, FragEC, they were able to minimize

read penalties when scaling a cluster.

2.8 Distributed File Systems

Distributed file systems aim to provide users a familiar experience to traditional local

versions. Benefits include access to data on any networked computer and automatic data

resilience. By emulating the features of local file systems the distributed versions tend to have

centralized infrastructure to handle features not supported by object stores, file locks are a
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prime example. Systems like Lustre [5] and the Hadoop Distributed File System (HDFS)

[18] are heavily dependent on their name or metadata server for locating and storing data

with parity information. Disabling these services halts all operations on their cluster.

A decentralized distributed file system is GlusterFS [10]. Each node in the cluster

exports one or more bricks, and those bricks are combined into volumes. Rules on the

volumes dictate how files are stored. Replicated volumes will copy the data to every brick,

while striping volumes spread the data across all bricks without parity. These building blocks

have allowed GlusterFS the ability to work without the need for a centralized metadata

service.
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Chapter 3

Background

Data availability and resilience are important properties of distributed storage systems.

In Section 3.1 we discuss what each property means and how it is achieved. Section 3.2 we

will go over replication and erasure coding which supply parity information allowing high

levels of availability and resilience. We will quickly discuss hashing and what properties

decentralized storage systems look for in a hash function in Section 3.3. We will go over

Distributed Hash Tables (DHT) 3.4 and several types of distribution methods built on top

of DHTs including Consistent Hashing 3.5, CRUSH 3.6 and Hashchains 3.7. Finally in

Section 3.8 we discuss how distributing buckets that we hash files into has several benefits.

3.1 Data Properties

The promise of distributed data stores is increased availability, easier maintainability,

and stronger resilience and reliability [2]. To accomplish these goals distributed stores spread

their load across the whole cluster, and remove single points of failure using error correcting

codes or replication.

Availability of data is one of the key features of distributed object stores. These systems

are designed to minimize the impact of failures to the end user. Availability is impacted

primarily by system maintenance and hardware failures. System administrators need to

reboot nodes as well as upgrade software, all of which could potentially lead to a user not

being able to access their data. Furthermore a node becoming unresponsive due to network

or power outages, and even hardware component failures must be mitigated.

Data Resilience is the measure of how likely data will be lost due to hardware failures

or corruption. The main hardware failure affecting resilience are hard drives, once a drive
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is lost so is all the data stored on it. Data corruption can happen due to bad Random

Access Memory and bit-rot. By storing parity information these systems can automatically

generate and restore missing or corrupt data.

3.2 Replication and Erasure Coding

To facilitate all the above properties distributed data stores also store parity information

in the form of duplicates or error correcting codes. Coupled with a distribution algorithm

that stores data on many different systems, or even racks, or data centers, minimizes the

impact of system maintenance, hardware failures, and data corruption. Due to benefits and

trade offs of both methods hybrid systems can be used.

Replication is the most straight forward approach. When storing data the system du-

plicates it a configurable number of times and stores the copies on separate nodes. As long

as the data on one of the nodes is available, users can access their data. The benefits of

replication include decreased disk and network access to retrieve requested data. However

the storage overhead to provide similar resilience and reliability of erasure coding is vastly

greater. As a general rule replication systems always hold at least three copies of the data,

enterprise systems like Ceph and HDFS default to three, as the probability of two hardware

failures making files inaccessible is too high. Three replicas means a system will have 200%

overhead which is costly, to store 8 petabytes one must have at least 24 petabytes of storage.

Erasure coding provides an alternative to replication. By using error correcting codes

one can split the data into a set number of equal parts and encode a configurable number of

extra parts. For example one can split a file into three equal sized pieces, and then generate

two extra parts. The data is now represented by five equal sized pieces, and any missing

combination of one or two parts can be regenerated with the others. If the five pieces are

stored on separate nodes, it has the same availability as a replication of three but at a storage

overhead of 66.67% instead of 200%. The reduced storage overhead comes at the cost of more

network and disk accesses, and a computational cost when regenerating inaccessible pieces.
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Figure 3.1: Replication: Data availability and resilience can be increased by replicating data.
To replicate the data is stored in its entirety on multiple nodes. Several major systems, such
as Ceph and HDFS, default to at least three copies. Replication has a low computational
cost to recover data that was stored on failed hardware, however the storage overhead is very
high. A cluster that is expected to store 8 petabytes must have a minimum capacity of 24
petabytes to support the two extra copies.
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Production systems can store erasure encoded data across 20 or more machines, on such a

cluster to access that data a user must communicate with 20+ nodes.

3.3 Hashing

To distribute files in a decentralized cluster a popular approach is using a Distributed

Hash Table 3.4. Like traditional hash tables a key is fed into a hashing function and the

resulting value is used to place the result. Hash functions have the following properties:

their outputs are evenly distributed across the range of all possible outputs, they are one

way functions, and they are collision resistant.

The key property we are interested in is uniformity. A hash function that spreads its

input across all possible outputs evenly will allow Distributed Hash Tables to distribute the

data evenly over their nodes. If a group of similarly named files are very large, a uniform

hash function will ensure that they are not placed together.

A one way function is a procedure where the input cannot be derived from the output.

This is a very important property for cryptography, for example the storage of the hash of a

password should not leak what the password actually is. In terms of distributing keys across

a hash table this property is not important. however the majority of hash functions have

this property.

Collision resistance states that it should be hard to find two inputs that generate the

same output. This is of primary interest to cryptographic systems.

While cryptographic hash functions can be used to distribute files evenly, their large

hash space is unneeded, they do not provide better uniformity, and they are slow compared to

non-cryptographic alternatives. Popular non-cryptographic hash functions include Jenkins,

MurmurHash3, and City Hash.
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Figure 3.2: Erasure Coding: An alternative to replication, erasure coding is an error correct-
ing coding that can provide the same level of availability and resilience at a fraction of the
storage overhead. In this example the file is broken up into three equal sized blocks. Two
extra blocks are computed from the first three. Armed with five total blocks as long as three
are accessible and correct any combination of two blocks can be recalculated. With this
scheme the storage overhead is 66%, far less than the 200% overhead a system that stores
three copies of all the data. Note it is very easy to lower this overhead further. Splitting an
object into 17 pieces and generating three parity blocks reduces this overhead to < 20%.
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3.4 Distributed Hash Tables

The heart of many distributed storage and caching systems is a Distributed Hash Table

[4]. All the methods described and examined in this paper are DHTs. What sets these

methods apart is how they distribute parity information across unique nodes. DHTs can

scale well [4] and provide an easy method to work decentralized. A simple, but naive,

implementation of a DHT is to have an ordered list of nodes. To place a key value pair one

simply computes the index of the owning node like so: index = HASH(key) mod |nodes|.

Over the years there have been a plethora of systems backed by DHTs. Big name projects

include Ceph [27], DynamoDB [9], HDFS [18], and Apache Cassandra [15].

3.5 Consistent Hashing

Consistent Hashing was developed to counter the downsides of simple ring method

DHTs. By arranging nodes in a set order and treating them as a ring it is very quick to

find what node a key should be placed however it ties the location of a key to the size of the

cluster. This dependent relationship causes the remapping of keys all over the ring leading to

a lot of unnecessary data movement when scaling the cluster and motivated to the Consistent

Hashing approach [13].

Instead of arranging the nodes in a ring then mapping keys to the resulting circle,

consistent hashing maps both nodes and the keys. Nodes can be deterministically assigned

on the circle using a hash function. To store a key value pair one hashes the key and searches

for the nearest node with a hash greater than or equal to the hash of the key. This approach

allows the addition of new nodes and removal of old ones to only affect keys that hash close

to the node. In this base form consistent hashing helps reduce hot spots produced by resizing

a cluster.

A major shortcoming of consistent hashing is the hash space a node is responsible for

is assigned randomly. The hash of a node could place it on the circle such that the previous

15



Figure 3.3: The ring illustration shows how nodes A through D would be arranged in a ring.
Each node will be equally spaced around the ring but keys will only ever be hashed to one
of four values. With Consistent Hashing we see that the four nodes are mapped to random
locations around the circle and the spacing between the nodes is not even. When a key is
mapped to the circle and assigned to the next node counter-clockwise we can see that Node
C will be responsible for the most keys. Finally The Dynamo Circle represents their take on
Consistent Hashing where each node is mapped twice to the circle. By placing double the
number of nodes there is less variance in the number of keys a node is responsible for.

node is very far away, or very close. This discrepancy in hash space sizes will lead to an

imbalance in the cluster as keys are more likely to hash to a node with a larger hash space

than a smaller one. To address this systems like DynamoDB [9] will place nodes on rings

multiple times. The more nodes placed the less variance between hash space sizes. Another

approach used, by Cassandra, is to map all the nodes to the circle to reduce the load on

heavily assigned ones [15]. Figure 3.3 is a simple illustration of how Ring, Consistent Hashing,

and Dynamo DB’s consistent hashing approach would distribute four nodes.
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To store replica or parity data on different nodes each system works differently. Dynamo

and Cassandra both map all the nodes to the circle, finds the closest node, and n − 1

subsequent unique nodes to create a preferred list [9] [15]. Meanwhile ECHash uses multiple

circles [7] to determine where each block should be placed. Finally ZHT places blocks on

either side of the node responsible for the key [16].

3.6 CRUSH

The CRUSH algorithm is a generic way of describing one’s infrastructure and providing

explicit rules on how to store data. With CRUSH one can replicate a file across multiple

data centers, or one can use erasure coding to store files entirely on a single rack but each

block on a different node. This flexibility is the backbone of systems like Ceph [27] and

Twitter’s Blobstore [12]. The CRUSH paper describes multiple distribution strategies with

straw being the most interesting, in Ceph the default is straw2 [25] a derivative of straw.

Unlike DHTs that arrange nodes in a ring where a key is mapped to hardware, CRUSH with

straw allows hardware to bid on who will be responsible for the key. As outlined in their

paper, hardware draws straws deterministically and the largest value wins, this is illustrated

in Figure 3.4.

What makes straw so compelling is that it is the most flexible when scaling a cluster.

CRUSH does outline the uniform, list, and tree strategies which perform better than straw

in certain situations. For example a JBOD has a fixed number of disks, and the node will

more likely be replaced than upgraded to hold more disks. Since this is a static count of

disks, straw is overkill and uniform would be a valid choice. However using uniform strategy

to distribute data across nodes will move a lot more data when scaling than a system using

straw [28]. The downside to straw is that compared to other distribution methods it is slow.

If we have a cluster with 100 nodes in it the consistent hash approach only needs to do a

single hash and log(n) search to place a file, CRUSH with straw has to perform n hashes.
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Figure 3.4: CRUSH with straw strategy is akin to all the nodes in the system drawing straws
to see which one is responsible for a given key. Each node has a unique identifier that when
hashed with the key provides a numeric straw, the largest value wins. Here Storage2 when
paired with the filename File0 hashes to the largest value and is responsible for the key
”File0”.
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To handle clusters with heterogeneous hardware every single node CRUSH considers

has a weight associated with it. This weight is then applied to the drawn straw allowing

nodes with larger capacities to have a higher chance of winning the draw. A basic setup is

each disk gets a weight of 1.0 and each level above gets a weight of the sum of all children. A

90 disk JBOD with all disks weighted at 1.0 would have a weight 90.0. This allows smaller

nodes to not get overwhelmed. The primary difference between straw and straw2 is how the

weights are applied.

Since CRUSH with straw strategy doesn’t have a simple ring to go around placing

replicas or parity blocks it must draw straws for each block. To ensure parity data is stored

on separate nodes, CRUSH makes a multi-pass approach, where the first pass places all

blocks it can, and future passes revisit blocks that collided with another block.

3.7 Hashchain

In our first foray into Distributed Hash Tables we choose to map ranges of a 32 bit hash

space directly to nodes in the cluster. The size of the range represents the capacity of a node,

for example a uniform cluster assigns each node an equal sized range. To place a value one

hashes the key and performs a log(n) search for the range which contains that hash. The

primary downside to this approach is that it leads to fragmentation. As nodes are added

and removed over time the ranges must be split and merged, adding nodes means stealing an

equal number of hashes from all nodes to even the load. Compounding to this we never got

to automating the assignments, meaning all cluster changes were manual endeavors. This

alone has lead us to be jealous of both consistent hashing 3.5 and CRUSH 3.6.

To distribute parity information we used a chain of hashes A.1.1. The hash of the key is

the beginning of this chain, all subsequent blocks are placed by hashing the previous hash.

When the hash of a block causes a collision, we continue hashing until the block is mapped

to an unassigned node. This process is illustrated in Figure 3.5. This naive approach moved

so much data that it was the motivation for this work.
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Figure 3.5: A simple Hashchain placement of a file across three storage systems. ”File0” is
stored as the blocks and each block uses the hash of a the previous placement. The second
block has a collision with the first one therefore we hash this value again till we find an
unused node.
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While researching other distribution methods and ways to improve Hashchain we found

a way to build the chains such that the migration performance is on par with CRUSH’s straw

strategy. Called Hashchain’, see A.1.2, works by making two changes, first on collision the

colliding block is skipped to be placed in a later pass, and second hashes that collide spawn

separate chains.

3.8 Distributing Buckets Not Keys

Consistent Hashing 3.5, CRUSH 3.6, and Hashchains 3.7 all use the hash of a key to

distribute the value and parity information over a storage cluster. Systems like Ceph noticed

that CRUSH with straw is relatively slow when compared to the simple hash and modulo

approach of a ring distribution. To reduce the overhead of finding where a file is stored and

group files together into fewer units for easier management Ceph created Placement Groups

[27]. On setup these systems use their backing algorithm to distribute all the buckets and

cache the nodes responsible for each bucket. This approach allows placement of files to go

from O(n) for straw to O(1). Mapping files to buckets instead of directly to nodes means

files will never move to another bucket even as a cluster grows and shrinks.
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Chapter 4

CRUSH’ - A Scalable and Decentralized Placement of Replicated Data

We propose a change to how the CRUSH algorithm handles collisions. A collision

happens when distributing blocks multiple blocks are to be stored on the same node. There

are many ways to handle collisions and not all are equal.

We will go over how CRUSH works to distribute objects that use erasure coding 4.1. We

will then discus CRUSH’ 4.2 which modifies CRUSH minimizing data movement when scaling

a cluster. Finally we will discuss the modifications to libcrush 4.3 written and maintained

by the Ceph open source project.

4.1 CRUSH

CRUSH [28]. When distributing replicated data there is no difference between blocks

stored at index 0 or at index n. This differs from data using erasure coding methods as

every single block differs and their ordering is important. The CRUSH algorithm handles

this case by placing each block in an index that is a multiple of the total number of blocks.

For example if block 2 is to be stored on the same node as block 1, to resolve this collision

CRUSH calculates a new hash using index 2 + n then 2 + 2n until the block is placed on an

unused node. The pseudo code in 4.1 illustrates this idea.

Previous methods, like consistent hashing and hashchain, simply skip indexes that lead

to collisions. This technique allows the algorithm to place all the blocks in a single pass

just by incrementing the index. CRUSH could have done this by altering the block index

until a collision is avoided, however the authors chose to place colliding blocks in future

passes. Each pass CRUSH places all the blocks that do not collide, this technique reduces
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Algorithm 1 Pseudo code illustrating how CRUSH’s ChooseN algorithm would select n
distinct nodes to store erasure coded blocks.

procedure ChooseN(nodes, n, key)
result← [1..n]
used← {}
revisit← {1..n}
r ← 0
while |revisit| > 0 do

for i← 1 upto n do
if i ∈ revisit then

h← HASH(key, i ∗ r)
node← STRAW2(nodes, h)
if node /∈ used then

used← used ∪ {node}
revisit← revisit− {i}
result[i]← node

end if
end if

end for
r ← r + 1

end while
end procedure

the likelyhood a block being moved when scaling will cause other blocks in the object to

move as well.

While searching for solutions to our distribution algorithm we found that this multi-

pass approach is quite effective in reducing the amount of data moved when resizing the

cluster. However we also found other alterations which improved our algorithm further.

