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Abstract

With the rapid advances in sensing and acquisition, transmission, storage, computing, and an-

alytics, the era of big data has come. Many advanced data analytic techniques, especially machine

learning and deep learning techniques, have been proposed and found wide applications in our

society.

In the power industry, data analytics play an essential role in daily power system operation

and planning. One major challenge for energy management in the emerging smart grid is the un-

certainty in both power supply (e.g., renewable energy generation) and demand (e.g., load demand

from the service area). There is a compelling need to accurately predict generation and load for ef-

ficient power management. Such predictions will help to make intelligent decisions for improving

power quality, saving energy, better utilizing renewable energy sources, and reducing cost.

This thesis develops data-driven solutions by using the latest deep learning and machine

learning technology, including ensemble learning, meta-learning, and transfer learning, for energy

management system issues, such as short-term load forecasting and non-intrusive load monitor-

ing problems. Real-world datasets are tested on proposed models compared with state-of-the-art

schemes, which demonstrates the superior performance of the proposed model.
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Chapter 1

INTRODUCTION

Rapid progress in urbanization brings about significant changes in people’s lifestyles. In light of

this trend, many challenging problems - such as environmental pollution, traffic problems, high

energy consumption, and so on - are raised. In order to address these issues, the concept of urban

computing is introduced, which involves collecting, integrating, and analyzing the data generated

by devices in an urban area to improve people’s life quality [6, 7]. With the fast development of

artificial intelligence, machine learning, in particular, deep learning, techniques show high poten-

tial for addressing many urban computing problems. This is mainly due to the breakthroughs in

computing and the rapid advances in sensing and data acquisition, transmission, and storage [8].

Researchers now have the capability of handling large-scale data and utilizing it more wisely.

Today’s sustainable urban power systems, i.e., the smart grid, are characterized by high en-

ergy efficiency, demand-side management, renewable energy sources, and a two-way flow of in-

formation and electricity, as enabled by the integration of communications, control, and signal

processing [9].

The evolution of generation, transmission, operation, and consumption significantly affects

smart grid development, impacting its planning and operation, which brings new perspectives to

energy management and demand response in the smart grid [10–13]. New and clean devices, as

well as modern technologies in data analytics, communication systems, control, and information

theory, enable an advanced power system with higher energy efficiency and power delivery stabil-

ity [14, 15].
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1.1 Deep Learning and Data Analytics for Smart Meters

Smart metering or information metering plays an essential role in information acquisition from

end power users, which automatically collects data from all the metering equipment in power

grids [14, 16]. Smart meters are electric meters that record the power consumption information of

end-users and support the two-way information flows with the control center. Smart meters have

been deployed rapidly during the past decade. According to [17], about 100 million smart meters

will have been installed in the US by the end of 2021.

On the one hand, for retailers, communication networks collect data and information from the

power grid components, which can be analyzed and used to control the power system for real-time

pricing, demand response, and protection [18]. On the other hand, for consumers, networks con-

struct communication paths that integrate smart meters, home appliances, and renewable energy

sources for Home Energy Management Systems (HEMS) [19, 20].

With the continuous development of computing power, deep learning stands out among artifi-

cial intelligence (AI) and has flourished. It (DL) is based on the core of Artificial Neural Networks

(ANNs) or Multilayer Perceptrons (MLPs), which is inspired by the biological neurons. Deep

Neural Networks (DNNs) acquire increasing learning capacity by adding more layers or units

within a layer. Different types of DNNs address different tasks. For example, Convolutional Neu-

ral Networks (CNNs) extract features and patterns within an input, which is suitable for headling

computer vision problems. Recurrent Neural Networks (RNNs) are designed to process sequential

data, introducing state storing past information. It leverages text, audio, and times series data.

Deep learning has already been primarily applied in energy management with the help of

smart meter data. The main application can be summarized into three aspects: load analysis, load

forecasting, and load management. This dissertation focuses on load forecasting at the system,

zone, client, and appliance levels. Specifically, we tried to solve short-term load forecasting and

Non-intrusive load monitoring (NILM) problems by deep learning.
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1.2 Outline of Chapters

In Chapter 2, an ensemble learning approach is proposed for load forecasting in urban power sys-

tems. The proposed framework consists of two levels of learners that integrate clustering, Long

Short-Term Memory (LSTM) and a Fully Connected Cascade (FCC) neural network. A cluster-

ing algorithm first partitions historical load data to train multiple LSTM models in the level-one

learner, and then the FCC model in the second level is used to fuse the multiple level-one models.

A modified Levenberg-Marquardt (LM) algorithm trains the FCC model for fast and stable con-

vergence. The proposed framework is tested with two public datasets for short-term and mid-term

forecasting at the system, zone, and client levels. In Chapter 3, we propose a pre-training approach

to address the generalization of DL models for NILM. We develop a meta-learning-based approach

and an ensemble learning-based approach, which pre-trains a base model and then fine-tunes it with

few-short learning when applied to an unknown dataset. The models are validated with two real-

world datasets and achieved a superior transferability performance compared with traditional DL

and transfer learning methods. In Chapter 4, we propose a Middle Window Transformer, termed

Midformer, for NILM tasks. Existing models are limited by high computational complexity, de-

pendency on data, and poor transferability. In Midformer, we first exploit patch-wise embedding

to shorten the input length, and then reduce the size of queries in the attention layer, by only using

global attention on a few selected input locations at the center of the window to capture global

contexts. The cyclically shifted window technique is used to preserve connection across patches.

We also follow the pre-training and fine-tuning paradigm to relieve the dependency on data, reduce

the computation in modeling training, and enhance transferability of the model to unknown tasks

and domains. Our experimental study using two real-world datasets demonstrates the superior per-

formance and great transferability of Midformer over three baseline models. Chapter 5 concludes

the research. Future works are also discussed.
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Chapter 2

Ensemble Learning for Load Forecasting

2.1 Load forecasting

For load forecasting, many methods have been proposed for it. Machine learning and statistical

methods are the two main approaches that are widely applied. For example, in [21], the authors

propose an ensemble approach based on extreme learning machine for short-term load forecasting.

Radial Basis Function (RBF) neural networks trained with a second-order algorithm are utilized

in [22] for short-term load forecasting. These two schemes both have a shallow structure in their

neural network design. Deep learning has become a hot technique due to their recent demonstrated

success in computer vision and natural language processing (NLP). Among various deep learning

models, recurrent neural networks, e.g., Long Short Term Memory (LSTM), has been proposed for

handling residential data in [23,24]. It is shown in [23] that an LSTM-based Sequence to Sequence

(S2S) architecture can handle both one-minute and one-hour resolution data for one residential

customer. In [24], the authors focus on short-term forecasting individual customer’s consumption

of power using LSTM. Effectiveness of accurate short-term load forecasting has been demonstrated

in [25] by using a Deep Residual Network (res-net). In addition, Quantile Regression is a popular

statistic technique for load forecasting. In [26], the authors exploit the quantile regression model to

enhance forecasting performance. In [27], the authors improve the traditional quantile regression

neural network and demonstrate its reliability in probabilistic load forecasting.

In this chapter, an ensemble learning approach is proposed to tackle the load forecasting prob-

lem. Our proposed framework consists of two levels of learners. The first-level learner utilizes the

4



LSTM model to obtain the first-level predictions, while a fully connected cascade (FCC) neural

networks are incorporated in the second-level learner for the purpose of model fusion. Our pro-

posed framework has three notable features. First, point load forecasting is a regression problem,

to which unsupervised learning techniques can be easily applied. The proposed framework inte-

grates unsupervised learning with a supervised learning model for accurate load prediction, which

is a novel approach comparing to existing load forecasting models. Specifically, clustering algo-

rithms are incorporated in our framework, to partition data into individual clusters according to

their similarity. Each data cluster is then used to generate an LSTM base model to obtain the first-

level prediction. Then the first-level prediction results are fused by the second-level FCC neural

network as supervised learning to enhance the accuracy of load forecasting.

Second, for various learning problems, a deep neural network may not always be the chosen

one; it is critical to choose the right neural network structure properly. In this work, we select a

deep (LSTM) and a shallow (FCC) structure in the two different levels of learning, respectively. It

is well-known that the deeper the neural network, the more likely overfitting will occur. Thus, it is

highly desirable to have a learner that can provide a sufficient learning ability, while using as few

layers as possible. In the proposed framework, the first-level learner captures most of the nonlin-

ear relationship between input and output data, while the second-level learner discerns the linear

connection between them. This is the criterion that guides our choice of proper neural architec-

ture in the proposed framework. Third, ensemble learning is used in the proposed framework. The

boosted fusion model (ensemble) in the second level enhances the accuracy of load prediction [28].

The contributions can be briefly summarized as follows. First, an ensemble learning approach

is proposed to integrate state-of-the-art machine learning algorithms, i.e., clustering, LSTM, and

FCC, for accurate load forecasting. We also study four different, representative clustering algo-

rithms applied in the first level of learning and found the integration of HDBSCAN and LSTM

achieve the best performance. Second, we propose to use an FCC neural network for model fu-

sion in the second-level learner and a fast converging and stable modified Levenberg-Marquardt

(LM) optimization algorithm for training the second-level learner. The FCC network captures the
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relationship among individual models and thus improve the prediction accuracy. Third, we vali-

date our proposed framework with two public datasets and compare its performance with several

state-of-the-art schemes, where superior performance is demonstrated for the proposed framework.

Fourth, the proposed framework can effectively deal with both short-term (e.g., hour-ahead) and

mid-term (e.g., week-ahead) load forecasting, for not only system-level but also zone-level and

client/residential-level forecasting.

2.2 The Proposed Framework

In this section, we first formulate the power load forecasting problem. We then discuss the details

of our proposed framework in the remainder of the section, including the design of the two levels

of learners.

2.2.1 Problem Statement

In this chapter, we focus on the load forecasting problem. Consider a time series signal YT =

{f1,f2, ...,fm−1, `}, where YT ∈ Rm×T . YT consists of two components, i.e., the feature part

and load part. In the feature part, fi = {fi1, fi2, ..., fiT}, which is the historical data of the ith

feature that affects load. For example, temperature is one of the most important features that affect

the power load. If features are not provided in the dataset, this part would set to null, and the

forecasting will use historical load data only. The load part consists of ` = {`1, `2, ..., `T}, i.e., the

historical load data.

The goal is to forecast the load at a future time T + τ in a rolling predicting fashion, where

τ is the amount of time ahead of the current time T . That is, we assume that only the information

at and before T , i.e., Yt, for t ≤ T , is available when predicting `T+τ . For example, to forecast

the load value at time T + 1 (i.e., one time step ahead), YT is available and used. In order to ease

training and reduce the training time, a window filter W is applied to YT , which stores only the

6
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Figure 2.1: Input and output of the proposed neural network model.

data for w time steps, from the current time T back to time T −w+ 1. The input matrix ST is thus

defined as ST = W (YT ), which is an m× w matrix.

Fig. 2.1 presents the mechanism of window filter and the formation of input and output data.

The forecast value ˆ̀
T+τ is obtained by a fitting function as

ˆ̀
T+τ = g(ST ). (2.1)

The goal of our proposed machine learning based predictive method is to learn the fitting function

g(·) from the dataset YT that is available.

2.2.2 The Proposed Ensemble Learning Framework

To achieve high accuracy of power load forecasting, the concept of stacking is incorporated in our

framework [29]. Stacking is a procedure of first training individual machine learning models and

then integrating them [28]. There are two levels of learners in our proposed framework, where the

first-level learner consists of multiple individual learning models and the second-level learner is

used to combine the outputs from the individual learners in the first level for an integrated output.

In order to meet the feature of stacking and testing, the data should first be divided into three parts.

The first-level learners use the first part of data (denoted by D1). After the First-level learning

models are built and trained, new data are generated from this level of learner, which is combined
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Figure 2.2: The proposed load prediction framework with two levels of learners.

with the second and third parts of data (denoted by D2 and D3, respectively). The combined two

parts of data are used to train the second-level learner and test the framework.

In this chapter, we propose to use LSTM a recurrent neural network model, for the first-level

learning and the FCC neural network for second-level learning. Fig. 2.2 illustrates the structure of

the proposed framework. After preprocessing, the dataset is clustered into three parts,D1,D2, and

D3 for training and testing purposes. The proposed predictor consists of a clustering algorithm, a

set of LSTM models in the first-level learner, and an FCC model in the second-level learner. We

discuss the design of these components in detail in the rest of this section.

2.2.3 First Level Learner

The first-level learner consists of a set of LSTM predictive models as well as a clustering algorithm,

whose procedure is presented in Algorithm 1. The clustering algorithm partition the input data D1

into D11, D12, ..., D1k, each being used to train an individual LSTM model.
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Algorithm 1: Build the First Level LSTM Predictors

1 Partition the input data in dataset D1 into k clusters using a clustering algorithm ;
2 Divide dataset D1 into k individual datasets (i.e., including both input/output data) according to

the clustering results: {D11,D12, ...,D1k}, where D1i is the ith dataset produced by the ith
cluster ;

3 Use each dataset D1i, i = 1, 2, ..., k to train an individual LSTM model i ;

Clustering

Before data can be used by the LSTM models, we employ a clustering algorithm to partition the

dataset based on the similarity among input data samples. Clustering is usually an unsupervised

machine learning technique, referring to the process of grouping unlabeled data into clusters of

similar features [30].

Note this is different from classification, which is based on given labeled data. It is well-

known that the electricity demand is correlated with various obvious factors, such as temperature

and calendar dates (e.g., weekday, holiday, month, season, etc.), while also being affected by

uncertainties or latent factors as well.

We propose the use of unsupervised learning in our forecasting model with the following

reasons. First of all, group input data of load forecasting into suitable sets and use different learning

model for each set, are beneficial to better explore the correlation in the dataset [31]. Second, we

assume that short term load variations are affected by the historical data of the time immediately

before the current time. With unlabeled historical electric load data, clustering can group the data

samples automatically and reasonably. Last but not least, partitioning the training dataset first and

combining the learning results from the models later, resembles a kind of resampling process. This

is similar to the process of cross-validation technique, which can mitigate the overfitting problem

in machine learning.
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Table 2.1: Clustering Algorithms used in This Chapter

Partitioning

K-Means++ [33] 1.1 Choose seeds (i.e., the initial cluster
centers) for K-means

1.2 Improve speed and accuracy of K-means

Hierarchical

BIRCH [34] 2.1 Balanced Iterative Reducing and
Clustering using Hierarchies

2.2 Based on the concept of Clustering Feature
(CF) and CF tree

2.3 Does not need a predetermined number
of clusters k

2.4 Can remove noise (outliers)

Density Based

DBSCAN [35] 3.1 Density Based Spatial Clustering of
Application with Noise

3.2 Uses parameters (ε,Minpts) to
characterize the density of the data space

HDBSCAN [36, 37] 4.1 Hierarchical DBSCAN
4.2 Removes border points in DBSCAN
4.3 Superior to DBSCAN from a qualitative

clustering perspective [38]

Clustering Algorithms

The collected power load time series data is usually susceptible to noise, shifting, and deforma-

tion [32]. It is important to choose an appropriate clustering method, from various existing tech-

niques, to handle such data. In this chapter, we choose four representative algorithms from three

categories of clustering methods, i.e., (i) partitioning methods, (ii) hierarchical methods, and (iii)

density based methods. The chosen methods are K-means++ [33], BIRCH [34], DBSCAN [35],

and HDBSCAN [36, 37], as summarized in Table 2.1. Note that for DBSCAN and HDBSCAN,

some data samples are identified as outliers. Such group of outlier data is treated as one unique

cluster in our proposed framework.
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Figure 2.3: An unfolded view of the LSTM neural cell structure.

