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Abstract

In this work, the modal and impact interactions of fluid-filled cylindrical structures are

studied. The first part of the study focuses on the parametric modal analysis of fluid-coupled

thin structures. This study emphasizes describing or approximating the coupled natural

frequency of a fluid filled structure as a function of respective modes of the uncoupled

structures. A condition to differentiate the strong and weak coupling between fluid and

structure is proposed. In the second part of the study, an optimized method to simulate the

dynamic 3D event of the impact of a rod with a flat surface is presented. Unlike in the 2D

FEM (Finite Element Method) based contact models, in this study, both bodies undergoing

the impact are considered elastic-plastic(deformable) and simulation is the dynamic event

of the impact, instead of predefined 2D symmetric contact analysis. Prominent contact

models and plasticity models to define material properties in ANSYS are reviewed. The

coefficient of restitution (COR) for normal and oblique impact of the rods are obtained

by experimentation. Experimental results of the permanent deformation on the base for

different impact velocities is derived from a prominent impact study. The simulation results

are in co-relation with the experiment and both indentation and flattening models on the

COR and permanent deformation of the base and rod after the impact. Thus, the presented

3D explicit dynamic simulation of impact is validated to analyze the impact behavior of

the two bodies without any predefined assumptions with respect to boundary conditions or

material properties. Furthermore, this validated finite element method is used to simulate

the impact of fluid-filled tubes. The effect of coupling on contact parameters (deformation,

COR, contact force, and plastic work) is analyzed for the normal impact. It is observed

that during the impact of the inclined rods and tubes, there are multiple impacts during the

event. Finally, it is shown that the natural frequency of the impacting rod has a significant
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effect on this behavior. For the future studies, analytical modeling of the impact should also

consider the vibration and natural frequency of the system in the equation of motion.
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Chapter 1

Introduction

The finite element method (FEM) is a numerical method used to solve a mathematical

model of a given complex structure or system, for which analytical closed-form solutions are

generally not possible. FEM analysis can be used to help evaluate the feasibility of a design

without having to build a physical prototype for the complex systems, since we can specify

the actual shape, load, constraints, and material property combinations with great accuracy.

Finite element analysis (FEA) also allows engineers to interpret results in very sophisticated

ways using vector plots and graphical interface to visualize, read, and analyze the result,

but it is important to understand that FEM only gives an approximate solution to the prob-

lem and is a numerical approach to getting the real results of the variational formulation

of partial differential equations. A finite element based numerical approach lends itself to

a number of assumptions and uncertainties related to domain discretizations, mathemati-

cal shape functions, solution procedures, etc. This fully-virtual product development and

analysis methodology leads to a situation wherein a misinterpreted approximation or error

in applying a load condition may be carried throughout the engineering lifecycle, leading

to a situation where the errors get cumulative at each stage, producing disastrous results.

FEM analysis is only as good as the structure of the simulation. FEA involves four steps:

model development, verification, predictive calculations, and uncertainty assessment and fi-

nally validation of results alongside the experiment or proven theory. To make sure you get

accurate results using FEA, it is important to establish engineering criteria for use in the

design evaluation. Determining where to use symmetry, how much of the structure needs to

be modeled, type of analysis and accounting for non-linearity are a few of the many criteria

which require engineering judgement to proceed further to setup the simulation. In setting
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up a FEM model for the simulation, it should be ensured that the boundary conditions and

loading match the experimental setup. Determining the mesh distribution, mesh density,

and locations in the model where the mesh density is critical are equally important in fi-

nite element simulation, hence, verification and validation are required in FEA projects to

provide confidence that the computational model developed performs within the required pa-

rameters. The verification procedure includes checking the design and investigating whether

the computational model accurately represents the physical system. Validation is more of a

dynamic procedure and determines if the computational simulation agrees with the physical

phenomenon; it examines the difference between the numerical simulation and the experi-

mental results. Verification provides information about whether the computational model is

solved correctly and accurately, while validation provides evidence regarding the extent to

which the mathematical model accurately correlates to the theory and experiment. In our

study, all the necessary steps are taken in validating the FEM analysis.

1.1 Theory and historical background on structures vibrating under the influ-

ence of fluid

Cylindrical shells are often used as vessels for storing and transporting liquid. Obvi-

ously, the existence of a fluid medium will have an important effect on the dynamic response

behavior of cylindrical shells. A structure vibrating in contact with the fluid of a com-

parable density experiences loading that is proportional to the fluid’s inertial and elastic

forces. Fluid loading thus modifies the forces acting on the structure and, since these acous-

tic pressures depend on the velocity, a feedback coupling between the fluid and the structure

exists. Hence, the structural and acoustical domains must be accounted for simultaneously.

The two domains are said to be coupled when boundary conditions ensure the continuity

in displacement and pressure normal to the surface of the structure and fluid at the inter-

face. Studies on vibroacoustics (structural acoustics) on pipes and cylinders date back to

the late 19th and early 20th centuries with the work of Rayleigh, Lamb, Love, and Stokes
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with mathematical descriptions. Beginning in 1966, Ram Kumar and others[33] analyzed

cylinder vibration and wave propagation in fluid-filled cylinders using the exact linear elas-

tic theory, and both axisymmetric and symmetric vibration involving bending and flexural

modes are discussed in this paper. The main emphasis of this paper is calculation of the

propagation speeds for each mode as a function of frequency. In 1972, Miguel C. Junger[27]

in the book Sound Structure and Their Interactions discussed intensively the integrated

equation of structure-fluid interaction and also formulated the equations for normal modes of

general structures coupled with fluids. The discussion here is restricted to specific boundary

conditions and modes of vibration.

Fluid-structure interaction is formulated at different levels of physical representation

complexity. From the classical Westergaard, or added − mass, approach, fluid incompre-

hensibility and rigid structure are assumed to the modern fluid-structure coupled boundary

interface approach using finite element analysis software. It is necessary to study the fluid-

structure interaction problems in a coupled manner considering the flexibility effect of the

structure and the compressibility of the fluid. Formulations based on displacement variables

are generally chosen for the structure, while the fluid is described by different variables, such

as displacement, pressure, velocity potential, etc., for such coupled problems. The governing

differential equation for the displacement at the structural interface is formulated as the

following:

The governing equation for the pressure field for the exterior and interior fluids is

∇2p− c2s
δ2p

δt2
= 0 (1.1)
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where;

ρ = Density of the structural materials

u = Displacement vector of the cylinder wall

p = Pressure field of the fluid

λ, µ = Lame’s constant (Material Properties)

cs = Phase velocity of the structure-borne sound wave

∇ = Gradient of displacement

These equations are general for all coupled linear acoustoelastic problems; imposing

particular boundary conditions makes them specific. Typically, these are a continuity of

normal stress (pressure) and normal displacement at the interface between fluid and solid,

and zero shear stress since fluid viscosity is usually negligible. Analytic expressions for the

solutions of these equations and boundary conditions are possible for specific systems, such

as spheres and cylindrical pipes of infinite length, which are subjected to a specific boundary

condition.

Prior to 1980, most of the analyses of vibrations from pipes regarded them as cylindri-

cal shells of infinite length in isolation from other structures. Furthermore, in 1980’s, the

increased capabilities of computers permitted the analysis of more complicated vibration

problems using the finite element method. Finite element formulation[50, 49, 51, 52, 53] of

the governing equations, including the coupling conditions, ensures that the system of an

equation of motion for an undamped structure-acoustic problem can be written in the form;

 MS 0

ρ0c
2HT

SF MF


 d̈S
P̈F

+

KS −HSF

0 KF


dS
PF

 =

fb
fq

 (1.2)

4



where;

dS = Displacement variable in the structural domain

PF = Nodal pressure

MS,MF = Mass matrix of the structure and fluid respectively

HSF = Spatial coupling matrix

KS, KF = Stiffness matrix of the structure and fluid respectively

ρ0 = The static density of the fluid

c = Speed of sound in fluid

The primary variables are the displacements in the structural domain and the acoustic

pressure in the fluid domain. It is evident that the two domains are inter-related. In fluid-

filled shells, the coupled modal structure can be understood as an interaction between the

empty shell modes and the acoustic modes in the fluid. For long or thick cylinders at the

lowest frequencies, the shell modes are simple combinations of the empty shell modes (torsion,

bending, extensional) and the plane wave acoustic mode. The fluid mass has a greater effect

on the cylinder’s radial and bending mode, adding its inertia to the oscillations of the cross-

section. On the other hand, for thin cylinders when the radius to thickness ratio is large

enough, radial modes are more prominent than bending modes, which are normally observed

at higher frequencies in long and thick cylinders. Perhaps the most important modes for

pipe vibration are the flexural and bending modes. In these modes, the pipe radius varies

with both the angular and axial position. The coupling factor of the natural frequency can

be linked to the variation in the flexural wave speed (VF ) of the cylinder when it is coupled

with fluid[27]. Different means of finite element formulation of coupled structure-acoustic

problems have been studied, starting from a basic analysis by Ottosen and Petersson[44] to

more complicated dynamic response studied by Bathe[9].

VF = ω/k (1.3)

5



Our description of cylinder vibration ignores any effect of the external fluid to the pipe.

In many applications, the effect is minor (as the outer fluid is air) and can be ignored except

when the analysis is of underwater acoustics or of very high modes and frequencies.

1.1.1 Theory on coupled cylinders

Let’s consider a simple elastic shell structure enclosing the fluid. The cylinder wall is

assumed to be locally reacting and therefore characterized by a specific acoustic reactance,

Xw.

For a cylinder of radius a the radial velocity ω̇ is related to the pressure through the

equation,

ω̇ = −i(δp/δr)
ρck

(1.4)

The boundary condition for the interface can be explicitly stated as,

p

(δp/δr)
=
xW
ρck

(1.5)

where,

xW = Specific acoustic reactance.

For air-filled cylinders, the wall can be approximated as rigid. For a water-filled cylinder,

the elastic property of the cylinder is not negligible and has an effect on wave propagation.

Neglecting the longitudinal pipe vibration, an axisymmetric sound pressure produces a uni-

form radial deflection ω, which results in a hoop strain, ε, and stress, σ.

ε =
ω

a
(1.6)

σ = ε
E

1− ν
(1.7)
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Interaction solutions are usually more readily interpreted when the structural elastic

constants are expressed in terms of concepts related to the wave propagation. Hence the

term phase − velocity in a structure is introduced. For a plate, the phase velocity is given

by,

cP = [E/(1− ν2)ρs]1/2 (1.8)

Compressibility of the acoustic fluid and wall elasticity combined enhances the fractional

volume change which yields to compliance and in turn, change in sound velocity in the fluid

given as a correction factor.

B−1W = (dV/V )/p

= 2ω/ap

= 2a/ρsc
2
ph

where,

B =Bulk Modulus of the fluid = ρc2

The sound velocity can now be corrected for wall elasticity by noting that the com-

pressibility of the acoustic fluid and of the pipe wall combine so as to enhance the fractional

volume change:

c0 = [ρ(B−1W /B−1)]−1/2 (1.9)

To put this as a comparison or a correction factor,

c0/c = [1 + (B−1W /B−1)]−1/2 (1.10)

Substituting the Bulk modulus of the fluid, this equation then becomes;

c0/c = [(1 + 2aρc2/hρsc
2
p)]
−1/2 (1.11)
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This equation is called the Korteweg-Lamb Correction.

In a similar approach, by taking the cylindrical modes into consideration, this paper

defines a correction factor for predicting the natural frequency of the coupled system for the

given uncoupled natural frequency of the cylinder of the same mode.

1.2 Theory and historical background on low-velocity impact by rods

The comparison of the experimental results and the finite element analysis (FEA) of a

low velocity impact of spheres and rods have gained attention since the beginning of 21st

century. To date, the impact models which are formulated are based on implicit 2D contact

models with the predefined contact conditions. Normally, the contact models consider either

the flat or the hemispherical body under motion as rigid. The models considering the im-

pacting body as rigid are called indentation models, whereas models considering the fixed flat

surface under impact as rigid are called flattening models. There are very few models which

consider both the impacting body and the surface undergoing the impact as elastic. The

present study validates a 3D explicit dynamics FEM[62] model using these contact models

and experimental results of the impact, so that this FEM model can be used to simulate and

analyze more complicated 3D asymmetric systems through a dynamic simulation of impact.

