
Staff Scheduling in Service Systems with Non-Stationary Arrival Processes

by

Samira Shirzaei

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 11, 2021

Keywords: non-stationary, non-Poisson, staff scheduling, deep reinforcement learning,
service systems

Copyright 2021 by Samira Shirzaei

Approved by

Jeffrey S. Smith, Chair, Joe W. Forehand Jr. Professor of Industrial and Systems
Engineering

Konstantinos Mykoniatis, Assistant Professor of Industrial and Systems Engineering
Daniel Silva, Assistant Professor of Industrial and Systems Engineering

Aleksandr Vinel, Associate Professor of Industrial and Systems Engineering

Abstract

There are significant issues that cause customers’ dissatisfaction with service systems.

One of the most critical frustrations deals with the unpredictable waiting time in the queue

before getting service. This issue is even more noticeable in the systems with time-varying

arrival rates. Variation in arrival rates demands appropriate staffing level responses. Under-

staffing leads to higher waiting times in the line, and over-staffing causes higher system

costs. This dissertation covers different methods used to solve staff scheduling in this par-

ticular type of service system. The first approach is to discretize the time horizon into

adjacent blocks. These periods are stationary queuing systems, and we can apply queuing

methods to solve these problems. Next, we apply simulation-based optimization to find the

staffing level appropriate for the system. Finally, we can use a staff scheduling algorithm

to determine each staff member’s start and end working time. In the second method, we

apply Deep Reinforcement Learning (DRL) methodology to perform staff scheduling. This

method has many advantages over the previous one. Firstly, there is no need to estimate

the location of change-points in the arrival process since the neural network can learn when

and how to change the staffing levels. Next, unlike other approaches that require determin-

ing staffing levels first and then require carrying out staff scheduling, staff scheduling can

be completed in one step by applying the DRL approach. Lastly, since all studies in the

service systems area require data for analysis of their performance, the final objective of

this dissertation is to model non-stationary processes by characterizing the arrival process

and using the resulting models to generate the data with the same properties with matching

the dispersion ratio. We will develop data generation algorithms when the arrival data are

independent (renewal). The finding of this work and its future extensions can potentially

help service systems like airports and call centers to improve their performance and increase

their customers’ satisfaction.

ii

Acknowledgments

This dissertation is dedicated to my daughter, Anita, the most important person in my

life. She has made me stronger, better, and more fulfilled than I could have ever imagined. I

am grateful to my faithful parents, Marziyeh and Mohammad Sharif, whose encouragement

and constant love have sustained me throughout my life. I am thankful to my older brother,

Dr. Manoochehr Shirzaei, for his constant support, kindness, and encouragement. I am very

grateful to my loving husband, Brian, for his supports, especially during the last year.

I would like to express my appreciation to my adviser, Dr. Jeffrey Smith, for his con-

stant support during my PhD career. Indeed, without having his support and mentorship, this

journey was not possible. I would also like to thank the committee members, Dr. Jeffrey

Smith (chair), Dr. Konstantinos Mykoniatis, Dr. Daniel Silva, and Dr. Aleksander Vinel,

for their support and enriching insights.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Abbreviations . xiv

1 Introduction . 1

1.1 Problem description and significance . 1

1.2 Research objectives and contributions . 8

1.3 Organization of dissertation . 10

2 Literature Review . 11

2.1 Introduction . 11

2.2 Input process analysis . 11

2.2.1 Conclusion . 14

2.3 Generating data of non-stationary processes 14

2.3.1 Conclusion . 17

2.4 Change-point detection . 17

2.4.1 Conclusion . 18

2.5 Determining staffing levels . 18

2.5.1 Stationary approximation . 18

2.5.2 Simulation-based methods . 22

2.5.3 Numerical methods . 23

2.5.4 Fluid models . 25

iv

2.5.5 Empirical methods . 26

2.6 Deep Reinforcement Learning . 26

2.7 Summary of literature . 28

3 Staffing Levels in Service Systems with Constant Shift Length and Start Time . . 31

3.1 Introduction . 31

3.2 Problem Description and Formulation . 31

3.3 Discussion about waiting time function . 32

3.3.1 Considering average as the function for waiting time 32

3.3.2 Considering percentile as the function for waiting time 33

3.4 Simulation-based Optimization . 33

3.5 Description of the staffing level problems 34

3.5.1 Percentile as the function of waiting time 36

3.5.2 Determining staffing levels inside of the simulation process 40

3.5.3 Staff scheduling and defining shifts 41

3.5.4 Average as the function of waiting time 43

3.6 Performance evaluation . 45

3.6.1 Arrival processes with step patterns 46

3.6.2 Sinusoidal pattern in arrival process 48

3.6.3 Bi-modal pattern in arrival process 51

3.6.4 Point of sale arrival data . 52

3.7 Conclusion . 54

4 Flexible Staff Scheduling in Service Systems with Non-Stationary Arrival Pro-
cesses by Applying Deep Reinforcement Learning (DRL) 55

4.1 Introduction . 55

4.2 Overview of the problem . 56

4.2.1 Solution approaches . 58

v

4.3 Deep Reinforcement Learning . 59

4.3.1 Implementation of the Deep Reinforcement Learning technique to
flexible staff scheduling . 60

4.4 Description of how to use Deep Reinforcement Learning as a tool to deter-
mine staff rostering . 65

4.4.1 Definition of inputs . 66

4.4.2 Definition of components of the simulation model 72

4.5 Model validation and verification . 72

4.6 Performance evaluation of the solution approach 76

4.6.1 Arrival process . 76

4.6.2 Penalty parameters levels . 78

4.6.3 Deciding about the number of required replications 79

4.7 Applying the DRL approach to the use case, point of sale data of the grocery
store . 80

4.8 Comparison between DRL and SBO approaches’ outputs 82

4.8.1 Efficiency comparison . 82

4.8.2 Performance . 82

4.9 Conclusion . 90

5 Modeling and Generating Independent Data for Non-Stationary Processes 92

5.1 Introduction . 92

5.2 Definition of base process . 97

5.3 Existing method, combined inversion-and-thinning approach (CIATA) to
generate nonstationary non-Poisson process 97

5.4 Numerical inversion . 99

5.5 Overview of the algorithm used to generate data, in order to simulate the
non-stationary independent arrival process 102

5.6 Renewal base processes . 103

5.6.1 Phase-type distributions . 103

vi

5.6.2 Considering uniform distribution as base process 105

5.6.3 Truncated normal distribution as the base process 106

5.7 Example to describe the methodology to generate non-stationary renewal
random observations . 106

5.8 Performance evaluation of numerical inversion approach 108

5.8.1 Comparison between the proposed methodology in this chapter and
CIATA . 111

5.9 Conclusion . 114

6 Concluding Remarks and Future Work . 116

Appendices . 124

A Results of Deep Reinforcement Learning Approach 125

A.1 Results of experiments for Run 1, Run 2, and Run 3; stationary arrival process125

A.2 Interpreting the results of R1, R2, and R3 experiments 126

A.3 Output of the experiments for Run 4, Run 5, and Run 6 126

A.4 Interpretation of the results of Run 4, Run 5, and Run 6 127

A.5 Experiment results for Run 7, Run 8, and Run 9 127

A.6 Interpreting results of experiment 7, 8, and 9 128

A.7 Experiment result for Run 10- sinusoidal pattern 128

A.8 Experiment result for Run 11- sinusoidal pattern with higher frequency . . . 129

A.9 Experiment result for Run 12- sinusoidal pattern with higher amplitude . . . 129

A.10 Interpretation of the results of sinusoidal experiments (run 10, run 11, and
run 12) . 129

A.11 Experiment result for Run 13, 14 . 130

A.12 Interpretation of the results of run 13 and run 14 130

A.13 Experiment result for Run 15 . 131

B Resource code for algorithm 1 in chapter 3 . 132

vii

List of Figures

1.1 Queuing system . 2

1.2 Nonstationary and stationary arrival process over a day 3

1.3 The example of airport check-in counters for the average time-in-queue in
the system, with stationary arrival process with constant staffing levels over
entire day [1] . 3

1.4 Average number-in-queue in the non-stationary system with constant staffing
levels during the day . 4

1.5 Discretizing the arrival process of system (a) 4

1.6 Examples of time series with change-points [3] 5

1.7 Example of arrival rates in 24 hours with 1-hour and 30-minutes lengths
time blocks . 7

1.8 Arrival rate and corresponding resource schedule 9

3.1 The arrival process to the system . 35

3.2 Customer’s waiting times in a day and 99th percentile of waiting times . . . 39

3.3 Dividing time horizon into fixed length shifts 44

3.4 Waiting times in a day and 99th percentile of waiting times 45

3.5 Arrival process patterns . 46

3.6 Arrival rate to the point of sale in grocery store 53

4.1 Structure of artificial neural network . 64

4.2 Event in AnyLogic to perform the trained policy and output the action . . . 65

4.3 Process of staff scheduling with using DRL 66

4.4 Process to follow based on availability of the data 68

4.5 Process to prepare arrival process of point of sale data set 69

4.6 Functions, parameters, and variables in simulation model 73

viii

4.7 One trace line view of the simulation model 73

4.8 General overview of the point of sale in grocery store 75

4.9 Simulation view of one experiment’s run 76

4.10 Example of arrival process patterns . 78

4.11 Cashiers’ number of transactions during the day on Thursdays, Fridays, and
Saturdays . 81

5.1 The process of developing the model based on the available data set 94

5.2 The average arrival rate during 8 hours of simulation 95

5.3 Truncated normal distribution to generate non-negative values 95

5.4 Illustration of the numerical inversion method described in the example . . 101

5.5 Mean dispersion ratio estimation for D = 0.2 105

5.6 The dispersion ratio estimation and its confidence interval whenD1 = 0.076,
D2 = 0.41, and D3 = 1, red dashed line shows the target D value. 107

5.7 The dispersion ratio estimation comparison in case of different base pro-
cesses, left presents hyper-Erlang distribution, the middle one is normal dis-
tribution, and the one in the right shows Uniform distribution 108

5.8 Arrival rate function, with γ = 0.2 and γ = 0.5 109

5.9 Confidence interval estimation for D = 1.5, hyper-exponential distribution
as the base process . 110

5.10 The confidence interval estimation for D = 0.4, hyper-Erlang distribution
as base process . 110

5.11 Confidence interval estimation for D = 1.5, normal distribution as base
process . 111

5.12 Confidence interval estimation for D = 0.4, normal distribution as base
process . 111

5.13 Estimation of dispersion ratio when Q = 40 [23] 113

5.14 Comparison of our proposed method, left panel, and CIATA, right panel, in
estimating the target value of D with sinusoidal pattern in arrival process
and γ = 0.2 . 114

5.15 Comparison of our proposed method, left panel, and CIATA, right panel, in
estimating the target value of D with sinusoidal pattern in arrival process
and γ = 0.8 . 114

ix

List of Tables

3.1 staffing levels in a day with hourly time buckets 35

3.2 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes 37

3.3 Staffing levels in each time block with different types of rounding 38

3.4 Staffing levels in a day with hourly time buckets considering 95th percentile
of customers do not experience waiting time more than 10 minutes 39

3.5 Staffing levels after replicating inside of the SBO process 41

3.6 Optimal number of staffs in each shifts and beginning times 42

3.7 Staffing levels after replicating inside of the SBO process 43

3.8 Optimal number of staffs in each shifts and beginning times 43

3.9 Staffing levels . 44

3.10 Number of staffs in each shifts and beginning times 45

3.11 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes with step
pattern 1 in arrival process . 47

3.12 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes with step
pattern 2 in arrival process . 48

3.13 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes with
sinusoidal pattern 1 in arrival process . 49

3.14 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes with
sinusoidal pattern 2 in arrival process . 50

3.15 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes with
sinusoidal pattern 3 in arrival process . 51

x

3.16 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes with bi-
modal pattern in arrival process . 52

3.17 Staffing levels in a day with hourly time buckets considering 90th percentile
of customers do not experience waiting time more than 10 minutes with
point of sale arrival data . 53

4.1 Staffing level and staff rostering example 57

4.2 Number of staff member for each 15-minutes time block 62

4.3 Arrival process example for one day . 67

4.4 Training time for different cases . 70

4.5 The rounded up average number of staff for the case in which we trained the
model with a step arrival rate pattern, a reversed U-shaped pattern, and then
ran it with a bi-modal arrival process pattern 71

4.6 The rounded up average number of staff for the case in which we trained the
model with a step arrival rate pattern, a reversed U-shaped pattern, and then
ran it with a sinusoidal arrival process pattern 71

4.7 The rounded up average number of staff for the case model has been trained
with a step arrival rate pattern and a reversed U-shaped pattern, and then it
has been run with point of sale arrival data 72

4.8 Result of two solution approaches when average arrival rate is constant dur-
ing a day . 74

4.9 Factors and responses in the single task queuing system model 76

4.10 List of the set of experiments . 79

4.11 Experiment result for point of sale grocery use case, big penalty parameter 81

4.12 Mean staff rostering resulted from DRL and SBO- Low variability in arrival
process and big penalty parameters . 83

4.13 Performance metrics comparison . 84

4.14 Statistical test to compare performance metrics 84

4.15 Resulted staff rostering of DRL and SBO- High variability in arrival process
and big penalty parameters . 84

4.16 Performance metrics comparison . 84

4.17 Statistical test to compare performance metrics 84

xi

4.18 Resulted staff rostering of DRL and SBO- Sinusoidal arrival process and big
penalty parameters . 85

4.19 Performance metrics comparison . 85

4.20 Statistical test to compare performance metrics 85

4.21 Resulted staff rostering of DRL and SBO- Sinusoidal arrival process with
higher frequency and big penalty parameters 86

4.22 Performance metrics comparison . 86

4.23 Statistical test to compare performance metrics 86

4.24 Resulted staff rostering of DRL and SBO- Sinusoidal arrival process with
higher amplitude and big penalty parameters 86

4.25 Performance metrics comparison . 87

4.26 Statistical test to compare performance metrics 87

4.27 Resulted staff rostering of DRL and SBO- bi-modal arrival process and big
penalty parameters . 87

4.28 Performance metrics comparison . 87

4.29 Statistical test to compare performance metrics 88

4.30 Resulted staff rostering of DRL and SBO- step pattern 1 in arrival process
and big penalty parameters . 88

4.31 Performance metrics comparison . 88

4.32 Statistical test to compare performance metrics 88

4.33 Resulted staff rostering of DRL and SBO- step pattern 2 in arrival process
and big penalty parameters . 89

4.34 Performance metrics comparison . 89

4.35 Statistical test to compare performance metrics 89

4.36 Average staff rostering of DRL and SBO- point of sale arrival process and
big penalty parameters . 90

4.37 Performance metrics comparison . 90

4.38 Statistical test to compare performance metrics 90

5.1 The values of Dk, λk, and Pk for each day 96

xii

5.2 The table look up resulted from inversion method 101

5.3 Base process’s distribution and its parameters 102

5.4 The values of hyper-Erlang parameter k for different values of Dt ≤ 0.2 . . 102

5.5 Base process’s distribution and its parameters 107

A.1 Experiment result for R1-stationary arrival process, small penalty parameters 125

A.2 Experiment result for R2-medium stationary arrival process, high penalty
parameters . 126

A.3 Experiment result for R3-high stationary arrival process, big penalty param-
eters . 126

A.4 Experiment result for R4- low variability, small penalty parameter 126

A.5 Experiment result for R5- low variability, medium penalty parameter 127

A.6 Experiment result for R6- low variability, big penalty parameter 127

A.7 Experiment result for R7- high variability, small penalty parameter 127

A.8 Experiment result for R8- high variability, medium penalty parameter . . . 128

A.9 Experiment result for R9- high variability, big penalty parameter 128

A.10 Experiment result for R10- sinusoidal arrival process, big penalty parameter 129

A.11 Experiment result for R11- sinusoidal arrival process with higher frequency 129

A.12 Experiment result for R12- sinusoidal arrival process with higher amplitude 129

A.13 Experiment result for R13- step pattern 1 in arrival process 130

A.14 Experiment result for R14- step pattern 2 in arrival process 130

A.15 Experiment result for R15- bi-modal arrival pattern 131

xiii

List of Abbreviations

DRL Deep Reinforcement Learning

IID Independent and Identically Distributed

NHPP Non-Homogeneous Poisson Process

NN Neural Network

NSNP Non-Stationary Non-Poisson

NSP Non-Stationary Poisson

SBO Simulation-Based Optimization

xiv

Chapter 1

Introduction

1.1 Problem description and significance

There are extreme inefficiencies in the performance of service systems due to staffing

levels. However, with proper staff scheduling, we can improve a system’s performance.

When the arrival rate exceeds the service rate in a system, a queue builds up, and customers

are delayed, which causes a short-term imbalance in the system. In this research, we assume

the system is stable. If the long-term arrival rate exceeds the long-term service rate, the

queue builds infinitely, leading to long-term instability, which is out of the scope of this

study. The waiting time of the customers is negatively related to their satisfaction with the

service. Since the service rate is a function of the staffing level, controlling the staffing levels

is the key to controlling the service rate.

Our focus is on non-stationary non-Poisson processes since non-stationary Poisson pro-

cesses are well-studied and well-known. However, the models and methods we will develop

in this dissertation are general, and they can be used in both systems with non-stationary

Poisson and non-stationary non-Poisson arrival processes. Some examples of non-stationary

non-Poisson service systems are airports, healthcare systems, and call centers. For instance,

arrivals to the security check counters at the airport are generally non-stationary non-Poisson

processes since the service time in the previous station, check-in counters, does not neces-

sarily follow an exponential distribution and affects the arrival pattern of the next station.

We characterize the arrival process and determine staffing levels such that arriving cus-

tomers experience predictable waiting time in the queue. Focusing on predictable waiting

time is not necessarily focusing on obtaining minimum waiting time in the queue. It indi-

cates that the customers experience almost constant waiting times throughout the day.
1

The unpredictable waiting time in the queue is a significant issue for service systems.

In the systems with non-stationary arrivals, this is more noticeable. For instance, at the

airport, it forces customers to arrive earlier than necessary to the systems to make sure they

will not be late for their flights.

Figure 1.1 represents a queuing system, including the arrival process, queue structure,

and service system. The arrival process is the density function that determines the arrival

of customers to the queuing system. This distribution function can change during time,

which indicates that this process is non-stationary. The time-varying process could have

different density functions or the same distribution with different parameters during the time

horizon. The arrival rate represents the number of arrivals per time unit. Queue structure is

an essential element of the queuing system that shows the order customers are picked from

the queue to get service like first-in first-served policy. The service mechanism characterizes

the number of available resources and the distribution of the service time. Service rate is the

number of customers that can be served by each server per time unit.

Figure 1.1: Queuing system

Figure 1.2 shows an example of two arrival processes to the system, with the same

mean arrival rates in a day. The arrival process on the left,(a), represents the non-stationary

process, while the one on the right,(b), is stationary. In case (a), the arrival rate changes

noticeably over time, while for the process (b), this rate remains constant at 250 arrivals

per hour during the period. In processes like process (a), the numbers of servers should

not remain constant over the planning horizon and instead needs to match the arrival rate

pattern. The mismatch between arrival rate and service rate either results in under-staffing

or over-staffing. Under-staffing results in long customers’ waiting times, while over-staffing

increases the system costs.
2

Figure 1.2: Nonstationary and stationary arrival process over a day

For staff scheduling in the system (b), if we assume each server can serve one customer

every 3 minutes on average, a constant level of 13 servers per hour will result in relatively

short waiting times as shown in figure 1.3 which is the output of this system’s simulation

model for three replications. Whereas, in system (a), a fixed setting of 13 servers per hour,

Figure 1.3: The example of airport check-in counters for the average time-in-queue in the
system, with stationary arrival process with constant staffing levels over entire day [1]

over a day, will cause several idle resources at the beginning of the day and then a long line

of waiting for customers as the arrival rate increases. This phenomenon causes dissatisfac-

tion for customers. Figure 1.4 shows the number of customers in the queue resulting from

simulating the system (a) for three replications when the staffing level is constant over the

day. When the arrival process is time-varying, the most common approach (we will dis-

cuss the rest in chapter 2) to deal with non-stationarity is discretizing the time horizon into

disjointed, shorter periods for arrival rates assumed to be stationary. For this purpose, we

have to detect the change points from the boundaries of the periods in the discretized time

horizon.

In the non-stationary arrival process, the problem of staff scheduling is more compli-

cated. Figure 1.5 shows a piece-wise stationary graph of the arrival process in system (a),

3

Figure 1.4: Average number-in-queue in the non-stationary system with constant staffing
levels during the day

in which we divided the day into 24 equal-length segments. Next, we can consider each

of these parts as a system, like a system (b), and determine the staffing level for each one

independently. In this system, we assumed that the changing points in the arrival process are

hourly. However, in real-world systems, these change-points are not always equally spaced

and generally do not start and stop at known times (i.e., on-the-hour as shown above), and

that is where the change-point detection process comes in. In chapter 3, we will apply the

proposed algorithm in [2] to detect these change-points.

Figure 1.5: Discretizing the arrival process of system (a)

Some non-parametric approaches detect change-points in the time series without any

information about the type of distribution function. These algorithms estimate the number

of change-points and of the place they occurred [2]. The non-stationary process consists of

changes in the type of distribution function or some of the parameters. Figure 1.6 shows data

sets with some change-points. The X-axis represents the time, and the y-axis illustrates the

value of parameters in each case. The vertical lines in each graph illustrate the position of

4

these changes. Data set 1 represents the case that the mean of the arrival process distribution

is changing over time. Data set 2 illustrates the case with changes in the variance of the

arrival time. Changes in the co-variance are presented in data set 3. Finally, data set 4

presents the changes in the frequency of the sinusoidal function in the data set with the

sinusoidal pattern. These examples are about situations in which the distribution function

parameters change over time, but the type of distribution family does not change (i.e., the

distribution function is a normal distribution in the entire time horizon). Related works

Figure 1.6: Examples of time series with change-points [3]

considered the equal-length segments when converting the time horizon into a piecewise

stationary time series. In the first method used in this research, we will use the algorithm

proposed in [4] to determine the change points in the time-varying arrival process. This

algorithm can identify changes in the distribution function. Then, by applying methods for

density function estimation, we can determine the distribution function of the data in these

segments. In our research, we assume the arrival process follows a general, time-varying

distribution function.

5

In some non-stationary arrival processes, the arrival rates change gradually over time.

Therefore, change-point detection might not detect the changes immediately at the exact

location that those changes took place. In this case, we suggest using some visual tools

like histograms. Ansari et al. [5] proposed a tool called HistoRIA that can plot various

rate histograms of the arrival data with user-defined time block lengths. This tool can help

estimate the location of change-points in the type of data sets that changes in rates occur

slowly. The figure 1.7 extracted from our paper [1] shows the histogram of interarrival times

for two cases, first 1-hour time block and then 30-minutes time buckets. For instance, time

blocks 27 and 28 have almost the same arrival rates in the bottom image. However, rates in

time buckets 15 and 16 are slightly different. If the changes are in the distribution function,

visual analysis cannot detect changes, and a change-point detection method is required.

6

Figure 1.7: Example of arrival rates in 24 hours with 1-hour and 30-minutes lengths time

blocks

Another approach to solving staff scheduling problems is to apply learning methods

without partitioning the arrival process into approximately stationary segments. This ap-

proach is based on reinforcement learning. First, it trains the Neural Network (NN) to find

the best possible policy. Then it applies the trained policy into the simulation model to

find the optimal staff scheduling. This training process improves the efficiency of the staff

scheduling procedure since it can be completed in one step, and it does not require perform-

ing change-point detection on the arrival process.

Most research related to determining staffing levels needs arrival times data or arrival

rates over the planning horizon as the input. This dissertation endeavors to characterize the

7

arrival process by developing models and then, by applying these models, propose algo-

rithms to generate data with the same properties. Motivated by the above, this dissertation

aims to provide an integrated and joint analysis of non-stationary processes, including devel-

oping models and data generation algorithms as well as staff scheduling of service systems.

Specifically, the stream of research performed in this dissertation investigates the following

research questions that the current literature left unanswered:

1. What is the effect of using the average of waiting times in the entire day to staff

scheduling instead of the average of each time block on the customers’ waiting times?

2. Does performing change-point detection change the result of staffing levels and cus-

tomers’ waiting times?

3. How predictable waiting times can be achieved in the service systems with a non-

stationary arrival process?

4. How training is performed in the service system’s staff scheduling specifically with

the non-stationary arrival process?

5. What are the inputs to the training model to develop staff scheduling algorithm in

non-stationary service systems?

6. How to use the DRL to solve staff scheduling problems?

7. How to develop models to generate non-stationary data?

8. How to generalize the process of data generation and modeling of non-stationary pro-

cesses in the way it can produce both non-stationary non-Poisson and non-stationary

Poisson arrival data?

1.2 Research objectives and contributions

Three main objectives are considered in the present research. First, we determine the

non-stationary service systems’ staffing levels to achieve predictable waiting times. If the

only constraint is customer satisfaction, we will expect the shape of the arrival process and

8

the staffing levels’ distribution functions to look almost the same. Figure 1.8 shows this

situation. On the left is the arrival rate distribution, and on the right are the final staffing

levels, which follow the same behaviors.

Figure 1.8: Arrival rate and corresponding resource schedule

After performing change-point detection, we define the number of servers in each time

bucket. Then, we add the constant shift length constraint in order to determine the staff

scheduling. We consider another constraint in the model to achieve predictable waiting

times. This constraint will minimize the variations in the waiting times and force the waiting

times in time blocks to be as close as possible. We consider the average and percentile of

the waiting times as the functions that define the service level. These functions are the most

common in the reviewed literature. For the average, there is an approximation formula used

to solve the staffing scheduling problem. Since there is no estimation formula to calculate

the percentile of waiting time over a day, we will use the simulation-based optimization

(SBO) method to get the optimal solution.

The second objective will expand the problem to include flexible shift scheduling with

job rotation. By flexible shift scheduling, we mean the workers can start working at any time

of the day, and there are no predetermined starting times. Job rotation indicates a worker can

switch a job that it is currently performing after l hours and start another job in the network.

We will determine the beginning of the shift for each server with working hour limitations at

a specific job. In this case, we do not consider the predetermined beginning of the shift for

all servers. However, instead, we determine the start time of each server. One example is the

9

scheduling of doctors’ shifts at the hospital. Instead of having predefined, fixed start times

like 7:00 a.m. and 7:00 p.m., we determine each doctor’s beginning of the shift. This model

will allow us to have flexible start times. We will set another constraint to obtain predictable

waiting times in the queue. To accomplish this, We set an upper limit for the variation of

waiting times over a day.

Stationary approximation approaches are most commonly applied for performance eval-

uation in time-varying systems [6]. In these approaches, they segment the time and use a

series of stationary models to determine the staffing levels [7, 8, 9, 10, 11, 12, 13]. This

dissertation is the only research that solves the staffing problem without stationary approx-

imation to the best of our knowledge. We apply Deep Reinforcement Learning (DRL) to

solve the staffing problem. In this approach, the Neural network (NN) learns from the envi-

ronment (simulation model) and makes necessary changes to the number of staff members.

The third objective considers modeling and generating data of the non-stationary pro-

cesses. The arrival process is one of the main components of the simulation models’ input

to simulate systems like airports, hospitals, and supply chain systems. Since the arrival pro-

cess to some systems like call centers and healthcare systems are not Poisson [14], there is a

need to go beyond the Poisson process. We develop general models to characterize both the

non-stationary non-Poisson and non-stationary Poisson processes. Our proposed model and

data generation methodologies are applicable for the case the arrival data are independent.

1.3 Organization of dissertation

The chapters of this dissertation are organized in the following way. Existing related

works are presented in chapter 2. A method of staff scheduling in a service system with a

non-stationary arrival process is discussed in chapter 3. Chapter 4 will describe the DRL

methodology used to perform flexible staff scheduling in a non-stationary service system.

The proposed method will achieve predictable waiting times objective. Modeling and gen-

erating data of the non-stationary arrival process are developed in chapter 5. This chapter

will establish methods to model and generate independent data from renewal processes.

Concluding remarks and future works will be discussed in chapter 6.

10

Chapter 2

Literature Review

2.1 Introduction

This chapter presents an analysis of the gap and strength of the stream of research on

four main areas, namely input analysis, change-point detection, non-stationary data gen-

eration, and determining staffing levels in service systems with non-stationary processes.

Obtaining the optimal staffing levels has a direct relationship with the arrival process to the

system. In the time-varying arrival process, characterizing the input process to the system

is more critical since any departures from the stationary arrival process require different

staffing levels during the planning horizon.

