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Abstract

In this thesis, a pseudo-random binary phase shift keying (BPSK) radar signal is developed

using Advanced Encryption Standard (AES-192). The primary objective of this encryption

based BPSK (E-BPSK) signal is to provide a fast user controlled means of generating a secure

a-periodic radar signal which presents several desirable characteristics. These include virtually

no ambiguous range interval, high noise tolerance and spoofing security through unpredictabil-

ity. Statistical analysis of a simulated data model of the E-BPSK signal is performed to verify

the randomness of the encryption based sequence. A comparison signal of identical transmit

properties with a different modulation code is used for a detailed comparative analysis. The

standard matched filter response of E-BPSK has a sharp main lobe peak at a real target loca-

tion. The random nature of the signal due to the encryption also causes a significant amount of

ambiguous side-lobe energy in both the range and Doppler axis of the matched filter. A method

of suppressing this side-lobe ambiguous energy is required to enable multi-target identification.

This thesis covers mitigating the ambiguous energy in the proposed E-BPSK signal with

a modified CLEAN type algorithm specifically designed for an a-periodic signal. CLEAN

involves identifying targets and reprocessing the signal after extracting the identified target en-

ergy. CLEAN algorithms can become hardware intensive and are sensitive to the target model

accuracy. Fitness functions for optimizing the CLEAN target model parameters are included

to increase model accuracy. In simulation the modified CLEAN algorithm successfully re-

duces the ambiguous side-lobe energy in the E-BPSK matched filter response by up to -30

dB. CLEAN processing applied to a discrete random signal is shown to effectively mitigate

the ambiguous lobes in the matched filter while preserving the range and Doppler ambiguity

mitigation characteristics.
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Chapter 1

Introduction

1.1 Motivation

Two of the most important attributes of a radar are its ability to accurately measure the rela-

tive range and velocity to a target based on the reflected signals delay and Doppler frequency

shift. Typical pulsed radars transmit and receive periodic ranging signals and have a limited

range and Doppler frequency shift that they are able to measure unambiguously. Methods to

extend the maximum unambiguous range and eliminate ambiguities have been developed. One

method applies a modulation code across multiple pulses (inter-pulse code), and modulation

within single pulses (intra-pulse code) on the base-band transmitted signal which directly ex-

tends the ambiguous range by the inter-pulse code length [1]. The range becomes ambiguous

when the reflected (received) signal from a target returns after two or more pulses have been

transmitted, thereby making it impossible to determine which transmitted pulse was reflected.

A non-periodic random sequence can eliminate range ambiguity by making each transmitted

pulse uniquely identifiable. The signal reflected by the target will therefore be a time-delayed

version of the transmitted signal. When a matched filter is used to compare the transmitted and

received signal, the matched filter’s maximum output will occur at the round-trip delay time

associated with the relative range to the target, thereby eliminating any range ambiguity. The

Doppler ambiguity can be eliminated in a similar fashion by randomizing the duration of the

pulse repetition interval (PRI). Additionally, transmitting unpredictable random signals elimi-

nates the possibility of spoofing and jamming the transmitted signal by conventional methods

that require a prior knowledge of the signaling used.
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In the past, there have been many methods used to the generate random sequences required

for random base-band modulation. The work presented here investigates a method that relies

on an encryption algorithm to quickly generate a random and virtually infinite discrete random

sequence, which can then be used to modulate the transmitted radar signal.

The use of a finite and band-limited random radar signal to obtain target location and

velocity is a much greater technological challenge. Probably the most difficult is the aspect

is correctly implementing the necessary signal processing to eliminate any artifacts (false tar-

gets) that appear in the matched filter response due to noise and inexact signal correlations in

the received signal and bandwidth limitations of both the transmitter and receiver hardware.

This problem is compounded when multiple targets exist in the region of interest, causing the

artifacts to appear as possible targets or eclipsing actual targets.

The ability of a radar to distinguish true targets from noise and system created artifacts is

of upmost importance. This typically means increasing the length of the Coherent Processing

Interval (CPI) until the required Signal-to-Noise ratio is achieved. However, when random

signals are used, the self-noise produced by the signal’s ambiguity creates a noise-like floor

that may mask a true target. In fact, this noise can be greater than the ambient noise in the

received signal.

This ambiguous noise can be reduced using several methods including “mismatched”

matched filters and specially optimized codes that reduce the ambiguous signal noise [2–5].

These noise reduction methods assume the radar transmission is repetitive (cyclic) over some

finite time. However, for signals that are truly unique from pulse to pulse, the prior methods

would not be effective or they would require additional computations for every pulse transmit-

ted.

A more efficient means of removing the ambiguous signal energy from the matched filter

response is required for random inter/intra pulse signals to become practical for commercial

radars. This work addresses that problem and presents a method to create a unique, non-cyclic

random signal, and remove the unwanted ambiguous signal energy from the matched filter

response.
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1.2 Prior Work

Research in the field of radar led to the development of many random signal modulation meth-

ods. One such method uses encryption based algorithms to generate pseudo-random sequences

used for signal modulation. The use of encrypted, psuedo-random codes for signal modu-

lation has the additional benefit of being immune to standard spoofing tactics. Shahrab and

Soleimani’s work in this area examined an encryption derived code that combined encrypted

binary phase shift keying (BPSK) with encrypted orthogonal frequency division multiplexing

(OFDM) to produced a signals that has a high resilience to jamming, even for cyclic codes [6].

The prevention of spoofing and jamming is a concern for Global Positioning Satellite

(GPS) communications also. One method that is effective at identifying and removing unde-

sired or spoofed signals is termed “Successive Interference Cancellation” [7]. In this method,

a spoofed signal is identified and a model of the spoofed signal or replica is created and sub-

tracted from the original sampled signal. This effectively removes the spoofed signal from the

sampled signal and the authentic signal remains.

This method can also be used in radar signal processing. It is first necessary to identify and

catalog a specific target’s size and time delay, and then simulate and remove it’s signature from

the return signal. This process begins by identifying and removing the largest target signatures

first and progressing to the smallest target signatures. The general technique is referred to as a

CLEAN type algorithm [8], but there are multiple variations of CLEAN algorithms which have

distinct characteristics.

There is a large body of work in the area of CLEAN processing “noisy” signals to reveal

each singular source. In fact there are several variations of CLEAN for radar signal processing

that include sequence CLEAN [9] and coherent CLEAN [10]. Some of these methods focus on

the matched filter output while others process the actual sampled signal and identify and remove

successive target replicas. Much of the research using CLEAN involves correctly obtaining

accurate target size estimates in order to generate exact target replica signals for target negation.

It should be noted that errors in the target model’s description will cause errors in its removal.
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The CLEAN algorithm is computationally intensive and increasing the algorithms effi-

ciency and speed has become a separate area of research not considered here. It is interesting

to note that a CLEAN type algorithm has been shown to reduce the ambiguous energy in MIMO

synthetic aperture radar images [11]. To combat the ambiguous energy in the AES-192 based

signal, this thesis uses a modified version of the CLEAN algorithm that is optimized for long,

non-periodic signals.

1.3 Contributions

This research presents a unique base-band modulation method based on AES-192 encryption

that, in theory, causes the unambiguous range to become infinite. In order for the method

to work most efficiently, CLEAN type signal processing must be used in conjunction with

the base-band modulations method, thereby eliminating the ambiguous signal energy from the

matched filter response. This research presents an effective modified CLEAN algorithm that

removes the unwanted and ambiguous target energy.

Much prior work in radar that investigated random and pseudo-random encryption based

methods tend to focus on the auto-correlation functions output for limited times. Presenting the

output data in this manner, without the entire time history shown, hides a significant drawback

that plagues most non-periodic random modulation methods - the creation of repetitive and

ambiguous noise that exist over multiple pulse repetition intervals. This ambiguous noise is

likely to prevent weaker target signatures from being observed.

Since the radar return’s signal power PR ∼ 1/R4 fourth, small differences in range have

large effect on the received power. Therefore, to minimize power fall off with range a loga-

rithmic time-range axis is used. The auto-correlation function of a pulse train consisting of

non-perodic pulses examined on a log scale reveals a large amount of ambiguous energy ob-

served as range and Doppler side lobes. This is observable over all the matched filter range and

Doppler bins. The ambiguous energy may be described as self-noise, and is the result of an

inexact correlation of the random signal with itself. It is worth noting however, that the main

matched filter signal peak is always larger than the ambiguous side-lobes.
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This ambiguous side lobe energy can be decreased by increasing the number of code chips,

phase states, or other modulation methods that effectively increases the bandwidth of the signal.

If both the code rate and bandwidth are limited, another technique must be used to reduce the

ambiguous energy. Fortunately, the matched filter responses to random transmit/receive signals

have a single large peak associated with the round trip time to the target. This allows for

a CLEAN type algorithm to extract the target parameters and generate and subtract a target

signature replica and search for other secondary targets that could be hidden in the side-lobes.

The specific contributions of this research are focused on allowing random modulation schemes

to be used in radar by mitigating the ambiguous sidelobe energy using an optimized CLEAN

algorithm.