Long Short-Term Memory (LSTM)

Inspired by the novel idea of using three types of gates to regulate information flow and remem-

bering information for over an arbitrary time interval [39], LSTM overcomes the limitation of long

memory capability in recurrent neural networks. An unfolded illustration of the LSTM neural net-

work is presented in Fig. 2.3. Input gate it, forget gate ft, output gate ot, and state unit ct are the

four key components in each LSTM cell (for time t). The state of LSTM cell at time t is calculated

as

it = σ(W iht−1 +U ixt + bi) (2.2)

ft = σ(W fht−1 +U fxt + bf ) (2.3)

ct = ft · ct−1 + it · σ(Wht−1 +Uxt + b) (2.4)

ot = σ(W oht−1 +U oxt + bo) (2.5)

ht = tanh(ct−1) · ot. (2.6)

In the training phase, each LSTM model LSTMi will be trained with the corresponding data

cluster D1i, i = 1, 2, ..., k, as shown in Fig. 2.2.
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Testing Process in the First Level Learner

During the training phase for the level two learner and the testing phase, new input data samples

beyond D1 (i.e., in D2 and D3, respectively) arrives and are fed into the first-level learner. How

to deal with them should be carefully designed. One way is to select the most similar cluster and

use the corresponding trained LSTM model as in our prior work [31]. In this chapter, however, we

propose to use ensemble learning, which is based on the assumption that power load prediction is

driven by each of the homogeneous first level models. Thus the new data sample is fed into each

first-level LSTM model, and an FCC neural network is used in the second level to fuse the outputs

from the LSTM models to produce a single prediction.

2.2.4 Second Level Learner

Dataset D2 is used to train the second-level learner. Specifically, the data samples in D2 are first

fed into each trained LSTM predictors in the first-level. Each LSTM predictor then generates a

prediction value. These outputs are used as input to train the second-level learner.

The FCC neural network is incorporated for ensemble learning at level two. Fig. 2.4 shows

an example of the FCC ensemble neural network. In this example, k base models are available and

to be fused by five neurons. The first four neurons are activated by the tanh(·) activation function,

given by tanh(z) = ez−e−z

ez+e−z . The last neuron is a linear summation. With the same number of

neurons in level two, the FCC neural network architecture is superior to traditional neural network

structures [40], as it provides more connections (and weights) than the traditional architecture,

which make it deeper. The FCC neural network is similar to Deep Residual Networks [41] in some

sense, which has an identity mapping for every input and latent variable to every neuron.
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2.3 Optimization and Training

2.3.1 Problem Formulation

We use the sum square error as the default lost function for the two levels of learners. The corre-

sponding objective function of the LSTM model i at lever one is defined as

L(L1; i) = minimize
ωi

lstm

∑
T∈D1i

‖ˆ̀L1,i
T+τ − `T+τ‖2 + α · ‖ωilstm‖, (2.7)

where ˆ̀L1,i
T+τ is the predicted value of load by LSTM model i for time T + τ , `T+τ is the ground

truth (i.e., label), and ωilstm are the wights of LSTM model i at the first level.

Supposing there are k trained LSTM models in the first-level learner, the load predicted by

the level-two learner at time T + τ is given by

ˆ̀L2
T+τ = f

(
ˆ̀L1;1
T+τ ,

ˆ̀L1;2
T+τ , ...,

ˆ̀L1;k
T+τ ;ωfcc

)
, (2.8)

where f() is the output of the ensemble FCC neural network, ˆ̀L1;i
T+τ is the load forecast value

predicted by LSTM model i, and ωfcc are the weights of the ensemble FCC neural network. The

corresponding optimization objective over the validation and ensemble dataset D2 in level two is
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given by

L(L2) = minimize
ωfcc

∑
T∈D2

‖ˆ̀L2
T+τ − `T+τ‖2 + β · ‖ωfcc‖. (2.9)

In both the first-level and second-level optimization objective functions, the L1 regulation is used

to prevent overfitting in the neural network training process.

2.3.2 Gradient Descent Algorithms

First-order gradient descent algorithms, such as error backpropagation, Stochastic Gradient Decent

(SGD), and its variants Adam, are quite successful in training deep neural networks. However,

ill-conditioning and local-minima are common challenges for these algorithms. In [42], a second-

order gradient descent algorithm is proved as an effective solution for optimizing problems with an

objective function that exhibits pathological curvature. However, the second-order gradient descent

algorithm also has its limitations. One challenge is that, for very deep neural networks, the second-

order algorithm calculates the Hessian Matrix of the neural network, which takes a relatively longer

period of time to train. The other issue is that, as the number of layers is increased, the large values

of weights may get stuck in the saturated region, whose derivative of gradient tends to zero, and

thus causing a vanishing gradient condition (known as the flat-spot problem) [43].

Given all the advantages and disadvantages of second-order gradient descent algorithms, we

choose to apply the Adam algorithm [44], which is a first order gradient-based algorithm, to solve

the regression task problem at level one, due to its deep structure. At level two, where FCC is

a shallow neural network, we utilize the modified Levenberg-Marquardt (LM) Algorithm [45],

which is a second-order optimization algorithm. The reason for a shallow architecture is applied

at level two is that, we aim to provide a sufficient learning capacity for the training samples with

the least number of neurons to overcome the overfitting problem.
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Algorithm 2: The Modified Levenberg MarQuardt Method

1 Set 0 < m < α1 and 0 < p0 < p1 < p2 < 1, where α1 = 10−6, m = 10−7, p0 = 10−4,
p1 = 0.2, p2 = 0.8, and e = 1 ;

2 Calculate Jacobian Matrix J(ωefcc) and approximate the Hessian matrix of the FCC neural
network at the second level at iteration e = 1 ;

3 The normal LM step as de = ∆ωefcc ;
4 A line search for approximating the LM step ∆ωe

′
fcc ;

5 Combine Steps 2 and 3 as se = ∆ωefcc + αe∆ω
e′
fcc ;

6 If J(ωefcc)
TJ(ωefcc) = 0, then stop ;

7 Compute re = Rea/R
e
p, and set

ωe+1
fcc =

{
ωefcc + se, if re > p0
ωefcc, otherwise ;

(2.10)

8 Compute

αe+1 =


4αe, if re < p1
αe, if re ∈ [p1, p2]
max(0.25αe,m), if re > p1 ;

(2.11)

9 Set e = e+ 1, and go to Step 2 ;

2.3.3 Modified Levenberg-Marquardt (LM) Algorithm

In this section, we introduce how to apply the modified LM in training the ensemble neural network

at level two. The procedure is presented in Algorithm 2. The convergence of this method is proven

in [45, 46].

The Jacobian Matrix J(ωefcc) at iteration e is calculated by the derivative of (2.9), which is

given by

J(ωefcc) =

[
∂L(L2)
∂ωe

1
, ∂L(L2)

∂ωe
2
, ..., ∂L(L2)

∂ωe
Z

]
, (2.12)

where ωefcc is the weights of the FCC neural network at iteration e, which has Z weight values

denoted by {ωe1, ωe2, ..., ωeZ}. The Hessian matrix can be approximated by J(ωefcc)J(ωefcc)
T . A
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damping factor µe is updated iteratively as

µe = αe‖L(L2,ω
e
fcc)‖β, (2.13)

where β ∈ (0, 2]. At each iteration, the weights of the FCC neural network are updated as

ωe+1
fcc = ωefcc + se, (2.14)

or

ωe+1
fcc = ωefcc + ∆ωefcc + αe∆ω

e′

fcc, (2.15)

where se
.
= ∆ωefcc+αe∆ω

e′

fcc; de
.
= ∆ωefcc = −[J(ωefcc)

TJ(ωefcc)+µeI]−1 J(ωefcc)
T L(L2,ω

e
fcc)

is the normal LM step; ∆ωe
′

fcc is a line search for approximating the LM step, which is defined as

∆ωe
′

fcc =− [J(ωefcc + ∆ωefcc)
TJ(ωefcc + ∆ωefcc) + µ′eI]−1

· J(ωefcc + ∆ωefcc)
TL(L2,ω

e
fcc + ∆ωe), (2.16)

where µ′e = ‖L(L2,ω
e
fcc + ∆ωefcc)‖β , αe is a parameter iterative updated as in (2.11) in Algo-

rithm 2; J(ωefcc + ∆ωefcc) is approximated by J(ωefcc); and µ′e is approximated by µe for reducing

the computational overhead. Then we can rewrite (2.16) as

∆ωe
′

fcc = − [J(ωefcc)
TJ(ωefcc) + µeI]−1

· J(ωefcc)
TL(L2,ω

e
fcc + ∆ωefcc). (2.17)

In order to justify whether se is a good step or not, the trust region technique is used. The

actual reduction Re
a and the newly predicted reduction Re

p at the eth iteration are defined in (2.18)
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and (2.19), respectively.

Re
a = ‖L(L2,ω

e
fcc)‖2 − ‖L(L2,ω

e
fcc + se)‖2 (2.18)

Re
p = ‖L(ωefcc)‖2 − ‖L(ωefcc) + J(ωefcc)de‖2

+ ‖L(ωefcc + de)‖2

− ‖L(ωefcc + de) + αeJ(ωefcc)∆ω
e′

fcc‖2. (2.19)

Their values are then compared by re = Re
a/R

e
p, and the weights are updated according to the

value of re as in (2.10) in Algorithm 2.

2.4 Evaluation with Real-world Datasets

Extensive experiments of load forecasting are conducted on two datasets at the system level and

the residential level, respectively, to validate the performance of the proposed ensemble learning

framework. The proposed framework is implemented with Keras 2.2.4, TensorFlow 2.0-beta, and

Sklearn 0.20.0 in the Python 3.7 environment. The neural network for model fusion at level two is

implemented using ADNBN coded by us using Matlab R2018a.

2.4.1 Datasets

Dataset Description

The following two public benchmark datasets are used for performance evaluation.

• The ISO-NE dataset [47]: This is a collection of hourly temperature and load data over 12

years from Jan. 1, 2007 to Dec. 31, 2018 in the New England area, including data for each

of the eight zones (i.e., Connecticut-CT, Maine-ME, New Hampshire-NH, Rhode Island-

RI, Vermont-VT, Massachusetts of NEM-NEMASS, Massachusetts of SEM-SEMASS, and

Massachusetts of WC-WCMASS) and for the entire ISO-NE transmission system. Fig. 2.5
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Figure 2.5: The 2018 overall system level load and temperature of the ISO-New England dataset.

presents the entire system level load and temperature data of the ISO-New England dataset

in 2018. The load of each of the eight zones in 2018 is plotted in Fig. 2.6.

• The Residential Electricity Consumption dataset [48]: This is a collection of 370 clients’

electricity consumption recorded for every 15 minutes during a period of three years from

2011 to 2014. Portuguese clients can be either residential or industrial consumers. Note that

we only use the data for 320 clients, as the data for the remaining 50 clients are collected

after 2011 (i.e., incomplete).

Preprocessing

A sliding window technique of P samples is implemented on historical time-series dataset during

the training process. The period of P is divided into three parts, as shown in Fig. 2.2. The ratio of

split is 2:1:1. For example, if hourly day-ahead load of Year the 2017 is predicted, the period P

is set to 4 years. The data for one year from 2014 to 2015 partitioned to dataset D1, the data for
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Figure 2.6: The individual load for each of the eight Zones in Year 2018 of the ISO-New England
dataset.

2016 and 2017 become D2 and D3, respectively. When forecasting the load for the Year 2018, P

is chosen from 2015 to 2018.

Normalization is applied in the preprocessing process. As shown in [49–51], normalization

can not only speed up the convergence of training, but also reveal the true similarity between time

series data. In order to prevent data snooping in time series prediction, which makes use of future

information to enhance performance of forecast, only datasets D1 and D2 are normalized. In the

testing set D3, new data generated by the first-level learner is restored from normalized form to

the original form. The definition of normalization is

SnormT ;i =
ST ;i −min(ST ;i)

max(ST ;i)−min(ST ;i)
, (2.20)

where SnormT ;i and ST ;i are the normalized and original form of data sample i in dataset ST , respec-

tively.
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Table 2.2: The Search Spaces of Algorithm Parameters

Algorithms Parameters Search Space

K-means++ number of clusters [2:1:20]
Birch number of clusters [2:1:20]
DBSCAN maximum distance between [.5:.05:.8]

samples
minimum number of samples [5:5:30]

HDBSCAN minimum number of samples [5:5:30]
LSTM number of hidden neurons [16,32,64,128]

learning rate [0.001,0.05,0.01]
training epochs [50:50:200]

FCC number of hidden neurons [2:1:11]
training epochs [50:50:150]
activation function [tanh,sigmoid,ReLU]

2.4.2 Experiments and Results

In our experiments, the grid search technique is applied for hyper-parameters tuning. The search

space for the parameters in each machine learning algorithm is presented in Table 2.2.

System Level Prediction Performance

At the overall system level, short and mid term load forecasting are conducted on the ISO-NE

dataset. The first case we examine is short-term forecasting, which predicts the load of the next

day 24-hours ahead. In order to compare our method’s performance with the existing cutting-edge

technique, the system load in the Year 2010 and 2011 of ISO-NE are predicted individually, each

using the three previous years’ data as training and ensemble learning (see Section 2.4.1). We

utilize the similar inputs as in [25]. Table 2.3 summarized the input of this case. For feature9, the

actual value of the temperature of the next day is used in all the schemes, based on the assumption

that this information is available and the fact weather forecast is extremely accurate now-days.

Three state-of-the-art models proposed in [21, 22, 25] and the traditional LSTM recurrent

neural network model are used as benchmarks for comparison with our proposed framework. The

performance results in the form of mean absolute percentage error (MAPE) are shown in Table 2.4.
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Table 2.3: Input Data and Output for Short-term Load Forecasting at Time h

Input

feature1 Load of the hth hour of the day that are 1, 2, 3, 4 and
months prior to the next day

feature2 Load of the hth hour of the day that are 1, 2, 3, 4 weeks
prior to the next day

feature3 Load of the hth hour of the day that are 1 days prior to
the next day

feature4 Load of the most recent 24 hours prior to the hth hour of
the next day

feature5 Temperature of the same hour as feature1
feature6 Temperature of the same hour as feature2
feature7 Temperature of same hour as feature3
feature8 Temperature of the hth hour of the next day
feature9 Indicator (1,0) for season (winter, summer), weekend, and

holiday
`h Load at time h

Output

ˆ̀
h+24 24 hours ahead load, i.e., τ = 24

Table 2.4: Comparison of proposed model with Other Models using the ISO-NE Dataset for Years
2010 and 2011

ISONE (SYS) 2010 ISONE (SYS) 2011

Model’s MAPE Number MAPE Number

ErrCorr modified [22] 1.75 - 1.98 -
ELM-PLSR [21] 1.50 - 1.80 -

DRN [25] 1.50 - 1.64 -
LSTM 1.58 - 1.50 -

K-means++-LSTM 1.30 8 1.32 8
DBSCAN-LSTM 1.37 6 1.34 7

BIRCH-LSTM 1.43 9 1.34 11
HDBSCAN-LSTM 1.29 15 1.30 13

The number of first-level learners in our proposed module is presented in the second column for

each year as well. The table shows that the four variants of our proposed framework all outperform

the four benchmark schemes. An average reduction in MAPE of 10.17% in the Year 2010 and

11.67% in the Year 2011 are achieved over the four baseline schemes.
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Table 2.5: Individual HDBSCAN based Model Results and the Ensemble Method Improvement
for the System Level Load in Years 2010 and 2011

ISONE (SYS) 2010 ISONE (SYS) 2011

Model MAPE MAPE

1 1.679 2.589
2 1.905 1.600
3 2.415 1.472
4 2.171 1.317
5 1.778 2.108
6 1.798 2.347
7 2.196 1.396
8 1.460 1.378
9 1.518 2.808

10 1.373 1.351
11 1.506 1.386
12 1.307 †9.685
13 1.448 1.377
14 1.757 -
15 2.303 -

Combined Model 1.291 1.299

We also find that the HDSCAN based approach outperforms the other variants of our frame-

work. To illustrate the efficacy of ensemble learning, we also present the performance of the first-

level and second-level learners in Table 2.5. The table shows that there are 15 and 13 base LSTM

models f Years 2010 and 2011, respectively. That is, for each year, the dataset D1 is partitioned

into 15 and 13 groups, respectively, for training the first-level LSTM models. The table also shows

that the second-level learning by the FCC neural network effectively further reduces the MAPE.