After comparing our improved algorithm to CRUSH we decided to see what would happen

if we tweaked CRUSH in different ways.

4.2 CRUSH’

CRUSH handles collisions by deferring placement to future passes and altering the blocks

index by a factor of n 4.1. We applied the multi-pass technique and several other tweaks

to our hashchain method and found we were equaling or beating crush in moving the least

amount of data when scaling. One thing we noticed is every pass CRUSH considers all the
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nodes, including the nodes that are already in use. At first glance this seems inefficient, more

hashes every pass and some passes could end up not placing a single block. We decided to

see if playing with the set of nodes would affect how much data is migrated when scaling.

We came up with two possible ways to encode information about used nodes each pass.

One approach is to re-weight nodes based off of their availability, for example after each pass

increase unused node weights by a factor. The other idea is to remove all the used nodes at

the end of each pass.

Unfortunately altering node weights did not provide any benefits. In CRUSH the weight

of a node is a multiplier to the a nodes straw length during a drawing. The larger the weight

the greater chance a short straw drawn will be transformed into the longest straw. This

mechanism allows CRUSH to encode nodes of different capacities, as it will increase the

number of wins of a large capacity node over smaller ones. After each iteration one could

reduce the weight of nodes that have been selected, or increase the weight of unused nodes.

Our initial tests found these alterations performed worse than the unaltered CRUSH.

Although altering weights did not provide any benefit, removing used nodes after each

pass did. We modified CRUSH to keep track of all nodes that had blocks assigned to them

in a pass. We then removed these nodes from the straw drawing of blocks that encountered

a collision on the first pass. The final change removed the altering of the block index

while drawing straws in subsequent passes. The pseudocode at 4.2 illustrates this approach.

These modifications caused a decrease in amount of data moved while maintaining a uniform

distribution of the data.

As noted above we removed altering the block index each pass as CRUSH does. This

seemingly insignificant change is required for CRUSH’ otherwise the algorithm performs

worse than the original CRUSH. When CRUSH runs into a collision it simply iterates the

block id to the next position to consider while continuing to consider all nodes. We found

that using CRUSH’s i + r in the hash calculation while only considering available nodes

provided no benefit and moved more data.
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Algorithm 2 After each pass, all nodes that are in use are removed from the set of available
nodes.

procedure ChooseN(nodes, n, key)
result← [1..n]
used← {}
revisit← {1..n}
while |revisit| > 0 do

available← nodes− used
for i← 1 upto n do

if i ∈ revisit then
h← HASH(key, i)
node← STRAW2(available, h)
if node /∈ used then

used← used ∪ {node}
revisit← revisit− {i}
result[i]← node

end if
end if

end for
end while

end procedure

4.3 libcrush Changes

To test modifications to the CRUSH algorithm, we were able to utilize Ceph’s Open

Source libcrush [26] implementation. Since we are focusing on the efficiency of data move-

ment in storage systems using erasure coding we altered the crush choose indep func-

tion ignoring the replication specific firstn counterpart. We implemented a simple struct

crushbucket duplication function and used a fixed length array to keep track of items that

were used. We provide the patch file to crush/mapper.c in Appendix B.
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Chapter 5

Experimental Results

With a simple simulator and a database of billions of filenames and sizes we were able

to test all methods in very specific situations. We have provided a small set of experiments

to highlight how well each method works.

In this chapter we will go over the simulator 5.1, the common setup of all the experiments

5.2, and the different methods used to distribute files 5.3. Experiment 1 5.4 will compare how

all the methods perform given the situation that made us look for other ways to distribute

files. The second experiment 5.5 looks to see if the performance of each method is tied to how

many nodes are added to the system, does method A work better when growing a cluster

4% while method B works best when growing a cluster 60%. The final experiment 5.6 tracks

data movement across a cluster which grows, shrinks, and adds new files.

5.1 Simulator

We built a couple programs to simulate all our ideas on how to improve data movement

performance. To test CRUSH and any derivatives we wrote a simple C++ program and

edited a local copy of libcrush. All the other methods are implemented in a Perl program for

decent performance and fast prototyping. Each program reads in a set of files and their sizes

and outputs how a file would be distributed before and after node additions or subtractions.

Since both programs output in the same format we wrote a simple Perl script to analyze

the results. We calculated statistics on how much data moved given the cluster change and

what the standard deviation of data stored per node is. These statistics with the fast

prototyping allowed us to try dozens of alterations to each of the algorithms we used in our

experiments. The source code for our simulator can be found in Appendix C.
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5.2 Setup

For our testing we focused on a cluster of uniform nodes. This restriction allowed us to

isolate how well a method avoids unnecessary data movement when scaling a cluster.

CRUSH is a general algorithm that can work on various infrastructure designs and

custom heuristics. A user has the freedom to setup a cluster where there are no restrictions

on where blocks can be stored, multiple blocks can live on the same hard drive, or a user

can dictate blocks must be distributed so only one lives on a rack of servers. Additionally

CRUSH uses a weighted system to help distribute data evenly across systems with varying

capacities.

Consistent hashing methods [13] were designed to improve on ring based DHTs. Instead

of mapping keys to nodes, one maps both keys and nodes to a circle. The node with a hash

greater than or equal to that of the key is the node responsible for that key. Like CRUSH

and Hashchain we provide an implementation of Consistent A.1.4 and Consistent’ A.1.5 a

derivative which utilizes the rules we have learned during this research. Consistent is modled

after the algorithm laid out in DynamoDB [9]. The key feature of this algorithm is to map

nodes multiple times to evenly distribute the load to all nodes. To get the standard deviation

of data stored per node close to the other methods we placed all nodes 100 times around

a ring. The larger this factor the smaller the standard deviation of data stored per node

is. The factor also affects search times of lookups, binary search is a practical option to

offset this cost. One could easily add nodes 10,000 times to continue to reduce the standard

deviation, however we choose to keep our tests smaller. At a factor of 100 a 50 node cluster

has 5,000 entries to search through.

5.3 Methods

In our experiments we focus primarily on CRUSH (4.1) and our updated CRUSH’ (4.2).

We also compare other methods used to distribute files including Hashchain (A.1.1) our
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Data Moved Bytes Blocks Std Deviation
CRUSH’ 45.47% 4.51 TiB 9,107,593 7.21 GiB
CRUSH 47.53% 4.72 TiB 9,501,073 7.51 GiB

Hashchain’ 47.30% 4.7 TiB 9,492,599 7.05 GiB
Hashchain 72.92% 7.24 TiB 14,596,048 7.84 GiB

Consistent’ 51.55% 5.12 TiB 10,342,606 14.36 GiB
Consistent 89.95% 8.93 TiB 17,965,282 16.27 GiB

Ring 62.76% 6.23 TiB 12,534,389 8.47 GiB
Shuffle’ 49.17% 4.88 TiB 9,812,080 58.1 GiB

Table 5.1: Results from our first experiment. We see that when going from 20 nodes to
29, our modified CRUSH algorithm, CRUSH’, was the most efficient at moving data and
provided the second best even distribution of that data. Hashchain, our initial algorithm,

naive attempt, Hashchain’ (A.1.2) our improved Hashchain, Consistent (A.1.4) the consistent

hashing approach used in DyanmoDB, Consistent’ (A.1.5) an improved version of Consistent,

Ring (A.1.3) a basic ring topology, and Shuffle’ (A.1.6) which plays with array shuffling.

There are some differences in hash functions between the methods. CRUSH and CRUSH’

both use the Jenkins hash function to map filenames to buckets. All other methods compared

use MurmurHash3.

5.4 Experiment 1: Simple Increase

For the first experiment we used the same configuration of our production cluster. We

had a batch of new servers come online and wanted to increase the space. Each node had

90 storage drives of 10 Terabytes each.

We started with 20 nodes growing the cluster to 29 nodes. We used an erasure coding

of 16/4, all files are split into 16 blocks and 4 extra blocks were generated. While we have

billions of files in our system we used one million random files with their size as input. With

the overhead of the erasure coding we analyzed a cluster’s management of 9.93 TiB of data.

Table 5.1 shows the results of distributing 1024 buckets and placing the input files into those

buckets.
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From 5.1 we see that CRUSH provides fairly efficient data migration while maintaining

a small standard deviation on space usage. It was quite a shock to see our naive hashchain

method perform so poorly, but our improved method hashchain’ not only moved less data

than CRUSH but also maintained a more even distribution. CRUSH’, our alteration to

CRUSH, moved 200 GiB or 400k blocks less than CRUSH and provided similar data distri-

bution to hashchain’ as well as CRUSH.

5.5 Experiment 2: Scaling Up

In Section 5.4 we grew the cluster by 45%. In our second experiment we wanted to see if

this advantage is dependent on the number of nodes being added to the system. We started

with a 25 node cluster and compared the different methods when adding 1 up-to 25 nodes

into the cluster. We distributed 1024 buckets to put files into and each file was erasure coded

with 20 and 5 erasure blocks. A total of 2.8 TiB were distributed from a little over 87,000

files. Table 5.2 shows the Standard Deviation of data stored per node after the increase in

cluster size.

5.6 Experiment 3: Temporal Changes

Clusters change over time. Hardware failures and aging machines needs to be replaced.

For our third experiment we wanted to look at how a couple mutations to the cluster play

out. In this experiment we focused on CRUSH and CRUSH’.

Figure 5.2 illustrates how the cluster changes over time. We simulate a 50% increase

(10 to 15 nodes), then the loss of a single node (15 to 14 nodes), followed by another 40%

increase (14 to 20 nodes). These systems are designed to be usable during migrations and

failures. Therefore after each migration we add more files to the cluster. Table 5.3 shows

how many files and how much data is stored in the cluster after each migration.

We used CRUSH’ and CRUSH to distribute 1024 buckets and the files where stored as

eight blocks, three of which were generated by erasure coding. The results are available in
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CRUSH’ CRUSH Hashchain’ Hashchain Consistent’ Consistent Ring Shuffle’

4% 0.68 20.46 0.8 0.71 1.06 2.43 0.86 11.17
8% 1.24 19.97 1.11 0.97 1.50 2.8 1.05 14.26

12% 1.22 1.1 1.04 1.18 1.96 3.09 1.24 13.34
16% 1.2 18.09 1.4 1.32 1.98 3.56 1.37 15.39
20% 1.46 1.4 1.3 1.39 2.38 3.83 1.38 13.92
24% 1.52 1.37 1.48 1.56 2.75 3.96 1.65 14.62
28% 1.59 1.38 1.48 1.74 2.78 4.11 1.69 11.85
32% 1.73 1.62 1.29 1.72 3.00 4.03 1.97 12.82
36% 1.81 1.67 1.65 1.82 3.07 4.16 1.86 13.94
40% 1.85 1.8 1.62 1.91 3.12 4.05 1.96 12
44% 1.83 1.73 1.46 2.04 3.16 4.02 1.56 12.67
48% 1.71 1.88 1.53 1.83 3.70 3.9 1.58 12.03
52% 2 1.9 1.88 1.78 3.68 3.82 1.33 11.71
56% 2 2.09 1.78 1.92 3.53 3.77 1.46 11.06
60% 2.1 1.83 1.54 1.94 3.62 3.44 1.68 11.28
64% 2.15 1.96 1.83 1.9 3.59 3.3 1.96 10.73
68% 2.09 1.83 1.74 2.1 3.70 3.53 1.67 10.32
72% 2.05 1.93 1.86 2.14 3.70 3.65 2.16 9.99
76% 2.19 1.88 1.99 2.19 3.77 3.57 2.22 9.66
80% 2.2 1.98 1.99 2.2 3.83 3.61 2.35 9.33
84% 2.2 2.01 1.86 2.17 3.80 3.51 2.1 9.47
88% 2.05 2.09 1.77 2 3.60 3.51 2.02 8.76
92% 2.15 2.1 1.95 2.15 3.59 3.48 2.1 8.59
96% 2.17 2.02 1.87 1.94 3.75 3.44 2.3 8.41

100% 2.11 1.94 1.77 2.02 3.65 3.33 2.64 8.03

Table 5.2: Experiment 2 Scaling: The standard deviation, in GiB, after increasing the cluster
by x%, distributing 2.8 TiB of data. With regards to a 100% node increase, Ring moved the
least amount but it was middle of the pack in evenly distributing that data. To our surprise
when adding 1, 2, or 4 nodes CRUSH had the worst distribution of data, we tested this with
a greater number of input files but the result remained.

Node Count 10 15 14 20
Files 225,000 300,000 1,000,000 1,000,000

Bytes (TiB) 2.86 3.81 12.71 12.71

Table 5.3: Experiment 3 Sizes: During the experiment not only did we add and remove nodes,
we also stored more and more data to the system to better emulate production environments.
To start with we stored a quarter million files on ten nodes. After adding five more nodes
we stored an additional 75,000 files. Finally before the migration from 14 to 20 nodes the
cluster stored one million files at over 12 TiB including the erasure coding overhead.
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Figure 5.1: Experiment 2 Scaling: Comparison of percentage of data moved by each method
moved as the cluster increases by x%. We used erasure coding parameters 20 and 5, split
files into 20 blocks and generate 5 additional parity blocks. We can see Consistent Hashing
with virtual hosts (100 hosts per node) and Hashchain perform the most unnecessary moves.
When only increasing the cluster by a few nodes (< 8%) most of the methods perform as
well as CRUSH. CRUSH’ provides minimal data movement until the cluster nearly doubles
in size. Unexpectedly the ring method performs much better when doubling a cluster in
size, however at smaller increases it performs much worse, and doubling ones cluster is not
a viable long term solution.

31



Figure 5.2: Experiment 3 Temporal Changes: compares our CRUSH’ with CRUSH over
time. We start with 10 storage nodes and add 5 more. After a short period a node is lost
due to hardware failures and a replacement must be ordered. As the one node is replaced the
organization ordered an additional 5 nodes bringing the cluster up to 20 nodes. Additional
files are added at each stage. Over the course of the experiment the number of files stored
goes from 225,000 files to 1,000,000.
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Add 5 Nodes Lose 1 Node Add 6 Nodes
CRUSH’ CRUSH CRUSH’ CRUSH CRUSH’ CRUSH

Blocks Moved 765,818 806,996 205,586 236,447 2,892,622 3,102,905
Bytes Moved (GiB) 1,247.23 1,308.58 331.42 385.13 4,741.33 5,069.75

Std Dev (GiB) 4.9 7.44 8.43 9.3 24.68 27.22

Table 5.4: Experiment 3 Data: As we can see in each migration CRUSH’ moved less informa-
tion in both total number of blocks and raw bytes. At the end of the experiment, the cluster
stored 12.7 TiB and CRUSH moved an additional .44 TiB over CRUSH’. As the amount
of data stored in the system increases so does the standard deviation, in all migrations the
resulting distribution of CRUSH’ has a smaller standard deviation than CRUSH.

Figure 5.4. In all three migrations CRUSH’ moved less data and had a smaller standard

deviation than CRUSH.
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Chapter 6

Conclusions

Distributing parity information on unique nodes such that changes in a cluster lead to

efficient migrations is difficult. How an algorithm handles collisions greatly influences the

amount of data that must be migrated. When a collision is encountered a dependency be-

tween the colliding blocks and all remaining blocks is made. Naive approaches like hashchain

A.1.1 exacerbate this dependency. In Section 6.1 we go over the set of rules we found improve

all these naive attempts. Finally in Section 6.2 we discuss future work.

6.1 Rules

When searching for ways to reduce data movement due to scaling in our hashchain

distribution method A.1.1 we discovered several modifications which improved all of the

methods we looked at. Our research has shown that placing all non-colliding blocks each pass

and augmenting the key for every block has the potential to greatly improve basic distribution

schemes. Furthermore we noticed that some methods performed best by removing nodes as

potential candidates , while others were improved by augmenting the key by encoding how

many passes the method has done to resolve collisions.