Hertz Contact Theory is the basis through which it is possible to study the impact of a

fully elastic object. He established a closed form solution for the impact of 2 elastic spheres

based on which other theories are formulated. However, Hertz theory is limited to only the

elastic phase of the impact; the plasticity involved during the event of impact is not addressed

in Hertz theory. Later, the study on indentation to measure the hardness of the material

provided the experimental results for contact studies. The experiment done by Tabor[7] on

indentation revealed the physical insight into the surface interactions. Johnson[24], in the

mid-1990’s, proposed a model dividing the event of impact into a fully elastic phase and fully

plastic phase. His further study[48] demonstrated that the restitution phase of impact will

always have a reverse plastic flow rather than the purely elastic recovery, and this was backed
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by Tabor’s experiment. Furthermore, many theoretical models were proposed improving the

Hertz theory, but achieving a closed form solution addressing plasticity, instantaneous ve-

locity, and instantaneous force was a problem. In the early 1990’s, Stronge[56],[55] came

up with the energy approach in order to study the event of impact and introduced a new

coefficient of restitution based on energy principles. In the late 1990’s, with the advent of the

finite element method(FEM), the study of contact got more focused on micro-indentation[2]

and nano-indentation[42]. Many models were put forth to predict these factors, which were

unable to solve through traditional closed form theories. Tabor’s experimental results served

as a reference for many FEM models. The early FEM indentation models were based on

minimal computational time and effort. Hardy[20] et.al. in 1971, Kral et.al [32] in 1993,

and Ogbonna et.al.[43] in 1995 studied these indentation models in FEM; their work concen-

trated on achieving the appropriate mesh and effective computational time for the analysis

to validate the results of Tabor experiments. Mesarvic and Fleck[41] in 1999 studied the

Brinell indentation as a part of a large computational study. Since the early 2000’s, more

sophisticated models have been designed with increased computational power. The models

formulated were more robust, and many scholars created empirical formulations to predict

the contact force, deformation or indentation, and other behaviors of impact based on the

simulator results. Yo Komvopoulos [64] developed a new formulation for the indentation of

homogeneous and layered material using FEM. Kogut and Komvopoulus (the KK model)

[30] came up with an interactive approach through FEM simulation for determining the in-

dentation, contact force and plastic deformation of the base. These results are also validated

by his experiments. Later Kogut and Elsio (the KE model) [29] presented a flattening model

with a new empirical formula on elastic-plastic contact of a sphere on a rigid flat surface.

Komvopoulos and Ye [31] were the first to model a 3-D contact analysis of impact with

a non-homogeneous flat surface, accounting for the roughness of the surface. Jackson and

Green (the JG model)[23] in 2004 presented a flattening model; they used an axisymmetric

2D model of an elastic-perfectly plastic sphere in frictionless contact with a rigid flat surface.
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The resulting numerical data was fitted to capture deformations from purely elastic to fully

plastic conditions, and in turn led to a new empirical formulation based on Poisson’s ratio,

elastic modulus, and yield strength of the material under impact. Brake[11] developed a new

model to determine the contact force and the area of contact. He further divides the event

of impact into 4 phases:fully elastic, elasto-plastic, fully plastic, and restitution. In more

recent studies, Alcala et al. [4] developed a model to determine the mechanical properties of

the material under impact considering the effect of friction, the strain hardening rate, and

contact radius. Furthermore, in 2014, Hamid, Marghitu and Jackson [17],[19] studied all the

models mentioned above and formulated a modified version of a JG model to measure the

indentation on the impact base, using the experimental and FEM results. Recent studies by

Kefie and Jackson [22] and Yang, and Green [61] regarding contact analysis focused on the

3D simulations and FEM parametric analyses of line and surface contact rather than point

contact. The effect of friction and hardening are studied for specific cases of plane stress

and plane strain. These studies are imitated to specific cases, and the present study is an

attempt to generalize and validate the dynamic 3D simulation of the contact.

1.2.1 Indentation models

The basic formulation of the Hertzian Contact Theory (spherical indenter) of the in-

dentation model is described here.

The mean contact pressure (Pm) of the contact is defined as

Pm =
P

a
(1.12)

where a is contact area and P is the normal load, and the truncated contact area a‘ is defined

as

a‘ = π (r‘)2 = π δ (2R− δ) (1.13)
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Figure 1.1: A schematic illustration of a spherical indentation.

which is given as a function of the radius of the truncated contact area, r‘ and the indentation

δ of the rigid sphere on a flat surface.

Based on Hertz theory, the reduced modulus of elasticity is given by

E =

[
(1− ν12)

E1

+
(1− ν22)

E2

]−1
(1.14)

where E is the reduced modulus of elasticity. For the elastic phase the indentation δ is;

δ

r‘
< 1.78

(
E

Y

)

after which the material starts to yield.

The deformation δ of the flat can be written as a function of contact load and material

properties

Pm
Y

=
4
√

2

3π

E ′δ

Y r‘
(1.15)
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a‘

a
= 2

Komvopoulus Kogut Model (KK Indentation Model) [30]

The KK Indentation model divides the event of impact as 3 phases: the elastic phase,

the elasto-plastic phase, and the restitution phase. The elastic phase is governed by the

Hertz contact theory. Based on the empirical results, and FEM analysis interface between

the elastic phase and the elastic-plastic phase is formulated as a constant ratio between the

contact pressure and the yield strength of the material (see Equation 1.16), or expressed as

a critical deformation (see Equation 1.17) at which point yielding is initiated.

In the elastic-plastic phase, the expression for contact pressure and contact area are

derived by using FEM simulation results.

Pm
Y

= 0.839 + ln

[(
E

Y

)0.656(
δ

r′

)0.651
]

(1.16)

a′

a
= 2.193 + ln

[(
E

Y

)0.394(
δ

r′

)0.419
]

(1.17)

Further, by correlating these 2 expressions, a dimensionless contact load is defined as

P

a′ Y
=

0.839 + ln
[
(E/Y )0.656 (δ/r′)0.651

]
2.193 + ln

[
(E/Y )0.394 (δ/r′)0.419

] (1.18)
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The restitution phase is described as the unloading behavior or recovery phase, and the

plastic or permanent deformation is called the residual impression, (δr). The recovery of the

elastic deformation of the material is characterized by the change in the displacement at the

center of indentation, ERδ,

which is defined as

ERδ =
δi − δr
δi

(1.19)

where δi is the maximum indentation on the base in the event of impact, δmax. Also, the

ratio of the elastic energy released upon unloading to the total input energy during loading

is defined as

ERE =

∫ δi
δf
P (δ) ∗ dδ∫ δi

0
P (δ) ∗ dδ

(1.20)

Using curve fitting for these simulation results, the ratios are expressed in terms of the

mechanical properties of the material, as shown below.

ERδ = 0.591

(
E

Y

)−0.156
(1.21)

ERE = 0.616

(
E

Y

)−0.176
(1.22)

Thus, by rearranging the terms we can get the expression for permanent deformation on the

impact point of the base

δr = δi [1− ERδ] (1.23)
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Brake Indentation Model[11]

Brake’s model formulated contact behavior of indentation by accounting for friction and

the strain hardening effect. Brake’s model divides the impact into an elastic phase and an

elastic-plastic phase. In his study, a transitionary function is used to define the behavior of

impact with 9 practical assumptions applied to bound the function for one realistic solution.

The elastic phase is again governed by the Hertz Contact Theory, and indentation at the

point of the initiation of yielding is given by

δy =
r

F (ν)

(π σy
2E

)2
(1.24)

In the elastic-plastic phase, i.e., when (δ > δy), nonlinear strain hardening coefficient

H and exponent n are used to account for the effect of hardness of the material during the

event of impact.

Contact compliance after the inception of yielding is expressed using the transitionary

function

F =sech

(
(1 + nε)

δ − δy
δp − δy

)
4

3
E
√
rδ3/2

+

(
1− sech

(
(1− nε)

δ − δy
δp − δy

))
p0 π

an

apn−2

(1.25)

, and where p0 = Hg106 is the contact pressure for a fully developed plastic flow without

strain hardening and

H =
(

2
Hs

+ 2
Hf

)−1
is the Brinell’s Hardness of the material and nε = n− 2 is the strain

hardening exponent where n is the Meyer’s hardening exponent, here ap is the characteristic

contact radius of the plastic phase is expressed as;

ap =

(
3p0
4E

2n/2π r(n−1)/2 δy
(n−3)/2

)1/(n−2)

(1.26)
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and the indentation at the end of elastic-plastic phase is expressed as

δp =
ap

2

2R
(1.27)

The restitution or unloading phase is assumed to be elastic in nature and is therefore gov-

erned by the Hertz theory. At the end of loading phase, a deformed radius of curvature

r′ and permanent indentation δ′ is sustained in the body due to plastic deformation. δ′,

the permanent deformation and r′, deformed radius of curvature, is expressed as function of

maximum deformation δm and maximum contact force Fm during the loading phase.

δ′ = δm

(
1− Fm

4/3E
√
rδm

3/2

)
(1.28)

Similarly, the radius of the curvature of unrecoverable indentation is expressed as

r′ =
Fm

2

(4/3E)2(δm − δ′)3
(1.29)

1.2.2 Flattening models

Figure 1.2: A schematic illustration of an elastic-spherical surface impacting on a rigid-flat
surface
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Jackson Green Model[23]

The Jackson Green model uses a 2D axisymmetric finite element model of an elastic-

perfectly plastic sphere in frictionless contact with a rigid flat surface. Figure 1.2 shows the

schematic representation of the flattening model. Here, the elastic hemisphere is in contact

with a flat surface with a static contact load Fn. The event of the contact(compression) is

divided into elastic and elastic-plastic phase. The deformation δ is in an elastic region until

the inception of yielding; the point where material starts to yield is defined as the critical

interface, δc of deformation.

The JG model provids an analytical expression for critical deformation by using the von

Mises yield criterion. δc is expressed in terms of yield strength of the hemisphere in

δc =

(
π C Y

2E

)2

R (1.30)

, and here, C is the yield strength coefficient defined as the ratio of the maximum contact

pressure to the yield strength of the material

C =
Poy
Y

= 1.295 e(0.736ν). (1.31)

, and Pc is the critical load to initiate yielding during the impact

Pc =
4

3

(
R

E

)2 (
C

2
π Y

)3

(1.32)

In the elastic plastic phase, an empirical formula is developed using FEM simulation results

of various interfaces of impact with different material properties and spherical geometric

parameters. The effect of hardness at the high interface of the impact is isolated by defining

a ratio of average pressure HG to yield strength Y . Thus, the change in the hardness with

the amount of contact interface is established. Further fitting those FEM results with the
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Weibull function, an expression relating the mechanical properties with the contact area and

deformation has been formulated as

HG

Y
= 2.84

[
1− e(−0.82(a/R)−0.7)

]
(1.33)

a

R
=
π C ey

2

[
δ∗
(
δ∗

δt
∗

)B]1/2
(1.34)

The restitution phase is formulated in the further study of the JG model [23] as the

model evolved with the analysis of more FEM simulation results using curve fitting models

to predict the empirical formula for the plastic deformation, δ′, and rebound velocity (COR)

of the elastic-perfectly plastic sphere.

δ′ = δm

(
1.02

[
1−

(
δm/δc + 5.9

6.9

)−0.54])
(1.35)

.