Compared with the MAPEs in the first-level learner, the FCC achieves an average improvement in

MAPE of 21.59% and 25.60% for the Year 2010 and 2011, respectively. To visualize the perfor-

mance results, the forecast results of the last two weeks in 2011 predicted by the HDBSCAN based

LSTM model are plotted along with the ground truth in Fig. 2.7. It can be seen that the forecast

curve matches the ground truth tightly.
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Figure 2.7: System load forecast results for the last two weeks of 2011 on the ISO-NE dataset
using the HDBSCAN-LSTM model.

In the 2011 prediction results, the performance of model 12 is marked with a symbol “†,”

which indicates the worst score MAPE among all the 13 LSTM models. We carefully examine

this case and plot the clustering result for this prediction in Fig. 2.8. It can be seen that each of

the other 12 clusters has a sufficient number of samples, while only 69 samples are grouped into

the 12th cluster. This level-one learner (LSTM model 12) is trained with a very small dataset. As

a result, it has a comparatively weak ability of generalization. It achieves the worst performance

as the features extracted by this model are not general enough and are only suitable and specific to

the sample dataset (Cluster 12).

We further explore the effect of the number of hidden neurons in the second level of learning

on the prediction. Table 2.6 shows the average training and testing error (i.e., Normalized Root

Mean Square Error) learned by the HDBSCAN based LSTM model with different numbers of

hidden neurons. In each trial, the neural network with the same number of hidden neurons is
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Figure 2.8: Sample distribution of the HDBSCAN model for system level load prediction in Year
2011.

Table 2.6: The Effect of the Number of Hidden Neurons on the Training Process

ISONE (SYS) 2010 ISONE (SYS) 2011
Number of Average NRMSE Average NRMSE

Hidden Neurons Training Testing Training Testing

2 0.0203 0.0212 0.0191 0.0216
3 0.0209 0.0218 0.0185 0.0209
4 0.0215 0.0223 0.0183 0.0207
5 0.0203 0.0212 0.0186 0.0209
6 0.0206 0.0214 0.0187 0.0211
7 0.0207 0.0215 0.0184 0.0206
8 0.0192 0.0201 0.0182 0.0205
9 0.0216 0.0224 0.0188 0.0212

10 0.0208 0.0217 0.0180 0.0201
11 0.0198 0.0208 0.0179 0.0201

trained 100 times, and the average training and testing errors are presented in the table. As shown

in the table, increasing the number of hidden neurons does not guarantee to reduce the training

and testing errors. The minimum training and testing errors are achieved with 8 hidden neurons

for ISONE (SYS) 2010 and with 11 hidden neurons for ISONE (SYS) 2011. Finding a proper

parameter (i.e., the number of hidden neurons) is vital for the training process. Thus, the grid

search technique is applied in our proposed framework.

As mentioned in Section 2.2.4, the FCC neural network’s hidden neurons are activated by

the tanh(·) function. In order to explain why we choose this activation function, we compare the
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performance (i.e., the learning curve) of different activation functions. The model is trained by

tanh(·), sigmoid(·), and ReLU(·), respectively, with the same input and neural network structure.

This experiment is implemented with the HDBSCAN-LSTM model, which has 3 hidden neurons,

using Year 2010 data. Fig. 2.9 presents the learning curves, training and testing errors, as well as

training and testing time. It indicates that the tanh(·) and sigmoid(·) activation functions are more

stable than the ReLU(·) function. Although the sigmoid(·) function takes less time for training, the

tanh(·) function achieves a slightly better performance on reducing the training and testing error.

The second case we examine is to forecast week-ahead power load on weekends (i.e., for

Saturday and Sunday) at both the zone level and system level for the Year 2018. The data from

2015 to 2017 are used for training the models. The output is the weekend’s hourly load values.

In this task, we only use historical temperature data as a feature. The current temperature (i.e., at

t + τ ) is not used in this forecast, which is different from the previous case. This is because in

practice, weekly ahead weather forecast is not as precise as day-ahead weather forecast. In order

to mimic the actual situation in forecasting, we only use the feature information that is available at

the forecasting time instance in this study (i.e., no future information is available). Therefore, the

input of this case is weekly lagged temperature and power load time series data.

The evaluation results of both Root Mean Square Error (RMSE) and MAPE are summarized

in Table 2.7 (testing errors) and Table 2.8 (training errors), for both the overall system-level load

prediction (the first row) and that for each of the zones in the New England area (the remaining

eight rows). We compare the four variants of the proposed framework with the basic LSTM model

using the same input. Apparently, our proposed framework performances better than the traditional

LSTM model. The HDBSCAN based model consistently outperforms all the other models in this

experiment.

Residential Level Prediction Performance

We next study the load forecasting problem for individual clients using the proposed ensemble

learning model on the Residential Electricity Consumption dataset [48]. The electricity load data
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Table 2.7: Comparison of the Four Variants of the Proposed Model with the Basic LSTM model
on the ISO-NE Dataset for Weekly Ahead Hourly Load Forecast on Weekend Days in Year 2018:
Testing Errors

LSTM Kmeans++-LSTM DBSCAN-LSTM BRICH-LSTM HDBSCAN-LSTM

ZONE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ISONE(SYS) 1279.639 6.396 1172.054 5.987 1138.088 5.829 1143.666 5.878 754.019 4.369

CT 332.453 7.008 336.177 7.274 324.761 6.881 332.367 6.821 187.77 4.610
NH 108.098 5.822 107.734 5.779 105.366 5.671 108.381 5.812 75.092 4.837
ME 79.852 4.487 78.204 4.427 76.080 4.327 79.336 4.485 60.137 3.680
RI 92.787 6.411 89.279 6.566 85.895 6.243 87.864 6.606 48.600 4.431

VT 58.264 7.614 50.924 6.172 53.261 6.554 53.478 6.783 46.746 5.829
SEWASS 178.423 7.330 168.339 7.210 169.527 7.352 166.968 7.168 113.50 5.512

WCMASS 173.362 6.421 158.812 6.114 164.382 6.223 163.230 6.327 129.867 5.687
NEWASS 290.23 6.747 278.474 7.071 259.557 6.393 262.456 6.535 177.01 5.059

Table 2.8: Comparison of the Four Variants of the Proposed Model with the Basic LSTM model
on the ISO-NE Dataset for Weekly Ahead Hourly Load Forecast on Weekend Days in Year 2018:
Training Errors

LSTM Kmeans++-LSTM DBSCAN-LSTM BRICH-LSTM HDBSCAN-LSTM

ZONE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

ISONE(SYS) 1203.829 6.049 652.820 4.059 637.553 3.990 605.226 3.789 576.435 3.412

CT 318.441 6.335 168.854 4.373 187.350 4.745 176.095 4.699 174.893 4.383
NH 96.405 5.175 59.860 3.901 60.260 3.963 58.533 3.836 57.924 3.567
ME 59.889 3.734 47.506 3.041 45.875 2.895 44.091 2.792 50.535 2.973
RI 77.740 5.381 34.034 3.263 35.478 3.461 37.404 3.617 36.910 3.274

VT 52.537 6.644 50.396 6.019 52.812 6.403 53.261 6.554 45.881 5.801
SEWASS 147.80 5.864 94.874 4.951 103.588 5.225 92.165 5.001 91.264 4.960

WCMASS 149.845 5.502 108.455 4.609 112.473 4.824 97.647 4.406 94.990 4.436
NEWASS 142.367 3.938 108.531 3.489 116.474 3.669 94.975 3.020 93.519 3.097

is aggregated from every 15 minutes to one hour. The aggregated dataset is spitted into three parts

as described in Section 2.4.1. Then the 320 clients are classified into several groups using the HDB-

SCAN clustering algorithm based on the data of the first three months in 2012. Fig. 2.10 presents

the clustering result. It shows that the consumers are grouped into five clusters. In Figs. 2.10(a)-

(e), each curve represents the normalized load of a client, while Fig. 2.10(f) shows the number

of clients in each cluster. We find that each cluster is visually different. For example, the load

curves in Cluster 4 are all relatively flat and are close to 0.5, the load curves in Clusters 2 and 3
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are serrated and ranging from 0.2 to 1, and the load curves in Cluster 5 exhibit an obvious daily

pattern (indicating these are residential clients).

In each cluster, we randomly select a client to predict its load. Thus, for each client, historical

load time series right before time step t is used as the training set, where the window size W is set

to 168 (the number of hours in seven days). The dimension of input m ×W at time t is 1 × 168

since we only use the historical load data (i.e., m = 1). The output is the predicted load for a future

time t+ τ .

We use the traditional LSTM model as a baseline scheme. Table 2.9 summarizes the evalu-

ation results in the form of MAPE for the five chosen clients (one from each cluster as shown in

Fig. 2.10). The horizon τ is set to be 1, 12, and 24, respectively, which means we predict hour

ahead, half-day ahead, and day-ahead load values for the five selected clients. Compared with

LSTM, the proposed ensemble learning models achieve a much higher precision in this experi-

ment. For example, for Client 4, the BIRCH MAPEs are 23.35%, 26.43%, and 33.64% of the

corresponding LSTM MAPEs for τ = 1, τ = 12, and τ = 24, respectively. The best result for

different clients and horizon τ is different. However, the proposed ensemble learning models all

achieve the best performance. Among all the results, BIRCH and HDBSCAN based models per-

form better, which achieve the lowest errors comparing to others. Considering HDBSCAN is an

improved algorithm of DBSCAN, density-based algorithm HDBSCAN and hierarchical algorithm

BIRCH are superior to partitioning algorithm K-means++, which suffers from outliers or noise, in

this case.

For all models, the MAPE of Client 1 is relatively high, while the MAPE of all the other

clients are all below 21. From Fig. 2.10, we can see that in cluster one, there is no obvious

trend for this group of data, which might explain why this group of data is difficult to forecast.

It is extremely challenging to accurately predict every client’s load due to different lifestyles or

activities. Classifying the clients and predict load by the group is quite feasible as shown in this

experiment.
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Table 2.9: MAPE Comparison of the Clustering Based Model and the Basic LSTM Model on
Residential Data

K-means++ BIRCH DBSCAN HDBSCAN LSTM

R
es

id
en

t

τ = 1 τ = 12 τ = 24 τ = 1 τ = 12 τ = 24 τ = 1 τ = 12 τ = 24 τ = 1 τ = 12 τ = 24 τ = 1 τ = 12 τ = 24

1 18.15 43.59 43.51 18.16 55.28 46.89 23.74 45.36 44.54 19.33 42.21 44.32 36.15 42.88 48.85
2 3.79 7.70 8.34 3.70 7.76 8.45 3.66 6.78 8.33 3.75 7.33 7.96 14.51 10.27 9.78
3 11.90 17.06 15.81 15.54 15.15 15.24 12.72 15.4 1 16.33 11.21 15.24 15.12 22.23 24.50 23.12
4 9.31 16.41 13.92 8.53 10.19 12.90 12.09 12.29 13.11 8.83 12.55 12.94 36.53 38.55 38.34
5 12.63 16.27 14.76 14.53 20.52 14.40 12.57 15.71 14.90 11.24 14.91 15.22 27.74 23.58 24.19
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(a) tanh activation function: average training error (NRMSE) is 0.0210 ± 0.0011,
average testing error (NRMSE) is 0.0219 ± 0.0011, and average training time is
42.0660 seconds.
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(b) sigmoid activation function: average training error (NRMSE) is 0.0214 ±
0.0010, average testing error (NRMSE) is 0.0222 ± 0.0009, ad average training
time is 38.1347 seconds.
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(c) ReLU activation function: average training error (NRMSE) is 0.1347± 0.3834,
average testing error (NRMSE) is 0.1331 ± 0.3698, and average training time is
42.8419 seconds.

Figure 2.9: Learning curves of the ensemble neural networks (FCC) with different activation func-
tions.
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Figure 2.10: Distribution of classified residents based on the DBSCAN clustering algorithm.
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Chapter 3

Pre-trained Models for Non-intrusive Appliance Load Monitoring

3.1 Non-Intrusive Load Monitoring

With extremely low latency, high data rate, and significant improvement of quality of service

(QoS), the 5G and beyond wireless networks offer considerable benefits in many fields. How-

ever, the tremendous energy usage, estimated to be 10 times more than the existing 4G networks,

has raised great concerns [52]. Inspired by the advances in green communications and networking

(GCN), which aims to Send More Information bits with Less Energy (SMILE), energy-efficient

techniques, such as BS switching [53–55], offline power allocation and online data scheduling, as

well as sustainable energy powered base stations (BSs) have been developed to reduce the energy

usage and boost network capacity [56]. GCN has a close interaction with the power grid. On

one hand, for retailers, communication networks collect data and information from the power grid

components, which can be analyzed and used to control the power system for real-time pricing,

demand response, and protection [18]. On the other hand, for consumers, networks construct com-

munication paths that integrate smart meters, home appliances, and renewable energy sources for

Home Energy Management Systems (HEMS) [19, 20].

Among the HEMS applications, Non-Intrusive Load Monitoring (NILM) has been recognized

as an essential component. The goal is to estimate each individual appliance’s power consumption
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from the aggregated smart meter data; it is non-intrusive since only the aggregated power consump-

tion is needed [57, 58]. The most crucial advantage of NILM is its nonintrusive character. Com-

paring to intrusive approaches, NILM can provide appliances energy usage information without

sub-meter installation, which is expensive, hard to upgrade, and causes data privacy concerns [59].

With the NILM results, homeowners can enjoy the benefits of optimizing energy assets to achieve

energy savings. It was reported in [60] that feedback on power usage stimulates energy savings

ranging from 1.1% to over 20%. As residential consumers have increasingly adopted more electric

vehicles (EVs) and home solar systems, instant information about their energy consumption and

generation will help to optimize their energy utilization. Another benefit for consumers is equip-

ment malefaction detection. NILM provides feedback when an appliance, e.g., air-conditioner or

refrigerator, consumes more energy than expected with anomaly detection algorithms without the

need for sub-meter level data. For retailers, NILM can also help to improve their energy manage-

ment (power system scheduling and planning). Provided with customer’s consumption behavior

from NILM, retailers can provide customized services, such as offering energy-saving tips (i.e.,

informing consumers to lower power consumption when the wholesale market prices are high) and

enabling different billing methods (static or dynamic), to improve customer satisfaction [61].

Although NILM brings about great benefits, it faces many challenges as well. The most

successful approach to NILM, so far, is deep learning (DL), which achieves the state-of-the-art

performance. However, it requires a large amount of labeled data to train the DL model. For

NILM, this requires electrical submetering in the houses, which is to use additional electricity

monitors to record the usage of individual appliances in the house, and thus incurs additional

costs. Furthermore, as people are more concerned about their privacy, the active power data used

for training the NILM model is hard to obtain. Moreover, as most data-driven models, the DL

approach requires extensive computation. It would be desirable to eliminate the need to train

a model every time it is used for a new house. Therefore, for practical deployment of NIML

solutions, it is critical to develop DL models that are generalizable, such that we can train the

model with data collected from a small number of submetered houses, and then easily apply the
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trained model to other houses without submetering. Such generalizable DL models are also useful

to deal with houses with different appliances, different residents’ usage behavior, and various aging

degrees of circuits [62].

In this chapter, we investigate the problem of pre-trained DL models for NILM, which is a

promising means to address the above problems. With this approach, a base DL model is first

trained with a larger dataset. When applied to a new environment, the base model is first fine-

tuned with a small amount of new data, and then the fine-tuned model is used for inference in

the new environment. On one hand, we do not need to train a new model from scratch for an

unknown house. On the other hand, pre-trained models are able to quickly adapt to new tasks

with few-shot learning, as pre-trained parameters outperform random initialization for deep neural

networks [63]. Therefore, such models can not only save considerable computation in training

and reduce the dependency on large amounts of data, but also achieve excellent performance in

real-time when it is allowed to use new data to update the parameters.