When the arrival rate is higher than the service rate, more servers are needed to con-

tinue working without facing a short-term imbalance. Since data from the real world is not

available most of the time, or even if it is, the available data is not sufficient to replicate

enough number of the simulation model to reduce the variability in the outputs, generating

data to analyze the system is an important subject. There is a long history of generating data

from Poisson distribution [15], but when it comes to generating data from non-stationary

non-Poisson processes, there are a few works in the literature. This chapter describes the

related existing works and how we will improve their shortcoming in this dissertation.

2.2 Input process analysis

The input modeling process is how the arrival process in the real-world system is trans-

lated into mathematical models. In the simulation, there are several places where specifying

11

probability function is needed to represent random numerical inputs, like inter-arrival times,

service times, machine failures, travel times, the demand of the products, and many other

examples. Input modeling consists of four main steps: 1- Assessing the IID assumptions. 2-

Select some candidates for density function according to the characteristics of the process

and graphical experiment of the data. 3- Determine the value of the model’s parameters.

4- Assessing the goodness of fit [16]. Most simulation textbooks assume either the IID as-

sumptions are met, or the process is non-stationary. The process that has random parameters

and random observations is stochastic. Stochastic processes can be classified into station-

ary and non-stationary ones [17]. In many queuing systems, the arrival rate changes over

time. Examples are the passengers arriving at the check-in counter in the airport, fast-food

restaurants over a day, and emergency rooms over a flu season. Ignoring non-stationarity

in the arrival process can cause underestimation or overestimation in the output results, just

as ignoring correlation across inputs can cause the same issue in determining output values

[16]. To characterize this non-stationarity, Green et al. [18] numerically investigated the

effect of non-stationarity on the performance of multi-server queuing systems with expo-

nential service times and sinusoidal arrival rates. They determined when and how station-

ary model approximation can be used for the non-stationary process. The results showed

that stationary models could noticeably underestimate the delays when the system is only

non-stationary. In addition, they showed expected delay and probability of that increase by

increasing the amplitude of the sinusoidal arrival rate function. Another finding is that the

expected queue length and probability of delay also increase when the sinusoidal arrival

rate function frequency increases. A modification of the simple peak hour approximation

(SPHA) for estimating peak congestion in the systems with exponential service times and

time-varying periodic Poisson arrivals is proposed in [19]. By SPHA, they mean the peak

in the curve of the point-wise stationary approximation (PSA). They considered M(t)/M/s

systems with a sinusoidal arrival rate function for the analysis. They compared the lagged

point-wise stationary approximation (lagged PSA) with SPHA using the probability of delay

and found that lagged PSA is always more accurate than SPHA, and the results have smaller

12

errors when average service times are greater than half an hour in 24 hour period. They con-

cluded that PSA could support better capacity decisions than SPHA to achieve a targeted

probability of delay when the service rate is less than two since the SPHA is inaccurate.

However, this method is applicable for the cases the arrival process is Poisson and can not

be used in general arrival processes. While simulating a process, there is a need to generate

data. A non-parametric estimate for the mean-value function of non-homogeneous Poisson

processes (NHPP) with the long-term trend or cyclic effects that display non-trigonometric

characteristics in some cases was developed in [20]. They proposed a multi-resolution algo-

rithm that uses the inversion method to simulate the non-stationary Poisson process. They

continue this work in another one which is presented in [21]. They considered modeling and

simulating arrival processes that may show a long-term trend with periodic phenomena (like

daily and weekly cycles) or both types to automate the proposed algorithm of [20]. They de-

veloped some steps in order to achieve this purpose. First, they assumed the arrival process

follows non-homogeneous Poisson processes. Second, to show the accuracy and flexibil-

ity of the automated multi-resolution procedure, they used 100 independent replications of

eight selected test processes, applied comprehensive experimental performance evaluation,

and developed an estimation for the mean-value function when the arrival process has a

long-term trend. A nonstationary non-Poisson arrival process was developed in [22]. Simu-

lation of time-varying non-Poisson processes is not straightforward, and for generating this

type of process, we have to use the inverse of the cumulative density function. Because the

inverse function is often unavailable, they constructed an accurate approximation of it and

discussed application issues. In some cases, simulation models of real-life systems assume

a stationary Poisson process, and when the process is time-varying, it is natural to assume

a non-stationary Poisson process. However, this assumption causes an inaccurate represen-

tation of the arrival process in many systems, leading to higher or lower variability in the

arrival process than its reality.

13

2.2.1 Conclusion

Present works analyzed several options when the arrival process is a non-stationary

Poisson process, including different arrival rate patterns. However, there is still a gap in

characterizing non-stationary non-Poisson arrival processes with various trends like long-

term and short-term ones. The arrival process in most of these systems does not follow the

Poisson distribution, and assuming it is Poisson, it can reduce the outputs’ accuracy.

2.3 Generating data of non-stationary processes

In the stochastic simulation modeling of complex systems, the arrival processes are

one of the parts that must receive special attention. Sometimes, the arrival rates change

over time. Depending on the system, these rates could change hourly, daily, weekly, yearly,

or follow some other trends [23]. In the non-stationary Poisson process’s case, when the

rate function and associated mean-value function are given, two well-known methods in the

literature are inversion and thinning to generate data. The thinning method in the simplest

form was proposed in [15]. This method is based on deleting the points whose correspond-

ing rate function is greater than the upper bound of the rate function. The thinning method

with a given rate function can be implemented computationally simply to construct a ho-

mogeneous process. The rate function of this process is the maximum value of the given

rate function. Because of the additive properties of the Poisson process, the method of thin-

ning is working. Most commercial simulation packages used the thinning-based method to

generate non-stationary Poisson data. There are many systems where the arrival process

does not exhibit Poisson distribution and even is not approximately close. Gerhardt and

Nelson [24] extended techniques for transforming a stationary Poisson process into a non-

stationary Poisson arrival process (NSPP) by transforming a stationary renewal process into

a non-stationary, non-Poisson process (NSNP). They provided an algorithm for using thin-

ning and inversion methods. The base process in their inversion algorithm has the general

cumulative distribution function, G. They claim X1, the time until the first event, may not

follow distribution G. They used Ge to represent the cumulative distribution function of the

14

first arrival event. λ(t) represents the arrival rate function and its cumulative distribution

function is Λ(t) =
∫ t

0
λ(u)du .

1. Set V0 = 0, index counter n = 1. Generate S1 ∼ Ge. Set V1 = Λ−1(S1)

2. Return interarrival time Wn = Vn − Vn−1

3. Set n = n+ 1. Generate Xn ∼ G. Set Sn = Sn−1 +Xn and Vn = Λ−1(Sn)

4. If Sn ≥ T stop; otherwise go to step 2.

Where for s ∈ R, Λ−1(s) ≡ inf{t : Λ(t) ≥ s}.

The transformation preserves specific properties of the marginal variance and depen-

dence structure of the base process. The researchers’ proposed method is useful when the

mean-value function is easily invertible, µ(t), µ(t) =
∫ t

0
λ(u)du [23]; otherwise, we can not

use this method directly to model the process. One approach to solving this issue could be

to divide the time horizon into lower piece-wise linear arrival rates, easily invertible. As a

particular case, they analyzed the resulting process in the non-stationary Poisson process.

They began by setting a value λ∗ ≥ maxt≥0λ(t). Next, they assigned a stationary re-

newal process the arrival rate λ∗ and distribution G (Ge for the first event) with mean arrival

time (λ∗)−1 and variance equal to C2/(λ∗)2.

Their proposed thinning algorithm for a non-stationary renewal process is as follows:

1. Set index counters n = 1, k = 1, and T0 = 0. Generate S1 ∼ Ge

2. Generate U1 ∼ Uniform[0, 1]. If U1 ≤ λ(S1)/λ∗, then

a. Set T1 = S1

b. Return interarrival time Y1 = T1 − T0

c. Set k = 2

3. Set n = n+ 1. Generate Xn ∼ G. Set Sn = Sn−1 +Xn.

4. Generate Un ∼ Uniform[0, 1]. If Un ≤ λ(Sn)/λ∗, then

15

a. Set Tk = Sn

b. Return interarrival time Yk = Tk − Tk−1

c. Set k = k + 1

5. Go to step 3.

One disadvantage of this method is that it may be computationally inefficient if λ(t) � λ∗

over a substantial range of values for t, resulting in a relatively large number of rejections

[23]. In general, for non-Poisson base distribution, C (dispersion ratio) of generated data

from a thinning method does not converge to C of the base process.

For each thinning and inversion method, they proposed a technique for specifying a re-

newal base process. However, the proposed method does not cover the cases with dependent

arrivals to the system. For this purpose, in another work, they developed a tool for generating

and defining the time-varying, non-renewal arrival process for simulation was constructed

in [25]. The user’s inputs required to provide are desired piece-wise constant arrival rate,

cv2, and lag-1 autocorrelation of the base process. This tool is appropriate for evaluating the

effect of non-stationary, non-exponential, and non-independent arrivals on simulation out-

puts and performance. The drawback of this tool is that it requires a piece-wise stationary

arrival process or easily invertible arrival function, which makes the application of this tool

very limited.

Liu et al. [23] proposed an algorithm to improve drawbacks in [24]. In their work,

they showed the importance of dispersion ratio (variance-to-mean ratio; C(t) = V ar[N(t)]
E[N(t)]

in which N(t) is representing the arrival process) for modeling non-stationary non-Poisson

processes. They developed the model by combining thinning and inversion methods. First,

they approximated the majorizing rate function, which is piece-wise constant. Second, they

computed its associated mean-value function. The next step generated an equilibrium re-

newal process whose noninitial inter-renewal times follow Weibull distribution with vari-

ance equal to dispersion ratio and the mean equal to one. Then they inverted the majorizing

mean-value function to generate majorizing non-stationary non-Poisson process (NSNPP)

16

and used the thinning method to have NSNPP with the given arrival rate function. We will

present more details about their proposed algorithm in section 5.

2.3.1 Conclusion

One of the limitations of the proposed method in [24] is that it is computationally

inefficient if λ(t) � λ̃ for noticeable range of t values; in which λ(t) is the time-varying

arrival rate and λ̃ is the upper bound for λ(t) [26].

For constructing piece wise-constant majorizing function of the arrival rate function,

λ(t) in [23], they divided the time horizon to 200 equal-length sub-intervals. One drawback

of this approach is, depending on the complexity of the arrival rate function, this number of

sun-interval may vary, and it demands more computation to determine the optimal number

in each specific arrival rate function. Chapter 5 will develop models and data generation

algorithms to overcome these limitations in non-Poisson non-stationary data generation.

2.4 Change-point detection

Change-points are when the probability distribution of a time series of stochastic pro-

cess changes, and change-point analysis is the process of detecting these changes. Detecting

these change points is helpful in modeling and predicting time series. Changepoint detection

has broad application areas such as human activity analysis, climate change detection, and

image analysis [27]. Liu et al. [3] developed an algorithm to detect change-points in non-

stationary time series. They used relative Pearson divergence as a divergence measure using

direct density-ratio estimation for their purpose. The proposed relative unconstrained least-

square importance fitting (RULSIF) method and experiments on artificial and real-world

data sets proved its performance. A method to implement multiple change point analysis

of multivariate observations when they are independent was proposed in [2]. This method

can detect any type of changes in distribution without any assumptions of the existence of

αth absolute moment (α is the moment index used for determining the distance between

and within segments). Their method can also estimate the number of changes and their

locations, and it does not need prior knowledge or additional analysis. They assumed the

17

unknown number of change points is constant, using the maximization of goodness-of-fit

statistics to estimate that.

2.4.1 Conclusion

After executing change-point detection algorithms in section 2.4, we realized method

proposed in [3] has a delay in detecting the change-points. In addition, when the arrival

rate changes over time, but their values are close to each other, for instance, 12 arrivals in

first time block and 15 arrivals over the next time bucket, both methods performed poorly in

detecting the location of change-points. Developing an algorithm to detect change points is

out of this dissertation’s scope since this dissertation focuses on staff scheduling and non-

stationary arrival data generation.

2.5 Determining staffing levels

Staffing drives costs and service quality in most service systems. Therefore, determin-

ing staffing levels for these systems plays a critical role, as real-life systems have many

sources of variability. A literature review on staffing and scheduling approaches when the

demand is non-stationary was performed in [6]. They considered references published dur-

ing 1991-2013, classified them by system assumptions, performance evaluation methods and

performance metrics, optimization approach, and application area. The performance evalu-

ation methods and metrics are a stationary approximation, simulation, numerical methods,

fluid models, and empirical methods. In the optimization approach, they classified the refer-

ences to staffing optimization and shift schedule optimization classes. We applied their idea

for classification by performance evaluation methods and performance metrics.

2.5.1 Stationary approximation

Stationary approximations are the most commonly applied approach for performance

evaluation in time-varying systems [6]. These approaches segment the period and use a

series of stationary models to determine the staffing levels.

18

Izady et al. [7] set the minimal hour-by-hour medical staffing levels for achieving the

government target (reducing patients’ waiting times) in the presence of complexities like

time-varying demand, multiple types of patients, and resource sharing. They applied hourly

arrival rates to the total annual attendance of 87,000 patients (an average-sized A&E in the

UK). A day-of-week effect was not observed in the survey data. They suggested an iterative

scheme that uses infinite server networks, the square root staffing law, and simulation to

develop a good solution. Square root staffing law was proposed to achieve the target proba-

bility of α, and it can be calculated as follows: s(t) = dm∞(t) + β
√
m∞(t)e, where m∞(t)

is the time-dependent offered load, and β is the quality of service parameter. The time-

dependent offered load function m∞(t), estimated by the average number of busy servers in

Mt/G/∞ queue. In this system, the arrival process is a non-homogeneous Poisson process,

service time follows general distribution, and there are infinite servers.

An optimal staffing level in the multi-skill call center by minimizing the cost of servers

and service level constraint by using an iterative cutting-plane algorithm was determined in

[8]. They expressed service levels as staffing functions for a fixed sequence of random num-

bers driving the simulation. They assumed the arrivals are stationary Poisson process with

rate λ. They explored the difficulties encountered with more significant problem instances

and developed (heuristic) methods to develop these problems practically. These heuristics

include getting an initial set of constraints by solving a max-flow problem, computing finite

differences with steps larger than one (selected adaptively), and rounding up the solution of

an LP instead of solving the exact IP. In addition, the methodology replaces the unknown

expectations in the constraints of the original problem by sample averages. They relaxed the

nonlinear service-level constraints and progressively added linear constraints until the opti-

mal solution satisfied all service-level constraints. They showed their proposed approach’s

performance by testing it on moderate and large centers. This method is not applicable in

this dissertation as both service time and interarrival times follow exponential distribution.

A staffing problem with uncertain arrival rates was considered in [9]. The objective is to

minimize the total cost of agents under some chance constraints. They assumed the arrival

process over a day for a specific type of call is time-homogeneous Poisson which its rate

19

can vary day-to-day. The service level in their problem is a fraction of answered calls over

a specific time block. As the first step, they determine initial staffing based on the imper-

fect forecast of the arrival rates. This staffing can be corrected with recourse actions by

adding or removing agents at the price of some penalty costs. For the solution method, they

combine simulation, mixed integer programming, and cut generation. They consider chance

constraints that require the QoS over a day to satisfy a minimum probability threshold in-

stead of constraints defined on the expectations, which are never observed in reality. They

assume a day with only one period, and the arrival rate stays constant throughout the day.

For probability functions of the chance constraints, they used simulation to approximate

their empirical values. Another study in staffing problems with probabilistic constraints in

an emergency call center was investigated in [10]. In this problem, there is one set of staff

groups. They assumed these characteristics for the system: (i) All agents are identical and

can answer all call types, (ii) the average service time is low compared to other call centers,

and the buildup of a queue is very rare. They formulated an average sample approximation

(SAA) and then proposed a fast and straightforward simulation-based heuristic algorithm to

obtain a good solution for this SAA. The idea of the method is to first find the ”right” number

of agents period by period, then adjust for interaction and global constraints via simulation.

The arrival processes can be arbitrary but are usually non-stationary Poisson with random

arrival rates, dependent across periods. Finally, the day is divided into P periods of equal

length. The performance measure in this problem is average waiting time which in chapter 3,

we will show is not a good enough performance measure as the overall average is unbiased in

terms of an outlier (in this case high) waiting times in some time blocks. Some ways to cope

with time-varying demand in determining staffing levels problems were discussed in [11].

To present a single-skill varying demand, they consider the Mt/GI/st + GI model, a non-

homogeneous Poisson process with varying arrival rates and independent and identically

distributed service times. Staffing requirements in service systems have been considered in

[28]. Their focus was on the queuing system, M/GI/st + GI , which has a non-stationary

Poisson arrival process, general service time, and general abandonment probability distri-

bution. They adapted stationary queuing models for use in non-stationary environments

20

to capture time-dependent performance and set staffing requirements. A non-Poisson non-

stationary arrival process that includes, as a particular case, the non-stationary Cox process

(a modification of a Poisson process in which the rate itself is a non-stationary stochastic

process) was investigated in [13]. They modified the many-server heavy-traffic approxi-

mation for non-Poisson arrivals and tried to determine staffing levels to achieve the same

service level as the non-stationary Poisson arrival case. They used simulation experiments

with non-stationary Markov modulated Poisson arrival processes with sinusoidal arrival rate

functions to demonstrate that the staffing algorithm effectively stabilizes the time-varying

probability of delay at designated targets.

Methods to perform time-dependent staffing for many-server queues were investigated

in [29] to achieve time-stable performance when the arrival process is time-varying. It

resulted in that it suffices to target a stable probability of delay. Their focus was on the

Mt/M/st + G model with customer abandonment and a non-homogeneous Poisson arrival

process. They showed simulation experiments that the iterative-staffing algorithm (ISA)

leads to time-stable delay probabilities across many target delay probabilities. In addition,

they showed that with ISA, other performances like agent utilization, abandonment probabil-

ity, and average waiting times are stable. They compared the performance of ISA with PSA

(Point-wise stationary approximation). Our problem in chapter 3 considers the average and

percentile of the waiting time in each time block instead of the overall average over a day.

We will discuss how that affects the performance. Green et al. [30] evaluated the practice

of determining staffing requirements in service systems with random cyclic demands using

a series of stationary queueing models. They considered Markovian models with sinusoidal

arrival rates and used numerical methods to show that the commonly used ”stationary in-

dependent period by period” (SIPP) approach to set staffing requirements is inaccurate for

parameter values corresponding to many real situations. They showed that SIPP could result

in staffing levels that did not meet target delay probability and identified domains for which

SIPP will be accurate. They proposed two simple modifications of SIPP that will produce

reliable staffing levels in models that span a wide range of practical situations. The relative

amplitude was identified as the major influencing factor in the reliability of the method. A

21

quick overview of issues like building realistic models and developing tools to simulate these

models, and finding a good approximation for staffing levels in call center management was

given in [31]. First, they discussed a two-step approach for determining the staffing levels in

a multi-skill call center, which first computes the optimal staffing for each period and second

to cover this staffing by a set of working shifts to achieve minimum cost. They mentioned

that this approach is producing sub-optimal solutions. They considered an upper bound for

the waiting times as the service level. This paper did not execute any change-point detection

on the arrival process and assumed changes are every half an hour. The problem of dynamic

assignment of resources in the presence of time-varying demand with application to tacti-

cal control of scarce resources at a busy airport was investigated in [32]. They developed

heuristics approaches based on an approximation of the queuing dynamics considering busy

times of the day.

2.5.2 Simulation-based methods

An overall view of call center simulation models and focuses on typical inputs, chal-

lenges in modeling, and key outputs were presented in [33]. They defined different scenarios

for the simulation model, and they figured out the correct levels of cross-training to meet the

service level goals with the current staffing level, and they examined trade-offs between dif-

ferent scenarios regarding critical outputs of the model. Finally, they performed a what-if

analysis for situations like the impact of an increase in call volume on the system or the value

of adding an outsource to help over peak months. Another methodology that applies system

simulation combined with optimization to determine an optimal number of lab technicians,

nurses, and doctors that maximizes throughput and reduces patient time in the system with

considering the budget as the constraint was presented in [34]. Their main objective in this

paper is to provide a decision support tool to evaluate the impact of different staffing lev-

els on the system’s efficiency. Using experimental scenarios showed that optimal staffing

generated from their model generates a 28% increase in patient throughput and, on average

40% reduction in patients’ waiting time. In this work, for optimization purposes, they traced

the average time in the system of the patients. Our research will show that if the average

22

is less than the upper bound, it does not mean necessarily all individual time in systems is

less than the upper bound, and there could be some very high values of time in systems and

still the average be acceptable. An Arena simulation model was considered in [35] for a

specific hospital’s emergency department consisting of two areas: a full-service emergency

room and emergency care express. The model allowed having 13 various types of patients

and evaluated different feasible schedules for doctors, nurses, and technicians. They used

the model to evaluate the schedules and not determine them. The concern was about the

average patient time in the system, which was about 142 minutes. Data for the model build-

ing was collected on treatment types for different patients, patient arrival, task duration for

various required treatment tasks, and resources. The primary performance metric used for

the evaluation process is the average patients’ length of stay in the emergency department.

As the input to the simulation model, they did the experiments with five schedules. Only the

numbers of nurses and technicians varied in these schedules, and the number of doctors on

duty was kept constant. They ran each of these schedules for five replications and compared

the results regarding time-in-system for patients.

2.5.3 Numerical methods

The heuristic SIPP (stationary independent period by period) approach was improved

in [36] for those call centers with limited hours of operation on workdays. They showed that

the staffing suggested from the SIPP approach is considered too low to achieve the targeted

customer service levels in critical periods. They mentioned two main reasons for that. First,

SIPP fails to consider the time lag between the peak in customer demand and when system

congestion peaks, and second, SIPP’s assumption about constant arrival rate during the pe-

riod. Their result showed that the same approximation for lag used in the system working 24

hours of 7 days of the week is good enough for most of the limited hour systems and the lag

approach is a reliable, easy way to implement for scenarios in which SIPP is possible to be

unreliable. Another method that iterates between the schedule generator and schedule evalu-

ator is introduced in [37]. Schedule generator solves a series of integer programs to produce

23

improved schedules and, by adding constraints, tries to eliminate infeasible solutions with-

out removing optimal solutions. They mentioned that the most apparent application of their

suggested approach is that the approximate approach generates infeasible solutions (service

level constraints are not satisfied). Therefore, they tried to test their method in situations

where the approximate approach is least reliable. Also, their approach can be used for veri-

fication. If the approximate approach is accurate sufficiently, their suggested method should

terminate after one iteration.

The performance of seven methods was compared in [38] in computing or approximat-

ing service levels for time-varying M(t)/M/s(t) queuing systems, including exact method,

randomization method, closure approximation, direct infinite-server approximation, modified-

offered-load infinite-server approximation, effective-arrival-rate approximation, and lagged

stationary approximation. They classified these methods into three main categories. First,

the methods are slow but highly accurate. Second, methods that are fast but less accurate

than those in the first category and third the intermediate category with modest computation

times and acceptable accuracy. They claimed that exact and randomization methods are ex-

pected to fall in the first category. The effective-arrival-rate approximation, infinite-server-

based approximations, and lagged stationary approximation to be in the second category.

Finally, closure approximation is expected to be in the third category. A methodology was

presented in [39] to solve the problem of flexible shift scheduling when hospital managers

can accomplish flexible start times, overtime, and variable shift length to answer the demand

to find minimum assignment cost in the planning horizon of up to 6 weeks. They considered

a wide range of legal constraints, individual preferences, and on-call requirements during

the week. The proposed model can construct the shift implicitly instead of starting with a

predefined set of various shift types. The Branch-and-Price (B&P) algorithm is developed to

find high-quality rosters. In this work, they did not consider and evaluate the waiting time of

patients in the system. Another method for scheduling staffing levels was developed in [40].

A genetic algorithm uses the implementation of searching good schedules and evaluating

the service level resulting from a schedule. The algorithm solved the equations of motion

for a non-stationary queuing system and considered a bi-criteria problem, where two criteria

24

are minimum instantaneous service level and cost. They compared their approach with us-

ing traditional SIPP to set staffing requirements and an integer program(IP) to choose shifts,

and they concluded that the traditional approach could overestimate the service level. Their

method sometimes generates schedules that result in higher service levels and lower labor

costs than the SIPP-IP approach. Another benefit of this approach is its usage in situations

where the system capacity to serve customers is temporarily less than the arrival rate to the

system (rush hours). The number of staff was determined in [41] in an organization respon-

sible for blood collection in the Netherlands to be donor-friendly, and part of this perception

is the experience of waiting time. Therefore, they considered M/M/s queuing system and

suggested the two-step procedure to determine staff capacity. First, they applied queue the-

ory to compute the minimum staffing levels for every 30 minutes. Then, they used these

minimum staffing levels to determine the optimal length and starting times of the shifts by

applying integer linear programming. In this paper, they considered the average waiting

time during the entire planning horizon, and they also did not consider the effect of staffing

in each time block on its previous and next one. Under-staffing in one time block causes

customers to stay longer and affects the following time blocks’ number of staff members

and waiting times of customers.

2.5.4 Fluid models

A simple non-stationary model for a call center was studied in [42]. They simulated a

call center with 32 servers with exponential service times with an average of 240 seconds.

They simulated two cases, both with the first overload and then underloaded. In the first

case, they used a Poisson distribution for the arrivals with 270 calls for the first half an hour

and an average of 225 calls per 30 minutes for the remaining simulation time. So, the first

30 minutes is an overload situation, and then the system is stable. In the second case, for

the first 30 minutes, they considered an average of 331 calls and then 223 calls for the next

half an hour and 162 calls per 30 minutes for the rest of the simulation. Again, there was an

overload situation in the first 30 minutes, and then the system was stable. They concluded

25

that the lower bound, based on the fluid limit and the stationary approach for the minimum

arrival rates, is substantially better than applying only the fluid limit.

2.5.5 Empirical methods

An economic optimization model was developed in [43] for scheduling staffing levels

in the telephone center in a large telemarketer and mail-order in catalog house for quality

outdoor sporting goods and apparel. First, they obtain the total cost objective function us-

ing the regression model by applying the queuing theory. Second, they tried to predict the

relationship between the abandonment rate and the telephone service factor. Finally, they

described the expected-profit-maximization analysis that provides economic advantages and

disadvantages of deviating from predetermined customer service level, and this helps the

decision-maker have an essential tool for sensitivity analysis. A two-stage model was pro-

posed in [44] to identify the effect of staff availability on customer sales and maximize the

store profit. For the first stage, they applied the salesperson model to determine hourly staff

requirements. Using the output of the first step as the input of a mixed integer program-

ming, they obtained the optimal assignment of the staff to the daily shift. Next, they used

a simulation model for validation and revising the model for more accurate results. Finally,

they applied the proposed model in three types of apparel sector retail chains. Their results

showed that the proposed model maximizes the scheduling efficiency and increases sales

realization. Although this study is staff scheduling, they did not solve the problem when the

arrival process was non-stationary. They considered only a random variable to present the

arrival rates.

2.6 Deep Reinforcement Learning

Deep reinforcement learning (DRL) is the combination of deep learning (DL) and re-

inforcement learning (RL) to solve more complex problems. It has many applications in

healthcare, finance, smart grids, and many more. The main idea is that the learning agent

26

(neural network) should learn from its environment (simulation model) to optimize the cu-

mulative reward. This approach can be applied in any decision-making problem that relies

on experience [45].

Recently, RL has become popular because of its ability to solve complex sequential

decision-making problems. Its combination with deep learning is most applicable in prob-

lems with high dimensional state-space. In general, the application of artificial intelligence

in service systems is very limited in the existing literature. Li et al. [46] developed an

end-to-end framework for the multi-objective problem with applying deep reinforcement

learning (DRL) and called it DRL-MOA. They modified the decomposition idea to decom-

pose the multi-objective problem into a set of subproblems. They solved the multi-objective

traveling salesman problem (MOTSP) by using the DRL-MOA method by modeling the

subproblem as a Pointer Network. They showed that their proposed framework could be

generalized strongly and fast solving speed compared to other algorithms. Arel et al. [47],

applied a multi-agent system and reinforcement learning (RL) to determine an efficient traf-

fic signal control policy. The objective is to minimize the average delay and probability of

cross-blocking of the intersection. They employed two types of agents, a central agent, and

an outbound agent, in a five-intersection traffic network. In their proposed methodology,

for function approximation, they utilized a feed-forward neural network with a Q-learning

algorithm. Their experimental results show that their novel methodology outperforms the

longest-queue-first (LQF) algorithm. Waschneck et al. [48] used cooperative Deep Q Net-

work (DQN) agents for production scheduling. They tested and improved rules in simula-

tion. By applying deep reinforcement learning, they achieved Industrie 4.0, a decentralized

and self-optimizing system for production control. The advantages of their approach are

flexibility, global optimization, global transparency, and automation.