Modified Jackson Green Model[19]

The FEM model, developed by Hamid, Jackson and Marghitu [17, 19] is known as a

modified JG model and is also based on the 2D elements with asymmetric conditions. The

modified JG model has evolved from studies of all the previous indentation and flattening

models where one of the bodies under impact was assumed to be rigid. In this model, both

the surfaces undergo the impact elasto-plastically. By comparing and contrasting with many

prominent FEM models and validating them with the experimental results, a successful

attempt has been made to explain and provide a transition between the indentation and

flattening models and to predict the contact force, permanent deformation and rebound

velocity during impact on both surfaces.

This study follows the same theory of the JG model, and hence, for the elastic phase

of the impact, the expressions remain the same for contact force and deformation. For the
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elasto-plastic phase, a new term is expressed as the ratio Sy of yield strength of sphere Sys

and flat surface Syf below:

Sy =
Sys
Syf

(1.36)

,

which is used to formulate the transitioned normalized hardness expressions accounting

for changes in hardness in both surfaces, and, in turn, the contact force and deformation.

The restitution phase follows the Hertz theory. The expression given below is for the per-

manent deformation (δc) and contact (Pr) force, based on empirical formula to describe the

deformation on both the surfaces undergoing the impact.

δ′ = 0.8 δm

[
1−

(
δm/δc + 5.5

6.5

)−2]
(1.37)

where δc is the permanent deformation after unloading phase, δm is the maximum deforma-

tion at the compression phase.

Pr =
4

3
ER′

0.5
(δ − δr)1.5 (1.38)

The restitution phase is governed by Hertz theory as in a JG model, so the expressions

for deformation and contact load remains the same for both bodies. The respective maximum

and critical deformation can be used to approximate the permanent deformation on either

spherical or flat surfaces.

1.3 Theory and historical background on the impact of fluid-coupled tubes

Impulsive loading of the fluid-filled tubes and the resulting fluid-structure interaction

has been studied extensively. The studies on classical water hammer events deal with the

normal impact and effect of FSI due to the coupling of flexural waves[47, 65] in shells with the

pressure shock waves[46] in the fluid propagating perpendicular to the surface of the shell.
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The theory of stress wave propagation in the fluid-filled tube walls have been experimentally

validated by Korteweg and Joukowsky. Further studies on this were done by Skalak[57] to

account for the acoustic model and axisymmetric modes of deformation caused by the radial

oscillation of the tube coupled with the motion of the fluid. Numerical and experimental

studies have been done to describe the folding mechanism of deformation and estimate the

energy absorbing characteristics of the fluid-filled thin cylinders undergoing axial impact.

Early finite element analysis of fluid-structure interaction illustrating the sloshing effect on

liquid structures has been studied by S.SubhashBabu and S.K.Bhattacharyya[8] The present

study is focused on the development of a finite element technique to calculate the sloshing

displacement of liquid and pressure developed due to such sloshing. This scheme was ex-

tended to study the coupled effect of sloshing and container wall movement due to change

in the liquid pressure. Subsequently, in both civil and military fields, research and experi-

mentation on the fluid–structure interaction of water-filled tanks and cylinders during the

impact were carried out. Analysis of the crashworthiness of fuel tank for helicopter by uti-

lizing the finite element method (FEM) were done by Marco Anghileri[6], Xianfeng Yang[63]

and many researchers. The dynamic response of the drop test of a fuel tank is a represen-

tative fluid–structure interaction (FSI) problem, which is extremely complex owing to the

strong nonlinearity and large deformation. It can be simulated in many different methods.

Finite Element Eulerian, Lagrangian, Arbitrary Lagrangian Eulerian (ALE), and Smoothed

Particles Hydrodynamics (SPH), etc. Zhang Y.T.[68]et.al. have worked extensively on each

of these methods, and SPH methods have been proven to be the most effective in simulat-

ing the FSI events like drop testing fluid-filled tanks. Comparing with ALE, SPH is said

to be more accurate but is computationally more expensive than other methods. ALE can

be used to analyze the ways flexible fluid-filled containers change shape on impact. The

limiting factors of water hammering and the bulking of the structures as a result of impact

under the influence of fluid are presently studied. The deformation and stress response of

the structures over time are analyzed to model the effect of fluid during the event of impact.
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In the present study, a 3D explicit dynamics method is used to analyze the impact behavior

of the fluid-filled tube during and after the event of impact. An explicit dynamic uses an

SPH reference frame for meshing and analysis. In this module of ANSYS, solid bodies can

be assigned either a Lagrangian reference frame or a Eulerian reference frame. The reference

frames can be combined in the simulation to allow the best solution technique to be applied

to each type of material being modeled. During the simulation, bodies in both the Eulerian

and Lagrangian reference frames will automatically interact with each other, establishing a

fluid-structure interaction. Even though it is computationally expensive for present compu-

tational power, with future advancements in high-speed computing and parallel processing,

the simulations with these methods will be more relevant going forward. An attempt is

made in this regard to analyze the impact response of fluid-filled tubes and effect of natural

frequency in the event of the impact using explicit dynamics.

20



Chapter 2

Modal analysis of fluid-coupled thin structures

In the paper [40] published by Amabili [5].et.al., the effect of fluid to enhance the non-

linear behavior of the shell vibration, and the importance of non-linear analysis in fluid-filled

shells are discussed in detail. In the normal engineering field, such an analysis for all the

coupled systems is cumbersome, even with the help of FEM analysis. An important problem

for a structure-acoustic analysis using FEM is that the number of degrees of freedom easily

becomes very large when solid element SOLID-186 is used to represent structures to achieve

a symmetrically coupled matrix formulation with the fluid element FLUID-220. Another

problem associated with fully symmetrical coupled matrix formulation is the incompatibility

of shell elements in modeling the symmetric matrix of coupled motion of thin-wall and fluid.

But SHELL-63, a structural shell element will couple with fluid element FLUID-30 with the

lack of symmetry in the system of equations and coupling matrix. In all these methods,

the large bandwidth of the system matrices and the coupling matrix add up to a long

computational time. It is more productive to predict the coupling factor[see Equation 2.21]

in the structural design process rather than spend a significant amount of time monitoring

the modal characteristics of every coupled structure(cylinder) if other dynamics properties

of the fluids are not of practical interest. However, predicting the natural frequency of the

coupled structure is a complicated mathematical problem. The solution is only calculable

using higher order equations, and theoretical solutions are restricted to specific models and

boundary conditions. However, generalizing the prediction for coupled modal frequencies

of the cylinders for all the boundary conditions and for all possible vibration modes in a

complicated structure is still not practical. Therefore, for a specific familiar model and for a

specific range of structural and fluid properties, a parametric study can be done to simplify
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the relationship between the coupled and uncoupled model to obtain an approximate solution

to the modal frequencies of the coupled structure from the data of the uncoupled analysis.

This saves a lot of computational time in the static structural design where the vibrational

characteristics are not the primary objective but cannot be neglected. An attempt is made

in this regard to achieve a feasible approximation of the first few natural frequencies of the

thin cylinders under the influence of dense fluids, such as water, for a given natural frequency

of these cylinders(empty).

2.1 Finite element formulation

A number of finite element formulations have been proposed for acoustic fluids in the

analysis of fluid-structure interaction problems, namely the displacement formulation, the

displacement potential and pressure formulation (Morand and Ohayon), and the velocity

potential formulation (Everstine, Olson and Bathe)[44]). The displacement formulation has

received considerable attention because it does not require any special interface conditions

or new solution strategies and because of its potential applicability to the solution of a broad

range of problems. Figure 2.1 illustrates the classical modal behavior of the cylinders, where

the natural frequencies increase with the mode number, but the first few natural frequencies

correspond to higher modes and the first few modes occur at higher frequencies. Hence there

is an initial dip in the natural frequencies compared to the mode number curve. This dip

is governed by the geometry of the cylinder under analysis. The details of the topic are ex-

plained in sections ahead. In the finite element formulation, a system of equations describing

the motion of the system is developed, with the number of equations equal to the number of

degrees of freedom introduced in the finite element discretization. For the structure-acoustic

system, the structure is described by the differential equation of motion for a continuum

body assuming small deformations, and the fluid is described by the acoustic wave equation.

Coupling conditions at the boundary between the structural and fluid domains ensure the

continuity in displacement and pressure between the domains.
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The governing equations of each domain based on their boundary conditions are:

Structure :∇̃TσS + bS = ρS
δ2uS
δt2

Fluid :
δ2pF
δ2t
− c2∇2pF = c2

δqF
δt

Coupling : ~~σS~n+ p~n = 0

: ~n · ~uS − ~n · ~uF = 0

(2.1)

where;

uS, uF = Displacement of solid and acoustic fluid; bS = Body force

pF = Pressure field in the acoustic domain; σS = Solid stress tensor

n = Outward normal unit vector of fluid domain; qS = Inertia force

∇̃T =



δ/δx1 0 0

0 δ/δx2 0

0 0 δ/δx3

δ/δx2 δ/δx1 0

δ/δx3 0 δ/δx1

0 δ/δx3 δ/δx2


To arrive at the finite element formulation for these individual domains, a weak form

of the differential equations is derived[13, 50, 49, 51, 52, 53]. The finite element formula-

tion is formed by using the integral of the governing equation with the structural domain.

Through the derivation of the above function, using the shape function, displacement do-

main, and weight function, the finite element structural domain can be formulated as being

the following:

∫
NT
S ρSNSdV d̈S +

∫
(∇̃NS)TDS∇̃NSdV dS =

∫
NT
S tSdS +

∫
NT
S bSdV (2.2)
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This governing system of equations can be written as the following;

MS d̈S +KSdS = fF + fb (2.3)

where;

MS =

∫
NT
S ρSNSdV ; KS =

∫
(∇̃NS)TDS∇̃NSdV

fF =

∫
NT
S tSdS; fb =

∫
NT
S bSdV

NS = Finite element shape function of structure; DS = Constitutive matrix

dS = Displacement matrix; bS = Inertia matrix

Similarly, considering the governing equation of in-viscid acoustic fluid, a weak finite

element formulation can be done by integrating the time derivative of the governing equation

of fluid over volume[50, 49, 51, 52, 53].

Expressing the pressure field of the acoustic fluid as the shape function and weight

function, a finite element of governing equation can be formed for fluid domain, as noted

below.

∫
NT
FNFdV p̈F + c2

∫
(∇̃NF )T ∇̃NFdV pF = c2

∫
NT
F∇pFnFdS + c2

∫
NT
F

δqF
δt
dV

This governing equation can be written as following;

MF p̈+KFP = fq + fS

(2.4)

where;

MF =

∫
NT
FNFdV ; KF = c2

∫
(∇NF )T∇NFdV

fS = c2
∫
NT
F n

T
FpdS; fq = c2

∫
NT
F δq/δtdV

NF = Finite Element Shape Function of Acoustic Fluid
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Now, the coupled structure-acoustic system can be defined at the interface of the fluid

and structure. At the boundary, the fluid to the structural nodes should have same displace-

ment and pressure in a normal direction. Hence, the displacement and pressure boundary

conditions can be written as the following:

~~σS~n+ p~n = 0

~n · ~uS − ~n · ~uF = 0

(2.5)

Now the coupling can be introduced in the form of force fSand fF by relating pressure

and the acceleration of the fluid to the structural domain at the boundary. Structural force

fF is related to both the stress and pressure acting on the structure and fluid as shown the

following equation:

fF =

∫
NT
S nNFdSPF (2.6)

Similarly, the force acting on the fluid fS is related to the acoustic fluid pressure and stress in the following equation:

fS = −ρ0c2
∫
NT
F n

TNSdS d̈S (2.7)

where:

pF = NFPF ; pF = Pressure field

PF = Nodal pressure; NF = Finite element shape function of fluid domain

The structure – acoustic problem in the finite element method can be expressed as;

 MS 0

ρ0c
2HT

SF MF


 d̈S
P̈F

+

KS −HSF

0 KF


dS
PF

 =

fb
fq

 (2.8)

by defining a Spatial Coupling Matrix with the equation:

HSF =

∫
NT
S nNFdS (2.9)
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2.2 Validation of the finite element method used for analysis

In order to examine the feasibility and accuracy of the proposed iterative scheme, a

benchmark problem has been solved and compared with the existing literature. In the

book ‘Sound Structure and their Vibration’ by Miguel C. Junger[27], there is an intensive

discussion about the coupling of structure and fluids at different frequency ranges.