The specific contributions are as follows:

i) Overview of signals based on encrypted discrete random sequences.

ii) Introduction of a hybrid discrete random signal with range and Doppler ambiguity

suppression properties.

iii) Development of optimizer functions for obtaining refined CLEAN target parameters.

iv) Optimized CLEAN applied to an discrete random signal to enhance target identifica-

tion.

1.4 Thesis Outline

Chapter 2 covers the necessary background of radar concepts related to target identification

and processing. Chapter 3 introduces various methods of randomizing components of the radar

signal and provides analysis of each. Chapter 4 is an overview of CLEAN and the required

processing to mitigate ambiguous energy in radar matched filters. Chapter 5 provides a com-

prehensive simulation of an ideal cyclic radar signal and a hybrid encryption derived random

signal with CLEAN processing to mitigate the ambiguous energy in each. Chapter 6 covers

the conclusions made from the analysis and simulations and provides future work based on

eliminating several assumptions currently required for CLEAN to perform optimally.
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Chapter 2

Background

2.1 Radar

Sensing and detection of objects can be done in many ways. Looking at nature, the easiest is

passive collection of visible electromagnetic radiation (light) in the eyes. More interesting and

complex natural sensing methods include echo-location common to bats and sonar in dolphins

that in both cases use reflections of sound for accurate sensing in total darkness. Radar takes the

concept of listening for echoes and applies it in the radio frequency electromagnetic spectrum.

2.1.1 Radar Principals

In its most basic form, radar is a system that transmits radio-frequency (RF) electromagnetic

waves and listens for echos from reflections off of objects in its region of interest [12]. The ma-

jor subsystems of a radar include the transmitter, antenna, receiver and signal processor. Each

subsystem varies by radar design and application. In the general case, the transmitter produces

the modulated driving signal for the antenna. The antenna directs and shapes transmitted radio

energy and receives reflected energy when it is not transmitting. The receiver is responsible

for amplifying, demodulating and converting the reflected energy absorbed by the antenna into

data for the signal processor. The signal processor extracts target information from the receiver

data. In modern radar, digital signal processing (DSP) is more common place, however analog-

detected voltage is sometimes all that is required. For DSP, the receiver converts the RF to an

intermediate frequency and samples it with an analogue-to-digital converter (ADC). The digital

samples can then be serially processed or stored in a buffer and post-processed in intervals.

6



2.1.2 Radar Signal Structure

Radar signals can be divided into two types, continuous wave and pulsed. Continuous wave

radar transmit a signal constantly which requires a lower peak power but usually has more

ambiguous correlation energy. Pulsed radar focuses the RF energy into a small ”active” period

with a much higher peak power. The short duration of the pulse makes it distinguishable from

other signals, aiding in target identification. The pulses short duration also means that the

correlation response is minimal until the pulses overlap. The most basic of pulse radar signal

transmitted is created using a low frequency base-band pulse to modulate a high frequency

carrier frequency. The base-band pulse is periodic over the pulse repetition interval (PRI) and

active during the on-time τ . The duty-cycle of the pulse is defined as τ/PRI . Basically, the

base-band pulse is used to turn the carrier oscillator ”on” and ”off”.

2.1.3 Target Detection

A matched filter is used to identify targets in the reflected radar signal. A matched filter cor-

relates the transmitted and received signal, causing the correlated signal to maximize at a time

corresponding to the round trip time to target. This is can be done using DSP to cross correlate

the transmitted and received signal. Like correlation, cross-correlation shows the similarity

between two signals versus a time offset. Cross-correlation of the received signal is done by

sampling the received signal and comparing it to a stored replica of the transmitted signal at

varying shift intervals. The cross-correlation also maximizes at the time delay associated with

the target’s range [13]. Auto-correlation of a signal is the product of cross-correlating a signal

with itself and provides a general idea of what to expect when a target response appears in the

cross-correlated output.

A Barker-13 sequence, Figure 2.1(a) is one of the sequences used in the research and its

auto-correlation function is shown in Figure 2.1(b). A large difference between the peak at zero

and the amplitude of the function at any other shift is desirable. Barker sequences are known

for having the best possible peak to floor performance for a BPSK code up to the length 13

[14]. Additionally, Figure 2.1(d) shows the auto-correlation function of thirteen random BPSK

chips, Figure 2.1(c) with visibly higher side lobes. When codes are used for signal modulation,
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peaks in the cross-correlation of the reflected and transmitted signal will correspond to the

round trip delay time to the targets. The delay times are found by dividing the sample delay to

peak by the sampling frequency. The range to the target R, corresponding to the sample shift

∆n for a cross-correlation peak, can be calculated with Equation 2.1 using the speed of light in

atmosphere c and the sampling rate Fs.

R =
c∆n

2Fs
(2.1)

Figure 2.1: Two BPSK codes consisting of 13 chips and their respective auto-correlation func-
tions.

2.2 Radar Weaknesses and Vulnerabilities

The desired information reported by a radar is the range/position and/or velocity of all real

targets in the field of view (FOV). Additional spurious signals in the radar’s matched filter
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output, whether intentional or passive, are unwanted and may lead to false target identifica-

tion. Sources of these undesirable dubious signals include clutter, range ambiguity, Doppler

ambiguity, and environmental/thermal noise. There is also the possibility of intentional enemy

jamming directly aimed at disabling or reducing the radars performance.

2.2.1 Clutter

Spurious signals that are caused by the natural environment such as terrain or vegetation, are

termed clutter. Because clutter is caused by a real reflection it can sometimes be difficult to

differentiate between actual targets and clutter. In synthetic aperture radar (SAR) clutter is

advantageously used to create an image of an area [15].

2.2.2 Range Ambiguity

A radar transmitting a cyclic pulsed signal will pick up reflections of those pulses at various

time delays related to target ranges as seen in Figure 2.2(c). If the transmitted signal is a stream

of repetitive pulses, there are time intervals where the received signal can have a delay time

longer than the PRI. This means that an additional pulse is transmitted before the reflected

signal is received. When this occurs it is impossible to determine which transmitted pulse

caused the reflected signal and thus the true range is uncertain causing range ambiguity. Range

ambiguity is generalized to when a target is farther away than a distance Rmax calculated by

Equation 2.2 [16].

Rmax ≤
c · PRI

2
=

c

2PRF
(2.2)

When this occurs the detected pulse will look like it arrives at a time ∆T modulus PRI . The

effect is shown in Figure 2.2(d). This modulus effect occurs because the transmitted pulse

looks identical to the previous pulse from PRI seconds ago, causing it to match with itself

in two positions. One of the matches is ”real” and the other is a range ambiguity. One way

of avoiding range ambiguity is shaping each pulse so that it is uncorrelated with the previous

pulse. Analysis of the non-repetitive Encrypted Pulse Encoding will be shown in a later section.

Assuming that each pulse is indeed unique there can only be one position where the output is
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Figure 2.2: a) Two pulse repetition intervals of a base-band pulse with PRI = 1000 and
τ = 100 samples. b) Simulated target sample delay. c) Simulated targets corresponding pulse
delays. d) Cross-correlation response, target B lies beyond the ambiguous range limit causing
a false target at ∆n = 550.

maximized. A shift of any N PRI will not produce a duplicate peak. This allows for longer

integration periods if desired, as well as a virtually infinite unambiguous range.

2.2.3 Doppler Ambiguity

Measuring the Doppler frequency of a target provides an estimate of the component of its

velocity in the radial direction relative to the radar. When demodulating the received signal to

base-band, any frequency shift that is not the intermediate frequency is considered a Doppler

shift fDoppler. The Doppler shift in the carrier frequency f0 caused by target radial velocity VR

is found according to Equation. 2.3[17].

fDoppler =
2f0VR
c

(2.3)
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While obtaining this frequency shift due to a target’s velocity is fairly simple, determining the

target’s true radial velocity is more complicated. This is best understood by considering the

spectral signature of a base-band radar signal using rectangular pulses and shown in Figure 2.3.

The signal is repetitive every PRI seconds causing the Fourier Transform of the transmitted

pulse waveform to be repetitive every fPRF = 1
PRI

as shown in Figure 2.3. The reflected radar

return signal will have an identical spectrum except it will be shifted by the target’s Doppler

frequency ±fD. Therefore, if the magnitude of the Doppler shift is greater than PRF
2

, the

actual frequency shift is impossible to determine since it could be due to both negative and

positive Doppler shifts. For the Doppler optimization process of CLEAN, it is critical that the

Figure 2.3: Finite radar pulse train plotted in the frequency domain.

correct Doppler frequency is used. The best signal would be one with no Doppler ambiguity,

however this is usually not possible. A design constraint should be considered to minimize

any additional Doppler artifacts introduced by any pulse compression or encoding used. As an

example, the Ipatov sequence intra-pulse coding produces great range ambiguity reduction, but

introduces many Doppler artifacts in N*PRI intervals.

2.2.4 Jamming Attacks

Attempting to disable a radar by focusing wide-band or narrow-band noise of sufficient power

that it overwhelms receiver and renders it inoperable is often referred to as jamming [18].