In light of these, we propose a model-agnostic meta-learning (MAML) based approach and

an ensemble learning based approach for the NILM problem in this chapter. Our approaches are

inspired by two of the most successful Natural Language Processing (NLP) pre-trained transformer

models BERT [64] and GPT-3 [65]. Ensemble learning (BERT) and meta-learning (GPT-3) are

the two effective solutions toward improving the pre-training language model’s adaptability. We

propose these two approaches to deal with the transferability of the NILM problem. Both methods

obtain the pre-trained models using one dataset, and then fine-tunes their parameters using a small

amount of new data when applied for inference with another dataset. To the best of our knowledge,

this is the first work that applies meta-learning and ensemble learning for generalizable models to

the NILM problem. We develop both models and evaluate their performance with two real-world

datasets, using one dataset to pre-train the models and the other dataset to fine-tune the models

and test their generalization performance. Our experiments validate the superior transferability of

the proposed models for the NILM problem, which both outperform the state-of-the-art DL based

approach and the transfer learning based approach [1]. We also find that the proposed models
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are effective in overcoming the negative transfer problem. The proposed models require greatly

reduced amount of data and computation for real-world deployment, which lead to energy savings

and is inline with the goals of GCN.

We organize the remainder of this chapter as follows. Related work is introduced in Sec-

tion 3.2. In Section 3.3, we formulate the NILM problem and introduces several solution ap-

proaches. In Section 3.4, we present the two proposed methods. We present the datasets and

experiment setup in Section 3.5, and our experimental validation of the proposed models in Sec-

tion 3.6. Section 3.7 concludes this chapter.

3.2 Related Works

3.2.1 The NILM Problem and Existing Solutions

The wide deployment of smart meters has triggered great interest in NILM, which is to estimate

the power consumption of a target appliance from the aggregate meter readings of the entire house.

Many algorithms have been developed to address the NILM problem. For example, the Addi-

tive Factorial Hidden Markov Model (AFHMM) and its variants have been used in many existing

schemes [66–70]. The Graph Signal Processing (GSP) based method has also been shown to be

quite effective [71, 72]. Other traditional machine learning approaches, such as Support Vector

Machine (SVM) [73], Decision Trees [74], the hybrid classification method [75], k-nearest neigh-

bors (k-NN) [76], and so forth, have been applied to solve the NILM problem as well. Interested

readers are referred to the detailed reviews in [59,77]. Note that such works only focus on training

and inference with the same dataset, rather than the generalization problem.

Motivated by the success of deep learning in other fields, there has been great interest in

applying deep learning to solve the NILM problem [78]. Convolutional Neural Networks (CNNs)

models have been adopted in [79–81] to extract the temporal features from time series of aggregate

electricity consumption data. In [82], Long Short-Term Memory (LSTM) or its equivalent Gated

Recurrent Units (GRUs) models have been leveraged to capture the long and short-term patterns

34



of state signatures of different appliances, which belong to the class of Recurrent Neural Networks

(RNNs). De-noising auto-encoder has also been applied for noise reduction to better estimate the

appliance profile [83].

3.2.2 Pre-trained Models

Recent work has shown that by pre-training a deep neural network on a large corpus of data,

followed by fine-tuning when applied to a specific task, the model’s performance on the target

task can be effectively improved. This approach has been successfully applied in computer vision,

speech recognition, and especially in NLP.

A pre-trained hidden Markov model for large-vocabulary speech recognition was proposed

in [63]. The authors showed that the pre-trained model was robust and achieved good initialization

of weights when training deep neural networks. For computer vision, the authors in [84, 85] ex-

plored image feature transferability of CNNs and found that the pre-trained model could boost the

generalization performance to new image classification tasks. Recently, pre-trained models have

drawn considerable attention in NLP. For example, ELMo (Embeddings from Language Mod-

els) [86] is a feature-based NLP pre-training approach, which combines individual feature extract

LSTMs to improve the overall task performance. The pre-trained transformer language model

BERT [64] can effectively handle multiple NLP tasks, after being fine-tuned directly without the

need for task-specific architectures. In 2020, OpenAI launched GPT-3, a gigantic deep neural net-

work with 175 billion parameters [65], to tackle task-agnostic NLP problems without needing any

gradient updates or fine-tuning. Motivated by the success of pre-trained models in other fields, we

investigate how to apply it to solve the NILM problem in this chapter.

3.2.3 Pre-trained Models for NILM

There has been very few existing works on pre-trained models for NILM. Most of the prior works

trained and tested their models using the dataset from the same house, by partitioning the same

dataset into a training set and a testing set. The generalization performance of the models has not
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been verified. In [83, 87], the authors considered transferability across houses included the same

dataset, i.e., testing a model trained by one house and on an untrained house, which both belonged

to the same dataset. In [1, 62], houses from different datasets were used, where a model was pre-

trained on a large dataset and then its transferability and generalization performance was verified

through another domain. The difference between them was that the work [62] tested its model

without any parameter updating, which is known as zero-shot learning. Usually transferring a

model between two different datasets could lead to poor performance. In [1], the pre-trained model

was fine-tuned by using data from the other dataset (i.e., few-shot fine-tuning). The limitation of [1]

was that the fine-tuned model’s performance was sometimes worse than the zero-shot models. This

was because the data used in fine-tuning was quite different from that of the tested house, which led

to negative transfer. The generative adversarial networks (GANs) are used as the pre-trained model

in [88,89]. By minimizing the statistical distance between source and target domains in the feature

space, the authors in [88] overcame the drawback that the shared parameters of the pre-trained

model are sensitive to the similarity between different domains. In [89], the joint adaptation loss

was further introduced by adapting both the feature and the label distribution discrepancy, which

improved the performance of GANs.

Another approach of using pre-trained models for NILM is to train a model on visual recogni-

tion tasks and the transfer the image feature extractor to the appliance recognition task. To bridge

these two unrelated domains, i.e., computer vision and NILM, the authors in [90] introduced the

concept of a load signature, i.e., the voltage-current (V-I) trajectory, to enable transfer learning.

Since the features extracted from the NILM data is usually quite different from real-world images,

it is challenging to verify the model’s robustness to domain shits (i.e., from real images to power

consumption data).
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3.3 Problem Statement and Approaches

In this section, we first present the mathematical formulation for the Non-Intrusive Load Monitor-

ing (NILM) problem. We will then introduce the conventional supervised machine learning (ML)

and pre-training approaches (i.e., transfer learning and meta-learning) to solve the problem.

3.3.1 The NILM Problem

Consider a house that contains J appliances that consume electricity. The aggregated power con-

sumption of the house, as measured by a smart meter, is given by

x(t) =
J∑
j=1

yj(t) + e(t), (3.1)

where x(t) is the aggregated power consumption, yj(t) is the jth appliance’s power consumption,

and e(t) is the measurement noise at time t. Given measurement of the total power consumption

over a time period T , i.e., x̃ = (x(1), x(2), ..., x(T )), the goal of NILM is to estimate the individual

appliance’s power consumption trace for the same period T , i.e., ỹj = (yj(1), yj(2), ..., yj(T )), for

j = 1, 2, ..., J .

Supervised ML has been applied to solve the NILM problem, as reviewed in Section 3.2,

which is to train a model with observed pairs of (x̃, ỹj) (i.e., the labeled training set) to estimate

(i.e., learn) an approximate function fθ(·) over a parameter set θ with a learning algorithm, which

represents the relationship between yj and x by

yj = fθ(x). (3.2)

Various learning models can be applied to solve the NILM problem. For example, the con-

ventional ML approach utilizes a single learning algorithm to learn the function fθ(·). On the other

hand, transfer learning leverages a base learner to learn the function, and then utilizes new data to

adapt to a new domain. Meta-learning, known as learning to learn, incorporates several learning
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episodes to induce the learning algorithm itself. In the remainder of this section, we describe how

to solve the NILM problem with these ML approaches from an optimization perspective. We will

use two separate load monitoring datasets, i.e., a source dataset S and a target dataset T , in the

following discussions. Both datasets contain the aggregated power consumption data as well as

the consumption data of individual appliances (as labels).

3.3.2 Conventional Machine Learning Approach

To solve the NILM problem with a conventional ML approach, only one dataset S is used. This

dataset is split into two parts, i.e., a training set Str and a testing set Sts. The ML model is trained

with the training set Str to determine its parameters θ. The trained model is then tested on the

separate testing set Sts.

The goal of the training process is to minimize a loss function L, give by

θ = arg min
θ

L
(
θ,Str

)
. (3.3)

The model parameters θ are usually updated with the gradient descent (GD) method as follows.

θ ← θ − η · ∇θL
(
θ,Str

)
, (3.4)

where η is the learning step size, and∇θL (θ,Str) is the gradient of the loss function with respect

to θ. When the model is well trained, its performance will be evaluated using the testing set Sts.

Such a process is illustrated by the graphical model given in Fig. 3.1.

The conventional supervised ML approach to the NILM problem usually focuses only on a

single dataset S. The model parameters are optimized with respect to this dataset. Usually the

trained model does not generalize well to an untrained dataset T (i.e., a new domain).
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Figure 3.1: Conventional supervised ML approach: the model parameters are updated based on a
single task training dataset Str and tested on a testing set Sts.

3.3.3 Transfer Learning Approach

In transfer learning, both a source dataset S and a target dataset T are used. The goal is to adapt

the pre-trained model learned from the source dataset S to the target dataset T .

The procedure is illustrated in Fig. 3.2. First, we create the training dataset Str from S to

pre-train the model. The pre-training problem can be defined as

θ = arg min
θ

L
(
θ,Str

)
. (3.5)

With the gradient descent (GD) method, the model parameters θ are updated using the training set

Str as:

θ ← θ − η · ∇θL
(
θ,Str

)
. (3.6)

In the testing phase, the target dataset T is split into a fine-tuning set T tr and a testing set T ts.

We fine-tune the pre-trained model using the fine-tuning set T tr for purpose of domain adaptation,

where the parameters are updated as

θ ← θ − η · ∇θL
(
θ, T tr

)
. (3.7)
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Figure 3.2: Transfer learning approach: the model parameters are updated based on the training
set Str, fine-tuned on set T tr, and tested on set T ts.

Then the fine-tuned model is tested on the testing set T ts. During the fine-tuning stage in transfer

learning, most existing works freeze the parameters in most of the layers, except the last fully-

connected layer. The fine-tuned model is obtained by training the parameters of the last fully-

connected layer using the new task’s data T tr.

In our prior work [20], we developed an ensemble learning model for load forecasting in

urban power systems, which includes multiple long short-term memory (LSTM) based first-level

learners and a Fully Connected Cascade (FCC) neural network as the second-level learner. In this

chapter, we propose an ensemble learning based transfer learning approach to solve the NILM

problem. The proposed model will be presented in Section 3.4.

3.3.4 Meta-learning Approach

Meta-learning, a.k.a. learning to learn, is inspired by human’s quickly learning new things with

only a few examples. By applying automatic learning algorithms to metadata, it induces the learn-

ing algorithm itself. The goal is to enable an intelligent agent (i.e., model) learn and adapt quickly

from few-shot of examples, and is able to keep adjusting as more data are coming in [91].

In general, meta-learning can be seen as training a general model that can generalize across

different tasks or datasets. Here, we define a single task or dataset as Si, which is sampled from the

source set S. We sample the source set S for N times to obtain N tasks. Each task Si is split into
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Figure 3.3: Meta learning approach: The model parameters are updated based on two meta training
datasets Str and Sval, fine-tuned on set T tr, and tested on set T ts.

a training set Stri and a validation set Svali . In meta-training, the model (meta-learner) shares the

parameters θ, which will be updated with each task’s loss. The average of parameters optimized

by each task (i.e., the base learners represented by parameters ψ) will update the meta-learner at

last. This way, the meta-learner will fit all tasks at the same time, akin to cross-validation. The

target set T will be partitioned into a fine-tuning set T tr and a testing set T ts. The pre-trained

meta-learner will be fine-tuned on T tr and tested on T ts.

In this chapter, we will adopt Model-Agnostic Meta-Learning (MAML) [91], which is an

optimization scheme, to solve the NILM problem. Detailed implementation of the proposed model

will be described in the next section.

3.4 Proposed Approaches

In this section, we present two approaches to the NILM problem, focusing on the generalization

of the models. The first model is a meta-learning based approach, i.e., MAML, that relies on

fine-tuning. The second model, termed Ensemble, is based on ensemble learning and is a feature-

based approach. Both models adopt the sequence-to-point (s2p) methodology [79], which will be

explained in the following.
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Figure 3.4: One training sample instance consisting of the aggregated power consumption and
appliance j’s power consumption data. The sliding window size is W = 5 in this example.

3.4.1 Sequence-to-point Method

Traditional NILM solutions are sequence-to-sequence (seq2seq) learning, where a machine learn-

ing model maps an input sequence (i.e., the aggregate power consumption time series) to an output

sequence (i.e., the power consumption time series of the target appliance). This method does not

work well for NILM, where the extremely long sequences requires more memory and may cause

the vanishing gradient problem in the training process. Although using a sliding window of size

W could help to address the limitations, each yi(t) will be predicted W times, leading to larger

errors at the edge [79].

Both our proposed methods utilize the s2p methodology instead [79]. S2p is motivated by

the observation that an appliance’s state at the center of the window is related to the aggregated

power consumption samples before and after that point [1]. Therefore, a better prediction can be

obtained for the center of the window using a full window of input data. In the example shown

in Fig. 3.4, one training sample instance’s input consists of the aggregate power consumption

samples in a sliding window of size W . The learning model uses this window of input to predict

the appliance’s consumption at the midpoint of the window. In [92], the authors found that the s2p

model outperformed 11 other power consumption disaggregation algorithms.

The s2p architecture used in this chapter is shown in Fig. 3.5(a), which consists of five convo-

lutional layers followed by several dense layers. We also incorporate the dropout technique to deal

with the overfitting problem [93]. Mean-square Error (MSE) is used as the default loss function

for training the model.
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(a) The s2p architecture used in the MAML based model.
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(b) The architecture of the ensemble learning feature based pre-training model.

Figure 3.5: The architecture of the proposed pre-training neural network models.

3.4.2 MAML-based Approach

The first proposed solution is a fine-tuning method that is based on Model-Agnostic Meta-Learning

(MAML), which is illustrated in the upper part of Fig. 3.6. First, the pre-training set is sampled

to obtain meta-learning’s training and validation sets, which are used to pre-train the base learner

(i.e., the s2p model given in Fig. 3.5(a)). When applied to a new dataset, a small new fine-tuning

set will be used to fine-tune the pre-trained model to achieve good transferability.

Gradient-based meta-learning is regarded as an effective approach for few-shot learning.

MAML is most widely used to adapt pre-trained models to new tasks by only using a few samples.

It aims to find a good initialization of model parameters suitable for varying tasks (i.e., different

datasets). For few-shot learning problems, only a small amount of data is fed into a pre-trained

model for several gradient updates in the fine-tuning phase. In meta-training, MAML introduces

two loops of training (i.e., the inner and outer loops). In the inner-loop, a base learner is trained
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Figure 3.6: The proposed methods: (i) Upper: the MAML-based approach; (ii) Lower: the ensem-
ble learning-based approach.

with Stri by a base learning algorithm. In the outer-loop, a meta-algorithm updates the base learn-

ing algorithm to improve the model learned by the inner loop when dealing with new data Svali ,

indicating the generalization performance of a model [94]. This is shown in the graphical model in

Fig. 3.3 for task i. In the pre-training stage (i.e., meta-training), the base learner’s parametersψ are

first initialized by θ, which is trained with the training set Stri (in the inner-loop). The validation set

Svali will be used to update the meta learner’s parameters θ (in the outer-loop). In the meta-testing

stage, the pre-trained model is updated with additional gradient update steps using new data T tr

(i.e., fine-tuning). Instead of freezing the parameters of some layers, all the parameters θ of the

pre-trained model will be updated in the fine-tuning procedure. Finally, the well-trained model

will be used for inference with new data T ts.