6.1.1 Rule: Defer Handling Collisions

When trying to create a list of n unique hosts to place the blocks of an object defer

placing blocks that collide to future passes. By only placing blocks that do not collide we

saw a dramatic reduction in the amount of data moved. This idea is built into CRUSH [28]

and when added to Hashchain A.1.1, Consistent A.1.4, and Shuffle A.1.6 we saw a large

reduction in the amount of data movement during migrations.
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6.1.2 Rule: Place Blocks Independently

Compute the placement of each block separately. Consistent A.1.4 moved a lot of data

simply because it placed all the blocks in relation to the first one. If a new node got inserted

between the hashes of the key and original node then all the blocks will need to move as

well. By adding multiple passes, see 6.1.1, and placing blocks based off of the hash of the key

and block index Consistent’ A.1.5 was able to move significantly less data without affecting

how even the data was spread. Our Hashchain’ A.1.2 also improved using this technique.

By spinning off new chains from colliding hashes, the result was block placements became

more independent.

6.1.3 Rule: Encode How Many Passes in Keys for Blocks

We also noticed that in some cases, removing the used nodes before resolving collisions

reduced the amount of data that must be migrated. Our CRUSH’ 4.2 derivative removes all

the nodes used at the end of each pass. This minor change provided around a 2% reduction

in data moved during migrations. In other cases instead of removing nodes it was better

to augment the key for placing a block by encoding how many passes had taken place. In

Hashchain’ A.1.2 each pass tried hashing the hash generated previously.

6.1.4 Applying the Rules

The naive Shuffle method, using a single array shuffle and selecting the first n nodes, is

a prime example of how applying these rules can make a method viable.

In one of our tests Shuffle moved over 98% of all the stored data, including the parity

information. We applied the new rules and created Shuffle’ A.1.6. First every single block

index was used to perform a shuffle of the array. Each round the node at the first index was

considered, if placing the block on this node would cause a collision, we moved on to the

next block index. After each round we would check if another pass was needed. The key for

each block index was the concatenation of the key, block index, and pass count. The result
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was an algorithm that only moved 61% of the data which was just greater than CRUSH and

Hashchain’.

6.2 Future Work

This research merely opens the door to many other questions.

• Understanding why the rules outlined in 6.1 reduced the amount of data moved.

• If we understand why, are there other techniques that would improve migration further

• Further understanding of how these changes affect the distribution of data. Shuffle

A.1.6, when compared to the naive approach, greatly reduced the amount of data

moved in migrations but at the cost of increasing the variance in node usage. Could

including nodes multiple times like Dynamo’s Consistent Hashing make shuffle move

data more efficiently and keep the standard deviation small?

• Experiment 2 Scaling 5.5 showed that the naive ring approach performed the best

when doubling the size of a cluster. While its not practical to only grow or shrink

one’s storage by a factor of two, with further understanding this effect might be usable

to improve Consistent Hashing.

• During our experiments we noted that both CRUSH and CRUSH’ could produce un-

even distributions compared to other methods. This is highlighted in Experiment 2

Scaling 5.5 where increasing the number of nodes by 4% lead to CRUSH providing the

largest standard deviation. Understanding why and what types of migrations are best

avoided would help alleviate headaches of system administrators with full clusters.

• We barely touched Consistent Hashing 3.5. Our implementation of Dyanmo’s approach

[9], Consistent A.1.4, and our improved version, Consistent’ A.1.5, leaves out a lot of

research in this area. Cassandra [15], while based on Dynamo, does not duplicate

nodes around the circle, ECHash [7] uses different circles for each block, and ZHT [16]
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defines equal sized partitions and a maximum number of nodes to help balance the

data distribution.

• All our research is based on the assumption that every node is of equal capacity,

resources, and no failures. While we hope our rules 6.1 hold up in heterogeneous

clusters and with failures these cases still must be tested.

• Our research focuses on distributing a file to a set of nodes. CRUSH and CRUSH’

work on complex hierarchies to describe an organization’s infrastructure. One can

easily define rules to not only keep data on separate nodes but also separate server

racks. CRUSH’ has not been tested against these types of layouts.
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Appendix A

Distribution Strategies

There are many ways to distribute files across a cluster. One could assign hash ranges

to nodes in the cluster and then match filename hashes to the owning node. Another could

arrange their nodes in a ring, each with an index from 0..N , then HASH(name) mod N

could be used to identify the node. Algorithms like straw use a deterministic approach akin

to drawing straws [28]. While these methods are straight forward, using them to distribute

an erasured file while limiting the number of pieces that can coexist on a node can lead to

inefficient data migration later on.

A.1 Methods

In this section we will give an overview of all the different methods we tested to distribute

data across a cluster.

A.1.1 Hashchain

Hashchain was our initial naive attempt at distributing files on our cluster. Like other

DHT systems we used the hash of the filename to create a sequence of hashes dictating

where each block of a file should be stored. For example, when distributing a file broken

into three separate blocks hashchain would produce a sequence like so HASH(filename),

HASH(HASH(filename)), HASH(HASH(HASH(filename))). To uphold the one block

per node policy we ignorantly skipped hashes that cause collisions. Let’s assume in our previ-

ous example the second block’s hash is a collision with the first, therefore the sequence would

become [ HASH(filename), HASH(HASH(HASH(filename))), HASH(HASH(HASH(HASH(filename))))

]. At the time we didn’t consider the ramifications of this decision, and in hindsight it is
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painfully clear how we coupled the position of subsequent blocks with previous ones causing

cascades of movement when hashes get assigned to other nodes.

Algorithm 3 Hashchain Method: Our initial attempt at distributing files across a cluster.
Its poor performance when resizing a cluster is what led us to researching alterations and
alternatives.

HASH2NODE← retrieves what node a hash belongs to
next← HASH(filename)
chain← [HOST2NODE(next)]
while |chain| < n do

next← HASH(next)
node← HOST2NODE(next)
if nodenotinchain then

APPEND(node)
end if

end while
return chain

A.1.2 Hashchain’

We built a simulator to figure out why our Hashchain method was performing so poorly

on cluster resize and to see if we could improve it. We made many modifications to the

algorithm and began studying other methods out there. Hashchain’ is the product of several

iterations to the Hashchain method. Through our simulator we had an easy way to distribute

hundreds of thousands of files quickly and generate statistics about the evenness of data being

distributed and how much data was moved given a cluster layout change.

Hashchain’ works by no longer skipping hashes. Each block’s hash is derived from

the previous block’s hash as before: HASH(filename), HASH(HASH(filename)), ...,

HASH(HASH(...HASH(filename))). To handle collisions we alter the block’s hash by

increment it then creating a new hash chain from that. For example if block 1 collides with

block 0 the next time we try to assign block 1 we use HASH(HASH(HASH(filename) +

1)). This alteration greatly reduces the number of subsequent blocks that must also move

when a cluster change removes a previous collision.
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Note while the algorithm A.1.2 uses filename to distribute files, bucket ids can also be

used which is what we do in our experiments section.

Algorithm 4 Hashchain’ Method: After several iterations this alteration to our Hashchain
method provides similar performance to CRUSH. On collision we spawn new hash chains for
each collision by adding one to the root hash.

HASH2NODE← retrieves what node a hash belongs to
chain← [HASH(filename)]
seen← {HASH2NODE(chain[1])}
revisit← {}
for i← 2 upto n do

chain[i]← HASH(chain[i− 1])
node← HASH2NODE(chain[i])
if node /∈ seen then

seen← seen ∪ node
else

revisit← revisit ∪ {i}
chain[i]← chain[i] + 1

end if
end for
while |revisit| > 0 do

for i← 2 upto n do
if i ∈ revisit then

chain[i]← HASH(chain[i])
node← HASH2NODE(chain[i])
if node /∈ seen then

seen← seen ∪ {node}
revisit← revisit− {i}

end if
end if

end for
end while
return chain

A.1.3 Ring

Arranging all the nodes in a cluster as a circle is a very popular method for distributing

blocks of a file. Like standard Distributed Hash Tables there is only a single hash to calculate,

all blocks after the first are on the next node in a defined order. Amazon’s Dynamo [9] is a

primary example of using this strategy. As we say in 5 it does a decent job in moving data
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on cluster changes however it lags behind other methods except when doubling a cluster in

size. Systems like Dynamo will go a step further and put spacing between nodes to avoid

hot spots when nodes are added and removed. We did not replicate this behavior but stuck

to the basic ring strategy A.1.3.

Algorithm 5 The Ring Method uses a hash of the filename to determine the first node to
place the file, then iterates through nodes in a predefined order till all blocks are placed. A
simple AFTER function would sort the hosts, find the nodes index, then add one and get
the modulo from number of nodes.

HASH2NODE← retrieves what node a hash belongs to
next← HOST2NODE(HASH(filename))
chain← [next]
for i = 2; i ≤ n; i+ = 1 do

next← AFTER(next)
APPEND(chain, next)

end for
return chain

A.1.4 Consistent

One of drawbacks of Ring A.1.3 in distributed clusters is the dependent relationship be-

tween number of nodes and where buckets are stored. By using HASH(bucketid)mod|nodes|

the simple addition or subtraction of nodes change the resulting index for lots of buckets.

To address this issue Consistent Hashing [13] was introduced. In simple terms instead of

assigning each node a range of hashes it is responsible we hash an identifier of a node to a

spot on a circle, once all nodes are placed around the circle we can hash the key of an object

to store and that key will be placed on the next node that hashes to a value ≥ to the key’s

hash. If the key’s hash is ¿ than all node hashes it wraps around the the first server.

A side effect of using a hash to place nodes in the circle is one cannot guarantee each node

will have an equal share of the circle assigned to it. This can lead to the standard deviation

of data stored being quite high. Another effect is if a node is lost the new node to receive

the data will be overloaded since all recovery will happen in a specific part of the circle. To

address these issues one can include nodes multiple times in the circle, DynamoDB [9] calls
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these virtual hosts. Mapping nodes multiple times reduces the variance between how much

of the circle each node is responsible for and it spreads the load on recovery when a node

is removed from the circle since a node is no longer followed by a single node. DynamoDB

also uses virtual hosts as a way to handle heterogeneous capacities, smaller nodes have fewer

placements in the circle.

The pseudo code for Consistent Hashing is available at A.1.4. It is a basic implementa-

tion that uses the hash of the key and the block index to determine where on the circle to

start. Any node entry that points to an existing node will simply be skipped. We did try a

derivative where each block index had its own circle, nodes were placed using the block index

in the hash, however this performed worse than the basic strategy outlined above. Other

alterations exist but have not been tested in our simulator. ECHash [7] for example attempts

to specialize the approach for storing erasure coding data using multiple circles, called hash

rings. Another project ZHT [16] places places blocks both clockwise and counterclockwise

around the key’s hash.

A.1.5 Consistent’

Just like for CRUSH’ and Hashchain’ we can apply our rules to the basic consistent

hashing algorithm to reduce how much data is moved. We found that by placing each block

by hashing the key with the block id and then finding the first unused node by walking

around the ring greatly reduced the cost. Algorithm A.1.5 shows these changes.

A.1.6 Shuffle

The simulator made it very easy to test different ideas. A silly one to consider is a

simple shuffle routine. Using deterministic pseudo random shuffle we could distribute files

by placing all the hosts in an array, sorting, then shuffling in a way that uses the hash of

the filename for randomness. This idea took several iterations. We tried setting the random

number generator seed to the hash value, with poor results. Also just shuffling the array once
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Algorithm 6 Consistent Hashing: This basic algorithm maps both nodes and keys to a
circle and associates keys with the next node that is greater than or equal to the key’s hash.
Generates an n length list of nodes to store all the blocks mapped to the key. Nodes are
placed around the ring m times to minimize hot spots on failures and more evenly distribute
the data between the nodes. In testing nodes had to be placed around the circle over 100
times to get close to the standard deviation of other methods.

ring ← []
for node in nodes do

for i← 1 upto m do
APPEND(ring, (HASH(node + i), node))

end for
end for
SORT (ring, func(a, b){return a[0] < b[0]})
index← BINARY SEARCH(ring,HASH(key))
node← ring[index][1]
chain← [node]
used← {node}
for i← 2 upto n do

do
index← index + 1 mod |ring|

while ring[index][1] ∈ used
node← ring[index][1]
APPEND(chain, node)
used← used ∪ {node}

end for
return chain
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Algorithm 7 Consistent’: Derivative of the basic Consistent Hashing algorithm however
each block is placed off of a different hash instead of walking around the ring. We found that
this simple change greatly reduced the amount of data moved when using the placement
algorithm described by DynamoDB.

ring ← []
for node in nodes do

for i← 1 upto m do
APPEND(ring, [HASH(node + i), node])

end for
end for
SORT (ring, func(a, b){return a[0] < b[0]})
chain← []
used← {}
for i← 1 upto n do

hash← HASH(key + i)
index← BINARY SEARCH(ring, hash)
while ring[index][1] ∈ used do

index← index + 1 mod |ring|
end while
node← ring[index][1]
APPEND(chain, node)
used← used ∪ {node}

end for
return chain
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and taking the first n items moved an exorbitant amount of data. We found that generating

the hash with the filename and block index, shuffling a sorted array, and selecting the head

host was enough to give comparable results to other methods. A downside to this approach

would be trying to apply a weight to certain nodes which have larger capacities over smaller

nodes, perhaps larger nodes could be duplicated in the array.

Our shuffle routine was derived from the Fisher-Yates shuffle algorithm

Algorithm 8 The Shuffle Method uses the hash to randomly shuffle an ordered array of
hosts. While there are many drawbacks it was interesting to see that it was able to effi-
ciently move blocks like CRUSH and Hashchain’. However the nodes were the most uneven
compared to all other methods.

procedure shuffle(array, seed)
for i← |array| downto 2 do

j ← FLOOR((HASH(seed, i) mod 65536)÷ 65535)× i) + 1
tmp← array[i]
array[i]← array[j]
array[j]← tmp

end for
end procedure
hosts← array of all hosts sorted
used← {}
revisit← {1..n}
chain← []
while |revisit| > 0 do

for i← 1 to n do
if i ∈ revisit then

arr ← CLONE(hosts)
SHUFFLE(arr, CONCAT (filename, i))
host← arr[1]
if host /∈ used then

chain[i]← host
used← used ∪ {host}
revisit← revisit− {i}

end if
end if

end for
end while
return chain
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Appendix B

libcrush: Patchfile

For our experimentation we used libcrush available at https : //github.com/ceph/libcrush/tree/de2e859acd5e52b6db3cf8cde08834e09b8d4ead.