When the receiver of a radar becomes too noisy or saturated, the real signal is buried under

noise caused by the jammer. The simplest form of jamming is direct noise jamming [19].
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Jamming is essentially a flood of RF noise over the same frequency band as the radar and it

drowns out useful information. Countermeasures against jamming including modulation codes

such as BPSK, QPSK, and frequency hopping with orthogonal frequency division multiplexing

(OFDM), which can mitigate some jamming effects. Random signals tend to have wider band-

widths, making them more resistant to band-limited jamming. Much research in the area of

electronic warfare jamming to disable radar is based on detection and recognition of targeted

radar’s repetitive signaling pattern [20–22]. Identification of the signaling pattern allows the

jamming signal to be designed to disable the radar detected [23]. Many advanced jamming

methods based on identified signals are actually spoofing attacks.

2.2.5 Spoofing Attacks

Direct noise jamming has several disadvantages. Probably the most significant disadvantage is

that a true noise signal distributes power over a relatively wide frequency band, and it therefore

requires a significant amount power power and/or a very high gain directional antenna to be

effective. It has the added disadvantage that all signaling in the same frequency band will

also be jammed, and this may include “friendly” communications or radar signals. A more

effective method of disabling an enemy radar involves creating a seemingly ”authentic” radar

signal with false information. The signal power has to be sufficient to overpower any reflected

power. The term used to describe this is “Spoofing”. Additional details of spoofing techniques

are given in [24]. Spoofing does require a detailed knowledge of the radar’s transmission.

Spoofing signals are difficult to distinguish from true signals, making their detection nearly

impossible for unsecured periodic signaling. However, random radar signaling is very difficult

to “Spoof” since the transmission is theoretically unpredictable. The only feasible way of

spoofing a random signal is using “meaconing”. Meaconing is the time-delayed re-transmission

of the actual received signal, only with much greater power so as to overpower the actual

reflected signal. This makes the target appear further away and much larger than it’s actual size

[25].
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2.2.6 Self Interference

Most radars are designed to minimize any noise that is detrimental to their operation. In most

cases this is not a significant issue. However, a type of correlation interference does occur

when the modulation method creates significant undesirable range-lobes in the time domain or

side-lobes in the frequency domain. This unavoidable noise is due to the signal being partially

correlated with prior transmitted energy even when no target is present. A very basic random

BPSK inter or intra pulse modulated scheme displays this type of ambiguous signal energy in

the matched filter output. There are methods to mitigate this that include the use of mismatched

coding and deconvolution. Since this effect is due to the signals correlation properties, the self

interference of the signal is proportional to the target echo amplitude, meaning it is not wide

sense stationary.
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Chapter 3

Radar Signals with Discrete Random Properties

3.1 Modulation Control

The transmitted radar signal is created by modulating a high frequency carrier signal with a

pulsed lower frequency base-band signal. Amplitude Modulation (AM) is a commonly used

in radar and simply adjusts the amplitude of the transmitted radar signal. Another type of

modulation is frequency modulation (FM), where the transmitted carrier frequency fc, changes

proportional to the base-band signal level. An example of an FM modulation is “Chirp” mod-

ulation [26]. A Chirp signal linearly sweeps the transmitter frequency over a frequency band

during the“on” time of the pulse τ from f1 to f2. Chirp signals have very useful properties

including improved range and Doppler resolution.

Another type of modulation uses discrete binary sequences called codes to modulate a

standard base-band signal. The rate the coded signal changes is the update rate or “Chipping”

frequency fc [26]. The sampling of a coded signal in continuous time is given in Equation 3.1.

code(t) = code[floor(fc · t)] (3.1)

In the case of FM, the code isn’t mixed with the carrier RF and is instead used to control the

the oscillator frequency generating the carrier RF. Codes that modify the phase of the carrier

RF are called phase shift keying (PSK). Modulating a signal with PSK codes allow multiple

transmitters with the same carrier RF to be active at the same time with minimal interference.

One example of this is the binary phase shift keying (BPSK) coarse acquisition codes used by

the global positioning satellite system (GPS). Each satellite transmits a unique modulation code
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which enables the tracking of all satellites in view at the same time [27]. Secure modulation

codes also make jamming and spoofing of signals much more difficult.

3.2 Random Phase Shift Keying

The two most common types of phase shift keying are binary phase shift keying (BPSK) and

quadrature phase shift keying (QPSK). For a BPSK sequence each phase key can only have two

states. BPSK is simple to implement as a positive or negative sign change making it a good

baseline code for testing. A discrete random or pseudo-random sequence of binary bits, must

remain constant for a very short period of time that is the inverse of the chipping frequency

and referred to as a chip. Each chip state is determined by the binary data sequence and used

to either maintain or negate the sign of a RF carrier. Inverting the sign of an oscillating wave

is mathematically equivalent to changing its phase by 180 degrees. QPSK is slightly more

complex and allows for higher code complexity at the same chipping rate. The chips of the

QPSK sequence are still held constant for one chip period, but are separated into four phase

states instead of two. For optimal performance, the four states are usually separated by ninety

degrees consisting of zero, ninety, one-hundred eighty, and two-hundred seventy. Converting

the phase shift keys to angular frequency using the carrier frequency f0 and key code codePSK

is shown in Equation 3.2.

ω(t) = 2πf0t+ codePSK(t) (3.2)

Randomizing either of these phase shift keying methods simply requires replacing the cyclic

data sequence with a random number generator with the correct output states.

3.3 Random Orthogonal Frequency Division Multiplexing

Changing the center/carrier frequency of a radar offers several desirable effects. Doppler am-

biguity mitigation and resistance to narrow-band jamming are two benefits. Orthogonal signals

have the property that the time integrated product of two channels is zero unless the channels

are identical. This prevents the channels from interfering with each other in the matched filter

output. Assuming a set number of frequency choices M , randomizing the OFDM selection can
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be done in a similar manner to QPSK modulation, but instead of a constant phase state over a

given chip period, the center frequency is determined by the code value (1toM ) of the current

chip. Selection of the time varying carrier frequency f(t) with the time dependant OFDM code

chip codeOFDM(t) is shown in Equation 3.3.

f(t) = f0 + codeOFDM(t) (3.3)

3.4 Random Up/Down Chirp Selection

Chirp radar has a relatively wide bandwidth and offers excellent range and Doppler resolution.

A pulse that starts with a low frequency (fL) that increases over the pulse duration (τ ) to a high

frequency (fH) is referred to as an up-chirp. A pulse that starts at fH and decreases over the

pulse duration to fL is referred to as a down-chirp. This is called linear frequency modulation

(LFM) when the rate of frequency change is a linear function of time. Assuming the direction

of a chirp is the state, this state can also be randomized. Each pulse can be assigned a randomly

selected state of either an up or a down chirp. Equation 3.6 switches between an up-chirp

generated by Equation 3.4 and a down-chirp generated by Equation 3.5 using a binary sequence

codeU/D that has a random value for each pulse.

ωU(t) = 2πt

(
fL +

fH − fL
2τ

t

)
(3.4)

ωD(t) = 2πt

(
fH − fH − fL

2τ
t

)
(3.5)

ωU/D(t) =


ωU(t), codeU/D(t) = 0.

ωD(t), codeU/D(t) = 1

(3.6)

3.5 Random Pulse Repetition Interval

The pulse repetition interval (PRI) is usually constant, making it one of the most predictable

components of a radar signal. Randomizing the PRI would cause a sequence to have a lower

number of pulse overlaps when misaligned during cross-correlation which would increase the
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peak to floor performance of the matched filter. In order to maintain a controllable average

power, randomizing the PRI will follow a set of rules. First an upper limit to PRI duration

PRImax is required to arrange all of the pulses. Each PRI is treated as a fixed size bin of

duration PRImax while the time between the beginning edge of a bin and the activation where

the pulse will occur τ0 varies within the range 0 to PRImax − τ . This produces a pulse train

with an even density of randomly timed pulse activation periods. The controlled pulse shifting

effect also means that a calculable rate for other modulation codes is possible.

3.6 Hybrid Random Signals

Combinations of the previous methods are possible and serve to further increase the random-

ness of a signal. Discretely randomizing multiple components of a signal simplifies the signal’s

creation and correlation, given the generation scheme. The added complexity from multiple

methods makes spoofing the signal much more difficult. The random nature of the signal also

reduces the range and Doppler ambiguity.

One such hybrid signal is based on AES random coding used to create hybrid BPSK

and OFDM sequences of varying lengths. These coding showed a high resistance to jam-

ming/spoofing attacks [6]. A hybrid signal that combines a random PRI with a random BPSK

code (RPB) is used in this research and presented in the testing section.