Formally, the problem that MAML solves in the meat-training stage is defined as follows

min
θ

∑
Task i

L
(
θ − α∇θL

(
θ,Str

i

)
,Sts

i ), (3.8)
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where θ are the initialized parameters of the meta-leaner and base-leaner. The loss function of the

inner-loop is defined as

L
(
θ,Stri

)
= E

 ∑
x,y∼Stri

‖fθ(x)− y‖22

 , (3.9)

where fθ(·) represents the inference model. In the inner-loop of the meta-training procedure, the

base-learner’s parameters are updated by

ψi = θ − α∇θL
(
θ,Str

i

)
, (3.10)

where α is the inner-loop’s learning rate. In the outer-loop, the loss function is defined as

L
(
ψi,Svali

)
= E

 ∑
x,y∼Stvali

‖fψi
(x)− y‖22

 . (3.11)

MAML solves problem (3.8) by using stochastic gradient descent (SGD), which involves a

gradient through a gradient (i.e., need to compute the Hessian matrix). To speed-up the training

process, we do not calculate the Hessian matrix, but use its first-order approximation (i.e., the

Jacobian matrix). The simplified MAML algorithm is presented in Algorithm 3.

3.4.3 Ensemble Learning based Approach

Our feature-based approach is motivated by ensemble learning [28], which aims to tackle the chal-

lenge of generalization i.e., to boost the performance of the pre-trained model on any unknown

dataset. Ensemble methods, i.e., stacking, have been shown to be effective for time series forecast-

ing problems [20]. Usually, data is partitioned by a clustering algorithm, and each cluster is used

to train a first-level learner. Then another neural network is used as a second-level learner to fuse

the outcomes from the first-level learners for improved forecasting results.
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Algorithm 3: First-order MAML [91]
1 Require α: inner-loop step size;
2 Require β: outer-loop step size;
3 Require A: inner-loop epochs;
4 Require B: outer-loop epochs;
5 Require Dataset S;
6 for a = 1 : B do
7 Sample the source set S for N times to obtain

{
Stri ,Svali

}N
i=1

;
8 for i = 1 : N do
9 for a = 1 : A do

10 Evaluate∇θL(θ,Stri );
11 Implement gradient descent: ψi = θ − α∇θL(θ,Stri );
12 end
13 Calculate gradient: ∇ψL(ψi,Svali );
14 end
15 Update θ ← θ − β∑N

i=1∇ψL(ψi,Svali );
16 end

The architecture of the proposed ensemble learning based model, termed Ensemble, is illus-

trated in the lower part of Fig. 3.6. Since the data from each house naturally form a cluster, the

clustering algorithm is not needed here. The data from each house is used to train a first-level

learner (i.e., a pre-trained model). As in the MAML based approach, a similar architecture of five

convolutional layers followed by dense layers is adopted for the pre-trained models, as shown in

Fig. 3.5(b). Similarly, dropout is incorporated to mitigate overfitting [93]. The ensemble model

then integrates the outcomes (except for the last layer) from the pre-trained learners with a concate-

nate module followed by several dense layers to provide the final prediction. The fusion process

in fine-tuning is to select a proper combination of the feature extractors (pre-trained learners) to

deal with unknown data. Due to the diversity of the feature extractors, each for a suitable case, as

well as a well-designed fusion model, the ensemble model is suitable for adapting the pre-trained

models to unknown datasets.

As shown in the lower part of Fig. 3.6, our ensemble model has two phases of training, i.e.,

pre-training and fine-tuning. In the pre-training phase, we split the original pre-training set S into

several subsets, each consisting of the data from a different house. Each subset will be used to
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train an s2p model. In the fine-tuning phase, we first freeze each base learner’s parameters. Then

we concatenate all the parameters from every base model except the last dense layer as feature

extractors. Three layers of a fully-connected deep neural network is then used to combine these

feature extractors (i.e., pre-trained learners), as shown in Fig. 3.5(b). The parameters of the dense

layers are trained with the fine-tuning set T tr.

3.5 Dataset and Experiment Setup

We evaluate the performance of the two proposed methods with extensive experiments using open-

source NILM datasets. They are compared with several baseline schemes, e.g., traditional transfer

learning, to validate their advantages. The datasets used in the evaluation and the experiment

configurations are presented in this section.

3.5.1 Datasets

We use two real-world datasets, REFIT [4] and UK-DALE [5], to evaluate the performance of the

proposed energy disaggregation methods. Both datasets are from England and provide house-level

aggregate energy consumption and individual appliances’ power consumption data measured by

sensors deployed in the houses, while the households were conducting their usual domestic activ-

ities when the data was collected. The features of the two datasets are summarized in Tables 3.1

and 3.2, respectively.

In particular, the REFIT dataset consists of data from 21 houses, while the UK-DALE dataset

has data from five houses. The data in the REFIT dataset was recorded every 8 seconds, to mimic

the data collected by the SMETS2 smart meter standard2 [4]. Each house was equipped with nine

appliance monitors and one current transformer sensor. The time duration of the REFIT dataset

was from September 2013 to July 2015. We use a cleansed version of the REFIT dataset, where

the missing values in each house (i.e., the NaN values) have been either zeroed or forward filled.

In the UK-DALE dataset, each house’s aggregated power consumption was recorded every 1 or
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Table 3.1: Appliances and Houses in the REFIT Dataset

Meta-training dataset (pre-training): the REFIT dataset [4]

Training and validation dataset

Appliances Houses Time period Samples (M)

Kettle 9, 12, 20 2013-12-07 to 2015-07-08 17.20

Microwave 10, 12, 17, 19 2013-11-20 to 2015-06-30 29.80

Washing Machine 2, 7, 9, 16, 17 2013-09-17 to 2015-07-08 19.92

Dish Washer 7, 9, 13, 16 2013-09-26 to 2015-07-08 23.38

Fridge 2, 5, 9, 12 2013-09-17 to 2015-07-08 31.33

Table 3.2: Appliances and Houses in the UK-DALE Dataset

Meta-testing dataset: the UKDALE dataset [5]

Training (fine-tuning) dataset

Appliances House Time period Samples (M)

Kettle, Microwave, Fridge, 2013-5-20 to
Dish Washer, Washing Machine 2 2013-5-29 0.108

Testing dataset

Appliances House Time period Samples (M)

Kettle, Microwave, Fridge, 2013-5-30 to
Dish Washer, Washing Machine 2 2013-10-10 1.592

Validation dataset

Appliances House Time period Samples (M)

Kettle, Microwave, Fridge, 2012-11-9 to
Dish Washer, Washing Machine 1 2012-11-18 0.102

6 seconds, and each individual appliance was measured every 6 seconds. The 6-second dataset is

used in our experiment. It should be noticed that the UK-DALE dataset has been preprocessed; but

we use the original dataset as it is. In order to be consistent with the data in REFIT, the UK-DALE

data are down-sampled to 8 seconds.

We apply standard score normalization in data before all the models are trained and tested.

The value of each appliance’s mean and standard deviation can be found in [1]. In our experiments,
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Table 3.3: Hyper-parameters of the Proposed Models

MAML

Window size 99
Batch size 2000
SGD (inner-loop step size) 0.001
Adam (outer-loop step size) 0.001
Meta-training inner-loop epochs 1
Max meta-training outer-loop epochs 50
Max meta-testing’s training epochs 10

Ensemble

Window size 99
Batch size 2000
Adam 0.001
Maximum pre-training epochs 50
Maximum fine-tuning epochs 10

the REFIT dataset is used for pre-training, while the UK-DALE dataset is used for fine-tuning and

testing, to test the models’ generalization performance.

3.5.2 Hyper-parameters and Neural Network Training

Detailed information of the hyper-parameters of the proposed models are summarized in Table 3.3.

All the models are implemented with TensorFlow 2.2.0 and trained on NVIDIA RTX 2070 Mobile

with the Ubuntu 18.04 operating system. The window size W is set to be 99, 299, and 499. We

find that the difference in performance between the different window sizes is small. So we select

the smallest value W for computational efficiency. For the meta-learning model (i.e., MAML), the

inner-loop of meta-training has a step size α = 0.001 using the SGD optimizer [95]. We implement

one gradient update in the inner-loop. The outer-loop is solved using the Adam optimizer [44],

which is implemented with 50 gradient updates. During meta-testing, all layers of the trained

model are fine-tuned with the Adam optimizer with ten gradient updates. For the Ensemble model,

the Adam optimizer is used for all the pre-trained base models.
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3.6 Experiment Results and Discussions

3.6.1 Experiment Methodology

In this section, we evaluate the two proposed approaches and compare them with several baseline

power disaggregation algorithms. We choose five appliances in the experiments, including kettle,

fridge, washing machine, dishwasher, and microwave. Each model for the appliances is trained

individually, which means, for every appliance, a distinct dataset (con-training both meta-training

and meta-testing sets) is constructed and used.

As mentioned in Section 3.3, to test the transferability of the models, two different datasets

are used for pre-training and fine-tuning, respectively. In our experiments, we use REFIT as pre-

training dataset. This is because REFIT is a relatively large dataset, which is expected to be able to

equip the trained model with better generalization ability. UK-DALE is used as the testing dataset,

where the house 2 data is used to fine-tune and test the model, and the house 1 data is used as the

validation set. The detailed dataset split information is provided in Table 3.1 and Table 3.2.

Two stages of learning are conducted. Take the fridge’s model as an example. For MAML,

during the meta-training process, data of houses 2, 5, 9, and 12 in REFIT are first used to pre-train

the model (as shown in Fig. 3.5(a)). The zero-shot results are obtained by directly applying the

pre-trained model for inference for house 2 in UK-DALE. The few-shot results are obtained by

using a few house 2 data in UK-DALE to fine-tune the model and then using the fine-tuned model

for inference for house 2 in UK-DALE. For Ensemble (i.e., the feature-based pre-train method),

data of houses 2, 5, 9, and 12 in REFIT are used to pre-train multiple base models (as shown

in Fig. 3.5(b)). During the fine-tuning process, we will first examine each model’s performance

without any parameter updates using the meta-testing’s test data to obtain the zero-shot results.

The best pre-trained model, which scores the highest performance on house 2 in UK-DALE, will

be fine-tuned with new data in the same way as MAML to obtain the few-short results.

The following three baseline schemes are used in our comparison study:
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• Sequence-to-point (s2p): this is the model shown in Fig. 3.5(a) that is trained from scratch

using only meta-testing’s fine-tuning dataset (see Table 3.2). This is regarded as the bottom-

line benchmark.

• Transfer learning for NILM (TL) [1]: this is the traditional transfer learning approach that

uses s2p as the base model. It is trained with REFIT and tested on UK-DALE, with and

without fine-tuning.

• Pre-trained sequence-to-point (pre-s2p) model uses the REFIT dataset to train the base

model, which is similar to TL [1]. The difference between pre-s2p and TL [1] is that data

from different houses is used to build several models in pre-s2p, while TL [1] utilized the en-

tire dataset to build only one model. We only choose the base model with the best zero-shot

MAE performance for fine-tuning.

Note that the authors in [1, 92] compared the s2p scheme with other traditional machine leaning

methods, and found s2p achieved the best performance. Therefore, we choose s2p as a baseline

scheme in this section.

Two performance metrics are used in the evaluations, which is the mean absolute error (MAE)

and the signal aggregate error (SAE). These two metrics are defined as follows.

MAE =
1

T

T∑
t=1

|ŷj(t)− yj(t)| (3.12)

SAE =
1

rj
|r̂j − rj| , (3.13)

where ŷj(t) and yj(t) are the estimated power consumption of appliance j and the ground truth,

respectively; T is the duration of the time period; and r̂j and rj are the predicted total energy

consumption and the ground truth of appliance j, respectively. MAE is used to measure the differ-

ence between the predict appliance power usage at every time instance and the ground truth of the

appliance. SAE shows the relative error of the total energy consumption of the appliance [1].
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3.6.2 Results and Discussions

Kettle Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 21.287 0.367

TL [1] 6.260 0.060 16.879 0.043

pre-s2p model 1 (house 9) 6.124 0.155 7.518 0.140

pre-s2p model 2 (house 12) 9.539 0.248 - -

pre-s2p model 3 (house 20) 32.889 0.816 - -

MAML (proposed) 12.485 0.198 5.817 0.043

Ensemble (proposed) - - 3.424 0.008

Dish washer Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 20.552 0.096

TL [1] 16.490 0.130 41.106 0.516

pre-s2p model 1 (house 5) 18.776 0.028 - -

pre-s2p model 2 (house 7) 18.633 0.243 - -

pre-s2p model 3 (house 9) 28.516 0.523 - -

pre-s2p model 4 (house 13) 16.191 0.346 15.130 0.243

pre-s2p model 5 (house 16) 40.922 0.958 - -

MAML (proposed) 17.882 0.361 13.292 0.254

Ensemble (proposed) - - 13.746 0.033
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Washing machine Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 9.574 0.733

TL [1] 14.840 0.500 22.941 0.899

pre-s2p model 1 (house 2) 9.629 0.679 - -

pre-s2p model 2 (house 7) 8.356 0.626 7.751 0.431

pre-s2p model 3 (house 9) 9.631 0.785 - -

pre-s2p model 4 (house 16) 11.070 0.767 - -

pre-s2p model 5 (house 17) 8.613 0.600 - -

MAML (proposed) 9.332 0.648 7.315 0.487

Ensemble (proposed) - - 5.179 0.288

Microwave Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 13.174 1.194

TL [1] 4.770 0.080 10.973 0.019

pre-s2p model 1 (house 10) 4.767 0.345 4.498 0.259

pre-s2p model 2 (house 12) 7.739 0.755 - -

pre-s2p model 3 (house 17) 6.849 0.112 - -

pre-s2p model 4 (house 19) 5.275 0.093 - -

MAML (proposed) 5.275 0.093 3.215 0.120

Ensemble (proposed) - - 3.490 0.018
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Table 3.4: Performance When Transferred to UK-DALE

Fridge Zero-shot Few-shot

Model MAE SAE MAE SAE

s2p - - 28.842 0.109

TL [1] 17.000 0.090 33.078 0.266

pre-s2p model 1 (house 2) 27.793 0.191 - -

pre-s2p model 2 (house 5) 30.245 0.165 - -

pre-s2p model 3 (house 9) 26.497 0.085 26.210 0.116

pre-s2p model 4 (house 12) 30.787 0.417 - -

MAML (proposed) 27.714 0.280 16.562 0.068

Ensemble (proposed) - - 16.887 0.088

The evaluation results (i.e., MAE and SAE) are presented in Table 3.4, where zero-shot means

the pre-trained models are tested on the testing set directly, and few-shot means the pre-trained

models’ parameters are updated with the fine-tuning set and then the fine-tuned models are tested

on the testing set. There are no zero-shot results for s2p and Ensemble, since s2p is trained from

scratch using the fine-tuning data and Ensemble requires fine-tuning data to combine the individual

pre-s2p models. We use 10K fine-tuning sample instances’ for updating the model parameters,

which is collected on the first day of the fine-tuning set. The results of the transfer learning method

(TL) proposed in [1] are presented as well. We found that with TL, the pre-trained model with

fine-tuning performs even worse than the one without fine-tuning. We include both TL results with

or without fine-tuning in the table. The parentheses following each pre-s2p model indicate the

specific house in dataset REFIT used to pre-train the model. Only the pre-s2p model that achieves

the best MAE performance for zero-shot of learning will be further updated with fine-tuning.
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As can be seen from Table 3.4, both proposed pre-trained methods, i.e., MAML and Ensem-

ble, outperform the traditional machine learning and transfer learning methods for all the tested

appliances with respect to MAE and SAE. Next, we analyze the results in more detail in the fol-

lowing.

From Zero-shot to Few-shot

By updating the parameters (i.e., from zero-shot to few-shot fine-tuning), the transfer learning

method used in [1] got an even worse result, with an −598.71% average improvement in MAE.