Below is the patch file generated from our modifications to their choose independent algo-

rithm, used when distributing Ceph Placement Groups to store data using erasure coding.

d i f f −−g i t a/ crush /mapper . c b/ crush /mapper . c

index c71b6140 . . 5 6587 f12 100644

−−− a/ crush /mapper . c

+++ b/ crush /mapper . c

@@ −631 ,6 +631 ,30 @@ r e j e c t :

return outpos ;

}

+#inc lude ” bu i l d e r . h”

+stat ic struct crush bucket ∗ c ru sh bucke t c l one ( const struct crush bucket ∗bucket )

+{

+ u32 i ;

+ switch ( bucket−>a lg ) {

+ case CRUSH BUCKET STRAW2: {

+ struct crush bucket s t raw2 ∗b = malloc ( s izeof (∗b) ) ;

+ ∗b = ∗ ( ( const struct crush bucket s t raw2 ∗) bucket ) ;

+ b−>h . items = NULL;

+ b−>i t em weights = NULL;

+ i f (b−>h . s i z e ) {

+ b−>h . items = malloc ( s izeof (∗b−>h . items ) ∗ b−>h . s i z e ) ;

+ b−>i t em weights = malloc ( s izeof (∗b−>h . items ) ∗ b−>h . s i z e ) ;

+ memcpy(b−>h . items , bucket−>items , s izeof (∗ bucket−>i tems ) ∗ bucket−>s i z e ) ;

+ memcpy(b−>i tem weights ,

+ ( ( const struct crush bucket s t raw2 ∗) bucket )−>i tem weights ,

+ s izeof (∗b−>i t em weights ) ∗ bucket−>s i z e ) ;

+ }

+ return &b−>h ;

+ }

+ default :

+ return NULL;

+ }

+}

/∗∗

∗ c r u s h c h oo s e i n d e p : a l t e r n a t i v e bread th− f i r s t p o s i t i o n a l l y s t a b l e mapping

@@ −649,7 +673 ,7 @@ s t a t i c vo i d c r u s h c h oo s e i n d e p ( cons t s t r u c t crush map ∗map ,

i n t pa ren t r ,
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cons t s t r u c t c r u s h c h o o s e a r g ∗ c hoo s e a r g s )

{

− cons t s t r u c t c r u s h b u c k e t ∗ in = buc k e t ;

+ s t r u c t c r u s h b u c k e t ∗ in ;

i n t endpos = outpos + l e f t ;

i n t rep ;

uns i gned i n t f t o t a l ;

@@ −662,6 +686 ,11 @@ s t a t i c vo i d c r u s h c h oo s e i n d e p ( cons t s t r u c t crush map ∗map ,

d p r i n t k (”CHOOSE%s INDEP buck e t %d x %d outpos %d numrep %d\n” , r e c u r s e t o l e a f ? ” LEAF” : ”” ,

bucke t−>id , x , outpos , numrep ) ;

+ /∗ a f t e r each pass we append a l l t h e i d s t h a t were appended to sw i p e u s ed . ∗/

+ int used count = 0 ;

+ int used [ 2 5 6 ] ;

+ i f ( numrep > 256) abort ( ) ;

+

/∗ i n i t i a l l y my r e s u l t i s unde f ined ∗/

for ( rep = outpos ; rep < endpos ; rep++) {

out [ rep ] = CRUSH ITEM UNDEF;

@@ −669 ,6 +698 ,9 @@ stat ic void c rush choose indep ( const struct crush map ∗map,

out2 [ rep ] = CRUSH ITEM UNDEF;

}

+ /∗ a f t e r each swipe / pass we remove i t ems t h a t have been used ∗/

+ in = crush bucke t c l one ( bucket ) ;

+

for ( f t o t a l = 0 ; l e f t > 0 && f t o t a l < t r i e s ; f t o t a l++) {

#i f d e f DEBUG INDEP

i f ( out2 && f t o t a l ) {

@@ −684 ,12 +716 ,21 @@ stat ic void c rush choose indep ( const struct crush map ∗map,

dpr intk ( ”\n” ) ;

}

#end i f

+

+ dpr intk ( ” item count : %u\n” , in−>s i z e ) ;

+ int u ;

+ for (u = 0 ; u < used count ; ++u) {

+ dprintk ( ” removing item %u from bucket\n” , used [ u ] ) ;

+ crush bucket remove i tem (NULL, in , used [ u ] ) ;

+ }

+ used count = 0 ;

+ dpr intk ( ” item count : %u\n” , in−>s i z e ) ;

+

+

for ( rep = outpos ; rep < endpos ; rep++) {

i f ( out [ rep ] != CRUSH ITEM UNDEF)

continue ;

− in = bucket ; /∗ i n i t i a l b u c k e t ∗/

−

/∗ choose th rough i n t e r v e n i n g b u c k e t s ∗/

for ( ; ; ) {

/∗ note : we base t h e cho i c e on the p o s i t i o n
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@@ −700 ,16 +741 ,15 @@ s t a t i c vo i d c r u s h c h oo s e i n d e p ( cons t s t r u c t crush map ∗map ,

∗ t h i s w i l l i n v o l v e more d e v i c e s in data

∗ movement and tend to d i s t r i b u t e t h e l oad .

∗/

− r = rep + parent r ;

+ // r = rep + pa r en t r ;

+ r = rep ;

− /∗ be c a r e f u l ∗/

− i f ( in−>a lg == CRUSH BUCKET UNIFORM &&

− in−>s i z e % numrep == 0)

− /∗ r ’=r+(n+1)∗ f t o t a l ∗/

− r += (numrep+1) ∗ f t o t a l ;

− else

− /∗ r ’ = r + n∗ f t o t a l ∗/

− r += numrep ∗ f t o t a l ;

+ /∗

+ ∗ crush s k i p s ahead n space s to p l a c e b l o c k s t h a t c o l l i d e or would go to

+ ∗ down/ out o f map i t ems . I n s t e ad by removing t h o s e i t ems each swipe we

+ ∗ p ro v i d e t h e same guaran tee t h a t a d i s k coming back on l i n e doesn ’ t

+ ∗ cause a l l o t h e r b l o c k s f o l l o w i n g to need ad jus tment as w e l l .

+ ∗/

/∗ bu c k e t choose ∗/

i f ( in−>s i z e == 0) {

@@ −794 ,6 +834 ,7 @@ stat ic void c rush choose indep ( const struct crush map ∗map,

/∗ yay ! ∗/

out [ rep ] = item ;

l e f t −−;

+ used [ used count++] = item ;

break ;

}

}

@@ −824 ,6 +865 ,7 @@ stat ic void c rush choose indep ( const struct crush map ∗map,

dpr intk ( ”\n” ) ;

}

#end i f

+ crush de s t roy bucke t ( in ) ;

}
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Appendix C

Source Code

The source code for our simulator is provided below. One can run a test with bash like so

catfiles.txt | ./placement.pl < (./gentest.pl25301620)hashchain−prime1024 | ./analyze.pl.

This command will read all the files and their sizes from files.txt and distribute them on a

cluster of 25 nodes, files will be split into 16 equal parts and 4 erasure blocks will be added,

meaning each file is stored in 20 blocks total. Finally we use the hashchain − prime to

distribute 1024 buckets.

We provide the following files below. The gentest.py script C.1 is a Python 3 script

which builds the before and after clusters, evenly distributing the available hashes for the

Hashchain and Hashchain’ algorithms. The two primary scriops placement.pl C.2 and crush

application C.3 output the size of each block and how that block will be migrated between the

two clusters. The analyze.pl C.4 script reads the output of either placement.pl or ceph.cpp

and creates a report with basic statistics. Finally common.pl C.5 holds the implementations

of all the methods handled by placement.pl.

C.1 gentest.py

This script was made to make building tests easier. It evenly divides a 32bit hash space

between M nodes, then resizes the cluster to N nodes by reassigning hashes to the new nodes.

It was used with Python 3.8 and can be run like ./gentest.py25301620 where 25 is starting

number of nodes in the cluster, 30 is the number of nodes to migrate to, 16 is how many

blocks we will split files into, and 20 is the number of blocks each file will be stored with in

the cluster, including erasure coding data.

#!/ usr / b in / env python3
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# Copyr i gh t 2019 United S t a t e s Government as r e p r e s e n t e d by t h e Admin i s t ra to r

# o f t h e Na t i ona l Aeronau t i c s and Space Admin i s t ra t i on . A l l R i gh t s Reserved .

import copy , random , sys , uuid

def dump(varname , m) :

print ( f ”our %{varname} = (” )

for j , nb in enumerate (m. items ( ) ) :

node , buckets = nb

#”node −000” , [ [0 x00000000 , 0 x08d3dcb0 ] ] ,

print ( f ’ ”{node}” ’ , end=” , [ ” )

for i , b in enumerate ( buckets ) :

i f i != 0 :

print ( ” , ” , end=”” )

print ( ” [ 0 x%08x , 0 x%08x ] ” % b , end=”” )

i f ( j + 1) < len (m) :

print ( ” ] , ” )

else :

print ( ” ] ” )

print ( ” ) ; ” )

def bucke t s i z e (b) :

return (b [ 1 ] − b [ 0 ] ) + 1

def dumpsizes (m) :

t o t a l = 0

for node , buckets in m. items ( ) :

sum = 0

for b in buckets :

sum += bucke t s i z e (b)

print ( f ’{node } : {sum} ’ )

t o t a l += sum

print ( ” t o t a l : ” , t o t a l )

def va l i d a t e (m) :

””” make sure t h a t a l l b u c k e t s e x i s t in t h e map ”””

f i nd = 0

while ( f i nd + 1) < (1 << 32) :

found = False

for buckets in m. va lues ( ) :

for b in buckets :

i f b [ 0 ] == f ind :

found = True

f i nd = b [ 1 ] + 1

i f not found :

raise Exception ( ”miss ing bucket 0x%08x” % f ind )

# make sure we have t h e l a s t v a l u e

for bucket in m. va lues ( ) :

for b in buckets :

i f b [ 1 ] == 0 x f f f f f f f f :

return True

raise Exception ( ”miss ing bucket 0 x f f f f f f f f ” )

def dumpweights ( numnodes ) :

# s e t t h e seed to make r e p e a t a b l e

gen = random .Random(111)

print ( ”our %HOSTS = (” )
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for i in range (1 , numnodes + 1) :

raw = gen . g e t randb i t s (8 ∗ 16)

i f i > 1 :

print ( ” ,\n” , end=”” )

print ( ’ ”node−%03d” ’ % i , ’ , [ ” ’ , hex( raw ) [ 2 : ] , ’ ” , 1 . 0 ] ’ , sep=”” , end=”” )

print ( ”\n) ; ” )

def setup (n) :

””” c r e a t e a d i c t o f a l l t h e h o s t s c a l c u l a t e b u c k e t s per node and the remainder g i v en n nodes ”””

nodes = { ”node−%03d” % host : l i s t ( ) for host in range (1 , n + 1) }

bpn = int ( (1 << 32) / n)

remainder = (1 << 32) % n

bookmark = 0

for k , v in nodes . i tems ( ) :

# take 1 o f f o f bpn as we are 0 based and the ranges are i n c l u s i v e

s tep = bpn − 1

i f remainder > 0 :

s tep += 1

remainder −= 1

v . append ( ( bookmark , bookmark + step ) )

bookmark += step + 1

return nodes

def addto ( before , n) :

””” make t he map n nodes ”””

nodes = copy . deepcopy ( be f o r e )

bpn = int ( (1 << 32) / n)

remainder = (1 << 32) % n

new = set ( )

for i in range ( len ( nodes ) + 1 , n + 1) :

node = ”node−%03d” % i

new . add ( node )

nodes [ node ] = l i s t ( )

# the s e t o f b u c k e t ranges a v a i l a b l e f o r us to g i v e to t h e new nodes

pool = l i s t ( )

for node , buckets in nodes . i tems ( ) :

i f node not in new :

# sh r i n k e x i s t i n g b u c k e t s

# ASSUMES on ly a s i n g l e bu c k e t per node

s tep = bpn − 1

i f remainder > 0 :

s tep += 1

remainder −= 1

sta r t , end = buckets [ 0 ]

pool . append ( ( s t a r t + step + 1 , end ) )

buckets [ 0 ] = ( s ta r t , s t a r t + step )

for node , buckets in nodes . i tems ( ) :

i f node in new :

count = bpn

i f remainder > 0 :

count += 1

remainder −= 1

while count > 0 :
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next = pool . pop (0)

n ex t s i z e = bucke t s i z e (next )

# pr i n t ( count , ” vs ” , n e x t s i z e )

i f nex t s i z e == count :

# pr i n t (”==”)

buckets . append (next )

count = 0

e l i f nex t s i z e > count :

# pr i n t (”<”)

# p r i n t (” r educ ing %08x ,%08x to %08x ,%08x” %(nex t [ 0 ] , nex t [ 1 ] , nex t [ 0 ] + count + 1 ,

nex t [ 1 ] ) )

buckets . append ( (next [ 0 ] , next [ 0 ] + ( count − 1) ) )

pool . i n s e r t (0 , (next [ 0 ] + count , next [ 1 ] ) )

# pr i n t ( b u c k e t s i z e ( ( nex t [ 0 ] + count , nex t [ 1 ] ) ) , ”−−−−−−−−−−−−”, count )

count = 0

else :

# pr i n t (”>”)

buckets . append (next )

count −= nex t s i z e

return nodes

args = sys . argv [ 1 : ]

i f len ( args ) != 4 :

print ( ”Usage : genmap . py FROM TO K M”)

print ( ” Ex : genmap . py 25 26 20 25” )

sys . e x i t (1 )

be f o r e = setup ( int ( args [ 0 ] ) )

try :

v a l i d a t e ( be f o r e )

except Exception as e :

print ( ” i n v a l i d be f o r e map : ” , e )

dump( ” be fo r e ” , be f o r e )

dumpsizes ( a f t e r )

sys . e x i t (1 )

a f t e r = addto ( before , int ( args [ 1 ] ) )

try :

v a l i d a t e ( a f t e r )

except Exception as e :

print ( ” i n v a l i d a f t e r map : ” , e )

dump( ” a f t e r ” , a f t e r )

dumpsizes ( a f t e r )

sys . e x i t (1 )

print ( f ”our $K = { args [ 2 ] } ; ” )

print ( f ”our $M = { args [ 3 ] } ; ” )

print ( ”our $ERASURE THRESHOLD = 0 ; ” )

dumpweights ( int ( args [ 1 ] ) )

dump( ”FROM” , be fo r e )

dump( ”TO” , a f t e r )
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C.2 placement.pl

This is the Perl script that calculates where blocks of files should be stored and where

they are to be moved. The files are piped into the script, one per line, and file size followed

by the path to the file. Only the last component of the path is used to place files, therefore

the paths don’t have to be exact. To distribute files it uses the number of buckets and

method specified, from the command line, to distribute the buckets, then simply hashes

and uses modulo to place files in a bucket. This script relies on two other script files,

the output of gentest.py C.1 and common.pl C.5. The former provides the hashing layout

for the Hashchain family of methods while the latter holds the implementations of all the

distribution methods.

#!/ usr / b in / env p e r l

# Copyr i gh t 2019 United S t a t e s Government as r e p r e s e n t e d by t h e Admin i s t ra to r

# o f t h e Na t i ona l Aeronau t i c s and Space Admin i s t ra t i on . A l l R i gh t s Reserved .

use s t r i c t ;

use warnings ;

use F i l e : : Basename ;

use Data : : Dumper ;

# in c l u d e s a l l t h e s t r a t e g i e s and hash f u n c t i o n s

require ”common . p l ” ;

# Usage : pgp lacement . p l CLUSTER. p l METHOD PGNUM < f i l e s

#

# CLUSTER. p l p e r l s c r i p t t h a t d e f i n e s t h e r e q u i r e d v a r i a b l e s and l a y s out

# the c l u s t e r and how i t ’ s go ing to change .

# METHOD name o f t h e d i s t r i b u t i o n method to use

# PGNUM op t i ona l , Enab le t h i s many Placement Groups . De f au l t : 0 .

# <STDIN> 1 f i l e per l i n e o f s t d i n o f format ‘ SIZE PATH‘

# gene ra t e a c sv / t s v o f where a l l f i l e b l o c k s go and how much space each b l o c k

# i s t a k i n g up .

# de f i n e d in common . p l

our %METHODS;

our %HOST METHODS;

our %HASHES;

$Data : : Dumper : : Sortkeys = 1 ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Required Vars

# t h e s e v a r i a b l e s must be d e f i n e d in t h e CLUSTER. p l which d e s c r i b e s t h e c l u s t e r

# l a y o u t we are t e s t i n g .

# hash o f { hostname −> [ BUCKETS, . . . ] }
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our %FROM;

our %TO;

our $K;

our $M;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− BEGIN SCRIPT

print ”# ” . join ( ” ” , @ARGV) . ”\n” ;

print ”# load ing $ARGV[ 0 ] \ n” ;

require $ARGV[ 0 ] ;

my $method = $ARGV[ 1 ] ;

i f ( exists $METHODS{$method}) {

print ”# Method : $ARGV[ 1 ] \ n” ;

} else {

print ”unknown d i s t r i b u t i o n method : ’$ARGV[ 1 ] ’ \ n” ;

exit 1 ;

}

our $PGNUM = 0;

i f ( scalar (@ARGV) > 2) {

print ”# PGNUM: $ARGV[ 2 ] \ n” ;

$PGNUM = $ARGV[ 2 ] ;

}

our $HASH FUNCTION = \&hash murmur3 ;

my %from index = ( ) ;