27

2.7 Summary of literature

In modeling the non-stationary queuing systems, some methods use the queuing model

to approximate the performance metrics. When comparing simple stationary approxima-

tion, point-wise stationary approximation, and stationary period-by-period approaches, the

difference is the length of the interval in which the steady-state queuing model is applied.

The disadvantage of approaches that applied infinite server approximation and mod-

ified offered load approximation is that they test their approach in sinusoidal arrival rate

function situations. To apply them to non-sinusoidal cases, there is a need to apply polyno-

mial approximation. All methods related to applying a steady-state queuing model cannot

deal with overloading situations (when a queue with finite-size becomes full or the queue

size continues to grow without stopping, the system is overloaded).

The accuracy of these approximation methods depends on the characteristics of the

queuing system. More exact results are achieved by using numerical integration methods,

randomization methods, and discrete-event simulation. Simulation methods seem more ex-

act than others because the service time can be any general distribution, so very small errors

and the most flexibility seem achievable.

In terms of computation time, discrete-event simulation usually has the highest time

compared to other methods because the number of replications is essential in the quality of

the results. The square root staffing formula is inaccurate when the average service time is

the high or low-performance target. The iterative staffing algorithm is based on simulation.

Therefore, it can be used in any queuing system case. We will use this method in chapter 3.

For staff scheduling in a service system with non-Poisson non-stationary arrivals, the

work in [13] considered the Cox process as the arrival rate distribution. To show that their

model worked adequately, they applied the sinusoidal arrival rate function. Regarding virtual

waiting time, they measured it at the fixed time points ∆t, 2∆t,... and averaged over all the

replications. They used it to estimate the probability of delay, and they did not measure it

according to waiting time. The disadvantage of this work is that there is no analysis for

the virtual waiting of each entity. The work in [49] showed that decision making according

28

to average waiting time over replications could be risky for customers, as it underestimates

variations of the virtual waiting time.

The tour-scheduling method seems to generate dominant schedules for shift schedul-

ing, compared to the SIPP-IP approach, regarding labor cost and service level. Additionally,

SIPP-IP may overestimate the service level provided by the schedule, and it is not appro-

priate for situations with low arrival rates and service completion. Examples include equip-

ment service repair and air ambulance service. The tour-scheduling model considered only

M(t)/M/s(t) queuing systems.

Related studies in the literature, while determining staffing level, have not considered

the virtual waiting time of each customer. The flexible shift scheduling work in [39], they

considered cost as the criteria, and they did not include the waiting time of the entities

to determine staffing levels. The piece-wise stationary approach always divided the study

period into equal-length intervals and assumed the arrival rate changes after a fixed amount

of time. In existing service systems, this assumption is not necessarily valid.

According to the literature review, none of the studies considered the virtual waiting

time for individual customers while determining the staffing level. In addition, the relevant

works did not consider the minimum variation of waiting times over the day as a crite-

rion to achieve predictable waiting times in the queue. In addition, in the case of flexible

staff scheduling, they did not consider waiting time to determine the number of servers. In

terms of staff scheduling in the service system problem, no work applies deep reinforcement

learning to achieve flexible staff scheduling. Chapter 3 of this dissertation will propose an

algorithm to overcome the shortcoming of the related researches (for example, see [34], and

[44]) in determining staffing level to achieve predictable waiting time. For this purpose, we

will evaluate the percentile and average of waiting times in each time block. An algorithm

will be proposed in chapter 4 of this research to improve the staff scheduling performance

of related works like [39] by setting an upper bound for variance of waiting times during

a planning horizon as a constraint in the optimization model. In addition, in chapter 4, we

will propose a training approach to flexible staff scheduling. This approach will improve the

29

related works that applied piece-wise stationary approximation to determine staffing lev-

els (for example, see [8, 7, 9]) since this proposed approach does not require partitioning

time into a smaller disjoint time interval. Chapter 5, will improve the shortcoming of re-

lated works (see [24] and [23]) in modeling and generating non-stationary arrival processes.

Chapter 5 will develop a model to characterize the arrival process to generate new arrival

data with the same characteristics. None of the related studies develop such a model in their

researches.

30

Chapter 3

Staffing Levels in Service Systems with Constant Shift Length and Start Time

3.1 Introduction

This chapter aims to optimize a service system’s performance by controlling customers’

waiting times. Over-staffing causes an increase in operational costs, and under-staffing leads

to customer dissatisfaction. We will extend the work in [1], and [50] by first, using the

method described in [2] to find the locations of change-points at which the density function

of arrivals is changing. Using this method, we can divide the non-stationary time series into

a set of stationary series (this methodology does not require these partitions to be equal in

length) that cover the same time frame. These sections are queuing systems in the arrival

processes, and service time follows the general distribution. Our goal is to minimize the

cost of using resources over the day, with the constraint of satisfying the service level. We

are interested in determining the staffing schedule to experience predictable waiting times

in the queue. To implement the simulation-based optimization for solving this problem, we

use the “queue computer” simulation package in R [51].

3.2 Problem Description and Formulation

Equation 3.1 represents the formulation of the optimization problem to solve the staffing

problem. The function f() in the constraint could be any function of the waiting times. We

will consider average and percentile, as these functions are more common in the literature.

31

The formulation of the problem to determine staffing levels is as follows:

min

n∑
i=1

cisi

s.t;

f(wqi) ≤ a, i ∈ [1, n]

(3.1)

Where n is the number of time buckets in our piece-wise stationary approximation, si

is the number of servers in segment i which is the decision variable, ci is the unit cost of

using server i, a is the maximum desired level of customers’ waiting in the queue, wqi is the

waiting time in that segment, and f(wqi) is the function of waiting times.

Some key assumptions for this work are as following:

1. We do not consider customer abandonment in this model.

2. The average service time is shorter than the minimum time block length.

3. We do not consider customer priority.

4. We model the system using a terminating model where the run length is one day, and

the system works 24 hours.

5. The arrival process is a non-stationary non-Poisson process.

6. The service time follows a general distribution.

3.3 Discussion about waiting time function

The function in the constraint could be any function like median, average, percentile,

mode, or any other function of the customers’ waiting times. In this section, we consider

average and percentile functions and justify the model according to them.

3.3.1 Considering average as the function for waiting time

We consider average as the function of waiting times in equation 3.1, so, we can sub-

stitute f(wqi) by E(wqi). The average waiting time in the G/G/s queuing model could be
32

estimated based on the Kingman/Kollerstrom-formula as follows:

E(WG/G/s) ≈
ρ

1− ρ
×

C2
A

ρ2
+ C2

S

2si
(3.2)

Where CA =

√
V ar(A)

E(A)
and A is inter-arrival time and CS =

√
V ar(S)

E(S)
and S is the service

time and si is the number of servers in time block i. In equation 3.2 we replace ρ with

E(S)
siE(A)

, where E(S) is expected value of the service time. Since we do not consider the shift

length constraint in this step, by using this function, we can solve the optimization model

analytically. Nonlinear optimization techniques can be applied to solve this problem which

is not of interest for this dissertation.

3.3.2 Considering percentile as the function for waiting time

Here we consider the percentile as the function of waiting times in the constraint of

equation 3.1, and it means that the probability of nth percentile of customers experiences

less than a units of time, waiting at queue be greater than b. Since there is no approxima-

tion to estimate this percentile, we need to apply simulation-based optimization methods to

obtain the optimal solution. In this case, the model to get the staffing levels is as follows:

min
n∑
i=1

cisi

s.t;

p(wqi ≤ a) > b for i ∈ [1, n]

(3.3)

Since we solve the optimization model in two steps, this model does not include shift con-

straints.

3.4 Simulation-based Optimization

The simulation-based optimization (SBO) approach solves a problem for which there is

no exact solution. Simulation is applied to estimate the output. For instance, after simulating

the model, we find the output percentile, and with repeating the simulation, we estimate the

33

confidence interval of the output. Since the direct solution is not available, realizations of a

random variable which are replications of simulation outputs, are observed [52]. The SBO

techniques are mainly applied to discrete-event simulations or systems of the stochastic non-

linear differential equation. Discrete-event simulation is used to model systems like queues

and operations, while stochastic differential equation is used to model and control nonlin-

ear systems [53]. Various algorithms like ranking and selection, meta-heuristics, response

surface methodology, gradient-based methods, and discrete search are applied to problems

with discrete or continuous variables to find local or global optimum solutions. This chapter

develops an iterative algorithm in a simulation environment to determine the optimal staffing

levels.

3.5 Description of the staffing level problems

In real-world systems, there are more constraints like the constant shift lengths and

minimum working hours for each server. This section will consider each of these constraints

and justify the model accordingly for each case. To achieve predictable waiting times in the

queue, we determine staffing in the way the waiting times’ values get closer to each other in

the entire time horizon (in this research, we arbitrarily assume it is a day).

It is important to consider the probability of average waiting time in the entire day to

be less than a constant number like a minutes, and it is not equivalent to the average waiting

time being less than a minutes for each time block. If there is a very short waiting time in

some time buckets and there is a very long waiting time in others, there still is a possibility

that the probability of overall average waiting time be less than aminutes over the day meets

our criteria since average is unbiased about outlier values.

Here is an example of this situation. We created a queuing system for the check-in

counters of the airport in Simio simulation software, the same system in our work in [1].

Figure 3.1 illustrates the arrival process.

We computed the waiting time in the queue for each customer in different time buckets.

We replicated the simulation model 200 times and calculated the average waiting time once

in each time block and another time overall average of waiting times over the entire day.

34

Figure 3.1: The arrival process to the system

Table 3.1 shows the staffing levels that cause customers to experience long waiting times

in two time buckets, 6:00 to 7:00 a.m. and 12:00 p.m. to 01:00 p.m., compared to others.

The average waiting time in the entire day is still less than 10 minutes, and the probability

of having a waiting time of fewer than 10 minutes is more than 90 percent. The average

waiting time for the entire day is 7.75 minutes.

Table 3.1: staffing levels in a day with hourly time buckets
Start Time End Time Staffing Levels Average Waiting Time
12:00 a.m. 01:00 a.m. 1 1.87
01:00 a.m. 02:00 a.m. 1 4.59
02:00 a.m. 03:00 a.m. 2 0.52
03:00 a.m. 04:00 a.m. 2 1.42
04:00 a.m. 05:00 a.m. 4 2.46
05:00 a.m. 06:00 a.m. 7 2.53
06:00 a.m. 07:00 a.m. 3 26.36
07:00 a.m. 08:00 a.m. 30 5.02
08:00 a.m. 09:00 a.m. 29 2.45
09:00 a.m. 10:00 a.m. 30 2.16
10:00 a.m. 11:00 a.m. 36 1.46
11:00 a.m. 12:00 p.m. 36 2.60
12:00 p.m. 01:00 p.m. 26 13.09
01:00 p.m. 02:00 p.m. 35 5.79
02:00 p.m. 03:00 p.m. 21 1.18
03:00 p.m. 04:00 p.m. 17 2.59
04:00 p.m. 05:00 p.m. 15 4.03
05:00 p.m. 06:00 p.m. 14 2.57
06:00 p.m. 07:00 p.m. 7 3.32
07:00 p.m. 08:00 p.m. 6 3.11
08:00 p.m. 09:00 p.m. 3 2.85
09:00 p.m. 10:00 p.m. 2 3.10
10:00 p.m. 11:00 p.m. 2 2.34
11:00 p.m. 12:00 a.m. 2 1.86

The average waiting time in the time block from 6:00 a.m. to 7:00 a.m. and then from

12:00 p.m. to 1:00 p.m. is very high compared to other blocks, but still, the probability of
35

experiencing the average waiting time of fewer than 10 minutes in a day is more than 90 per-

cent. To solve this issue, we suggest considering the average (or percentile in equation 3.3)

waiting times in each time block rather than the overall average in the entire time horizon.

Since this is not reasonable to have high variations in consecutive staffing levels, for

instance, 30 servers between 10:00 a.m. to 11:00 a.m. and ten servers from 11:00 a.m. and

12:00 p.m. and 20 until 1:00 p.m., we will consider shifts to staff scheduling. Here we

assume there are four shifts of 6 hours length over a day (24 hours). So, the problem will

be determining the staffing levels for these shifts. We assume the beginning of the shifts is

known and fixed.

3.5.1 Percentile as the function of waiting time

Since there is no analytical method to estimate the percentile of waiting times, we

need to use simulation. The simulation model gives the waiting time for each customer,

and we will be able to calculate the bth percentile of the waiting times. We perform the

simulation-optimization approach to find the best staffing levels. We used the ”queue com-

puter” package in R software to simulate the discrete event queuing system. We included its

source code in appendix B. The procedure of finding the optimum staffing levels is as below:

Algorithm 1 Simulation-optimization algorithm
1. Apply the change-point detection algorithm to identify the change-points. 2. Initialize
the staffing levels by 1 for all time blocks.
3. Run an experiment using the discrete-event simulation and calculate the customers’ vir-
tual waiting time in each bucket.
4. Calculate the bth percentile of each time block.
5. If the bth percentile of the waiting time is more than a units, increase the staffing level of
the corresponding time block by one and go to step 3. Otherwise, Keep the staffing level of
that segment constant.
6. If all time blocks satisfy the service level constraint, report the staffing levels as the
optimal solution of replication i.

We use data in [1] as the input to the simulation-based optimization algorithm. How-

ever, this algorithm works in the case of the general non-stationary arrival process. Chapter 5

will propose an algorithm to generate non-stationary non-Poisson arrival data and use them

as the input to the simulation model. We assumed the service time follows the symmetric
36

triangular distribution with these parameters; (a = 1 minutes, c = 3 minutes, b = 5 min-

utes). We run the simulation model for 100 replications. We performed constraint of at least

90% of customers experience less than a minutes waiting time in the queue. In most of the

time blocks, the waiting times are less than 10 minutes. Table 3.2 illustrates the results for

10 replications as well as the average staffing levels for each time bucket.

Table 3.2: Staffing levels in a day with hourly time buckets considering 90th percentile of
customers do not experience waiting time more than 10 minutes

Rep1 Rep2 Rep3 Rep4 Rep5 Rep6 Rep7 Rep8 Rep9 Rep10 Average
1 1 1 1 1 3 1 1 1 1 1 1.2
2 1 2 1 2 2 2 1 2 1 2 1.6
3 1 1 1 2 1 2 2 2 1 2 1.5
4 2 2 2 1 2 2 2 2 2 2 1.9
5 4 4 4 4 4 3 4 3 5 5 4
6 6 7 6 6 6 5 6 7 6 7 6.2
7 10 10 10 11 10 12 9 10 10 10 10.2
8 21 21 18 22 18 19 26 23 20 21 20.9
9 29 30 26 29 29 29 30 28 27 28 28.5
10 29 28 27 26 26 26 31 29 28 29 27.9
11 37 34 35 36 33 35 32 35 36 36 34.9
12 35 36 34 35 36 37 35 36 34 35 35.3
13 34 33 32 38 34 37 35 34 36 37 35
14 20 21 20 21 24 19 22 23 20 21 21.1
15 20 18 19 20 21 23 20 19 21 20 20.1
16 17 15 16 17 18 17 16 16 17 15 16.4
17 15 17 15 15 15 16 15 15 14 14 15.1
18 10 11 10 13 11 12 11 12 13 12 11.5
19 8 7 8 7 7 6 7 7 8 6 7.1
20 5 5 6 6 5 5 4 6 5 6 5.3
21 2 2 3 2 2 2 3 4 3 4 2.7
22 2 2 2 2 2 3 5 2 2 3 2.5
23 3 2 2 2 2 2 4 2 2 2 2.3
24 2 3 2 2 2 2 2 2 2 2 2.1

Since the staffing level has to be an integer, we perform some analysis to decide which

staffing level is optimal. We apply rounding to the nearest number, rounding up, and round-

ing down. Table 3.3 shows the staffing level, the 90th percentile, and maximum waiting

time in each option.

As it is shown in the table 3.3, by applying rounding to the nearest number, sometimes

it violates the threshold of the problem, which is that at least 90% of customers do not

experience more than 10 minutes. By applying to round down, more time blocks have high

waiting times. In rounding up, all of the time blocks meet the waiting time requirement.

However, in this case, the cost of using resources is higher than the other two cases since the

number of resources is higher than those other ones. That is the manager’s decision to satisfy

customers entirely or pay less for the cost of resources. For the rest of our experiments, we

will use rounding up the staffing levels.

37

Table 3.3: Staffing levels in each time block with different types of rounding
Block# Round 90% Max Round up 90% Max Round down 90% Max

1 1 5.32 6.18 2 0 0 1 5.32 6.18
2 2 1.44 1.62 2 0.67 1.22 1 5.4 8.63
3 2 0.00 0 2 0 0 1 5.26 5.34
4 2 0.88 2.97 2 0.61 7.21 1 7.37 10.48
5 4 3.87 4.97 4 3.64 7.68 4 1.42 5.51
6 6 4.04 4.93 7 2.4 3.02 6 2.31 3.16
7 10 4.25 6.01 11 2.28 3.13 10 3.91 4.94
8 21 7.92 8.88 21 3.56 3.99 20 6.61 7.43
9 29 7.52 8.89 29 5.18 5.99 28 7.97 9.33

10 28 9.13 10.47 28 6.57 7.46 27 12.46 13.81
11 35 4.48 5.04 35 0.99 2.14 34 11.75 13.14
12 35 3.52 5.74 36 0.69 1.61 35 8.47 9.69
13 35 4.06 4.68 35 5.41 9.52 35 7.95 8.85
14 21 2.10 2.95 22 8.42 10.31 21 5.57 7.45
15 20 0.41 1.35 21 6.2 7.36 20 8.43 10.76
16 16 1.33 2.33 17 1.1 2.99 16 11.28 12.14
17 15 3.13 3.97 16 1.65 2.65 15 4.1 5.19
18 12 1.97 2.62 12 4.24 5.35 11 6.78 8.65
19 7 2.40 4.71 8 3.19 3.99 7 8.71 10.68
20 5 2.07 3.34 6 0.69 1.91 5 6.41 7.64
21 3 4.47 7.22 3 2.43 3.39 2 25.4 27.35
22 3 1.37 2.77 3 1.66 2.64 2 30.27 32.49
23 2 23.74 25.43 3 6.32 8.46 2 8.64 10.4
24 2 27.04 27.97 3 2.28 4.94 2 0.35 0.89

After obtaining the optimal staffing levels that satisfy the constraint that the 90th per-

centile of the customers does not experience the waiting time of more than 10 minutes in the

queue, we plot the histogram of all waiting times during 24 hours. Figure 3.2 shows 99%

percent of customers did not experience more than 8.66 minutes in the queue.

Table 3.4 shows the result of staffing levels for each time block that satisfies the con-

straint that at least 95 percent of customers do not experience the waiting time of more than

10 minutes in the queue for ten replications.

38

Figure 3.2: Customer’s waiting times in a day and 99th percentile of waiting times

Table 3.4: Staffing levels in a day with hourly time buckets considering 95th percentile of
customers do not experience waiting time more than 10 minutes

Rep1 Rep2 Rep3 Rep4 Rep5 Rep6 Rep7 Rep8 Rep9 Rep10 staffing level
1 2 1 1 2 1 1 1 1 2 2
1 1 2 1 2 1 1 2 2 2 2
1 2 1 2 2 2 1 1 1 2 2
1 2 2 2 2 2 2 2 2 2 2
5 4 4 3 4 3 4 4 4 3 4
7 9 6 6 6 6 7 9 7 7 7
11 10 11 10 12 11 9 11 10 10 11
21 23 20 23 20 21 27 22 22 25 23
33 30 29 31 29 31 30 33 27 29 31
28 28 27 27 28 26 27 30 28 28 28
34 34 33 37 33 35 35 34 32 37 35
37 36 34 38 35 40 35 37 33 35 36
34 31 31 34 36 36 36 33 35 37 35
21 19 20 21 22 21 23 20 20 21 21
20 20 21 20 21 20 19 22 22 23 21
17 14 15 18 16 19 17 17 17 16 17
14 14 16 14 18 15 15 16 15 16 16
11 12 12 12 11 12 12 12 13 12 12
6 6 6 9 7 6 6 7 7 9 7
6 4 6 5 5 6 4 6 6 7 6
3 2 3 3 2 2 2 2 2 3 3
3 3 2 2 2 4 4 2 2 2 3
2 3 3 2 2 2 3 2 2 2 3
2 2 2 2 2 2 3 2 2 2 3

After comparing 95th percentile, 90th percentile, and a maximum of waiting times in

each time block, and according to Figure 3.2, 90th percentile generated the waiting times

39

that 99 percent of them are less than 8.5 minutes. Because of this, we decided to consider

the service level as at least 90 percent of the customers do not experience a waiting time of

more than 10 minutes in the queue.

3.5.2 Determining staffing levels inside of the simulation process

Since there are variations in the arrival times, the staffing level of some time blocks

may differ noticeably from one replication to another. To reduce this variability, we define

the number of replications before the simulation, n, then we repeat the simulation-based

optimization process n times. In this case, the output of the process is the confidence interval

for the number of staff in each time block. Algorithm 2 describes this process.

Algorithm 2 Simulation-optimization algorithm to replicate inside of the SBO process
1. Determine the required number of replications, n to achieve 95% confidence interval for
staffing levels.
2. i← 1
3. while i ≤ n do

4. Apply the change-point detection algorithm to identify the change-points.
5. Initialize the staffing levels by 1 for all time blocks.
6. Run an experiment using the discrete-event simulation and calculate the virtual wait-
ingtime of the customers arriving in each time bucket.
7. Calculate the bth percentile of each time block.
8. If the bth percentile of the waiting time is more than a units, increase the staffing level
of the corresponding time block by one and go to step 3. Otherwise, Keep the staffing
level of that segment constant.
9. If all time blocks satisfy the service level constraint, report the staffing levels as the
optimal solution of replication i.
10. i← i+ 1

end

After applying this algorithm on data in [1], we get the following staffing level for each

time block.

40

Table 3.5: Staffing levels after replicating inside of the SBO process
Time block Lower Level Upper Level Average

1 1.09 1.82 1.46

2 1.19 1.32 1.26

3 1.17 1.29 1.23

4 1.67 1.79 1.73

5 4.12 4.28 4.20

6 6.39 6.56 6.48

7 9.44 9.69 9.57

8 21.34 21.60 21.47

9 28.98 29.29 29.14

10 27.44 27.78 27.61

11 34.08 34.45 34.27

12 35.67 36.06 35.87

13 34.26 34.66 34.46

14 21.38 21.72 21.55

15 18.99 19.29 19.14

16 16.45 16.71 16.58

17 14.79 15.04 14.92

18 11.11 11.36 11.24

19 6.55 6.83 6.69

20 5.18 5.38 5.28

21 2.68 2.84 2.76

22 2.16 2.27 2.22

23 2.03 2.10 2.07

24 2.00 2.05 2.03

Comparing these results with table 3.2 shows the outputs of the two algorithms are very

similar. The advantage of algorithm 2 is that it can cover cases with higher variety in the

arrival process. This example was about a data set whose variety from one replication to

another was not high. Based on the number of replications, the results of the two algorithms

might not be the same in all cases. Since the output of algorithm 2 is a confidence interval for

the required number of staff in each time block, it provides more information for managers

to decide their staffing requirements.

3.5.3 Staff scheduling and defining shifts

To obtain the staffing levels in each shift with l hours length, we need to choose the

maximum of optimal staffing levels in that shift. In this work, we solve the optimization

41

model for the constant 6 hours length shifts and determine the best time for the beginning

of the shift to achieve the minimum servers’ cost. To reach optimal staffing levels in each

shift, we determine the beginnings of the shifts that the variation among the staffing levels

of each time block constructing that shift is minimum. We use enumeration to investigate

all the possible combinations and calculate the variance of the number of staff in each shift

for each combination. Table 3.6 represents the staff scheduling for 6 hours shift lengths of

staffing levels in table 3.3 with 1-hour time blocks.

Table 3.6: Optimal number of staffs in each shifts and beginning times
Shift 1 Shift 2 Shift 3 Shift 4

Beginning Time 1:00 a.m. 7:00 a.m. 1:00 p.m. 7:00 p.m.

Number of Staffs 10 35 22 4

Since the time blocks in this example are equal length and equal to 1, determining

staffing level first and then shift scheduling might not be necessary. Here we present another

example where the time blocks are of different lengths.

42

Table 3.7: Staffing levels after replicating inside of the SBO process
Time block Time Lower Level Upper Level Average Round up

1 12:00- 01:00 1.05 1.17 1.11 2

2 01:00- 01:30 1.03 1.46 1.245 2

3 01:30 -02:30 1.41 1.61 1.51 2

4 02:30-04:00 3.19 3.47 3.33 4

5 04:00-05:00 6.39 6.71 6.55 7

6 05:00-08:00 7.51 7.87 7.69 8

7 08:00-09:00 10.53 10.91 10.72 11

8 09:00-09:30 12.43 12.89 12.66 13

9 09:30-10:30 18.1 18.66 18.38 19

10 10:30-12:00 21.43 21.98 21.705 22

11 12:00-12:30 24.32 24.92 24.62 25

12 12:30-01:30 25.67 26.23 25.95 26

13 01:30-02:30 27.69 28.41 28.05 29

14 02:30-03:00 26.89 27.51 27.2 28

15 03:00-04:30 22.03 22.61 22.32 23

16 04:30-05:30 16.27 16.79 16.53 17

17 05:30-06:00 13.39 13.89 13.64 14

18 06:00-08:30 10.04 10.44 10.24 11

19 08:30-10:00 4.99 5.33 5.16 6

20 10:00-10:30 3.07 3.33 3.2 4

21 10:30-11:30 2.2 2.38 2.29 3

22 11:30-12:00 1.15 1.27 1.21 2

Table 3.8: Optimal number of staffs in each shifts and beginning times
Shift 1 Shift 2 Shift 3 Shift 4

Time 10:00-04:00 04:00-10:00 10:00-04:00 04:00-10:00

Number of Staffs 4 19 29 23

3.5.4 Average as the function of waiting time

Figure 3.3 represents the idea of dividing a planning horizon into a shift that each

includes time blocks. Depending on the change-point locations, the shift’s start time can be

either at the beginning of a time block or sometimes in between.

43

Figure 3.3: Dividing time horizon into fixed length shifts

In equation 3.2, if we replace ρ and CA by E(S)
siE(A)

and
√
V ar(A)

E(A)
, respectively. We will

have the equation 3.4:

E(W) =
s2
iV ar(A) + var(S)

2s2
iE(S)E(A)− 2siE(S)2

(3.4)

To find the server’s schedule level in shifts, we can consider two approaches as described

below.

We can assume all segments in a shift have the same impact in determining required servers

in that shift, and since E(W) ≤ a (equation 3.5 shows this inequality), smini is the minimum

required server in segment i which meets the minimum service level.

s2
iV ar(A) + var(S)

2s2
iE(S)E(A)− 2siE(S)2

≤ a (3.5)

By repeating these calculations for all segments, we can find the smini for each of them.

After solving the optimization problem for each time block, the staffing levels will be as

follows in Table 3.9.

Table 3.9: Staffing levels
Staffing levels 1 1 1 2 4 7 10 24 31 28 36 36 35 20 20 17 15 9 6 5 3 2 2 2

So smin for entire shift can be calculated as equation 3.6:

sminj = max
i
{smini }, for all j (3.6)

44

As figure 3.3 illustrated, sj represents the number of staff members in shift j. Number of

shifts in a day is shown by j.

Table 3.10: Number of staffs in each shifts and beginning times
Shift 1 Shift 2 Shift 3 Shift 4

Beginning Time 1:00 a.m. 7:00 a.m. 1:00 p.m. 7:00 p.m.
Number of Staffs 10 36 20 5

Table 3.10 represents the number of required workers in each shift to at least 99 percent

of customers who experience waiting time less than 10 minutes in the queue. Figure 3.4

shows the corresponding waiting times histogram. It indicates that 99 percent of customers

experienced less than 5 minutes of waiting time in the queue.

Figure 3.4: Waiting times in a day and 99th percentile of waiting times

3.6 Performance evaluation

In this section, we investigate the performance of the proposed algorithm to deter-

mine staffing levels by applying it to some data sets with different arrival process patterns

generated by Simio simulation software. The set of patterns includes step, sinusoidal, and

bi-modal. In addition, we will evaluate the performance of the algorithm with the real-world

data set from arrivals to the check-out to the grocery store retrieved from the work in [54].

Figure 3.5 illustrates different patterns we consider in the arrival process.
45

Figure 3.5: Arrival process patterns

3.6.1 Arrival processes with step patterns

Tables 3.11 represents 10 replications of the simulation model to determine the staffing

levels along with the number of required workers (average rounded up) and the 90th per-

centile of the waiting times in each time block for the case the arrival process follows step

pattern 1. Table 3.11 indicates that by using the number of workers resulting from the algo-

rithm, at least 90% of the customers in each time block will experience less than 10 minutes

of waiting time in the line. In addition, it shows the step pattern in the staffing levels, which

is as expected.