Figure 3.1 shows the ambiguity function resulting from the RPB signal at the zero crossing

(middle left) and at the PRImax interval (middle right). The RPB signal has a single central

peak and mitigates the ambiguous Doppler peaks seen in the top and bottom figure. The (bottom

left) and (bottom right) subplots are generated using the identical random BPSK chips but using

a constant PRI set to the PRImax of the RPB signal. In the bottom subplots, the ambiguous

Doppler peaks due to the constant PRI are clearly visible. The first pulse interval shown in

the bottom right subplot has higher range and Doppler lobes than the RPB signal (middle left

and right) however they are concentrated in a 2τ range band instead of being spread over the

whole (pulse) range axis. The (top left) and (top right) subplots are not a random signal and

instead show the Ipatov-13 Barker-13 hybrid signal (IBH). The zero Doppler slice of the IBH

ambiguity function has virtually no range lobes, but when the Doppler axis is extended to equal
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Figure 3.1: Ambiguity functions, view at zero (left column), view at first PRI (right column),
Ipatov-Barker Hybrid (top), Random PRI BPSK Hybrid (middle), Random BPSK (bottom).

limits as the RPB subplots, significant ambiguous peaks are visible. From the two views of each

of the three signals, the RPB signal is shown to have the highest Doppler and range ambiguity

mitigation qualities.
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3.7 Selected Random Signal

A binary phase code and random PRI were chosen as the components for the random hybrid

signal used for testing for several reasons. First, limiting the complexity of the signal makes

simulation and processing easier. A signal that can be represented in two parts, base-band and

carrier, multiplied together reduces the complexity of equations. The frequency modulation

based methods require a different and more complex form of the CLEAN algorithm. When

comparing the random modulation methods using similar bandwidths, all demonstrated similar

pulse compression and peak to floor performance. The binary phase code was chosen since it

produced similar performance with an easier to model sequence. Using a binary phase code

allows for a one to one mapping of the encrypted bits from the AES-192 algorithm covered in

Chapter 5.1.2. Adjusting the PRI is simple and yields Doppler ambiguity mitigation properties

that aid in target identification for CLEAN processing.
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Chapter 4

Optimized CLEAN Algorithm

4.1 CLEAN

Methods that help distinguish individual targets in the matched filter response are especially

important when pseudo random coding is used. The reason this is important is that each tar-

get’s response appears to have a repetitive ’ringing’ in the matched filter output. This ’ringing’

will be referred to ambiguous or spurious noise. The CLEAN type algorithm is highly effective

in reducing this type of unwanted noise and will be used in this research. The CLEAN algo-

rithm begins by identifying, cataloguing, and then removing each source’s signature from the

response [8, 10]. CLEAN is a multi step process and it’s speed is dependant on the number of

targets observed in the response.

The effectiveness of a CLEAN algorithm depends entirely on it’s ability to correctly iden-

tify each target’s contributing signal and extracting the necessary information to produce a

replica capable of removing it’s contribution from the received signal. In practical applications

it is impossible to perfectly remove the signal, and instead CLEAN aims to reduce the signal’s

presence as much as possible. By doing this targets that were hidden in the ambiguous energy

are visible. The complete CLEAN process is shown in a block diagram format in Figure 4.1.

For every target identified with side lobe levels above the processing noise floor, a single iter-

ation of CLEAN is done. On the first iteration, the target with the strongest peak is identified,

catalogued, and removed. On every subsequent iteration of CLEAN the largest remaining tar-

get signature is identified, catalogued, and removed until all targets are identified. The special

improvements made to the CLEAN algorithm used in this work are discussed next.
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Figure 4.1: Block diagram of the iterative CLEAN process.

4.2 Sampling

All the algorithms used in this work are based on digital signal processing. The simulation

of sampled signals is designed to be as accurate as possible. To help reduce the computational

intensity of the code and memory required, the signals are demodulated down to an intermediate

frequency or base-band before sampling occurs. This is discussed in detail in Chapter 5 Section

2. The signal processing has a bandwidth of FB Hz and is centered at an intermediate frequency

of FIF Hz. A local oscillator (LO) downshifts the carrier signal frequency to one quarter the

sampling frequency. The frequency of the LO used for quadrature demodulation, fLO, is given

as fLO = f0−fs/4. After quadrature demodulation, a low-pass filter with a cutoff frequency of

fs/2 is used to remove any high frequency components before sampling [28]. The quadrature

is then sampled and saved to a buffer for processing.

21



Figure 4.2: Carrier modulated bandwidth (Top), Demodulated Bandwidth (middle), Low-pass
filtered demodulated band to be sampled by ADC (Bottom).

4.3 Target Identification

The first step of CLEAN is selecting the largest target signature to be catalogued and removed.

Assuming a sample buffer contains N samples of the signal labeled x[n], various Doppler bins

for each range sample can be formed using the intermediate frequency as the zero Doppler

shift reference. Each bin’s in-phase (I) and quadrature (Q) channel are cross correlated with

the transmitted base-band replica created at the system sampling rate. The output of a cross

correlation in a Doppler bin produces all range bins at the given Doppler frequency with a

range resolution of one sample. The square root of the sum of squares of the I and Q cross

correlation channels produces the magnitude of the matched filter output associated with each

Doppler bin. This response can be represented as a three-dimensional surface with the x-axis

corresponding to the range index n, the y-axis corresponding to the Doppler bin k, and the z-

axis representing the values stored at the two-dimensional matrix index in I[n, k] and Q[n, k].

I[n, k] =
N−1∑
i=0

x [(i+ n) mod (N)] · b[i]cos
(
i

fS
(ωIF + ωdop[k])

)
(4.1)
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Q[n, k] =
N−1∑
i=0

x [(i+ n) mod (N)] · b[i]sin
(
i

fS
(ωIF + ωdop[k])

)
(4.2)

Where:

n range bin index

k Doppler bin index

ωIF Intermediate frequency in radians/sec

ωdop[k] Doppler bin frequency in radians/sec at index k

With a complete range/Doppler bin set, the first target can be selected for the parameter opti-

mization step of the CLEAN algorithm. It is assumed that the largest signal peak is caused by

the dominate target and it’s range/delay, carrier phase, Doppler, and amplitude reconstruction

parameters are determined.

4.4 Target Replica Approximation

To create an accurate target reflection signal, several parameters need to be identified. The

most significant parameters are the target’s Doppler frequency, the carrier phase change, the

range and delay time to target, and amplitude. The coarse values for all of these are obtained

from the location of the selected [n0, k0] index peak in the I and Q channels of the matched

filter response. The coarse Doppler frequency is simply obtained by identifying the Doppler

bin k0 with the highest output that corresponds to the target location n0. The coarse amplitude

A0 is obtained with Equation 4.3. The duty cycle τ/PRI is used to scale the result to obtain

the correct amplitude for the replica. After obtaining the coarse target parameters from the

matched filter response, the next step is to develop a model of the samples for only that target.

The optimization process helps to increase the accuracy of the model developed.

A0 =

√
I[n0, k0]2 +Q[n0, k0]2

N

PRI

τ
(4.3)

The coarse phase is a simple relationship between the I and Q magnitude shown in Equation 4.4.

The carrier phase can also be used to extract sub sample target delay which represents the

time between two ADC samples where the target response actually peaks [28]. The whole
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sample index and float sub-sample delay can be combined to get a more accurate signal delay

measurement.

φ0 = arctan(Q[n0, k0], I[n0, k0]) (4.4)

The target sample delay can be converted to target delay using 4.5.

t0 =
n0

fs
(4.5)

4.4.1 Doppler Optimization

Since Doppler search bins have a limited step size, the coarse Doppler from the index k0 can

be off by ± half the Doppler bin step size. A simple gradient ascent optimization initialized

by the coarse reconstruction parameters allows for a Doppler frequency with a lower straddle

loss to be obtained. The Doppler optimization function is part of the matched filter processing.

Instead of performing the full cross correlation, only a match at previously obtained target shift

position, n0 is computed. This operation which consists of an element multiply and sum will

be referred to as an in-place correlation represented by Equation 4.6.

X(a, b, n0, N) =
N−1∑
n=n0

a[n] · b[n− n0] (4.6)

Centered at the coarse Doppler frequency obtained from the k0 index, a smaller step size is

used to generate a high and low test point which can then be used to calculate the gradient and

choose the next set of test points. After a few iterations the amplitude of the Doppler optimizer

will maximize. The Doppler frequency at which the output of Equation 4.7 maximizes is kept

as the fine Doppler which is required for the next set of equations.

Optd
2 (ωd, n0) = OptId

2 (ωd, n0) +OptQd
2 (ωd, n0) (4.7)

Where:

OptId (ωd, n0) =
N−1∑
n=0

x [n] b [n− n0] cos (ωdn/f s) (4.8)
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OptQd (ωd, n0) =
N−1∑
n=0

x [n] b [n− n0] sin (ωdn/f s) (4.9)

4.4.2 Carrier Phase Optimization

With the fine Doppler frequency, the fine carrier phase is obtained from a gradient ascent. The

carrier phase optimizer is another function that iteratively determines the best phase value that

maximizes the in-phase component and minimizes the quadrature out of phase component. A

range of test phases are iteratively generated, and the function will converge at the maximum

peak.