&bu i l d index (\%from index , \%FROM) ;

my %to index = ( ) ;

&bu i l d index (\%to index , \%TO) ;

# { pgnum => [ hos t0 , hos t1 , hos t2 , . . , hostm ] }

my @from = &d i s t r i b u t e p g s (\%from index , $PGNUM, $M, $method ) ;

my @to = &d i s t r i b u t e p g s (\%to index , $PGNUM, $M, $method ) ;

while (<STDIN>) {

$ =˜ /ˆ(\d+) (.+) $ / ;

my $ s i z e = int ( $1 ) ;

my $path = basename $2 ;

my $bs i z e = int ( $ s i z e / $K) ;

my $pg = unpack( ”Q” , $HASH FUNCTION−>($path ) ) % $PGNUM;

for my $bid (0 . . $M − 1) {

my $pre = $from [ $pg]−>[$bid ] ;

my $post = $to [ $pg]−>[$bid ] ;

print ”$path , $bid , $pre , $post , $bs ize ,$M\n” ;

}

}

exit 0 ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− END SCRIPT

sub d i s t r i b u t e p g s {

my ( $di s t , $pgnum , $m, $ s t ra t egy ) = @ ;
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my @pgs = ( ) ;

for my $ i (0 . . $pgnum − 1) {

# pr i n t STDERR ” d i s t r i b u t i n g pg $ i $m times w i th $ s t r a t e g y \n ” ;

my $chain = $METHODS{ $ s t ra t egy}−>($di s t −>{buckets } , $m, ” $ i ” ) ;

# check i f t h e cha in has hostnames or hashes in i t

i f ( exists $HOST METHODS{ $ s t ra t egy }) {

push @pgs , $chain ;

} else {

my @hosts = ( ) ;

for my $ l i nk (@{$chain }) {

push @hosts , &l o c a t e ( $di s t −>{buckets } , $ l i nk ) ;

}

push @pgs , \@hosts ;

}

}

return @pgs ;

}

sub bu i ld index {

my ( $ idx , $ s r c ) = @ ;

$ idx−>{type} = ” l i n k ” ;

$ idx−>{buckets} = {} ;

$ idx−>{pgs} = {} ;

for my $hostname (keys %{$ s r c }) {

for my $bucket (@{$src−>{$hostname }}) {

$ idx−>{buckets}−>{pack ( ”LL” , @{$bucket })} = $hostname ;

}

}

}

# l o c a t e which ho s t based o f f o f t h e bu c k e t mappings

sub l o c a t e {

my ( $di s t , $ l i nk ) = @ ;

my $bucket = unpack ”L>” , $ l i nk ;

for my $range (keys %$d i s t ) {

my ( $begin , $end ) = unpack( ”LL” , $range ) ;

return $di s t −>{$range} i f ( $bucket >= $begin and $bucket <= $end ) ;

}

die ” cannot l o c a t e host f o r bucket ” . sprintf ( ”%08x” , $bucket ) ;

}

C.3 crush.cpp

The input and output format to this application is the same as placement.pl C.2 however

instead of using distribution methods defined in common.pl C.5 this application uses an

installed version of libcrush. Depending on the compilation of the library this application

will test placement of input files using CRUSH or CRUSH ′ if B has been applied to libcrush.

The other dependency is a simple MurmurHash3 C implementation available on GitHub.
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/∗

∗ Copyr i gh t 2019 United S t a t e s Government as r e p r e s en t e d by t h e Admin i s t ra to r

∗ o f t h e Na t i ona l Aeronau t i c s and Space Admin i s t r a t i on . A l l R i gh t s Reserved .

∗/

extern ”C”{

// l i b c r u s h a v a i l a b l e a t h t t p s : // g i t h u b . com/ ceph / l i b c r u s h

#include <crush / bu i l d e r . h>

#include <crush /hash . h>

#include <crush /mapper . h>

// murmur3 . h and murmur3 . c a v a i l a b l e a t h t t p s : // g i t h u b . com/ Pe t e r S c o t t /murmur3

#include ”murmur3 . h”

}

#include <c s td io>

#include <c s td l i b>

#include <s t r ing>

#include <vector>

#include <unordered map>

// h t t p s : // ceph . i o / geen−c a t e g o r i e /crushmap−example−of−a−h i e r a r c h i c a l −c l u s t e r −map/

// ROOT

// HOST1 HOST2 HOST3 HOST4 HOST5 . . .

enum {

TYPE DEFAULT = 0 , TYPE ROOT=1, TYPE HOST=2

} ;

struct input {

std : : s t r i n g name ;

s i z e t s i z e ;

input ( ) {}

input ( std : : s t r i n g l i n e )

{

std : : s t r i n g : : s i z e t y p e i ;

l i n e . pop back ( ) ; // remove new l ine

i = l i n e . f i nd ( ’ ’ ) ;

s i z e = s t r t o l ( l i n e . subs t r (0 , i ) . c s t r ( ) , nu l lp t r , 10) ;

name = l i n e . subs t r ( i + 1) ;

}

} ;

stat ic

struct crush map ∗build map ( int ∗ ru l e id ,

int hostcount ,

int blockcount ) ;

stat ic

void d i s t r i b u t e ( std : : vector<std : : vector<int>>& pg2host ,

int hostcount ,

int m,

int pgcount ) ;

stat ic

void p lace ( const char ∗ pre f i x ,

const std : : vector<std : : vector<int>>& pg2host ,
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const std : : vector<input>& f i l e s ,

int k ,

int m,

int pgcount ) ;

stat ic

void placeboth ( const std : : vector<std : : vector<int>>& from ,

const std : : vector<std : : vector<int>>& to ,

FILE ∗ in ,

int k ,

int m,

int pgcount ) ;

// ca t f i l e s . t x t | crush FROM TO K M

int main ( int argc , const char ∗argv [ ] )

{

int frommapid , tomapid ;

struct crush map ∗frommap , ∗tomap ;

long from , to , k , m, pg ;

i f ( argc < 6)

{

f p r i n t f ( s tder r , ”Usage : crush FROM TO K M PG < f i l e s . txt \n\n” ) ;

f p r i n t f ( s tder r , ” FROM # of host s in the c l u s t e r frommap\n” ) ;

f p r i n t f ( s tder r , ” TO # of host s in c l u s t e r tomap\n” ) ;

f p r i n t f ( s tder r , ” K # of b locks the f i l e i s broken in to \n” ) ;

f p r i n t f ( s tder r , ” M # of b locks to d i s t r i b u t e with straw2\n” ) ;

f p r i n t f ( s tder r , ” PG # of pgs to d i s t r i b u t e \n” ) ;

return 1 ;

}

from = s t r t o l ( argv [ 1 ] , nu l lp t r , 10) ;

to = s t r t o l ( argv [ 2 ] , nu l lp t r , 10) ;

k = s t r t o l ( argv [ 3 ] , nu l lp t r , 10) ;

m = s t r t o l ( argv [ 4 ] , nu l lp t r , 10) ;

pg = s t r t o l ( argv [ 5 ] , nu l lp t r , 10) ;

std : : vector<std : : vector<int>> f romdist , t o d i s t ;

f p r i n t f ( s tder r , ” from : d i s t r i b u t i n g pgs\n” ) ;

d i s t r i b u t e ( fromdist , from , m, pg ) ;

f p r i n t f ( s tder r , ” to : d i s t r i b u t i n g pgs\n” ) ;

d i s t r i b u t e ( tod i s t , to , m, pg ) ;

#i f 1

f p r i n t f ( s tder r , ” p l a c ing f i l e s \n” ) ;

p laceboth ( fromdist , t od i s t , s td in , k , m, pg ) ;

#else

char ∗ l i n e ;

s i z e t s i z e ;

s s i z e t r ;

std : : vector<input> f i l e s ;

l i n e = nu l l p t r ;

s i z e = 0 ;

while ( ( r = g e t l i n e (& l in e , &s i z e , s td in ) ) >= 0)

{
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f i l e s . emplace back ( l i n e ) ;

}

f p r i n t f ( s tder r , ” from : p lac ing f i l e s \n” ) ;

p lace ( ” from” , fromdist , f i l e s , k , m, pg ) ;

f p r i n t f ( s tder r , ” to : p l a c ing f i l e s \n” ) ;

p lace ( ” to ” , t od i s t , f i l e s , k , m, pg ) ;

#endif

return 0 ;

}

void d i s t r i b u t e ( std : : vector<std : : vector<int>>& pg2host ,

int hostcount ,

int m,

int pgcount )

{

int ru leno ;

struct crush map ∗map ;

map = build map(&ruleno , hostcount , m) ;

// s e t up t he workspace , make very l a r g e f o r no good reason

char cwin [ c ru sh work s i z e (map , 256) ] ;

c ru sh in i t wo rk spac e (map , cwin ) ;

// ∗ − we i gh t [ l e a f ] == 0x00000 == 0.0 a lways i gno r e

// ∗ − we i gh t [ l e a f ] == 0x10000 == 1.0 never i gno r e

// ∗ − we i gh t [ l e a f ] == 0x08000 == 0.5 i gno r e 50% o f t h e t ime

// ∗ − we i gh t [ l e a f ] == 0x04000 == 0.25 i gno r e 75% o f t h e t ime

std : : vector< u32> weights (5000 , 0x10000 ) ;

for ( int pg = 0 ; pg < pgcount ; ++pg )

{

std : : vector<int> r e s u l t (m, −1) ;

c r u sh do ru l e (map , ruleno , pg , r e s u l t . data ( ) , m,

weights . data ( ) , weights . s i z e ( ) , cwin , nu l l p t r ) ;

pg2host . push back ( std : : move( r e s u l t ) ) ;

}

c ru sh de s t roy (map) ;

}

void p lace ( const char ∗ pre f i x ,

const std : : vector<std : : vector<int>>& pg2host ,

const std : : vector<input>& f i l e s ,

int k ,

int m,

int pgcount )

{

for (auto& f i l e : f i l e s )

{

unsigned f i d , bid ;

MurmurHash3 x86 32 ( f i l e . name . c s t r ( ) , f i l e . name . l ength ( ) , 111 , &f i d ) ;

bid = 0 ;

for ( int host : pg2host [ f i d % pgcount ] )

{

p r i n t f ( ”%s ,%u , node−0%02d,%s ,%zu ,%d,−\n” ,
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f i l e . name . c s t r ( ) , bid++, host + 6 , p r e f i x , f i l e . s i z e / k , m) ;

}

}

}

void placeboth ( const std : : vector<std : : vector<int>>& from ,

const std : : vector<std : : vector<int>>& to ,

FILE ∗ in ,

int k ,

int m,

int pgcount )

{

char ∗ l i n e ;

s i z e t s i z e ;

s s i z e t r ;

l i n e = nu l l p t r ;

s i z e = 0 ;

p r i n t f ( ”#f i lename , bid , from , to , b l o ck s i z e ,m\n” ) ;

while ( ( r = g e t l i n e (& l in e , &s i z e , in ) ) >= 0)

{

input f i l e ( l i n e ) ;

unsigned f i d , bid ;

MurmurHash3 x86 32 ( f i l e . name . c s t r ( ) , f i l e . name . l ength ( ) , 111 , &f i d ) ;

auto& fromchain = from [ f i d % pgcount ] ;

auto& tocha in = to [ f i d % pgcount ] ;

for ( int bid = 0 ; bid < fromchain . s i z e ( ) ; ++bid )

{

p r i n t f ( ”%s ,%u , node−0%02d , node−0%02d,%zu ,%d\n” ,

f i l e . name . c s t r ( ) ,

bid ,

fromchain [ bid ] + 6 ,

tocha in [ bid ] + 6 ,

f i l e . s i z e / k ,

m) ;

}

}

}

struct crush map ∗build map ( int ∗ ru l e id , int hostcount , int blockcount )

{

struct crush map ∗map ;

struct crush bucket ∗bucket , ∗ root ;

struct c r u sh ru l e ∗ r u l e ;

int i , rootno , bno ;

map = c ru sh c r e a t e ( ) ;

int devid ;

int w = 0x10000 ;

root = crush make bucket (map , CRUSH BUCKET STRAW2, CRUSH HASH RJENKINS1, TYPE ROOT, 0 , NULL, NULL) ;

crush add bucket (map , 0 , root , &rootno ) ;
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for ( devid = 0 ; devid < hostcount ; ++devid )

{

bucket = crush make bucket (map , CRUSH BUCKET STRAW2, CRUSH HASH RJENKINS1, TYPE HOST, 1 , &devid ,

&w) ;

crush add bucket (map , 0 , bucket , &bno ) ;

c rush bucket add i tem (map, root , bno , w) ;

}

c r u s h f i n a l i z e (map) ;

// //////////////////////////////////////////////////////////////////////////

r u l e = crush make ru le (3 , 0 , 0 , blockcount , blockcount ) ;

c r u s h r u l e s e t s t e p ( ru le , 0 , CRUSH RULE TAKE, rootno , 0) ;

c r u s h r u l e s e t s t e p ( ru le , 1 , CRUSH RULE CHOOSELEAF INDEP, 0 , TYPE HOST) ;

c r u s h r u l e s e t s t e p ( ru le , 2 , CRUSH RULE EMIT, 0 , 0) ;

∗ r u l e i d = crush add ru l e (map , ru le , −1) ;

return map ;

}

C.4 analyze.pl

This analysis script reads the output of placement.pl C.2 or crush.cpp C.3 and generates

basic stats about how data will be moved. Datapoints provided include the total number

of bytes stored in the cluster (including erasure coding overhead), the number of blocks

and bytes moved, the amount of data moved to existing nodes, and basic statistics and the

standard deviation of bytes stored per node before and after the migration.