2.2.1 Junger’s approach on fluid-structure coupling[27]:

Consider an elastic structure excited by N Force Fj immersed in an acoustic fluid and

hence exposed to radiation loading in the form of pressure as in Equation 2.10 below.

p(Rj) =

∫
ω̇(R0)G(Rj|R0)dS(R0). (2.10)

This is the broad explanation of the coupled space of fluid and structure [see Equation

2.2.1]. With field points Rj located on the structure-fluid interface. The acoustic surface

pressure now contributes to the oscillatory force applied to the structure and must therefore

be accounted for when computing the dynamic response of the structure. The dynamic

response of the submerged structure can be represented as

ω̇(Rk) = −
∫
γ(Rk|Rj)[

∫
S

ω̇(R0)G(Rj|R0)dS(R0)]dS(Rj) +
N∑
j−1

F (Rj)γ(Rk|Rj). (2.11)

where;

Rj = Field point; R0 = Position vectors of the structure

G = Green’s Function; ω̇ = Angular velocity distribution

p = Pressure; γ = Drive-point mobility or transfer mobility

Moving forward to the specific system with which we are interested in, let us consider

a fluid-filled spherical shell, as there is advantage of spherical symmetry in the system,

26



analytically closed form solution can be obtained for the restricted boundary conditions.

The pressure field and normal modes of fluid-filled spherical shells are factors which can be

mathematically formulated. The pressure, p(a), acting on the inside of a spherical container

vibrating uniformly is given by the following equation:

p(a) =
iρckaẆ

ka cot ka− 1
(2.12)

where;Ẇ = Velocity amplitude; a = Radius of curvature; k = Wave number

Restricting the analysis to the n = 0 mode or breathing mode of vibration. The dimen-

sionless frequency will be given by the equation,

[−Ω2 + 2(1 + ν)]W0 =
a2p(a)

ρSc2ph
(2.13)

The dynamic stiffness of the spherical wall can be obtained by the formula

k0 =
ρc2k2a2

a(1− ka cot ka)
(2.14)

Additionally, the pressure can be expressed as

p(a) = −k0W0 (2.15)

2(1 + ν) = Ω2
0 (2.16)

Hence, the characteristic equation of the fluid filled sphere is

ρSc
2
ph

3ρc2a
(Ω2 − Ω2

0) =
k0a

3ρc2
(2.17)
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where;

cp = Phase velocity of the compressible wave

This is a transcendental equation, because k0 is frequency dependent. Thus, this equa-

tion has a series of solutions for a single mode. Calculations were performed for the following

structure and fluid properties:

Structure : Steel

Young’s Modulus : 2.1e11Pa

Poisson’s Ratio : 0.28

Fluid : Water

Density : 1000 kg/m3

Sonic Speed : 1484 m/s

For a water filled steel sphere of radius 1 m;

1st breathing mode = 928 Hz

2nd breathing mode = 1653.18 Hz

3rd breathing mode = 2322.66 Hz

2.2.2 The finite element method

Now, in order to validate and verify the FEM model, the structure and fluid elements

are coupled at the intersection. Numerical modeling is done using ANSYS- APDL 17.1. Two

means of FEM modeling are shown that represent the fluid-structure coupling:

3D Elements : The structures were modeled as a SOLID element-186 and fluid was modeled

as Acoustic Element-230.

Shell Elements : The structures were modeled as SHELL-63 elements and fluid was modelled
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as Acoustic Element-30.

Figure 2.1: Natural frequency of coupled and uncoupled cylinders

Breathing modes refer to the vibrational modes associated with the flexural motion of

the shell wall, such that the radial displacement is proportional to cosnθ where n = 0,

which corresponds to rotationally symmetric motion. Hence, a frequency response analysis is

done by applying equal pressure over the spherical surface. At the breathing mode frequency,

there is least resistance to all the nodal displacements in the normal direction as a response

to the symmetric pressure over the surface of sphere. Thus, there will be a peak in the normal

displacement of a given node at the breathing mode frequency; the corresponding normal

displacement is plotted over the frequency for the outer surface nodes at x = 0 and y = 0

as observed in the graphs in Figures 2.3 and 2.4

The model in Figure 2.2 describes a sphere filled with fluid, and the nodes on the

inner boundary of the sphere are coupled with the fluid elements inside. A pressure load is

applied over the surface of the sphere. As that pressure acts on the surface of the sphere,

the frequency response of the sphere with respect to the normal displacement of the surface

is plotted as shown in Figures 2.3 and 2.4 . There is significant normal displacement at a

specific frequency, which can be asserted as the breathing mode of the sphere. More precise

values for the frequency were obtained by running the analysis in the close range of individual

peaks.
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Figure 2.2: Sphere mesh

Table 2.1: Comparison with Junger’s book - results

Breathing Modes of Coupled Sphere

No.
Theoretical Frequency

(Hz)
Solid Structural
Element (Hz)

Structure as
Shell Element (Hz)

1 971.2 868 871
2 1653.7 1533.7 1543
3 2322.6 2230 2252

The FEM results are similar to those of theoretical results in Table 2.1 using Junger’s

theory. The differences between eigenvalues are less than 5 percent. Thus, results apparently

reflect that both FEM modeling methods are correct. It is also noted that for the uncoupled

sphere, all the models provide 1400Hz as the breathing mode. On completing the analysis

by using both symmetrically and unsymmetrically coupled matrix, it is evident that the

accuracy of both the methods are agreeable given that the shell elements require a dense

mesh to avoid numerical errors in the plots. For the given number of elements and mesh

density, the symmetric matrix does solve it more efficiently, but meshing the structure is a
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Figure 2.3: Frequency response of displacement of the sphere - solid element

Figure 2.4: Frequency response of displacement of the sphere - shell element

meticulous and careful process. Shell elements are used for this parametric study as numerous

interactions are completed by changing the model parameters for the analysis.

2.3 Modal characteristics of cylinders coupled with fluids:

In this section, an attempt is made to solve the fluid coupled structural vibration re-

sponse. As previously stated, the modeling method had been proved right. The structure

is represented by SHELL-63 elements and the fluid is represented by the Acoustics-30 ele-

ment. Figure 3.1 shows the mesh of a closed cylinder with a 2 m radius and 5 m length with
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Figure 2.5: Cylinder coupled mesh

1 mm thickness containing fluid. The modal behavior of these structures is investigated by

comparing coupled and uncoupled conditions.

The cylinder is designed as a thin and short cylinder to avoid more longitudinal or

bending modes for the first 20 eigenvalues. The circumferential modes are of interest in this

study; the reason for this is explained in further discussions.

Coupling Factor =
Natural Frequency of Coupled

Natural Frequency of Uncoupled
(2.18)

The importance of coupling factors can be seen in Tables 2.3 and 2.4, where, for the

empty cylinder, the first natural frequency is 25 Hz, at which point the cylinder undergoes a

large displacement with least resistance. However, when it is coupled with water, the same

state of vibration occurs at only 6 Hz. Thus, it should be noted that if a cylinder is installed

in the dynamic system under the above stated condition, care must be taken to dampen this

mode, which is over the range of 6 Hz to 25 Hz.
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Table 2.2: Mode shapes

Radial Modes :- m=1

Table 2.3: Radial modes and natural frequency of coupled and uncoupled cylinders (Hz)

Radial modes and natural frequency of couple and uncouple cylinder (Hz)
Radial Mode No. Empty Cylinder Coupled with air Coupled with water

3 36.797 36.388 8.343
4 25.665 25.442 6.5202
5 26.993 26.802 7.537
6 35.234 35.022 10.645
7 47.083 46.839 15.220

The analysis is done for cylinders with the following boundary conditions: 1) Fixed-

Fixed boundary - where both ends of the cylinder are fixed in all directions.

2) Fixed-Free boundary, also known as a Cantilever cylinder, where one end is fixed and the

other end is free.

Table 2.3 represents the natural frequency of the uncoupled cylinder-steel and the cou-

pled condition with the fluids – air and water, respectively. It is evident that the coupling

factor of the structure with air is negligible compared to that of water. It should be noted

that the radial mode number and modal frequency are related as shown in the Figure 2.7.

The curves show that the first few modes are not tabulated as they occur at a much higher

frequency; those modes are outside of the parameters of this study, as we are concerned only
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Table 2.4: Coupling factor of steel and aluminum coupled with air and water

Coupling factor of steel and aluminum coupled with air and water
Radial mode No Aluminum Steel

Air Water Air Water
5 0.837 0.053 0.934 0.091
6 0.857 0.058 0.943 0.099
7 0.873 0.062 0.949 0.107
8 0.886 0.066 0.953 0.114

Figure 2.6: Coupling factor for weak and strong coupling

with the first few natural frequencies. There is still discussion on defining coupling factors

as weak coupling and strong coupling, but in this case, it can be asserted that the air has

a very weak coupling factor with respect to this structure. On the other hand, water can

be treated as a strong coupling. Table 2.4 and Figure 2.6 represent the coupling factor of

the same model with a different structural property – Aluminum. Comparing the results of

these two structures, it is obvious that, for a given fluid, the coupling can be significant or

insignificant based on the material property of the structure, so a soft structure such as a

polymer, could have a coupling factor with high pressured air, which cannot be neglected.

Hence, our area of interest concerns these strong couplings. However, the comparison of the

empty and coupled natural frequency of the structure is complicated, as explained in the
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Figure 2.7: Natural frequency with different radial modes

previous chapter. The relationship between these frequencies is of complex, higher order

differential equations.

An attempt is made here to relate these frequencies for a specific condition of dimen-

sions, properties and boundary conditions for the cylinder and fluid. A parametric study is

performed for each set of data input by modeling numerous models of varying factors, which

are explained in detail in the coming chapters.

2.4 Parametric study of the modal characteristics of fluid coupled cylinders

To study the effect of the structural and fluid properties and geometric parameters of the

cylinder on the coupling, individual parameters including the thickness, radius, and length,

of the cylinder as well as the density of the structure and fluid are to be analyzed indepen-

dently by keeping the other parameters constant. A specific parameter must be isolated to

analyze the effect and significance of that parameter in the engineering design. The effects

of these parameters with different measurements and materials are studied. Furthermore,

the fluid properties contribute significantly for the coupling and, hence, drive the coupling
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factor which we are attempting to predict. As described in the problem statement, the im-

portance and non-linear behavior of fluid in a modal analysis of a cylinder is not practical

to predict in a way which can be generalized to all fluids and structural conditions. Hence,

the parametric study is confined to one fluid at a time to achieve more precise variations

and better understand the dependencies of the other parameters over the coupling of the

structure with the selected fluid. The fluid selected for the study in this paper is water.

All the analyses carried out are with regard to the coupling characteristics of water with

cylindrical structures.