46

Table 3.11: Staffing levels in a day with hourly time buckets considering 90th percentile of

customers do not experience waiting time more than 10 minutes with step pattern 1 in arrival

process
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #Workers 90%

3 3 3 4 3 4 2 3 2 3 3 2.27

3 3 3 3 2 3 3 3 3 3 3 0.73

4 4 4 3 3 3 2 4 3 3 4 2.39

3 3 2 2 3 4 3 5 4 2 4 0.64

3 4 3 3 3 3 5 4 4 3 4 3.01

4 4 4 4 4 3 3 3 2 3 4 2.17

3 4 3 3 3 3 3 4 3 2 4 0.00

2 3 3 2 3 3 3 3 3 3 3 4.63

3 4 3 3 4 3 3 4 3 3 4 3.87

3 3 3 3 2 3 3 3 3 2 3 2.83

3 2 2 2 3 3 3 3 3 3 4 5.27

5 4 3 4 4 3 3 3 3 3 4 5.14

6 7 7 7 7 5 6 6 6 6 7 2.75

7 8 7 8 9 5 7 6 7 7 8 2.80

7 5 6 6 6 7 5 7 7 7 7 2.65

7 8 8 8 6 7 7 6 7 5 7 2.21

6 7 7 7 8 8 7 6 7 7 7 3.65

7 7 7 5 7 6 7 7 7 7 7 8.04

7 7 7 7 7 6 8 8 8 6 8 9.61

7 7 8 7 8 7 5 7 6 6 7 3.62

6 6 6 6 6 7 6 8 8 6 7 1.62

7 7 6 6 6 6 8 7 9 6 7 4.64

6 6 7 6 7 6 7 7 8 7 7 1.69

7 6 6 7 5 7 6 7 7 7 7 1.81

Table 3.12 represents the staffing levels for each time block for step pattern 2 for 10

replication, the number of required workers, and 90th percentile of waiting times. It shows

the algorithm results to the number of workers that satisfy the constraint of at least 90% of

customers experience waiting time less than 10 minutes in the queue.

47

Table 3.12: Staffing levels in a day with hourly time buckets considering 90th percentile of

customers do not experience waiting time more than 10 minutes with step pattern 2 in arrival

process
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #Workers 90%

5 5 6 5 4 5 5 5 4 5 5 2.93

7 6 6 6 6 6 6 6 7 6 7 1.73

4 5 5 5 5 4 6 6 5 5 5 9.53

6 6 6 6 5 7 6 5 6 6 6 3.40

6 5 6 5 5 7 5 5 5 5 6 2.68

5 6 6 7 6 5 5 5 6 6 6 9.10

5 5 6 6 5 7 6 5 7 6 6 1.80

6 7 5 8 5 5 5 6 5 6 6 0.70

7 7 7 7 6 7 7 7 6 6 7 0.26

11 7 11 9 9 9 9 10 8 10 10 2.60

10 10 9 9 8 11 10 9 11 10 10 6.86

10 11 10 10 11 9 10 11 10 10 11 4.86

10 10 9 10 10 10 11 12 11 9 11 2.90

9 8 9 10 11 10 9 10 8 9 10 1.96

10 11 10 9 8 9 9 11 10 9 10 3.38

8 9 8 10 9 10 9 10 8 9 9 9.38

9 11 11 10 11 11 11 11 10 10 11 8.56

10 11 10 9 10 9 10 10 11 10 10 6.67

6 4 5 4 2 4 3 8 3 4 5 7.81

3 2 2 2 3 3 3 2 3 3 3 9.60

3 3 3 4 2 4 4 3 3 2 4 2.48

3 2 2 2 3 2 3 3 2 2 3 7.48

2 3 3 3 3 3 2 2 3 3 3 9.54

4 3 3 4 4 4 3 3 4 4 4 8.07

3.6.2 Sinusoidal pattern in arrival process

Tables 3.13, 3.14, and 3.15 present the sinusoidal patterns in the arrival process. We

consider a sinusoidal pattern with arrival rate function λ(t) = λ̄(1 + sin(0.2t)), we assume

λ̄ = 100 as the first sinusoidal pattern. Second sinusoidal pattern represents the previous

sinusoidal function with higher frequency. Its arrival function is λ(t) = λ̄(1 + sin(0.5t)).

The last sinusoidal pattern has a higher amplitude with arrival rate function λ(t) = λ̄(1 +

sin(0.2t)), we assume λ̄ = 200. Table 3.13 shows that resulted staffing levels satisfy the

optimization problem’s constraints.

48

Table 3.13: Staffing levels in a day with hourly time buckets considering 90th percentile of

customers do not experience waiting time more than 10 minutes with sinusoidal pattern 1 in

arrival process
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #Workers 90%

5 6 7 8 7 7 8 6 7 8 7 1.53

4 3 5 3 4 4 4 4 3 4 4 0.11

2 2 2 2 2 2 2 2 2 2 2 0.00

2 2 2 2 2 2 2 2 2 2 2 0.00

2 2 2 2 2 2 2 2 2 2 2 4.77

4 4 3 4 3 3 4 4 4 4 4 4.26

7 6 7 6 6 7 6 7 6 7 7 3.16

9 9 8 9 9 9 8 9 9 9 9 8.94

10 11 11 10 10 10 10 11 10 10 11 6.92

9 8 10 10 10 9 9 10 11 10 10 2.80

7 7 9 9 8 8 9 9 8 8 9 1.20

7 8 6 6 5 6 6 6 6 6 7 2.77

4 4 4 4 4 4 3 4 3 4 4 2.80

2 2 2 3 3 2 2 2 2 2 3 0.00

2 2 2 2 2 2 2 2 2 2 2 1.16

5 4 5 4 4 4 3 4 4 3 4 7.30

7 7 6 6 7 5 7 7 7 7 7 2.60

7 9 8 9 8 8 7 9 7 9 9 1.91

11 10 8 10 9 10 9 10 9 9 10 2.14

7 9 10 10 10 9 9 10 9 9 10 4.73

9 9 8 8 8 8 8 10 9 9 9 2.09

7 5 6 5 5 5 5 5 5 5 6 3.67

2 5 3 3 3 4 3 3 4 4 2.08

2 2 2 2 2 2 2 2 2 2 2 2.22

Table 3.14 represents the required staffing levels for the system with the sinusoidal

arrival patterns with higher amplitude than the previous one. The table indicates that when

there is a higher frequency in the sinusoidal pattern, there is a need for more staff members

to satisfy the constraint.

49

Table 3.14: Staffing levels in a day with hourly time buckets considering 90th percentile of

customers do not experience waiting time more than 10 minutes with sinusoidal pattern 2 in

arrival process
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #Workers 90%

11 12 11 12 13 11 13 12 12 11 12 9.76

4 6 8 5 5 6 5 5 8 7 6 9.95

2 2 2 2 2 2 2 2 2 2 2 2.67

2 2 2 2 2 2 2 2 2 2 2 0.81

4 3 2 3 3 3 3 2 3 3 3 1.17

8 9 8 9 8 9 7 8 9 8 8 5.05

11 12 12 11 13 12 11 11 12 12 12 5.93

16 17 17 18 18 17 19 19 17 17 18 4.58

19 22 21 19 21 22 22 21 18 21 22 4.10

20 19 20 20 18 18 20 19 21 18 19 9.02

15 16 16 14 16 14 16 17 16 15 16 8.44

11 12 11 12 11 12 10 12 13 13 12 9.11

8 5 6 7 6 7 7 6 5 6 7 9.59

3 2 3 2 3 3 3 2 3 2 3 0.34

3 3 2 3 3 2 4 3 4 3 3 1.09

7 7 8 7 7 5 7 6 7 6 7 3.64

11 11 9 11 10 10 10 10 11 11 11 2.45

15 16 15 15 17 15 15 19 15 16 17 3.16

20 21 20 21 21 20 20 18 20 19 20 3.52

17 17 19 17 16 16 18 17 17 18 18 7.17

16 17 16 16 15 14 15 16 15 16 16 9.16

10 11 12 10 11 12 11 11 11 13 12 11.07

7 6 6 5 7 5 5 5 5 5 6 4.75

2 2 3 3 3 2 2 2 3 2 3 3.26

Table 3.15 shows the number of required workers in the case that arrival process follows

the sinusoidal pattern with higher frequency.

50

Table 3.15: Staffing levels in a day with hourly time buckets considering 90th percentile of

customers do not experience waiting time more than 10 minutes with sinusoidal pattern 3 in

arrival process
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #Workers 90%

7 7 7 8 9 8 7 8 7 7 8 1.66

2 2 2 2 2 2 2 2 2 2 2 0.00

4 4 4 4 4 4 5 4 5 4 5 0.22

9 9 9 10 10 9 9 9 8 9 10 3.53

9 9 9 8 8 8 8 8 9 8 9 9.71

2 2 3 2 2 4 3 3 2 2 3 3.00

2 2 2 2 2 2 2 2 2 2 2 0.87

9 9 8 8 8 7 8 8 8 8 9 0.98

10 10 10 11 10 10 10 10 10 10 11 1.59

5 5 4 3 4 4 5 4 5 5 5 0.43

2 2 2 2 2 2 2 2 2 2 2 0.00

5 5 5 5 5 4 4 5 5 5 5 1,18

10 9 9 9 8 12 9 9 9 10 10 2.23

7 9 7 10 8 8 8 8 7 7 8 3.70

4 4 4 2 5 2 2 4 4 4 4 0.00

9 8 8 7 8 8 8 7 7 8 8 4.82

9 9 9 9 8 9 8 9 11 9 9 6.89

4 4 5 4 5 4 4 6 4 4 5 7.75

2 2 2 2 2 2 2 2 2 2 2 0.00

6 5 6 6 6 6 6 5 6 5 6 3.60

10 10 10 10 9 10 9 9 9 8 10 7.54

5 5 5 5 5 6 6 7 6 6 6 9.75

2 3 2 2 2 2 2 2 2 2 2 0.00

3 2 3 2 3 3 2 2 3 2 3 2.99

3.6.3 Bi-modal pattern in arrival process

Table 3.16 represents the staffing level in each time block and its corresponding 90th

percentile of waiting time. The results show that at least 90% of customers arriving in each

time block experienced waiting time less that 10 minutes.

51

Table 3.16: Staffing levels in a day with hourly time buckets considering 90th percentile of

customers do not experience waiting time more than 10 minutes with bi-modal pattern in

arrival process
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #Workers 90%

2 2 2 2 2 2 3 2 2 3 3 1.33

3 3 3 3 3 3 3 3 3 4 4 1.40

6 5 5 6 5 6 7 6 5 5 6 3.02

7 6 6 7 6 6 6 6 6 6 7 2.58

8 7 8 8 8 8 7 8 8 8 8 1.73

11 10 10 10 9 10 10 9 11 10 10 3.32

10 12 12 10 9 11 10 10 11 10 11 1.78

12 12 13 14 12 12 14 13 13 12 13 1.85

10 10 12 11 10 11 10 10 11 11 11 1.59

7 7 8 9 8 7 7 8 9 7 8 2.38

6 6 6 5 6 6 5 7 6 6 6 6.64

3 3 3 4 3 3 4 3 3 3 4 2.17

2 2 3 2 2 2 2 2 3 2 3 0.19

4 4 3 4 4 4 4 3 4 4 4 1.15

5 5 4 5 4 5 4 5 5 5 5 7.24

8 7 7 7 7 7 7 6 7 6 7 6.13

11 9 10 10 11 10 9 11 10 9 10 1.56

17 15 14 16 14 12 14 14 14 14 15 4.26

11 12 11 11 11 12 13 12 11 12 12 4.95

6 7 7 7 8 7 8 6 8 6 7 5.92

5 4 4 5 5 5 5 4 4 5 5 7.73

3 3 3 2 3 3 3 3 3 3 3 9.02

3 3 4 3 4 3 3 3 3 3 4 3.55

2 2 2 2 2 2 2 2 2 2 2 2.09

3.6.4 Point of sale arrival data

Figure 3.6 represents the arrival rate into the check-out counters of the grocery store.

This data is real-world data that we retrieved from work in [54]. Table 3.17 shows the

staffing levels and the 90th percentile of the waiting times in each time block.

52

Figure 3.6: Arrival rate to the point of sale in grocery store

Table 3.17: Staffing levels in a day with hourly time buckets considering 90th percentile of

customers do not experience waiting time more than 10 minutes with point of sale arrival

data
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #Workers 90%

1 1 1 1 1 1 2 1 1 1 2 6.68

2 2 2 2 2 2 2 2 2 2 2 1.09

2 3 3 3 3 2 3 2 3 3 3 3.05

6 6 6 6 6 6 5 6 6 7 6 0.90

6 6 6 6 6 6 8 5 6 6 7 1.75

9 10 9 10 9 10 10 10 9 9 10 8.80

12 13 12 13 13 12 11 12 12 12 13 7.58

13 15 15 14 16 15 14 15 16 15 15 7.27

14 15 14 14 14 13 16 14 15 14 15 2.97

10 12 14 11 12 10 13 11 10 10 12 2.94

10 10 9 9 8 10 9 9 10 8 10 1.88

7 6 7 7 7 6 6 6 6 5 7 2.71

5 4 5 4 4 5 5 5 5 6 5 5.68

2 3 3 3 3 2 3 2 3 3 3 1.80

The results of applying our proposed algorithm to determine staffing levels on various

generated data sets and the data set from the real world in this section indicate that it can

work adequately on similar data sets with the same arrival rate patterns.

53

3.7 Conclusion

This chapter solved the optimization problem of a queuing system with a non-stationary

arrival process and single-task server. In this system, the workers working hours and shifts’

start times are constant. We were interested in staff scheduling in the way customers expe-

rience predictable waiting times in the queue.

To achieve this goal, first, we applied the change-point detection algorithm to determine

the location of change-points over time, and then we used the “queue computer” simulation

package in R to simulate the optimization problem. We investigated two functions, average

and percentile of waiting times, to characterize customer service level. We performed a two-

step optimization approach to determine the staff scheduling for this problem. To determine

the staffing schedules, we determine the start of the shift because there are fewer variations

in the number of workers in that shift. Since this approach results in fewer workers in a day,

we did not consider other shifts’ starting times.

As figure 3.4 shows, in this approach, 99% of customers experienced less than 5 min-

utes in the queue even though the upper bound in the optimization problem was set up 10

minutes. The reason is, we determined the staff levels first, and then we performed staff

scheduling. That results in more staff in the final scheduling problem than the total number

of workers determined in staffing levels. In the next chapter, we will overcome this issue by

flexible staff scheduling that allows workers to start working at different times with differ-

ent total working hours. In addition, chapter 4 will consider the option that workers have

minimum and maximum working hours in a specific job.

To evaluate the performance of our proposed algorithm, we conduct some more ex-

periments by applying other patterns in the arrival process. The results indicate that this

chapter’s algorithm can solve different problems to achieve predictable waiting times. Fi-

nally, we applied the arrival data of the check-out counters in a grocery store to our model

to determine the staffing levels and evaluate the solution approach’s performance.

54

Chapter 4

Flexible Staff Scheduling in Service Systems with Non-Stationary Arrival Processes by
Applying Deep Reinforcement Learning (DRL)

4.1 Introduction

This chapter proposes a method to perform flexible staff scheduling in service systems

with a non-stationary arrival process. We characterize the arrival process, and we determine

staffing levels such that arriving customers experience predictable waiting time in the queue.

By flexible, we mean each staff member can start working at any time of the day. As

described in the previous chapter, focusing on predictable waiting time is not necessarily

focusing on obtaining minimum waiting time in the queue. It indicates that the customers

experience almost constant waiting times at different times of the day.

We set an upper bound for the waiting time variance over the time horizon to achieve a

predictable waiting time. We determine this inequality as the constraint in the optimization

problem. Unfortunately, since there is no closed-form expression for these variances, we

cannot use an analytical method to solve this optimization problem. As such, we use the

simulation for its estimation.

We propose to use the Deep Reinforcement Learning (DRL) approach to solve this

problem. One of the advantages of using this technique is that performing input analysis to

detect change-points in the non-stationary arrival process is not required. The learning agent

(the artificial neural network) observes the environment and learns when to add or remove

staff members from the available resource pool.

There is a need for an environment in which the learning agent can learn from the

system in this solution approach. The simulation model provides such an environment for

55

the learning agent. We define possible actions that the learning agent can take. According

to the earned “reward”, the learning agent decides which action it should take in each step

in order to maximize the possible cumulative reward.

The rest of this chapter is organized accordingly. In section 4.2 we represent the general

overview of the problem and its formulation to get the staff schedule. Section 4.3 describes

the deep reinforcement learning technique. In the next section 4.4, we explain both how

to use this approach as a tool for flexible staff scheduling, and we explain the inputs to the

tool. In section 4.5 we talk briefly about the verification and validation of the simulation

model. Section 4.6 discusses experiments used to test the performance of the proposed

solution method. We also include different possible variations in the arrival process. Then

we represent the result of each simulation run in section 4.6, and we interpret them in the

appendix A section.

Next, we test this technique on the use case, including testing the arrival data to a gro-

cery store in Europe in section 4.7. Section 4.8 includes the comparison between our pro-

posed solution approach and simulation-based Optimization (SBO). Ultimately. We conduct

a statistical test to check the hypothesis that the proposed algorithm outperforms the SBO

approach. Finally, in section 4.9, we summarize our finding.

4.2 Overview of the problem

In the previous chapter, we solved the staffing problem with the objective function of

minimizing the number of servers. We considered two cases as the constraint. One was the

percentile of waiting times, and another was the average waiting times in the queue. In that

problem, the shifts had a specific start and end time. For example, the beginning of the shift

is 7:00 a.m., and the end is 3:00 p.m. for all servers working in that shift. We applied a

simulation package in R software to perform simulation-based optimization (SBO).

This chapter aims to determine flexible staff scheduling in a service system with the

non-stationary arrival process. The servers perform a single task, and each can start work-

ing at any time over the day. In addition, there is a penalty function that we present it by

step function which enforces a penalty for the number of customers waiting in the line. The

56

servers of queuing system in chapter 3 had a shared queue, while the servers in this chapter

have their individual lines. Other assumptions of the queuing system are the same as chapter

3 in this chapter. Table 4.1 represents an example of what we mean by staffing level and staff

rostering:

Table 4.1: Staffing level and staff rostering example

Working hours of each staff member in each one-hour time block
8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-1:00 1:00-2:00

Staff 1 1 1 1 1 1 0
Staff 2 0 1 1 1 1 1
Staff 3 0 1 1 1 1 1

Required
staffing level 1 3 3 3 3 2

In this example, there are three workers with a total of 5 hours working. They can start

working in any time block, but they need to work for 5 hours once they have started working.

For instance, worker 1 started working at 8:00 a.m., and staff 2 and 3 started at 9:00 a.m.

Here is the problem formulation for a staff rostering in a single task server’s queuing system.

Minimize
∑n

j=1 cjsj + p1f(w1 ≤ wqj ≤ w2) + p2f(wqj > w2)

Subject to :

var(wq) ≤ b

sj =
∑

i xij, for all j

yij = xij(1− xij−1), for all i and j

hyij ≤
∑

j Lj.xij ≤ Dyij for all i

Lj ≤ h ≤ D for all j

(4.1)

xij =


1 if server i works in time bucket j in this job,

0 otherwise.

yij =


1 if server i begins working in this job in time block j,

0 otherwise.

(4.2)

57

Where f() is a function representing the number of customers that waited for a certain

amount of time, sj is the number of staff members in time block j, cj is the cost of using

each unit, or staff member, per hour, wqj is the waiting time in the queue in time bucket j,

w1 and w2 are the bounds for the waiting time in queue, wqj is the waiting time in the queue

in time block j, var(wq) is the variance of waiting times over the planning horizon, Lj is

the length of the time bucket j in hours, h is the minimum time the server has to work on

a particular job, and D is the length of the shift for each staff member. Each worker can

start working at any time during the day. However, once their workday begins, they need to

continue until the end of the shift.

Note that the variance of waiting times is included in the problem constraints. Unfor-

tunately, there is no closed-form expression for these variances, and there is no analytical

method to solve this optimization problem. In response, we use simulation to estimate these

variances. This is a staff rostering problem in a service system like the grocery store or

airport check-in counters. This problem aims at determining staff rostering in the way cus-

tomers experience predictable waiting time.

4.2.1 Solution approaches

As we mentioned, there is no analytical method to solve this problem. In order to

determine staff rostering, we will compare two solution approaches:

1. Deep Reinforcement Learning (DRL)

2. Simulation-based Optimization (SBO)

There are many differences in the way we implement these two techniques. First, there is

no need to perform change-point detection in the arrival data set before putting it into the

DRL approach’s simulation model, but SBO does require this step. Second, the output of

the DRL is the staff rostering, while SBO output gives the staffing level. Last, we need to

perform one more step to determine staff rostering. Here are the steps to develop the DRL

approach:

1. Building simulation model

58

2. Setting up requirements to implement DRL

3. Setting up training experiment

4. Simulation model Verification and Validation

5. Setting up an experiment to replicate the outputs

There are some differences between the two SBO approaches in chapters 3 and 4, as listed

below:

• The queuing system is different. In chapter 3, there is one common queue for all active

servers. In this chapter, each active server has its line.

• The objective function in chapter 3 is the total cost of resources, while in this chapter,

it is the total cost of using servers and a step function that penalties the number of

customers who waited more than a predetermined amount of time.

• The constraint in chapter 3 is satisfying the nth percentile of waiting times in each

time block. Instead of percentile as the function of waiting times in the constraint,

this chapter’s constraint is to satisfy the variance of waiting times over a planning

horizon (a day).

• The shifts in chapter 3 have a constant start time and length, while the start of each

shift in this chapter depends on each individual server. The servers in this chapter

have a flexible start time.

• In chapter 3, there were no minimum and maximum working hours, while in this

chapter, there are both minimum and maximum working hours in the current job.

4.3 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines a neural network with reinforcement

learning, enabling the learning agent to acquire the best possible action in a virtual environ-

ment (simulation model).

Here are some key terminologies of the DRL approach [55]:
59

Environment: The environment is the real or simulated world in which the learning agent

operates. The learning agent interacts with and learns from the environment.

Learning Agent: The learning agent, or more accurately, the artificial neural network

(ANN), is the agent that interacts with the environment (simulation model) and learns from

it by making observations, performing specific actions, and receiving rewards based on cer-

tain actions.

State, s: The state is the information that is knowable in the environment that the agent

needs to observe in order to be able to take the best possible action.

Actions a: The possible options that the learning agent can take in the given environment.

Similar to the real world, it can take only certain types of actions in the simulation model.

Reward, r: The reward is the feedback from the environment that reinforces or punishes the

learning agent’s behavior. This reward comes in the form of a number (positive or negative),

altering how the learning agent chooses its actions.

Policy, πθ(s, a): Policy is the learning agent’s strategy used to decide which action to take

based on the current observation. After training, a learned policy is outputted. A ”good”

policy tells us which action is optimal (or near-optimal) based on the system’s given state.

We used AnyLogic simulation software to provide the environment and the training experi-

ment to guide the learning agent. The next part will describe the procedure we implemented

to perform DRL for flexible staff scheduling.

4.3.1 Implementation of the Deep Reinforcement Learning technique to flexible staff schedul-

ing

The simulation model is built with the necessary functions to communicate the model

and the reinforcement learning framework. Specifically, two functions are added to the

simulation model, consisting of both making the observation and taking an action. Further

details of these functions are provided in the following section.

60

4.3.1.1 Get State function

In this problem, the ”GetState” is a function that summarizes information such as the

number of staff members, the variance of waiting time in the queue, and the queue length in

a vector of seven variables. This research contains the information that the learning agent

observes in each time epoch. The vector is:

S[0]: waiting time of the last customer that arrives at the cashier to get service

S[1]: variance of waiting times

S[2]: current number of staff

S[3]: number of customers waiting between a and b minutes

S[4]: number of customers waiting between b and c minutes

S[5]: number of customers waiting more than c minutes

S[6]: queue length (maximum line length among active cashiers).

Since the actual state of a system typically contains an excess of information, we abstracted

the overall system state into seven numbers. This action assumes that this array contains

enough information about the system’s state for the ANN to find an optimal policy. The

training experiment setup is how each t seconds the ANN updates the status vector.

4.3.1.2 Do Action function

This function requires a numerical input (referred to as an action) and, based on that

value, and will perform a specific action in the model. In our problem, there are three actions,

do nothing (if the action argument is 0), remove a worker (if the action argument is 1), and

add a worker (if the action argument is 2). To make the action function clearer, we first

consider a problem without any constraints for removing a worker. In this case, according

to the trained policy, there are three actions during the simulation, including adding a worker,

removing a worker, or doing nothing. We trained the model for a point of the sale grocery

store for this case, and we recorded the number of staff every 15 minutes. Table 4.2 shows

the output of the number of staff members for this case.

There are some conditions for removing a staff member in this research problem, in-

cluding their maximum working hours, D and minimum working hours, h.

61

Table 4.2: Number of staff member for each 15-minutes time block
Time block Workers Time block Workers Time block Workers Time block Workers

1 1 15 11 29 11 43 14
2 1 16 11 30 11 44 14
3 1 17 11 31 11 45 14
4 1 18 11 32 11 46 14
5 1 19 11 33 10 47 14
6 1 20 11 34 6 48 14
7 1 21 11 35 5 49 14
8 1 22 11 36 14 50 14
9 5 23 11 37 14 51 14

10 11 24 11 38 14 52 14
11 11 25 11 39 14 53 14
12 11 26 11 40 14 54 14
13 11 27 11 41 14 55 14
14 11 28 11 42 14 56 14

Adding a new worker: Whenever a new staff member starts working, the new cus-

tomers will check out at their counter. The previous customers continued waiting in the

station they initially entered at the arrival time.

Removing a worker: There are two criteria for removing a worker:

1. The working hours of the staff member should be more than h hours and less than D

hours.

2. When the number in queue is less than D, and when the worker is approaching the

end of their shift, that counter stops accepting new customers. However, they continue

serving the customers that are already in their line.

4.3.1.3 Reward

A reward is calculated based on the observations taken from the environment before

and after taking action. We set the reward function as the step function. Since the action

function includes removing workers, this prevents the DRL from increasing staff numbers

into infinity. Here is the definition of reward function:

1. Waiting time less than w1 minutes:

r(s, a) = number of staff members− var(wq)

2. Waiting time between w1 and w2 minutes:

r(s, a) = number of staff members− p1f(w1 < wi < w2)− var(wq)

62

3. Waiting time more than w2 minutes:

r(s, a) = number of staff members−p1f(w1 < wi < w2)−p2f(wi ≥ w2)−var(wq)

Where f(x) is the number of customers waiting for a certain amount of time. The p1 and p2

are penalty parameters, and wi is the waiting time in the time block i. We present variance

of waiting times over a day by var(wq).

4.3.1.4 Training experiment

We use the custom experiment in the researcher version of AnyLogic simulation soft-

ware to train the best possible policy. We need to specify hyper-parameters (parameters set

before the learning process related to the neural network). As a whole, these values de-

termine how the learning occurs – which ranges from how many steps in each epoch (or

episode), to how often to update the policy, to how much the network explores its environ-

ment.

Random seed: 1

Max step By epoch: 2880

Max step: 6000

Max size of experience replay: 28800

Number of step noop warmup: 10

Number of steps for episode greedy aneal: 8640

According to the “Traffic light example model” [56], we set these parameters that the Any-

Logic company made available on their website for others to use. If we conduct systematic

parameter tuning, that might lead us to a better quality of training. It is an area for further

research to select the training’s hyperparameters and investigate their impact on the quality

of training.

Next is the need to set up the structure of the neural network. As the observation con-

sists of seven values, the input layer has seven neurons (or the input layer is built based on

the observation space’s size). The neural network with more than one hidden layer is con-

sidered a deep neural network. The number of hidden layers in deep learning depends on

63

the complexity of the problem. Problems with more features and complex relationships be-

tween inputs and outputs require a greater number of hidden layers. It is worth noting that an

increase in the number of hidden layers increases the possibility of over-fitting. The network

we used to train in the present research has two hidden layers and an output layer with three

neurons (number of possible actions). We did not perform more exploration for choosing

the number of hidden layers, as this problem is not complicated to train. However, it can be

a direction for future research. After training, the neural network determines whether or not

to take any action. The network’s overall structure is a simple, fully connected, feed-forward

network. A diagram of it can be seen in figure 4.1 below.

Figure 4.1: Structure of artificial neural network

To get the staff scheduling, first, we need to train the model and then use the best

possible policy in a simulation run. The result is the staff scheduling as the simulation’s

output. To replicate the model and reduce the output variability, we design experiments in

the “parameter variation” experiment of the AnyLogic software.