#!/ usr / b in / env p e r l

# Copyr i gh t 2019 United S t a t e s Government as r e p r e s e n t e d by t h e Admin i s t ra to r

# o f t h e Na t i ona l Aeronau t i c s and Space Admin i s t ra t i on . A l l R i gh t s Reserved .

use s t r i c t ;

use warnings ;

use Data : : Dumper ;

use F i l e : : Basename qw( basename ) ;

use L i s t : : U t i l qw(min max sum) ;

# Usage : head f i l e s | . / p lacement . p l OPTIONS | . / ana l y z e . p l

# #f i l ename , b id , from , to , b l o c k s i z e ,m

# MOBRGB. A2000269 .1605 .005 .2006269090714 . jpg , 0 , node −009,node −009 ,40531 ,20

# MOBRGB. A2000269 .1605 .005 .2006269090714 . jpg , 1 , node −020,node −020 ,40531 ,20

# MOBRGB. A2000269 .1605 .005 .2006269090714 . jpg , 2 , node −024,node −028 ,40531 ,20

# MOBRGB. A2000269 .1605 .005 .2006269090714 . jpg , 3 , node −016,node −016 ,40531 ,20

# MOBRGB. A2000269 .1605 .005 .2006269090714 . jpg , 4 , node −006,node −034 ,40531 ,20

# . . .
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$Data : : Dumper : : Sortkeys = 1 ;

my $FONT BOLD = ‘ tput bold ‘ ;

my $FONT RED = ‘ tput s e t a f 196 ‘ ;

my $FONT NONE = ‘ tput sgr0 ‘ ;

my %FLAGS = () ;

for my $arg (@ARGV) {

i f ( $arg =˜ /−−(\w+)(=([\w\− =\s ]+) ) ?/) {

i f (defined $3 ) {

$FLAGS{$1} = $3 ;

} else {

$FLAGS{$1} = 1;

}

}

}

my $DEBUG = exists $FLAGS{debug } ;

my %hosts = ( ) ;

my %fromblockcount = ( ) ;

my %frombytecount = ( ) ;

my %toblockcount = ( ) ;

my %tobytecount = ( ) ;

# num b l o c k s moved to a ho s t

my %moved = ( ) ;

my $ t o t a l b l o ck coun t = 0 ;

my $ t o t a l b y t e s = 0 ;

my $numf i l e s = 0 ;

my $blocks moved = 0 ;

my $bytes moved = 0 ;

my $ too ld = 0 ;

while (<STDIN>) {

# sk i p any l i n e t h a t s t a r t s w i th a #

next i f $ =˜ /ˆ\ s∗#\ s∗.+$ / ;

chomp ;

my ( $path , $bid , $fromhost , $tohost , $bs ize , $m) = sp l i t / , / ;

$hosts {$ fromhost} = 1;

$hosts { $ tohost } = 1;

$ t o t a l b l o ck coun t += 1 ;

$ t o t a l b y t e s += $bs i z e ;

$numf i l e s += 1 i f $bid == 0 ;

$ f romblockcount{$ fromhost} = &get (\%fromblockcount , $fromhost , 0) + 1 ;

$ frombytecount{$ fromhost} = &get (\%frombytecount , $fromhost , 0) + $bs i z e ;

$toblockcount{ $ tohost } = &get (\%toblockcount , $tohost , 0) + 1 ;

$tobytecount{ $ tohost } = &get (\%tobytecount , $tohost , 0) + $bs i z e ;

i f ( $ fromhost ne $ tohost ) {

$blocks moved += 1 ;

$bytes moved += $bs i z e ;
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$moved{ $ tohost } = &get (\%moved , $tohost , 0) + 1 ;

}

}

# ge t a l l t h e b l o c k count s t h a t went to a ho s t t h a t ’ s in key s (% f romb l o ck coun t )

my %old = ( ) ;

for my $host (keys %hosts ) {

$old{$host} = &get (\%moved , $host , 0) i f exists $ f romblockcount{$host } ;

}

$ too ld = eval join ( ’+’ , values(%old ) ) ;

my $GiB moved = sprintf ( ”%.02 f ” , $bytes moved / (1024 ∗∗ 3) ) ;

my $GiB moved old = sprintf ( ”%.02 f ” , $ too ld / (1024 ∗∗ 3) ) ;

# Uncomment to p ro v i d e a csv l i n e w i th t h e s t a t s i n s t e a d o f t h e human r e a da b l e ou tpu t

# my @usages = va l u e s %t o b y t e c o un t ;

# my $ s t ddev = &s t d e v (\@usages ) ;

# my $GiB stddev = s p r i n t f (”%02 f ” , $ s t ddev / (1024 ∗∗ 3) ) ;

# p r i n t ” $numf i l e s , $ t o t a l b l o c k c o u n t , $ t o t a l b y t e s , $b locks moved , $bytes moved , $GiB moved , $ t oo ld ,

$GiB moved old , $s tddev , $GiB stddev\n ” ;

# e x i t 0 ;

################################################################################

# REPORT

##

print ”Clus te r F i l e /Block Count : $numf i l e s / $ t o t a l b l o ck coun t \n” ;

print ”Clus te r Total Bytes Used : $ t o t a l b y t e s \n” ;

# s t a t s about t h e r e b a l an c e

my $movedpct = sprintf ( ”%.02 f ” , ( $blocks moved / $ t o t a l b l o ck coun t ) ∗ 100 .0 ) ;

my $bytespct = sprintf ( ”%.02 f ” , ( $bytes moved / $ t o t a l b y t e s ) ∗ 100 .0 ) ;

print ”Rebalance Blocks Moved : ${FONT BOLD}${FONT RED}${movedpct}%${FONT NONE} ( $blocks moved )\n” ;

print ”Rebalance Bytes Moved : $bytespct% ( $bytes moved )\n” ;

print ”Rebalance # Blocks to Old : $ too ld \n” ;

# D i s t r i b u t i o n

print ” D i s t r i bu t i on Stat s :\n” ;

&s t a t s ( ”Blocks Before ” , values %fromblockcount ) ;

&s t a t s ( ” Blocks After ” , values %toblockcount ) ;

&s t a t s ( ” Bytes Before ” , values %frombytecount ) ;

&s t a t s ( ” Bytes After ” , values %tobytecount ) ;

################################################################################

exit 0 ;

################################################################################

# ge t s t h e v a l u e s t o r e d a t key or d e f a u l t i f key dne

sub get {

my ( $hashre f , $key , $de f au l t ) = @ ;

i f ( exists $hashre f−>{$key }) {

return $hashre f−>{$key } ;

}

return $de f au l t ;
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}

sub s t a t s {

my $ t i t l e = sh i f t ;

my $min = min @ ;

my $max = max @ ;

my $mean = &mean(\@ ) ;

my $stddev = &stdev (\@ ) ;

my $stdev = sprintf ”%0.02 f ” , $stddev ;

my $psd = sprintf ”%0.02 f ” , ( $stddev / sum @ ) ∗ 100 ;

print ” $ t i t l e : $min\t$max\t$mean\ t$ s tdev \ t$psd%\n” ;

}

# h t t p s :// edwards . sdsu . edu/ r e s e a r ch / c a l c u l a t i n g −the−average−and−s tandard−d e v i a t i o n /

sub mean{

my( $data ) = @ ;

i f ( not @$data ) {

die ( ”Empty arrayn ” ) ;

}

my $ t o t a l = 0 ;

foreach (@$data ) {

$ t o t a l += $ ;

}

my $average = $ t o t a l / @$data ;

return $average ;

}

sub stdev{

my( $data ) = @ ;

i f (@$data == 1){

return 0 ;

}

my $average = &mean( $data ) ;

my $ s q t o t a l = 0 ;

foreach (@$data ) {

$ s q t o t a l += ( $average−$ ) ∗∗ 2 ;

}

my $std = ( $ s q t o t a l / (@$data−1) ) ∗∗ 0 . 5 ;

return $std ;

}

C.5 common.pl

We implemented each of the distribution methods using a common interface and placed

them in common.pl. Note that to test CRUSH and CRUSH’ we utilized crush.cpp C.3. This

script holds all the method implementations we’ve tried to date, the good and the bad. We

are able to quickly add new methods and ideas then use placement.pl C.2 to try against

however many files or buckets we choose.
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# Copyr i gh t 2019 United S t a t e s Government as r e p r e s e n t e d by t h e Admin i s t ra to r

# o f t h e Na t i ona l Aeronau t i c s and Space Admin i s t ra t i on . A l l R i gh t s Reserved .

use s t r i c t ;

use warnings ;

use Digest : :MD5 qw(md5) ;

use Digest : : MurmurHash3 qw(murmur128 x64 ) ;

use L i s t : : U t i l qw(max s h u f f l e ) ;

use F i l e : : Basename ;

# de f i n e d in t h e t e s t f i l e

our $ERASURE THRESHOLD;

# to t e s t CRUSH or CRUSH’ see ceph . cpp and update l i b c r u s h

# to e i t h e r be uned i t e d or w i th t h e pa tch a p p l i e d

our %METHODS = (

”hashchain ” , \&st ra t egy hos t ,

”hashchain−prime” , \&strategy npass pr ime ,

” shuf−prime” , \&st ra t egy shu f2 ,

” r ing ” , \&st r a t e gy r i n g ,

” c on s i s t e n t ” , \&con s i s t e n t

” cons i s t en t −prime” , \&cons i s t ent pr ime ,

) ;

# methods where t h e r e t u rned l i s t are hostnames not hashes

our %HOST METHODS = (

” shuf ” , 1 ,

” r ing ” , 1 ,

” c on s i s t e n t ” , 1 ,

) ;

our %HASHES = (

”murmur3” , \&hash murmur3 ,

”md5” , \&hash md5

) ;

# used by npa s s p r ime l

my $L = 8 ;

# must be s e t t o one o f t h e %HASHES va l u e s .

our $HASH FUNCTION;

# must be d e f i n e d by t he t e s t source f i l e t o be a hash o f hostname to an array

# r e f o f unique ho s t i d and we i gh t

our %HOSTS;

our @CRUSH LN 16 ;

our $K;

our $M;

# f l a t t e n a c l u s t e r i n t o a c sv format o f path , b id , t o | from , m, host , l i n k , b s i z e

sub f l a t t e n {

my ( $pre f i x , $ c l u s t e r ) = @ ;

for my $h (keys %$ c l u s t e r ) {

for my $block (@{ $ c l u s t e r −>{$h}}) {
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my ( $path , $m, $bid , $bs ize , $ l i nk ) = @{ $block } ;

i f ( not $ l i nk =˜ / ˆ [ [ : print : ] ]+ $ /) {

$ l i nk = unpack( ”h∗” , $ l i nk ) ;

}

print ”$path , $bid , $h , $pre f i x , $bs ize ,$m, $ l i nk \n” ;

}

}

}

# g i v en the s e r v e r ’ s k , m, and e ra su r e t h r e s h o l d r e t u rn the number o f b l o c k s to

# be s t o r e d and the s i z e o f each b l o c k .

sub how to encode {

my $ s i z e = sh i f t ;

i f ( $ s i z e > $ERASURE THRESHOLD) {

my $topad = ($K − ( $ s i z e % $K) ) % $K;

return ($M, int ( $ s i z e / $K) + $topad ) ;

} else {

return ( ($M − $K) + 1 , $ s i z e ) ;

}

}

sub hash murmur3 {

# murmur128 x64 r e t u rn s 2 64 b i t i n t e g e r s , c onve r t t o a b y t e s t r i n g

return pack ”QQ” , murmur128 x64 ( sh i f t ) ;

}

sub hash murmur3 invert {

# murmur128 x64 r e t u rn s 2 64 b i t i n t e g e r s , c onve r t t o a b y t e s t r i n g

return hash inve r t (pack ”QQ” , murmur128 x64 ( sh i f t ) ) ;

}

sub hash md5 {

return hash inve r t (md5( sh i f t ) ) ;

}

# take a 16 b y t e array conve r t t o 2 64 b i t i n t s add 1 to lower , and i f o v e r f l ow ,

# add one to upper .

sub hash add one {

my $ l i nk = sh i f t ;

# conve r t back i n t o 2 64 b i t i n t s

my ($b , $ l ) = unpack( ”QQ” , $ l i nk ) ;

$ l += 1 ;

# ove r f l ow :−p

i f ( $ l == 0) {

$b += 1 ;

}

return pack ( ”QQ” , $b , $ l ) ;

}

sub hash inve r t {

my $ l i nk = sh i f t ;

# conve r t back i n t o 2 64 b i t i n t s

my ($b , $ l ) = unpack( ”QQ” , $ l i nk ) ;

return pack ( ”QQ” , $b ˆ −1, $ l ˆ −1) ;

}
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# no l im i t a t i o n s , mu l t i p l e b l o c k s can l i v e on the same ho s t

sub s t ra t egy none {

my ( $di s t , $n , $path ) = @ ;

my @chain = ($HASH FUNCTION−>(basename $path ) ) ;

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

push @chain , $HASH FUNCTION−>($chain [ $ i − 1 ] ) ;

}

return \@chain ;

}

# the e x i s t i n g s t r a t e g y used in d i s h a s

sub s t r a t e gy ho s t {

my ( $di s t , $n , $path ) = @ ;

my %seen = ( ) ;

my @chain = ($HASH FUNCTION−>(basename $path ) ) ;

$seen{&lo ca t e ( $di s t , $chain [ 0 ] ) } = 1;

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

my $next = $chain [ $ i − 1 ] ;

my $node = ”” ;

do {

$next = $HASH FUNCTION−>($next ) ;

$node = &lo c a t e ( $di s t , $next ) ;

} while ( exists $seen{$node }) ;

$seen{$node} = 1;

push @chain , $next ;

}

return \@chain ;

}

# proposed two−pass a l g

# t h i s was t h e f i r s t at tempt , bu t r o u t i n e l y has moved ˜.5% more b u c k e t s then

# the npass approaches

sub s t r a t e gy 2pa s s {

my ( $di s t , $n , $path ) = @ ;

my %seen = ( ) ;

my @chain = ($HASH FUNCTION−>(basename $path ) ) ;

my @rev i s i t = ( ) ;

$seen{&lo ca t e ( $di s t , $chain [ 0 ] ) } = 1;

# f i r s t pass i s t o g ene ra t e t h e hashes and a s s i g n a l l un ique nodes p o s s i b l e

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

my $next = $HASH FUNCTION−>($chain [ $ i − 1 ] ) ;

push @chain , $next ;

my $node = &lo c a t e ( $di s t , $next ) ;

i f ( exists $seen{$node }) {

push @rev i s i t , $ i ;

} else {

$seen{$node} = 1;

}

}

# second pass i s on l y over t h e i n d i c i e s t h a t c o l i d e d w i th ano ther node

for my $ i ( @ r ev i s i t ) {

my $ l i nk = $chain [ $ i ] ;

# my $next = h a s h i n v e r t ( $ l i n k ) ;

my $next = hash add one ( $ l i nk ) ;

my $node = ”” ;

do {
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$next = $HASH FUNCTION−>($next ) ;

$node = &lo c a t e ( $di s t , $next ) ;

} while ( exists $seen{$node }) ;

$seen{$node} = 1;

$chain [ $ i ] = $next ;

}

return \@chain ;

}

# mul t i−pass approach

# 1 s t pass same as above

# 2nd+ pass on l y hashes t h e r e v i s i t b i d s once then a s s i g n s i f a b l e

sub s t r a t egy npa s s {

my ( $di s t , $n , $path ) = @ ;

my %seen = ( ) ;

my @chain = ($HASH FUNCTION−>(basename $path ) ) ;

my @rev i s i t = ( ) ;

$seen{&lo ca t e ( $di s t , $chain [ 0 ] ) } = 1;

# f i r s t pass i s t o g ene ra t e t h e hashes and a s s i g n a l l un ique nodes p o s s i b l e

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

my $next = $HASH FUNCTION−>($chain [ $ i − 1 ] ) ;

push @chain , $next ;

my $node = &lo c a t e ( $di s t , $next ) ;

i f ( exists $seen{$node }) {

push @rev i s i t , $ i ;

} else {

$seen{$node} = 1;

}

}

while ( @r ev i s i t ) {

for (my $ j = 0 ; $ j <= $#r e v i s i t ; $ j += 1) {

my $ i = $ r e v i s i t [ $ j ] ;

$chain [ $ i ] = $HASH FUNCTION−>(hash add one ( $chain [ $ i ] ) ) ;

my $node = &lo c a t e ( $di s t , $chain [ $ i ] ) ;

i f ( ! exists $seen{$node }) {

spl ice @rev i s i t , $ j , 1 ;

$seen{$node} = 1;

}

}

}

return \@chain ;

}

# mul t i−pass approach

# 1 s t pass same as above

# 2nd+ pass on l y hashes t h e r e v i s i t b i d s once then a s s i g n s i f a b l e

#

# This was an update to t h e f i r s t npass approach , I a c c i d e n t a l y made i t add one

# every s i n g l e round to t h e hash , t h i s f i x e s t h a t by on l y add ing 1 to t h e f i r s t

# r e v i s i t hash

sub s t ra t egy npas s p r ime {

my ( $di s t , $n , $path ) = @ ;

my %seen = ( ) ;

my @chain = ( ) ;

&imp l s t ra t egy npas s p r ime ( $di s t , $n , $path , \@chain , \%seen ) ;

return \@chain ;
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}

# se e i n g i f a l t e r i n g t h e hash more than j u s t add ing one i s worth t h e e f f o r t

# around a ˜.1% d i f f e r e n c e and I t h i n k c e r t a i n s i t u a t i o n s i t can f l i p to s i n g l e

# prime moving l e s s b l o c k s

sub s t r a t e gy npa s s p r ime i nv e r t {

my ( $di s t , $n , $path ) = @ ;

my %seen = ( ) ;

my @chain = ($HASH FUNCTION−>(basename $path ) ) ;

my @rev i s i t = ( ) ;

$seen{&lo ca t e ( $di s t , $chain [ 0 ] ) } = 1;

# f i r s t pass i s t o g ene ra t e t h e hashes and a s s i g n a l l un ique nodes p o s s i b l e

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

my $next = $HASH FUNCTION−>($chain [ $ i − 1 ] ) ;

push @chain , $next ;

my $node = &lo c a t e ( $di s t , $next ) ;

i f ( exists $seen{$node }) {

push @rev i s i t , $ i ;