2.5 Parametric study on the relation between modal frequencies of uncoupled,

and water-coupled cylinders

Table 2.5: Properties of the structure and fluid described

Structure
/ Fluid

Property

Young’s Modulus (E)
(GPa)

Poisson’s Ratio (µ)
Density (ρ)

(kg/m3)
Sonic Velocity

(m/s2)
Steel 210 0.28 8050 –
Aluminum 69 0.3 2070 –
Copper 117 0.28 8960 –
ABS 2.25 .23 1030 –
Water – – 1000 1484

Many finite element models are constructed, and normalizing techniques are used to

help generalize the results for a specific range of models. For all models, the first 20 to

40 natural frequencies of the systems are calculated with the geometrical and structural

properties mentioned in Table 2.5. In this analysis, some metal and polymer cylinders are

examined. The cylinder dimensions are varied to get the desired mode shapes for the analysis

on the effects of these variables on coupling. The following description summarizes the effects

that these parameters have on coupled natural frequencies of the cylinder.
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Figure 2.8: Effect of r/t on the coupling factor in a steel cylinder with fixed-end BC

2.5.1 Effect of the cylinder’s thickness and radius on coupling

In this section, two geometrical parameters are considered as the design variables af-

fecting the coupling factor. To show the effect of thickness and radius on coupling factor, a

series of models were developed by considering a non-dimensional geometric factor defined

as the ratio of radius to thickness of the cylinder. To obtain a clear variation with respect

to thickness and radius in metal structures an ideal model is constructed with a very thin

cylinder ranging in thickness from 0.1 mm to 5 mm and a large radius of 0.5 m. Thus,

the dimensionless geometric ratio varies from 5000 to 50. For soft materials like ABS, the

thickness ranges from 1mm to 5mm, and the radius ranges from 10 cm to 50 cm; here the

ratio varies from 100 to 20. Figures 2.8, 2.9 and 2.10 show the relationship between the

geometric factor and the change in the coupling factor of a system with different materials

and radial mode numbers for both fixed ends and cantilever boundary conditions.

The modal used in Figure 2.8 is the steel cylinder of 5 m length coupled with water. As

illustrated, the coupling factor decreases with the increase of the radius to thickness ratio.

It should be noted that the effect of the coupling is stronger because ABS is a soft mate-

rial, and it is not dense and stiff enough, compared to metals, to resist the interaction with
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Figure 2.9: Effect of r/t on the coupling factor in an ABS cylinder with fixed-end BC

fluid motion. Thus, even thicker ABS cylinders coupled with the fluid vibration at much

lower frequencies will have a stronger coupling compared to metals. Indeed, the variation

for all the modes are same. The relation is shown in the Figure 2.8 as a power of −0.502.

Similarly, another modal is built using ABS material and coupled with water. The relation-

ship is shown in the Figure2.9. Also with the change in material property and boundary

condition, the variation of coupling factor w.r.t geometric parameter is almost unchanged

Figure 2.10. Therefore, the coupling factor is inversely proportional to the square root of

the non-dimensional geometric ratio.

Coupling Factor ∝

√
1

r/t

∝
√
t

r

(2.19)

2.5.2 Effect of the structural material density on coupling

To investigate the effect of structural material density on the coupling factor, considering

the properties of the material, models of the coupled cylinders were created with different
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Figure 2.10: Effect of r/t on the coupling factor in a steel cylinder with cantilever-end BC

materials with varying densities. The coupling factor is calculated for same modes at a time.

Figure 2.11 and 2.12 show the effect of structural density on the natural frequencies (coupling

factor) of the water-coupled cylinder with the r/t ratio of 1000. Of course, an increase in

the radial modes number leads to an increase in coupling frequency and vice versa, but it is

evident that the variation of the coupling factor is also same for all the modes. Moreover,

it is also obvious that the denser structural materials will have weak coupling effects; hence,

the coupling factor is less for structures with the larger density, As shown in the Figure

2.11 the variation is in the order of 0.498. Thus, it can be asserted that the coupling factor

is proportional to the square root of the structural material density of the cylinder when

coupled with water.

Coupling Factor ∝ √
ρ (2.20)

However, at the far end of the geometric variation in the models of steel and copper,

where the approximation fails, the variation of the coupling factor with respect to the struc-

tural material density is not as expected. Figure 2.11, and, 2.12 shows the variation of

coupling factor for the thicker cylinder as of r/t = 100 with the fixed end boundary condi-

tions. The variation is in the order of 0.46, for the thick cylinders of denser structures. This
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Figure 2.11: Effect of structural material density on coupling factor of water
coupled cylinder with r/t = 1000

response is independent of the boundary conditions as both fixed end and cantilever end

boundary conditions behaves in the similar way Figure 2.13 and 2.14. In the latter sections

of this report, the conditions for each material, which this parametric study is limited to,

are explained.

Figure 2.12: Effect of the structural material density on the coupling factor of a water
coupled cylinder with r/t = 100
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Figure 2.13: Effect of the structural material density on the coupling factor of a water
coupled cylinder with r/t = 2000 - cantilever boundary condition

2.5.3 Effect of the longitudinal modes of cylinder on the coupling

Throughout this analysis importance is given only to the radial modes. The geometries

of the cylinders are made so that longitudinal modes are avoided and first few natural modes

for the convenience of the analysis. It is expected to find an interdependency between these

modes, as by definition of these different natural modes they are orthogonal to each other.

Thus, there is no interrelation of these modes with respect to coupling factor.

For clarification, the Table 2.6 compares the coupling factor of first longitudinal mode

with higher longitudinal modes for the same radial mode number of the cylinders coupled

with water. Similar analyses are done for numerous models to verify results. In all of these

analyses, the effect of longitudinal modes of vibration on the coupling factor is found to be

very minimal or negligible.

2.5.4 Relating the natural frequencies of the empty and water-coupled cylinder

coupled

From the parametric study of all the factors mentioned above, the coupling factor which

related the uncoupled system to the coupled system can be expressed as function of these
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Figure 2.14: Effect of the structural material density on the coupling factor of a water
coupled cylinder with r/t = 250 - cantilever boundary condition

Table 2.6: Coupling Factor for different longitudinal and radial modes

4th Radial Mode 5th Radial Mode 6th Radial Mode
Longitudinal

Mode No.
Coupling
Factor

Longitudinal
Mode No.

Coupling
Factor

Longitudinal
Mode No.

Coupling
Factor

1 0.170 1 0.186 1 0.203
2 0.170 2 0.187 2 0.203
3 0.171 3 0.188 3 0.204

4 0.189 4 0.205

variables in their respective orders.

CouplingFactor =

√
ρs n t

ρw r

Natural Frequency of Coupled

Natural Frequency of Uncoupled
=

√
ρs n t

ρw r

(2.21)

where;

ρs = Density of the structural material.; ρw = Density of water.

r = Radius of the cylinder.; n = Radial modes of cylinder.

t = Thickness of the cylinder shell.
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A wide range of structures and geometries of the cylinder holds good this expression

with an error margin of less than 5 percent. Results of all the analyses are not illustrated, but

to get the sense of breadth of the analysis, the results of the far end of the factors assessed

are tabulated below. For metal cylinders such as steel and aluminum, whose stiffness and

density is much higher than that of water, Tables 2.7 and 2.8 show the FEM and results

from Equation 2.21 of the coupled and uncoupled modal frequencies. The expression will

have the least error only for very thin shells of the cylinder, but for soft materials like ABS,

the calculated results match closely even for thick cylinders as illustrated in Tables 2.9 and

2.10.

Table 2.7: Approximated modal frequency of the coupled cylinder-1

Steel Cylinder with r/t = 10000 coupled with Water
Radial
Mode
No.

Modal Frequency (Hz)
Error
Percentage

FEM Results Approximated Results
Empty Cylinder Coupled Cylinder Coupled Cylinder

9 8.901 0.769 0.757 1.47
10 7.481 0.680 0.671 1.36
11 6.568 0.628 0.618 1.55
12 6.062 0.604 0.595 1.47
13 5.893 0.613 0.602 1.8

Table 2.8: Approximated modal frequency of the coupled cylinder-2

Steel Cylinder with r/t = 100 coupled with Water
Radial
Mode
No.

Modal Frequency (Hz)
Error

Percentage

FEM Results Approximated Results
Empty Cylinder Coupled Cylinder Coupled Cylinder

2 72.448 29.839 29.070 2.578
3 52.074 24.045 25.590 6.42
4 74.734 40.847 42.407 3.8
5 116.361 65.427 73.822 12.8
6 169.453 107.964 117.765 9.07
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Table 2.9: Approximated modal frequency of the coupled cylinder-3

ABS Cylinder with r/t = 200 coupled with Water
Radial
Mode
No.

Modal Frequency (Hz)
Error

Percentage

FEM Results Approximated Results
Empty Cylinder Coupled Cylinder Coupled Cylinder

3 23.22 3.03 2.88 4.9
4 18.53 2.72 2.66 2.4
5 22.49 3.65 3.60 1.23
6 30.90 5.45 5.43 0.48
7 41.83 7.94 7.94 0.01

Table 2.10: Approximated modal frequency of the coupled cylinder-4

ABS Cylinder with r/t = 20 coupled with Water
Radial
Mode
No.

Modal Frequency (Hz)
Error

Percentage

FEM Results Approximated Results
Empty Cylinder Coupled Cylinder Coupled Cylinder

2 167.98 57.64 53.91 6.46
3 166.31 64.31 65.37 1.64
4 267.11 114.01 121.23 6.33

As other factors are analyzed independently, the variation in errors in these calculations

is related significantly to the radial mode number. It is challenging to track the nonlinear or

higher order relations of radial modal frequency with coupling by a parametric study. Thus,

the analysis is further constrained to a set of models for every structural material of the

cylinder.

Commenting on the results, it is a well-known fact that in a lower order natural fre-

quency, fluids might act as added mass, which in turn implies that the densities of the fluid

and structure dictates the coupling provided that the structure is thin enough compared to

its elasticity to lower the effect of the structure’s stiffness, so the error in the expression

increases for thicker and smaller cylinders. It is obvious that the stiffness and the phase

velocity of the structure and fluid play a very important roles in the coupling. As these
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are not considered explicitly in the expression, the effect of those parameters will eventually

take precedence as the shells get thicker. This is also the reason for which Equation 2.21 is

restricted to water. The conditions where the Equation 2.21 is valid for the approximation

are listed below for Steel (High density) and ABS (Low density - polymer);

Steel : 100 ≤ r/t

ABS : 20 ≤ r/t

For the cylinders lower than the stated radius to thickness ratio, the error in the ap-

proximation is no longer negligible. The stiffness of the structure and thus the phase velocity

need to be analyzed theoretically with higher order equations to get the relation with the

coupling factor, which is outside of the scope of this parametric study.

2.6 Conclusion

The importance of the coupling factor in the modal analysis of the fluid-coupled struc-

tures is shown through this study and realized by the proposed expression Equation 2.21.

Proposed also is an apparent transition condition (see Figure 2.22) to differentiate strong

and weak coupling of the cylinder’s structure with fluids. Care should be taken when de-

signing the cylinders and encountering dense fluids such that the geometry can avoid the

strong coupling with the fluid. The flexural wave speed in the structure is reduced due to the

interaction with the dense fluid when compared to a given mode of vibration in a vacuum

(see Equation 1.3). Hence, coupled structures achieve their first few natural modes at a

lower frequency, and this theory is widely studied and accepted. Thus, the results obtained

are convincing based on this theory. For the explanation that the variation of coupled nat-

ural frequency is much less dependent on the material stiffness (modulus of elasticity) of

the structure, it is noteworthy that the equation (Eq.2.21) is similar to the one discussed in

”Vibration of a Cylindrical Shell in an Acoustic Medium” by G. B. Warburton [59], which

is also independent of the elasticity modulus, except for the displacement component factor.
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However, we cannot move forward with that equation as it is more generalized and its equa-

tion is derived for infinite shell. For a specific finite cylinder, it is equally as complicated as of

other theories with factors to be calculated based on the boundary conditions and displace-

ment components. While Equation 2.21 is more specific and simple. The Equation 2.21 is

an approximation to facilitate the design in terms of selecting the appropriate materials for

the required geometry or vise verse, irrespective of the boundary conditions. Equation 2.21

can be generalized for a wide variety of structures and fluids with, acceptable error ranges

from 1% to 10%. √
ρs
ρf
≤

√
Radius

Thickness of the shell
(2.22)

Rather than solving a 6th or higher order differential equation or using the software,

which also takes significant computational time, a simple equation for a specific system is

more convenient from an engineering perspective. If the problems of fluid dynamics are not

of primary interest, which is the case for most of the engineering systems, the efficient way is

to deal with these approximations of a given system if the degree of error is not significant.