Optφ (ωd, n0, φ) =
N−1∑
n=0

x [n] b [n− n0] cos (ωdn/f s + φ) (4.10)

In Equations 4.8, 4.9 and 4.10, x[n], b[n] and n0 do not change. The x · b component can be

cached and reused for all evaluations of all three equations. The phase optimization maximizes

the in-place correlation response by adjusting the phase offset φ.

4.4.3 Amplitude Optimization

The fine Doppler and carrier phase are used to obtain the replicas fine amplitude using a gradi-

ent descent method. The Amplitude optimizer is more sensitive to local minima trapping and

would benefit from a more rigorous optimizer than a simple gradient descent method. Unlike

the Doppler and phase optimizers, the Amplitude optimization is designed to minimize the

matched filter response at the detected target location. Essentially a test replica is generated

and temporarily subtracted from the samples which are then vector multiplied with the known

shifted replica. The amplitude of the test replica is varied, while the Doppler, Phase, and Delay

are all fixed at their corresponding fine values. This is accomplished by first generating a signal

replica with a maximum amplitude of 1.0 for use in the optimization process. The process

creates a replica of the target’s signature at base-band sampling frequency, b[n], according to

Equation 4.11.

ra[n] = b [n− n0] cos (ωdn/f s + φ) (4.11)
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This replica is used for in-place signal negation and then to calculate the in-place correlation

response according to Equation 4.12.

Opta (A, ωd, n0, φ) =
N−1∑
n=0

((x [n] − A · ra[n]) ra[n])2 (4.12)

Opta (A, ωd, n0, φ) =
N−1∑
n=0

(
x [n] ra[n] − A (ra[n])2

)2
(4.13)

The value of A that minimizes the output of Equation 4.13 is the new amplitude parameter

for the target negation replica. Figure 4.3 shows Equations 4.7, 4.10 and 4.13 evaluated at

test points (green circles) centered on the coarse values calculated from the matched filter.

They converge to local maxima/minima (red plus) when the optimal replica parameter is used.

The convergence point is approximated by cubic interpolation using the test points (blue line)

and the corresponding maximum or minimum coordinate is obtained from the interpolation

function.

Figure 4.3: Sample CLEAN replica parameter refinement. Doppler optimizer (Left Column).
Phase optimizer (Middle Column). Amplitude optimizer (Right Column).
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4.4.4 Algorithm Optimization

Equations 4.12, and 4.13 are mathematically equivalent, but Equation 4.13 is slightly more

optimal for checking multiple values of A. In code, Equation 4.12 consists of a multiply,

subtraction and multiply that cannot be cached for reuse in the nextA evaluation. Equation 4.13

consists of two multiplies a square and subtraction, but a multiply and the square sequences can

be cached for reuse, meaning over multiple evaluations of A, only a multiply and subtraction

are required. Simply changing the form of the equation reduces the computation cost. Another

consideration for the cached sequences, any sample in the replica where ra[n] = 0 will always

result in zero so it can be skipped. For a pulsed radar signal, this means that after the replica

is partially generated (base-band pulse activation mask), only the samples during the on-time

τ need to be checked. A large portion of the optimization steps are not co-dependant meaning

a parallel form could be designed for execution on a GPU. The level of accuracy can be tuned

with adjustments to the number of iterations, and which optimizers are run.

4.5 Target Negation

In the first iteration, the receiver samples x[n] are copied into the processing buffer x0[n]. After

all reconstruction parameters have been determined, the approximate replica is generated at

the system sampling rate and subtracted from the processing buffer values resulting in the new

processing buffer values xi[n] shown in Equation 4.14.

xi[n] = xi−1[n] − Ara[n] (4.14)

If the approximate replica is accurate, it significantly reduces the signal contribution of the

selected target including the amplitude of ambiguous energy also referred to as range lobes in

the matched filter’s response. Since the identified targets are effectively being processed out

of the signal, memory is required for the cataloging of the identified targets. Before the first

iteration, an empty matched filter response is created as the target memory. Every time a target

is identified and removed from the processing buffer, a corresponding thumbtack response is

added to the target memory. This is effectively the cleaned virtual matched filter response. On
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the last iteration, the remainder of the processing buffer’s matched filter response (residuals)

is combined with the cleaned virtual matched filter response to produce the complete CLEAN

matched filter response.

4.6 Reprocessing

Once an identified targets replica signal is subtracted from the data samples, the new xi[n] can

be reprocessed with the quadrature matched filter. Reprocessing with the matched filter will

reveal any targets previously obstructed by the ambiguous range lobes of the negated targets.

The full CLEAN algorithm can be repeated for each target identified until a threshold or mini-

mal change in the matched filter result after reprocessing is reached. When the true noise floor

in the matched filter is reached, further iterations only add distortion to the signal and can not

reduce any ambiguous energy due to external or processing noise sources.

4.7 Bandwidth Model

The negation replica is designed to match the detected target, but if the number of parameters of

the constructed replica are limited, the base components (encoding base-band) used need to be

as close to the real signal as possible. This is accomplished by approximating the filtering ef-

fects of the system as a whole and applying this filter to the negation replica in the optimization.

The worst case scenario is when there is no approximation filter model used. When looking at

a low-pass filtered signal, the edges of a square pulse of the EBPC, will have blurred transition

edges. This effect is demonstrated in Figure 4.4. If a replica with perfect square transitions was

Figure 4.4: Filtering effect of band-limiting square pulse transitions.

subtracted from the real signal having smooth transitions, much of the actual target signature
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would still remain. Therefore, the replica signature must include all the system effects before

being subtracted from the stored signal. The example error difference between the a filtered

and digital signal is shown in Figure 4.5. Errors between the negation base-band replica and

Figure 4.5: Error between a band-limited square pulse and the reference square pulse.

true base-band signal will result in artifacts generated and compounded by every iteration of

the CLEAN algorithm. The artifacts limit the total amount the signal can be reduced by. This

amount can be approximated by the difference of the true and modeled signal as a percentage

of the matched filter peak or in dB relative to the peak before CLEAN.
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Chapter 5

Simulation, Testing and Results

5.1 Signal Selection

Two signals will be used for comparative analysis in intermediate frequency simulation and

CLEAN processing. One of the signals chosen, the Ipatov-Barker BPSK Hybrid is a cyclic

signal with very low range side lobe ambiguous energy. The second signal used is another

BPSK hybrid that instead combines both random PRI timing and random BPSK using an AES-

192 encryption generator. Both signals will have the same average power, pulse on time, and

number of BPSK chips per pulse. The signals are configured to have as similar a bandwidth as

possible to provide a more relevant comparison. A modulation scheme such as up/down chirp

or random OFDM was not chosen because minimal complexity was one of the design goals.

BPSK is much simpler to implement in simulation and in future work on hardware to obtain

real world results.

5.1.1 Ipatov-13 Barker-13 Hybrid

Work by Levanon showed that Ipatov sequences used in inter-pulse BPSK extend range am-

biguity by the sequence length and have an ideal correlation response when correlated with a

specialized miss-matched code[1]. For a proper comparison, the signals need a similar band-

width. To achieve this, A Barker-13 sequence is added as intra-pulse BPSK. This is important

later when the encrypted signal will also use intra-pulse BPSK. The shortest possible coher-

ent processing interval for a Ipatov sequence is double its length. In this case, a minimum

of twenty-six pulses must be stored before processing can be performed on the Ipatov-13 se-

quence. This is due to each pulse having a phase state determined by the Ipatov-13 sequence.
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Barker-13 BPSK Intra Pulse Modulation Chip States
Barker-13 +1 +1 +1 +1 +1 −1 −1 +1 +1 −1 +1 −1 +1

Table 5.1: Barker-13 chip sequence, repeated inside of every pulse.

Ipatov-13 BPSK Inter Pulse Modulation Chip States
IpatovT -13 +1 −1 −1 +1 −1 +1 +1 +1 +1 +1 −1 +1 +1
IpatovC-13 +2 −3 −3 +2 −3 +2 +2 +2 +2 +2 −3 +2 +2

Table 5.2: Ipatov-13 transmit (T) and mismatched correlation (C) chip sequences, each value
corresponds to a pulse state, repeats after 13 pulses.

The generation of the Ipatov-Barker Hybrid signal requires that the BPSK chips be indexed

with the correct time stamp. Both sequences are written and stored as arrays, and each chip’s

state is stored in array cells [0 to 12]. The current pulse P is given by Equation 5.1.

P (t) = floor (t/T ) (5.1)

The time within a pulse p is given by Equation 5.2.

p(t) = t mod (T ) (5.2)

The active portion of a pulse is determined according to Equation 5.3.

a(t) =


1.0, p(t) ≤ τ

0, otherwise

(5.3)

The number of BPSK code chips per pulse remains constant and is given by Equation 5.4.