This is because the TL method uses weak-relevant data in fine-tuning, which is the data from

house 1 in UK-DALE. We try to diversify the data used for pre-training as in [1]. However, there

is no guarantee that the data for fine-tuning comes from a similar distribution. Thus, we further

improve fine-tuning by using only a small amount of data of house 2 (with no overlap with the

unknown testing data). However, in some cases (e.g., pre-s2p model 1 of appliance kettle), negative

transfer still happens, where the few-shot MAE (7.518) is slightly larger than the zero-shot MAE

(6.124). Moreover, the improvements achieved by the pre-s2p models for other appliances are all

insignificant. If we regard the pre-trained model’s parameters as the neural network’s starting point

in the search space, the weight initialization of traditional transfer learning used for NILM is not

optimal. Consequently, the DNNs get stuck in local minima with sub-optimal solutions.

The two proposed methods overcome this problem. On one hand, MAML achieves 53.41%,

25.67%, 21.61%, 40.24%, and 39.05% improvements in MAE for the kettle, dishwasher, wash-

ing machine, fridge, and microwave, respectively. On the other hand, Ensemble achieves 32.59%,

37.20%, 44.68%, 41.20% and 41.22% improvements in MAE compared to all the pre-trained mod-

els it uses.

With or Without Pre-training

We also compare the pre-trained models with the one trained from scratch (i.e., s2p). From the

table, we can see that the best pre-trained model always outperforms s2p when using the same 10k
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Figure 3.7: The relationship between models’ performance (MAE) and amount of new samples
used in additional 10 gradient updates for appliance kettle.

new data samples. The improvement in MAE are 83.92%, 35.23%, 45.91%, 42.58%, and 75.60%,

respectively, for different appliances. The improvement in SAE are 83.92%, 35.23%, 45.91%,

42.58%, and 75.60%, respectively, for the appliances.

We next investigate how much fine-tuning data is needed to achieve a good performance on the

NILM task. We further expand the results for appliance kettle in house 2 in UK-DALE with sample

size increased from 0 to 100k. The new MAE results are shown in Fig. 3.7. The pre-s2p model

is pre-trained with house 9 data in REFIT. As can be seen, except for transfer learning (pre-s2p),

all other methods, including the model trained from scratch (s2p), achieve improved performance

when more samples are used in fine-tuning. The pre-s2p model again suffers from the negative

transfer problem, no matter how many samples are used to fine-tune its parameters. The MAEs

of the two proposed methods (MAML and Ensemble) are initially (i.e., zero-shot) lower than that

of s2p, and quickly reduces to stable values when 10K samples are used in fine-tuning. We also

find the ensemble model outperforms MAML with a slightly smaller MAE. The s2p model needs

at least 50k new samples to achieve the same MAE as MAML and at least 100K new samples to

achieve the same MAE as Ensemble.

Fig. 3.8 presents an ablation study of validation error for appliance kettle using house 1’s

data in UK-DALE with different gradient steps for few-shot learning. We observe that all methods
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Figure 3.8: Validation error (NMSE) of appliance kettle using 10k samples for domain adaptation
in fine-tuning.

continue to improve (with a decreasing Normalized Mean Square Error (NMSE)) as there are more

gradient steps, and the NMSEs converge to stable values after 8 gradient updates. The NMSE of

the model trained from scratch (i.e., s2p) drops dramatically and is the highest among the four

schemes. The two proposed methods both achieve smaller errors than the transfer learning model

(i.e., pre-s2p).

Feature-based vs. Fine-tuning-based

We also plot the predicted power consumption values along with the ground truth for the five

appliances, as well as the aggregated power consumption in house 2 in UK-DALE, including kettle,

dishwasher, microwave oven, washing machine, and fridge, obtained with the four methods for a

specific time period in Fig. 3.9. For each appliance, we include a zoomed-in plot of the curves

as well as a plot for the entire time period. Since the same legend is used in all the plots, we

only show the legend in Fig. 3.9(b) to make the plots more readable. The aggregated consumption

is in the shade of light gray and the ground truth of the target appliance is in the shade of dark

gray. It can be seen that the s2p model fails to predict the appliance’s power consumption at some

time instances, i.e., the appliance’s state is off but it is predicted as on. This is quite obvious in

Fig. 3.9(e) from 200 to 250, and from 320 to 350. The transfer learning model (pre-s2p) tends to

overestimate the appliance’s power consumption (e.g., see Fig. 3.9(c)) or underestimate it (e.g., see
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Table 3.5: Execution Time and Model Size of the Proposed Models for Kettle

Model Model size Training time Fine-tuning time
(MB) (Min) (Min)

MAML 16.3 953.72 0.68
Ensemble 49.0 1173.06 2.01

Fig. 3.9(g)). The two proposed methods’ predictions match the ground truth much more closely

than the other two schemes.

For the two proposed methods, it can be seen from Table 3.4 that they achieve similar MAE

performance for dishwasher, fridge, and microwave. For kettle and washing machine, Ensemble

outperforms MAML in MAE with an improvement ratio of 41.13% and 29.20%, respectively. En-

semble also outperforms MAML by achieving a smaller SAE for the kettle, dish washer, washing

machine, and microwave. While both methods achieve good prediction performance, the Ensemble

results are slightly better than that of MAML. This may due to the fact that MAML is a fine-tuning

based approach; training all its parameters using a small amount of fine-tuning data may result in

the overfitting problem [96].

Computational Complexity and Execution Time

In Table 3.5, we present the execution time and model size of the proposed models. The pre-

training time of the Ensemble model given in the table is the accumulative time consumed by

individual models. The results show that the Ensemble model requires more training time and

larger model size than MAML. Training the base models in parallel on multiple GPUs will greatly

improve the time efficiency of the pre-training process of the Ensemble model. Due to limited

computing resources, we did not use this method in our experiments.

Limitation and Future Work

Due to limited datasets, the pre-training dataset and testing dataset are from the same country. The

generalization of the pre-trained models across different countries needs to be further studied, as
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Figure 3.9: Comparison of predicted appliance power consumption obtained by Ensemble,
MAML, sequence-to-point (s2p), and transfer learning (pre-s2p) models with ground truth for
five appliances (i.e., kettle, microwave, fridge, washing machine, and dishwasher) with the house
2 meta testing set.
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differences in appliances and usage behavior between different regions may be larger. Further-

more, we only investigate the transferability of the pre-trained models predicting the same type of

appliance between different regions. Transferability among difffernt types of applicances would

be an interesting problem to study. Finally, deep learning models are vulnerable to designed ad-

versarial training samples. Attackers may fool the training process by introducing tainted data in

the fine-tuning data. It is essential to improve the security and robustness of the pre-trained deep

learning model.

3.7 Conclusions

In this chapter, we developed two types of pre-trained models based on CNNs for solving the NILM

problem with a focus on generalization. The Ensemble model uses a neural network to connect

several trained base models, and few-shot learning fine-tuning to adapt to a new task. The MAML

approach initializes the pre-trained model with good weights, and can quickly adapt to a new task

with a few gradient updates. The proposed pre-trained models can effectively solve the NILM

problem. Compared to transfer learning, our models require fewer data for adaptation, and can

quickly adapt to new NILM tasks. In addition, our proposed methods outperform transfer learning

with respect to prediction accuracy and can effectively avoid negative transfer. The proposed

schemes are validated with two open-source datasets and comparison with the baseline schemes.
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Chapter 4

Middle Window Transformer for NILM

4.1 Introduction

The recent advances in the Internet of Things (IoT) allow the deployment of uniquely identifiable

objects that are organized in an Internet-like structure to enable smart homes to monitor, control,

and manage the house appliances [97]. The communication paths constructed by the IoT integrate

smart meters, home appliances, and renewable energy, in a Home Energy Management System

(HEMSs) [15, 98]. With more and more IoT-enabled technologies being developed and deployed,

the HEMS system will become more sustainable, more resilient, and more energy efficient [31].

One important application of the IoT in HEMSs is load monitoring. The built-in sensors in

appliances provide individual appliance’s energy consumption information to the HEMS in real-

time, which can be analyzed to optimize the energy usage and achieve energy savings. However,

there are several practical issues that need to be addressed. First of all, electrical appliances typi-

cally last up to decades. As a result, a household typically include both old and new generations

of appliances. The legacy appliances may not be equipped with smart sensors and their electricity

consumption data is usually hard to measure. Second, the cost of installing sensors to legacy ap-

pliances could be high, including both the sensor and installation cost, as well as the power usage

cost. Third, consumers are more and more concerned about their privacy; they may not be willing

to share the information about their appliances’ power consumption.
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Non-Intrusive Load Monitoring (NILM), which is to identify individual appliance’s electricity

consumption from the given aggregated smart meter data, provides a useful solution to the above

problems [59]. Recently, deep neural networks (DNNs), such as Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs), have been shown effective to address the NILM

problem. Since 2017, the Transformer [3] and its variants have dominated the field of natural

language process (NLP), achieving superior performance for tasks such as language translation,

text analytics, smart assistants, and so on. This is largely due to Transformer’s capability of using

the attention mechanism to capture the long-range dependency in sequential data. For computer

vision (CV) tasks, the Vision Transformer (ViT) [99] has been shown to outperform the popular

CNN model. In our recent work [100], a deep spatio-temporal attention approach was developed

to forecast the temperature of stored grain using meteorological data. Such successes in NLP, CV,

and other fields have attracted researchers to investigate Transformer’s application to the NILM

problem.

Although some recent preliminary studies have demonstrated the high potential of Trans-

former for NILM [101, 102], there are still many challenges remain to be addressed. First is the

tradeoff between computational complexity and the ability to track long range dependency in en-

ergy consumption data, which usually contains rich daily, seasonal, and even annual patterns. The

self-attention mechanism is the core of Transformer, which has a quadratic time complexity with

regard to the input sequence length [103]. Low complexity models are thus desirable to allow

longer input sequences. Second is the dependency on data. Like most Deep Learning (DL) mod-

els, Transformer requires a large amount of high quality labeled data for training, specifically, each

individual appliance’s power consumption data. The cost of data collection, e.g., submetering,

could be high. In addition, many users are unwilling to share their appliance’s information due to

concern of privacy breach. Third is the generalization or transferability of the well trained Trans-

former model. The existing Transformer-based NILM methods are trained and tested on the same

dataset, or assume the training and testing sets share similar data distribution. The transferability

of the models have not been fully investigated, including testing across different appliances and/or
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across different datasets. NILM models with strong transferability are useful to achieve accurate

predictions for different, unseen houses, different models or brands of appliances, various aging

degrees of electronic circuits, and different residents’ daily habits and usage behavior [98].

In this chapter, we propose a Middle Window Transformer model, termed Midformer, for

NILM, which incorporates several novel designs and follows the pre-training and fine-tuning

paradigm to address the above problems. To deal with the computational complexity issue, Mid-

former is designed as a more efficient Transformer variant tailored to the characteristics of the

NILM problem. Specifically, we utilize patch-wise attention in Midformer, which reduces the

input length compared to point-wise attention used in existing models [101, 102]. We further

apply the cyclically shifted window technique to increase the receptive filed. The drawback of

patch-wise attention is that it ignores the connection across patches. In Midformer, we feed both

cyclically shifted input and the original input into the attention layer to preserve the connection

across patches. To reduce computation, we only calculate full attention using the middle range of

the input, instead of using the entire input. This allows Midformer to focus on the middle range

of the input and achieve a linear time complexity with respect to the input length (i.e., the window

size).

To address the transferability issue and reduce the dependency on data, we follow the pre-

training and fine-tuning paradigm. First, we pre-train multiple transformers (for different appli-

ances) by using one dataset. Then we test the performance of the trained models on unseen data in

the same dataset. Next, we examine the relationship among different appliances, i.e., could a model

pre-trained using one appliance’s data in a house be used to predict the power usage of another ap-

pliance in another house? The authors in [1] used the model learned from washing machine data

to predict the power consumption of other appliances. In this chapter, we obtain the pre-trained

model (including CNN, RNN, Transformer, and the proposed Midformer) for five appliances (in-

cluding kettle, dishwasher, fridge, washing machine, and microwave). We then fine-tune and test

the pre-trained model on a different dataset including the same and different appliances’ data. With

this approach, models do not need to be retrained from scratch for unknown houses and unseen
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appliances, and can quickly adapt to new tasks with few-shot fine-tuning due to the well initial-

ized parameters in the pre-trained models. This way, the computation in modeling training can be

reduced and the dependency on data can be relieved.

We evaluate the performance of the proposed Midformer model using two real-world datasets

and compare it with three baseline models including CNN, RNN, and Transformer. Our exper-

imental study demonstrates the superior performance and great transferability of the proposed

Midformer model for NILM problems over the state-of-the-art baseline models.

We organize the remainder of this chapter as fellows. We introduce related work in Sec-

tion 4.2. In Section 4.3, we formulate the NILM problem and introduces the preliminaries of

Transformers. In Section 4.4, we present the proposed transformer method Midformer. We present

the datasets and experiment setup, and discuss the experimental study in Section 4.5. Finally,

Section 4.6 concludes this chapter.

4.2 Related Work

4.2.1 Non-intrusive Load Monitoring Models

In the literature, many prior studies have developed approaches for solving the NILM problem,

which can be mainly divided into two categories: (i) unsupervised learning, and (ii) supervised

learning methods. In this section, we will briefly introduce the existing solutions for NILM; more

detailed reviews of the different approaches applied to solving NILM can be found in [59,77,104].

Unsupervised Learning

Unsupervised learning has the unique strength of not requiring labeled data. The additive fac-

torial hidden Markov model (AFHMM) is one of the most widely used unsupervised learning

approaches for NILM [66–69], which converts time series data into Hidden-Markov Models and

Bayesian models to infer the possible states of different appliances. Another method of unsuper-

vised learning approach is the Graph Signal Processing (GSP) based method, which has also been
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shown to be quite effective for NILM [71, 72]. The main drawbacks of these methods is that the

prior domain knowledge needs to be provided, and such schemes may not perform well for solving

problems that have a large number of appliances [1].

Supervised Learning

Supervised learning aims to learn a function, which maps an input to an output, from given

input-output examples, i.e., labeled data. In the literature, various supervised learning methods

have been applied to solving the NILM problem, such as Support Vector Machine [73], Decision

Tress [74], K-Nearest Neighbours (k-NN) [76], and so forth. Recent works in this area demon-

strate the promise of entirely deep learning approaches, such as Convolutional Neural Networks

(CNNs) [79–81, 105], Long Short-Term Memory (LSTM) or its variant Gated Recurrent Units

(GRUs) [2, 82, 106, 107], and denoising autoencoder [83, 108]. The main limitation of supervised

learning (machine learning) method is that it requires large amounts of high quality training data.

Such approaches usually require high computational power and storage capacity.

4.2.2 Transfer Learning for NILM

Most of the approaches applied to the NILM problem are carried out on the same data domain,

which means the model is trained and tested using the same appliance’s data in the same dataset.

Very few previous studies have addressed the study of generalizability of the NILM models, also

referred to as the transferability of the pre-trained models. For example, in [62], Murray et al.

trained two different networks based on CNNs and RNNs, respectively, by using one of the three

datasets and verify the models’ transferability as well as generalization through the other datasets.

However, the stability of the trained models is unsatisfactory due to the different data distributions

in different databases, which lead to the poor domain adaptation performance.

To address this problem, D’Incecco, Squartini, and Zhong in [1] pre-trained their sequence-

to-point (seq2point) learning model using the washing machine data in one specific dataset, and
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then tested their pre-trained model on data of different appliances in different datasets. Fine-

tuning, which is to train the pre-trained model using a small amount of examples from the testing

dataset [98], was applied to adapt the pre-trained model to the difference between the different

training and testing domains. However, the distribution of data used in fine-tuning was quite dif-

ferent from that of the tested house data, which led to the negative transfer effect. The generative

adversarial networks (GANs) model has been applied to address the domain adaptation problem in

NILM as well [88,89], which was to train the feature generator and the domain discriminator in the

adversarial manner. The limitation of this method is that training GANs requires finding a Nash

equilibrium of a non-convex game with continuous high-dimensional parameters, which could fail

to converge [109, 110]. Our previous work [98] developed a meta-learning based approach and

an ensemble learning based approach that require fewer new data for adaptation, and can quickly

adapt to new NILM tasks. However, we only explored the transferability between different datasets

of same appliance in [98].