This objective is served by Equation 2.21 for cylinders filled with water. Equation 2.22 can

be regarded as the apparent transition condition to differentiate strong and weak coupling

of the cylinder structure with fluids. Hence, this report will serve as a guide to further

parametric analysis on coupling in similar systems and to gain insight into the coupling

factor as well as where and how to start the study. These formulations find applicability

in designing thin structures containing dense fluid(water). In the design of the membrane

tubes used in medical equipment and the design of large cylindrical structures where the

aspect ratio of the cylinder’s diameter to thickness is close to the sated limit, this study will

help in an evaluation of their modal characteristics.
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Chapter 3

Simulation of the dynamic events of impact using an explicit 3D FEM model and

validation through experimentation and contact models

In this study [39], a dynamic 3D model of a rod with a spherical-end impacting with a

fixed flat surface is modeled using an explicit dynamics module under ANSYS Workbench.

The model, as shown in Figure 3.1, is meshed with 3D elements with a Lagrangian reference

frame. Considering the computational time, many simulations with different meshes are

produced to have consistent results independent of mesh density. The maximum displace-

ment over time of the base under impact for various mesh sizes is shown in Figure3.3. The

x-coordinate represents the distance from the point of impact to the end of contact during

the impact, and the y-coordinate represents the maximum deformation caused by the impact

over time. As shown in Figure 3.3, it is evident that the maximum displacement response at

the contact point is almost convergent for a mesh size of 0.002mm. It should be noted that

in this convergence study, the path result of the displacement over the length of the contact

accounts for discontinuity errors due to lack of sufficient nodes at the contact region. The

mesh convergence is achieved with an element size of 10−5, as shown in Figure 3.2, within

0.1mm around the vicinity of the impact point for both normal and oblique impacts. For the

dynamic impact analysis, the time step of the simulation depends on the smallest element

and sound wave speed in the material under test. As the event of the impact is in the order

of milliseconds a time step of 2∗ 10−9s is used in the simulation. To accommodate the whole

event of the impact and sufficient time to plot the rebound velocity, the event is simulated

for 10 microseconds. The models with different radii and lengths and impact velocities are

meshed with 20 to 25 thousand nodes and 100 to 150 thousand elements based on the pa-

rameters of the rod. The rod is modeled in such a way that it is 0.001mm away from the base
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so that computational time can be saved in the dynamic analysis. AUTODYNA solver is

used for the analysis. Normally in the dynamics simulation, mass scaling is used to improve

the time efficiency of the computation. Mass scaling is the process where the density of the

material is artificially increased for the smallest element by which the larger time step can be

used to save on time taken to solve the simulation. But in this impact analysis, as the small-

est element of the structure is at the point of impact, change in the density of the elements

results in change in inertial aspects of the impact. Hence, in an explicit dynamics simulation

of impact, we cannot have the luxury of mass scaling to reduce the computation time. The

computation time is between 6-7hrs on a computer with an i7 processor with 16GB RAM.

More than 200 different cases of simulations are performed. Results are analyzed and corre-

lated with the mentioned prominent models of impact mechanics and experimental results.

The time step for all the dynamic analyses is in the order of 10−8s as the event of impact

is in the order of 10−5s. The range of material and geometric parameters modeled in these

simulations are in exact co-rrelation with those used in the experiments and in the mentioned

contact models.

Figure 3.1: FEM model of the impact of a rod on a flat surface

In the explicit dynamics, for the simulation of impulsive loading as in the case of impact

or detonation, the material behavior in the plasticity zone is affected by the type of loading,

48



Figure 3.2: Cross-sectional view of the mesh for normal and oblique impacts of the rod

strain rate, and temperature. For the computation of these systems, along with the elastic

properties of the material, plastic and failure properties of the materials are defined by

many formulations. Each formulation of the material’s hardening properties by these models

addresses the change in properties of the material at the specific scenario. Formulations

used in the ANSYS Workbench to define the plastic properties of the materials are briefly

described here.

Bi-linear, multi-linear, and nonlinear isotropic hardening is when, after an initial yielding

point, the stress as a function of plastic strain can be expressed as a linear slope (tangent

modulus), as a set of experimental values of stress for a respective plastic strain or as an

exponent of strain (power law). These hardening laws are generalized plasticity formulations

which do not account for change in the material behavior for strain rates or impulsive loads.

These properties can be used if there are experimental values of stress strain plots for the

given strain rate.

One of the popular plasticity studies for the computation of high velocity impact and

stress flow in the materials for the thermal loads is Johnson-cook strength model. This

constitutive model is used for computation of flow stress accounting the effects of strain

hardening, strain hardening rate and thermal softening.

Cowper Symonds’s and Zerilli Armstrong’s strength models in principle follow the

Johnson-Cook model with the different modifications. The Cowper Symonds strength model
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Figure 3.3: Maximum base deformation over the contact region for different mesh densities

is normally used in the simulation of metal cutting, which dictates the formation of the chips

and hardening of the material in the process. According to Zerilli and Armstrong, mate-

rials have their own constitutive behaviors based on their molecular structure type, as in

body-centered or face-centered, which have distinctive dislocation characteristics.

Another popular study of plasticity is the Steinberg Guinan strength model used to

model the shock wave in the metals as a result of a very high velocity impact. In this

elastic-plastic constitutive model, the dependency of shear modulus of the metal on the rate

of change in pressure and temperature is addressed.

For our study, the material property was defined using all of these models and simulated

low velocity impact which is our point of interest. For the bilinear, non-linear or power law

hardening models, the results of the deformation and rebound velocity are not consistent

with the other contact models and experimental results. The material property given in

these models is not accurate and will not account for the strain rate. The Cowper Symonds

Strength and Zerili Armstrong strength model parameters were not experimentally calcu-

lated, and approximated values of those parameters did not provide comprehensive results.
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These studies were not formulated to account for impact analysis. Although the Steinberg

Guinan’s strength model is formulated to facilitate the computation of impact analysis, this

model in particular deviates from the experimental results for low velocity impacts. Thus,

for our study, the Johnson-Cook strength model is used to define the elastic-plastic proper-

ties of the metals we are testing for impact behavior.

Johnson− Cook Strength

The Johnson-Cook strength parameters are used in this low velocity impact study to

account for plasticity in the material. In this model the flow stress is expressed as follows:

σ = (A+Bεn)︸ ︷︷ ︸
strain hardening

(1 + C ln(ε∗))︸ ︷︷ ︸
strain rate strengthening

(1− Tm)︸ ︷︷ ︸
temperature

(3.1)

where;

σ = Equivalent stress; A = Initial yield stress;

B = Hardening constant; ε = Plastic strain;

n = Strain hardening exponent; C = Strengthening coefficient of strain rate;

ε∗ = Normalized effective plastic strain; m = Thermal softening coefficient

These parameters can be obtained by true stress strain plot [10] [21] of the materials at

different strain rates. Table 3.1 lists the material properties of the rods and bases used in

this study based on the Johnson-Cook-strength model.

3.1 Experimentation and motion analysis

The experimental setup is shown in Figure 3.4. The impacting base is fixed on a rigid

table. A robotic arm is used to drop the rod vertically from different heights. Two lights,

51



Properties
Rod

(AISI 201)
Flat

(AISI 1010)

ρ 7800 (kg/m3) 7830 (kg/m3)
E 212 (GPa) 200 (GPa)
ν 0.28 0.28
A 750 (MPa) 300 (MPa)
B 1793 (MPa) 633 (MPa)
n 0.523 0.13
C 0.014 0.014

Table 3.1: Material properties of the rod and base

1000W each, have been used to capture a clear image during the impact. A high-speed

camera capable of recording 10, 000 frames per second (fps) is used to capture the motion of

the rod before, during, and after the impact. After each impact, the event of the impact is

recorded and measured. 10 clear trials of each rod impact have been recorded and analyzed

with motion analysis to ensure consistent results. Using this setup, both normal and oblique

impact analyse are done. The whole event of the impact is captured and recorded by the

high-speed camera.

Figure 3.4: Schematic representation of the experimental setup
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Figure 3.5: Oblique impact of rod-2

Each recorded clip is trimmed to get at least 300 frames close to the point of the impact

of the rod, and each frame contains 512*512 pixels. A Motion analysis software is used to

calibrate and measure the position of the rod over time. To calculate the velocity of the rod

before and after the impact, a certain point on the rod has been tracked. Figure 3.6 shows

the normal impact of a rod and the tracking of a point. The red dot indicates the tracker

marks as the rod moves.

The motion of the rod before impact and after the impact has been accurately captured.

These motion frames are calibrated to get an actual displacement profile of the impact over

time. The displacement plot of the contact point is used to calculate the velocity of the

rod, as shown in Figure 3.7. The velocities have been calculated from the slopes of the

displacement plot before and after the impact, respectively.
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Figure 3.6: Tracking the normal impact of rod-2

Figure 3.7: Displacement plot of the tip of rod-2

3.2 Results and comparison

3.2.1 Comparison of the coefficients of restitution

The first step in the process of validation of the FEM simulation is done by comparing

the simulation and experimental results of the coefficient of restitution for 3 different rods

dropped from the same height of 0.8m. The properties of the rod and base are described

in the section on the plasticity models in Table 3.1. Table 3.2 shows the dimensions of the

rods subjected to the impact study. Table 3.3 is the comparison of experimental results to

simulation results of the COR of the rod. In the simulation of the impact, the direct results
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Figure 3.8: Displacement plot of 2 markers on rod-2 impacting at 30 degrees

of the velocity of the rod after the impact are subjected to substantial variation because of

the vibration and shock waves in the rod. The velocity measured at each node at a given time

is different across the length of the rod. Even the average nodal velocity of the whole rod

has quite a significant deviation between the maximum and minimum value of the velocity

at any given time. To minimize this deviation, the velocity is measured as slope of the

deformation of the whole rod. Thus, this deviation of velocity is averaged over the time after

the contact rather than instant velocity given by the velocity probe. From these results, it

is evident that, for the same impact velocity irrespective of rod dimensions, the simulation

results are in correlation with experimental results. The experimental results of the COR are

lower than the simulation results by less than 10 percent. This can be explained as a factor

of surface roughness and friction during the impact, which is not accounted for in the FEM

simulation. Comparing the results of COR with the experiment validates the basic mesh

convergence and the basic energy balance between the contact bodies. To further validate

the results, a similar study was done with oblique impact of the rod. Rod-2, as mentioned in

the Table 3.2, was subjected to oblique impact with a different angle, and the same system is

modeled and simulated. Figure 3.8 shows the displacement plot of 2 different points on rod-2

impacting at an angle of 30 degrees to the base. These tacking points are denoted as marker

A and marker B in Figure 3.8; VA and VB are the resultant radial velocity of the points

respectively. Angular velocity ω of the rod is calculated by Equation 3.2. Table 3.4 depicts
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Diameter(m) Length(m)

Rod-1 0.0096 0.190
Rod-2 0.00640 0.19
Rod-3 0.00475 0.2

Table 3.2: Dimensions of the rods used in the study

Rod COR
Experiment FEM

1 0.406 ±0.012 0.463
2 0.420±0.005 0.485
3 0.559±0.008 0.602

Table 3.3: COR of the rod undergoing normal impact

the comparison of angular velocity of the rod between the experiment and simulation for

different angles of impact. In both the experimental results and explicit dynamic simulation

results, the COR is subjected to variations and therefore cannot be the primary method to

validate or to analysis the impact behavior. Further validation is needed for the simulation

with respect to the deformation of the base and the rod during the impact.

ω =
VA − VB

Distance between marker A and B
(3.2)

3.2.2 Comparison of the permanent deformations of the base

In the next step, a prominent study in the impact of the rod is taken as a reference to

obtain experimental data of the rod impacting a base, and the same model was simulated.