PN = floor (τfc) (5.4)

Where:

τ pulse on time;

T pulse repetition interval PRI;

fc BPSK code chipping frequency;
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The intra-pulse modulation chip array index is given by Equation 5.5. Here M , the sequence

length, is set equal to 13 yielding Barker-13 coding, every pulse on time period τ will be

modulated by the same 13 chips of the Barker sequence.

nB(t) = floor

(
M
p(t)

τ

)
mod (M) (5.5)

The inter-pulse modulation chip array index is given by Equation 5.6. Setting M , the sequence

length equal to 13 for Ipatov-13 indicates that the modulus 13 will repeat the Ipatov sequence

every 13 pulses.

nI(t) = floor (MP (t)) mod (M) (5.6)

The hybrid signal is a combination of both inter and intra-pulse BPSK methods. The Ipatov-13

Barker-13 hybrid BPSK states are given by Equation 5.7.

IBH(t) = Ipatov13[nI(t)] ·Barker13[nB(t)] (5.7)

The matched filter output performance is sensitive to the returned signal’s sampling ac-

curacy and phase alignment. Instability in the RF oscillator generating the actual transmitted

pulse and the sampling oscillator will reduce the matched filter’s ability to resolve targets using

the Ipatov-Barker Hybrid coding. If ideal alignment and sampling accuracy was possible then

CLEAN would not be needed. However, the floating point error in the IF simulation resulted

in ambiguous (spurious) peaks of up to -65 dB.

5.1.2 AES Pseudorandom Binary Phase Encoding

AES-192 Encryption [29] is used to generate a pseudo-random sequence, which can be re-

peatably started at a user defined time, and if desired, it may also contain additional encrypted

data. AES was chosen for its computational speed and familiarity. Other forms of encryption

could be used and would likely produce similar results, but this research will only use AES-192

encryption.
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Data before it is encrypted is referred to as plain-text data, and after encryption as crypto-

text and used for the BPSK modulation. The AES-192 variant simply indicates that the key

length used for the encryption is 192-bits long. Since the algorithm operates on 128-bit blocks

of data, a buffer is required to generate a continuous stream of BPSK code bits. Essentially, in

continuous mode (τ = T ), the algorithm generates encrypted blocks at fc/128 where fc is the

chipping rate of the BPSK code. The AES-192 encryption operation is given by Equation 5.8.

cryptotext128 = AES192(plaintext128, key192) (5.8)

The plain-text blocks are updated every encryption to produce unique crypto-text blocks, this

ensures that the sequence does not repeat. A simple method for changing the plain-text on

every update is to store the update counter number in the plain-text field, and this is the method

shown below. The value used as the plain-text field is represented in Equation 5.9.

plaintext128 = dec2bin(kη + l, 128) (5.9)

where:

dec2bin decimal to binary conversion;

k encryption block count;

η user specified prime number;

l user specified fill;

Since the counter updates at a fixed frequency it can also be used as an accurate record of time

of transmit. To prevent an observation brute force attack, the counter is masked with fill bits and

multiplied by a prime number to increase plain-text bit variability before encryption. Assuming

that both the transmitter and receiver have the same key and accurate time reference (GPS time

or CSAC), an identical copy of the pseudo-random sequence can be produced for correlation

purposes. The equation for obtaining the nth bit from the kth block is shown in Equation 5.10.

bit[n, k] = AES(dec2bin(kη + l, 128), key)[n] (5.10)
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Writing n and k as a function of t allows for bit selection as a function of t. Several prerequisite

variables are required to obtain them, Equations 5.1, 5.2 and 5.4 from the Ipatov-Barker Hybrid

section are used here. The current block k(t) and bit n(t) can be calculated from accurate time

as shown.

n(t) = floor

(
P (t)PN +

p(t)PN
τ

)
mod (128) (5.11)

k(t) = floor

(
P (t)PN

128
+
p(t)PN
128τ

)
(5.12)

Note that Equations 5.11 and 5.12 only produce the correct index during the active portion of

the pulse τ . Values given during the inactive period of the pulse are ignored or multiplied by

zero. Table 5.1.2 shows a sample of the index states corresponding to pulse times t. Using the

block and bit at any time t, the phase is obtained according to 5.13.

bit(t) = AES(dec2bin(k(t)η + l, 128), key)[n(t)] (5.13)

Multiplication by π will produce two possible phase states of 0 and π radians at the chipping

frequency fc when the pulse is active.

ωAES(t) = bit(t)π + 2πf0t (5.14)

Note that for correct operation, the chip width (tchip = 1/fc) must be an integer multiple of τ .

time t P (t) n(t) k(t)

0 − T 0 0-12 0
T − 2T 1 13-25 0

...
...

...
...

9T − 10T 9 117-127, 0-1 0, 1
10T − 11T 10 2-14 1

Table 5.3: Set of bit and block index values for pulse encoding with the AES method.

In this work, the chip duration was is exactly tchip = τ/13 . Additionally, fc must be an integer

multiple of the carrier frequency f0, to ensure phase transitions only occur at the zero-crossing

of the transmitted waveform.
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The phase at any time t is given by Equation 5.14. It is important to note that the AES

function is only required when Equation 5.12 changes, otherwise simple indexing of the cur-

rent block buffer with Equation 5.11 will provide the correct phase. Not requiring the AES

calculation for every sample reduces the number of computations therefore allowing parallel

code optimization using FPGA or ASIC integrated circuits.

The binary and phase states used in the BPSK sequence modulation are given by Equa-

tion 5.15 and the amplitude states given in Equation 5.16. The relationship between amplitude

and phase states in a BPSK sequence is provided in Equation 5.17. The binary states [0, 1] map

to the phase states [0, π], and the amplitude states [−1,+1].

ω(t) = binary(t)π (5.15)

A(t) = binary(t) · 2 − 1 (5.16)

A(t) = cos(ω(t)) (5.17)

Essentially, the BPSK sequence can be implemented as a phase offset [0 or π], or as an ampli-

tude modifier [−1 or + 1] the resulting signal is the same and the terminology is interchange-

able.

A comparison of the output statistics of the AES-192 crypto-bits to that of random-bits

generated by Python’s random number generator using the newest version of the Numpy pack-

age was done. This comparison confirmed the AES-192 coding was sufficiently random. The

output of the random number generator was converted to BPSK code according to Equa-

tion. 5.18.

Random(N) = (numpy.random.rand(N) > 0.5) ∗ 2 − 1 (5.18)

A long length sequence was generated using both the Numpy random function and the

AES method. Figure 5.2 shows the statistical density of constant phase periods in each se-

quence. The results from both methods are nearly identical.
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Figure 5.1: a) Sample output from the AES random generator, b) Sample output from Numpy
random (Eqn. 5.18), c) Variability in phase state duration of the AES sequence. d) Variability
in phase state duration of the Numpy random sequence.

5.1.3 AES PRI Randomization

The second half of the random hybrid is a random pulse repetition interval adjustment which

adds a good Doppler ambiguity reduction and further obscures the signal at the cost of some

spreading of ambiguous energy in the range domain. Since the ambiguous energy is a result of

the signal structure, the spreading effect will also be mitigated in the CLEAN processing step

later.

The number of bits per pulse shift is defined by PB, this variable controls the discrete

resolution of the random PRI time. By converting the bits from binary to integer, the number

of possible pulse offsets (PRI resolution) is defined. Setting PB to 4 would result in 24 = 16

possible pulse positions within a PRI. Each PRI is essentially divided into 2PB places and one is

selected using encrypted bits for the pulse activation point. The bits used in the PRI resolution
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Figure 5.2: Density of constant phase state lengths in sequences generated using the AES and
Numpy random methods.

changes the frequency that the encryption algorithm is required to operate at. Using 4 bits per

pulse, each 128-bit AES crypto-text block would create activation times for 128/4 = 32 pulses

composed of random bits, and therefore the AES encryption would need to update every 32

pulses. Increasing the PRI resolution linearly increases the encryption frequency. A trade-off

between system complexity and PRI resolution must be made. Converting the bit values to

pulse shifts is shown in Equation 5.19.

τ0(t) =
T − τ

2PB

PB−1∑
n=0

crypto [n+ P (t)PB] · 2n (5.19)

Generating the pulse uses a modified version of Equation 5.2 that adjusts each pulse activation

point by τ0(t), Equation 5.20.

ar(t) =


1.0, (p(t) ≥ τ0(t)) & (p(t) ≤ τ + τ0(t))

0, otherwise

(5.20)

The resulting shuffling effect on the pulse chain from Equation 5.20 is shown in Figure 5.3.

The statistical distribution of pulses is limited by the PRI window size, which results in the

maximum effective pulse separation being 2(T − τ) and a minimum separation of zero. This

method allows for controllable average power and pulse indexing using the virtual PRI set by
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Figure 5.3: AES Random Adjusted PRI pulse sequence.

the PRI window. Pulse indexing makes generating the BPSK codes or other modulation pat-

terns easier because even though the signal is randomized, it still maintains an order conducive

to it’s functional representation. This method is also designed for simplicity and would allow

relatively simple hardware implementation.

5.2 Intermediate Frequency Model

The signal processing is done at the intermediate frequency (IF) to reduce the code’s computa-

tional cost. The IF signal is generated by simulating the demodulation of the received RF signal

using a local oscillator (LO). Mathematically, the model is derived using the Cosine Product

Identity followed by a low pass filter (LPF) as shown here[28].

cos(a)cos(b) =
cos(a− b) + cos(a+ b)

2
(5.21)

Consider frequency a as the carrier RF frequency F0, and b as the local oscillator frequency

FLO. The frequencies are converted to angular frequency by multiplication with two Pi. This

results in Equations 5.22 and 5.23.