4.2.3 Transformer-based NILM Models

Motivated by the success of the Transformer architecture in many domains, most importantly in

Natural Language Processing (NLP) [3], the self-attention1 based Transformer has recently been

proposed for NILM. The recent works [101, 102] both applied the attention mechanism to the

feature maps extracted by CNNs to solve NILM tasks. The main drawback of these preliminary

studies is that the computational complexity of self-attention grows quadratically with window

(i.e., input) size, which could become a serious issue if the fixed window size is large. Moreover,

the generalization performance of these models have not been verified through different datasets

or appliances.

1“An attention mechanism relating different positions of a single sequence in order to compute a representation of
the sequence [3].”
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4.3 Problem Statement

4.3.1 The NILM Problem

Consider a given collection of J time series {y1(t) , y2(t), ..., yJ(t)}Tt=1 that record the energy

consumption of the J appliances in a house over a period of time T ; {yj(t)}Tt=1 represents the

power consumption of the jth appliance in the house. The aggregate power consumption x(t) of

the house at time t is calculated as follows.

x(t) =
J∑
j=1

yj(t) + e(t), (4.1)

where e(t) is the measurement noise at time t. The NILM problem is to estimate the power con-

sumption of an individual appliance from the given aggregate power consumption of the entire

house. It is also called energy disaggregation since the goal is to separate the energy consumption

measured at the aggregate level to that of individual appliances. It is non-intrusive since only the

aggregate measurement is needed; and there is no need for submetering.

In NILM algorithms, to better handle the long time series data, usually a sliding/rolling win-

dow setting is adopted over the time series with a fixed window size, denoted by W , where the

sliding/rolling step size is one. Rather than predicting a full window size of outputs, the NILM

models often target at one single time instance (e.g., the middle point of the window) to avoid

redundant computation. This approach is termed sequence-to-point (s2p) learning [79]. There-

fore, given input data of total power consumption measurements over a window of size W , i.e.,

x̃ = {x(1), x(2), ..., x(W )}, the learning algorithm will compute output ỹj(dW/2e), for all j.

4.3.2 Transformer and Multi-head Self-attention Mechanism

The Transformer model is based on the attention mechanism to significantly enhance the perfor-

mance of deep learning, which computes the representation of a sequence by attending to informa-

tion at different positions from different representation subspaces [3, 111]. The main idea of this
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mechanism is to learn an alignment between each element in the sequence and others to decide

which part of the sequence should be paid attention to [112].

For a given input sequence I ∈ RW×dmodel , where dmodel is the dimension of each data sam-

ple (i.e., length of the encoding vector), self-attention first transforms the input sequence into three

matrices with three learnable weights. These three matrices are called queries, keys, and values, re-

spectively, and they have the same depth of dimension d. Next the scaled dot-product is computed,

which is given by:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V, (4.2)

where Q = IWQ , K = IWK , and V = IWV , and WQ ∈ Rdmodel×d, WK ∈ Rdmodel×d,

and WV ∈ Rdmodel×d are all trainable parameters that are used to map the input I into the three

matrices Q, K, and V. The attention function (4.2) is similar to non-local means, which can be

described as mapping a query and a set of key-value pairs to an output [3]. The weighted sum of

the values is computed as the output of attention, where the weight is determined by the softmax

score of the query with the corresponding key.

In the Transformer model, the attention processor is also called attention head. Multi-head

Self-attention computes the self-attention score function describe in (4.2) on H different linear

projections of queries, keys, and values in parallel. Then the results are concatenated as follows.

MultiHead(I) = Concat

(
H∑
i=1

Attention(Qi,Ki,Vi)

)
, (4.3)

where Qi = IWQ
i , Ki = IWK

i , and Vi = IWV
i . The dimension of the learning parameters WQ

i ,

WK
i , and WV

i is dmodel× di, where di = d/H . By combining several similar attention results, the

attention will have stronger power of discrimination.
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Figure 4.1: Architecture of the proposed Transformer-based approach, Midformer, to NILM.

4.4 Proposed Middle Window Transformer Approach

In this section, we introduce our proposed Transformer-based approach for NILM problems, which

is termed middle window transformer (Midformer). Fig. 4.1 illustrates the overall architecture,

which consists of four main parts, including (i) patch splitting and initializing, (ii) cyclic shift

window, (iii) Transformer layers, and (iv) concatenation. Our intuition of designing this approach

is to utilize the Transformer’s attention ability to model the long range dependency in the energy

consumption data, while reducing the computational cost.

The existing methods [101, 102] exploit the attention mechanism for NILM by combining

CNNs with forms of self-attention. They first extract the feature map from input data by using

convolutional layers. The extracted feature map is then fed into the Transformer layers. They

both adopt global full self-attention in their models, which has a computational complexity that

is quadratic to the size of feature map. For efficient modeling and computation, we leverage the

technique proposed in the Vision Transformer (ViT) for image classification tasks [99], which

reduces the context length by partitioning images into small patches and using the patches as

input to the Transformer layers. A comparison of the existing approach and that adopted in this

chapter is presented in Fig. 4.2. In particular, Fig. 4.2(a) shows the original point-wise attention

projection method used in existing NILM works [101, 102], while Fig. 4.2(b) illustrates the patch-

wise attention projection method adopted in this chapter. As shown in Fig. 4.2(a), when creating

the attention matrix, the input will first be mapped into a space of depth d, which will then be used
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Figure 4.2: Comparing the point-wise and the patch-wise attention pattern.

by the attention mechanism to calculate the attention matrix. The length and width of the attention

matrix are the same as the depth of the space. From the comparison figure, we can visually see

that the patch-wise attention incurs significantly less computation than the point-wise attention as

the dimension of the attention matrix becomes much smaller.

4.4.1 Patch Splitting and Initialization

In the proposed Midformer model, the input I ∈ RW×dmodel is first split into a sequence of non-

overlapping patches of fixed-size {I1, I2, ..., Ik}, where Ii ∈ RW/k×d, for 1 ≤ i ≤ k, and k is

the number of patches. Each patch contains W/k samples, and is fed into a neuron network to

be projected into a d-dimension vector. Different from [101, 102], before the input data is passed

into the Transformer blocks, we do not need the convolutional layers to extract the feature map

and increase the hidden size of the input sequence. This part of essential operation is replaced

by individual neuron networks that project the patches. We also add position embedding to the

projection to maintain position information in the data. The output of this projection is referred as

patch embeddings.

4.4.2 Window Shifting

The patch-wise self-attention splits the input series of samples into non-overlap patches. However,

this approach breaks the data correlation at patch boundaries and ignores the connection across
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Figure 4.3: Comparison of Transformer and the proposed Midformer approach.

patches, which limit its modeling power. In order to capture the connection across patches while

still maintaining the computational efficiency of non-overlapping patches, we apply the shifted

window technique to broaden the receptive field, which is inspired by [113]. As illustrated in

Fig. 4.1, we cyclically shift the input I ∈ RW×dmodel to the right for W/(2k) positions (i.e., half of

the patch size); the right-most half-patch of samples are moved to the left-most part of the window.

The patches obtained from the cyclically shifted window of data are also fed into patch embeddings

as well, to create a patch-wise feature map as shown in Fig. 4.1.

4.4.3 Transformer Layers

The two feature maps created by patch embeddings are then fed into the Transformer layers. We

equally split the H heads into two parallel groups, where each group has H/2 heads (assume that

H is an even number). One group accepts the feature map created from the original input, and the

other group accepts the feature map created from the shifted input.

We follow the Transformer layer designed in [3], which consists of a multi-head attention

layer and multi-layer perception (MLP) layer. A LayerNorm (LN) layer is applied after each

attention layer and the MLP layer. A residual connection is used from the input to the first LN layer,

and from the first LN layer to the second LN layer. The architecture of the original Transformer

model is shown in the left plot in Fig. 4.3.
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We further enhance the existing Transformer layer and propose the Middle Window Transformer

(Midformer) layer, to achieve reduced computation complexity. The idea is simple: we only apply

global attention on N (e.g., N = 3) input patches in the middle range of the window as queries,

which is illustrated in the right plot in Fig. 4.3. The reason why we reduce the the number of

queries is that, most NILM models (e.g., s2p [1]) only predict the appliance’s power usage at the

center position of the window. The middle range area of the window is where we should focus

on. By reducing the number of queries, the complexity of the attention mechanism can be greatly

reduced. It is worth noting that only the number of queries is reduced here, and the number of

key-value pairs remains unchanged, which is fundamentally different from simply using a smaller

window size W and then calculating the full attention. This technique contributes to the class of

position-based sparse attention schemes, which reduce the required computations by limiting the

number of query-key pairs that each query attends to [114].

4.4.4 Concatenation

Finally, an MLP (i.e., a fully connected layer) is utilized to concatenate the outputs of the two

groups of Transformer blocks. The final MLP would restore the concatenated feature maps to the

desired output size, which is one for NILM problems.

4.4.5 Computational Complexity Analysis

Supposing each input’s dimension is W × dmodel, the patch size is W/k, the learnable parameter’s

dimension is dmodel × d, and the number of queries used in the Midformer layer is N . The com-

putational complexity of the global Multi-head Self-attention module in each layer is O (W 2 · d).

The high cost of computing the global limits its ability to handle the usually large window sizes

in NILM problems. However, with the proposed Midformer model, the computational complexity

of the Multi-head Self-attention module is reduced to O (N/k ·W · d). In the Midformer design,

both N and k are set proportional to the window size W (e.g., k = W/9 and N = k/3 = W/27
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in our experiments). Therefore, the computational complexity of Midformer is now linear to the

window size W .

4.5 Experimental Study

In this section, we introduce the datasets and the system configuration used in our experiments to

evaluate the performance of the proposed Transformer model. We then present our experimental

study of the proposed model and compare it with three baseline models.

4.5.1 Datasets

We use two real-world datasets, the REFIT dataset [4] and the UKDALE dataset [5] to evaluate the

performance of the proposed energy disaggregation method. The REFIT and UK-DALE datasets

are both recorded in England. They both provide house-level aggregate energy consumption as

well as individual appliances’ power consumption data. In particular, the REFIT dataset consists

of data from 20 households. Both the aggregate and appliance levels’ data were recorded every

8 seconds from September 2013 to July 2015. The UKDALE dataset includes data from five

houses. Each house’s aggregated energy consumption was recorded every 1 or 6 seconds, and the

appliance level data was measured every 6 seconds. In order to be consistent with data in different

datasets, the aggregate level and appliance level data are down-sampled to 8 seconds. Standard

score normalization is applied in data preprocessing; each sample x in the dataset is normalized as

x̂ = (x− x̄)/S, where x̄ is the sample mean and S is the sample standard deviation. We follow the

approach in [1] to set the sample mean and sample standard deviation values for each appliance.

Following the approach in our recent work [98], for pre-training, we use a large-scale NILM

dataset: i.e., the REFIT dataset. Specifically, we use the data from three houses as the pre-training

set and the data from two other houses as the testing set for each appliance. The specific houses

used and the amount of data from REFIT used to pre-train the model are summarized in Table 4.1.

We then use the UKDALE dataset to evaluate the generalization of the models. We use only a
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Table 4.1: Appliances and Houses Used in the REFIT Dataset [4]

Training and validation dataset

Appliances House Time period Samples (M)

Kettle 5, 7, 13 2013-09-26 to 2015-07-08 18.91

Dishwasher 4, 10, 12 2014-03-07 to 2015-07-08 19.36

Fridge 2, 5, 12 2013-09-17 to 2015-07-08 13.28

Washing
Machine 5, 7, 18 2013-09-17 to 2015-07-08 19.80

Microwave 5, 7, 18 2013-09-26 to 2015-07-08 19.80

Testing dataset

Appliances House Time period Samples (M)

Kettle 9 2013-12-17 to 2015-07-08 6.17
20 2014-03-20 to 2015-06-23 5.17

Dishwasher 9 2013-12-17 to 2015-07-08 6.17
16 2014-03-10 to 2015-07-08 5.72

Fridge 9 2013-12-17 to 2015-07-08 6.17
15 2013-12-17 to 2015-07-08 6.22

Washing 15 2013-12-17 to 2015-07-08 6.22
Machine 17 2014-03-06 to 2015-06-19 5.43

Microwave 17 2014-03-06 to 2015-06-19 5.43
19 2014-03-06 to 2015-06-20 5.62

small part of the data in House 2 of the UKDALE dataset to fine-tune the pre-trained model and

the rest of the unseen data of House 2 to test the performance of the fine-tuned pre-trained model.

There is no overlap between the testing data and the fine-tuning data. The detailed information of

the house and data from the UKDALE dataset used in our experiment is summarized in Table 4.2.

4.5.2 Model and Experimental Setup

Next we introduce the experiment setup and the models used to address the NILM problem. The

following three baseline models are evaluated for comparison purpose.
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Table 4.2: Appliances and Houses Used in the UKDALE Dataset [5]

Fine-tuning dataset

Appliances House Time period Samples (M)

Kettle, Dishwasher,
Fridge, Washing 2013-5-20 to
Machine, Microwave 2 2013-5-29 0.108

Testing dataset

Appliances House Time period Samples (M)

Kettle, Dishwasher,
Fridge, Washing 2013-5-30 to
Machine, Microwave 2 2013-10-10 1.592

• Sequence-to-point (s2p [1]): this baseline model uses the same structure of sequence-to-

point method as in [1].

• Bidirectional Gated Recurrent Units (Bi-GRU) [2]: this baseline model utilizes BiGRU,

rather than LSTM, to reduce the amount of model parameters while maintaining a similar

performance as the RNN model.

• Transformer (Transformer) [3]: this is the traditional Transformer model. It has the same

hyper-parameters as the Midformer model proposed in this chapter, which are summarized

in Table 4.3.

All the models are implemented using TensorFlow 2.6.0 and trained on NVIDIA RTX 2070

Mobile. We pre-trained all the models using the ADAM optimization algorithm [44] with a max-

imum of 50 gradient updates. We update the weights with a learning rate of 0.001 and use a

mini-batch size of 100. Both Midformer and Transformer incorporate 2 to 4 attention layers. The

projected dimension of Midformer is d = 64, and the number of heads is H = 8. The number of

patches is fixed at k = 9. Table 4.3 describes the detailed information of the hyper-parameters.

We fine-tune the pre-trained model using the stochastic gradient descent (SGD) method with

a momentum of 0.9 and a learning rate of 0.01.

75



Table 4.3: Hyper-parameter Setting of Midformer

Hyper-parameter Value

Window size 99 297 495 693
Batch size 100
Adam 0.001
Maximum pre-training epochs 50
Maximum fine-tuning epochs 10
Number of heads 8
Number of layers 2 to 4
Patch size 9
Projected dimension 64

4.5.3 Performance Metrics

We use two metrics to evaluate the performance of the proposed Transformer model, which are the

mean absolute error (MAE) and the signal aggregate error (SAE). These two metrics are defined

as follows.

MAE =
1

T

T∑
t=1

|ŷj(t)− yj(t)| (4.4)

SAE =
1

rj
|r̂j − rj| , (4.5)

where T is the duration of the period used to predict the output; yj(t) is the ground truth of power

consumption of appliance j and ŷj is the predicted value by the NILM models; r̂j and rj are

the predicted total energy consumption and the ground truth of appliance j over the period T ,

respectively.

4.5.4 Experimental Results and Discussions

Three scenarios are designed and examined in our experimental study, which are:

(i) The pre-trained model is evaluated on the same appliance in the same dataset;

(ii) The model is applied to a different dataset but on the same appliance;
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(iii) The model learned using one appliance in one dataset is evaluated on other appliances in a

different dataset.

Multiple cases are examined, which belong to these three scenarios and use the data from the two

public datasets.

The REFIT Dataset

The results in terms of the evaluation metrics on the REFIT dataset are represented in Table 4.4,

which covers Scenario (i) described above. In this experiment, models for each appliance is pre-

trained using the REFIT training set. Next, the data for the same appliance from two unseen houses

are used to evaluate the pre-trained model. For example, for kettle, the labeled kettle data from

Houses 5, 7, and 13 are used to pre-train the models, and then the kettle data from houses 9 and

20 are used to test the pre-trained models, while all the houses belong to the same REFIT dataset.