} else {

$seen{$node} = 1;

}

}

# mutate t h e hashes we need to r e v i s t

for my $ i ( @ r ev i s i t ) {

$chain [ $ i ] = hash inve r t ( $chain [ $ i ] )

}

while ( @r ev i s i t ) {

for (my $ j = 0 ; $ j <= $#r e v i s i t ; $ j += 1) {

my $ i = $ r e v i s i t [ $ j ] ;

$chain [ $ i ] = $HASH FUNCTION−>($chain [ $ i ] ) ;

my $node = &lo c a t e ( $di s t , $chain [ $ i ] ) ;

i f ( ! exists $seen{$node }) {

spl ice @rev i s i t , $ j , 1 ;

$seen{$node} = 1;

}

}

}

return \@chain ;

}

# at tempt to make npass pr ime a b l e to p r e d i c t where t h e f i r s t ‘ l ‘ b l o c k s are to

# ensure we can g e t a consensus a l l ow i n g d i f f e r e n t e ra su r e s t r a t e g i e s

sub s t r a t e gy npa s s p r ime l {

my ( $di s t , $n , $path ) = @ ;

my @chain = ( ) ;

my %seen = ( ) ;

# f i r s t p l a c e t h e f i r s t l b l o c k s w i th npass pr ime

&impl s t ra t egy npas s p r ime ( $di s t , $L , $path , \@chain , \%seen ) ;

# p l a c e a l l o t h e r b l o c k s

&impl s t ra t egy npas s p r ime ( $di s t , $n , $path , \@chain , \%seen ) ;

return \@chain ;

}

# same as npass however i t j u s t main ta ins one cha in o f hashes i n s t e a d o f f o r k i n g
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# each c o l i s i o n by adding one

# c o n s i s t e n t l y worse than npass , npass ’ and npass ’ ’

# This i s c o n s i s t e n t l y b ehav ing worse then d e r i v i n g new cha in s from the r e v i s i t

# hashes , not as bad as ho s t bu t s t i l l ˜2% more b l o c k s moved then n−pass eve ry

# time .

sub s t r a t egy npas s2 {

my ( $di s t , $n , $path ) = @ ;

my %seen = ( ) ;

my @chain = ($HASH FUNCTION−>(basename $path ) ) ;

my @rev i s i t = ( ) ;

$seen{&lo ca t e ( $di s t , $chain [ 0 ] ) } = 1;

my $next = $chain [ 0 ] ;

# f i r s t pass i s t o g ene ra t e t h e hashes and a s s i g n a l l un ique nodes p o s s i b l e

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

$next = $HASH FUNCTION−>($next ) ;

push @chain , $next ;

my $node = &lo c a t e ( $di s t , $next ) ;

i f ( exists $seen{$node }) {

push @rev i s i t , $ i ;

} else {

$seen{$node} = 1;

}

}

while ( @r ev i s i t ) {

for (my $ j = 0 ; $ j <= $#r e v i s i t ; $ j += 1) {

my $ i = $ r e v i s i t [ $ j ] ;

$chain [ $ i ] = $next = $HASH FUNCTION−>($next ) ;

my $node = &lo c a t e ( $di s t , $next ) ;

i f ( ! exists $seen{$node }) {

spl ice @rev i s i t , $ j , 1 ;

$seen{$node} = 1;

}

}

}

return \@chain ;

}

# npass bu t not u s ing a cha in

sub s t r a t egy npas s3 {

my ( $di s t , $n , $path ) = @ ;

my %r e v i s i t = map { $ => 1 } (0 . . ( $n − 1) ) ;

my %seen = ( ) ;

my @chain = (1 . . $n ) ;

my $pass = 0 ;

my $ f i l ename = basename $path ;

while ( scalar (keys %r e v i s i t ) > 0) {

for my $bid ( sort keys(% r e v i s i t ) ) {

my $ l i nk = $HASH FUNCTION−>(”${ f i l ename }\@${bid } . ${pass}” ) ;

my $node = &lo c a t e ( $di s t , $ l i nk ) ;

unless ( exists $seen{$node }) {

$chain [ $bid ] = $ l i nk ;

$seen{$node} = 1;

delete $ r e v i s i t {$bid } ;
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}

}

$pass += 1 ;

}

return \@chain ;

}

# use the f i l e name hash to l o c a t e t h e f i r s t node , f i n d t h a t nodes index , then

# put a l l s u b s e quen t nodes on ( $ j + b i d ) % # ho s t s

sub s t r a t e g y r i n g {

my ( $di s t , $n , $path ) = @ ;

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = sort keys %uniq ;

my @chain = ( ) ;

my $node = &lo c a t e ( $di s t , $HASH FUNCTION−>(basename $path ) ) ;

my $ j = 0 ;

for ( $ j = 0 ; $ j <= $#hosts ; $ j += 1) {

last i f $hosts [ $ j ] eq $node ;

}

push @chain , $node ;

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

$ j += 1 ;

push @chain , $hosts [ $ j % scalar ( @hosts ) ] ;

}

return \@chain ;

}

# Hosts are l i s t e d by order t h ey were added to t h e map and buc k e t 00000000 i s

# a s s i g n e d to t h e f i r s t hos t , then each sub s e quen t ho s t has t h e nex t bu c k e t

# NOTE t h i s l e a d s to t h e p lacement group prob lem . As the mod va l u e changes so

# does t h e i n i t i a l node o f sooooooo many o b j e c t s

sub s t ra tegy r ing mod {

my ( $di s t , $n , $path ) = @ ;

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = sort keys %uniq ;

# my @nodes = ( ) ;

my @chain = ( ) ;

# f i n d the buc k e t

# t h i s i s t h e d e f i n i t i o n o f why p lacement groups e x i s t as s c a l a r ( @hosts ) i n c r e a s e s t h e i n i t i a l b u c k e t

l o c a t i o n a l s o changes

my $ j = unpack( ”Q” , $HASH FUNCTION−>(basename $path ) ) % scalar ( @hosts ) ;

# fo r my $b ( key s (%$ d i s t ) ) {

# i f ( $d i s t −>{$b} eq $node ) {

# my ( $begin , $end ) = unpack (”LL” , $b ) ;

# push @chain , pack (”L” , $beg in ) ;

# l a s t ;

# }

# }

# push @nodes , $node ;

push @chain , $hosts [ $ j ] ;

for (my $ i = 1 ; $ i < $n ; $ i += 1) {

$ j = ( $ j + 1) % scalar ( @hosts ) ;
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# push @nodes , $ho s t s [ $ j ] ;

push @chain , $hosts [ $ j ] ;

}

# # nex t b l o c k goes on $ j + 1 % s c a l a r ( @hosts )

# f o r (my $ i = 1 ; $ i < $n ; $ i += 1) {

# $ j = ( $ j + 1) % s c a l a r ( @hosts ) ;

# $node = $ho s t s [ $ j ] ;

# push @nodes , $node ;

# f o r my $b ( key s (%$ d i s t ) ) {

# i f ( $d i s t −>{$b} eq $node ) {

# my ( $begin , $end ) = unpack (”LL” , $b ) ;

# push @chain , pack (”L” , $beg in ) ;

# l a s t ;

# }

# }

# }

# pr i n t ( $path . ” −− ” . Dumper(\@nodes ) . ”\n\n”) ;

return \@chain ;

}

# emula t e s t h e CRUSH straw c a l c u l a t i o n f o r de t e rmin ing which nodes g e t a f i l e

sub s t r a t egy s t r aw {

my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = keys %uniq ;

my @chain = ( ) ;

my %used = () ;

for (my $ i = 0 ; $ i < $n ; $ i += 1) {

my %straws = ( ) ;

for my $host ( @hosts ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

$straws{&draw straw ( $path , $hid , $w, $ i )} = $host unless exists $used{$host } ;

}

my $ l onge s t = max keys %straws ;

my $host = $straws{ $ l onge s t } ;

$used{$host} = 1;

push @chain , $host ;

}

return \@chain ;

}

sub s t r a t egy s t r aw2 {

my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = keys %uniq ;

my @chain = ( ) ;

my %used = () ;
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for (my $ i = 0 ; $ i < $n ; $ i += 1) {

my $max = ”− i n f ” ;

my $ item = ”” ;

for my $host ( @hosts ) {

unless ( exists $used{$host }) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

my $straw = &draw straw2 ( $path , $hid , $w, $ i ) ;

i f ( $straw > $max) {

$max = $straw ;

$ item = $host ;

}

}

}

$used{$ item} = 1;

push @chain , $ item ;

}

return \@chain ;

}

# l i k e none bu t u s ing s t raw2 i n s t e a d o f hash cha in s

sub s t ra t egy s t raw2 none {

my ( $di s t , $n , $path ) = @ ;

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = keys %uniq ;

my @chain = ( ) ;

for (my $ i = 0 ; $ i < $n ; $ i += 1) {

my $max = ”− i n f ” ;

my $ item = ”” ;

for my $host ( @hosts ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

# pr i n t ” $hos t $hid $w $ i\n ” ;

my $straw = &draw straw2 ( $path , $hid , $w, $ i ) ;

i f ( $straw > $max) {

$max = $straw ;

$ item = $host ;

}

}

push @chain , $ item ;

}

# pr i n t Dumper(\@chain ) ;

return \@chain ;

}

# j u s t draw s t raws once and s o r t t h e l e n g t h s de s cend ing

# t h i s does not work , ak in to t h e ho s t s t r a t e g y where a node b e in g i n s e r t e d

# s h i f t s a l l f u t u r e b l o c k s .

sub s t r a t egy s t r aw2 once {

my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = keys %uniq ;
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my @straws = ( ) ;

for my $host ( @hosts ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

my $straw = &draw straw2 ( $path , $hid , $w, 0) ;

push @straws , [ $host , $straw ] ;

}

my @sorted = sort { $b−>[1] <=> $a−>[1] } @straws ;

my @chain = map { $ −>[0] } @sorted ;

@chain = spl ice @chain , 0 , $n ;

print STDERR Dumper(\@chain ) ;

return \@chain ;

}

# at tempt to reduce t h e number o f s t raw drawings c a l c u l a t e d . . t h i s per forms

# worse than ho s t . . . and t h e r e i s n ’ t a way to do an npass on t h i s so ∗ shrug

sub s t r a t e gy s t r aw cha in {

my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = sort keys %uniq ;

my @chain = ( ) ;

my %straws = ( ) ;

for my $host ( @hosts ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

$straws{&draw straw ( $path , $hid , $w, 0)} = $host ;

}

#

while ( scalar (@chain ) < $n ) {

my $ l onge s t = max keys %straws ;

push @chain , $straws{ $ l onge s t } ;

delete $straws{ $ l onge s t } ;

}

return \@chain ;

}

# in s t e a d o f j u s t not c on s i d e r i n g nodes t h a t a l r e a d y have a b l o ck , emula te

# ho s t n p a s s by k e ep ing t r a c k o f nodes we need to r e t r y on a second pass

# had to a l t e r t h e s t raw2 used in ceph to g e t t h i s t o work n i c e l y

sub s t r a t egy s t r aw2 npas s {

my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = sort keys %uniq ;

my @chain = ( ) ;

# ho s t s t h a t have been used so f a r

my %used = () ;

# b l o c k i d ’ s t h a t w i l l be ”” a f t e r a pass comp l e t e s
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my %r e v i s i t = ( ) ;

for (my $ i = 0 ; $ i < $n ; $ i += 1) {

my $ l onge s t = ”− i n f ” ;

my $ item = ”” ;

for my $host ( @hosts ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

my $x = &draw straw2 ( $path , $hid , $w, $ i ) ;

i f ( $x > $ l onge s t ) {

$ l onge s t = $x ;

$ item = $host ;

}

}

i f ( exists $used{$ item }) {

$ r e v i s i t { $ i } = 1;

push @chain , ”” ;

} else {

$used{$ item} = 1;

push @chain , $ item ;

}

}

my $pass = 1 ;

while (% r e v i s i t ) {

my @toremove = ( ) ;

for my $ i (keys %r e v i s i t ) {

my $ l onge s t = ”− i n f ” ;

my $ item = ”” ;

for my $host ( @hosts ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

# my $x = &draw s traw2 ( $path , $hid + $pass , $w , $ i ) ;

i f ( ! exists $used{$host }) {

$w ∗= ( $pass ∗∗ 2 . 0 ) ;

}

my $x = &draw straw2 ( $path , $hid , $w, $ i ) ;

i f ( $x > $ l onge s t ) {

$ l onge s t = $x ;

$ item = $host ;

}

# pr i n t ” $hos t $x\n” i f $path eq ’ l ad s−data /MOD04 L2 . A2020102 .0545 .061 .2020102131724 . hd f ’ ;

}

i f ( ! exists $used{$ item }) {

delete $ r e v i s i t { $ i } ;

$used{$ item} = 1;

$chain [ $ i ] = $ item ;

}

}

$pass += 1 ;

}

# pr i n t ” took $pass pa s s e s \n ” ;

# p r i n t Dumper(\@chain ) ;

return \@chain ;

}

# 2nd a t t empt : i n s t e a d o f chang ing t h e we i gh t each pass . j u s t don ’ t c on s i d e r a l l
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# the nodes used in t h e p r e v i o u s pass .

sub s t r a t egy s t raw2 npas s2 {

my ( $di s t , $n , $path ) = @ ;

# at the end o f each pass we remove a l l t h e h o s t s used on t h a t pass . To

# s t a r t i t ’ s a l l un ique h o s t s .

my %unused = map { $ => 1} values(%$d i s t ) ;

# i n i t i a t e an $n l e n g t h array

my @chain = ( 0 . . ( $n−1) ) ;

# to be g in w i th we need to s t i l l a s s i g n a l l i n d i c i e s in @chain

my @rev i s i t = ( 0 . . ( $n−1) ) ;

my $pass = 0 ;

while ( (my $ l en = scalar ( @r ev i s i t ) ) > 0) {

# fo r ea ch pass keep t r a c k o f what h o s t s are now used and what i n d i c i e s

# in r e v i s i t are now s a t i s f i e d .

my %usedhosts = ( ) ;

my @used r ev i s i t s = ( ) ;

for (my $ j = 0 ; $ j < $ l en ; $ j += 1) {

my $ i = $ r e v i s i t [ $ j ] ;

my $ l onge s t = ”− i n f ” ;

my $ item = ”” ;

for my $host (keys %unused ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

my $x = &draw straw2 ( $path , $hid , $w, $ i ) ;

i f ( $x > $ l onge s t ) {

$ l onge s t = $x ;

$ item = $host ;

}

}

i f ( ! exists ( $usedhosts{$ item }) ) {

$usedhosts{$ item} = 1;

push @usedrev i s i t s , $ j ;

$chain [ $ i ] = $ item ;

}

}

# re v e r s e t h e used i n d i c i e s to make them descend ing order to make t h e

# s p l i c e work .

for my $ j ( reverse @used r ev i s i t s ) {

spl ice @rev i s i t , $ j , 1 ;

}

# remove the newly used h o s t s from unused

for my $host (keys %usedhosts ) {

delete $unused{$host } ;

}

$pass += 1 ;

}

# pr i n t ” $pass pa s s e s needed f o r $path\n ” ;

# p r i n t Dumper(\@chain ) ;

# p r i n t Dumper(\%used ) ;

# p r i n t Dumper(\ @r e v i s i t ) ;

return \@chain ;
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}

# 3rd idea − what i f each pass we on l y a s s i g n i t ems where on l y a s i n g l e i tem

# wants t h e node . hmm much worse than s t raw2 npas s2

sub s t r a t egy s t raw2 npas s3 {

my ( $di s t , $n , $path ) = @ ;

# at the end o f each pass we remove a l l t h e h o s t s used on t h a t pass . To

# s t a r t i t ’ s a l l un ique h o s t s .

my %unused = map { $ => 1} values(%$d i s t ) ;

# i n i t i a t e an $n l e n g t h array

my @chain = ( 0 . . ( $n−1) ) ;