The output of this training is a set of weights for the links of the neural network. To use

this trained policy in the simulation, we define an event to connect with AnyLogic’s simu-

lation environment. Figure 4.2 illustrates a screenshot view of this event in the AnyLogic

software.

64

Figure 4.2: Event in AnyLogic to perform the trained policy and output the action

4.4 Description of how to use Deep Reinforcement Learning as a tool to determine staff

rostering

To describe the procedure of flexible staff scheduling using Deep Reinforcement Learn-

ing, we need to determine the inputs for the software tool and the procedure. Figure 4.3

illustrates the procedure of staff rostering with this tool.

Two inputs are used with the tool, including the arrival process and the target waiting

time that we describe in the following sections. We use the simulation model as the envi-

ronment to train the best possible policy. This best possible policy is the set of weights of

the neural network links after training. Reinforcement learning uses these link weights to

find the best actions which will lead us to the best policy. The inputs to the neural network

at each time epoch are the states of the system that the learning agent observes from the

65

environment, and the output is the action. The action function is the set of possible actions.

Based on the system’s state, the learning agent takes action and earns a corresponding re-

ward. According to the observed states and earned reward, if it is necessary, the action will

be modified. After the process of learning is completed, the output is the trained policy. We

simulate with this trained policy as the input, and the output of the simulation will be the

staff scheduling. We can replicate the simulation model to reduce the output variability and

build the confidence interval for the average number of staff in each time block over a day.

Figure 4.3: Process of staff scheduling with using DRL

4.4.1 Definition of inputs

There are two inputs in this process, including the target waiting time and the arrival

process.

Definition of target waiting time: The target waiting time is a number that determines

the maximum waiting time we expect a customer to experience before getting service. For

example, if the target waiting time is 15 minutes, serving each customer must begin before

the waiting time in the queue reaches 15 minutes.

Definition of arrival process: The arrival process represents the mean customers’ arrival

rates each day; we show the arrival rate function with λ(t). The assumptions about the

arrival process are as follows:

1. Customers arrive individually (not in batches) to the system.

66

2. We use the mean arrival rate per time block during a day. These time buckets are not

required to be equal in length.

3. The arrival rate function (λ(t)) can follow different patterns during the time horizon,

such as sinusoidal, bi-modal, and step patterns. We will illustrate these patterns in

section 4.6.1. We put the mean arrival rates over the day into the simulation software

as the input, and it generates data that follows Poisson distribution in each time block,

for each pattern, regardless of the overall arrival rate function’s pattern (most com-

mercial simulation software uses a thinning-based approach to generate observations

from a non-stationary Poisson process).

Table 4.3 shows the sample of the arrival process to the system.

Table 4.3: Arrival process example for one day
Time λ(t)
08:00-09:00 10
09:00-10:00 25
10:30-11:00 30
11:00-11:30 50
11:30-12:00 80
12:00-01:00 150
01:00-02:00 200
02:00-03:00 330
03:00-04:00 150
04:00-05:00 95
05:00-06:00 70
06:00-07:00 120
07:00-08:00 175
08:00-09:00 200
09:00-10:00 230

Figure 4.4 presents the process we follow, based on the availability of arrival data, to

construct the arrival process. According to this process, if the data is available, we need

to check if the data distribution for different days is the same. If it is the same, we can

determine staff rostering for one day and then apply the same staff scheduling for each day.

Note that we assumed that each staff member’s working hours in each day are independent

of another day. In other words, we do not consider the case where a staff member worked

more in one day and needed to work less in the following day.

67

Figure 4.4: Process to follow based on availability of the data

Figure 4.5 illustrates the process we followed to use the arrival data we retrieved from

a paper that published the point of sale of a grocery store [54]. First, we aggregate the data

from different files and break down the data into individual days. This data set includes three

days of the week, including Thursday, Friday, and Saturday. Then we calculate the mean

arrival rate per hour for each day. After this step, we test two hypotheses. First, we test if the

distribution of the same day of each week is the same. For instance, where all Thursdays are

the same versus when they are not. The second hypothesis deals with if the different days

of a week have the same distribution. For example, if Thursday and Friday’s distribution is

the same.

We conducted a Kolmogorov–Smirnov test for this purpose. If the days of a week have

the same distribution, we put the mean arrival rate of one day as the input to the process,

68

determine staff scheduling for a day, and use the same staff scheduling for other days. If the

distribution of days is not the same, we determine staff scheduling for each day.

Figure 4.5: Process to prepare arrival process of point of sale data set

4.4.1.1 The case arrival data is not the same from day-to-day

In this case, we have two options to choose from as the inputs that go into the process.

The first step is to set each day’s arrival process and to train the policy. Next, one must

simulate to get the staff rostering for that day separately. Another option is to put all days’

arrival processes as the input, train the model once, run the simulation, and get the staff

scheduling for all days. To decide which option is more efficient, we compare the training

time of each case. We trained the model with one day, three days, ten days, and 100 days of

arrival data with two cases, with the same distribution and pattern and completely different

distributions and patterns.

Table 4.4 illustrates the training time that did not change significantly in different cases.

According to this table, we hypothesize that the training time is not dependent on the

simulation’s run length for this set of experiments. We test this hypothesis by comparing

the staff rostering in two cases. First, we train and simulate the model with the same arrival

69

Table 4.4: Training time for different cases
Length of model time Distribution Replication number training time
1 day 1 1:46.80
1 day 2 1:49.17
3 days Same 1 1:49.64
3 days same 2 1:52.44
3 days Different 1 1:52.49
3 days Different 2 1:50.86
10 days same 1 1:49.08
10 days same 1 1:48.02
10 days Different 1 1:49.51
10 days Different 1 1:50.62
100 days same 1 1:52.12
100 days same 2 1:49.89
100 days Different 1 1:51.52
100 days Different 2 1:49.38

pattern. Next, we train the model with a different arrival process than the one we will

simulate. Then, we compare the output of these two cases together.

In this problem, there are three actions that the learning agent can take. They include

doing nothing, decreasing or increasing the number of staff members. This increase or

decrease is based on the waiting time of customers, the working hours of each staff member,

and the line length. As soon as the training agent learns when to take the best possible action,

the training will stop, giving the best possible policy as the output. As a result, having

various days in simulation with different distributions and patterns will not significantly

affect the training time in these sets of experiments.

Based on a small pilot experiment, we hypothesize that the trained neural net will per-

form well for any non-stationary arrival process regardless of the specific arrival process

used to train the model. To test this hypothesis, we designed the following sets of experi-

ments.

We use the step arrival pattern and the inverse U-shaped pattern to train the best possible

policy and then get the staff rostering for sinusoidal and bi-modal patterns. Also, we use

these trained policies to get staff scheduling for point of sale input data of the grocery store.

Tables 4.5, 4.6, and 4.7 show the rounded-up average number of staff needed in each time

block in three different cases. The first average is when we trained and ran the simulation

with the same arrival process. The second and third columns are for the cases in which the

model has been trained with a step arrival pattern and an inverse U-shaped pattern. Then it

is simulated with another arrival process.

70

Table 4.5: The rounded up average number of staff for the case in which we trained the
model with a step arrival rate pattern, a reversed U-shaped pattern, and then ran it with a
bi-modal arrival process pattern

Time trained and ran
with the same arrival process

trained with the
step arrival process

trained with the
Inverse U-shape pattern

08:00-09:00 1 1 1
09:00-10:00 11 11 11
10:00-11:00 13 11 13
11:00-12:00 13 13 13
12:00-01:00 9 9 9
01:00-02:00 13 13 13
02:00-03:00 13 13 13
03:00-04:00 11 11 11
04:00-05:00 9 9 9
05:00-06:00 9 9 9
06:00-07:00 12 12 12
07:00-08:00 13 13 13
08:00-09:00 12 12 12
09:00-10:00 11 11 11

Table 4.6: The rounded up average number of staff for the case in which we trained the
model with a step arrival rate pattern, a reversed U-shaped pattern, and then ran it with a
sinusoidal arrival process pattern

Time trained and ran
with the same arrival process

trained with the
step arrival process

trained with the
Inverse U-shape pattern

08:00-09:00 13 13 13
09:00-10:00 13 13 13
10:00-11:00 13 13 13
11:00-12:00 7 7 7
12:00-01:00 8 8 8
01:00-02:00 12 12 12
02:00-03:00 12 12 12
03:00-04:00 12 12 12
04:00-05:00 9 9 9
05:00-06:00 12 12 12
06:00-07:00 12 12 12
07:00-08:00 11 11 11
08:00-09:00 11 11 11
09:00-10:00 10 10 10

After we simulate the trained model with a step arrival process pattern for bi-modal and

sinusoidal arrival patterns, we use the same trained policy to get the staff rostering for point

of sale data of a grocery store. The result of staff scheduling in table 4.7 shows we result in

the same staff scheduling if we train the model with another arrival pattern, and then run the

simulation for this arrival process of customers to the grocery store, with the condition that

all other settings of the simulation model and the training stay the same.

According to this small pilot set of experiments, we suggest to train the policy with one

non-stationary arrival process pattern the same way as the ones we have tested above, and

then use it for other patterns (among the ones we tested) as long as other settings and model

conditions are the same. So when there are different arrival rate patterns, the same as ones

we tested here, for n days, in terms of training time, it is preferred to set the arrival pattern

of all days as the input to the simulation to train the best possible policy at once. If there

71

Table 4.7: The rounded up average number of staff for the case model has been trained with
a step arrival rate pattern and a reversed U-shaped pattern, and then it has been run with
point of sale arrival data

Time trained and run
with the same arrival process

trained with the
step arrival process

trained with the
Inverse U-shape pattern

08:00-09:00 1 1 1
09:00-10:00 1 1 1
10:00-11:00 7 7 7
11:00-12:00 11 11 11
12:00-01:00 12 12 12
01:00-02:00 10 10 10
02:00-03:00 11 11 11
03:00-04:00 14 14 14
04:00-05:00 13 13 13
05:00-06:00 12 12 12
06:00-07:00 12 12 12
07:00-08:00 11 11 11
08:00-09:00 11 11 11
09:00-10:00 11 11 11

are some changes in the model, like varying the target waiting time, or maximum working

hours of each worker, we need to train the model again.

4.4.2 Definition of components of the simulation model

• Service rate: The mean service time in this problem follows a non-Poisson distribution

function. The service rate shows how many customers can be served in the time unit.

• Queuing discipline: Each server has its line in this problem, and the new customer will

choose the line with the minimum number of customers. For closing a line, we will

consider a server that worked for a certain number of hours. The server will continue

serving the customers that have already been in their line.

• Length of each day: In this problem, each day starts at 8:00 a.m. and stops accepting

new customers at 10:00 p.m., but it will continue working to serve the customers who

arrived at the system before 10:00 p.m.

• Replication of simulation model: We use an experiment in the simulation software to

replicate the simulation results of staff rostering.

4.5 Model validation and verification

Model verification has been implemented in several steps. We used several features

of the ”Analysis” and ”Agent” parts of the Palette view of AnyLogic simulation software

72

to verify the model, including statistics, plot, functions, variables, and parameters. For in-

stance, we used ”traceln()” in many places to print the results during the run. Figures 4.6

and 4.7 show two screen-shots of the verification process. Figure 4.6 represents various

functions, statistics, and features of AnyLogic we have used to verify the model’s perfor-

mance. These features help to collect the waiting time of each customer in self-check-outs

and cashiers, the start time of each cashier, and the total working hours of each cashier.

In addition, functions calculate average waiting time, the variance of waiting time, and the

number of customers who waited for a specific time amount.

Figure 4.6: Functions, parameters, and variables in simulation model

Figure 4.7: One trace line view of the simulation model

73

Model verification has been implemented gradually during model building. In this

part, we tried to give only a general overview representing model verification, and it does

not include a complete verification process.

We also investigate the performance of two solution approaches, Deep Reinforcement

Learning (DRL) and Simulation-based Optimization (SBO). In this case, the arrival process

is constant over the day. Table 4.8 shows that the staffing is the same for both solution

approaches, and it is as we expected. Since the arrival rate does not vary during the day, the

expectation is to have constant staffing levels.

Table 4.8: Result of two solution approaches when average arrival rate is constant during a
day

Time DRL Time SBO
08:00-09:00 3 08:00-09:00 3
09:00-10:00 3 09:00-10:00 3
10:00-11:00 3 10:00-11:00 3
11:00-12:00 3 11:00-12:00 3
12:00-01:00 3 12:00-01:00 3
01:00-02:00 3 01:00-02:00 3
02:00-03:00 3 02:00-03:00 3
03:00-04:00 3 03:00-04:00 3
04:00-05:00 3 04:00-05:00 3
05:00-06:00 3 05:00-06:00 3
06:00-07:00 3 06:00-07:00 3
07:00-08:00 3 07:00-08:00 3
08:00-09:00 3 08:00-09:00 3
09:00-10:00 3 09:00-10:00 3

For simulation model validation, we tested the performance of the simulation model

using data set of arrivals to the grocery store. Figure 4.8 shows the overall view of a gro-

cery store’s point of sale. We use this as a use case in this research. In this system, some

customers prefer to check out in cashiers and some in self-check-out counters. The self-

check-out counters have shared queues, while cashiers have individual queues in this store.

74

Figure 4.8: General overview of the point of sale in grocery store

Figure 4.9 illustrates a view of the model of this grocery store use-case. The simulation

model with this data set works as expected in the real-world grocery store. For instance, a

cashier’s line gets closed when approaching its upper bound of working hours. In addition,

all customers who chose to be served at the self-checkout counter stayed in one line. The

system’s simulation time is 10 hours, and it stops generating new customers when the sim-

ulation’s clock is 10:00 p.m., but it continues serving customers that arrived before 10:00

p.m. as expected.

75

Figure 4.9: Simulation view of one experiment’s run

4.6 Performance evaluation of the solution approach

Like other service systems, the possible input is the arrival rate pattern, and the possible

outputs are the waiting time in the queue, line length, number of workers, and total working

hours of them.

Table 4.9 illustrates inputs and outputs in the model with single task servers.

Table 4.9: Factors and responses in the single task queuing system model
Inputs Outputs
Arrival rates Time in queue
Penalty parameters Number of required staff

Queue length
Variance of Waiting
Staff start time
Total working hours
Total throughput

4.6.1 Arrival process

We talked about the arrival process and its definition in section 4.4.1. Since this prob-

lem is a queuing system problem, we can apply queue concepts and rules to determine

76

characteristics of the arrival process, such as low and high variability in the arrival process

over a planning horizon.

To evaluate the performance of the proposed approach to staff scheduling, we consider

constant, step, sinusoidal, bi-modal, and uni-modal patterns in the arrival process. These

patterns are representative of the variation in the mean arrival rates during a day.

If the peak arrival rate is much higher than the average arrival rate during a day, the

arrival process has a high variability [28]. To define variability in the arrival process, we

use the coefficient of variation (Ĉv = s
x̄
). Distributions with c.v < 1 have variation less

than Poisson distribution, and distributions with c.v > 1 are more variable than Poisson

distribution.

Appendix A presents the results of performing the Deep Reinforcement learning al-

gorithm to staff scheduling for different arrival process patterns, including constant (sta-

tionary), uni-modal, sinusoidal, step, and bi-modal arrival patterns to evaluate our proposed

algorithm’s performance. Figure 4.10 represents example of these arrival process patterns.

We present the bi-modal arrival pattern in the top left part of this figure. As we can see,

there are two peaks of arrivals to the system over a day. There are two cases with the step

arrival process patterns that we applied as the input into the Deep Reinforcement Learning

algorithm to determine the staff rostering over a day. On the bottom left of the figure are

examples of the rival process with the uni-modal pattern with low and high variability in the

arrival process.

77

Figure 4.10: Example of arrival process patterns

We present three cases with sinusoidal arrival pattern. For first pattern, we used sinu-

soidal arrival rate as: λ(t) = λ̄(1 + sin(0.2t)) we assume λ̄ = 100 the same as the base

model in existing related work [13]. For higher frequency and higher amplitude sinusoidal

pattern we applied λ(t) = 100(1 + sin(0.5t)) and λ(t) = 200(1 + sin(0.2t)) arrival rate

functions, respectively.

4.6.2 Penalty parameters levels

Penalty parameters are the ones included in the objective function of the nonlinear

programming problem that was described in section 4.2. We designed the experiment with

three levels, low, medium, and high penalty rates. This penalty is defined as the step function

in the objective function, as we stated in equation 4.1. With an increase in customers’

waiting time, the penalty cost will increase by a higher value.

By decreasing the value of penalty parameters, we enforce lower levels of staff to the

system. In this case, the customers’ waiting time increases the objective function less than

the case penalty parameter values are high. Since this is a minimization problem, assigning

78

lower staffing levels to the system over the planning horizon. According to the discussion in

section 4.6.1 and this section, we will conduct a set of experiments as shown in table 4.10.

Table 4.10: List of the set of experiments
Run(i) input 1 input 2 output

1 low constant arrival rate big R1
2 medium constant arrival rate big R2
3 high constant arrival rate big R3
4 uni-modal with low variability small R4
5 uni-modal with low variability medium R5
6 uni-modal with low variability big R6
7 uni-modal with high variability small R7
8 uni-modal with high variability medium R8
9 uni-modal with high variability big R9

10 oscillating pattern big R10
11 oscillating pattern with higher frequency big R11
12 oscillating pattern with higher amplitude big R12
13 step pattern 1 big R13
14 step pattern 2 big R14
15 U-shape with bi-modal pattern big R15

The results in appendix A indicate that DRL performs properly in staff scheduling. For

instance, while staff scheduling with bi-modal arrival rate pattern, considering the working

hour constraint, the output is as expected. The results show that the values of staffing levels

will increase with an increase in the penalty parameters. The total number of workers in

the case with high penalty parameters is higher than medium penalty parameters. Similarly,

the total number of workers in medium penalty parameters is higher than in low penalty

parameters.

4.6.3 Deciding about the number of required replications

Since these problems are stochastic, we can not rely on only one replication to deter-

mine the value of responses. To decrease the variability in the responses, we replicate the

simulation experiment n times and construct a confidence interval.

If we wish to have a narrower confidence interval, we need to reduce h, which is the

confidence interval length. For this purpose, we increase the number of replications, n. To

do so we solve the following approximation equation for n. h ' t1−α
2
,n−1 × s/

√
n, then

we have n ' (
t1−α

2 ,n−1×s
h

)2. Because still t-value is dependent on n, as we replicate enough

(usually more than 30), we can substitute that with Z distribution. So we have, n ' (
zα
2
×s
h

)2.

In this research, we replicate enough to reach the confidence interval length arbitrarily close

to 1. In this way, we are 95% confident that the true mean, in this case, the staffing level

is in that range LCL (Lower Confidence Interval) and UCL (Upper Confidence Interval),
79

which are two consecutive numbers, and with rounding up to the nearest integer, the mean

will always be equal to LCL and/or UCL.

4.7 Applying the DRL approach to the use case, point of sale data of the grocery store

This section uses a European grocery store’s point of sale data set and applies our

proposed approach to staff scheduling. The data are retrieved from the Point of Sale (POS)

transaction times recorded for each customer at the cashier counters and the self-checkout

machines in a grocery store, [54]. The studied store works from 8:00 a.m. to 10:00 p.m. on

Thursdays, Fridays, and Saturdays. The data set consists of four Thursdays, four Fridays,

and four Saturdays. These data allow us to obtain the number of transactions for each

checkout option and the recorded transaction times for any given time frame. We split

recorded transaction times into the POS data set into two different portions. The first data

set represents the transaction time and, in particular, the time required to scan the items and

accept the payment. The second data set represents the break time required for a customer

to receive the receipt or the change, the time for bagging the items, and the idle time until

the next customer’s arrival. Figure 4.11 shows the number of transactions in cashiers on

Thursdays, Fridays, and Saturdays. We perform the Kolmogorov- Smirnov test to test the

hypothesis that these transactions are following the same distribution. The p − value of

the test for all combinations of comparing two days is between 0.63 and 0.999, indicating

there is not enough evidence to assume the distribution of the number of transactions during

Thursdays is not identical. We apply the same analysis for Fridays and Saturdays. The

results show that the distribution on Fridays is the same, and distribution on Saturdays is

the same with p − value of in range (0.348,0.999) and (0.06, 0.91), respectively. For more

investigation, we performed the Kolmogorov–Smirnov test to hypothesize if the distribution

of transactions is different from day-to-day. That is it, from Thursday to Friday, from Friday

to Saturday, and from Saturday to Thursday. The result shows p − value is between 0.348

and 0.912 for different combinations, indicating there is not enough evidence to assume the

distribution of the different days is not identical.

80

Figure 4.11: Cashiers’ number of transactions during the day on Thursdays, Fridays, and

Saturdays

After characterizing the arrival process, according to section 4.3, we implement the

Deep Reinforcement Learning approach to get the number of cashiers over a day for point

of sale in the grocery store. Table 4.11 illustrates these results.

Table 4.11: Experiment result for point of sale grocery use case, big penalty parameter
Time Mean Half Interval LCL UCL Rounded-Up

Mean LCL UCL
08:00-09:00 1 0 1 1 1 1 1
09:00-10:00 1 0 1 1 1 1 1
10:00-11:00 6.05 0.9 5.15 6.95 7 6 7
11:00-12:00 10.9 0.37 10.53 11.27 11 11 12
12:00-01:00 11.05 0.37 10.68 11.42 12 11 12
01:00-02:00 9.02 0.35 8.67 9.37 10 9 10
02:00-03:00 10.44 0.34 10.1 10.78 11 11 11
03:00-04:00 13.03 0.29 12.74 13.32 14 13 14
04:00-05:00 12.98 0.54 12.44 13.52 13 13 14
05:00-06:00 11.21 0.56 10.65 11.77 12 11 12
06:00-07:00 11.37 0.77 10.6 12.14 12 11 13
07:00-08:00 11.74 0.8 10.94 12.54 12 11 13
08:00-09:00 11.23 0.81 10.42 12.04 12 11 13
09:00-10:00 10.13 0.82 9.31 10.95 11 10 11

At the beginning of the day, the mean arrival rate was low, and the required cashier was

one in all replications of the simulation without any variability among replications.

81

4.8 Comparison between DRL and SBO approaches’ outputs

In this section, we compare the resulted staff rostering of two solution approaches. We

compare them in two aspects:

1. Efficiency

2. Performance

4.8.1 Efficiency comparison

Here is the comparison between two approaches in terms of efficiency:

1. DRL approach does not require performing change-point detection to detect changes

in input data.

2. The DRL approach’s output is a staff rostering, but the output of the SBO method is

staffing levels, and there is a need to perform one more step to get staff rostering.

According to these cases, the DRL approach seems to be more efficient. We need to apply an

algorithm that performs well enough to estimate change-point close to their actual location

to perform change-point detection. Also, not performing staff rostering at the same step

as determining staffing levels causes some other differences between the two approaches

output. For instance, by two-step staff scheduling, there is a possibility of over-staffing, as

discussed in section 3.5. In this case, first, we apply the problem’s constraints to determine

staffing level and then apply working hours constraints on the optimal staffing level. This

will increase the possibility of over-staffing in a staff scheduling problem.

4.8.2 Performance

To compare the two methods’ performance, we compare the total number of staff dur-

ing a day and the variance of waiting times over a day. Note that in chapter 3, we needed

to consider the average of waiting times for each time block instead of the overall average.

The reason is that if some of the time blocks have a high value of waiting times, but there

are some other time blocks with low waiting times, the overall average will not be affected
82

by those high values. Unlike, variance is sensitive to the large values, and if there are some

of the time blocks with high variance, the overall variance will be high. Because of this,

we will consider the overall variance of waiting time over a day and not in each time block

to evaluate the proposed methodology to achieve predictable waiting times. To test if sta-

tistically there is any difference between the two methods’ performance, we conducted two

sample t-Test. For this purpose, we simulated the system with each pattern’s staff schedule

30 times, and we compared two metrics, the average number in the system and average time

in the system.

4.8.2.1 Uni-modal arrival pattern with low variability in arrival process

Table 4.12 represents the staff rostering for both approaches. The total number of staff

resulting from DRL is 73, while the resulted one from SBO is 118, which indicates a higher

staffing cost of SBO methodology. In addition, the variance of waiting times is lower in

DRL than SBO, which indicates the waiting times resulting from the DRL approach are less

variable.

Table 4.12: Mean staff rostering resulted from DRL and SBO- Low variability in arrival
process and big penalty parameters

Time DRL SBO
08:00-09:00 1 1
09:00-10:00 2 1
10:00-11:00 3 4
11:00-12:00 8 15
12:00-01:00 9 15
01:00-02:00 9 15
02:00-03:00 8 13
03:00-04:00 8 14
04:00-05:00 7 10
05:00-06:00 6 9
06:00-07:00 4 6
07:00-08:00 3 5
08:00-09:00 3 5
09:00-10:00 2 5
Total staff 73 118
Variance of waiting times 1.66 2.29

Tables 4.13 and 4.14 present the average performance metrics and the t-test for two

approaches. the p-value of the test for both performance metrics is higher than 0.05, which

indicates there is no statistical difference between the average number in the system and the

average time in the system of the two schedules.

83

Table 4.13: Performance metrics comparison
DRL SBO

Average number in system 1.42 1.45

Average time in system(minutes) 2.05 2.08

Table 4.14: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.59 0.56
Average time in system −0.17 0.86

4.8.2.2 Uni-modal pattern with high variability in arrival process

Table 4.15 shows the staff rostering and the total number of staff as well as the overall

variance of waiting time over a day. The total number of staff is lower in DRL than SBO,

which results in a lower total staffing cost than SBO. In addition to the lower staff cost, DRL

methodology resulted in the lower variability in the waiting times than SBO. Tables 4.16

and 4.17 indicate there is not significant difference between the average number in system

and average time in system of two schedules.

Table 4.15: Resulted staff rostering of DRL and SBO- High variability in arrival process and
big penalty parameters

Time DRL SBO
08:00-09:00 1 1
09:00-10:00 1 1
10:00-11:00 6 12
11:00-12:00 6 15
12:00-01:00 13 15
01:00-02:00 14 15
02:00-03:00 15 10
03:00-04:00 16 13
04:00-05:00 16 13
05:00-06:00 15 13
06:00-07:00 13 16
07:00-08:00 13 16
08:00-09:00 13 16
09:00-10:00 12 9
Total staff 154 165
Variance of waiting times 7.69 22.06

Table 4.16: Performance metrics comparison
DRL SBO

Average number in system 3.38 3.42
Average time in system(minutes) 1.89 1.90

Table 4.17: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.23 0.81
Average time in system −0.38 0.70

84

4.8.2.3 Oscillating pattern

In this part, we investigate three sinusoidal patterns. We apply sinusoidal arrival pattern

with arrival rate function: λ(t) = λ̄(1 + sin(0.2t)), we assume λ̄ = 100 the same as the base

model in existing works in literature [13]. The next two oscillating patterns are with higher

frequency and higher amplitude than this pattern, respectively. Table 4.18 represent the staff

rostering results from DRL and SBO methods when the arrival pattern is sinusoidal. As

shown, the DRL approach ended up with a lower staffing cost and variance of waiting times.

Table 4.18: Resulted staff rostering of DRL and SBO- Sinusoidal arrival process and big
penalty parameters

Time DRL SBO
08:00-09:00 13 10
09:00-10:00 13 16
10:00-11:00 13 16
11:00-12:00 7 16
12:00-01:00 8 16
01:00-02:00 12 16
02:00-03:00 12 6
03:00-04:00 12 6
04:00-05:00 9 14
05:00-06:00 12 14
06:00-07:00 12 14
07:00-08:00 11 14
08:00-09:00 11 9
09:00-10:00 10 13
Total staff 155 180
Variance of waiting times 3.56 5.58

Table 4.19: Performance metrics comparison
DRL SBO

Average number in system 2.30 2.34
Average time in system(minutes) 1.81 1.84

Table 4.20: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.55 0.29
Average time in system −0.45 0.65

4.8.2.4 Oscillating pattern- higher frequency

In this experiment, we compare the performance of DRL and SBO for the arrival pro-

cess with a sinusoidal pattern and higher frequency than the arrival process in the last part.