Table 4.4 shows that the proposed Midformer model achieves both lower MAE and SAE in most

cases (i.e., 6 cases out of 10 for MAE and 7 cases out of 10 for SAE). The average MAE and SAE

values are averaged over the two houses. Our model achieved the best MAE results in all the cases,

as well as the best SAE results for all the cases except for fridge. Compared to the baseline model

s2p [1], the MAE reductions for kettle, dishwasher, washing machine, microwave, and fridge are

35.21%, 18.23%, 16.54%, 9.35%, and 3.80%, respectively.

Fig. 4.4 presents the execution times of different models for training per epoch under differ-

ent window sizes. The Transformer and Midformer models both have two attention layers. The

training set includes 100K samples. From the figure, we can see that the s2p model [1] uses the

least amount of time; our proposed model uses the second least amount of time. The traditional

Transformer model, which has the same number of layers as Midformer, consumes the longest

time for training. The Bi-GRU model [2] uses less training time than Transformer for most of the

window sizes (except for W = 100K). However, it is still more time-consuming thank both s2p

and Midformer.
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Table 4.4: Model Performances on the REFIT Dataset

Kettle Testing House 9 Testing House 20 Average

Model MAE SAE MAE SAE MAE SAE

s2p 10.882 0.054 5.162 0.058 8.022 0.056
Bi-GRU 11.072 0.076 6.958 0.074 9.015 0.075
Transformer 7.874 0.052 3.971 0.056 5.923 0.054
Midformer 6.313 0.062 4.081 0.041 5.197 0.052

Dishwasher Testing House 9 Testing House 16 Average

Model MAE SAE MAE SAE MAE SAE

s2p 14.683 0.463 14.622 0.292 14.653 0.378
Bi-GRU 15.408 0.294 24.665 1.290 20.037 0.792
Transformer 14.159 0.463 21.533 1.348 17.846 0.906
Midformer 12.973 0.154 10.991 0.289 11.982 0.222

Fridge Testing House 9 Testing House 15 Average

Model MAE SAE MAE SAE MAE SAE

s2p 25.145 0.240 25.465 0.095 25.305 0.168
Bi-GRU 23.672 0.107 27.150 0.230 25.411 0.169
Transformer 29.153 0.366 23.970 0.507 26.562 0.437
Midformer 23.853 0.261 24.900 0.418 24.377 0.340

Washing
Machine Testing House 15 Testing House 17 Average

Model MAE SAE MAE SAE MAE SAE

s2p 10.808 0.562 8.277 0.284 9.543 0.423
Bi-GRU 11.377 0.499 12.068 0.293 11.723 0.396
Transformer 10.573 0.562 10.373 0.244 10.473 0.403
Midformer 9.236 0.281 6.694 0.229 7.965 0.255

Microwave Testing House 17 Testing House 19 Average

Model MAE SAE MAE SAE MAE SAE

s2p 5.342 0.210 3.984 0.458 4.663 0.334
Bi-GRU 4.879 0.563 5.455 0.662 5.167 0.613
Transformer 6.505 0.594 4.507 0.266 5.506 0.430
Midformer 4.395 0.190 4.058 0.250 4.227 0.220
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Figure 4.4: Execution times of s2p [1], Bi-GRU [2], Transformer (full attention) [3], and Mid-
former on the training set.

Considering the time and accuracy factors together, our proposed Midformer model consumes

very little time for training and achieves the highest accuracy.

The UKDALE Dataset

In this experiment, we verify the transferability performance of the pre-trained model across dif-

ferent domains (i.e., different datasets and appliances). We first fine-tune the pre-trained model,

which was originally learned using one appliance in the REFIT dataset, with a small portion of new

data from the UKDALE dataset, and then use the test set of UKDALE to verify the performance of

the model on the same or different appliance (see Table 4.2). These experiments cover Scerarios

(ii) and (iii) described above.

The performance of the pre-trained models on the unseen UKDALE dataset is presented in

Tables 4.5 and 4.6. Table 4.5 are the results of the pre-trained models without fine-tuning, while

Table 4.6 are the results of the pre-trained models after fine-tuning, on the same appliance or an

unseen appliance. The first column of the tables indicates the appliance and dataset learned by

the pre-trained model. The second column indicates the unseen test dataset and corresponding

appliances (same or different). The remaining columns are the MAEs and SAEs achieved by the

four models.
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Table 4.5: Results of the Pre-trained Model without Fine-tuning Tested on the UKDALE Dataset

Pre-trained Dataset Testing Dataset Bi-GRU s2p Transformer Midformer

REFIT UKDALE MAE SAE MAE SAE MAE SAE MAE SAE

Kettle Kettle 16.579 0.163 22.642 0.442 16.204 0.268 15.099 0.234
Dishwasher 72.909 0.498 66.627 0.669 70.220 0.562 71.449 0.558
Fridge 47.079 0.783 44.102 0.786 46.458 0.798 46.625 0.795
Washing machine 26.613 0.331 21.459 0.122 25.377 0.242 25.929 0.259
Microwave 24.651 1.432 18.755 0.625 23.448 1.272 23.580 1.297

Dishwasher Kettle 81.610 0.325 60.178 0.372 44.579 0.766 15.099 0.234
Dishwasher 80.330 0.103 81.828 0.329 47.492 0.798 71.449 0.558
Fridge 40.446 0.954 39.396 0.995 40.993 0.946 46.625 0.795
Washing machine 44.862 0.601 41.812 0.939 44.541 0.632 45.929 0.259
Microwave 44.487 0.294 44.362 0.362 42.864 0.263 43.580 1.297

Fridge Kettle 371.049 8.047 318.502 6.556 306.362 6.264 306.362 6.264
Dishwasher 379.803 3.338 305.632 4.484 308.999 4.471 313.630 4.569
Fridge 25.034 0.321 25.621 0.873 24.273 0.218 25.702 0.222
Washing machine 157.459 12.417 109.502 8.172 107.688 8.087 110.956 8.388
Microwave 1224.569 28.545 169.378 20.964 168.284 20.870 172.590 21.404

Washing machine Kettle 197.971 3.073 181.299 3.060 216.437 4.070 183.575 3.073
Dishwasher 171.177 2.266 162.226 1.938 149.851 2.800 135.068 1.949
Fridge 47.722 0.752 45.399 0.800 68.355 0.766 50.924 0.647
Washing machine 31.097 1.337 19.867 0.432 58.687 3.966 33.079 1.359
Microwave 79.898 8.825 66.123 7.040 99.997 11.766 65.980 7.091

Microwave Kettle 113.396 1.038 119.416 1.233 56.051 0.424 116.196 1.096
Dishwasher 121.416 0.515 129.421 0.670 62.974 0.624 129.026 0.627
Fridge 39.345 1.000 41.747 0.919 39.344 1 .000 41.670 0.929
Washing machine 11.629 0.995 17.279 0.471 11.726 0.985 16.329 0.545
Microwave 9.974 0.657 6.429 0.167 9.271 0.718 7.698 0.202

average 98.444 3.144 86.360 2.537 83.619 2.943 84.566 2.586

From Table 4.5, we can see that the results of the pre-trained models without fine-tuning have

relatively large errors. When the pre-trained model uses the same appliance as the test appliance,

the test results are better than that using a different appliance. Except for the Bi-GRU [2] model, the

other three models achieve similar MAE and SAE values, which are around 85 and 3, respectively.

From Table 4.6, it is obvious that fine-tuning has been very effective in reducing the error of all

the models on unseen dataset and appliances, since both the MAEs and SAEs of all the models are

greatly improved. For example, the average MAE of Midformer is reduced from 84.566 to 7.121,

and the average SAE is reduced from 2.586 to 0.056, after fine-tuning (huge improvements). In

the table, the bold numbers in each row indicate the best result among the four models obtained
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Table 4.6: Results of Pre-trained Model with Fine-tuning Tested on the UKDALE Dataset

Pre-trained Dataset Testing Dataset Bi-GRU s2p Transformer Midformer

REFIT UKDALE MAE SAE MAE SAE MAE SAE MAE SAE

Kettle Kettle 10.064 0.116 9.854 0.106 10.585 0.318 4.183 0.041
Dishwasher 39.001 0.409 4.463 0.017 14.511 0.153 5.135 0.040
Fridge 34.475 0.025 24.296 0.015 36.476 0.139 17.081 0.061
Washing machine 9.540 0.715 12.604 0.194 19.102 0.126 6.979 0.185
Microwave 14.192 1.014 5.800 0.169 4.275 0.018 4.183 0.013

Dishwasher Kettle 55.162 0.241 4.471 0.017 6.874 0.058 †3.837 0.010
Dishwasher 29.180 0.389 4.820 0.009 7.970 0.086 6.974 0.012
Fridge 34.949 0.030 28.004 0.196 36.237 0.113 15.312 0.162
Washing machine 10.137 0.758 11.812 0.328 9.490 0.328 5.301 0.049
Microwave 18.649 0.516 3.762 0.187 5.414 0.128 3.177 0.065

Fridge Kettle 64.616 0.440 8.009 0.023 5.159 0.018 4.520 0.043
Dishwasher 36.583 0.173 5.639 0.031 6.094 0.014 5.251 0.006
Fridge 24.059 0.032 13.798 0.083 16.588 0.144 †13.132 0.050
Washing machine 13.342 0.503 8.553 0.523 7.008 0.277 5.110 0.045
Microwave 13.889 0.455 5.402 0.250 5.497 0.175 3.126 0.171

Washing machine Kettle 37.098 0.435 5.994 0.027 7.482 0.014 5.213 0.003
Dishwasher 30.852 0.266 †4.254 0.012 5.377 0.003 5.406 0.040
Fridge 35.310 0.110 24.393 0.285 34.425 0.322 14.992 0.032
Washing machine 15.987 0.177 8.089 0.390 9.523 0.055 †4.887 0.114
Microwave 23.553 1.177 4.267 0.020 7.303 0.053 3.165 0.041

Microwave Kettle 8.424 0.078 8.268 0.068 7.443 0.064 6.114 0.020
Dishwasher 6.406 0.082 6.389 0.065 6.014 0.029 4.310 0.039
Fridge 27.256 0.120 17.572 0.012 17.428 0.036 22.551 0.022
Washing machine 14.767 0.661 13.904 0.380 6.806 0.374 5.456 0.059
Microwave 5.456 0.126 5.289 0.090 4.541 0.039 †2.630 0.028

Average 24.518 0.358 10.088 0.136 12.145 0.123 7.121 0.056

for the test set when using a pre-trained model of a particular appliance. For example, for pre-

trained model using kettle in REFIT and the target appliance kettle in UKDALE, the Midformer

model achieves the smallest MAE of 4.183 and the smallest SAE of 0.041. The number marked

by symbol “†” indicates the best model for that target appliance among all the pre-trained models.

For example, for the target appliance kettle, the pre-trained model of Midformer learned from the

source appliance dishwasher schieves the best MAE of 3.837. To better present the results, we

have summarized such information in Table 4.7.
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We can make the following observations from these results. (i) The proposed Midformer

model outperforms all other models on average and in most specific cases. (ii) Our proposed model

achieves superior transferability performance, which means we can use the pre-trained Midformer

model using one appliance for all other target appliances, resulting greatly reduced cost for model

pre-training. (iii) In most cases, the best result for a target appliance is obtained with the model

pre-trained using the same appliance. The best pre-trained model for fridge, washing machine, and

microwave in the UKDALE dataset is the model learned from the same appliance in the REFIT

dataset, respectively. This is intuitive since the pre-trained model will perform well if the test data

and training data share similar features. In Table 4.7, the proposed Midformer model accounts for

four of the five best results of transfer learning.

The predicted power consumption values of house 2 in the UKDALE dataset for the five ap-

pliances obtained by the four pre-trained models on the REFIT dataset (i.e., s2p, Bi-GRU, Trans-

former, and Midformer) for a specific time period are plotted in Fig. 4.5, along with the corre-

sponding ground truth values. Note that the “Aggregate” values are the input to these models to be

disaggregated into individual appliance’s power consumption. The figure shows that the proposed

Midformer model achieves the best performance compared to the three baseline models, except for

dishwasher (which is consistent with the results in Table 4.7). The Bi-GRU model fails to predict

the washing machine’s power state at some time instances, i.e., the washing machine’s state is on,

but it is predicted as off (see Fig. 4.5(d)).

4.6 Conclusions

In this chapter, we proposed the Midformer model to tackle the NILM problem. We utilized patch-

wise attention and reduced the query size to reduce the quadratic time complexity in traditional

Transformer models to linear complexity. We also focused on the transferability performance of

the models, which helped to reduce the model training cost and eased the deployment of the model

in various environments. Our experimental study using two real-world datasets demonstrated the
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Figure 4.5: Comparison of predicted power consumption values by Midformer, Transformer, s2p,
and Bi-GRU for the five appliances, along with the ground truth values.
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Table 4.7: Best Pre-trained Model for UKDALE Test Set

Test appliance Pre-trained appliance Model MAE SAE
in UKDALE in REFIT

Kettle Dishwasher Midformer 3.837 0.010
Dishwasher Washing machine s2p 4.254 0.012
Fridge Fridge Midformer 13.132 0.050
Washing machine Washing machine Midformer 4.887 0.114
Microwave Microwave Midformer 2.630 0.028

superior performance and stronger transferability of the proposed Midformer model over three

baseline, state-of-the-art models on addressing the NILM problem.
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Chapter 5

Summary and Future Work

In this thesis, we discuss two deep learning applications among smart meter data. The first applica-

tion is an LSTM based ensemble learning approach for short-term load forecasting. In the stacking

framework, the first-level learner consisted of LSTM models, each trained with a data cluster; the

second-level learner consisted of an FCC ensemble neural network for model fusion. An enhanced

second-order optimization algorithm was proposed to solve the ensemble problem. The second

application focuses on NILM problems. We first propose two novel pre- trained strategies based

on ensemble learning and Meta-learning in NILM problems. These pre-trained models are more

suitable for NILM problems than transfer learning models. We further explore the ability of the

Transformers model to handle NILM problems. In order to solve the issue that Transformer mod-

els are expensive to compute, we proposed Middle Window Transformer, an efficient and effective

Transformer-based approach for NILM tasks.

5.1 Future work

Potential future work can be categorized as follow.

5.1.1 Adversarial Attacks on DL-based NILM models

In Chapter 3 and Chapter 4, we proposed deep learning models to solve the NILM problem, which

achieved very high accuracy. However, deep learning models are vulnerable to designed adver-

sarial attacks, which can significantly degrade the accuracy of deep learning (DL) models for load
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monitoring. The adversarial attack is an essential security concern for DNNs. It is interesting

to study how to generate the adversarial samples and attack the DNN-based NILM identification

schemes—improving the security and robustness of the trained NILM model. Future research

could focus on the effects of non-targeted and targeted adversarial attacks on DNN-based NILM

identification.

5.1.2 Multi-task Learning-Based Non-intrusive Load Monitoring

The original NILM was defined as a single-point blind source separation problem. Different ap-

pliances need to construct different training data sets. However, multiple appliances models use

the same time series data as input. Thus, it can be transformed into multi-task problems, which

provide multiple outputs for input in one run. The multi-task model for NILM is aware of the re-

lationships among different appliances with less supervision and less computation. In light of the

need for practical NILM, our future work could focus on designing multi-task learning algorithms

that can accurately predict multiple appliances’ power usage simultaneously [115].

5.1.3 Lifelong and Federated Learning for NILM

The proposed pre-trained models for NILM rely heavily on fine-tuning data. We performed the

fine-tuned modeling in one go. However, the household system is evolving in many cases, e.g.,

replacing old and non-functioning appliances. Moreover, data security and user privacy have been

a big concern by customers. The insufficient fine-tuning data limits pre-trained models’ perfor-

mance. Lifelong Learning integrates Federated learning could solve this problem. In this system,

all data is stored locally, and the pre-trained model can be fine-tuned with the user’s data and

updated with the centralized system in real-time [116].
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