The experimental results are taken from a reference paper[17], which is a study done by one

of the present authors of this paper. In this paper, a rod of stainless steel (AISI 201) and

Angle of impact Angular Velocity (rad/sec)
Experimental Simulated

45◦ 21.5±0.002 22.07
30◦ 16.8±0.004 16.73
15◦ 9.6±0.005 10.12

Table 3.4: Experimental and simulation results of the angular velocity after impact
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base of Carbon steel (AISI 1070), whose material properties are the same as described in our

study, are tested for impact over different drop heights. The permanent deformation and

kinematic coefficient of restitution is measured using a similar motion analysis. The same

research is extended in this study to validate our 3D explicit dynamics simulation with these

experiments.

Figure 3.9 compares the experimental data and simulation results of permanent defor-

mation of the base when a rod of 300mm length and 9mm diameter with a spherical end

impacts a surface with different drop heights. The results of he permanent deformation of

the simulation correlates well with the experimental and contact model results.

Figure 3.9: Comparative simulation results of permanent deformation of the rod with refer-
ence paper results

From the graph, it is evident that the results of the simulation are in correlation with

the experiment and contact models. From the graph, it is also evident that the permanent

deformation of the base is in correlation with the contact model; especially with the modified

Jackson Green model, the results are closer to the experimental results. The presented

dynamic simulation method accounts for deformation on both bodies undergoing impact,

which is the main principle on which the modified Jackson Green model was formulated;

hence the correlation is justified. Figure 3.10 shows the reaction force with respect to the
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deformation of the base for different drop heights of impact. Reaction force F r can be

calculated from the nodes where boundary conditions are defined. It is the response of the

structure for all the loads acting on it. In a basic sense, reaction force is the difference

between the summation of elastic static (Fe
k), damping (Fe

c) and inertial (Fe
m) loads to the

applied loads (F nd) as shown in the Equation 3.3.

F r = −
N∑
e=1

[Fe
k + Fe

c + Fe
m]− F nd (3.3)

Close observation of this graph shows that, for the linear progression of impact velocity, the

deformation tends to reduce with the effect of higher strain hardening under higher strain

as the impact velocity increases.

Figure 3.10: Force reaction vs deformation of the base for different impact drop heights
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3.2.3 Permanent deformation of the rod

An attempt is made to determine the permanent deformation on the rod, which is not

directly available in the analysis solution. ANSYS simulation measures the deformation as

the change in the position of the node during the simulation. But when a body without

a boundary condition or constraint undergoes a displacement, that is considered the defor-

mation in the simulation results. In our case of impact analysis, the rod undergoes both

free-body motion and deformation during the impact. One convenient way to separate the

factor of free body motion from the deformation plot is to find the difference in the displace-

ment of the rod at any point on the rod from the impact point. But the resulting deformation

of the rod will be inconsistent, as the rod undergoing the impact will have compression and

vibrations along the process of impact. This problem can be solved by measuring the plastic

strain on the nodes near the point of impact as shown in Figure 3.11. Deformation of the

rod is obtained by measuring the difference in the displacement of the node at the point of

impact to the nearest node to it and then to the impact point at which the plastic strain is

0.

Figure 3.11: Measuring the permanent deformation of the rod by the relative displacement
of the rod tip
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The plot of this displacement also shows the impact phases of compression and restitu-

tion. After the contact ends the plot is parallel to the y-axis, thus representing no relative

displacement between the nodes; that should be the permanent deformation on the rod which

cannot be recovered. Figure 3.12 depicts the permanent deformation of the rods for different

drop heights.

Figure 3.12: Permanent deformation of the rod for different impact drop heights

3.3 Stress waves in the rod

In the dynamic simulation, the event of impact will generate a stress wave in the rod.

For the free-boundary condition, the stress wave should correspond to the speed of sound

in the material. In order to validate this dynamic aspect of the system, hoop strains over

the length of the rod are measured. The times at which the strain is at its maximum at

different specified points in the rod are noted. Figure 3.13 represents this maximum time

relative to the respective points over the length of the rod. The slope of this graph provides
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the stress wave speed in the rod. From this graph, it is evident that the dynamic behavior

of the simulation is valid for this analysis.

Figure 3.13: Stress wave speed in the rod after impact
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3.4 Conclusion

In this study, impact models are simulated using 3D modeling and the dynamic event

of the impact is analyzed using an explicit dynamic solver. This method of 3D dynamic

simulation has been validated by experiment and contact models. The first step in the

validation is the comparison of experimental results on COR of normal impact and the

angular velocity of the oblique impact. In the second step, from the correlation between

the simulation and a reference study[19] of impact of the rod on permanent deformations

of the base, it is evident that the result presented in the reference study further validates

the presented simulation on analysis of deformation during and after the event of impact.

This same model is also compared with the prominent indentation and flattening contact

models. From that comparison, it evident that the simulation results are in close agreement

to the modified Jackson Green model, as the principle under the modified Jackson Green

model study also considers deformation on both bodies undergoing impact. Furthermore,

the effect of the strain rate is shown by the progression of permanent deformation with the

impact velocity. With these comparisons, it can be inferred that the 3D explicit dynamics

analysis presented in this study is valid for the impact analysis of the spherical end on

a flat surface; hence, the same technique can be used to study more complicated models

without necessitating re-validating the system. A method to determine the deformation of

a rod undergoing impact is presented. This study can be further extended to validate the

deformation of the rod with the experimental results. The presented modeling and simulation

technique can serve as guide in the design of robotic arms where these low velocity impacts

are more prevalent. Given that there are no predefined conditions in the proposed simulation

method of impact, this technique can be used to simulate and study the low velocity impact

behavior of composite structures.
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Chapter 4

Effect of fluid structure interaction during the impact

This chapter provides an extension to a previous study. In the Chapter 2, we showed

that the natural frequency of fluid-coupled cylinders can be approximated by the uncoupled

natural frequency of the cylinder. We modeled and validated the dynamic event of the

impact of rods. Following these chapters, an attempt is made to study the behavior of the

cylinders during the event of impact under the influence of fluids. The effect of fluid being in

the tube on deformation and the coefficient of restitution after the impact is studied. Insight

regarding how contact force, energy, and stress distribution are affected by fluid during the

event of impact is presented. The influence and importance of the natural frequency of the

coupled tube on the duration and resulting multiple impacts during the restitution phase for

the oblique impact is presented.

4.1 Modeling and simulation of the impact of water-filled tubes

Similar techniques to those used in Chapter 3 are used to model the water-filled tubes

impacting on the flat base. In particular, two different models are developed for this system;

the Lagrangian and Eulerian methods are used to represent water elements. In a Lagrangian

reference frame, each element of the mesh is used to represent the volume of a material. The

same amount of material mass remains associated with each element throughout the simula-

tion. The mesh deforms with the material deformation. Solving using a Lagrangian reference

frame is the more efficient and accurate method to use for the majority of structural models.

In a Eulerian reference frame, however, the grid remains stationary throughout the simula-

tion. Material flows through the mesh. The mesh does not therefore suffer from distortion

problems, and large deformations of the material can be represented. Several simulations
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were performed in a preliminary phase using both methods to achieve mesh convergence

with both models.

Figure 4.1: Meshing in a Eulerian Reference Frame

Figure 4.1 represents the meshing in a Eulerian reference frame. For our study, the simu-

lations results using both methods show corelation. However, simulation using a Eulerian

reference frame is computationally very expensive compared to using a Lagrangian reference

frame. The additional computational cost comes from the need to transport material from

one cell to the next and also to track in which cells each material exists as void and is also

considered as a material in this sense. The present study is focused on the event of impact,

which is of a minute time scale in the order of micro to milliseconds, and fluid flow is not

involved in our analysis. Hence, all further simulations in our study are done using a La-

grangian reference frame. To analyze the effect of impact behavior of the fluid-filled tube,

each impact parameter is studied further using these simulation results.
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4.2 The COR of the tube under the influence of fluid

The coefficient of restitution can describe changes in energy and velocity before and

after a collision concisely. Figure 4.2 represents the COR of the tube of length 0.01m with a

0.01m diameter with different thicknesses impacting on a flexible base. The ratio of thickness

to the diameter of the tube has a significant effect on the rebound velocity of the tube filled

with water.

Figure 4.2: COR of tube with the impact velocity of 1m/s

This behavior is similar to the modal frequency of the coupled cylinders. As the graph

represents for the thick-walled tube, the COR is not affected by the presence of fluid inside

it. The CORs of fluid-filled and empty tubes deviate from each other as the thickness of the

rod is reduced. However, after a certain lower limit of thickness, the COR takes a drastic de-

viation between the COR of empty and fluid filled tubes. This limit on thickness of the tube

matches the strong coupling condition Equation 2.22 proposed in Chapter 2. The rebound

65



Figure 4.3: COR of a tube with the impact velocity of 2m/s

velocity of the fluid-filled tube is significantly reduced once the aspect ratio of thickness to

diameter of the tube is below the stated limit.

Figures 4.6 and 4.7 show that this pattern of results is consistent for different diameters

of the tube and different impact velocities. The resulting variations in the COR of the

fluid-filled tubes can be attributed to contact force, plastic deformation, and energy transfer

between the fluid and the tube.

4.3 The contact force during the event of the impact

In finite element analysis, the contact between the two bodies is enforced based on three

conditions: 1) No penetration between the bodies 2) Balance between the applied and the

contact forces in case of static problems. 3) Conservation of momentum in case of dynamic

problem as in the case of impact. In general, there are two popular formulations that meets
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Figure 4.4: COR of a tube with the impact velocity of 3.8m/s

these criteria: 1) Penalty Formulation and 2) Lagrange Formulation. In penalty formula-

tion, contact is treated as a stiff spring which resists penetration (∆U) between bodies. This

resistance is termed as contact stiffness, k, which is derived mainly as a function of material

properties, geometries, and kinematics of the bodies. Two distinct contact stiffnesses are

used for every contact analysis: one in the normal direction and the other in the tangential

direction. In penalty formulation, two bodies can penetrate by small amounts during the

interaction. This penetration is restored by contact formulation through opposing the pen-

etration by a restoring force which is nothing but contact force, F . This contact force is a

function of contact stiffness and the penetration as shown in Equation:4.1, below.

F = k∆U (4.1)

In principle, the penalty formulation treats the contact as a stiff spring. The stiffness of

this spring should be large enough to reduce the final penetration close to zero. The normal
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Figure 4.5: COR of a tube with the impact velocity of 6m/s

contact force is activated only when ∆U is negative, i.e.

Fn =


0 for ∆Un ≥ 0

kn∆Un for ∆Un ≤ 0

(4.2)

In case of tangential contact forces τ , considering ∆U1 and ∆U2 as the lateral penetrations or

slip distance and µ to be the coefficient of friction, the expression is given Equation 4.3below:

τi =


ktVi if ||τ || =

√
τ12 + τ22 − µFn ≤ 0 (sticking)

µFn
∆U1

||∆Ui||
if ||τ || =

√
τ12 + τ22 − µFn = 0 (sliding)

(4.3)

In Lagrange formulation, the contact is treated as a constraint, which means that this

formulation enforces zero penetration throughout the simulation. Contact force is repre-

sented as contact traction vector FR, and then the zero penetration boundary conditions are

68



Figure 4.6: COR of a water-filled tube with the different impact velocities

applied at the interface of the bodies undergoing contact.

[FR] = [Fn, V, τ1, τ2,∆U1,∆U2]
T (4.4)

Adding these strong constraints at each node will make simulation by Lagrange formulation

computationally very expensive. Until the penetration and hourglass energy is kept close to

zero, the penalty method can be used to simulate the problems like low velocity impact of

rods. Hence, all the contact force obtained by the simulation is based on penalty formulation.

In order to validate the simulating results, the contact force of a solid rod is compared to

analytical results (see Figure 4.8). The contact force results are in co-relation with the

contact force solution obtained by the modified Jackson Green model of impact analysis.