The arrival rate function is λ(t) = λ̄(1 + sin(0.5t). Table 4.21 represent staff scheduling of

two methodologies. The required number of workers and variability in waiting times from

applying DRL is lower than the SBO method. These outputs indicate that DRL performed

better in this example.
85

Table 4.21: Resulted staff rostering of DRL and SBO- Sinusoidal arrival process with higher
frequency and big penalty parameters

Time DRL SBO
08:00-09:00 12 16
09:00-10:00 8 16
10:00-11:00 12 16
11:00-12:00 11 6
12:00-01:00 10 16
01:00-02:00 10 16
02:00-03:00 9 15
03:00-04:00 10 6
04:00-05:00 11 15
05:00-06:00 10 15
06:00-07:00 1 5
07:00-08:00 8 15
08:00-09:00 11 15
09:00-10:00 11 15
Total staff 134 186
Variance of waiting times 0.68 4.96

Table 4.22: Performance metrics comparison
DRL SBO

Average number in system 3.36 3.45
Average time in system(minutes) 3.30 3.38

Table 4.23: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.38 0.70
Average time in system −0.39 0.69

4.8.2.5 Oscillating pattern- higher amplitude

In this example, the amplitude is higher than the base sinusoidal arrival pattern. The

arrival rate function is λ(t) = λ̄(1 + sin(0.2t), where λ̄ is 200. Table 4.24 shows staff

rostering resulted from applying these approaches. The DRL reported a lower number of

staff members and variance of waiting times than SBO.

Table 4.24: Resulted staff rostering of DRL and SBO- Sinusoidal arrival process with higher
amplitude and big penalty parameters

Time DRL SBO
08:00-09:00 11 9
09:00-10:00 11 11
10:00-11:00 11 16
11:00-12:00 10 16
12:00-01:00 9 9
01:00-02:00 9 9
02:00-03:00 11 16
03:00-04:00 15 16
04:00-05:00 16 16
05:00-06:00 15 16
06:00-07:00 15 16
07:00-08:00 15 16
08:00-09:00 16 16
09:00-10:00 14 16
Total staff 178 205
Variance of waiting times 3.78 5.35

86

Table 4.25: Performance metrics comparison
DRL SBO

Average number in system 4.24 4.25

Average time in system(minutes) 1.80 1.81

Table 4.26: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.05 0.96

Average time in system −0.07 0.94

4.8.2.6 Bi-modal arrival process pattern

In this case, the arrival pattern is bi-modal with the two peaks of arrivals. Table 4.27

represents the staff rostering of two methods. The DRL approach resulted in a lower staffing

requirement than SBO. Also, we can observe a pattern in staff rostering. When the arrival

rate was higher, more workers, and when it is lower, fewer staff members. However, SBO

did not perform well in this example. Both required staffing levels and variance of waiting

times are higher in SBO than in the DRL approach.

Table 4.27: Resulted staff rostering of DRL and SBO- bi-modal arrival process and big
penalty parameters

Time DRL SBO
08:00-09:00 2 2
09:00-10:00 8 7
10:00-11:00 9 10
11:00-12:00 9 10
12:00-01:00 11 10
01:00-02:00 15 13
02:00-03:00 15 16
03:00-04:00 15 16
04:00-05:00 11 16
05:00-06:00 9 16
06:00-07:00 12 16
07:00-08:00 13 16
08:00-09:00 12 16
09:00-10:00 11 16
Total staff 152 180
Variance of waiting times 0.93 10.02

Table 4.28: Performance metrics comparison
DRL SBO

Average number in system 3.41 3.42
Average time in system(minutes) 1.76 1.76

87

Table 4.29: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.07 0.94
Average time in system −0.15 0.88

4.8.2.7 Step pattern 1 in arrival process

In this example, we investigate the arrival process with a step pattern. Table 4.30 repre-

sents staff rostering of two methodologies. The DRL ended up with a lower staff requirement

and variance of waiting times. Table 4.32 shows there is a significant difference between the

average time in system of two schedules.

Table 4.30: Resulted staff rostering of DRL and SBO- step pattern 1 in arrival process and
big penalty parameters

Time DRL SBO
08:00-09:00 1 1
09:00-10:00 14 14
10:00-11:00 14 14
11:00-12:00 14 14
12:00-01:00 10 14
01:00-02:00 12 14
02:00-03:00 12 13
03:00-04:00 11 8
04:00-05:00 12 15
05:00-06:00 12 15
06:00-07:00 12 15
07:00-08:00 11 15
08:00-09:00 10 15
09:00-10:00 10 15
Total staff 155 182
Variance of waiting times 1.01 2.16

Table 4.31: Performance metrics comparison
DRL SBO

Average number in system 2.63 2.65
Average time in system(minutes) 2.05 2.06

Table 4.32: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.1 0.90
Average time in system −0.08 0.94

4.8.2.8 Step pattern 2 in arrival process

Table 4.33 shows staff scheduling resulted from two methods, DRL and SBO. This step

pattern includes two uniform arrival rates; the second has the lower arrival rates. Like pre-

vious examples, the DRL approach resulted in fewer workers and lower variance of waiting

times.

88

Table 4.33: Resulted staff rostering of DRL and SBO- step pattern 2 in arrival process and
big penalty parameters

Time DRL SBO
08:00-09:00 15 14
09:00-10:00 15 14
10:00-11:00 15 14
11:00-12:00 14 14
12:00-01:00 14 14
01:00-02:00 10 14
02:00-03:00 10 12
03:00-04:00 10 12
04:00-05:00 10 12
05:00-06:00 10 12
06:00-07:00 10 12
07:00-08:00 10 12
08:00-09:00 10 12
09:00-10:00 10 12
Total staff 163 180
Variance of waiting times 2.31 7.65

Table 4.34: Performance metrics comparison
DRL SBO

Average number in system 2.24 4.30
Average time in system(minutes) 2.62 4.45

Table 4.35: Statistical test to compare performance metrics
t-Stat p-value

Average number in system 0.21 0.83
Average time in system 0.18 0.86

4.8.2.9 Point of sale in grocery store

After performing the DRL with different arrival process patterns and comparing the

outputs with SBO, we use the point of sale data in the grocery store to get staff scheduling.

In table 4.36, we represent staff rostering of two methods. The DRL gave the lower total

number of workers. Also, the variability in the waiting times is lower in the staff schedule

resulting from the DRL approach than the SBO.

89

Table 4.36: Average staff rostering of DRL and SBO- point of sale arrival process and big
penalty parameters

Time DRL SBO
08:00-09:00 2 1
09:00-10:00 2 1
10:00-11:00 7 8
11:00-12:00 11 14
12:00-01:00 12 14
01:00-02:00 10 14
02:00-03:00 11 16
03:00-04:00 14 14
04:00-05:00 15 14
05:00-06:00 12 14
06:00-07:00 13 16
07:00-08:00 12 16
08:00-09:00 13 16
09:00-10:00 11 10
Total staff 145 168
Variance of waiting times 2.40 4.55

Table 4.37: Performance metrics comparison
DRL SBO

Average number in system 3.23 2.10
Average time in system(minutes) 2.09 3.24

Table 4.38: Statistical test to compare performance metrics
t-Stat p-value

Average number in system −0.12 0.90
Average time in system −0.11 0.91

4.9 Conclusion

This chapter proposed a methodology in DRL to flexible staff scheduling in a non-

stationary service system. This method uses a neural network to train the best possible

policy to determine when and how to change the number of workers. Unlike other meth-

ods, this approach does not need information about the change-points of the non-stationary

arrival process. We compared DRL, and SBO approaches to get the staff rostering in the

system with single task servers and a non-stationary arrival process. We performed a set of

experiments with different inputs to investigate the performance of two solution approaches.

We tested the DRL methodology on the use-case, including the point of sale data at the gro-

cery store. The results show that this approach can perform appropriately on the various

arrival processes we tested and the use case. We considered variance of waiting times to

achieve predictability of waiting times. The evidence indicates that DRL performs better in

both efficiency and performance. It produced better schedules in the cases that we tested.

In addition, it resulted in schedules with lower variation in waiting times than the SBO
90

method. The DRL’s performance as a methodology is noticeable when the variation in the

arrival rate is higher. The results of performing the DRL and SBO staff scheduling on two

samples T-test on the average time in the system and the average number in the system in-

dicates considering the average is not a good measure to capture differences between two

approaches. As we discussed in chapter 3, there could be a high waiting time in one time

block, but the overall average of waiting times over a day still satisfies the constraint.

91

Chapter 5

Modeling and Generating Independent Data for Non-Stationary Processes

5.1 Introduction

In this chapter, we focus on developing the models and generating independent random

observations from non-stationary processes. As in real-world applications, there is no in-

formation about the distribution function of arrivals to each part of the service system; our

interest is practical applications. We focus on the notion of having an input, and we try to

match the output. Our objective is to generate data such that the arrival rate and dispersion

ratio match those of the input data.

Since both the stationary Poisson process and non-stationary Poisson process have a

dispersion ratio equal to 1, the dispersion ratio provides a measure of deviation from the

Poisson process. We use dispersion ratio and arrival rate function as criteria to evaluate our

data generation process as they are two keys to characterize the arrival process [57]. We

define the non-stationary process model to generate data as following:

M = [P,Λ, C], where:

P = [P1, P2, ..., Pk] and Pk is the ending time for block k

Λ = [λ1(t), λ2(t), ..., λk(t)] and λk(t) is the arrival rate during block k

D = [D1, D2, ..., Dk] and Dk is the dispersion ratio for block k

We are interested in two goals including:

1. Creating a set of representative models from a given set of arrival data

2. Generating observations from the models that match the dispersion ratio and arrival

rate function.
92

Both Λ(t) and D(t) are continuous functions of time. Given a period of a specific length

(like a shift, day, or a week), first, we discretize the time horizon by change-point detection

into k adjacent blocks. We call each of these time blocks a phase. As discussed in chapter 1,

for time series with gradual changes in arrival rate over time, more analysis is needed, like

plotting a histogram of the interarrival times in various time bucket lengths. Each phase,

k, is characterized by an arrival rate, λk, and a dispersion ratio, Dk. In this chapter, we

arbitrarily assume the period is one day.

In general, in terms of variance-to-mean (dispersion) ratio, processes are classified into

three sets. If arrival process is Poisson (interarrival times are exponentially distributed),

then Dk = 1. If the arrival process variability is less than the Poisson distribution (underdis-

persed), then Dk < 1. For example, hyper-Erlang distribution is in this category. Lastly, the

variability of an arrival process with Dk > 1 is more than the Poisson distribution (overdis-

persed) [24]. The hyperexponential and negative binomial distributions are instances of this

type of process.

The value of Dk is used to characterize the process, which will be transformed into a

non-stationary process. This process is called the renewal base process, and it has a mean

equal to one and a variance equal to Dk. We will describe this process in more detail in

section 5.2.

The first step in building the model is estimating the values of Dk and λk in each phase

based on the available data set. If there is no data available, we use our judgment and domain

knowledge to specify those values according to similar processes. Here is the process that

describes how to develop the model. Assuming n (n ≥ 1) days of arrival times to a service

system are available, we start with partitioning n days into m sets of days with observations

following the same distribution. Next, for each partition, we perform change-point detection

on each day by applying the method proposed in [2] to determine a set of change-points, P .

Because of randomness, each time bucket of similar days can contain a different num-

ber of arrivals. Therefore, we calculate Dk and λk for each day, and we build the confidence

interval for them. Figure 5.1 illustrates the process of building a model according to the

sample available data set.

93

Figure 5.1: The process of developing the model based on the available data set

In the present research, we apply different non-Poisson distributions (whereDk 6= 1) as

the base process to provide a specificDk values. One category of these distributions is phase-

type distributions. It has been shown that phase-type distributions have a relatively short

warm-up period to converge to the given dispersion ratio [23]. The first step in generating

nonstationary arrival data is to build a stationary point process according to the specific

renewal base process. Methods to generate stationary point processes are well-defined (for

example, see [58] and [59]). After generating stationary sample observations from the base

process, we transform this produced point process, based on the inverse of the cumulative

arrival rate function, to build the arrival times of the nonstationary arrival process. We

present an example to make the process described in figure 5.1 clear.

We generated non-stationary arrival times as an available data set in Simio simulation

software. The data set arbitrarily includes ten days with similar distributions. Each day

contains eight working hours. Figure 5.2 shows the arrival rate over a day.

94

Figure 5.2: The average arrival rate during 8 hours of simulation

We generated data from a triangular distribution with parameters (min= 1.2, mode=

3.6, max= 6) minutes for the first two hours. The generated data for the next four hours are

from a truncated normal distribution with parameters (µ = 1.98, σ= 1.8) minutes. Since

normal distribution includes negative value, and our goal is generating arrival times, we use

truncated normal distribution instead of normal distribution to generate values greater than

zero. Figure 5.3 shows truncated normal distribution we sampled from to generate random

observations. The produced data for the last two hours are from an exponential distribution

with an interarrival time equal to 1.2 minutes. We included exponential distribution to show

the generality of the developed approach to generate nonstationary data when the dispersion

ratio is equal to 1 and when it is not equal to 1.

Figure 5.3: Truncated normal distribution to generate non-negative values

95

We follow the procedure described in figure 5.1 to determine change-points and then

estimate the values of Dk and λk. Table 5.1 represents the values of Dk, λk, and Pk for each

time block in each day from the 10-day sample of generated data.

Table 5.1: The values of Dk, λk, and Pk for each day
Day λ1 λ2 λ3 D1 D2 D3 P1 P2 P3

1 16.5 25.75 43.5 0.036 0.23 1.05 1.95 5.97 8.00

2 17 22.75 52.5 0.023 0.38 1.06 1.97 5.96 8.00

3 17 24 51.5 0.082 0.46 0.96 1.99 5.97 8.00

4 16 26.25 48 0.078 0.91 1.08 1.97 5.98 8.00

5 18 25.5 62.5 0.057 0.16 0.96 1.98 5.93 8.00

6 17.5 24.5 49 0.097 0.28 1.04 1.98 5.97 8.00

7 16.5 24.25 48.5 0.023 0.29 0.99 1.96 5.94 8.00

8 17 26.25 51 0.09 0.52 1.02 1.96 5.94 8.00

9 15.5 25.25 48 0.162 0.52 0.99 1.94 5.91 8.00

10 16 23.75 39.5 0.10 0.21 1.02 1.97 5.99 8.00

Since λk, Dk, and Pk are random variables, we need to use a function of these values

over different days to characterize the model’s parameters. As the average is the unbiased

estimator of a population’s mean, we choose to use the averages of these values to estimate

the model’s parameters. Here is the model we developed from the sample data:

P = [1.97, 5.96, 8.00]

Λ = [16.70, 24.81, 49.40]

D = [0.076, 0.410, 1.006]

After describing terms and methodologies to generate non-stationary arrival data in the fol-

lowing sections, we will use this model in section 5.7 to generate data with the same prop-

erties of data described in this section. We match the dispersion ratio for the generated data

with the sample input data.

The organization of the rest of this chapter is as follows. First, we present the definition

of the base process in section 5.2. Section 5.3 presents existing methodologies to generate

data from the NSNP process and its drawbacks. In section 5.4 we represent numerical in-

version and an example to clarify how we apply this approach. Then in sections 5.5 and 5.6

we talk about algorithms and different base processes used for non-stationary data genera-

tion. Section 5.7 presents an example to generate non-stationary data. Finally, in section 5.8

96

we represent examples and evaluate the performance of the proposed algorithm to generate

non-stationary data.

5.2 Definition of base process

Renewal base process is a set of stationary sample observations from a desired distri-

bution, where renewal process is an arrival process in which the inter-arrival intervals are

positive, independent, and identically distributed random variables. We define a set of sta-

tionary non-negative interarrival times. For instance, to generate stationary interarrival times

from the uniform distribution with parameters a and b, first we generate a random variable

from uniform (0,1) distribution and we show it ui. Then put it inXi = a+ui×(b−a), where

Xi is the ith observation of the uniform distribution. Let {Xn, n ≥ 1} be a set of n samples

and let Sn be the time of nth arrival; S0 = 0, Sk =
∑k

i=1Xi. For n = 1, 2, ..., let N(t) be

the number of arrivals that occurred on or before time t; N(t) = max{n ≥ 0 : Sn ≤ t}

[24]. N(t) is assumed to have a given asymptotic dispersion ratio:

D ≡ lim
t→∞

V ar[N(t)]

E[N(t)]
(5.1)

Since both stationary Poisson processes and non-stationary Poisson processes have disper-

sion ratios equal to 1, the process with a dispersion ratio not equal to 1 is a non-Poisson

process [23]. Since a base process is a stationary rate-1 (arrival rate equal to 1) process, the

mean inter-arrival time is equal to 1, and the variance is equal to D.

5.3 Existing method, combined inversion-and-thinning approach (CIATA) to generate non-

stationary non-Poisson process

Thinning and inversion methods to generate data of non-stationary non-Poisson pro-

cesses were proposed in [24]. There are some drawbacks to applying these two methods

to generate NSNP arrival data. Their proposed inversion method is only applicable for the

cases where the arrival rate function is easily invertible. One disadvantage of their proposed

97

thinning method is that it may be computationally inefficient if λ(t) � λ∗ over a substan-

tial range of values for t, resulting in a relatively large number of rejections [23]. Another

downside is that the dispersion ratio of the generated data does not necessarily converge

to the target value of D. Liu et al. [23] extended the methods proposed by Gerhardt and

Nelson [24] for modeling the NSNP process with a given arrival rate function (λ(t)) and an

asymptotic dispersion ratio by dividing the time horizon into Q smaller time blocks. The

researchers claim the proposed approach can handle broader forms of arrival rate functions

λ(t) than the inverse method, unlike the thinning approach, CIATA-Ph (CIATA with phase-

type distribution as the renewal base process) can achieve any value of D. In this algorithm,

they set two assumptions:

1. The given rate function λ(t) for t ≥ 0 has a finite upper bound λ∗. Moreover, each

finite time interval [0, t] has a (finite) partition such that λ(y), y ∈ [0, t], is constant or

quasiconcave on each subinterval of the partition.

2. The arrival rate function λ(t) is continuous at every t ≥ 0.

They showed if assumption 1 holds and Q is sufficiently large, then E[N(t)] = µ(t) ≡∫ t
0
λ(y)dy, t ≥ 0. By this, they showed that their NSNP process generated by CIATA

achieves the mean-value function. As the first step, researchers constructed a piece-wise

constant majorizing rate function, λ̃Q(t), which converges to λ(t) when Q→∞. For more

details about constructing majorizing rate function, see their algorithm 1. They called the

corresponding majorizing mean-value function in each section, µ̃Q. Here is their proposed

algorithm to generate NSNP process:

98

Algorithm 3 Algorithm to generate data proposed in [23]

Construct the majorizing rate function λ̃Q(t)
According to the value of D, construct the base process and call it G
Set n ← 1, l ← 0, So0 ← 0, S̃0 ← 0, and S0 ← 0. Generate Xo

n ∼ Ge and set Son ←
Son−1 +Xo

n and set S̃n ← µ̃−1
Q (Son)

While S̃n ≤ S do;
Generate Un ∼ uniform[0, 1]
If Un ≤ λ(S̃n)/λ̃Q(S̃n), then

Set l← l + 1 and Sl ← S̃n
end if
Set n← n+ 1. Generate Xo

n ∼ G. Set Son ← Son−1 +Xo
n and S̃n ← µ̃−1

Q (Son).
end while

In this algorithm,Xo
n is the nth inter-renewal time. They calculated the inverse function

of the Cumulative Distribution Function (CDF) of arrival rates for each partition. To include

each point, they applied thinning, and if it was accepted, they used the inverse of the CDF

to generate a new sample observation.

5.4 Numerical inversion

If the CDF of the arrival rate function, Λ(t), is not invertible, we can also use the

numerical inversion method instead of the methodology described in section 5.3. The output

of the inversion method is a table. Later in this section, we will present an example to make

this approach more clear. One of the advantages of numerical inversion is that we can

replicate the model several times by looking up the previously created table. We build this

table and reuse it several times according to the arrival rate function outside the simulation.

Ma and Whitt [22] proposed an algorithm to get the numerical inverse of the Cumula-

tive Distribution Function (CDF), which we discussed in detail formerly in this section. The

goal of the numerical approximation of the inverse function is to construct an approximation

efficiently, that we show it with J of the function Λ−1 mapping interval [0,Λ(t)] to [0, T]

with specific accuracy.

||J − Λ−1|| ≡ sup
0≤t≤Λ(t)

{|J(t)− Λ−1(t)|} ≤ ε (5.2)

99

Their general strategy is to partition two intervals [0, T] and [0,Λ(t)] into nx and ny evenly

sub-intervals of length η and δ, respectively. Since numerical inversion maps each point on

y axis to a proper point on x axis, they define J(iδ) to be an appropriate jη on x axis, for

each i, 0 ≤ i ≤ ny. The main parameters in their algorithm are:

ρ ≡ λu
λl
, η =

ε

1 + ρ
, δ = λuη (5.3)

Where λu and λl are the upper and lower bound of arrival rate function, λ(t). Therefore, ρ

is the slope ratio, 1 ≤ ρ ≤ ∞. They calculate Λ(t) or each point in [0, T] as follows:

a(j) ≡ Λ(kη), 0 ≤ j ≤ nx (5.4)

To approximate the value of λ−1(y) in each point in [0,Λ(T)] within the point in [0, T], they

use the following equation:

b(i) ≡ inf{j ≥ 0 : a(j) ≥ iδ} (5.5)

Then J(iδ) = b(i)η for all i, 0 ≤ i ≤ ny. Figure 5.4 illustrates the numerical inversion that

maps each point on the y axis to the appropriate one on the x-axis.

To make the numerical inversion more clear, we create an example and present it here.

We use the arrival rate function λ(t) = 4t and its corresponding CDF is, Λ(t) = 2t2. After

applying equation 5.3, the values of ρ, η, and δ are 1.5, 0.0004, and 0.024, respectively. Next,

we use equations 5.4 and 5.5 to create a lookup table to generate non-stationary arrival data

of a process with D = 0.3 and uniform distribution as the base process. The parameters

of this uniform distribution are (0.05,1.95) according to section 5.6.2 to have a mean equal

to one and variance equal to 0.3. Then we generate a stationary random sample from the

characterized uniform distribution. To find the index that we need to map into vector b, we

use this equation: k = btimes[i]c
δ

, where times[i] is the ith element of the generated stationary

random sample set. We show a part of the look-up table and the indexes to look up in table

5.2.

100

Table 5.2: The table look up resulted from inversion method
index b k b[k] time Λ(t)
0 0 0 0 0.00 0.00
1 64 680 1650 0.83 1.36
2 90 1205 2196 1.09 2.41
3 110 1479 2433 1.22 2.96
4 127 2449 3130 1.57 4.89
5 142 3022 3477 1.74 6.04
6 155 3525 3755 1.88 7.05
7 168 4057 4029 2.01 8.11
8 179 4848 4404 2.20 9.69
9 190 5386 4642 2.32 10.77

The figure 5.4 illustrates the points that transformed to build the arrival times. Λ(t) =

2t2 is the CDF of the arrival rate function (λ(t)). The point on the y axis are arrival times in

the rate-1 base process, and the points on the x-axis are the arrival times in the nonstationary

arrival process.

Figure 5.4: Illustration of the numerical inversion method described in the example

Table 5.2 shows only ten rows of the table resulting from numerical inversion. For

example, the value of k for time[1] is 680, and the corresponding value in vector b is 1650.

We use this equation to obtain the corresponding arrival time: arrival time =k × η. For this

example, the second arrival time is at time 0.83.

101

5.5 Overview of the algorithm used to generate data, in order to simulate the non-stationary

independent arrival process

If the mathematical inverse of the cumulative rate function is available, which is called

the invertible function, generating non-stationary arrival data can be done based on the al-

gorithm proposed in [24]. In this research, we focus on the case in which the inversion

of the cumulative arrival rate function is not available (non-invertible function). Table 5.3

summarizes the choices of the base processes according to the value of Dt. We empha-

size that we use these distribution functions to generate the stationary data transformed into

non-stationary sample data. The resulting non-stationary sample data does not necessarily

follow the same distribution as the initial stationary data. The characteristic that matches is

the dispersion ratio. Later in section 5.7, we will provide more details about the reason we

are choosing these distributions.

Table 5.3: Base process’s distribution and its parameters
Value of Dt Base process, G(x)
Dm ' 0 normal
Dm < 1 Hyper-Erlang
Dm = 1 Exponential
Dm > 1 Hyperexponential

When the value ofDt is close to zero, the hyper-Erlang distribution is not efficient since

the value of its k parameter gets large [23]. Our example in section 5.7 indicates that in this

case, the estimation of target Dt is not good, and it requires using another distribution to

generate non-stationary sample observations. Table 5.4 illustrates the value of k of Erlang

distribution regarding values of Dt ≤ 0.2, which is growing fast.

Table 5.4: The values of hyper-Erlang parameter k for different values of Dt ≤ 0.2
Dt k
0.2 5
0.1 10
0.08 13
0.06 17
0.04 25
0.02 50
0.01 100
0.005 200

102

More comprehensive experiments are required to determine the exact threshold for

the value of Dt, that is necessary to substitute hyper-Erlang distribution with the normal

distribution. Performing such experiments is a direction for future work.

Algorithm 4 Overview of data generation algorithm for non-stationary renewal processes
A model, M = [P,Λ, D], with m phases is given,
Create an empty list, all-observation=[]
for i← 1 to m do

if CDF of λi is not mathematically invertible
1. Build the table lookup for the inverse of the arrival rate function’s CDF

else
1. Invert the CDF of λi mathematically

2. Choose the base process, G(x) according to the table 5.3
3. Generate random observations of base process G(x)
4. Create an empty list, observations=[]
5. Transform resulting data from step 3 using either inverted function or from table from
step 1
6. Append all generated data in step 5 into observation list
7. Add the observation list into all-observations list

end

We will describe the detail of how to construct each base process in the following

sections.

5.6 Renewal base processes

In this case, we assume the interarrival times are independent of each other. The distri-

butions we investigate include the phase-type distribution, uniform distribution, and normal

distribution with various values of the dispersion ratios.

5.6.1 Phase-type distributions

Gerhardt and Nelson [24] suggested using phase-type distribution as the base process

to model the NSNP processes. We construct a process with a given arrival rate function and

an asymptotic dispersion ratio. For the case D ≥ 1, we use hyperexponential distribution

and hyper-Erlang distribution, when 0 < D < 1.

103

Case D > 1:

The density function of 2-phase hyperexponential(H2) distribution is as follows:

fH2(x; p, λ1, λ2) = pλ1e
−λ1x + (1− p)λ2e

−λ2x p ∈ (0, 1) (5.6)

The cumulative distribution function is:

FH2(x; p, λ1, λ2) = 1− pe−λ1x − (1− p)e−λ2x (5.7)

The base process has a mean interarrival time equal to 1, and variance equal to an asymptotic

dispersion ratio, D. Liu et al. [23], characterized this process, the following equation is

based on their reported results:

p =
1 +D ±

√
D2 − 1

2(D + 1)
(5.8)

Additionally, two-phased balanced-means hyperexponential distribution has λ1 = 2p and

λ2 = 2(1 − p). In order to generate arrival data of the base process using this setup, with a

probability of p we sample from an exponential distribution with the parameter 2p, we call

it G1(x), and with the probability of (1 − p), we sample from an exponential distribution

with the parameter 2(1− p), we call it G2(x).

Case D < 1: In this case, we sample from the hyper-Erlang distribution with cumula-

tive distribution function as following:

FEr(x; k, λ) =

∫ t

0

tk−1e(−t/λ)

(k − 1)!λk
dt (5.9)

Liu et al. [23] characterized the parameters when the mean interarrival time and variance

are equal to 1 and D, respectively, as below:

k = d1/De, p =
kD −

√
k(1 +D)− k2D

1 +D
, λ = 1/(k − p) (5.10)

104

We generate a new sample from the Erlang distribution with FEr(x; k − 1, λ) cumulative

distribution function with probability p, and we call it G1(x), and with probability (1 − p)

we sample from Erlang distribution with FEr(x; k, λ) cumulative distribution function, and

we call it G2(x).

5.6.2 Considering uniform distribution as base process

We set the rate-1 base process as the continuous uniform distribution (u ∼ uniform[a, b])

with the mean and variance equal to 1 andDt, respectively. Here we characterize the param-

eters of this distribution. We let b = 1±
√

3Dk and a = 1∓
√

3Dk uniform distribution has

a dispersion ratio less than exponential distribution. We can only model NSNP processes

with a small dispersion ratio (Dk ≤ 0.3 since t ≥ 0, for the bigger values of Dt, a and/or

b will be negative). Figure 5.5 illustrates the dispersion ratio estimated for 200 replications

of the algorithm when the uniform distribution is the rate-1 base process. The result shows

uniform distribution could be a good candidate as a base process, but it has a limitation for

the values of dispersion ratio it covers. There is the same limitation in considering triangular

distribution as the base process. Because of this, we will not use this distribution further.