ω0 = 2πF0 (5.22)

ωLO = 2πFLO (5.23)

cos(ω0t+θ)cos(ωLOt+φ) =
cos((ω0 − ωLO)t+ θ − φ) + cos((ω0 + ωLO)t+ θ + φ)

2
(5.24)
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The high frequency term in Equation 5.24, cos((ω0+ωLO)t+θ+φ) is removed using a lowpass

filter and the remaining signal is centered at ωIF resulting in Equation 5.25.

ωIF = ω0 − ωLO (5.25)

The phase and frequency of the LO is considered to be constant, but the phase and fre-

quency will vary in the received signal due to the round-trip signal delay time and Doppler

frequency shift. The target’s phase in the IF signal is given by Equation 5.26

θIF = θ − φ− 2R

c

((
1 +

2VR
c

)
ω0 − ωLO

)
(5.26)

If the phase of the transmitter and LO are assumed zero at t = 0, Equation 5.26 can be simpli-

fied and given as 5.27

θIF = −2R

c

((
1 +

2VR
c

)
ω0 − ωLO

)
(5.27)

The time delay of the reflected signal from a target is given as td = 2R/c where R is the range

to target and c is the speed of light. The observed Doppler frequency shift is modeled as a

scaling effect on the RF caused by the target’s radial velocity VR written as 1 + 2VR/c and is

observed in the RF return signal. The amplitude of the IF signal can then be modeled according

to Equation 5.28.

AIF (t) = cos

((
1 +

2VR
c

)
ωIF t+ θIF

)
(5.28)

5.2.1 Sampling Bandwidth Filter Model

The energy and power spectral density of the radar transmissions have a limited bandwidth and

the signal is centered at the carrier frequency. The received signal must therefore be sampled

at at least twice the highest frequency of interest(fsampling = 2 × ω0) to prevent aliasing that

could distort the signal. The return signal is also affected by the type of antenna, dispersion

caused by the propagation media, system hardware, etc. All of these effects can be reversed

(“undone”) by designing a signal filter that does the inverse of the distortion that the return
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Figure 5.4: Simple antenna BPF model. Figure 5.5: ADC LPF model.

signal experiences. This is a type of “focusing’ and it is done using digital signal processing

(DSP) in the research.

An example of this, consider the problem of effects of transition blurring that occurs due

to atmospheric dispersion and other effects. These effects are accounted for and the signal

“re-sharpend” using digital signal processing. This is discussed in subsequent sections.

5.3 Carrier Model Validation

In order to verify the accuracy of the intermediate frequency (IF) simulation model, a short

portion of a test signal was generated using both the carrier frequency and IF methods. The

system model filter was applied to both signals and the results are compared in Figure 5.6.

The digital base-band signal’s instant phase transitions are the primary point of interest for

the comparison between the two models. Both models closely match in amplitude and time

excluding a small high frequency bleed-through that is explainable using the Cosine Product

Identity. The high frequency signal prior to the LFP Figure 5.6(cyan) contains both the (a-b)

and (a+b) components covered in the IF model section by Equation 5.24. The high frequency

signal after the LPF is applied Figure 5.6(blue) is primarily the (a-b) component with a greatly

reduced (a+b) component. The results from Equation 5.28 in Figure 5.6(red) do not include

the bleed-through from the (a+b) component, but do closely match the overall resulting signal.

The similarity between the methods means that the simulation sample frequency only needs
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Figure 5.6: a) Band-limited BPSK Barker-13 modulated signal, b) Phase transition point of
interest.

to meet the Nyquist criteria for the intermediate frequency plus expected Doppler shift. This

greatly reduces the number of samples required for the simulations.

5.4 Target Simulation with IF Model

The IF demodulation of the return signal produced results consistent with target range, size, and

expected Doppler frequency shift. The target signatures in the return signal are created using

pulse control and modulation based on the range R, radial velocity VR, and cross-sectional area

of each target. Multiple targets are simulated by summing each individual target signature.

5.5 Simulated Target Responses

The specific parameters used for the simulations are given in table 5.4. The intermediate fre-

quency model and radar equations are used to model the transmitted signal. Target reflections
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Symbol Value Property
fS 80.0e6 Sampling frequency
f0 3.0e9 Carrier frequency
fLO 2.98e9 Local oscillator frequency
fIF 20e6 Intermediate frequency
T 25e-6 PRI
τ 1.0e-6 Pulse on time
bw 20.0e6 Filter model band-width
CN 2 Filter model order
M 65 Pulses in CPI
N 1.04e5 Sample buffer length
fC 1.0e6 Code chipping frequency

Table 5.4: List of values used for target simulation and CLEAN processing.

are created by time delaying an attenuated replica of the transmitted signal with appropriate

phase delay and amplitude attenuation. The target’s reflected power is given by Equation 5.29.

[30].

Pr =
PtGtGrλ

2σ

(4π)3R4
(5.29)

Where:

Pr Power received in watts.

Pt Power transmitted in watts.

Gt Transmitter antenna gain.

Gr Receiver antenna gain.

λ Carrier wavelength in meters.

σ Radar cross section (RCS) in square meters.

R Target range to radar antenna in meters.

The signal voltage is calculated by taking the square root of the power amplitude of the ADC

converter as given in Equation 5.29 and the time delay of the reflected signal and Doppler

frequency shift given by Equations 5.30, and 2.3 respectively.

t0 =
2R

c
(5.30)
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The Doppler shift observed in a signal is applied by creating scalar Sdop from the radial

velocity Vr shown in Equation 5.31. When multiplied with the original frequency the result is

the Doppler shifted version.

Sdop = 1 +
2Vr
c

(5.31)

The pulse repetition frequency for instance is considered to be low enough that any resulting

Doppler shift is unobservable and can be ignored in most cases. The effects of the Doppler

frequency shift are included in all simulated frequencies and the general form of the base-band

modulation is given in Equation 5.32.

b(t) =


ar(t)bit(t) · 2 − 1, type = AES.

a(t)IBH(t), type = Ipatov −Barker.

(5.32)

The time delay t(n) of a sample n is given by Equation 5.33 where fS is the sampling frequency.

t(n) =
n

fS
(5.33)

A single target’s modulated, scaled, and delayed signal in the sampled IF domain x[n], is given

by Equation 5.34.

x[n] = b (t(n) − t0)AIF (t(n))
√
Pr (5.34)

Simulating the reflections from multiple targets is done by independently simulating each tar-

get’s reflected signature and then summing the results to get a simulated scenario.

5.5.1 Comparative Analysis

Before simulating multiple targets or testing the CLEAN algorithm performance, each signal is

simulated with a single virtual target at zero range and zero Doppler shift with an amplitude of

1.0. This is used as the sampled ambiguity function that is modified according to each target’s

range, velocity, and size. The received signal is analysed by plotting its matched filter output

and spectral signature to determine the target’s range and Doppler shift as shown in Figures 5.8,
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Figure 5.7: AES BPSK maximum ambiguous side lobes in Range and Doppler bin axes.

Figure 5.8: RPB maximum ambiguous side lobes in Range and Doppler bin axes.

Figure 5.9: IBH maximum ambiguous side lobes in Range and Doppler bin axes.
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5.9 and 5.7. The range axis (a) is extended to show any spurious lobes that may occur in the

extended range. Figure 5.7 shows the output of the matched filter for a constant PRI signal.

The frequency axis (c) is extended and a near replica of the low frequency response occurs at

±40 kHz. A comparison of Doppler signature from a constant and random PRI BPSK signal

is shown in Figure 5.8. It is evident that randomizing the PRI reduced the magnitude of the

spurious (ambiguous) Doppler peaks, but randomizing the PRI did increase the signal noise on

the range axis and caused higher average side lobes on the Doppler axis. The side lobes are

artifacts and referred to as ambiguous energy or noise. The major benefit of using random PRI

BPSK signal is that the actual target peak is always the largest peak in the matched filter output.

The CLEAN processing reduced the noise plateau seen in the matched filter response for

both the constant and varible PRI signaling. However, the level of the spurious (ambiguous)

peak is not reduced at ±40kHz as shown in Figure 5.7. It is clear that the mitigation of

range ambiguity that occurs using Ipatov-13 Barker-13 hybrid coding, causes a replica target

signature to appear a much higher frequency and thus the true target velocity is ambiguous

(Doppler ambiguity). Figure 5.9 shows no visible side lobes in the range axis for the zero

Doppler shift bins. When the full set of range and Doppler bins is compressed by taking the

maximum of all Doppler bins for a given range bin, an ambiguous peak appears, and multiple

ambiguous peaks appear along the Doppler axis. Figure 5.9 showcases the fact that the true

Doppler frequency caused by target motion is not certain if Ipatov-Barker hybrid coding is

used whereas the random PRI BPSK signal is able to resolve the true Doppler shift.