# s e t o f a l l b l o c k i d s t h a t have been a s s i g n ed so f a r

my %ass igned = ( ) ;

my $pass = 0 ;

while ( scalar (keys %ass igned ) < $n ) {

# each pass we map a ho s t to an array o f b l o c k s t h a t want i t . Then on ly

# a s s i g n nodes t h a t want a s i n g l e b l o c k .

my %swipe = ( ) ;

for (my $ i = 0 ; $ i < $n ; $ i += 1) {

# sk i p index i f a l r e a d y a s s i g n e d

next i f exists $ass igned { $ i } ;

my $ l onge s t = ”− i n f ” ;

my $ item = ”” ;

for my $host (keys %unused ) {

my ( $hid , $w) = @{$HOSTS{$host }} ;

my $x = &draw straw2 ( $path , $hid , $w, $ i + ( $pass ∗ $n ) ) ;

i f ( $x > $ l onge s t ) {

$ l onge s t = $x ;

$ item = $host ;

}

}

i f ( ! exists $swipe{$ item }) {

$swipe{$ item} = [ $ i ] ;

} else {

push $swipe{$ item } , $ i ;

}

}

# pr i n t Dumper(\%swipe ) ;

# i f a ho s t has a s i n g l e b l o c k a s s i g n ed to i t , add to cha in and remove

# from s e t s f o r t h e nex t pass

for my $host (keys %swipe ) {

my @blocks = @{$swipe{$host }} ;

i f ( scalar ( @blocks ) == 1) {

my $ i = sh i f t @blocks ;

$chain [ $ i ] = $host ;

delete $unused{$host } ;

$ass igned { $ i } = 1;

}

}

$pass += 1 ;

}
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# pr i n t ” $pass pa s s e s needed f o r $path\n ” ;

# p r i n t Dumper(\@chain ) ;

# p r i n t Dumper(\%used ) ;

# p r i n t Dumper(\ @r e v i s i t ) ;

return \@chain ;

}

# h t t p s ://www. s p i n i c s . ne t / l i s t s / ceph−d e v e l /msg21635 . html

# STRAW

# max x = −1

# max item = −1

# f o r each i tem :

# x = random va l u e from 0 . . 65535

# x ∗= s c a l i n g f a c t o r

# i f x > max x :

# max x = x

# max item = item

# re tu rn i tem

#

# STRAW2

# max x = −1

# max item = −1

# f o r each i tem :

# x = random va l u e from 0 . . 65535

# x = ln ( x / 65536) / we i gh t

# i f x > max x :

# max x = x

# max item = item

# re tu rn i tem

# i gno r e s we i g h t s r i g h t now which i s f i n e s i n c e a l l are o f = we i gh t to us

sub draw straw {

my ( $path , $host id , $w, $bid ) = @ ;

my $hash = $HASH FUNCTION−>(basename ( $path ) . ”\@$bid\@$hostid ” ) ;

return unpack( ”Q” , $hash ) ∗ $w ;

}

# h t t p s :// g i t h u b . com/ ceph / ceph / p u l l /20196/ f i l e s#d i f f −520

ee7de08c6da22b920d4c8892b09a71e7422591 f7d177 f7b236e5e7997 f201L345

# sub draw s traw2 {

# my ( $path , $hos t i d , $w , $b id ) = @ ;

# my $hash = $HASH FUNCTION−>(basename ( $path ) . ”\@$bid\@$host id ”) ;

# my $x = ( ( unpack (”Q” , $hash ) ) % 65536) ;

# i f ( $x == 0) {

# # h t t p s :// g i t h u b . com/ yaozongyou / ceph / b l o b /4 faadeae1122387e3aa f0b4623e0246d09ed5ead / s r c / crush /

c r u s h l n t a b l e . h#L27

# $x = 0 x1000000000000 ;

# } e l s e {

# $x = l o g ( $x / 65536) ;

# }

# # h t t p s : // g i t h u b . com/ yaozongyou / ceph / b l o b /4 faadeae1122387e3aa f0b4623e0246d09ed5ead / s r c / crush /mapper .

c#L350

# $x −= 0x1000000000000 ;

# re tu rn $x / $w ;

# }
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# we s t o l e t h e c r u s h l n f un c t i o n and t a b l e from l i b c r u s h to g ene ra t e a l l 65536

# p o s s i b l e v a l u e s

# r e q u i r e ” c r u s h l n . p l ” ;

# sub draw s traw2 {

# my ( $path , $hos t i d , $w , $b id ) = @ ;

# my $hash = $HASH FUNCTION−>(basename ( $path ) . ”\@$bid\@$host id ”) ;

# my $x = unpack ”S” , $hash ; # S i s an uns igned 16 b i t s h o r t

# re tu rn $CRUSH LN 16 [ $x ] / $w ;

# }

#

sub imp l s t r a t egy npas s p r ime {

my ( $di s t , $n , $path , $chain , $seen ) = @ ;

my @rev i s i t = ( ) ;

i f ( scalar ( @$chain ) == 0) {

push @$chain , $HASH FUNCTION−>(basename $path ) ;

$seen−>{&lo ca t e ( $di s t , $chain −>[0])} = 1;

}

# f i r s t pass i s t o g ene ra t e t h e hashes and a s s i g n a l l un ique nodes p o s s i b l e

for (my $ i = scalar ( @$chain ) ; $ i < $n ; $ i += 1) {

my $next = $HASH FUNCTION−>($chain−>[$ i − 1 ] ) ;

push @$chain , $next ;

my $node = &lo c a t e ( $di s t , $next ) ;

i f ( exists $seen−>{$node }) {

push @rev i s i t , $ i ;

} else {

$seen−>{$node} = 1;

}

}

# mutate t h e hashes we need to r e v i s t

for my $ i ( @ r ev i s i t ) {

$chain−>[$ i ] = hash add one ( $chain−>[$ i ] )

}

my $pass = 0 ;

while ( @r ev i s i t ) {

$pass += 1 ;

for (my $ j = 0 ; $ j <= $#r e v i s i t ; $ j += 1) {

my $ i = $ r e v i s i t [ $ j ] ;

$chain−>[$ i ] = $HASH FUNCTION−>($chain−>[$ i ] ) ;

my $node = &lo c a t e ( $di s t , $chain−>[$ i ] ) ;

i f ( ! exists $seen−>{$node }) {

spl ice @rev i s i t , $ j , 1 ;

$seen−>{$node} = 1;

}

}

}

}

# wow t h i s i s bad 96% data moved on 1000 inpu t f i l e s .

sub s t r a t e gy shu f {

my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;
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my @hosts = sort keys %uniq ;

srand unpack( ”Q” , $HASH FUNCTION−>(basename $path ) ) % 65536;

@hosts = s h u f f l e @hosts ;

my @chain = @hosts [ 0 . . ( $n − 1) ] ;

return \@chain ;

}

# standard s h u f f l e a l g bu t i n s t e a d o f u s ing random num gene r a t i on use a hash

sub shuf {

my ( $arr , $seed ) = @ ;

for (my $ i = scalar ( @$arr ) − 1 ; $ i > 0 ; $ i −= 1) {

my $ j = int ( (unpack( ”S” , $HASH FUNCTION−>(” $seed . $ i ” ) ) / 65535) ∗ $ i ) ;

# my $ j = i n t ( ( unpack (” I ” , $HASH FUNCTION−>(”$seed . $ i ”) ) / (1<<32) ) ∗ $ i ) ;

# p r i n t ” swapping $ i w i t h $hash / 65536 = $ j\n ” ;

my $tmp = $arr −>[$ i ] ;

$arr −>[$ i ] = $arr −>[$ j ] ;

$arr −>[$ j ] = $tmp ;

}

return $arr ;

}

# don ’ t use srand / rand use t h e hash as t h e random num

sub s t r a t e gy shu f 2 {

my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = sort keys %uniq ;

my %unused = map { $ => 1} @hosts ;

my %r e v i s i t = map { $ => 1 } ( 0 . . ( $n−1) ) ;

my $pass = 0 ;

my @chain = ( 1 . . $n ) ;

while (% r e v i s i t ) {

for (my $bid = 0 ; $bid < $n ; $bid += 1) {

i f ( exists $ r e v i s i t {$bid }) {

my @cpy = @hosts ;

&shuf (\@cpy , basename ( $path ) . ”\@$bid . $pass ” ) ;

my $host = sh i f t @cpy ;

i f ( exists $unused{$host }) {

$chain [ $bid ] = $host ;

delete $unused{$host } ;

delete $ r e v i s i t {$bid } ;

}

}

}

i f ( scalar keys %r e v i s i t == 1) {

my ( $k ) = keys %r e v i s i t ;

( $chain [ $k ] ) = keys %unused ;

delete $ r e v i s i t {$k } ;

}

$pass += 1 ;

}

return \@chain ;

}

# shu f2 w i t hou t r e v i s i t i n g , worse than shu f2

sub s t r a t e gy shu f 3 {
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my ( $di s t , $n , $path ) = @ ;

# ge t a l i s t o f a l l h o s t s and a s s i g n unique h o s t i d to each

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = sort keys %uniq ;

my %unused = map { $ => 1} @hosts ;

my @chain = ( 1 . . $n ) ;

for (my $bid = 0 ; $bid < $n ; $bid += 1) {

my @cpy = sort keys %unused ;

&shuf (\@cpy , basename ( $path ) . ”\@$bid” ) ;

my $host = sh i f t @cpy ;

$chain [ $bid ] = $host ;

delete $unused{$host } ;

}

return \@chain ;

}

sub c on s i s t e n t i n d e x o f {

my ( $arr , $key ) = @ ;

# do a l i n e a r f o r r i g h t now t h i s can be r ew r i t t e n as a b ina ry search l a t e r

for my $ i (0 . .$# $arr ) {

i f ( $arr −>[$ i ]−>[0] >= $key ) {

return $ i ;

}

}

# i f our key i s g r e a t e r than any ho s t in t h e array then we wrap around to

# p o s i t i o n 0

return 0 ;

}

# use the hash to g ene ra t e t h e order , then s e t each ’ s key as 2ˆ64/ numhosts∗50

# t h i s was a t e r r i b l e idea , wh i l e i t improves s t d d e v you move way too much

sub bu i l d ha sh r ing even {

my ( $di s t , $n , $bid ) = @ ;

my $name = defined ( $bid ) ? ” . c on s i s t en t ha sh $b id ” : ” . c on s i s t en t ha sh ” ;

my $mapping = $di s t −>{$name } ;

unless (defined ( $mapping ) ) {

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = keys %uniq ;

my @builder = ( ) ;

for my $host ( @hosts ) {

for my $ i ( 0 . . 1 0 0 ) {

my $hostname = defined ( $bid ) ? ” $host\@${ i } $bid ” : ” $host\@$i” ;

my $key = unpack( ”Q” , $HASH FUNCTION−>($hostname ) ) ;

push @builder , [ $key , $host ] ;

}

}

# our r i n g goes from 0 −> 2ˆ64

my @mapping = sort {$a−>[0] <=> $b−>[0]} @builder ;

my $step = int (2∗∗64 / scalar (@mapping ) ) ;

for my $ i (0 . .$#mapping ) {

$mapping [ $ i ]−>[0] = $ i ∗ $step ;

}

$di s t −>{$name} = \@mapping ;

$mapping = \@mapping ;

}

return $mapping ;
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}

# standard c o n s i s t e n t hash ing c i r c l e , add each node $n times , i f $b id

# e x i s t s then c r e a t e a s p e c i a l r i n g j u s t f o r t h a t b l o c k index

sub bu i l d ha sh r i ng {

my ( $di s t , $n , $bid ) = @ ;

my $name = defined ( $bid ) ? ” . c on s i s t en t ha sh $b id ” : ” . c on s i s t en t ha sh ” ;

my $mapping = $di s t −>{$name } ;

unless (defined ( $mapping ) ) {

my %uniq = map { $ => 1} values(%$d i s t ) ;

my @hosts = keys %uniq ;

my @builder = ( ) ;

for my $host ( @hosts ) {

# even a t 200 p lacement s we s t i l l have a worse s t d dev compared to

# CRUSH and Hashchain f am i l y a l g s .

for my $ i ( 0 . . $n ) {

my $hostname = defined ( $bid ) ? ” $host\@${ i } $bid ” : ” $host\@$i” ;

my $key = unpack( ”Q” , $HASH FUNCTION−>($hostname ) ) ;

push @builder , [ $key , $host ] ;

}

}

# our r i n g goes from 0 −> 2ˆ64

my @mapping = sort {$a−>[0] <=> $b−>[0]} @builder ;

$di s t −>{$name} = \@mapping ;

$mapping = \@mapping ;

}

return $mapping ;

}

sub con s i s t en t p r ime {

my ( $di s t , $n , $path ) = @ ;

my $mapping = &bu i l d ha sh r i ng ( $di s t , 100) ;

# f i n d the index o f a l l p a r t s

my $name = basename $path ;

my @keys = ( ) ;

for my $bid ( 0 . . $n−1) {

push @keys , unpack( ”Q” , $HASH FUNCTION−>(”$name\@$bid” ) ) ;

}

my @chain = ( ) ;

# 1 each swipe remove a l l used h o s t s from the ha sh r in g

# 2 each b l o c k i d g en e r a t e s a d i f f e r e n t ha sh r in g ”$hostname@$vhostnum $bid ”

# 0 don ’ t mutate t h e r i n g and j u s t s k i p e n t r i e s t h a t p o i n t to used h o s t s

#

# 1 i s worse than 2 which i s worse than 0 . . . hmmm

my $SWIPE = 0 ;

i f ($SWIPE == 1) {

# hash o f a l l a v a i l a b l e h o s t s

my %ava i l = map { $ => 1} values(%$d i s t ) ;

# b l o c k i d s to r e v i s i t

my %r e v i s i t = map { $ => 1 } ( 0 . . ( $n−1) ) ;

while (% r e v i s i t ) {

# cr e a t e a mapping where on l y a v a i l a b l e h o s t s are used

my @swipemapping = ( ) ;
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for my $pa i r (@$mapping ) {

i f ( exists ( $ava i l {$pair −>[1]}) ) {

push @swipemapping , $pa i r ;

}

}

# i t e r a t e th rough b i d s in order

for my $bid ( 0 . . $n−1) {

i f ( exists ( $ r e v i s i t {$bid }) ) {

my $pos = &con s i s t e n t i n d e x o f (\@swipemapping , $keys [ $bid ] ) ;

my $host = $swipemapping [ $pos ] − > [1] ;

i f ( exists ( $ava i l {$host }) ) {

delete $ava i l {$host } ;

delete $ r e v i s i t {$bid } ;

push @chain , $host ;

}

}

}

}

} e l s i f ($SWIPE == 2) {

my %used = () ;

# We gene ra t e a new hash r in g f o r eve ry b i d

for my $bid ( 0 . . $n−1) {

$mapping = &bu i l d ha sh r i ng ( $di s t , 100 , $bid ) ;

my $key = $keys [ $bid ] ;

my $ o f f s e t = 0 ;

my $ i = &con s i s t e n t i nd e x o f ( $mapping , $key ) ;

while ( exists ( $used{$mapping−>[( $ i + $ o f f s e t ) % scalar (@$mapping ) ]−> [1]}) ) {

$ o f f s e t += 1 ;

}

my $host = $mapping−>[( $ i + $ o f f s e t ) % scalar (@$mapping ) ] − > [1] ;

push @chain , $host ;

$used{$host} = 1;

}

} else {

# no swipe

my %used = ( ) ;

for my $key (@keys ) {

my $ o f f s e t = 0 ;

my $ i = &con s i s t e n t i nd e x o f ( $mapping , $key , 0) ;

while ( exists ( $used{$mapping−>[( $ i + $ o f f s e t ) % scalar (@$mapping ) ]−> [1]}) ) {

$ o f f s e t += 1 ;

}

my $host = $mapping−>[( $ i + $ o f f s e t ) % scalar (@$mapping ) ] − > [1] ;

push @chain , $host ;

$used{$host} = 1;

}

}

return \@chain ;

}

1 ;
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