Figure 5.5: Mean dispersion ratio estimation for D = 0.2

105

5.6.3 Truncated normal distribution as the base process

In this part, we consider truncated normal distribution as the base process and investi-

gate the estimation of the dispersion ratio from the generated arrival data. In this case, the

mean and variance of the truncated normal distribution are set to 1 and Dt, respectively. The

normal distribution has an easy setup in Python programming software as the rate-1 base

process. We will show the results of applying this distribution in section 5.8. Algorithm 3

illustrates the procedure to generate random independent observations from different base

processes.

Algorithm 5 Generating sample observation from base process
1. According to table 5.3, set the base process as the input function, G(x)
2. Set n← 1
3. Generate u ∼ uniform(0, 1)
if u ≤ p then

Generate a random observation from G1(x) and put it in Sn
else

Generate a random observation from G2(x) and put it in Sn
end
4. Construct Tk, the kth arrival time in process N(t) by letting Tk =

∑k
i=1 Sn and set

n← n+ 1

5.7 Example to describe the methodology to generate non-stationary renewal random ob-

servations

In this section, we resume the example we explained in section 5.1 in order to generate

random independent observations with approximately the same dispersion ratio of described

arrival times data. Recall the developed model, M is:

P = [1.97, 5.96, 8.00]

Λ = [16.70, 24.43, 49.40]

D = [0.076, 0.410, 1.006]

Now, based on values of Dt, we construct the base processes. Since the base process is

a stationary rate-1 process, its mean is equal to 1, and according to the equation 5.1, the

variance is approximately equal to the value of Dt. As these Dt values are changing over a

106

day, we need three base processes. Table 5.5 presents the base processes that we use with

their corresponding parameters.

Table 5.5: Base process’s distribution and its parameters
Time block Base process’s distribution Mean Variance

1 Hyper-Erlang 1 0.076
2 Hyper-Erlang 1 0.41
3 exponential 1 1.00

The next step is to generate observations from each of these base processes and then

transform them according to the inverse of the cumulative rate function. Figure 5.6 repre-

sents the mean and the confidence interval of estimation of target dispersion ratios in smaller

0.4 hours time blocks.

Figure 5.6: The dispersion ratio estimation and its confidence interval when D1 = 0.076,

D2 = 0.41, and D3 = 1, red dashed line shows the target D value.

The value of the dispersion ratio is very close to zero in the first time block. As de-

scribed in section 5.5, the hyper-Erlang distribution has a poorer performance in generating

data with close to zero values of the dispersion ratio [23]. Cases withD2 = 0.41 andD3 = 1

have estimated values very close to the target dispersion ratio.

To investigate the performance of other distributions for the first time bucket, we con-

sider normal and uniform distributions as the base process. The parameters of uniform

distribution are (0.52, 1.48) to achieve the target Dt value, 0.076 (we described how to cal-

culate uniform distribution’s parameters in section 5.6.2). In terms of normal distribution,

the mean is one, and the variance is 0.076.

107

Figure 5.7: The dispersion ratio estimation comparison in case of different base processes,

left presents hyper-Erlang distribution, the middle one is normal distribution, and the one in

the right shows Uniform distribution

As it is shown in figure 5.7, the normal and uniform distributions give a better esti-

mation of Dt since the estimations are closer to the target Dt value. Normal distribution

performed better than uniform distribution in the fourth time block. Therefore, for the val-

ues of Dt close to zero, we suggest using the normal distribution as it has an easy setup to

generate stationary arrival data and performs better than uniform and hyper-Erlang distri-

butions. We summarized our proposed base processes for different values of Dt in section

5.5.

5.8 Performance evaluation of numerical inversion approach

In some situations, the arrival data is not available, but the model is given. We con-

sidered a case that the input data was available and the arrival rate was invertible in section

5.7. In this section, we focus on given model with not mathematically invertible cumulative

arrival rate function to evaluate performance of numerical inversion. In the given model, we

assume the dispersion ratio is constant during the time horizon, and the arrival rate function

is sinusoidal. We use the same arrival rate function as in work by Liu et al. [23], to be able

to compare the results. The sinusoidal arrival rate function is as follows:

λ(t) = λ̄[1 + γsin(t)], t ∈ [0, 8] (5.11)

108

where λ̄ = 50. We will consider two values for gamma, γ = 0.2, 0.5. The cumulative

function of this arrival rate function is not mathematically invertible; therefore, we apply

numerical inversion discussed in section 5.4. We replicate the 200 replications of algorithm

4 for generating non-stationary independent arrival data 30 times and build the confidence

interval for the dispersion ratio for each time block with a length of 0.2 hours (40 time blocks

in 8 hours of the experiment). Figure 5.8 represents arrival rate over 8 hours for two cases,

γ = 0.2 and γ = 0.5. In the first case, the maximum arrival rate is 60, and the lowest is 40,

while in the second case maximum is about 80 and the minimum is almost 20.

Figure 5.8: Arrival rate function, with γ = 0.2 and γ = 0.5

We apply phase-type distribution and normal distribution for the renewal rate-1 base

process. In phase-type distribution, if D ≥ 1, we apply balanced hyperexponential distri-

bution as the base process, and when D < 1, we use hyper-Erlang distribution. Figures

5.9 and 5.10 show the confidence interval for each time block’s asymptotic dispersion ra-

tio using balanced hyperexponential distribution and hyper-Erlang distribution as the based

process, respectively. At the beginning of each realization, three is warm-up time.

109

Figure 5.9: Confidence interval estimation for D = 1.5, hyper-exponential distribution as

the base process

Figure 5.10: The confidence interval estimation for D = 0.4, hyper-Erlang distribution as

base process

Figure 5.11 and 5.12 show the confidence interval estimation for the case normal distri-

bution is the base process to generate non-stationary arrival data for both cases, D > 1 and

D < 1. The results show that normal distribution can have comparable performance as the

phase-type distributions. In the related existing works, there is no theoretical proof of the

performance of this distribution. However, in practice, its performance could be very good.

110

Figure 5.11: Confidence interval estimation forD = 1.5, normal distribution as base process

Figure 5.12: Confidence interval estimation forD = 0.4, normal distribution as base process

5.8.1 Comparison between the proposed methodology in this chapter and CIATA

This section compares the proposed algorithm to generate non-stationary processes and

CIATA proposed in [23]. As we mentioned earlier, the general idea of the CIATA approach

is that the researcher divided the arrival rate function into Q smaller partitions. Then they

applied the thinning and inversion methods proposed in [24] to generate NSNP random

observation in each partition. The reasons that they did this include:

1. By dividing the arrival rate function into Q partitions, they can cover a broader range

of arrival rate functions that are not invertible. This action overcomes the drawback

of the inversion method in [24] which was applicable only on invertible arrival rate

functions.
111

2. By applying thinning in each partition, they improved the inefficiency of the proposed

thinning approach to generate NSNP random observations in [24] for the case which

λ(t)� λ∗ over a substantial range of values for t.

The proposed algorithm by Liu et al. [23] required applying thinning in each partition in

addition to inversion because they used the majorizing rate function in each partition instead

of using the actual arrival rate function of that partition.

According to the preceding discussion, there are some inefficiencies in the proposed

methodology in [23] as are listed below:

1. While applying CIATA, one needs to specify the optimal number of Q in order to

partition the time horizon into sub-intervals in which the arrival rate is constant or

quasi-concave. In practice, this approach is not efficient as with any changes in the

arrival rate function, determining again the optimal value of Q is required since the

performance of the data generation algorithm depends highly on the value of Q. In

addition, this value changes by changing the simulation run length.

2. In CIATA, there is a need to construct mean-value function, µ̃Q(t) (CDF of λ̃Q(t)) for

each sub-interval.

3. Since in the CIATA approach, the authors did not perform input analysis, including

the change-point detection, they did not cover the cases when the dispersion ratio

value changes over time. Therefore, they suggested that one direction for future work

in CIATA is to adapt their algorithm to generate an NSNP process whose dispersion

ratio is piece-wise constant over the planning horizon.

4. When the value of Q is not big enough, CIATA generates data that either under-

estimate or over-estimate the target value of D. Figure 5.13 illustrates this situation

which is extracted from their supplementary material [23]. This indicates that CIATA

is computationally expensive.

112

Figure 5.13: Estimation of dispersion ratio when Q = 40 [23]

The proposed algorithm in this dissertation has properties that make it more efficient as

follows:

1. It can be applied to generate data with any type of arrival rate function.

2. This algorithm applies a lookup table based on the arrival rate function, and this table

can be reused many times to generate non-stationary data with the same arrival rate

function but different dispersion ratios.

3. Unlike CIATA, it does not require dividing time horizon to smaller partitions (Q) and

creating majorizing rate functions and mean-value functions for each section.

4. CIATA assumes information like dispersion ratio value and arrival rates are given.

This dissertation develops a model to specify this information as the input into the

CIATA approach.

Figures 5.14 and 5.15 illustrates the comparison between the performance of CIATA and our

proposed method to generate random observations from the non-stationary arrival process.

We considered two sinusoidal arrival processes as the equation 5.11 with γ = 0.2 and γ =

0.8 for two values of dispersion ratios, 0.2 and 1.5. The results indicate that our proposed

method is competitive in achieving the target dispersion ratio for the generated random

observations, with less expensive computational requirements.

113

Figure 5.14: Comparison of our proposed method, left panel, and CIATA, right panel, in

estimating the target value of D with sinusoidal pattern in arrival process and γ = 0.2

Figure 5.15: Comparison of our proposed method, left panel, and CIATA, right panel, in

estimating the target value of D with sinusoidal pattern in arrival process and γ = 0.8

5.9 Conclusion

In this research, we developed models and presented the algorithms to generate data

of the non-stationary process. The model we developed is general since it can model both

NSNP and NSP processes. The main focus was on the numerical inversion technique as it

does not require the arrival rate function to be linear or piece-wise constant linear. We in-

vestigated the ability of the numerical inversion methods to generate non-stationary arrival

data with the estimation of the dispersion ratio of generated arrival data. To do this, we

considered renewal processes as the rate-1 stationary process. This study represented the

method to generate independent arrival data where the arrival rate function is time-varying
114

and not necessarily invertible. The confidence interval estimation for the dispersion ratio

shows that the numerical inversion method can yield good performance for renewal pro-

cesses. We compared the performance of our proposed method with the CIATA [23]. The

results showed that our proposed algorithm performs as well as CIATA with fewer computa-

tional requirements to perform the algorithm. However, one of the limitations of this method

and other existing ones to generate the nonstationary arrival data is that the distribution of

the generated data is not necessarily the same as the distribution of the input data since we

are targeting the dispersion ratios generated from a finite sample form the population. In

real-world service systems, since there is limited sample input data to estimate the disper-

sion ratio, therefore, there will generally be a sampling error in the estimate. Our objective

is to match this input data, regardless of the possible sampling error.

115

Chapter 6

Concluding Remarks and Future Work

This dissertation studied methods of staff scheduling in order to minimize the opera-

tional cost of the system while achieving predictable customers waiting times. We developed

two models to find optimal staffing levels. In the first optimization model, we considered the

average and the percentile of waiting times in each time block over a day in order to char-

acterize the service level. The objective function in this problem is minimizing the staffing

cost. We proposed applying a change-point detection algorithm to find change points in

the arrival process. Then we performed simulation-based optimization using a package in

R software to find the optimal staffing levels. Lastly, we determined the staff schedule,

assuming the workers have constant working hours and the shift start times are constant.

In the second model, we proposed staff scheduling using Deep Reinforcement Learn-

ing. This model’s objective function included two parts. The first is the cost of using re-

sources, and the second is the penalty cost for the number of customers that waited in the

queue more than the target waiting time. To achieve predictable waiting times, we proposed

to use the upper bound for variation of waiting times over the entire day as the constraint.

We assumed there are lower and upper bound limits for staff members’ working hours in

this problem. Our results highlighted that we could improve both the performance and effi-

ciency of the SBO method by using the DRL method. We applied our proposed model and

methodology to the use-case of grocery store’s arrival times data. Our analysis showed that

this method works appropriately for staff scheduling in service systems.

We developed a model to generate data of the non-stationary processes. We used sev-

eral distributions as the base process, and we showed the performance of each distribution

116

for data generation purposes through examples. We investigated both cases where the dis-

persion ratio is less than 1 and greater than 1. These algorithms are beneficial to improve the

performance of research projects in the non-stationary processes area. One of the biggest

challenges in modeling these types of systems is the lack of observational data. Being able

to replicate the results is a step forward in reducing the variation among output responses.

This dissertation aimed to provide a comprehensive study on the non-stationary service

system. We believe our proposed methods and algorithms can significantly improve the

performance of service systems. In future studies, there are some promising extensions of

our work, including:

1. Staff scheduling in a network of servers: Since real-world service systems like airports

have more than one station, we can extend our proposed flexible staff scheduling using

DRL into a network of servers.

2. Neural network structure and training parameters: We applied the parameters used in

the stoplight example of AnyLogic. We believe conducting some parameter tuning

for training variables can improve the quality of the results. Furthermore, running

more experiments with various numbers of NN’s hidden layers can possibly affect the

quality of the trained policy.

3. To develop the model described in chapter 5 in order to cover the non-renewal non-

stationary processes. This model will help extend the non-stationary data generation

algorithm to the cases that the data are dependent on (non-renewal processes).

We believe models and algorithms presented in this dissertation and future work extensions

will improve service systems’ efficiency and customer satisfaction.

117

Bibliography

[1] Samira Shirzaei and Jeffrey S Smith. “Resource scheudling in non-stationary service

systems”. In: 2018 Winter Simulation Conference (WSC). IEEE. 2018, pp. 537–547.

[2] David S Matteson and Nicholas A James. “A nonparametric approach for multiple

change point analysis of multivariate data”. In: Journal of the American Statistical

Association 109.505 (2014), pp. 334–345.

[3] Song Liu et al. “Change-point detection in time-series data by relative density-ratio

estimation”. In: Neural Networks 43 (2013), pp. 72–83.

[4] Nicholas A James and David S Matteson. “ecp: An R package for nonparametric mul-

tiple change point analysis of multivariate data”. In: arXiv preprint arXiv:1309.3295

(2013).

[5] Mohammadnaser Ansari et al. “HistoRIA: A new tool for simulation input analysis”.

In: Proceedings of the Winter Simulation Conference 2014. IEEE. 2014, pp. 2702–

2713.

[6] Mieke Defraeye and Inneke Van Nieuwenhuyse. “Staffing and scheduling under non-

stationary demand for service: A literature review”. In: Omega 58 (2016), pp. 4–25.

[7] Navid Izady and Dave Worthington. “Setting staffing requirements for time dependent

queueing networks: The case of accident and emergency departments”. In: European

Journal of Operational Research 219.3 (2012), pp. 531–540.

[8] Mehmet Tolga Cezik and Pierre L’Ecuyer. “Staffing multiskill call centers via linear

programming and simulation”. In: Management Science 54.2 (2008), pp. 310–323.

118

[9] Wyean Chan et al. “Two-stage chance-constrained staffing with agent recourse for

multi-skill call centers”. In: Proceedings of the 2016 Winter Simulation Conference.

IEEE Press. 2016, pp. 3189–3200.

[10] Thuy Ta, Pierre L’Ecuyer, and Fabian Bastin. “Staffing optimization with chance con-

straints for emergency call centers”. In: MOSIM 2016-11th International Conference

on Modeling, Optimization and Simulation. 2016.

[11] Ward Whitt. “What you should know about queueing models to set staffing require-

ments in service systems”. In: Naval Research Logistics (NRL) 54.5 (2007), pp. 476–

484.

[12] Otis B Jennings et al. “Server staffing to meet time-varying demand”. In: Management

Science 42.10 (1996), pp. 1383–1394.

[13] Beixiang He, Yunan Liu, and Ward Whitt. “Staffing a service system with non-Poisson

non-stationary arrivals”. In: Probability in the Engineering and Informational Sci-

ences 30.4 (2016), pp. 593–621.

[14] Athanassios N Avramidis, Alexandre Deslauriers, and Pierre L’Ecuyer. “Modeling

daily arrivals to a telephone call center”. In: Management Science 50.7 (2004), pp. 896–

908.

[15] PA W Lewis and Gerald S Shedler. “Simulation of nonhomogeneous Poisson pro-

cesses by thinning”. In: Naval research logistics quarterly 26.3 (1979), pp. 403–413.

[16] J Smith, D Sturrock, and D Kelton. “Simio and simulation: modeling, analysis, appli-

cations”. In: Sewickley, PA: Simio LLC (2017).

[17] Sachin Sumant. “An automated procedure for simulating complex arrival processes:

A web-based approach”. In: (2003).

[18] Linda Green, Peter Kolesar, and Anthony Svoronos. “Some effects of nonstationarity

on multiserver Markovian queueing systems”. In: Operations Research 39.3 (1991),

pp. 502–511.

119

[19] Linda V Green and Peter J Kolesar. “The lagged PSA for estimating peak conges-

tion in multiserver Markovian queues with periodic arrival rates”. In: Management

Science 43.1 (1997), pp. 80–87.

[20] Michael E Kuhl and James R Wilson. “Modeling and simulating Poisson processes

having trends or nontrigonometric cyclic effects”. In: European Journal of Opera-

tional Research 133.3 (2001), pp. 566–582.

[21] Michael E Kuhl, Sachin G Sumant, and James R Wilson. “An automated multireso-

lution procedure for modeling complex arrival processes”. In: INFORMS Journal on

Computing 18.1 (2006), pp. 3–18.

[22] Ni Ma and Ward Whitt. “Efficient simulation of non-Poisson non-stationary point

processes to study queueing approximations”. In: Statistics & Probability Letters 109

(2016), pp. 202–207.

[23] Ran Liu et al. “Modeling and simulation of nonstationary non-Poisson arrival pro-

cesses”. In: INFORMS Journal on Computing 31.2 (2019), pp. 347–366.

[24] Ira Gerhardt and Barry L Nelson. “Transforming renewal processes for simulation of

nonstationary arrival processes”. In: INFORMS Journal on Computing 21.4 (2009),

pp. 630–640.

[25] Barry L Nelson and Ira Gerhardt. “Modelling and simulating non-stationary arrival

processes to facilitate analysis”. In: Journal of Simulation 5.1 (2011), pp. 3–8.

[26] Ran Liu et al. “Modeling and Simulation of Nonstationary Non-Poisson Processes.”

In: (2013).

[27] Samaneh Aminikhanghahi and Diane J Cook. “A survey of methods for time se-

ries change point detection”. In: Knowledge and information systems 51.2 (2017),

pp. 339–367.

[28] Linda V Green, Peter J Kolesar, and Ward Whitt. “Coping with time-varying demand

when setting staffing requirements for a service system”. In: Production and Opera-

tions Management 16.1 (2007), pp. 13–39.

120

[29] Zohar Feldman et al. “Staffing of time-varying queues to achieve time-stable perfor-

mance”. In: Management Science 54.2 (2008), pp. 324–338.

[30] Linda V Green, Peter J Kolesar, and João Soares. “Improving the SIPP approach

for staffing service systems that have cyclic demands”. In: Operations Research 49.4

(2001), pp. 549–564.

[31] Pierre L’Ecuyer. “Modeling and optimization problems in contact centers”. In: Quan-

titative Evaluation of Systems, 2006. QEST 2006. Third International Conference on.

IEEE. 2006, pp. 145–156.

[32] Rob Shone, Kevin Glazebrook, and Konstantinos Zografos. “Resource allocation in

congested queueing systems with time-varying demand: An application to airport

operations”. In: European Journal of Operational Research (2019).

[33] Vijay Mehrotra and Jason Fama. “Call center simulation modeling: methods, chal-

lenges, and opportunities”. In: Proceedings of the 35th conference on Winter simula-

tion: driving innovation. Winter Simulation Conference. 2003, pp. 135–143.

[34] Mohamed A Ahmed and Talal M Alkhamis. “Simulation optimization for an emer-

gency department healthcare unit in Kuwait”. In: European journal of operational

research 198.3 (2009), pp. 936–942.

[35] Gerald W Evans, Edward Unger, and Tesham B Gor. “A simulation model for evaluat-

ing personnel schedules in a hospital emergency department”. In: Proceedings Winter

Simulation Conference. IEEE. 1996, pp. 1205–1209.

[36] Linda V Green, Peter J Kolesar, and Joao Soares. “An improved heuristic for staffing

telephone call centers with limited operating hours”. In: Production and Operations

Management 12.1 (2003), pp. 46–61.

[37] Armann Ingolfsson et al. “Combining integer programming and the randomization

method to schedule employees”. In: European Journal of Operational Research 202.1

(2010), pp. 153–163.

121

[38] Armann Ingolfsson et al. “A survey and experimental comparison of service-level-

approximation methods for nonstationary M (t)/M/s (t) queueing systems with ex-

haustive discipline”. In: INFORMS Journal on Computing 19.2 (2007), pp. 201–214.

[39] Jens O Brunner, Jonathan F Bard, and Rainer Kolisch. “Midterm scheduling of physi-

cians with flexible shifts using branch and price”. In: Iie Transactions 43.2 (2010),

pp. 84–109.

[40] Armann Ingolfsson, Md Amanul Haque, and Alex Umnikov. “Accounting for time-

varying queueing effects in workforce scheduling”. In: European Journal of Opera-

tional Research 139.3 (2002), pp. 585–597.

[41] SPJ van Brummelen et al. “Waiting time-based staff capacity and shift planning at

blood collection sites”. In: Health systems 7.2 (2018), pp. 89–99.

[42] Tania Jiménez and Ger Koole. “Scaling and comparison of fluid limits of queues

applied to call centers with time-varying parameters”. In: OR Spectrum 26.3 (2004),

pp. 413–422.

[43] Bruce Andrews and Henry Parsons. “Establishing telephone-agent staffing levels through

economic optimization”. In: Interfaces 23.2 (1993), pp. 14–20.

[44] Özgür Kabak et al. “Efficient shift scheduling in the retail sector through two-stage

optimization”. In: European Journal of Operational Research 184.1 (2008), pp. 76–

90.

[45] Vincent François-Lavet et al. “An introduction to deep reinforcement learning”. In:

arXiv preprint arXiv:1811.12560 (2018).

[46] Kaiwen Li, Tao Zhang, and Rui Wang. “Deep reinforcement learning for multiobjec-

tive optimization”. In: IEEE transactions on cybernetics (2020).

[47] Itamar Arel et al. “Reinforcement learning-based multi-agent system for network traf-

fic signal control”. In: IET Intelligent Transport Systems 4.2 (2010), pp. 128–135.

[48] Bernd Waschneck et al. “Optimization of global production scheduling with deep

reinforcement learning”. In: Procedia Cirp 72 (2018), pp. 1264–1269.

122

[49] Jeffrey S Smith and Barry L Nelson. “Estimating and interpreting the waiting time for

customers arriving to a non-stationary queueing system”. In: 2015 Winter Simulation

Conference (WSC). IEEE. 2015, pp. 2610–2621.

[50] Konstantinos Mykoniatis et al. “Society 5.0: A Simulation Study of Self Checkout

Operations in a Grocery Store”. In: (2020).

[51] Anthony Ebert et al. “Computationally efficient simulation of queues: The R package

queuecomputer”. In: arXiv preprint arXiv:1703.02151 (2017).

[52] Michael C Fu et al. Handbook of simulation optimization. Vol. 216. Springer, 2015.

[53] Satyajith Amaran et al. “Simulation optimization: a review of algorithms and appli-

cations”. In: Annals of Operations Research 240.1 (2016), pp. 351–380.

[54] Tomasz Antczak and Rafał Weron. “Point of sale (POS) data from a supermarket:

Transactions and cashier operations”. In: Data 4.2 (2019), p. 67.

[55] Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply modern RL methods,

with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and

more. Packt Publishing Ltd, 2018.

[56] Webinar: AnyLogic Environment for Deep Reinforcement Learning. 2019. URL: http:

//https://www.anylogic.com/resources/educational-videos/

webinar-anylogic-environment-for-deep-reinforcement-learning/.

[57] Yunan Liu. “Staffing to stabilize the tail probability of delay in service systems with

time-varying demand”. In: Operations Research 66.2 (2018), pp. 514–534.

[58] Luc Devroye. “Nonuniform random variate generation”. In: Handbooks in operations

research and management science 13 (2006), pp. 83–121.

[59] Sheldon M Ross et al. Stochastic processes. Vol. 2. Wiley New York, 1996.

[60] Gerard Cachon and Christian Terwiesch. Matching supply with demand. McGraw-

Hill Publishing, 2008.

123

http://https://www.anylogic.com/resources/educational-videos/webinar-anylogic-environment-for-deep-reinforcement-learning/
http://https://www.anylogic.com/resources/educational-videos/webinar-anylogic-environment-for-deep-reinforcement-learning/
http://https://www.anylogic.com/resources/educational-videos/webinar-anylogic-environment-for-deep-reinforcement-learning/

Appendices

124

Appendix A

Results of Deep Reinforcement Learning Approach

In this part, we present the result of the Deep Reinforcement Learning (DRL) solution
approach for experiments we discussed in section 4.6.

A.1 Results of experiments for Run 1, Run 2, and Run 3; stationary arrival process

To experience a stationary arrival process over a day, we need to divide the day into
smaller intervals [60]. To do this, we divide arrivals to 15- minutes time blocks. Our goal
is to reach to half interval length of about 0.5. In this case, the mean will be equal to either
LCL and/or UCL. Here is the result for running this experiment:

Table A.1: Experiment result for R1-stationary arrival process, small penalty parameters
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1
10:00-11:00 1.00 0.00 1.00 1.00 1 1 1
11:00-12:00 1.00 0.00 1.00 1.00 1 1 1
12:00-01:00 1.00 0.00 1.00 1.00 1 1 1
01:00-02:00 1.00 0.00 1.00 1.00 1 1 1
02:00-03:00 1.00 0.00 1.00 1.00 1 1 1
03:00-04:00 1.00 0.00 1.00 1.00 1 1 1
04:00-05:00 1.00 0.00 1.00 1.00 1 1 1
05:00-06:00 1.00 0.00 1.00 1.00 1 1 1
06:00-07:00 1.00 0.00 1.00 1.00 1 1 1
07:00-08:00 1.00 0.00 1.00 1.00 1 1 1
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1

We experimented to examine other options when the required number of servers is
more than 1. We considered a case when the the arrival rate is 180 per hour.

In this experiment, we consider arrival rate 600 per hour with service ate 40 per hour.

125

Table A.2: Experiment result for R2-medium stationary arrival process, high penalty param-
eters

Time Mean Half Interval LCL UCL Rounded Up
Mean LCL UCL

08:00-09:00 3.00 0.00 3.00 3.00 3 3 3
09:00-10:00 3.00 0.00 3.00 3.00 3 3 3
10:00-11:00 3.00 0.00 3.00 3.00 3 3 3
11:00-12:00 3.00 0.00 3.00 3.00 3 3 3
12:00-01:00 3.00 0.00 3.00 3.00 3 3 3
01:00-02:00 3.00 0.00 3.00 3.00 3 3 3
02:00-03:00 3.00 0.00 3.00 3.00 3 3 3
03:00-04:00 3.00 0.00 3.00 3.00 3 3 3
04:00-05:00 3.00 0.00 3.00 3.00 3 3 3
05:00-06:00 3.00 0.00 3.00 3.00 3 3 3
06:00-07:00 3.00 0.00 3.00 3.00 3 3 3
07:00-08:00 3.00 0.00 3.00 3.00 3 3 3
08:00-09:00 3.00 0.00 3.00 3.00 3 3 3
09:00-10:00 3.00 0.00 3.00 3.00 3 3 3

Table A.3: Experiment result for R3-high stationary arrival process, big penalty parameters
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 15.11 0.08 15.03 15.19 16 16 16
09:00-10:00 15.11 0.08 15.03 15.19 16 16 16
10:00-11:00 15.11 0.08 15.03 15.19 16 16 16
11:00-12:00 15.11 0.08 15.03 15.19 16 16 16
12:00-01:00 15.11 0.08 15.03 15.19 16 16 16
01:00-02:00 15.11 0.08 15.03 15.19 16 16 16
02:00-03:00 15.11 0.08 15.03 15.19 16 16 16
03:00-04:00 15.11 0.08 15.03 15.19 16 16 16
04:00-05:00 15.11 0.08 15.03 15.19 16 16 16
05:00-06:00 15.11 0.08 15.03 15.19 16 16 16
06:00-07:00 15.11 0.08 15.03 15.19 16 16 16
07:00-08:00 15.11 0.08 15.03 15.19 16 16 16
08:00-09:00 15.11 0.08 15.03 15.19 16 16 16
09:00-10:00 15.11 0.08 15.03 15.19 16 16 16

A.2 Interpreting the results of R1, R2, and R3 experiments

In this set of experiments, the arrival rate is constant during the day. When the arrival
rate is low, there is no variability in the output and it is reported equal to one for all time
blocks. By increasing the arrival rate, for example in table A.3, there is some variability in
the results. We can reduce this variability by replication.