5.6 CLEAN Reprocessing

The Ipatov-13 Barker-13 hybrid coding and AES -192 encryption methods are used to simulate

virtual targets having an amplitude 1.0 at zero range, and a second target at a range of 0.3 T

having an amplitude −39dB relative to the virtual target. The second target amplitude was suf-

ficiently reduced so that it would not be visible in the matched filter response without additional

signal processing. However, the second target’s response is observable in the output after the

CLEAN algorithm is used. The primary portions of interest in the matched filter response are

the true and false target’s locations. The false target will be delayed by thirteen pulse periods.
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The Doppler range of the matched filter output is adjusted to be slightly greater than the first

ambiguous Doppler peak which occurs at the frequency 1.0/PRI = 40kHz.

Figure 5.10: CLEAN replica parameter refinement on target 1. Doppler optimizer (Left Col-
umn). Phase optimizer (Middle Column). Amplitude optimizer (Right Column).

Figure 5.11: CLEAN replica parameter refinement on target 2. Doppler optimizer convergence
(Left Column). Phase optimizer convergence (Middle Column). Amplitude optimizer conver-
gence (Right Column).

The AES 192 encrypted signaling causes significant spurious noise and additional false

Doppler target lobes that can mask smaller target responses. The original matched filter output
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magnitude is plotted after the CLEAN algorithm completes two cycles, once for each target

found. The reduction in range lobe levels is visible in both signals in the early and late times of

the matched filter response. The very low side lobes of the Ipatov-Barker hybrid are not visible

due to axis scale and are considered smaller than a realistic noise floor level. The effective

reduction in side lobe levels with a nearly perfect replica is approximately -70 dB. Note that

since the signals are sufficiently spaced and are in a noise free environment, CLEAN is able

to create and then negate a very accurate replica signature for both targets. The optimizer

components of the CLEAN algorithm are shown in Figures 5.10 and 5.11. The search area

generated around the coarse values sampled from the quadrature matched filter is shown to

converge at the optimal replica parameter for each equation and both targets.

Figure 5.12: a) RPB signal raw matched filter output for one visible and one buried target.
b) Single pass of optimized CLEAN on the primary target. c) Second pass of CLEAN on
secondary target.

Additionally, the same simulation was run with added noise. Figure 5.16 shows the results

of CLEAN on both signals with added noise. The noise floor at approximately -80 dB is

consistent in both signals and the limiting effect it has on the reduction from CLEAN is visible.
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Figure 5.13: a) IBH signal raw matched filter output for one visible and one buried target.
b) Single pass of optimized CLEAN on the primary target. c) Second pass of CLEAN on
secondary target.

The region between pulse one and pulse twelve on the Ipatov-Barker sequence is fixed to the

noise floor while the random PRI BPSK signal shows reduction that stops at the noise floor.

Since CLEAN is dependant on the replica’s accuracy for effective ambiguous energy sup-

pression, the band limited filter model’s accuracy is directly linked to the effectiveness of the

CLEAN algorithm. Figure 5.17 is the result of running CLEAN without a band-limited filter

for the base-band replica. The peak to floor performance is decreased from -70 dB to -25 dB

because of errors between the negation replica and target reflection signal.

A simulation was set up to test how base-band model accuracy affects CLEAN side lobe

energy reduction. The base-band replica was modified by changing the bandwidth of filter

used on the digitally generated base-band signal. The difference between the total bandwidth

of the simulated received signal and the negation replica filter bandwidth is represented as a

percent of bandwidth error. Figure 5.19 represents the results of the test on the Random PRI

BPSK hybrid (RPB) and the Ipatov-13 Barker-13 hybrid (IBH) signals. A target signature was
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Figure 5.14: Overlay of Ipatov-Barker and the Random Pulse BPSK Hybrids. a) Raw matched
filter output for one visible and one buried target. b) Single pass of optimized CLEAN on the
primary target. c) Second pass of CLEAN on secondary target.

generated and CLEAN attempted to negate it with varying base-band replicas. A perfect base-

band replica will produce nearly perfect negation results. This can be seen where both signals

main lobe reduction (MLR) and side lobe reduction (SLR) approach zero (-inf in dB) when

the filter bandwidth error is zero. As the base-band replica is distorted by changing the filter

bandwidth, the negation replica used by CLEAN no longer matches the signal received causing

a reduction in the effectiveness of the CLEAN algorithm. This can be seen as the MLR and

SLR performance is diminishes with increasing bandwidth error. The same simulation tests

were re-run using injected noise with a SNR set to -50 dB and low pass filter sampled at twice

the Nyquest rate. The results of using a signal replica at base-band with error for the CLEAN

process (with noise present) are shown in Figure 5.20. In both versions of the test simulation,

the performance was nearly identical. As the target’s model error increases, there is much

less of a reduction in both the main and side lobe signatures using CLEAN. The Ipatov-13

Barker-13 hybrid suffered an increase in side lobes between the range ambiguity interval of

pulses 1-12 when significant target model error was present. This is largely due to the fact that
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the Ipatov sequence nearly eliminate side lobes between pulses 1-12 after the target and the

distortions from CLEAN negatively affect the Ipatov sequences’ correlation properties. In both

figures CLEAN does reduce the main lobe response in the Ipatov-Barker hybrid, but the side

lobe performance was too far above the axes to be visible (rising from approximately -150 dB

to -130 dB, effectively a +20 dB loss in side lobe reduction). Since a large portion of the model

error test results show a side lobe reduction around -25 dB, an approximation of the expected

ambiguous energy reduction from CLEAN with the provided optimization functions would be

near -25 dB.
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Figure 5.15: Overlay of Ipatov-Barker and the Random Pulse BPSK Hybrids. a) Raw matched
filter output for all targets. b) Optimized CLEAN on the primary target. c) Final pass of
CLEAN on all targets.

Figure 5.16: Overlay of Ipatov-Barker and the Random Pulse BPSK Hybrids with simulated
noise. a) Raw matched filter output for one visible and one buried target. b) Single pass of
optimized CLEAN on the primary target. c) Second pass of CLEAN on secondary target.
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Figure 5.17: Overlay of IBH and RPB signals with no band limited filter model. a) Raw
matched filter output for one visible and one buried target. b) CLEAN on the primary target. c)
CLEAN on secondary target.

Figure 5.18: Overlay of IBH and the RPB signals with a 1 MHz band model error. a) Raw
matched filter. b) CLEAN on the primary target. c) CLEAN on secondary target.
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Figure 5.19: base-band replica model error due to bandwidth filter error (left). Peak to floor dB
reduction from CLEAN with bandwidth filter model error (right).

Figure 5.20: base-band replica model error due to bandwidth filter error in noise (left). Peak to
floor dB reduction from CLEAN in noise with bandwidth filter model error (right).
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In the simulations, the Ipatov-13 Barker-13 hybrid prevented any false target lobes from ap-

pearing until after the time delay associated with the Ipatov-Barker sequence length of thirteen

pulses. For simulations done at the intermediate frequencies, CLEAN with the optimization

equations was shown to effectively reduce the ambiguities in both the hybrid random signal

and the cyclic Ipatov-Barker signal. In simulation with an accurate replica model the max-

imum reduction from a single iteration of CLEAN seen was approximately -60 dB. Losses

from discrete digital sampling, oscillator noise and model errors will reduce the effectiveness

of CLEAN. In real implementations, the effective reduction will be less than -60 dB and will

most likely be similar to (-25 to -30 dB), shown in the results from the replica model error

simulation.

6.2 Future Work

The simulation is limited in its ability to accurately represent the performance of CLEAN with

a random signal operating in a real world environment. The results from the simulation require

verification with experimental results from a functional radar. Much of the work presented in

this thesis provides the ground work for a large amount of testing and algorithm tuning on real

data which frustratingly was not currently available. Future work with an s-band radar and an

FPGA based BPSK code generator will be used to duplicate the tests done here with real world

data. Testing involving the system filter model accuracy would provide insight into the limita-

tions of the CLEAN algorithm. Since it is key to increasing the performance of the CLEAN
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algorithm, analysis of the system filter model for the radar could be done in an anechoic cham-

ber. One possibility is increasing the model parameters to include a search space for dynamic

filter tuning. A radar performing tracking of targets could use a continuous processing version

of CLEAN on identified targets. Instead of post processing signals, if enough parallel hard-

ware (FPGA, ASIC, GPU) is available, the tracked targets can be processed continuously. The

CLEAN type algorithms covered have a high sensitivity to signal modeling errors. In order to

achieve good ambiguous energy reduction, the generated replica needs to be closely matched

with the received target signal. Several contributing factors to modeling error include variation

in target amplitude over the CPI, signal filtering effects of the target, non-linear Doppler and

target geometry other than planar reflections. Currently the targets are assumed to be nearly

constant amplitude for the duration of the CPI and they are assumed to have all their signal

emanating from a singular range point. However, a more accurate model would estimate the

dynamic effects of the amplitude, phase, and target area. Adaptive models for these parameters

could be added to the system to further the accuracy of the target negation process.
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