Contact force on empty and fluid-filled tubes is tracked during the impact. Figures:

4.10 and 4.9 represent the base deformation versus the contact force of the water-filled and

empty tubes with different thicknesses during the impact. This graph provides the data on
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Figure 4.7: COR of an empty tube with the different impact velocities

the permanent deformation on the base after impact and the variation of contact force for

different thicknesses of tubes. Showing contact force versus time, Figure 4.8 also provides

information on the duration of the compression phase and the restitution phase. Analyzing

the data provides insight on the effect of fluid during the impact of deformation and the

impact duration. It is obvious that as tube thickness decreases, because of the fluid mass, the

deformation of the base increases for the fluid filled tubes compared to empty tubes. However

the amount of increase in permanent deformation of the base by the fluid-filled tubes is also

depended on the impact velocity. As the impact velocity increases, the difference between

the deformation of the base when the empty tubes and fluid-filled tubes impact tends to

decrease. Considering both bodies undergoing the impact are subjected to deformation, for

higher velocities, the tube tends to undergo more plastic deformation compared to the base

it is impacting.
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Figure 4.8: Contact force of rod of 5mm diameter impacting at 2m/s

4.4 The energy summary during the event of impact

An energy summary of a dynamic event is obtained for individual parts. An energy

summary is also important to measure the accuracy of a simulation. The hourglass energy

over the period of the simulation provides the deviation of simulated results from the energy

balance equation. The hourglass energy is maintained to be zero for all the simulations

done in this study. With making sure that there is no errors in the energy summary, the

internal energy, kinetic energy and plastic work done by the parts during the event of impact

is analyzed. Plastic work is a result of material plasticity that is an integral of the plastic

strains over the duration of the impact(loading). It can be calculated as area under the

stress, plastic strain curve as represented by Equation 4.5. Internal energy is the sum of

plastic work and hourglass energy.

k =

∫
σT [M ]dεpl (4.5)
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Figure 4.9: Contact force vs deformation of the base of a fluid-filled rod of 1mm thickness

Figure 4.11 represents the plastic work by a tube of 1mm thickness impacting from

different drop heights. From this graph, it is obvious that the tube undergoes more plastic

work when impacting from a greater drop height. Figure 4.12 shows the plastic behavior of

the fluid filled tubes with different thicknesses impacting with different drop heights. This

behavior is also consistent with different thicknesses and irrespective of if it is an empty tube

or fluid-filled tube.

Figure:4.13 shows the difference between the plastic work done on the base by one

of the empty and one of the fluid-filled tubes impacting at a velocity of 2 m/s. Similarly

Figure:4.14 shows the difference between the plastic work done on the same tubes. Observing

both graphs, we can infer that as the tube gets thinner the presence of fluid in the tube had

no effect on the plastic work done on the base. All the energy of the impact is dissipated on

the plastic deformation of tube rather than the base on which it is impacting. Additionally,

plastic work done on the base is decreased for the impact of thinner tubes irrespective of the

presence of fluid inside it (see Figure 4.15).
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Figure 4.10: Contact force vs deformation of the base of an empty rod of 1mm thickness

4.5 Oblique impact of the fluid filled tubes

In this section, the oblique impact of the fluid-filled rod is simulated to measure the

effect of fluid coupling on the impact parameters of the rod. Simulation is carried out using

a Lagrangian reference frame. Tubes with diameters ranging from 10mm to 50mm, lengths

ranging from 0.2m to 0.9m, and inclines of different angles are subjected to impact on a flat

base. The simulation is carried out for different impact velocities and for both solid rods

and tubes with different thicknesses. The rebound angular velocities are calculated using

Equation 3.2.

During the restitution phase after the initial impact, it is observed that the tubes tend

to have multiple impacts before rebounding completely. This behavior can be attributed to

the bending modes of the tubes. At the point of impact, the tube is exited to vibrate in its

first bending mode frequency. In this study, the significance of the bending modes of tube on

the impact duration and resulting multiple impacts in the restitution phase is analyzed. If
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Figure 4.11: Plastic-Work on a fluid-filled tube impacting with different drop heights

the time duration of the bending mode is significantly more than the first impact duration,

the tube tends to undergo a second impact on the base approximately within a half-wave

duration of the bending mode. This can be observed in the impact of long slender rods

[3][25][60][36].

Thus, total impact duration is significantly increased. As the natural bending mode fre-

quency is significantly affected by the fluid coupling (see Chapter 2) so are the impact

duration of the fluid-filled tubes and the time delay between multiple impacts. Figure 4.16

shows the relationship between the bending mode and the multiple impacts of the tube.

If the modal frequency of the tube system is maintained relatively highly compared to the

reciprocal of the initial impact duration, these multiple impacts can be avoided (see Table

4.1).
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Figure 4.12: Plastic-Work on fluid-filled tubes with different thicknesses impacting with
different drop heights

4.6 Conclusion

In this study, the effect of fluid structure interactions during impact is analyzed. The

simulation results show that the COR of fluid-filled tubes decreases drastically when the

thickness or the impact velocity is over a certain limit. This limit on the thickness of the

tube matches the strong coupling condition proposed in Equation 2.22. The simulation of the

contact force for a solid tube is validated by comparing the results with the modified Jackson

Green model for the same rod. The contact force plots of fluid-filled tubes and empty tubes

show that for a larger impact velocity, even though the contact force is increased in the

presence of fluid, the deformation of the base is least affected by the presence of the fluid.

Thus, for higher velocities, the tube tends to undergo more plastic deformation compared

to the base it is impacting. There is a similar response with the energy summary of the

impact. In the simulation of oblique impact of the rods and tubes, it was observed that the
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Figure 4.13: Difference in plastic-work on the base impacted by empty and fluid-filled tubes
with different thicknesses

rod or tube undergoes multiple impacts during the restitution phase. This behavior can be

linked to the bending mode of the natural frequency of the fluid-coupled tubes. It is also

shown that if the natural bending frequency of the system is large enough compared to the

reciprocal of the first impact duration, then there will be no multiple impacts of the rod.

76



Figure 4.14: Difference in the plastic-work on the tube impacting with and without fluid

Figure 4.15: Plastic-work on the base by fluid-filled tubes impacting from different drop
heights
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Table 4.1: Relating the half-wave period to the impact duration and secondary impact of
the rods and tubes

Bending Mode (Hz)
Half Wave Period (s)
(1/2*Bending Mode)

First Impact Duration (s)
Time Diffrence
Between Impacts (s)

450 1.111 1.002 1.212
604 0.828 0.630 0.871
665 0.752 0.619 0.884
1180 0.424 0.294 0.432
1180 0.424 0.306 0.444
1180 0.424 0.336 0.486
1300 0.385 0.270 0.421
1314 0.381 0.275 0.410
1347.5 0.371 0.259 0.394
1438 0.348 0.251 0.381
2179.9 0.229 0.366
2470 0.202 0.438

Figure 4.16: Correlation between the modal frequency and the secondary impact
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Chapter 5

Conclusion and contribution

This research was an attempt to study the modal and impact interactions of fluid-filled

cylindrical structures using the finite element methods. It is the first of its kind to describe

the coupled natural frequency of the fluid-filled structure as a function of the respective

modes of the uncoupled structures to differentiate strong and weak couplings. It is the first

of its kind to simulate and validate the dynamic 3D event of the impact of a rod with a flat

surface to analyze the impact behavior of the two bodies without any predefined assumptions

with respect to boundary conditions or material properties.

Chapter 2 of the study is a parametric modal analysis of fluid-coupled thin structures. Here,

the whole 3D geometry and modal simulation and 2-way fluid structure coupling are coded

using ANSY APDL, which can be a resource for similar studies with different geometries.

Junger’s [27] approach to fluid-structure coupling is used to validate the modal simulation

by our finite element analysis; consequently, this modeling and simulation technique is val-

idated for modal analysis of fluid-structure coupling in any geometries. In the next step,

parameters affecting the natural frequency of the cylinders have been examined in various

combinations of geometries, materials and boundary conditions of thin walled structures and

fluids. We proposed a termed called the Coupling Factor in Equation 4.1 for predicting the

natural frequency of the coupled system for the given uncoupled natural frequency of the

cylinder of the same mode. The importance of the coupling factor in the modal analysis of

the fluid-coupled structures is shown through the study and realized by the proposed ex-

pression Equation 2.21. We proposed an apparent transition condition (see Equation 2.22)

to differentiate strong and weak coupling of the cylinder structure with fluids. This study

will serve as a guide for the further parametric FEM analysis on fluid-structure coupling
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of similar systems and to gain insight into coupling factors. The presented conditions for

the coupling factor and weak and strong coupling will serve as a guide for the design of

cylindrical structures.

In Chapter 3, the objective was to find an optimized method to simulate the dynamic

3D event of the impact of a rod with a flat surface. To the best of our knowledge, all the

contact models are quasi-static with predefined 2D symmetric contacts, whereas this study

focuses on modeling and simulating the dynamic 3D event of the impact with no prede-

fined analytical constraints. The beginning of this study review the prominent contact and

plasticity models of contact analysis in FEM. In the next step, experiments of the impact

of rods on a flat base were conducted with the help of a high-speed camera. Both normal

and oblique impacts of all the rods were recorded. These visuals were used to track the rod

during and after the event of impact. The rebound velocity and angular velocity, and thus

the coefficient of restitution(COR), of different rods were tabulated. Experimental results

of permanent deformation on the base for different impact velocities were derived out of a

prominent impact study. These systems were modeled in an ’ANSYS Workbench Explicit

Dynamics’ module for the simulation. Different plasticity models were studied and analyzed

to apply appropriate material properties for the rods and base. For the simulation of low

velocity impacts, this study will offer guidance to choosing proper plasticity models for ma-

terials based on their requirements. After running the simulation, the COR were compared

with the experimental results for both normal and oblique impact. These simulation results

correlated well with the experimental results, thus validating the simulation method used

for analysis of low-velocity impact. Furthermore, other impact parameters like deformations

and contact force were correlated with different prominent contact models. To further val-

idate the dynamic behavior, stress waves in the tube after impact were calculated through

simulation to match the sound velocity in the material of the rod. With these comparisons,

it can be inferred that the 3D explicit dynamics analysis presented in this study is valid
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for low-velocity impact analysis. Unlike the 2D FEM based predefined contact models, this

validated 3D explicit dynamic simulation provides more information on the impact behavior

than the just contact force and deformation. The coefficient of restitution, vibration, plastic

work, energy summary of the system, and other dynamic behaviors can be and are studied.

The presented modeling and simulation technique can serve as a guide in the designing of

robotic arms, where these low-velocity impacts are more prevalent. Given that there are no

predefined conditions in the proposed simulation method of impact, this technique can be

used to simulate and study the low-velocity impact behavior of composite structures.

Finally in Chapter 4, the focus was on analyzing the effect of fluid-structure interac-

tions during impact. Two different techniques are proposed to model the water filled tubes

impacting a flat base. A Lagrangian reference frame is used to model the fluid elements in-

stead of a Eulerian reference frame, as Lagrangian reference frame is more efficient in terms

of computational time and accurate enough for the analysis of low-velocity impacts. The

COR of the water-filled tubes provided insight into how the fluid-filled tube behaves during

the event of impact. Further in the study, a brief explanation is provided on principles used

in FEM to detect and formulate the contacts between two bodies like in an impact. Contact

force and energy on the empty and fluid-filled tubes are tracked during the impact. A prob-

able explanation for variation and the effect of fluids and impact velocities on the contact

force and deformation is proposed. Finally, in the simulation of oblique impact of the rods

and tubes, it was observed that the rod or tube undergoes multiple impacts. In this study,

it is proposed that the bending mode of the natural frequency is the reason for this behavior

of multiple impacts, thought this needs to be validated by experiments in further studies.

This research includes the following publications:

- ”Modal analysis of coupled structures and parametric relation of the coupled and uncou-

pled natural frequency of cylinders by finite element analysis” in the International Journal

of Engineering Applied Science and Technology (IJEAST).
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- ”Simulation of dynamic event of impact using explicit 3D FEM model and validation by

experiment and contact models” in the International Journal of Engineering Applied Science

and Technology (IJEAST).

- ”Effect of modal frequency in the oblique impacts of fluid coupled cylinders” under review.
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