A.3 Output of the experiments for Run 4, Run 5, and Run 6

In this section, we show the results of experiments for the cases the arrival rate has low
variability during the day and three options for penalty parameters, small, medium, and big.

Table A.4: Experiment result for R4- low variability, small penalty parameter
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1
10:00-11:00 2.01 0.45 1.56 2.46 3 2 3
11:00-12:00 6.01 0.43 5.58 6.44 7 6 7
12:00-01:00 5.89 0.52 5.37 6.41 6 6 7
01:00-02:00 5.77 0.56 5.21 6.33 6 6 7
02:00-03:00 4.88 0.45 4.43 5.33 5 5 6
03:00-04:00 4.11 0.54 3.57 4.65 5 4 5
04:00-05:00 4.66 0.62 4.04 5.28 5 5 6
05:00-06:00 4.19 0.45 3.74 4.64 5 4 5
06:00-07:00 3.98 0.49 3.49 4.47 4 4 5
07:00-08:00 3.54 0.49 3.05 4.03 4 4 5
08:00-09:00 3.32 0.49 2.83 3.81 4 3 4
09:00-10:00 3.23 0.51 2.72 3.74 4 3 4

126

Table A.5: Experiment result for R5- low variability, medium penalty parameter
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1
10:00-11:00 2.45 0.55 1.90 3 3 2 3
11:00-12:00 6.55 0.52 6.03 7.07 7 7 8
12:00-01:00 6.43 0.44 5.99 6.87 7 6 7
01:00-02:00 6.21 0.43 5.78 6.64 7 6 7
02:00-03:00 5.11 0.26 4.85 5.37 6 5 6
03:00-04:00 4.76 0.43 4.33 5.19 5 5 6
04:00-05:00 5.01 0.34 4.67 5.35 6 5 6
05:00-06:00 4.87 0.55 4.32 5.42 5 5 6
06:00-07:00 4.31 0.49 3.82 4.80 5 4 5
07:00-08:00 3.91 0.52 3.39 4.43 4 4 5
08:00-09:00 3.76 0.54 3.22 4.30 4 4 5
09:00-10:00 3.67 0.63 3.04 4.30 4 4 5

Table A.6: Experiment result for R6- low variability, big penalty parameter
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1
10:00-11:00 2.83 0.67 2.16 3.50 3 3 4
11:00-12:00 7.13 0.42 6.71 7.55 8 7 8
12:00-01:00 7.68 0.38 7.3 8.06 8 8 9
01:00-02:00 6.91 0.32 6.59 7.23 7 7 8
02:00-03:00 5.83 0.26 5.57 6.09 6 6 7
03:00-04:00 5.13 0.2 4.93 5.33 6 5 6
04:00-05:00 5.74 0.29 5.45 6.03 6 6 7
05:00-06:00 5.39 0.51 4.88 5.90 6 5 6
06:00-07:00 4.82 0.56 4.26 5.38 5 5 6
07:00-08:00 4.29 0.57 3.72 4.86 5 4 5
08:00-09:00 4.3 0.60 3.70 4.90 5 4 5
09:00-10:00 4.28 0.63 3.65 4.91 5 4 5

A.4 Interpretation of the results of Run 4, Run 5, and Run 6

When the arrival rate is low, for example, in time blocks 1, 2, 12, 13, and 14, there were
not reported any variability in the resulting staffing levels and then staff rostering. So the
half interval was reported equal to zero as well. The output shows by increase in the penalty
parameters, the staffing level increases as well which was expected.

A.5 Experiment results for Run 7, Run 8, and Run 9

These set of experiments are for the cases with high variability among arrival rates
during the day and low, medium, and high penalty parameters.

Table A.7: Experiment result for R7- high variability, small penalty parameter
Time Mean Half Interval LCL UCL Rounded Up

Man LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1
10:00-11:00 5.64 0.52 5.12 6.16 6 6 7
11:00-12:00 9.56 0.53 9.03 10.09 10 10 11
12:00-01:00 9.01 0.55 8.46 9.56 10 9 10
01:00-02:00 7.52 0.43 7.09 7.95 8 8 8
02:00-03:00 10.65 0.36 10.29 11.01 11 11 12
03:00-04:00 12.22 0.55 11.67 12.77 13 12 13
04:00-05:00 12.34 0.38 11.96 12.72 13 12 13
05:00-06:00 12.33 0.51 11.82 12.84 13 12 13
06:00-07:00 10.34 0.62 9.72 10.96 11 10 11
07:00-08:00 10.55 0.51 10.04 11.06 11 11 12
08:00-09:00 10.21 0.49 9.72 10.70 11 10 11
09:00-10:00 9.33 0.56 8.77 9.89 10 9 10

127

Table A.8: Experiment result for R8- high variability, medium penalty parameter
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1
10:00-11:00 6.51 0.52 5.99 7.03 7 6 8
11:00-12:00 10.23 0.41 9.82 10.64 11 10 11
12:00-01:00 10.78 0.44 10.34 11.22 11 11 12
01:00-02:00 8.63 0.32 8.31 8.95 9 9 9
02:00-03:00 11.78 0.36 11.42 12.14 12 12 13
03:00-04:00 13.64 0.34 13.3 13.98 14 14 14
04:00-05:00 13.87 0.31 13.56 14.18 14 14 15
05:00-06:00 13.28 0.51 12.77 13.79 14 13 14
06:00-07:00 11.67 0.34 11.33 12.01 12 12 13
07:00-08:00 11.75 0.57 11.18 12.32 12 12 13
08:00-09:00 11.35 0.55 10.8 11.9 12 11 12
09:00-10:00 10.56 0.51 10.05 11.07 11 11 12

Table A.9: Experiment result for R9- high variability, big penalty parameter
Time Mean Half Interval LCL UCL Rounded Up

Man LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 1.00 0.00 1.00 1.00 1 1 1
10:00-11:00 7.01 0.67 6.34 7.68 8 7 8
11:00-12:00 11.38 0.42 10.96 11.8 12 11 12
12:00-01:00 11.94 0.38 11.56 12.32 12 12 13
01:00-02:00 9.77 0.32 9.45 10.09 10 10 11
02:00-03:00 12.52 0.26 12.26 12.78 13 13 13
03:00-04:00 14.78 0.2 14.58 14.98 15 15 15
04:00-05:00 14.79 0.29 14.5 15.08 15 15 16
05:00-06:00 14.28 0.51 13.77 14.79 15 14 15
06:00-07:00 12.59 0.56 12.03 13.15 13 13 14
07:00-08:00 12.28 0.57 11.71 12.85 13 12 13
08:00-09:00 12.07 0.60 11.47 12.67 13 12 13
09:00-10:00 11.69 0.63 11.06 12.32 12 12 13

A.6 Interpreting results of experiment 7, 8, and 9

Since the arrival rates are relatively low at the beginning of the day, the variability in
resulted staffing is equal to zero in all three experiments. As we expected, by increasing
the penalty parameters, the staffing level increased. Higher penalty parameters enforce the
model to increase the number of staff to reduce the number of customers waiting for a certain
amount of time.

A.7 Experiment result for Run 10- sinusoidal pattern

In this experiment, we apply sinusoidal arrival rate as: λ(t) = λ̄(1 + sin(0.2t)) we
assume λ̄ = 100 the same as the base model in existing works [13]. As there is working
hour limit for each staff, the resulted staff rostering does not follow the same sinusoidal
pattern as the staffing level does.

128

Table A.10: Experiment result for R10- sinusoidal arrival process, big penalty parameter
Time Mean Half Interval LCL UCL Rounded Up

Man LCL UCL
08:00-09:00 12.12 0.54 11.58 12.66 13 12 13
09:00-10:00 12.12 0.50 11.58 12.66 13 12 13
10:00-11:00 12.12 0.51 11.58 12.66 13 12 13
11:00-12:00 6.01 0.54 5.47 6.55 7 6 7
12:00-01:00 7.4 0.49 6.86 7.94 8 7 8
01:00-02:00 11.52 0.52 10.98 12.06 12 11 13
02:00-03:00 11.56 0.37 11.19 11.93 12 12 12
03:00-04:00 11.53 0.62 10.91 12.15 12 11 13
04:00-05:00 8.76 0.38 8.38 9.14 9 9 10
05:00-06:00 11.56 0.27 11.29 11.83 12 12 12
06:00-07:00 11.45 0.27 11.18 11.72 12 12 12
07:00-08:00 11 0.27 10.73 11.27 11 11 12
08:00-09:00 10.13 0.3 9.83 10.43 11 10 11
09:00-10:00 9.97 0.48 9.49 10.45 10 10 11

A.8 Experiment result for Run 11- sinusoidal pattern with higher frequency

In this experiment, we put the arrival process into the model as the oscillating patter
with higher frequency than the previous experiment.

Table A.11: Experiment result for R11- sinusoidal arrival process with higher frequency
Time Mean Half Interval LCL UCL Rounded Up

Man LCL UCL
08:00-09:00 11.33 0.55 10.78 11.88 12 11 12
09:00-10:00 7.79 0.48 7.31 8.27 8 8 9
10:00-11:00 11.33 0.61 10.72 11.94 12 11 12
11:00-12:00 10.13 0.49 9.64 10.62 11 10 11
12:00-01:00 9.69 0.46 9.23 10.15 10 10 11
01:00-02:00 9.47 0.5 8.97 9.97 10 9 10
02:00-03:00 8.47 0.48 7.99 8.95 9 8 9
03:00-04:00 9.49 0.56 8.93 10.05 10 9 11
04:00-05:00 10.13 0.5 9.63 10.63 11 10 11
05:00-06:00 10 0.43 9.57 10.43 10 10 11
06:00-07:00 1 0.52 0.48 1.52 1 1 2
07:00-08:00 7.84 0.45 7.39 8.29 8 8 9
08:00-09:00 10.46 0.47 9.99 10.93 11 10 11
09:00-10:00 10.48 0.49 9.99 10.97 11 10 11

A.9 Experiment result for Run 12- sinusoidal pattern with higher amplitude

Table A.12: Experiment result for R12- sinusoidal arrival process with higher amplitude
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 13.64 0.5 13.14 14.14 14 14 15
09:00-10:00 13.64 0.5 13.14 14.14 14 14 15
10:00-11:00 13.64 0.5 13.14 14.14 14 14 15
11:00-12:00 10.63 0.55 10.08 11.18 11 11 12
12:00-01:00 11.32 0.48 10.84 11.8 12 11 12
01:00-02:00 11.36 0.46 10.9 11.82 12 11 12
02:00-03:00 13.5 0.51 12.99 14.01 14 13 15
03:00-04:00 13.5 0.5 13 14 14 13 14
04:00-05:00 13.96 0.49 13.47 14.45 14 14 15
05:00-06:00 14.14 0.53 13.61 14.67 15 14 15
06:00-07:00 14.45 0.25 14.2 14.7 15 15 15
07:00-08:00 14.34 0.45 13.89 14.79 15 14 15
08:00-09:00 13.66 0.57 13.09 14.23 14 14 15
09:00-10:00 13.9 0.56 13.34 14.46 14 14 15

A.10 Interpretation of the results of sinusoidal experiments (run 10, run 11, and run 12)

According to the figure 4.10, bottom right panel, that represents the arrival processes
for three different sinusoidal patterns and also the result of DRL in tables A.10, A.11, and

129

A.12, by increasing the amplitude in run 12 than the amplitude in run 10, we observe the
number of required staff were increased which matches our expectation. As this is rostering
problem and there is a constraint of working at least 6 hours per day for each staff member,
we do not see the sinusoidal pattern in staffing the same as the arrival process.

A.11 Experiment result for Run 13, 14

Table A.13 shows the result of staff scheduling for step pattern 1 in the arrival process.

Table A.13: Experiment result for R13- step pattern 1 in arrival process
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 1.00 0.00 1.00 1.00 1 1 1
09:00-10:00 13.44 0.48 12.96 13.92 14 13 14
10:00-11:00 13.44 0.48 12.96 13.92 14 13 14
11:00-12:00 12.82 0.48 12.34 13.3 13 13 14
12:00-01:00 9.32 0.48 8.84 9.8 10 9 10
01:00-02:00 11.36 0.47 10.89 11.83 12 11 12
02:00-03:00 10.94 0.46 10.48 11.4 11 11 12
03:00-04:00 10.66 0.24 10.42 10.9 11 11 11
04:00-05:00 11.11 0.71 10.4 11.82 12 11 12
05:00-06:00 11.33 0.51 10.82 11.84 12 11 12
06:00-07:00 10.65 0.5 10.15 11.15 11 11 12
07:00-08:00 9.66 0.5 9.16 10.16 10 10 11
08:00-09:00 9.02 0.51 8.51 9.53 10 9 10
09:00-10:00 9.09 0.44 8.65 9.53 10 9 10

Table A.14 shows the result of staff scheduling for step pattern 2 in the arrival process.

Table A.14: Experiment result for R14- step pattern 2 in arrival process
Time Mean Half Interval LCL UCL Rounded Up

Man LCL UCL
08:00-09:00 10.34 0.37 9.97 10.71 11 10 11
09:00-10:00 10.31 0.33 9.98 10.64 11 10 11
10:00-11:00 10.31 0.33 9.98 10.64 11 10 11
11:00-12:00 10.3 0.39 9.91 10.69 11 10 11
12:00-01:00 10.3 0.32 9.98 10.62 11 10 11
01:00-02:00 10.3 0.4 9.9 10.7 11 10 11
02:00-03:00 10.3 0.35 9.95 10.65 11 10 11
03:00-04:00 6.77 0.45 6.32 7.22 7 7 8
04:00-05:00 6.75 0.59 6.16 7.34 7 7 8
05:00-06:00 6.71 0.6 6.11 7.31 7 7 8
06:00-07:00 6.63 0.62 6.01 7.25 7 7 8
07:00-08:00 6.6 0.64 5.96 7.24 7 6 8
08:00-09:00 6.72 0.51 6.21 7.23 7 7 8
09:00-10:00 6.61 0.4 6.21 7.01 7 7 8

A.12 Interpretation of the results of run 13 and run 14

Table A.13 shows the staff rostering for the step pattern 1 which is a type of U-shape
arrival pattern that the arrival rate remains constant for a few time blocks. The table shows
the desired staff scheduling is almost constant for some consecutive time buckets. Again
because of the working hour constraint for the staff members, the overall shape of output is
not the same as arrival process shape. Table A.14 represent the step pattern that the arrival
rate is constant for half of the period and then decreases and stay constant until the end
of period. The staff rostering resulted from DRL algorithm remains constant with some
variability over the day.

130

Table A.15: Experiment result for R15- bi-modal arrival pattern
Time Mean Half Interval LCL UCL Rounded Up

Mean LCL UCL
08:00-09:00 1.20 0.22 0.98 1.42 2 1 2
09:00-10:00 7.49 0.75 6.74 8.24 8 7 9
10:00-11:00 8.41 0.33 8.08 8.74 9 9 9
11:00-12:00 8.41 0.33 8.08 8.74 9 9 9
12:00-1:00 10.02 0.33 9.69 10.35 11 10 11
1:00-02:00 14.24 0.27 13.97 14.51 15 14 15
02:00-03:00 14.97 0.27 14.7 15.24 15 15 16
03:00-04:00 14.25 0.23 14.02 14.48 15 15 15
04:00-05:00 10.62 0.65 9.97 11.27 11 10 12
05:00-06:00 8.39 0.61 7.78 9 9 8 9
06:00-07:00 11.38 0.71 10.67 12.09 12 11 13
07:00-08:00 12.54 0.85 11.69 13.39 13 12 14
08:00-09:00 11.12 0.62 10.5 11.74 12 11 12
09:00-10:00 10.43 0.38 10.05 10.81 11 11 11

A.13 Experiment result for Run 15

Table A.15 shows the staffing scheduling for the bi-modal arrival pattern. As in this
arrival process the arrival rate experiences two peaks of arrival, we expect to see the to
increasing patterns in the staff rostering as well, but as there is minimum working hours
constraint, these increases so not happen at the same location that arrival rate did. The result
in table shows that the staff rostering is as we expected.

131

Appendix B

Resource code for algorithm 1 in chapter 3

This section represents the source code we developed in R to determine staffing levels
in chapter3. This code is based on algorithm 1 of chapter 3.

l i b r a r y (” queuecompute r ”)
l i b r a r y (d p l y r)
l i b r a r y (” randomNames ”)
l i b r a r y (” g g p l o t 2 ”)
l i b r a r y (r e a d r)
l i b r a r y (R T r i a n g l e)
l i b r a r y (” x l s x ”)
r e q u i r e (t r i a n g l e)
s e t . s eed (1)
#Read t h e a r r i v a l t ime d a t a
a r r i v a l s 1<− r e a d . csv
(f i l e . choose () , h e a d e r = TRUE, sep = ” , ” , dec = ” . ”)
C r e a t i n g s e r v i c e t ime random
o b s e r v a t i o n s f o r e x p o n e n t i a l d i s t r i b u t i o n
s e r v i c e 1<−d a t a . f rame (r exp (nrow (a r r i v a l s 1) , 2 0))
C r e a t i n g s e r v i c e t ime random o b s e r v a t i o n s
f o r t r i a n g u l a r d i s t r i b u t i o n
s e r v i c e 1<−d a t a . f rame (r t r i a n g l e (nrow (a r r i v a l s 1) , 1 , 5 , 3))
C r e a t i n g a r r i v a l t ime l i s t i n r e q u i r e d f o r m a t
a r r i v a l s <− a r r i v a l s 1 [1 : nrow (a r r i v a l s 1) ,]
C r e a t i n g s e r v i c e t ime l i s t i n r e q u i r e d f o r m a t
s e r v i c e<− s e r v i c e 1 [1 : nrow (a r r i v a l s 1) ,]
I n i t i a t e t h e S t a f f s , 24 h o u r s a day
S t a f f s<−c (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1)
I n i t i a t e t h e S t a f f s , 14 h o u r s a day
S t a f f s<−c (1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1)
D e f i n i n g t h e t ime b locks , 24 h o u r s a day
TimeBlocks<− c (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 ,
1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 , 2 0 , 2 1 , 2 2 , 2 3)
D e f i n i n g t h e t ime b locks , 14 h o u r s a day
TimeBlocks<− c (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3)
Queuing system ,

132

e x i s t i n g d e f i n i t i o n s i n ” queuecompute r ” package
r e s o u r c e s c h e d u l e <− as . s e r v e r . s t e p f u n (TimeBlocks , S t a f f s)
queue o b j<− queue s t e p (a r r i v a l s =
a r r i v a l s , s e r v i c e = s e r v i c e , s e r v e r s = r e s o u r c e s c h e d u l e)
a r r i v a l t i m e s
A r r i v a l s T i m e s<−queue o b j $ d e p a r t u r e s d f $ a r r i v a l s
C o n v e r t i n g w a i t i n g t i m e s t o minu tes , r o u n d i n g w a i t i n g t i m e s
Wai t ingTimes<−round ((queue o b j $ d e p a r t u r e s d f $ w a i t i n g) * 60 , 3)
p u t t i n g w a i t i n g t i m e s i n t h e d a t a f rame
Wai t ing d f<−d a t a . f rame (A r r i v a l s T i m e s , Wai t ingTimes)
C a l c u l a t i n g v a r i a n c e o f w a i t i n g t i m e s
t o t a l v a r i a n c e<−v a r (Wai t i ng d f $ Wai t ingTimes)
C a l c u l a t i n g s t a n d a r d d e v i a t i o n o f w a i t i n g t i m e s
t o t a l sd<−sd (Wai t i ng d f $ Wai t ingTimes)
#summary (queue o b j)
W a i t i n g t i m e L i s t<− l i s t ()
C o l l e c t i n g t h e w a i t i n g t i m e s o f t h e
a r r i v a l s i n each t ime b l o c k
W a i t i n g t i m e L i s t [[1]]<− Wai t ing d f
[Wai t i ng d f $ A r r i v a l s T i m e s <TimeBlocks [1] , 2]
I n i t i a l i z i n g t h e p e r c e n t i l e s e t ,
##maximum and v a r i a n c e l i s t s f o r w a i t i n g t i m e s i n each t ime b l o c k s
q u a l t i l e s e t<−0
Maxset<−0
v a r i a n c e s e t<−0
q u a l t i l e s e t [1]<− q u a n t i l e (W a i t i n g t i m e L i s t [[1]] , 0 . 9)
Maxset [1]<−max (u n l i s t (W a i t i n g t i m e L i s t [1]))
v a r i a n c e s e t [1]<−v a r (W a i t i n g t i m e L i s t [[1]])
f o r (i i n 2 : (l e n g t h (TimeBlocks) + 1)) {

W a i t i n g t i m e L i s t [[i]]<− Wai t ing d f
[(Wai t i ng d f $ A r r i v a l s T i m e s<TimeBlocks [i]

& Wai t ing d f $ A r r i v a l s T i m e s> TimeBlocks [i − 1]) , 2]

W a i t i n g t i m e L i s t [[l e n g t h (TimeBlocks) + 1]]
<− Wai t ing d f [Wai t i ng d f $ A r r i v a l s T i m e s>

TimeBlocks [l e n g t h (TimeBlocks)] , 2]
q u a l t i l e s e t [i]<− q u a n t i l e (W a i t i n g t i m e L i s t [[i]] , 0 . 9)
q u a l t i l e s e t [l e n g t h (TimeBlocks) + 1]
<− q u a n t i l e (W a i t i n g t i m e L i s t [[l e n g t h (TimeBlocks) + 1]] , 0 . 9)
Maxset [i]<−max (u n l i s t (W a i t i n g t i m e L i s t [[i]]))
Maxset [l e n g t h (TimeBlocks) + 1]
<−max (u n l i s t (W a i t i n g t i m e L i s t [[l e n g t h (TimeBlocks)]]))
v a r i a n c e s e t [i]<−v a r (W a i t i n g t i m e L i s t [[i]])
v a r i a n c e s e t [l e n g t h (TimeBlocks) + 1]
<−v a r (W a i t i n g t i m e L i s t [[l e n g t h (TimeBlocks) + 1]])

}
p r i n t (t o t a l sd)
p r i n t (t o t a l v a r i a n c e)

133

p r i n t (v a r i a n c e s e t)
p r i n t (q u a l t i l e s e t)
G e t t i n g t h e number o f s t a f f members t o s a t i s y
t h e s e r v i c e l e v e l , c a s e o f p e r c e n t i l e
as t h e f u n c t i o n o f w a i t i n g
t i m e s and maximum as t h e f u n c t i o n o f w a i t i n g t i m e s
f o r (i i n 1 : (l e n g t h (TimeBlocks) + 1)) {

w h i l e (q u a l t i l e s e t [i] >10){
w h i l e (Maxset [i] >10){

S t a f f s [i]<− S t a f f s [i]+1
r e s o u r c e s c h e d u l e <− as . s e r v e r . s t e p f u n (TimeBlocks , S t a f f s)
queue o b j<− queue s t e p (a r r i v a l s = a r r i v a l s ,
s e r v i c e = s e r v i c e , s e r v e r s = r e s o u r c e s c h e d u l e)
A r r i v a l s T i m e s<−queue o b j $ d e p a r t u r e s d f $ a r r i v a l s
Wai t ingTimes<−round ((queue o b j $ d e p a r t u r e s d f $ w a i t i n g) * 60 , 3)
Wai t i ng d f<−d a t a . f rame (A r r i v a l s T i m e s , Wai t ingTimes)
W a i t i n g t i m e L i s t<− l i s t ()
W a i t i n g t i m e L i s t [[1]]<−
Wai t ing d f [Wai t i ng d f $ A r r i v a l s T i m e s <TimeBlocks [1] , 2]

f o r (j i n 2 : l e n g t h (TimeBlocks))
{

W a i t i n g t i m e L i s t [[j]]<−
Wai t ing d f [(Wai t i ng d f $
A r r i v a l s T i m e s <TimeBlocks [j]
& Wai t i ng d f $ A r r i v a l s T i m e s> TimeBlocks [j − 1]) , 2]

W a i t i n g t i m e L i s t [[j + 1]]<−
Wai t ing d f [Wai t i ng d f $ A r r i v a l s T i m e s> TimeBlocks [j] , 2]

}
q u a l t i l e s e t [i]<− q u a n t i l e (W a i t i n g t i m e L i s t [[i]] , 0 . 9)
Maxset [i]<−max (u n l i s t (W a i t i n g t i m e L i s t [[i]]))

}
}
P r i n t i n g t h e number o f s t a f f s i n each t ime b l o c k
p r i n t (S t a f f s)
G e t t i n g t h e summary of queue components
summary (queue o b j)
s d s e t [i]<−sd (u n l i s t (W a i t i n g t i m e L i s t [i])) }
v a r (u n l i s t (W a i t i n g t i m e L i s t [2]))
##max (u n l i s t (W a i t i n g t i m e L i s t [2]))
F i n d i n g t h e b e g i n n i n g
of t h e s h i f t w i th minimum v a r i a t i o n s i n t h e s t a f f i n g l e v e l s i n each t ime b l o c k of t h e s h i f t
S t a f f s h i f t s<− l i s t ()
S t a f f s 1<−c (S t a f f s , S t a f f s)
V a r i a n c e s<−0
f o r (i i n 1 : l e n g t h (S t a f f s)) {

S t a f f s h i f t s [[i]]<− S t a f f s 1 [i : (i + 7)]
V a r i a n c e s [i]<−v a r (u n l i s t (S t a f f s h i f t s [[i]]))

134

}
p r i n t (which . min (V a r i a n c e s))

135

	Abstract
	Acknowledgments
	List of Abbreviations
	 Introduction
	Problem description and significance
	Research objectives and contributions
	Organization of dissertation

	Literature Review
	Introduction
	Input process analysis
	Conclusion

	Generating data of non-stationary processes
	Conclusion

	Change-point detection
	Conclusion

	Determining staffing levels
	Stationary approximation
	Simulation-based methods
	Numerical methods
	Fluid models
	Empirical methods

	Deep Reinforcement Learning
	Summary of literature

	Staffing Levels in Service Systems with Constant Shift Length and Start Time
	Introduction
	Problem Description and Formulation
	Discussion about waiting time function
	Considering average as the function for waiting time
	Considering percentile as the function for waiting time

	Simulation-based Optimization
	Description of the staffing level problems
	Percentile as the function of waiting time
	Determining staffing levels inside of the simulation process
	Staff scheduling and defining shifts
	Average as the function of waiting time

	Performance evaluation
	Arrival processes with step patterns
	Sinusoidal pattern in arrival process
	Bi-modal pattern in arrival process
	Point of sale arrival data

	Conclusion

	Flexible Staff Scheduling in Service Systems with Non-Stationary Arrival Processes by Applying Deep Reinforcement Learning (DRL)
	Introduction
	Overview of the problem
	Solution approaches

	Deep Reinforcement Learning
	Implementation of the Deep Reinforcement Learning technique to flexible staff scheduling

	Description of how to use Deep Reinforcement Learning as a tool to determine staff rostering
	Definition of inputs
	Definition of components of the simulation model

	Model validation and verification
	Performance evaluation of the solution approach
	Arrival process
	Penalty parameters levels
	Deciding about the number of required replications

	Applying the DRL approach to the use case, point of sale data of the grocery store
	Comparison between DRL and SBO approaches' outputs
	Efficiency comparison
	Performance

	Conclusion

	Modeling and Generating Independent Data for Non-Stationary Processes
	Introduction
	Definition of base process
	Existing method, combined inversion-and-thinning approach (CIATA) to generate nonstationary non-Poisson process
	Numerical inversion
	Overview of the algorithm used to generate data, in order to simulate the non-stationary independent arrival process
	Renewal base processes
	Phase-type distributions
	Considering uniform distribution as base process
	Truncated normal distribution as the base process

	Example to describe the methodology to generate non-stationary renewal random observations
	Performance evaluation of numerical inversion approach
	Comparison between the proposed methodology in this chapter and CIATA

	Conclusion

	Concluding Remarks and Future Work
	Appendices
	Results of Deep Reinforcement Learning Approach
	Results of experiments for Run 1, Run 2, and Run 3; stationary arrival process
	Interpreting the results of R1, R2, and R3 experiments
	Output of the experiments for Run 4, Run 5, and Run 6
	Interpretation of the results of Run 4, Run 5, and Run 6
	Experiment results for Run 7, Run 8, and Run 9
	Interpreting results of experiment 7, 8, and 9
	Experiment result for Run 10- sinusoidal pattern
	Experiment result for Run 11- sinusoidal pattern with higher frequency
	Experiment result for Run 12- sinusoidal pattern with higher amplitude
	Interpretation of the results of sinusoidal experiments (run 10, run 11, and run 12)
	Experiment result for Run 13, 14
	Interpretation of the results of run 13 and run 14
	Experiment result for Run 15

	Resource code for algorithm 1 in chapter 3

